Izdelava matematičnega modela za ogrevanje jekla v industrijskih pečeh*

Božidar Brudar

Opisan je primer, kjer s pomočjo matematičnega modela predvidevamo skrajšanje procesa ogrevanja in s tem prihranek energije. Predpostavljamo, da gre za izmenjavo toplote s sevanjem. Enačbo za prevajanje toplote smo rešili numerično za dvodimenzionalni model.

UVOD

Za uspešno valjanje jeklenih ingotov in bram je potrebno, da jih enakomerno ogrejemo na temperaturo od 1200° do 1300° C. V jeseniški železarni jih ogrevamo v globinskih pečeh, ki so kurjene z mazutom. Koliko časa moramo segrevati bloke v globinski peči, je odvisno od začetne toplotne vsebnosti. Ta pa je odvisna od časa, ki preteče od konca vlivanja v jeklarni do prihoda v valjarno (track time). S stališča ekonomike ogrevanja je zaželeno, da je ta čas čim krajši. Od specifične toplote in toplotne prevodnosti materiala pa je odvisno, koliko časa traja, da se hladen blok ogreje na zaželeno temperaturo.

Izdelali smo matematični model, po katerem lahko izračunamo, kako hitro se ogreje tak blok od 0° do 1300° C, če je temperatura površine ves čas 1300° C. Tako smo simulirali najhitrejše možno ogrevanje hladnega bloka.

Če pa hočemo določiti, koliko časa moramo ogrevati v globinski peči blok, ki je še vroč, je treba najprej poznati njegovo začetno temperaturno porazdelitev. Izdelali smo dvodimenzionalni matematični model, s katerim smo simulirali ogrevanje in ohlajanje vročega bloka s sevanjem. Ko smo določili začetni temperaturni profil v preseku brame B 8, smo izračunali temperaturno porazdelitev in toplotno vsebnost za nekaj tipičnih pogojev ogrevanja.

V obeh primerih smo predpostavili, da so naši bloki v obliki kvadra in da so specifična toplota, toplotna prevodnost in gostota materiala konstante¹.

Seznam uporabljenih simbolov

- a dolžina kvadra
- b širina kvadra
- c višina kvadra
- c_p specifična toplota
- h brezdimenzijski korak v krajevni smerj
- 1 brezdimenzijski korak v časovni smerj
- r -- brezdimenzijska koordinata v smeri x (kvader)
- R mrežna razdalja
- s brezdámenzijska koordinata v smeri y (kvader)
- S konstanta, ki povezuje krajevni in časovni korak
- t čas
 - t_o referenčni čas
 - t' časovni korak
 - T temperatura v bloku
 - T. temperatura na površini bloka (homogeni pogoji)
 - T₁ temperatura bloka v začetku
 - T_a temperatura v sredini preseka
 - Tz temperatura v okolici bloka
 - u temperatura v brezdimenzijski obliki (kvader)
 - v brezdimenzijska koordinata v smeri z (kvader)
 - w čas v brezdimenzijski obliki (kvader)
 - x krajevna koordinata v smeri dolžine pravokotnika
 - x. referenčna dolžina
 - $X_1 = ortogonalni polinom (\epsilon)$
 - X₂ ortogonalni polinom (T_o)
 - $X_{\rm im}$ vrednosti, pri katerih je Y minimalen $X_{\rm im}$
 - y krajevna koordinata v smeri širine pravokotnika
 - Y vsota kvadratov razlik temperature (sevanje)
 - z krajevna koordinata v smeri višine kvadra
 - ε emisijski koeficient
 - 1 brezdimenzijska koordinata v smeri y (sevanje)
 - ∂ temperatura v brezdimenzijski obliki za primer sevanja
 - λ toplotna prevodnost
- ξ brezdimenzijska koordinata v smeri x (sevanje)
- ρ gostota snovi
- σ --- Stefanova konstanta
- τ čas v brezdimenzijski obliki za primer sevanja

OGREVANJE HLADNEGA BLOKA

Predpostavljamo, da imamo ingot v obliki kvadra z robovi a, b, c z začetno temperaturo T (x, y, z, 0) = T_1 . Izhodišče koordinatnega sistema si izberemo v enem od oglov kvadra, osi pa so vzporedne z robovi a, b, c. Blok postavimo v peč, ki ima tako moč, da je temperatura površine bloka ves čas $T_v =$ konst.

^{*} To je povzetek elaborata, ki je bil izdelan s sofinansiranjem SBK naloga št. 236 — 1973

Božidar Brudar je diplomirani inženir in magister fizike in višji strokovni sodelavec v raziskovalnem oddelku železarne Jesenice.

