ARS MATHEMATICA CONTEMPORANEA

On graphs with the smallest eigenvalue at least $-1-\sqrt{2}$, part II

Tetsuji Taniguchi
Matsue College of Technology
Nishiikuma-cho 14-4, Matsue, Shimane 690-8518, Japan

Received 25 December 2010, accepted 30 December 2011, published online 22 March 2012

Abstract

This is a continuation of the article with the same title. In this paper, the family \mathscr{H} is the same as in the previous paper [11]. The main result is that a minimal graph which is not an \mathscr{H}-line graph, is just isomorphic to one of the 38 graphs found by computer.

Keywords: Generalized line graph, spectrum.
Math. Subj. Class.: 05C50

1 Introduction

In the previous paper [11], we proved the uniqueness of strict $\left\{\left[H_{2}\right],\left[H_{3}\right],\left[H_{5}\right]\right\}$-cover graphs. This result plays a crucial role in obtaining an upper bound on the number of vertices in a minimal forbidden subgraph.

In this paper, we completely determine minimal forbidden subgraphs for the class of slim $\left\{\left[H_{2}\right],\left[H_{3}\right],\left[H_{5}\right]\right\}$-line graphs. By computer, we obtain such graphs (cf. Figure 2). The smallest eigenvalue of the minimal forbidden subgraph $G_{5,2}$ is less than $-1-\sqrt{2}$, and others are greater than or equal to $-1-\sqrt{2}$. We know that the smallest eigenvalues of $\left\{\left[H_{2}\right],\left[H_{3}\right],\left[H_{5}\right]\right\}$-line graphs are greater than or equal to $-1-\sqrt{2}$ (cf. Theorem 3.7 of [12]). These mean that, if a graph does not contain subgraphs in Figure 2, then it is a slim $\left\{\left[H_{2}\right],\left[H_{3}\right],\left[H_{5}\right]\right\}$-line graph, and has the smallest eigenvalue at least $-1-\sqrt{2}$.

We use the same notation as in [11].
Definition 1.1. A Hoffman graph is a graph H with vertex labeling $V(H) \rightarrow\{s, f\}$, satisfying the following conditions:
(i) every vertex with label f is adjacent to at least one vertex with label s;

[^0](ii) vertices with label f are pairwise non-adjacent.

We call a vertex with label s a slim vertex, and a vertex with label f a fat vertex. We denote by $V_{s}(H)\left(V_{f}(H)\right)$ the set of slim (fat) vertices of H. An ordinary graph without labeling can be regarded as a Hoffman graph without fat vertex. Such a graph is called a slim graph. The subgraph of a Hoffman graph H induced on $V_{s}(H)$ is called the slim subgraph of H. We draw Hoffman graphs by depicting vertices as large (small) black dots if they are fat (slim).

Figure 1:
We denote by $[H]$ the isomorphism class of Hoffman graphs containing H. In the following, all graphs considered are Hoffman graphs and all subgraphs considered are induced subgraphs. For a vertex v of a Hoffman graph H, we denote by $N_{H}^{s}(v)\left(\operatorname{resp} . N_{H}^{f}(v)\right)$ the set of all slim (resp. fat) neighbours of v, and by $N_{H}(v)$ the set of all neighbours of v, i.e., $N_{H}(v)=N_{H}^{s}(v) \cup N_{H}^{f}(v)$. We write $G \subset H$ if G is an induced subgraph of H. We denote by $\langle S\rangle_{H}$ the subgraph of H induced on a set of vertices S. For a Hoffman graph H and a subset $S \subset V_{s}(H)$, let $\langle\langle S\rangle\rangle_{H}$ denote the subgraph

$$
\langle\langle S\rangle\rangle_{H}=\left\langle S \cup\left(\bigcup_{z \in S} N_{H}^{f}(z)\right)\right\rangle_{H} .
$$

Also, define $H-S, H-x$ by $H-S=\left\langle\left\langle V_{s}(H) \backslash S\right\rangle\right\rangle_{H}, H-x=H-\{x\}$, respectively, where $x \in V(H)$. Let \emptyset be an empty set, and let ϕ be an empty graph.

Definition 1.2. Let H be a Hoffman graph, and let $H^{i}(i=1,2, \ldots, n)$ be a family of subgraphs of H. The graph H is said to be the sum of $H^{i}(i=1,2, \ldots, n)$, denoted

$$
\begin{equation*}
H=\biguplus_{i=1}^{n} H^{i} \tag{1.1}
\end{equation*}
$$

if the following conditions are satisfied:
(i) $V(H)=\bigcup_{i=1}^{n} V\left(H^{i}\right)$;
(ii) $V_{s}\left(H^{i}\right) \cap V_{s}\left(H^{j}\right)=\emptyset$ if $i \neq j$;
(iii) if $x \in V_{s}\left(H^{i}\right)$ and $y \in V_{f}(H)$ are adjacent, then $y \in V\left(H^{i}\right)$;
(iv) if $x \in V_{s}\left(H^{i}\right), y \in V_{s}\left(H^{j}\right)$ and $i \neq j$, then x and y have at most one common fat neighbour, and they have one if and only if they are adjacent.

Definition 1.3. Let \mathscr{H} be a family of isomorphism classes of Hoffman graphs. An \mathscr{H} line graph Γ is a subgraph of a graph $H=\biguplus_{i=1}^{n} H^{i}$ such that $\left[H^{i}\right] \in \mathscr{H}$ for all $i \in$ $\{1,2, \ldots, n\}$. In this case, we call H an \mathscr{H}-cover graph of Γ. If $V_{s}(\Gamma)=V_{s}(H)$, then we call H a strict \mathscr{H}-cover graph of Γ. Two strict \mathscr{H}-covers K and L of Γ are called equivalent, if there exists an isomorphism $\varphi: K \rightarrow L$ such that $\left.\varphi\right|_{\Gamma}$ is the identity automorphism of Γ.

For the remainder of this section, we assume $\mathscr{H}=\left\{\left[H_{2}\right],\left[H_{3}\right],\left[H_{5}\right]\right\}$ (cf. Figure 1). In our previous paper [11], we proved the following theorem:

Theorem 1.4. Let Γ be a connected slim \mathscr{H}-line graph with at least 8 vertices. Then a strict \mathscr{H}-cover graph of Γ is unique up to equivalence.

Every subgraph of an \mathscr{H}-line graph is an \mathscr{H}-line graph. Thus, it is desirable to determine all minimal slim non \mathscr{H}-line graphs. If Γ is a minimal slim non \mathscr{H}-line graph with at least 9 vertices, then we can use Theorem 1.4 to derive a contradiction (refer to Section 4 for the details of the proof). Enumerating all the slim non \mathscr{H}-line graphs with at most 8 vertices by comupter, we obtain the following theorem which is the main result in this paper:

Theorem 1.5. If Γ is a minimal slim non \mathscr{H}-line graph, then Γ is isomorphic to one of the graphs in Figure 2.

2 Forbidden graphs found by computer search

In this section, we assume $\mathscr{H}=\left\{\left[H_{2}\right],\left[H_{3}\right],\left[H_{5}\right]\right\}$ (cf. Figure 1). Proposition 2.1 is the main result in this section. It is very hard to obtain the propositions without computer search. In this paper, we have computed by the software MAGMA [9]. In order to prove the propositions, we show some lemmas.

