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Abstract
We calculated the full three-dimensional potential energy surface (PES) of an isolated hydrogendifluoride anion (FHF–)

in the electronic ground state at a very accurate Coupled Cluster approach and large correlation-consistent valence tri-

ple-zeta basis set [CCSD(T)/aug-cc-pVTZ]. The PES was evaluated at more than 30.000 points corresponding to diffe-

rent geometries of the system. Analytical form of the PES was expressed in an internal coordinate set which included

the F...F separation (internal coordinate R) and the longitudinal and transversal projection (internal coordinates x and y)

of the proton position on the F...F line. For each constant value of x a two-dimensional fit along y and R was performed

by using displaced Gaussian functions. The fitted parameters of Gaussians were then spline-interpolated along x to get

the final analytical form of the three-dimensional PES. The maximum fitting error was less than 0.01 kcal/mol in the lo-

west 20 kcal/mol region of the PES, yielding an accurate and conveniently formulated surface which can be readily used

for advanced calculations, including fully coupled anharmonic vibrational analysis and quantum dynamics simulation. 

Keywords: Hydrogendifluoride anion, short hydrogen bonding, potential energy surface, vibrational dynamics, cou-

pled cluster calculations, three-dimensional fitting

1. Introduction
Hydrogen bonding is an important interaction which

governs the structure and properties of a variety of mole-
cular systems, including highly relevant biological mole-
cules such as enzymes, or materials with industrial appli-
cation. Despite the enormous amount of experimental and
computational work devoted to hydrogen bond research,
this phenomenon remains poorly understood in many cru-
cial aspects. Particularly this holds for examples of extre-
mely short hydrogen bonds with notably pronounced geo-
metric and spectroscopic features, such as a broad and
red-shifted hydrogen stretching band in the vibrational
spectra and 1H NMR resonance signal of the proton at
very low fields, etc. Since Kreevoy and Cleland postulated
the role of the so called »low barrier hydrogen bonding«
in the enzyme catalysis,1 theoretical and experimental re-
search of such hydrogen bonds (also dubbed »short and
strong hydrogen bond«) has gained momentum and the
improved understanding of many properties of short
hydrogen bonding has remained to date a challenge and
subject of various studies. 

Perhaps the most essential and universal feature re-
quired for the understanding of any observable quantity of
a chemical system, including short hydrogen bonding, is
the potential energy surface (PES), which governs vir-
tually all the aspects of structure and dynamics of the sys-
tem. Not surprisingly, the features of the PES have been
for long at the focal point of theoretical and experimental
hydrogen bond research.2–8 However, adequate sampling
of the PES has proved to be a very demanding task for va-
rious reasons. First, the PES is an extremely complex
function. For a system of N atoms, the dimensionality of
the PES is 3N-6, which renders the computational evalua-
tion of the complete PES virtually impossible for all but
smallest systems. Second, very accurate and demanding
computational approach is often needed in order to faith-
fully reproduce the PES and its important features, such as
curvatures (vibrational frequencies) or barrier heights.
This holds particularly for short hydrogen bonds; for in-
stance, accurate evaluation of proton transfer barrier of
malonaldehyde requires the use of Coupled Cluster ap-
proach, while the popular, widely used and cost-efficient
DFT methodologies severely underestimate the barrier.9,10
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The hydrogen diflouride anion (FHF–) in the gas
phase is arguably the simplest example of an extremely
short and strong hydrogen bond. The equilibrium F...F se-
paration determined from rotational constants by diode la-
ser spectroscopy is 2.7777 Å11 and the bond energy is es-
timated to 45.8 kcal/mol,12 which probably qualifies it as
the shortest and strongest hydrogen bond ever known. Gi-
ven the simplicity of the system whose structure is fully
determined by only three internal nuclear degrees of free-
dom, FHF– represents a popular benchmark example
which has been extensively elaborated in the past by ad-
vanced computational techniques, including the evalua-
tion of the full 3D PES or its selected 2D subspace over a
wide range of coordinate values.13–16 Indeed, on the basis
of accurate calculations of anharmonic vibrational levels
via the solving of the three-dimensional vibrational
Schrödinger equation the initial experimental assignment
of the asymmetric F...H...F stretching band, recorded by
infrared diode laser spectroscopy,11,17 was changed from
1849 to 1331 cm–1.18 Our experience includes an anhar-
monic vibrational calculation in the reduced 2D coordina-
te space of the symmetric and asymmetric F...H...F stretc-
hing modes assuming linearity and neglecting the bending
degree of freedom.19 A similar 2D study has been perfor-
med by Elghobashi et al., also yielding excellent agree-
ment of the symmetric stretching frequency with the
experimental value, but much less so for the asymmetric
stretching, probably due to the neglected coupling to the
bending degree of freedom.20 A very recent example of re-
search which benefits form the hydrogendifluoride system
is at the level of particle physics, examining the nature of
the hydrogen bond-like interaction in the analog complex,
where the proton is substituted by a muon (F...μ...F).21