Toplotno enačbo

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \frac{\rho \cdot c_p}{\lambda} \frac{\partial T}{\partial t}$$
(1)

smo rešili s Fourierovo metodo za separacijo spremenljivk. Pri tem smo si izbrali začetni pogoj

 $T(x, y, z, 0) = T_1$

in robne pogoje:

$$\begin{split} T & (0, y, z, t) = T & (a, y, z, t) = T_v \\ T & (x, 0, z, t) = T & (x, b, z, t) = T_v \\ T & (x, y, 0, t) = T & (x, y, c, t) = T_v \end{split}$$

Rešitev enačbe (1) lahko zapišemo (Dodatek I) v obliki:

$$\begin{split} T &= T_{v} + \sum_{k_{1}} \sum_{k_{2}} \sum_{k_{3}} \frac{64 \cdot (T_{1} - T_{v})}{\pi^{3} \cdot k_{1} \cdot k_{2} \cdot k_{3}} \cdot \sin\left(\frac{k_{1}\pi x}{a}\right) \cdot \\ &\cdot \sin\left(\frac{k_{2}\pi y}{b}\right) \cdot \sin\left(\frac{k_{3}\pi z}{c}\right) \\ &\cdot \exp\left[-\frac{\pi^{2} \cdot \lambda \cdot t}{\rho \cdot c_{p} \cdot a^{2}} \left((k_{1}^{2} + \frac{a^{2}}{b^{2}} k_{2}^{2} + \frac{a^{2}}{c^{2}} k_{3}^{2})\right)\right] \end{split}$$

pri čemer so k1, k2, k3 zaporedna liha cela števila.

Tako lahko izračunamo temperaturo za vsako točko ob vsakem času. Izdelali smo računalni-

Porazdelitev temperature v osnem preseku po 1 uri ogrevanja

Porazdelitev temperature v osnem preseku po 2 urah ogrevanja

ški program, ker je računanje trojnih vrst zelo zamudno. Po tem programu lahko za vsak kvader poljubnih dimenzij in lastnosti izračunamo, kako se temperatura spreminja s časom, če predpostavimo tako idealno ogrevanje.

Na slikah 1 — 5 so narisane izoterme v osnem preseku brame B 8 (a = 1,170 m, b = 0,630 m, c = = 1,950 m, $\rho = 7800 \text{ kg/m}^3$, $\lambda = 20,0 \text{ kcal/mhst}$, $c_{\rho} = 0,170 \text{ kcal/kgst}$) po 1 uri, dveh urah, treh urah, petih urah in osmih urah ogrevanja, če je T₁ = 0° C, in T_v = 1300 ° C.

OGREVANJE TOPLEGA BLOKA

Pri zalaganju toplih blokov v globinsko peč (kratek track time) je treba upoštevati, da že blok sam vsebuje precej toplote. Od začetne porazdelitve temperature je odvisno, koliko časa mora blok ostati še v peči, da doseže temperaturno porazdelitev, ki je primerna za valjanje.

Porazdelitev temperature v srednji presečni ploskvi brame smo določili takole.

Bramo B 8 s transportnim časom približno 2 uri smo postavili na tla, pokrita z dolomitnim peskom. Tudi glava je bila prekrita z ostanki lun-

Porazdelitev temperature v osnem preseku po 3 urah ogrevanja

keritskega praška in zato toplotno izolirana. Temperatura okolice je bila 20°C in tako se je brama ohlajala na zraku 3 ure. Vsakih 15 minut smo izmerili temperaturo v sredini obeh stranskih ploskev v točkah A in B (slika 6).

Izmerjene vrednosti smo narisali kot točke na sliki 7 in se vprašali, kakšna je morala biti temperaturna porazdelitev v začetku, če predpostavljamo, da se je blok 3 ure hladil s sevanjem.

Nadalje smo predpostavljali, da je bila začetna porazdelitev taka, kot jo prikazuje slika 6, kjer pada temperatura v smeri I in J od srednje vrednosti T_o po paraboli druge stopnje, obenem pa je temperatura v točkah A in B enaka začetnim izmerjenim vrednostim (810° oziroma 900° C). Predpostavljali smo, da je ohlajanje dvodimenzionalno in z metodo ortogonalnih polinomov (Dodatek III) poiskali take vrednosti za T_o in emisijski koeficient ε , da se je izračunani potek temperature v točkah A in B kar najbolje ujemal z izmerjenimi vrednostmi. Tako smo izračunali, da je T_o = 1360° C in ε = 0,99. Takrat je bila vsota kvadratov razlik med izračunanimi in izmerjenimi temperaturami v točkah A in B minimalna. Srednje povprečno odstopanje med izmerjenimi in izračunanimi temperaturami je znašalo $\approx 16^{\circ}$ C. (Krivulji na sliki 7).