Let \mathscr{X}_{n} be the family of isomorphism classes of connected slim graphs with n vertices. Brendan McKay gives collections of simple graphs on his web site (cf. [10]). From the data on this web site, we can generate \mathscr{X}_{n}. Let S_{n} be the family of isomorphism classes of connected slim \mathscr{H}-line graphs with n vertices. By computer, we obtain

$$
\begin{equation*}
\mathscr{X}_{n}=S_{n}(n=1,2,3,4) \text { and } \mathscr{X}_{5} \backslash S_{5}=\left\{\left[G_{5,1}\right],\left[G_{5,2}\right]\right\}(\text { cf. Figure } 2) \tag{2.1}
\end{equation*}
$$

We define \mathscr{F}_{n} to be the family of isomorphism classes of minimal slim non \mathscr{H}-line graphs with n vertices. From (2.1), $\mathscr{F}_{i}=\emptyset(i=1,2,3,4)$ and $\mathscr{F}_{5}=\left\{\left[G_{5,1}\right],\left[G_{5,2}\right]\right\}$. Removing those graphs which contain $G_{5,1}$ or $G_{5,2}$ from $\mathscr{X}_{6} \backslash S_{6}$, we obtain $\mathscr{F}_{6}=\left\{\left[G_{6, i}\right] \mid i=\right.$ $1,2, \ldots, 28\}$. Similarly we obtain $\mathscr{F}_{7}=\left\{\left[G_{7, i}\right] \mid i=1,2, \ldots, 7\right\}, \mathscr{F}_{8}=\left\{\left[G_{8,1}\right]\right\}$, and $\mathscr{F}_{9}=\emptyset$ (cf. Figure 2). Hence the following proposition holds:

Proposition 2.1. Let Γ be a minimal slim non \mathscr{H}-line graph. If $|V(\Gamma)| \leq 9$, then $[\Gamma] \in$ $\mathscr{F}_{5} \cup \mathscr{F}_{6} \cup \mathscr{F}_{7} \cup \mathscr{F}_{8}$.

Actually, the conclusion of the proposition holds without the assumption $|V(\Gamma)| \leq 9$.

$G_{5,1}$

$G_{5,2}$

$G_{6,1}$

$G_{6,2}$

$G_{6,3}$

$G_{6,4}$

$G_{6,5}$

$G_{6,6}$

$G_{6,7}$

$G_{6,8}$

$G_{6,9}$

$G_{6,10}$

$G_{6,11}$

$G_{6,12}$

$G_{6,14}$

$G_{6,19}$

$G_{6,15}$

$G_{6,20}$

$G_{6,24}$

$G_{6,25}$

$G_{7,7}$

$G_{6,21}$
$G_{6,22}$

$G_{6,18}$

$G_{6,23}$

$G_{6,16}$

$G_{6,17}$

$G_{7,4}$

$G_{7,5}$

$G_{7,6}$

$G_{8,1}$

Figure 2:

3 Some useful lemmas

A vertex of a graph is called a pendant vertex if it has degree 1.
Lemma 3.1. Let $H=H^{0} \uplus H^{1}$ be a connected graph. Suppose that $V_{f}\left(H^{0}\right) \cap V_{f}\left(H^{1}\right)=$ $\{\alpha\}$ and $N_{H^{0}}^{s}(\alpha)=V_{s}\left(H^{0}\right)$. Then H^{1} is connected.

Proof. Put $F=V_{f}\left(H^{0}\right) \backslash\{\alpha\}$ and $K=H^{0}-F$. Then $F \cap V_{f}\left(H^{1}\right)=\emptyset$. Hence $H-F=K \uplus H^{1}$ and $H-F$ is connected. Since α is a unique fat vertex of K which is adjacent to all the slim vertices of K, Lemma 15 of [11] implies that H^{1} is connected.

Lemma 3.2. Let \mathscr{H} be a family of isomorphism classes of Hoffman graphs, satisfying the following condition:

$$
[H] \in \mathscr{H}, H \not \equiv H_{2} \Longrightarrow\left|N_{H}^{f}(x)\right| \leq 1 \quad \forall x \in V_{s}(H)
$$

Let H be an \mathscr{H}-line graph. Then,
(i) if $u \in V_{s}(H)$, then $\left|N_{H}^{f}(u)\right| \leq 2$,
(ii) if u, v are distinct slim vertices of H, then $\left|N_{H}^{f}(u) \cap N_{H}^{f}(v)\right| \leq 1$.

Proof. See Lemma 23 of [11].
From [8, §6, Problem 6(c)], we obtain the following lemma:
Lemma 3.3. Let Γ be a connected slim graph. If Γ is neither a complete graph nor a cycle, then there exists a non-adjacent pair $\{x, y\}$ in $V(\Gamma)$ such that $\Gamma-\{x, y\}$ is connected.

For the remainder of this section, we assume $\mathscr{H}=\left\{\left[H_{2}\right],\left[H_{3}\right],\left[H_{5}\right]\right\}$ (cf. Figure 1).
Lemma 3.4. Let $H=\biguplus_{i=0}^{n} H^{i}$ be a Hoffman graph satisfying $\left[H^{j}\right] \in \mathscr{H}$ for $j=$ $0,1, \ldots, n$. Let V be a subset of $V_{s}(H)$, and let $K=\langle\langle V\rangle\rangle_{H}$. Then there exist subgraphs $K^{i}\left(i=0,1, \ldots, n^{\prime}\right)$ of K such that

$$
K=\biguplus_{i=0}^{n^{\prime}} K^{i},\left[K^{j}\right] \in \mathscr{H} \cup\left\{\left[H_{1}\right]\right\} \text { for } j=0,1, \ldots, n^{\prime}
$$

Proof. Put $L^{i}=\left\langle\left\langle V \cap V_{s}\left(H^{i}\right)\right\rangle\right\rangle_{H^{i}}$. Obviously $\left[L^{i}\right] \in \mathscr{H} \cup\left\{[\phi],\left[H_{1}\right],\left[H^{\prime}\right]\right\}$, where H^{\prime} is the sum $H_{1} \uplus H_{1}$ of two copies of H_{1} sharing a fat vertex. Since $K=\biguplus_{i=0}^{n} L^{i}$ by [11, Lemma 12], the lemma holds.

Lemma 3.5. Let Γ be a connected slim \mathscr{H}-line graph. Then there exists a connected strict \mathscr{H}-cover graph $H=\biguplus_{i=0}^{n} H^{i}$ of Γ. Conversely, if $H=\biguplus_{i=0}^{n} H^{i}$ is a connected graph with $\left[H^{i}\right] \in \mathscr{H}$ and $n>0$, then $\Gamma=\left\langle V_{s}(H)\right\rangle_{H}$ is connected.

Proof. The first part follows from Example 22 of [11]. We prove the second part by induction on n. The assertion is easy to verify when $n=1$. Suppose $n>1$, and let $H^{\prime}=\left\langle\bigcup_{i=1}^{n} V\left(H^{i}\right)\right\rangle_{H}$. Since H is connected, $V_{f}\left(H^{0}\right) \cap V_{f}\left(H^{\prime}\right) \neq \emptyset$. Pick $\alpha \in$ $V_{f}\left(H^{0}\right) \cap V_{f}\left(H^{\prime}\right)$. Then every slim vertex of H^{0} is adjacent to α, and hence every slim vertex of H^{0} has a slim neighbour in H^{\prime}. Since $H^{\prime}=\biguplus_{i=1}^{n} H^{i}$ is connected by inductive hypothesis, we see that Γ is connected.