Despite its simplicity, the calculated properties of
FHF– via the PES have been proved to exhibit very large
variations with the applied level of theory – much larger
than with most of other benchmark systems,16,22,23 leaving
open door for further improvement in the evaluation of the
PES by employing state-of-the art accurate methodolo-
gies, feasible to run in massive quantities on modern com-
puters. Also, while the PES of FHF– has been evaluated
for a number of times in the past, there is still a lack of
experience in designing a strategy for the construction of a
reliable PES in an analytic form. Thus, the attributes of
the pointwise evaluation of the PES, including the sam-
pling density and coordinate range, together with the fit-
ting strategy still remain a largely open issue. The scope
of this article is to provide an accurate 3D PES of isolated
FHF– by means of a highly accurate ab initio methodo-
logy, together with a concise sampling and fitting strategy,
ultimately yielding a convenient, analytic form of the
PES. This form, available on request as a Fortran code,
may be used for any advanced study which relies on a fast
and accurate evaluation of the PES at a large number of
points. Examples of such calculations are the solving of a
fully coupled 3D vibrational Schrödinger equation or a

quantum dynamics simulation of the system. Given that
FHF– is a popular benchmark example essential for the
understanding of short hydrogen bonding, such applica-
tions are expected to remain challenging in the future,
despite that they may have been to some extent already
elaborated in the past. 

2. Computational

Level of theory. The PES of FHF– was evaluated by
pointwise calculations according to the strategy presented
below. All calculations were carried out by the Gaussian
03 program package.24 The highly reliable and accurate
Coupled Cluster methodology CCSD(T) was chosen as
model chemistry. The basis set was taken from the Dun-
ning correlation-consistent line of split-valence basis sets
differing in the number of levels representing the valence
orbitals (from 2 to 6), to which diffuse functions were ad-
ded. A straightforward test of the basis set performance
are the optimized F...F separation and harmonic frequen-
cies, listed in Table 1. 

Table 1. Optimized F...F separation and harmonic frequencies of

the isolated FHF– ion (ν1 – symmetric F...H...F stretching; ν2 –

F...H...F bending; ν3 – asymmetric F...H...F stretching), calculated

by the CCSD(T) approach and various basis sets. Nb denotes the

number of basis functions. 

basis set RFF νν1 νν2 νν3 Nb
[[Å]] [[cm–1]] [[cm–1]] [[cm–1]]

aug-cc-pVDZ 2.3037 613 1330 1054 55

aug-cc-pVTZ 2.2802 641 1366 1272 115

aug-cc-pVQZ 2.2788 639 1348 1199 206

aug-cc-pV5Z 2.2789 639 1335 1172 334

aug-cc-pV5Z (on F)*
aug-cc-pV6Z (on H)

2.2780 639 1334 1175 381

experimental 2.2777 583 1286 1331 –

* The aug-cc-pV6Z basis set is not available for fluorine atom. 

It can be seen that the frequency of the asymmetric
F...H...F stretching mode (ν3) exhibits high sensitivity to
the basis set size. While the criterion for satisfactory con-
vergence is somewhat arbitrary, we feel that the aug-cc-
PVQZ basis set represents a sound compromise between
accuracy and computational cost and may be quite safely
assumed to yield convergent properties of the system. Ho-
wever, due to the fact that the appropriate sampling of the
3D PES requires thousands of energy evaluations, and as
computational time increases by about an order of magni-
tude when the basis set size is doubled, we restricted our-
selves in the present work to the smaller aug-cc-pVTZ ba-
sis set, which allows the PES calculation to be done in a
reasonable time. We believe that the difference between
triple- and quadruple-zeta basis set are not notably reflec-
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ted in main features of the PES, and the choice of the
smaller basis set is still legitimate for devising the fitting
strategy. Also it should be noted that any comparison of
the tabulated geometry and vibrational frequencies with
the experimental values is of very limited value, since the-
se calculations do not take into account anharmonicity
and nuclear quantum effects which are crucial for both vi-
brational properties and geometry of the system. 