Če torej privzamemo, da je $T_o = 1360^{\circ}$ C in $\varepsilon = 0,99$ in da se temperatura po preseku spreminja po paraboli drugega reda, dobimo pri ohlajanju s sevanjem v točkah A in B temperaturni potek, ki je kar najbolj podoben izmerjenemu. Tak blok bomo imenovali **optimalni** blok.

Poskusili smo tudi s predpostavko, da je temperatura po preseku porazdeljena po paraboli 4. reda, pa smo dobili precej slabše rezultate. Vrednost za ε je v okviru vrednosti, ki so jih dobili drugi avtorji^{10, 11}, ki so upoštevali konvekcijo.

Tudi praktično smo se prepričali, da je takšen model pravilen¹³. V laboratoriju smo ogreli manjši blok ($100 \times 100 \times 200 \text{ mm}$) na 1220° C in ga pustili, da se je hladil na zraku. Pri tem smo merili temperaturo v sredini bloka in v sredini stranske ploskve. Primerjali smo izmerjene vrednosti z izračunanimi po tem modelu.

Enačba, ki smo jo reševali za primer sevanja:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{\rho \cdot c_p}{\lambda} \cdot \frac{\partial T}{\partial t}$$
(2)

Porazdelitev temperature v osnem preseku po 5 urah ogrevanja

Robni pogoji:

Porazdelitev temperature v osnem preseku po 8 urah ogrevanja

Slika 7 Temperatura na površini brame v točkah A in B (točke — izmerjena, črta — izračunana)

Optimalni blok v peči s temperaturo 1300° C

Zaradi nelinearnih robnih pogojev smo jo rešili numerično³ in izdelali računalniški program¹³ za tak dvodimenzionalni problem. Z njim smo simulirali nekaj tipov ogrevanja in ohlajanja in prišli do zanimivih zaključkov.

V dodatku II je nakazan način, po katerem smo rešili ta problem.

OHLAJANJE NA ZRAKU IN ZALAGANJE V PEČ

Na sliki 8 je narisan temperaturni potek v srednji presečni ploskvi brame B 8 v smeri B — S (slika 6), ki bi se ohlajala na zraku s temperaturo 20° C.

Oglejmo si potek temperature pri bloku, ki bi ga takoj založili v peč (slika 9) in pri bloku, ki bi se prej 1 uro hladil na zraku (slika 10). Pri ohlajanju na zraku bi se toplotna vsebnost tako zmanjšala, da bi potrebovali 2 uri ogrevanja več, če bi hoteli doseči enako temperaturno porazdelitev kot pri optimalnem bloku.

Na slikah 11, 12, 13 in 14 so narisani temperaturni profili v srednji presečni ploskvi v optimalnem bloku, ki bi se najprej 1 uro ohlajal na zraku po 15 minutah ogrevanja v peči, po 1 uri in po 2 urah ogrevanja v peči s temperaturo 1300° C. Zanimivo je videti, kako bi prodirala toplota v tak blok z zunanje strani in od sredine navzven.

Temperaturna porazdelitev v začetku

Slika 12 Porazdelitev temperature po 15 minutah ogrevanja

ZACETNA HOMOGENIZACIJA

Pri ogrevanju nekaterih kvalitet smo imeli predpise, po katerih je bilo treba vroč blok za nekaj časa (1-3 ure) postaviti v nekurjeno peč s temperaturo 900º C (homogenizacija) in šele nato nadaljevati s segrevanjem.

Če bi to naredili z našim optimalnim blokom, se izkaže, da bi se pri temperaturi peči 900º C sicer površina blokov ogrela, zaradi precej višje temperature v sredi pa bi se v bistvu tak blok ohlajal (slika 15). Toplotna vsebnost bi se v začetku zvečala, po 3 urah homogenizacije bi se pa znižala.

Se bolj neugodno pa je to, da se temperaturne razlike pri taki homogenizaciji zmanjšajo in bi se zaradi tega tak blok veliko pozneje ogrel kot blok, ki ga ne bi homogenizirali. Izračunali smo toplotno vsebnost pri bloku, ki bi ga takoj založili v peč, pri bloku, ki bi se 1 uro (3 ure) homogeniziral pri temperaturi 900º C, in pri bloku, ki bi se eno uro hladil na zraku s temperaturo 20º C in bi ga šele nato postavili v peč s temperaturo 1300º C.