Lemma 3.6. If $\biguplus_{i=0}^{m_{1}} K^{i}=\biguplus_{i=0}^{m_{2}} L^{i}$ and $\left[K^{i}\right],\left[L^{i}\right] \in \mathscr{H}$ for each i, then $m_{1}=m_{2}$, and

$$
\left\{K^{i} \mid 0 \leq i \leq m_{1}\right\}=\left\{L^{i} \mid 0 \leq i \leq m_{2}\right\} .
$$

Proof. It suffices to prove $K^{i}=L^{j}$ whenever $V_{s}\left(K^{i}\right) \cap V_{s}\left(L^{j}\right) \neq \emptyset$. We may suppose without loss of generality that $i=j=0$. If $K^{0} \cong H_{2}$, then K^{0} has a unique slim vertex, so $V_{s}\left(K^{0}\right) \subset V_{s}\left(L^{0}\right)$. By Definition 1.2 (iii), we have $K^{0} \subset L^{0}$. This implies $\left|V_{f}\left(L^{0}\right)\right| \geq 2$, hence $L^{0} \cong H_{2}$, and therefore $K^{0}=L^{0}$. The same conclusion holds when $L^{0} \cong H_{2}$, so we suppose $\left[K^{0}\right],\left[L^{0}\right] \in\left\{\left[H_{3}\right],\left[H_{5}\right]\right\}$ for the rest of the proof. If $s_{1} \in V_{s}\left(K^{0}\right) \cap V_{s}\left(L^{0}\right)$, then there exists $s_{2} \in V_{s}\left(K^{0}\right)$ not adjacent to s_{1}. Since s_{1} and s_{2} have a common fat neighbour in K^{0}, Definition 1.2(iv) forces $s_{2} \in V_{s}\left(L^{0}\right)$. This implies $V_{s}\left(K^{0}\right) \subset V_{s}\left(L^{0}\right)$ if $K_{0} \cong H_{3}$. If $K^{0} \cong H_{5}$, then consider the third slim vertex s_{3} of K^{0}. We may assume without loss of generality that s_{3} is not adjacent to s_{1}. Since s_{1} and s_{3} have a common fat neighbour in K^{0}, Definition 1.2(iv) forces $s_{3} \in V_{s}\left(L^{0}\right)$. Thus $V_{s}\left(K^{0}\right) \subset V_{s}\left(L^{0}\right)$. Switching the roles of K^{0} and L^{0}, we obtain $V_{s}\left(L^{0}\right) \subset V_{s}\left(K^{0}\right)$. Therefore we conclude $V_{s}\left(K^{0}\right)=V_{s}\left(L^{0}\right)$, and hence $K^{0}=L^{0}$.

Lemma 3.7. Suppose $H=H^{0} \uplus H^{1}, S \subset V_{s}\left(H^{1}\right)$, and $H^{2}=\langle\langle S\rangle\rangle_{H^{1}}$. Then $\left\langle V\left(H^{0}\right) \cup\right.$ $\left.V\left(H^{2}\right)\right\rangle_{H}=H^{0} \uplus H^{2}$.

Proof. Routine verification.

	(i)	(ii)	(iii)	(iv)
$H^{0}-x$	ϕ			

Table 1:

Lemma 3.8. Let $H=H^{0} \uplus H^{1}$ be a connected Hoffman graph satisfying $\left[H^{0}\right] \in \mathscr{H}$. Let x be a slim vertex of H^{0}. Then there exists a strict \mathscr{H}-cover graph $\tilde{H}=\tilde{H}^{0} \uplus H^{1}$ of $H-x$, and one of the following holds:
(i) $\tilde{H}^{0}=\phi$,
(ii) $\tilde{H}^{0} \cong H_{2}$, and one of the fat vertices of \tilde{H}^{0} is a pendant vertex in H,
(iii) $\tilde{H}^{0}=K^{1} \uplus K^{2}, K^{1} \cong K^{2} \cong H_{2}, K^{1}$ and K^{2} have a fat vertex in common, and the other fat vertices of \tilde{H}^{0} are pendant vertices in H,
(iv) $\tilde{H}^{0} \cong H_{3}$.

Proof. This is shown in the proof of Theorem 31 in [11], using Table 1, Lemma 12 and Lemma 13 in [11].

For a Hoffman graph $H=\biguplus_{i=0}^{n} H^{i}$ and a subset J of $\{0,1, \ldots, n\}$, we write $H(J)=$ $\biguplus_{i \in J} H^{i}$.
Lemma 3.9. Let $H=\biguplus_{i=0}^{n} H^{i}$ be a connected Hoffman graph satisfying $H^{j} \cong H_{2}, H_{3}$ or H_{5} for $j=0,1, \ldots, n$. Let V be a subset of $V_{s}(H)$ such that $\langle\langle V\rangle\rangle_{H}$ is connected. Let $I=\left\{i \mid H^{i} \cong H_{2}, 0 \leq i \leq n\right\}$, and let $I^{\prime}=\left\{i \in I \mid V_{s}\left(H^{i}\right) \subset V\right\}$. Then,
(i) if $I^{\prime} \neq \emptyset$, then $H\left(I^{\prime}\right)$ is connected, and in particular, $H(I)$ is connected,
(ii) if $I \neq \emptyset$, then $V_{f}(H(I))=V_{f}(H)$.

Proof. Put $J=\left\{i \mid 0 \leq i \leq n, V_{s}\left(H^{i}\right) \cap V \neq \emptyset\right\}$ so that $I^{\prime}=I \cap J$. Since $\langle\langle V\rangle\rangle_{H}$ is connected, so is $H(J)$. Since the removal of $V_{s}\left(H^{i}\right)$ with $i \in J \backslash I^{\prime}$ preserves connectivity by Lemma 3.1, we conclude that $H\left(I^{\prime}\right)$ is connected.

Suppose $V_{f}(H(I)) \neq V_{f}(H)$. Then there exists a fat vertex $f \in V_{f}(H) \backslash V_{f}(H(I))$. Since $\left\langle\left\langle N_{H}^{s}(f)\right\rangle\right\rangle_{H}$ has the unique fat vertex f, it is a connected component of H. But this contradicts the assumption that H is connected and $I \neq \emptyset$. Hence $V_{f}(H(I))=V_{f}(H)$.

4 Main theorem: The minimal forbidden subgraphs

In this section, we assume $\mathscr{H}=\left\{\left[H_{2}\right],\left[H_{3}\right],\left[H_{5}\right]\right\}$ (cf. Figure 1). Let $F_{1}, F_{2}, \ldots, F_{9}$ be the Hoffman graphs depicted in Figure 3.

Figure 3:
Let $G=F \uplus K$ be a connected Hoffman graph such that $V_{f}(F) \subset V_{f}(K)$ and

$$
\begin{equation*}
K=\biguplus_{i=0}^{n} H^{i},\left[H^{j}\right] \in \mathscr{H} \cup\left\{\left[H_{1}\right]\right\} \text { for } j=0,1, \ldots, n \tag{4.1}
\end{equation*}
$$

When $F \cong F_{1}, F_{3}, F_{4}, F_{6}, F_{7}$ or F_{9}, Table 2 gives a list of slim subgraphs G^{\prime} guaranteed to exist in G, under some additional assumptions. The assumptions are given in terms of $c(K)$ and $\left|V_{s}(K)\right|$, where $c(K)$ denotes the number of connected components of K. For example, if $F \cong F_{1}, c(K)=2$, and $\left|V_{s}(K)\right|=4$, then G has a slim subgraph G^{\prime} isomorphic to $G_{5,1}, G_{5,2}, G_{6,3}$, or $G_{6,21}$, while if $F \cong F_{3}$ and $c(K)=2$, then Table 2 gives no conclusion. The results in Table 2 were obtained by computer.

| \|F|c(K)|| $V_{s}(K) \mid$ | | | G^{\prime} | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (a) F_{1} | 1 | 5 | $G_{5,}$ | $G_{5,2} G_{6,3}$ | $G_{6,6}$ | $G_{6,12}$ | $G_{6,14}$ | $G_{6,}$ | | $G_{7,5}$ |
| (b) ${ }^{1}$ | 2 | 4 | $G_{5,1}$ | $G_{5,2} G_{6,3}$ | $G_{6,21}$ | | | | | |
| (c) F_{3} | 1 | 5 | $G_{5,}$ | $\begin{aligned} & G_{6,5} \\ & G_{6,19} \end{aligned}$ | $\begin{aligned} & G_{6,7} \\ & G_{6,17} \end{aligned}$ | $\begin{aligned} & G_{6,9} \\ & G_{6,23} \end{aligned}$ | $\begin{aligned} & G_{6,11} \\ & G_{6,24} \end{aligned}$ | $\begin{aligned} & G_{6,1} \\ & G_{6,2} \end{aligned}$ | $\begin{aligned} & \hline G_{6,13} \\ & G_{6,27} \end{aligned}$ | $G_{7,6}$ |
| (d) F_{4} | | 4 | $G_{5,1}$ | $G_{6,5}$ | $G_{6,8}$ | $G_{6,15}$ | $G_{6,18}$ | | | |
| (e) F_{6} | | | $G_{5,2}$ | $G_{6,14}$ | $G_{6,19}$ | $G_{6,22}$ | $G_{6,26}$ | $G_{6,2}$ | | $G_{7,3}$ |
| (f) F_{7} | | 2 | | $G_{6,1}$ | $G_{6,6}$ | $G_{6,16}$ | | | | |
| (g) F_{9} | | 4 | | $G_{6,2}$ | $G_{6,3}$ | | | | | $\underline{G_{7,1} G_{7,2}}$ |