Internal coordinate system. The internal coordinate
system in which the PES was represented, was construc-
ted in the following way. The origin of the internal coordi-
nate system was set to the midpoint between the fluorine
nuclei. The x axis of the coordinate system was placed
along the line that connects the fluorines and the y axis
was set to be perpendicular to x (Fig. 1). Thus, the longitu-
dinal and transversal projection of the proton position on
the F...F line represent the x and y coordinate, respecti-
vely; the third coordinate is the F...F separation (RFF). 

Figure 1. Definition of the three internal coordinates x, y and RFF.

Furthermore, it is convenient to represent the F...F
separation as an offset from the equilibrium separation (R)
rather than with the absolute value (RFF): R = RFF – R0

FF,
where R0

FF is the equilibrium F...F distance of 2.2802 Å.
Thus, the structure with all the three internal coordinates
equal to zero represents the global minimum geometry.
Evidently, the potential expressed in this coordinate sys-
tem features the following symmetry:

V(x,y,R) = V(–x,y,R) = V(x,–y,R) = V(–x,–y,R). (1)

It should also be noted that the reduced masses wit-
hin this coordinate system are constant (coordinate-inde-
pendent) and kinetically orthogonal. 

Construction of the PES. The 3D PES was construc-
ted as a set of 2D ššslices’’ in the following way. For each
distinct value of R, a 2D (x,y) surface was pointwise evalua-
ted by moving the proton on a uniform grid with the restric-
tion that its separation from either fluorine atom was at least
0.75 Å. The grid resolution was 0.05 Å, which ensured
smooth fits without unwanted artifacts (see below). This re-
sulted in about 700–1500 points per 2D surface. The con-
struction of a 2D surface for R = 0 is presented in Fig. 2. 

Figure 2. Positions of hydrogen atom (red dots) in the construction

of a 2D slice of the PES at a constant F...F distance. 

For each 2D slice the ranges of the coordinates x and
y were chosen such that the potential energy at the boun-
daries was at least 40 kcal/mol above the minimum, and
the symmetry of the potential was exploited. The 2D sli-
ces presented above were calculated for a series of diffe-
rent F...F separations between 1.7802 and 4.7802 Å and
the step in F...F was 0.05 Å, resulting in 61 two-dimensio-
nal slices. The internal coordinate ranges were the follo-
wing: x ∈ [0.00, 2.70 Å], y ∈ [0.00, 2.00 Å], R ∈ [–0.50,
2.50 Å]. The complete PES evaluation totaled in about
30.000 single point calculations at the CCSD(T)/aug-cc-
pVTZ level of theory. The strategy of pointwise calcula-
tions was assisted by preliminary evaluations of the PES
at a much less CPU-intensive B3LYP/6-31+G(d,p) level. 

Fitting. Technically the most straightforward fitting
procedure should include a three-dimensional parametri-
zed function f(x,y,R;A) where A is an array of parameters
that should be chosen in such a way to minimize the pe-
nalty function P:

formula ?????????????, (2)

where the summation is performed over all the points
(xi,yi,Ri) for which the values of V have been determined
by quantum chemical calculations. It is also reasonable to
use a weighting scheme that stresses the importance of
points with low energy; the values of weights (wi) can be,
for example, inversely proportional to V(xi,yi,Ri). In our
calculations the weights have been determined by the
expression wi = 1/[V(xi,yi,Ri) + K], with a small constant K
of 0.01 – 0.1 kcal/mol being used to avoid singularities in
wi. 