Iz tabele I in slike 16 se vidi, kako bi naraščala toplotna vsebnost za različne režime ogrevanja. S stališča ekonomičnosti ogrevanja je zanimiva predvsem ugotovitev, da bi izenačevanje tempera-

ture po preseku zaradi začetne homogenizacije bistveno podaljšalo čas zadrževanja blokov v globinskih pečeh. Po našem modelu bi bila triurna homogenizacija pri 900º C za nadaljnje ogrevanje skoraj tako neugodna kot enourno ohlajanje na zraku.

Tabela I			
Ogrevanje na 1300°C	optimalni blok brez homogen.	optim. bl. 1 uro homog. na 900º C	
			_

v začetku	169,7	172,0	161,9	146,4
po pol ure	199,0	193,4	184,9	181,4
po 1 uri	206,0	200,5	193,4	192,1
po 2 urah	212,0	208,4	203,6	203,3
po 3 urah	215,5	212,9	209,7	209,6

ure homog optim. bl.

na

Zato smo pri večini internih predpisov za ogrevanje delno ali v celoti odpravili začetno homogenizacijo.

Porazdelitev temperature po 1 uri ogrevanja

229

Ogrevanje brez homogenizacije

SIMULIRANJE REŽIMA OGREVANJA

Interni predpis Železarne Jesenice za ogrevanje blokov neke določene kvalitete predpisuje naslednje:

Vroč blok naj ostane 3 ure v nekurjeni vroči komori globinske peči. Nato jo je treba ogreti na 1100° C s hitrostjo 60° C/h. Na tej temperaturi naj ostane 3 ure. Nato je treba segreti peč na temperaturo 1200° C s hitrostjo 40°/h. Na tej temperaturi naj bi ostala 4 ure.

Takšno ogrevanje smo simulirali z našim dvodimenzionalnim modelom. Na sliki 17 je narisan temperaturni profil v smeri B-S-A za ogrevanje po tem predpisu.

Nato smo računsko »odpravili« začetno homogenizacijo pri temperaturi 900° C (slika 18) in za eno uro skrajšali čas zadrževanja na temperaturi 1100° C in 1200° C (slika 19).

Po teh računskih eksperimentih bi toplotna vsebnost v bloku še vedno naraščala tako, da bi to ne presegalo zmogljivosti naših peči, čas ogrevanja bi bil pa znatno krajši. Iz slike 17 se lepo vidi, kako bi padala toplotna vsebnost zaradi začetne homogenizacije. Res je, da bi se tempera-

Slika 19 Ogrevanje brez homogenizacije, skrajšano za 2 url

ture izenačile, vendar pa bi bil blok po 5 urah energijsko še vedno na istem kot ob zalaganju v peč. Podobno obdelavo smo naredili tudi s predpostavko, da je začetna temperatura nekurjene komore 1000° C. Tudi v tem primeru smo ugotovili, da bi bilo možno znatno skrajšati čas zadrževanja na temperaturi 1100° C.

Tudi na podlagi teh ugotovitev smo naredili pomembne spremembe v naših regulativih.

Prednost eksperimentiranja z modelom je v tem, da lahko računsko spreminjamo posamezne faze in ugotavljamo, kako bi se to odražalo v celotnem procesu.

Zaključek

Opisana analiza ogrevanja in ohlajanja z matematičnim modelom nakazuje širše možnosti pri uporabi matematične fizike pri izboljševanju tehnologije in povečevanju proizvodnje. S prvim modelom smo simulirali najhitrejše možno ogrevanje hladnega bloka, z drugim pa smo simulirali bolj realne pogoje pri zalaganju vročih blokov v globinsko peč. Če je model veren prikaz dejanskih pogojev, je s pomočjo računalnika možno eksperimentirati (spreminjati parametre v modelu), kar je hitrejše in mnogo cenejše kot eksperimentiranje v praksi. Računalniški program lahko uporabimo tudi za druge dimenzije blokov z drugimi fizikalnimi lastnostmi.

Nadaljnje delo bo potekalo v smeri izpopolnjevanja računalniških programov¹³, da bo model bolje opisoval dejansko dogajanje. Predvsem bo treba kontrolirati temperaturo v več točkah na površini in upoštevati tudi fazne spremembe¹² v bloku, pri katerih pride do sproščanja toplote. Upoštevati bo treba tudi to, da se pri različnih kvalitetah specifična toplota in toplotna prevodnost spreminjajo s temperaturo². Posebej bo treba študirati problem konvekcije.

Očitno pa je, da že grob model da zelo koristne rezultate in nakazuje, katerim fazam tehnološkega procesa je treba posvetiti posebno pozornost.

Dodatek I.