Table 2:

Lemma 4.1. Let $G=F \uplus H$ be a Hoffman graph satisfying

$$
\begin{array}{r}
H=\biguplus_{i=0}^{n} H^{i}, \\
V_{f}(F) \subset V_{f}(H), \\
H^{j} \cong H_{2} \text { for } j=0,1, \ldots, n, \\
H \text { is connected } . \tag{4.5}
\end{array}
$$

Suppose $F \cong F_{i}$ for some $i \in\{2,3,5,8\}$, and let F^{\prime} be a subgraph of F such that $F^{\prime} \cong F_{3}$. Let $V_{f}\left(F^{\prime}\right)=\left\{f_{0}, f_{1}\right\}$. If there is no edge between $N_{H}^{s}\left(f_{0}\right)$ and $N_{H}^{s}\left(f_{1}\right)$, then G has a slim subgraph isomorphic to $G_{5,1}, G_{6,17}$ or $G_{6,27}$.
Proof. First we note $N_{H}^{s}\left(f_{0}\right) \cap N_{H}^{s}\left(f_{1}\right)=\emptyset$ by Definition 1.2(iv). In particular, we have $n>0$. From Lemma 3.5, there exists a path in $\left\langle V_{s}(H)\right\rangle_{H}$ connecting a vertex in $N_{H}^{s}\left(f_{0}\right)$ and a vertex in $N_{H}^{s}\left(f_{1}\right)$. Let P be such a path with shortest length. The length of P is at least 2 by the assumption. Since G contains $F^{\prime} \uplus H$ as a subgraph by Lemma 3.7, it suffices to show that $F^{\prime} \uplus H$ contains a desired slim subgraph. If P has length 2 or 3 , then $F^{\prime} \uplus H$ has a subgraph isomorphic to $G_{5,1}$ or $G_{6,17}$, respectively. If the length of P is at least 4, then $F^{\prime} \uplus H$ has a subgraph isomorphic to $G_{6,27}$.

Lemma 4.2. Let $G=F \uplus H$ be a Hoffman graph satisfying (4.2)-(4.5). Suppose $F \cong F_{4}$, $V_{f}(F)=\left\{f_{0}, f_{1}, f_{2}\right\}$ with $\left|N_{F}^{s}\left(f_{0}\right)\right|=2$. If $\left\langle N_{H}^{s}\left(f_{0}\right) \cup N_{H}^{s}\left(f_{1}\right) \cup N_{H}^{s}\left(f_{2}\right)\right\rangle_{H}$ is not connected, then G has a slim subgraph isomorphic to $G_{5,1}, G_{6,17}, G_{6,23}$ or $G_{6,27}$.

Proof. By (4.3), $\left|V_{f}(H)\right| \geq\left|V_{f}(F)\right|=3$, and therefore $n>0$. From Lemma 3.5, there exists a path in $\left\langle V_{s}(H)\right\rangle_{H}$ connecting a vertex in $N_{H}^{s}\left(f_{0}\right)$ and a vertex in $N_{H}^{s}\left(f_{1}\right) \cup N_{H}^{s}\left(f_{2}\right)$ such that the two vertices are not adjacent in H, by the assumption. Let $P=u \sim v \sim$ $\cdots \sim w$ be such a path with shortest length, where $u \in N_{H}^{s}\left(f_{1}\right) \cup N_{H}^{s}\left(f_{2}\right)$ and $w \in$
$N_{H}^{s}\left(f_{0}\right)$. Then $v \notin N_{H}^{s}\left(f_{1}\right) \cup N_{H}^{s}\left(f_{2}\right)$, and we may assume $u \in N_{H}^{s}\left(f_{1}\right)$ without loss of generality. Then $V(P) \cap N_{H}^{s}\left(f_{1}\right)=\{u\}$. If $u \sim f_{2}$, then $N_{H}^{f}(u)=\left\{f_{1}, f_{2}\right\}$, which implies $N_{H}^{f}(u) \cap N_{H}^{f}(v)=\emptyset$, contradicting $u \sim v$. Thus $u \notin N_{H}^{s}\left(f_{2}\right)$.

Put $S=V(P) \cap N_{H}^{s}\left(f_{2}\right)$. Suppose $S=\emptyset$. By Lemma 3.7, $F \uplus\langle\langle V(P)\rangle\rangle_{H} \subset G$, while f_{2} has no slim neighbour in $\langle\langle V(P)\rangle\rangle_{H}$. This implies $\left(F-f_{2}\right) \uplus\langle\langle V(P)\rangle\rangle_{H} \subset G$. Since $F-f_{2} \cong F_{3}$, the lemma follows from Lemma 4.1. Suppose $S \neq \emptyset$. Since P is the shortest path, w is adjacent to exactly one vertex s_{1} in S, and $|S|=2$. Put $S \backslash\left\{s_{1}\right\}=\left\{s_{2}\right\}$, and let w^{\prime} be the neighbour of s_{2} different from s_{1} in P. Then $\left\langle V_{s}(F) \cup S \cup\left\{w, w^{\prime}\right\}\right\rangle_{G} \cong G_{6,23}$, and hence G contains a subgraph isomorphic to $G_{6,23}$.

Lemma 4.3. Let $G=F \uplus H$ be a Hoffman graph satisfying (4.2), (4.3) and the following conditions:

$$
\begin{array}{r}
F \text { is connected, } \\
{\left[H^{j}\right] \in \mathscr{H} \text { for } j=0,1, \ldots, n .} \tag{4.7}
\end{array}
$$

Let V is a subset of $V_{s}(H)$, and let $K=\langle\langle V\rangle\rangle_{H}$. If $V_{f}(F) \subset V_{f}(K)$, and every vertex of V can be joined by a path in K to a fat vertex of F, then G contains a connected subgraph $F \uplus K$ satisfying (4.1).

Proof. From Lemma 12 of [11], $\left\langle\left\langle V_{s}(F) \cup V\right\rangle\right\rangle_{G}=F \uplus K$. Since F is connected and every vertex of V can be joined by a path in K to a fat vertex of $F, F \uplus K$ is connected. From Lemma 3.4, K satisfies (4.1).

Lemma 4.4. Let $G=F \uplus H$ be a Hoffman graph satisfying (4.2), (4.3), (4.7), and $F \cong F_{i}$ for some $i \in\{1,2, \ldots, 9\}$. Let

$$
m(F)= \begin{cases}2 & \text { if } F \cong F_{7} \\ 4 & \text { if } F \cong F_{4}, F_{6} \text { or } F_{9} \\ 5 & \text { otherwise }\end{cases}
$$

If H is connected and $\left|V_{s}(H)\right| \geq m(F)$, then G has a slim subgraph isomorphic to one of the graphs in Figure 2.