The main difficulty of a supposed 3D fit outlined
above lies in the fact that the required set of parameters
for a 3D function is very large; based on our experience
from 2D fitting of Gaussian-type functions which typi-
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cally included about 60 parameters,19,25,26 a reasonable 3D
analog would involve at least 500 parameters. Additio-
nally, the dataset is very large – in the present case the full
3D dataset includes about 30.000 points, while typical 2D
datasets have at most a few hundreds of points. Also the
number of iterations required for the minimization of P in
a 3D fit is supposed to be much larger than for 2D fits;
thus computational time for a 3D fit would be at least
three to four orders of magnitude larger than for a 2D fit,
which can usually be managed on the scale of ten minutes.
Apart from these drawbacks, 3D fits are much more diffi-
cult to be controled because of the inability of full visuali-
zation. Accordingly, we built our fitting strategy on 2D
projections (ššslices’’) through the 3D PES in the follo-
wing way:

(1) Choose a 2D slice through the PES, with one
coordinate being constant and the other two va-
riables. 

(2) Perform a 2D fit along the variable coordinates
based on the subset of the original dataset with
the fixed coordinate having a constant value. 

(3) Repeat (2) for all possible slices characterized by
the value of the fixed coordinate. 

(4) Link (interpolate) the 2D fitted parameters along
the coordinate that remained fixed in the 2D fits. 

(5) Visualize the fitted function, and check it for
smoothness and unwanted artifacts. 

In the present work, three distinct interpolation
schemes were used to obtain the analytic expression of the

full PES from the pointwise calculated dataset: (i) analytic
expressions for two-dimensional slices through the PES
were acquired by fitting of Gaussian-type functions (one
linear and four non-linear fitted parameters per each
Gaussian) to the corresponding subsets of points of the
dataset; the fitting was based on a quasi-Newton minimi-
zation of a weighted penalty function27 and, optionally,
employed a large number of minimization cycles (about
one million per fit) and very tight convergence criteria; (ii)
the fitted parameters of two-dimensional slices were lin-
ked together along the third dimension by the cubic spline
interpolation scheme; (iii) when necessary, additional
points were added to the original dataset by means of the
three-dimensional weighted Shepard interpolation utility
of Renka.28,29

3. Results and Discussion

Optimal fitting strategy. The fact that the PES has
been evaluated by successive 2D projections with variable
x and y and at constant R suggests that the fitting should
proceed equivalently, namely that the subsequent 2D
Gaussian fits would be performed over x and y at constant
R (an ššxy slice’’), and then the fitted parameters would be
spline-interpolated along R. However, the other two op-
tions employing a swapped role of coordinates are in prin-
ciple equally legitimate and merit consideration for fitting
strategy. Fig. 3 displays the characteristic 2D slices

Figure 3. Contour plots of different 2D slices through the 3D PES of FHF–. Selected contours are labeled with the corresponding relative energies

in kcal/mol and the corresponding values of the third (constant) coordinate (in Å) are listed. 
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through the 3D PES of FHF–. Note that in each row one of
the coordinates is held constant while the other two are
variables. 

The (x,y) slice (top line) evidently represents the
most conventional representation of a 2D subset of the
PES. The large high-energy circular area clearly corres-
ponds to the hard-core potential experienced by the proton
when being placed in the vicinity of the fluorine atom.
Although visual appearance suggests that such slices can
be smoothly connected by spline interpolation of the fitted
parameters of the individual slices, we met severe difficul-
ties in our attempts to smoothly pass between two succes-
sive slices along R. It is perhaps a bit surprising that the
(y,R) slices (bottom line) delivered notably smoother in-
terpolation of the fitted parameters along x. Additionally,
the (y,R) slices were found to provide easier 2D fits and
require less parameters than the (x,y) slices – the latter re-
quired 20 Gaussian functions for a good fit while the for-
mer required only 13. On the contrary, the (x,R) slices are
considerably more sophisticated in shape and evidently
more demanding for analytical fitting; as such they are not
appropriate for the fitting strategy outlined in the Compu-
tational section. Therefore we proceeded with the fitting
based on 2D projections of the PES as functions of y and
R while x was constant at each distinct projection. 

Resolution of the dataset and fitting quality. The fit-
ting proceeded over 2D slices of the PES in which y and R
were variables and x was held constant. Starting from the
slice at x = 0.00 Å, a set of 13 displaced Gaussian func-
tions of y and R was fitted to the dataset. After the fitting,
we proceeded to the next slice (at x = 0.05 Å) and repea-
ted the fitting, using the fitted parameters from the previ-
ous surface as the initial guess. We subsequently repeated
this procedure until the last 2D surface at x = 2.70 Å. The
obtained series of fitted parameters of the 2D Gaussians,
corresponding to surfaces at different values of x, were
then spline-interpolated along x to yield the final form of
the complete 3D PES. This function was subjected to furt-

her analysis. The analytical form of the 3D PES allows for
making analytical minimum-energy projections along the
desired coordinate. A minimum-energy profile along x is
displayed in Fig. 4. 