Enačbo I smo pretvorili v brezdimenzijsko obliko z uvedbo novih spremenljivk:

$$U = \frac{T - T_{v}}{T_{1}} \quad r = \frac{x}{a} \quad s = \frac{y}{b} \quad v = \frac{z}{c} \quad w = \frac{t}{t_{o}}$$
$$t_{o} = \frac{a^{2} \cdot \rho \cdot c_{\rho}}{\lambda}$$
$$\frac{\partial^{2} U}{\partial r^{2}} + \frac{a^{2}}{b^{2}} \cdot \frac{\partial^{2} U}{\partial s^{2}} + \frac{\partial^{2} U}{\partial v^{2}} \cdot \frac{a^{2}}{c^{2}} = \frac{\partial U}{\partial w} \quad (3)$$

Robni pogoji:

U(0, s, v, w) = U(1, s, v, w) = 0U(r, 0, v, w) = U(r, 1, v, w) = 0U(r, s, 0, w) = U(r, s, 1, w) = 0

Začetni pogoji:

$$U(r, s, v, 0) = \frac{T_1 - T_v}{T_1}$$

Enačbo (3) rešimo s Fourierovo metodo za separacijo spremenljivk.

Vpeljemo: $U(r, s, v, w) = W(w) \cdot R(r) \cdot S(s) \cdot V(v)$ in to vstavimo v enačbo (3).

Če nato levo in desno stran enačbe delimo z (R.S.V.W), dobimo naslednji izraz:

$$\frac{W'}{W} = \frac{R''}{R} + \frac{S''}{S} + \frac{V''}{V} = -K^2$$

Če upoštevamo robne pogoje, lahko zapišemo rešitev enačbe (3) v obliki:

$$\begin{split} U\left(r, s, v, w\right) &= \sum_{k_1, \, k_2, \, k_3} d\left(k_1, \, k_2, \, k_3\right) . \, \sin\left(k_1 \pi r\right) . \, \sin\left(k_2 \pi s\right) . \, \sin\left(k_3 \pi v\right) . \, \exp\left(-K^2 w\right) \end{split}$$

pri čemer je

$$K^{2} = k_{1}^{2}\pi^{2} + \frac{k_{2}^{2}\pi^{2}a^{2}}{b^{2}} + \frac{k_{3}^{2}\pi^{2}a^{2}}{c^{2}}$$

 k_1 , k_2 , k_3 , po katerih seštevamo, so zaporedna cela števila 1, 2, 3....

Konstante d (k_1, k_2, k_3) določimo iz začetnega pogoja. V času t = 0 namreč velja:

$$\sum_{k_1, k_2, k_3} d(k_1, k_2, k_3) \cdot \sin\left(\frac{k_1 \pi x}{a}\right) \cdot \sin\left(\frac{k_2 \pi y}{b}\right).$$
$$\sin\left(\frac{k_3 \pi z}{c}\right) = \frac{T_1 - T_v}{T_1}$$

Ce levo in desno stran množimo s

$$\sin\frac{k_1'\pi x}{a} \cdot \sin\frac{k_2'\pi y}{b} \cdot \sin\frac{k_3'\pi z}{c}$$

in integriramo po x v mejah od 0 do a, po y v mejah od 0 do b in po z v mejah od 0 do c, dobimo:

d (k₁, k₂, k₃) =
$$\frac{T_1 - T_v}{T_1} \cdot \frac{64}{\pi^3 \cdot k_1 \cdot k_2 \cdot k_3}$$

pri čemer so k₁, k₂, k₃ zaporedna liha cela števila. Končno lahko zapišemo splošno rešitev enačbe (1):

$$\begin{split} T\left(x,y,z,t\right) &= T_{v} + \sum_{k_{1},k_{2},k_{3}} .\sin\frac{64 \cdot (T_{1} - T_{v})}{\pi^{3} \cdot k_{1} \cdot k_{2} \cdot k_{3}} \ .\\ &\cdot \sin\left(\frac{k_{1}\pi x}{a}\right) \cdot \sin\left(\frac{k_{2}\pi y}{b}\right) \cdot \sin\left(\frac{k_{3}\pi z}{c}\right) \ .\\ &\exp\left[-\frac{\pi^{2} \cdot \lambda \cdot t}{\rho \cdot c_{p} \cdot a^{2}} \left(k_{1}^{2} + \frac{a^{2}}{b^{2}} k_{2}^{2} + \frac{a^{2}}{c^{2}} k_{3}^{2}\right)\right] \end{split}$$

Rešitev (4) je zapisana v obliki neskončne vsote po lihih celih vrednostih k_1 , k_2 in k_3 . Zaradi eksponentne funkcije ta vsota razmeroma hitro konvergira.

Dodatek II.