Proof. Let $I=\left\{i \mid H^{i} \cong H_{2}, 0 \leq i \leq n\right\}$. First we suppose $I=\emptyset$. Then, since $H^{i} \cong H_{3}$ or $H_{5},\left|V_{f}\left(H^{i}\right)\right|=1$ for all $i \in\{0,1, \ldots, n\}$. This implies $\left|V_{f}(H)\right|=1$ since H is connected. Hence $F \cong F_{6}, F_{7}$ or F_{9} by (4.3). Suppose $F \cong F_{7}$. Since H_{3} is a subgraph of H_{5}, there exists a subgraph K of H such that $K \cong H_{3}$. Then G contains $F \uplus K$ as a subgraph from Lemma 3.7. Since $F \uplus K$ satisfies the assumptions of Table 2, the conclusion holds. Suppose $F \cong F_{6}$ or F_{9}. Since $\left|V_{s}(H)\right| \geq 4$ and H_{3} is a subgraph of H_{5}, there exists a subgraph K of H isomorphic to the sum $H_{3} \uplus H_{3}$ sharing a fat vertex. Then G contains $F \uplus K$ as a subgraph from Lemma 3.7. Since $F \uplus K$ satisfies the assumptions of Table 2, the conclusion holds. In the remaining part of this proof, we suppose $I \neq \emptyset$. For a subset J of $\{0,1, \ldots, n\}$, we write $H(J)=\biguplus_{i \in J} H^{i}$.
Claim 4.5. The graph $\left\langle V_{s}(H)\right\rangle_{H}$ is connected.
Since $\left|V_{s}(H)\right| \geq m(F) \geq 2$ and $I \neq \emptyset, n>0$. Hence, from the last part of Lemma 3.5, $\left\langle V_{s}(H)\right\rangle_{H}$ is connected.

Claim 4.6. $V_{f}(F) \subset V_{f}(H(I))$.
From Lemma 3.9(ii), $V_{f}(H(I))=V_{f}(H)$. By (4.3), $V_{f}(F) \subset V_{f}(H(I))$.
Claim 4.7. Suppose $F \cong F_{1}, F_{3}, F_{4}, F_{6}, F_{7}$ or F_{9}, and that there exists $I^{\prime} \subset I$ such that $\left|I^{\prime}\right| \leq m(F), V_{f}(F) \subset V_{f}\left(H\left(I^{\prime}\right)\right)$ and $H\left(I^{\prime}\right)$ is connected. Then the lemma holds.

If $\left|I^{\prime}\right|=1$, then obviously $\left\langle V_{S}\left(H\left(I^{\prime}\right)\right)\right\rangle_{H}$ is connected. If $\left|I^{\prime}\right|>1$, then, from the last part of Lemma 3.5, $\left\langle V_{s}\left(H\left(I^{\prime}\right)\right)\right\rangle_{H}$ is connected. The graph $\left\langle V_{s}(H)\right\rangle_{H}$ is also connected from Claim 4.5. Since $\left|V_{s}\left(H\left(I^{\prime}\right)\right)\right|=\left|I^{\prime}\right| \leq m(F) \leq\left|V_{s}(H)\right|$, there exists a subset V such that $V_{s}\left(H\left(I^{\prime}\right)\right) \subset V \subset V_{s}(H),|V|=m(F)$ and $\langle V\rangle_{H}$ is connected. Put $K=\langle\langle V\rangle\rangle_{H}$. Then K is connected and $V_{f}(F) \subset V_{f}(K)$. Hence G contains a connected subgraph $F \uplus K$ satisfying (4.1) by Lemma 4.3. Therefore the assumptions of Table 2 are satisfied. Hence the lemma holds.

Claim 4.8. If $F \cong F_{6}, F_{7}$ or F_{9}, then the lemma holds.
From Claim 4.6, there exists $i \in I$ such that the unique fat vertex of F is in $V_{f}\left(H^{i}\right)$. Then $I^{\prime}=\{i\}$ satisfies the hypotheses of Claim 4.7, and hence the lemma holds.

Claim 4.9. If $F \cong F_{1}$, then the lemma holds.
Let $V_{f}(F)=\left\{f_{0}, f_{1}\right\}$. From Claim 4.6, there exist $i_{0}, i_{1} \in I$ such that $f_{k} \in V_{f}\left(H^{i_{k}}\right)$ for each $k=0,1$. From Definition 1.2(ii), $i_{0} \neq i_{1}$. For each $k=0,1$, let s_{k} be the unique slim vertex of $H^{i_{k}}$. Since H is connected and $5=m(F) \leq\left|V_{s}(H)\right|$, there exist disjoint subsets V_{0}, V_{1} of $V_{s}(H)$ such that $\left|V_{0} \cup V_{1}\right|=5,\left\langle\left\langle V_{k}\right\rangle\right\rangle_{H}$ is connected and $s_{k} \in V_{k}$ for each $k=0,1$. Let $V=V_{0} \cup V_{1}$. Then every vertex of V can be joined by a path in $\langle\langle V\rangle\rangle_{H}$ to f_{0} or f_{1}.

Suppose $c\left(\langle\langle V\rangle\rangle_{H}\right)=1$, i.e., $\langle\langle V\rangle\rangle_{H}$ is connected. Let $I^{\prime}=\left\{i \in I \mid V_{s}\left(H^{i}\right) \subset\right.$ $V\}$. Then $\left|I^{\prime}\right| \leq|V|=m(F)$ and $i_{0}, i_{1} \in I^{\prime}$. Since $I^{\prime} \neq \emptyset, H\left(I^{\prime}\right)$ is connected from Lemma 3.9(i). Since $i_{0}, i_{1} \in I^{\prime}, V_{f}(F) \subset V_{f}\left(H\left(I^{\prime}\right)\right)$. Hence I^{\prime} satisfies the hypotheses of Claim 4.7, and the lemma holds.

Next suppose $c\left(\langle\langle V\rangle\rangle_{H}\right)>1$. Since $\left\langle\left\langle V_{0}\right\rangle\right\rangle_{H}$ and $\left\langle\left\langle V_{1}\right\rangle\right\rangle_{H}$ are connected, $c\left(\langle\langle V\rangle\rangle_{H}\right)=$ 2. Since $\left|V_{0}\right|+\left|V_{1}\right|=5$, we may assume $\left|V_{0}\right| \geq 3$ without loss of generality. Let s be a slim vertex of $\left\langle\left\langle V_{0}\right\rangle\right\rangle_{H}$ which has the largest distance from s_{0}. Then $\left\langle\left\langle V_{0} \backslash\{s\}\right\rangle\right\rangle_{H}$ is connected. Put $K=\langle\langle V \backslash\{s\}\rangle\rangle_{H}$. Then $c(K)=2$. Moreover $V_{f}(F) \subset V_{f}(K)$, and every vertex of $V \backslash\{s\}$ can be joined by a path in K to f_{0} or f_{1}. Hence G contains a connected subgraph $F \uplus K$ satisfying (4.1) by Lemma 4.3. Since $\left|V_{s}(K)\right|=|V \backslash\{s\}|=4$, the assumptions of Table 2 are satisfied. Hence the lemma holds.

Now we consider the remaining cases. Let F^{\prime} be a subgraph of F such that

$$
\begin{cases}F^{\prime} \cong F_{3} & \text { if } F \cong F_{2}, F_{3}, F_{5} \text { or } F_{8} \\ F^{\prime}=F & \text { if } F \cong F_{4}\end{cases}
$$

Obviously $V_{f}\left(F^{\prime}\right)=V_{f}(F)$. Hence $F^{\prime}=\left\langle\left\langle V_{s}\left(F^{\prime}\right)\right\rangle\right\rangle_{F}$. Thus $\left\langle V\left(F^{\prime}\right) \cup V(H)\right\rangle_{G}=F^{\prime} \uplus H$ from Lemma 3.7, i.e., $F^{\prime} \uplus H \subset G$. Let f_{0} be the unique fat vertex of F^{\prime} satisfying $\left|N_{F^{\prime}}^{s}\left(f_{0}\right)\right|=2$, and let f_{1} be a fat vertex of F^{\prime} different from f_{0}. Then $f_{0}, f_{1} \in V_{f}(H(I))$ from Claim 4.6.

Claim 4.10. If $F \cong F_{2}, F_{3}, F_{5}$ or F_{8}, then the lemma holds.