The blue line represents the minimum-energy profi-
le of the PES by using exclusively the original data points.
It should be stressed that subsequent 2D slices differ in x
by 0.05 Å. Clearly, while the energy curve is smooth and
features no notable artifacts at small values of x, the shape
becomes much less reasonable at x > 0.20 Å; at x > 0.50 Å
large discrepancies (several kcal/mol) between the fitted
function and the original data (red circles) are observed.
This indicates that the density of the original 2D slices
along x is too low. Namely, when passing from one 2D
surface to another, the fitting alters the parameters of the
Gaussians; the difference between the ššold’’ and ššnew’’
parameters is larger when the resolution in x is low and
when subsequent surfaces are less similar to one another.
Consequently, the interpolation of the parameters beco-
mes harder and can lead to unwanted artifacts. The simila-
rity of parameters between the consecutive fits (and thus
the reliability of spline interpolation) can be enforced by
limiting the number of cycles in the numerical fitting pro-
cedure, but this ultimately leads to poorer 2D fits and poor
overall fit. The only way to overcome this problem is the
increased resolution of the dataset, i.e. a more dense set of
consecutive 2D surfaces. Since additional quantum calcu-
lations are not practical, we enlarged the original dataset
by the three-dimensional interpolation utility of Renka.29

This does not improve the quality of information contai-
ned in the original, pointwise calculated dataset, but helps
the subsequent 2D fits to proceed more smoothly, because
the surfaces become more similar to one another. The
green line represents the minimum-energy projection of
the PES, acquired at the double resolution in x (0.025 Å),
and the improvement is evident. Nevertheless, issues in-
herent to such fitting persist and further increase of the da-
taset is required to deliver a high precision 3D fit. Ultima-
tely, when the original dataset of ab initio points is densi-
fied in the x direction by an order of magnitude (the reso-
lution of the subsequent 2D surfaces is 0.005 Å in x), the
fitting procedure described above yields an extremely ac-
curate and smooth fit; the shape of the function is appa-
rently flawless, and the root-mean-square fitting error in
the lowest 20 kcal/mol region of the PES is only about
0.002 kcal/mol. The maximum offset of the fitted function
from the original dataset is about 0.01 kcal/mol, which we
believe is sufficient for quantitative spectroscopic applica-
tion. The fitting error profile over the original data points
in the lowest energy region is displayed in Fig. 5. 

Features of the PES. Some major characteristics of
the PES can be demonstrated by means of minimum-ener-
gy profiles along the selected internal coordinates, displa-
yed in Fig. 6. The profile along R is displayed on top of
Fig 6. For all but smallest F...F distances, the structure of
the system is linear. Soon after the minimum (R > 0.10 Å)

Figure 4. Minimum of the projection of the PES at constant x as a

function of x. Blue line: resolution = 0.050 Å; green line: resolution

= 0.025 Å; red circles: exact CCSD(T) values
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the structure becomes asymmetric with the proton located
nearer to one fluorine nucleus. At large values of R the en-
ergy approaches the dissociation limit calculated to 44.5
kcal/mol, which is in excellent agreement with experi-
mental findings.12 The curve features a profile of Morse-
like function characteristic of many covalent bonds, indi-
cating the strongly covalent nature of hydrogen bonding
in FHF–. In contrast to R the bending energy profile along
y (Fig. 6, middle) is slightly steeper and far above disso-
ciation in the displayed region. The latter is due to the fact
that when constraining the internal (bending) coordinate y
to relatively high values, the negatively charged fluorine
atoms become exposed to one another in a strongly re-
pulsive interaction. However, due to the fact that the sam-
pled F...F separation was limited to less than 5 Å, the fluo-
rines cannot accordingly relax to larger separation, which
leads to overestimated values of the potential above y =
0.7 Å. Nevertheless, this effect is substantial only at the
regions of the PES which are more than 40 kcal/mol abo-
ve the minimum, so this artifact is practically irrelevant
for lower vibrational states. Finally, the minimum-energy
profile along the x (stretching) coordinate is displayed in
the bottom of Fig. 6, featuring a sigmoidal shape. Again,
the structure is linear until the bending component outba-
lances the dissociation tendency on the increasing displa-
cement of the proton from the midpoint of the F...F line.
The small bump at x ≈ 1.4 Å originates from the fixation
of R to 2.5 Å, which is the maximum F...F separation sam-
pled in this work. Similarly as with the potential along y,
this ultimately leads to the artifact that at very large values
of x the energy is above the dissociation limit. 