Vpeljemo nove spremenljivke:

$$\begin{split} \xi &= \frac{x}{x_o} \qquad \eta = \frac{y}{x_o} \qquad \tau = \frac{t}{t_o} \qquad \vartheta = \frac{T}{T_d} \\ x_o &= \frac{\lambda}{\varepsilon \cdot \sigma \cdot T_d^3} \quad t_o = \frac{\rho \cdot c_p \cdot \lambda}{\sigma^2 \cdot T_d^6 \cdot \varepsilon^2} \quad A = \frac{\varepsilon \cdot \sigma \cdot x_o T_z^4}{\lambda \cdot T_d} \end{split}$$

T_d...neka zunanja temperatura

Tako lahko zapišemo enačbo v brezdimenzijski obliki:

$$\frac{\partial^2 \partial}{\partial \xi^2} + \frac{e^2}{\partial \eta^2} = \frac{\partial \partial}{\partial \tau}$$
(5)

Robni pogoj:

$$-\left(\frac{\partial\partial}{\partial\xi}\right)_{p}=\partial_{p}^{4}-A \qquad -\left(\frac{\partial\partial}{\partial\eta}\right)_{p}=\partial_{p}^{4}-A$$

Indeks p označuje, da je treba upoštevati vrednosti na robu. Enačbo (5) smo rešili numerično za pravokotnik in kvadrat. Pri pravokotniku smo si izbrali takšne dimenzije, da so se le-te ujemale z velikostjo srednje presečne ploskve brame B 8, pri kvadratu smo pa upoštevali dimenzije ingota OK 650. Pravokotnik smo razdelili na mrežo kvadratov s stranico R = 0,0315 m. Tako smo v pravokotniku srednje presečne ploskve brame B 8 dobili mrežo 21 × 38 točk. Pri ingotu smo izbrali mrežno razdaljo R = 0,0325 m in študirali 21 × 21 mrežnih točk. če mrežno razdaljo R delimo z x_o , dobimo brezdimenzijski korak v krajevni smeri $h = \frac{R}{x_o}$ Podobno dobimo brezdimenzijski korak v časovni smeri 1, če delimo časovni korak t' s časom t.:

$$l = \frac{t'}{t_o}$$

Časovnega koraka si ne moremo več poljubno izbrati. Stabilnostni kriterij za reševanje enačbe² zahteva, da mora biti izpolnjen pogoj:

$$S = \frac{1}{h^2} \leq \frac{1}{4}$$

Ugodno je izbrati za S = 0,25, ker se pri taki izbiri koraka v krajevni smeri izkaže, da je t' ≈ 1 minuta v obeh primerih.

V točki (i, j) mreže (slika 20) lahko izračunamo »brezdimenzijsko« temperaturo $\vartheta_{i,j,k+1}$

časovnem koraku, če poznamo temperaturo v sosednjih točkah po k-tem koraku:

$$\vartheta_{i, j, k+1} = S \cdot (\vartheta_{i-1, j, k} + \vartheta_{i+1, j, k} + \vartheta_{i, j-1, k} + \\ + \vartheta_{i, j+1, k}) + (1 - 4S) \cdot \vartheta_{i, j, k} + \dots$$
(6)

Mrežne točke v sredini ploskve

Po formuli (6) lahko izračunamo temperaturo v vsaki točki znotraj pravokotnika. Če hočemo izračunati še temperature na robu (slika 21), je treba rešiti enačbo (7), ki odgovarja sevalnemu robnemu pogoju:

$$\frac{1}{2 h} \cdot (-3 \vartheta_{o} + 4 \vartheta_{1} - \vartheta_{2}) = \vartheta_{o}^{4} - A$$
 (7)

Numerično reševanje s tako kratkim časovnim korakom je precej zamudno³. Zato smo izdelali obširnejši program za računalnik za poljuben kvadrat ali pravokotnik.

Dodatek III.

V tabeli II je podana vsota kvadratov razlik med izmerjenimi in izračunanimi temperaturami v točkah A in B za vse kombinacije parametrov ϵ in T_o.

Z analizo variance^{4,8} (Tabela III) smo določili, koliko prispevajo posamezni ortogonalni polinomi^{5, 6,7} k vsoti kvadratov odvisne spremenljivke Y. Pri tem predstavlja L linearno komponento, Q kvadratično, K kubično in Č komponento četrte stopnje.