Then $F^{\prime} \cong F_{3}$. From Lemma 3.9(i), $H(I)$ is connected. If there is no edge between $N_{H(I)}^{s}\left(f_{0}\right)$ and $N_{H(I)}^{s}\left(f_{1}\right)$, then the result follows from Lemma 4.1. Suppose that there exist $s_{0} \in N_{H(I)}^{s}\left(f_{0}\right)$ and $s_{1} \in N_{H(I)}^{s}\left(f_{1}\right)$ such that $s_{0} \sim s_{1}$. For each $k=0,1$, there exists $i_{k} \in I$ such that $V_{s}\left(H^{i_{k}}\right)=\left\{s_{k}\right\}$. Put $I^{\prime}=\left\{i_{0}, i_{1}\right\}$. By Lemma 3.9(i), $H\left(I^{\prime}\right)$ is connected. Then I^{\prime} satisfies the hypotheses of Claim 4.7, and the lemma holds.

Claim 4.11. If $F \cong F_{4}$, then the lemma holds.
Let f_{2} be a fat vertex of F different from f_{0}, f_{1}. From Lemma 3.9(i), $H(I)$ is connected, and from Claim 4.6, $V_{f}(F) \subset V_{f}(H(I))$. Put $N_{i}=N_{H(I)}^{s}\left(f_{i}\right)$ for $i=0,1,2$. If $\left\langle N_{0} \cup N_{1} \cup N_{2}\right\rangle_{H(I)}$ is not connected, then the result follows from Lemma 4.2. Suppose that $\left\langle N_{0} \cup N_{1} \cup N_{2}\right\rangle_{H(I)}$ is connected. Then, for each $i=1,2$, there exists an edge $s_{i} s_{0}^{(i)}$ between N_{i} and N_{0} such that $s_{i} \in N_{i}$ and $s_{0}^{(i)} \in N_{0}$. Put $I^{\prime}=\left\{i \in I \mid V_{s}\left(H^{i}\right) \subset\right.$ $\left.\left\{s_{0}^{(1)}, s_{0}^{(2)}, s_{1}, s_{2}\right\}\right\}$. Since $s_{0}^{(1)}, s_{0}^{(2)}, s_{1}, s_{2} \in V_{s}(H(I)),\left\langle\left\langle\left\{s_{0}^{(1)}, s_{0}^{(2)}, s_{1}, s_{2}\right\}\right\rangle\right\rangle_{H}=H\left(I^{\prime}\right)$. Since f_{0} is a common fat neighbour of $s_{0}^{(1)}$ and $s_{0}^{(2)}, s_{0}^{(1)}$ and $s_{0}^{(2)}$ are adjacent, or equivalently in $H\left(I^{\prime}\right)$. Thus $H\left(I^{\prime}\right)$ is connected. Then I^{\prime} satisfies the hypotheses of Claim 4.7, and hence the lemma holds.

The next three lemmas are verified by computer.
Lemma 4.12. Let F be a fat connected Hoffman graph satisfying the following conditions:
(i) $\left|V_{s}(F)\right|=2$,
(ii) the two slim vertices of F are not adjacent,
(iii) $\left|V_{f}(F)\right| \leq 4$,
(iv) every slim vertex has at most 2 fat neighbours,
(v) F is a non \mathscr{H}-line graph.

Then F is isomorphic to F_{1}, F_{3} or F_{4}.
Lemma 4.13. Let F be a fat connected Hoffman graph satisfying the following conditions:
(i) $3 \leq\left|V_{s}(F)\right| \leq 4$,
(ii) $\left|V_{f}(F)\right| \leq 2$,
(iii) some slim vertex s of F has 2 fat neighbours,
(iv) some slim vertex s^{\prime} of F is not adjacent to s, and the others are adjacent to s,
(v) $\left\langle\left\langle V_{s}(F) \backslash\{s\}\right\rangle\right\rangle_{F} \cong H_{3}$ or H_{5},
(vi) F is a non \mathscr{H}-line graph.

Then F is isomorphic to F_{2}, F_{5} or F_{8}.
Lemma 4.14. Let F be a fat connected Hoffman graph satisfying the following conditions:
(i) $3 \leq\left|V_{s}(F)\right| \leq 6$,
(ii) $\left|V_{f}(F)\right|=1$,
(iii) every slim vertex of F has 1 fat neighbour,
(iv) there exist different subsets V_{1} and V_{2} of $V_{s}(F)$ such that $V_{1} \cup V_{2}=V_{s}(F),\left\langle\left\langle V_{1}\right\rangle\right\rangle_{F}$ and $\left\langle\left\langle V_{2}\right\rangle\right\rangle_{F}$ are isomorphic to H_{3} or H_{5}, the vertex of $V_{s}(F) \backslash V_{2}$ and the vertex of $V_{s}(F) \backslash V_{1}$ are adjacent to each other except some pair $\left\{s_{1}, s_{2}\right\}\left(s_{1} \in V_{s}(F) \backslash V_{2}\right.$, $\left.s_{2} \in V_{s}(F) \backslash V_{1}\right)$,
(v) F is a non \mathscr{H}-line graph.

Then F contains a subgraph isomorphic to F_{6}, F_{7} or F_{9}.
We shall now prove our main result.
Proof of Theorem 1.5. From Proposition 2.1, the theorem holds if $|V(\Gamma)|<10$. So we prove that, if $|V(\Gamma)| \geq 10$, then Γ has a subgraph isomorphic to one of the graphs in Figure 2.

Since a complete graph and a cycle are \mathscr{H}-line graphs, Γ is neither a complete graph nor a cycle. Hence, from Lemma 3.3, there exists a non-adjacent pair $\{x, y\}$ in $V(\Gamma)$ such that $\Gamma-\{x, y\}$ is connected. Then $\Gamma-x$ and $\Gamma-y$ are connected as well. The graphs $\Gamma-x$, $\Gamma-y$ and $\Gamma-\{x, y\}$ are \mathscr{H}-line graphs by the minimality of Γ and $|V(\Gamma-\{x, y\})| \geq 8$.

Let $X=\biguplus_{i=0}^{m_{1}} X^{i}$ (resp. $Y=\biguplus_{i=0}^{m_{2}} Y^{i}$) be a strict \mathscr{H}-cover graph of $\Gamma-y$ (resp. $\Gamma-x)$. Without loss of generality, we may suppose $x \in V_{s}\left(X^{0}\right)$ and $y \in V_{s}\left(Y^{0}\right)$. From Lemma 3.8, there exists a strict \mathscr{H}-cover graph $\tilde{X}=\tilde{X}^{0} \uplus\left(\biguplus_{i=1}^{m_{1}} X^{i}\right)$ of $X-x$. Similarly, there exists a strict \mathscr{H}-cover graph $\tilde{Y}=\tilde{Y}^{0} \uplus\left(\biguplus_{i=1}^{m_{2}} Y^{i}\right)$ of $Y-y$. Obviously \tilde{X} and \tilde{Y} are strict \mathscr{H}-cover graph of $\Gamma-\{x, y\}$. From Theorem 31 of [11], there exists an isomorphism $\varphi: \tilde{Y} \rightarrow \tilde{X}$ such that $\left.\varphi\right|_{(\Gamma-\{x, y\})}$ is the identity automorphism of $\Gamma-\{x, y\}$.