As can be seen from the features displayed above,
the fitted PES is of very high quality in the region of lower
vibrational states. The fact that the coordinate ranges were
rather limited slightly impairs the quality of the PES for
the highly excited vibrational levels and renders any dyna-

mics associated with the dissociation process less reliable.
While the calculated dissociation energy is in excellent
agreement with the experimental data, the PES is clearly
inadequately sampled in the region which corresponds to
dissociation. A reliable inclusion of the dissociative part
of the PES would require much additional effort which is
beyond the scope of this work. 

At the bottom line it should be noted that the ultima-
te verification of the presented calculations are actual ob-

Figure 5. Fitting error as function of the relative energy in the lo-

west 20 kcal/mol region of the PES. Each point represents the ener-

gy difference between the fitted function and the corresponding da-

taset value. 

Figure 6. Minimum-energy curve of the PES along the three inter-

nal coordinates with selected characteristic structures.
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servables, such as anharmonic vibrational frequencies,
which can be derived from the PES and compared to the
experimental data. This part, together with a concise com-
parison with previous computational experience, remains
a challenge for the near future. 

4. Conclusions

The three-dimensional potential energy surface of
the isolated hydrogendifluoride anion in the electronic
ground state has been calculated at over 30.000 distinct
geometries using the highly accurate CCSD(T)/aug-cc-p-
VTZ computational approach. A concise internal coordi-
nate set has been chosen, allowing for expressing the PES
in a convenient analytical representation, and an optimal
fitting strategy was devised, ultimately leading to a very
accurate and reliable analytic form of the PES in the re-
gion of up to 40 kcal/mol above the minimum. With the
fitting error being of an order of only a few thousandths of
kcal/mol in the low energy region, the PES is suitable for
computational treatment of the vibrational dynamics at
quantitative precision, as long as highly excited vibratio-
nal levels are not significant. As all major characteristic
features of the PES are virtually independent of the actual
level of theory, at least when accurate methodologies and
large basis sets are used, the present fitting approach is tri-
vially applicable to improved PES calculations which
may be feasible in the future. 
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Povzetek
Z zelo zanesljivim kvantno kemijskim pristopom (metoda sklopljenih skupkov, angl. Coupled Cluster) in velikim bazn-

im setom smo izra~unali polno, tridimenzionalno potencialno ploskev izoliranega hidrogendifluoridnega aniona (FHF–)

v osnovnem elektronskem stanju [ra~un CCSD(T)/aug-cc-pVTZ]. Vrednosti potenciala smo ocenili v ve~ kot 30.000

to~kah, ki ustrezajo razli~nim geometrijam sistema. Analiti~no obliko potenciala smo zasnovali v internih koordinatah,

in sicer razdalji F...F (koordinata R) ter longitudinalni in transverzalni projekciji polo`aja protona na zveznico F...F (ko-

ordinati x in y). Za vsako konstantno vrednost koordinate x smo napravili analiti~no prilagajanje vzdol` koordinat y in

R, pri ~emer smo uporabili linearno kombinacijo dvodimenzionalnih Gaussovih funkcij. Prilagojene parametre

Gaussovih funkcij smo nato z metodo kubi~nih zlepkov interpolirali vzdol` koordinate x. Najve~je odstopanje modelne

funkcije od izra~unanega potenciala zna{a v obmo~ju nizke energije (do 20 kcal/mol nad minimumom) le 0.01

kcal/mol. Analiti~na oblika potenciala je zelo natan~na in primerna za napredne ra~unske {tudije kot npr. polno anhar-

monsko vibracijsko analizo ali kvandnodinamsko simulacijo.