Mrežne točke na robu ploskve

T	10	h		1	0	1	1	٢	
L	и	υ	\boldsymbol{e}	ι	u	ı	1		

		$\begin{array}{c} X_1=3\\ \epsilon=1,0 \end{array}$	$\begin{array}{c} X_1=-1\\ \epsilon=0,9 \end{array}$	$\begin{array}{c} X_1=+ \ 1 \\ \epsilon=0,8 \end{array}$	$\begin{array}{c} X_1=+ \ 3 \\ \epsilon=0.7 \end{array}$
$X_2 = -2$	$T_{o} = 1000^{\circ} C$	75072	47943	27641	15752
$X_2 = -1$	$T_o = 1100^{\circ} C$	41857	22446	11475	11114
$X_2 = 0$	$T_{o} = 1200^{\circ} C$	18922	8724	7745	19604
$X_2 = +1$	$T_0 = 1300^{\circ} C$	7350	5931	15254	39892
$X_2 = +2$	$T_{o} = 1400^{\circ} C$	5087	12996	33957	71497

Če upoštevamo le člene do druge stopnje polinoma, upoštevamo le efekte L_T , Q_T , Q_E in L_T . Le (tabela IV).

Linearna komponenta Le in vse ostale so statistično nepomembne⁹.

Regresijska formula:

Y = 25013 - 2601 , $X_2 + 5618$, $X_2^2 + 5602$, $X_1^2 + 5235$, X_1 , X_2

pri čemer je

$$X_{2} = \frac{T - 1200}{100} \qquad X_{1} = \frac{0.85 - \varepsilon}{0.05}$$
$$X_{2}^{2} = \left(\frac{T - 1200}{100}\right)^{2} - 2$$
$$X_{1}^{2} = \frac{1}{4} \left[\left(\frac{0.85 - \varepsilon}{0.05}\right)^{2} - 5 \right]$$

Tabela III

Efekti	Komponente	Vsota kvadratov x (10°)	Prost. stopnje
	L _T	271,5	1
т	QT	1767,1	1
1	K _T	0,9	1
	Ĉ _T	0,0	1
	Vsota (T)	2039,5	4
	L,	7,1	1
ε	Q,	627,6	1
	κ	2,4	1
	Vsota (ε)	637,1	3
	L _T . L _s	5481,6	1
т	Q _T .Q _E	5,2	1
1.8	L _T .Q	32,0	1
	$Q_T . L_{\epsilon}$	0,0	1
	Vsota (T . ϵ)	5518,8	4
	Ostanek	0,5	8
	Vsota	8195,9	19

Tabela IV:

Efekt	Kompo- nente	Vsota kvadr. x (10')	Prost. st.	Povp. kv.	Opomba
	LT	271,5	1		
Т	QT	1767,1	1		
ε	Qs	627,6	1		
$T . \epsilon L_T . L$	L _T . L	5481,6	1		
	Vsota	8147,8	4		
	Ostanek	48,1	15		
	Vsota	8195,9	19	3,2	$R^2 = 0,994$

Minimum določimo iz pogojev

$\partial Y = 0$	$\frac{\partial Y}{\partial Y} = 0$
эT	25
$X_{1 \min} = -3,35$	$X_2 \min = 1,79$
$\epsilon = 1,02$	$T_{o} = 1380^{\circ} C$

Če pa upoštevamo člene do tretje stopnje, so pomembni sledeči efekti: L_T , Q_T , L_{ϵ} , Q_{ϵ} , L_{ϵ} . $L_T, Q_E L_T$ in L_E, Q_T (tabela V).

Komponente višjih stopenj so nepomembne, če pomembnost ocenjujemo z F-testom9.

	· · ·	4.		•	
1	a	n	e	IA	- V
		~			

Efekti	Kompo- nente	Vsota kvadr. x (10%)	Prost. st.	Povp. kv.
T	L _T	271,5	1	
1 1	ί Q _T	1767,1	1	
_	(L.	7,1	1	
E	ί¢,	627,6	1	
	L_{r} L_{T}	5481,6	1	
ε.Τ	Q _c .L _T	32,0	1	
	L _ε .Q _T	5,2	1	
	Vsota	8192,1	7	
	Ostanek	3,8	12	0,3
	Vsota	8195,9	19	

Regresijska formula:

 $Y = 25013 - 2601 \cdot X_2 + 5618 \cdot X_2^2 + 5602 \cdot X_1^2 +$ $+ 5235 \cdot X_1 \cdot X_2 + 267 \cdot X_1 + 895 \cdot X_2 \cdot X_1^2 +$

+ 136 . X22 . X1

Minimum določimo iz pogojev:

 $\frac{\partial Y}{\partial T} = 0 \quad \text{in} \quad \frac{\partial Y}{\partial \epsilon} = 0$ $\begin{array}{ll} X_{1\,\min} = -2.2 & X_{2\,\min} = 1.34 \\ \epsilon = 0.96 & T_{\rm o} = 1334^{\rm o}\,C \end{array}$

Če vzamemo srednjo vrednost rezultatov iz obeh regresijskih enačb, je $\varepsilon = 0.99$ in T_o = 1360° C.