From Lemma 3.8, we can put $\tilde{X}^{0}=\tilde{X}_{1}^{0} \uplus \tilde{X}_{2}^{0}\left(\left[\tilde{X}_{1}^{0}\right],\left[\tilde{X}_{2}^{0}\right] \in\left\{[\phi],\left[H_{2}\right],\left[H_{3}\right]\right\}\right)$ and $\tilde{Y}^{0}=\tilde{Y}_{1}^{0} \uplus \tilde{Y}_{2}^{0}\left(\left[\tilde{Y}_{1}^{0}\right],\left[\tilde{Y}_{2}^{0}\right] \in\left\{[\phi],\left[H_{2}\right],\left[H_{3}\right]\right\}\right)$, and put $\mathcal{X}=\left\{\phi, X_{1}^{0}, \tilde{X}_{2}^{0}\right\}$ and $\mathcal{Y}=$ $\left\{\phi, \tilde{Y}_{1}^{0}, \tilde{Y}_{2}^{0}\right\}$. Then $\tilde{X}=\left(\biguplus_{K \in \mathcal{X}} K\right) \uplus\left(\biguplus_{i=1}^{m_{1}} X^{i}\right)=\left(\biguplus_{L \in \mathcal{Y}} \varphi(L)\right) \uplus\left(\biguplus_{j=1}^{m_{2}} \varphi\left(Y^{j}\right)\right)$. From Lemma 3.6, $\{\varphi(L) \mid L \in \mathcal{Y}\} \cup\left\{\varphi\left(Y^{i}\right) \mid 1 \leq i \leq m_{2}\right\}=\mathcal{X} \cup\left\{X^{i} \mid 1 \leq i \leq m_{1}\right\}$. Put $\mathcal{Z}=\mathcal{X} \cup\{\varphi(L) \mid L \in \mathcal{Y}\}$. Then

$$
\begin{equation*}
\tilde{X}=\left(\biguplus_{Z \in \mathcal{Z}} Z\right) \uplus H \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
H=\biguplus_{i \in I} X^{i}=\biguplus_{j \in J} \varphi\left(Y^{j}\right) \tag{4.9}
\end{equation*}
$$

for some $I \subset\left\{1,2, \ldots, m_{1}\right\}$ and $J \subset\left\{1,2, \ldots, m_{2}\right\}$. Obviously

$$
\begin{equation*}
X=X^{0} \uplus\left(\biguplus_{Z \in \mathcal{Z} \backslash \mathcal{X}} Z\right) \uplus H, \quad Y=Y^{0} \uplus\left(\underset{Z \in \mathcal{Z} \backslash\{\varphi(L) \mid L \in \mathcal{Y}\}}{ } \varphi^{-1}(Z)\right) \uplus \varphi^{-1}(H), \tag{4.10}
\end{equation*}
$$

Claim 4.15. The graph H is connected.
Since $\Gamma-\{x, y\}$ is connected, so is \tilde{X}. The Hoffman graph $H^{\prime}=\biguplus_{Z \in \mathcal{Z}} Z$ has the unique fat vertex α satisfying $V_{f}\left(H^{\prime}\right) \cap V_{f}(H)=\{\alpha\}$ and $N_{H^{\prime}}^{s}(\alpha)=V_{s}\left(H^{\prime}\right)$. Using Lemma 3.1 on the decomposition (4.8), We conclude that H is connected.

We define the edge set

$$
\begin{aligned}
& E_{0}=\left(\bigcup_{z \in V_{s}\left(X^{0}\right)}\left\{z f \mid f \in V_{f}(H) \cap N_{X^{0}}^{f}(z)\right\}\right) \cup \\
&\left(\bigcup_{z \in V_{s}\left(Y^{0}\right)}\left\{z \varphi(g) \mid g \in V_{f}\left(\varphi^{-1}(H)\right) \cap N_{Y^{0}}^{f}(z)\right\}\right)
\end{aligned}
$$

and the Hoffman graph

$$
G=\left(V(\Gamma) \cup V_{f}(H), E(\Gamma) \cup E(H) \cup E_{0}\right)
$$

Let

$$
F=\left\langle\left\langle V_{s}\left(X^{0}\right) \cup V_{s}\left(Y^{0}\right)\right\rangle\right\rangle_{G} .
$$

Obviously the following holds:

$$
\begin{equation*}
s \in V_{s}(F), f \in V_{f}(G), s f \in E(G) \Longrightarrow s f \in E_{0} \tag{4.11}
\end{equation*}
$$

and
(a) $\quad V_{f}(F) \subset V_{f}(H)$,
(b) $E_{0} \subset E(F)$,
(c) $\Gamma \subset G$ and $V_{s}(\Gamma)=V_{s}(G)$.

Also, from (4.8),

$$
\begin{equation*}
\text { (a) } \quad V_{s}(\Gamma)=V_{s}(F) \cup V_{s}(H), \quad(\mathrm{b}) \quad V_{s}(F) \cap V_{s}(H)=\emptyset \tag{4.13}
\end{equation*}
$$

From (4.13),

$$
\begin{equation*}
\left|V_{s}(H)\right| \geq 10-\left|V_{s}(F)\right| \tag{4.14}
\end{equation*}
$$

By the definition of G,

$$
\begin{equation*}
V_{f}(G)=V_{f}(H) \tag{4.15}
\end{equation*}
$$

Claim 4.16. $G=F \uplus H$.
Let us check the conditions (i)-(iv) of Definition 1.2.
From (4.12)-(c) and (4.13)-(a), $V_{s}(G)=V_{s}(F) \cup V_{s}(H)$. Moreover, it is $V_{f}(G)=$ $V_{f}(H)=V_{f}(F) \cup V_{f}(H)$ by (4.12)-(a) and (4.15). Hence the condition (i) is satisfied. Also, by (4.13)-(b), the condition (ii) is satisfied. By the definitions of F and G, the condition (iii) is satisfied.

Let $s_{1} \in V_{s}(F)$, and let $s_{2} \in V_{s}(H)$. Then $s_{1} \in V_{s}\left(X^{0}\right)$ or $s_{1} \in V_{s}\left(Y^{0}\right), s_{2} \in$ $V_{s}(H) \subset V_{s}\left(\biguplus_{i=1}^{m_{1}} X^{i}\right)$. By (4.15), $N_{G}^{f}\left(s_{2}\right)=N_{H}^{f}\left(s_{2}\right)$. First suppose $s_{1} \in V_{s}\left(X^{0}\right)$. Since $N_{H}^{f}\left(s_{2}\right) \subset V_{f}(H), N_{G}^{f}\left(s_{1}\right) \cap N_{G}^{f}\left(s_{2}\right)=\left(N_{X^{0}}^{f}\left(s_{1}\right) \cap V_{f}(H)\right) \cap N_{H}^{f}\left(s_{2}\right)=N_{X^{0}}^{f}\left(s_{1}\right) \cap$ $N_{H}^{f}\left(s_{2}\right)$. Since $N_{X^{0}}^{f}\left(s_{1}\right)=N_{X}^{f}\left(s_{1}\right)$ and $N_{H}^{f}\left(s_{2}\right)=N_{X}^{f}\left(s_{2}\right), N_{G}^{f}\left(s_{1}\right) \cap N_{G}^{f}\left(s_{2}\right)=$ $N_{X}^{f}\left(s_{1}\right) \cap N_{X}^{f}\left(s_{2}\right)$. Thus, s_{1} and s_{2} have at most one common fat neighbour in G, and they have one if and only if they are adjacent in X, or equivalently in G. Hence (iv) holds in this case. Next suppose $s_{1} \in V_{s}\left(Y^{0}\right)$. Since $s_{2} \in V_{s}(H), s_{2} \in \varphi\left(V_{s}\left(Y^{j}\right)\right)$ for some
$j \in\left\{1,2, \ldots, m_{2}\right\}$. Hence $N_{G}^{f}\left(s_{2}\right)=N_{H}^{f}\left(s_{2}\right)=N_{\varphi\left(Y^{j}\right)}^{f}\left(s_{2}\right)=N_{\varphi\left(Y^{j}\right)}^{f}\left(\varphi\left(s_{2}\right)\right)=$ $\varphi\left(N_{Y^{j}}^{f}\left(s_{2}\right)\right)=\varphi\left(N_{Y}^{f}\left(s_{2}\right)\right)$. Thus

$$
\begin{aligned}
N_{G}^{f}\left(s_{1}\right) \cap N_{G}^{f}\left(s_{2}\right) & =\varphi\left(V_{f}\left(\varphi^{-1}(H)\right) \cap N_{Y^{0}}^{f}\left(s_{1}\right)\right) \cap \varphi\left(N_{Y}^{f}\left(s_{2}\right)\right) \\
& =\varphi\left(N_{Y}^{f}\left(s_{1}\right) \cap N_{Y}^{f}\left(s_{2}\right) \cap V_{f}\left(\varphi^{-1}(H)\right)\right) \\
& =\varphi\left(N_{Y}^{f}\left(s_{1}\right) \cap N_{Y}^{f}\left(s_{2}\right)\right)
\end{aligned}
$$

since $\varphi^{-1}(H) \subset Y$. A similar argument shows that (iv) holds in this case as well.
Claim 4.17. For any $s \in V_{s}(F)$,

$$
\left|N_{G}^{f}(s)\right| \leq \begin{cases}\left|V_{f}\left(X^{0}\right)\right| & \text { if } s \in V_{s}\left(X^{0}\right) \\ \left|V_{f}\left(Y^{0}\right)\right| & \text { otherwise }\end{cases}
$$