Literatura

- 1. W. Heiligenstaedt: Wärmetechnische Rechnungen für Industrieöfen, Verlag Stahleisen M. B. H., Düsseldorf 1951, stran 77 in 173.
- 2. H. Köhne: Digitale und analoge Lösungsmethoden der Wärmeleitungsgleichungen, Westdeuscher Verlag, Köln und Opladen 1970,
- 3. G. D. Smith: Numerical Solution of Partial Differential Equations, Oxford University Press
- 4. B. Ostle: Statistics in Research, The Iowa State University Press, 1969
- 5. O. L. Davies: Design and Analysis of Industrial Experiments, Hafner Publishing Company, 1971
- 6. B. Brudar: Interpretacija diagramov, Železarski zbornik 1973, št. 1
- B. Brudar: Faktorski poskus in metoda ortogonalnih polinomov, Żelezarski zbornik 1973, št. 2 7. A. Linder: Planen und Auswerten von Versuchen, Birk-
- häuser Verlag, Basel 1969
- 8. System/360 Scientific Subroutine Package (360 A-CM-03) Version III., IBM Programers'Manual
- 9. A. H. Bowker, G. J. Lieberman: Engineering Statistics, Prentice - Hall, Inc., 1959
- 10. Elliot, Gleisser, Ramakrishna: Thermochemistry for Steel-making, Addisson Wesley Publishing Company, Inc., stran 740 11. E. Millies: Das Temperaturfeld eines Vorbandes, Archiv
- für das Eisenhüttenwesen, Heft 9, Sept. 1964, stran 855
- L. S. Darken, R. W. Gurry: The Physical Chemistry of Metals, Mc Graw Hill Book Company, 1953, stran 397
- 13. B. Brudar: Magistrsko delo, 1973

ZUSAMMENFASSUNG

Ein mathematischer Modell ist ausarbeitet worden, nach welchem die nötige Wärmezeit zum erwärmen des Blockes von 0° bis auf 1300°C errechnet werden kann, wenn die Oberflächentemperatur durchaus 1300°C ist. So ist die schnellst mögliche Erwärmung eines kalten Blockes simuliert worden. Für das Studium der Erwärmung heisser Blöcke ist ein zweidimensioneller mathematischer Modell ausarbeitet worden, mit welchem das Erwärmen und Abkühlungen durch das Strahlen simulliert worden ist. Den Anfangstemperaturprofil im Querschnitt der Bramme B 8 (9200 kp) haben wir festgestellt, und danach die Temperaturverteilung und den Wärmegehalt für einige Wärmebedingungen ausgerechnet.

Wir haben festgestellt, dass wir ziemlich viel Energie und Zeit ersparen könnten, wenn wir übereinstimmend mit diesem Modell die Anfangshomogenisierung abschaffen und einige Phasen bei der Erwärmung der heissen Blöcke in Tieföfen verkürzen würden.

SUMMARY

Satisfactorial rolling of steel ingots is conditioned by uniform soaking to 1200-1300° C. Time of heating depends on the initial heat capacity, specific heat, and thermal conductivity of material.

A mathemathical model is proposed for calculation of heating cold ingot to 1300° C if the surface temperature is constant at 1300° C. Thus the fastest heating of cold ingot is being simulated. Further, a two-dimensional mathematical model is proposed for heating hot ingots taking in account heating and cooling by radiation. The initial temperature profile in the cross section of the B 8 (9200 kp) slab was determined, the variation of temperature was calculated, and the heat capacity for various heating conditions was specified.

Substantial amount of energy and time could be saved if initial homogenizing were abolished and some steps of heating hot ingots in pits were shortened.

ЗАКЛЮЧЕНИЕ

Для успешнога прокатывания слитков стали необходимо их равномерно согреть на темп-ру 1200—1300⁹ Ц. Продолжительность нагрева зависить от начальнога содержания теплоты, удельной теплоть и теплопроводности материала.

Рассмотрен матаматический модель, на основании которога можно высчитать быстроту нагревания холоднога слитка с 0⁶ до 1300⁹ Ц, под условием если темп-ра поверхности слитка всё время нагрева на высоте 1300⁶ Ц. Таким образом удалось стимулировать нагревание холоднога слитка в самое короткое время. Для изучения нагрева горячих слитков разработан двухразмерный математический модель при помощи которога стимулиропали нагрев и охлаждение взяв во внимание раднацию. Определили первоначальный температурный профиль в сечении брамы В 8 (9200 кп) и вычислити температурное расспределение и содержание теплоты для некоторых условий нагрева.

Установлено, что можно сберечь достаточно энергии и времени, если в согласии с этим моделем исключить первоначальную гомогенизацию и сократить некоторые фазы при нагреве горячих слитков в нагревательных колодцах,