By (4.11), $s f \in E_{0}$ for each $f \in N_{G}^{f}(s)$. Suppose $s \in V_{s}\left(X^{0}\right)$. Then $s f \in E\left(X^{0}\right)$. Hence $\left|N_{G}^{f}(s)\right| \leq\left|N_{X^{0}}^{f}(s)\right| \leq\left|V_{f}\left(X^{0}\right)\right|$. Suppose $s \in V_{s}\left(Y^{0}\right)$. Then $s \varphi^{-1}(f) \in E\left(Y^{0}\right)$. Hence $\left|N_{G}^{f}(s)\right| \leq\left|N_{Y^{0}}^{f}(s)\right| \leq\left|V_{f}\left(Y^{0}\right)\right|$.
Claim 4.18. $\left|V_{f}(F)\right| \leq\left|V_{f}\left(X^{0}\right)\right|+\left|V_{f}\left(Y^{0}\right)\right|$.
From Claim 4.16, $V_{f}(F)=V_{f}\left(\left\langle\left\langle V_{s}\left(X^{0}\right) \cup V_{s}\left(Y^{0}\right)\right\rangle\right\rangle_{F \uplus H}\right)$. By (4.12)-(a), $V_{f}(F)=$ $V_{f}\left(\left\langle\left\langle V_{s}\left(X^{0}\right) \cup V_{s}\left(Y^{0}\right)\right\rangle\right\rangle_{F \uplus H}\right) \cap V_{f}(H)$, i.e.,

$$
V_{f}(F)=\left(V_{f}\left(X^{0}\right) \cap V_{f}(H)\right) \cup\left(\varphi\left(V_{f}\left(Y^{0}\right) \cap \varphi^{-1}\left(V_{f}(H)\right)\right)\right) .
$$

Hence

$$
\begin{aligned}
\left|V_{f}(F)\right| & \leq\left|V_{f}\left(X^{0}\right) \cap V_{f}(H)\right|+\left|V_{f}\left(Y^{0}\right) \cap \varphi^{-1}\left(V_{f}(H)\right)\right| \\
& \leq\left|V_{f}\left(X^{0}\right)\right|+\left|V_{f}\left(Y^{0}\right)\right| .
\end{aligned}
$$

Claim 4.19. The Hoffman graph F is a non \mathscr{H}-line graph.
The Hoffman graph H is a strict \mathscr{H}-cover graph of itself. Suppose that F is an \mathscr{H}-line graph. Then there exists a strict \mathscr{H}-cover graph of F (cf. Example 22 of [11]). Hence G has a strict \mathscr{H}-cover graph from Lemma 20 of [11]. Since $\Gamma \subset G, \Gamma$ is an \mathscr{H}-line graph, a contradiction.
Claim 4.20. If X^{0} or Y^{0} is isomorphic to H_{2}, the theorem holds.
If X^{0} or Y^{0} is isomorphic to H_{2}, then $V_{s}\left(X^{0}\right) \cap V_{s}\left(Y^{0}\right)=\emptyset$, and each slim vertex of F has at most 2 fat neighbours by Claim 4.17. First suppose that X^{0} and Y^{0} are isomorphic to H_{2}. Then $\left|V_{s}(F)\right|=|\{x, y\}|=2$ and $\left|V_{f}(F)\right| \leq 4$ by Claim 4.18. Hence the hypotheses of Lemma 4.12 hold by Claim 4.19. Thus $F \cong F_{1}, F_{3}$ or F_{4}, and $\left|V_{s}(H)\right| \geq 8$ by (4.14). Next suppose otherwise. Then $3 \leq\left|V_{s}(F)\right|=\left|V_{s}\left(X^{0}\right) \cup V_{s}\left(Y^{0}\right)\right| \leq 4$, and $\left|V_{f}(F)\right| \leq 3$ by Claim 4.18. If $\left|V_{f}(F)\right|=3$, then $V_{f}\left(X^{0}\right) \cap V_{f}\left(Y^{0}\right)=\emptyset$, and therefore F is an \mathscr{H} line graph since $V_{s}\left(X^{0}\right) \cap V_{s}\left(Y^{0}\right)=\emptyset$, a contradiction to Claim 4.19. Obviously the hypotheses (v) and (iv) of Lemma 4.13 hold. Hence the hypotheses of Lemma 4.13 hold by Claim 4.19. Thus $F \cong F_{2}, F_{5}$ or F_{8}, and $\left|V_{s}(H)\right| \geq 6$ by (4.14). Hence the theorem holds from Lemma 4.4 if X^{0} or Y^{0} is isomorphic to H_{2}.

For the remainder of this proof, we assume that X^{0} and Y^{0} are isomorphic to H_{3} or H_{5}. Then $3 \leq\left|V_{s}\left(X^{0}\right) \cup V_{s}\left(Y^{0}\right)\right|\left(=\left|V_{s}(F)\right|\right) \leq 6$. Hence the condition (i) of Lemma 4.14 holds. Suppose $V_{f}\left(X^{0}\right) \cap \varphi\left(V_{f}\left(Y^{0}\right)\right)=\emptyset$. Then $V_{f}\left(\tilde{X}^{0}\right) \cap V_{f}\left(\varphi\left(\tilde{Y}^{0}\right)\right)=\emptyset$. Hence $V\left(\tilde{X}^{0}\right) \cap V\left(\varphi\left(\tilde{Y}^{0}\right)\right)=\emptyset$ by (4.8) since $\tilde{X}=\varphi(\tilde{Y})$. Thus $V_{s}\left(X^{0}\right) \cap V_{s}\left(Y^{0}\right)=\emptyset$, and therefore $F=\left\langle\left\langle V_{s}\left(X^{0}\right) \cup V_{s}\left(Y^{0}\right)\right\rangle\right\rangle_{G}=\left\langle\left\langle V_{s}\left(X^{0}\right)\right\rangle\right\rangle_{G} \uplus\left\langle\left\langle V_{s}\left(Y^{0}\right)\right\rangle\right\rangle_{G}$. Obviously $\left\langle\left\langle V_{s}\left(X^{0}\right)\right\rangle\right\rangle_{G}$ and $\left\langle\left\langle V_{s}\left(Y^{0}\right)\right\rangle\right\rangle_{G}$ are isomorphic to H_{3} or H_{5}. Hence F is an \mathscr{H}-line graph. But this contradicts Claim 4.19. Thus $V_{f}\left(X^{0}\right) \cap \varphi\left(V_{f}\left(Y^{0}\right)\right) \neq \emptyset$, i.e., φ maps the unique fat vertex of Y^{0} to the unique fat vertex of X^{0}, and $\left|V_{f}(F)\right|=1$. Hence the conditions (ii) and (iii) of Lemma 4.14 hold. Moreover the condition (v) of Lemma 4.14 holds by Claim 4.19.

Put $V_{1}=V_{s}\left(X^{0}\right)$ and $V_{2}=V_{s}\left(Y^{0}\right)$, and put $s_{1}=x$ and $s_{2}=y$. Then

- $\left(V_{s}(F) \backslash V_{2}\right) \backslash\left\{s_{1}\right\}=V_{s}\left(\tilde{X}^{0}\right) \backslash V_{s}\left(Y^{0}\right) \subset V_{s}\left(\biguplus_{Z \in \mathcal{Z} \backslash\{\varphi(L) \mid L \in \mathcal{Y}\}} \varphi^{-1}(Z)\right)$ by (4.10),
- $V_{s}(F) \backslash V_{1}=V_{s}\left(Y^{0}\right) \backslash V_{s}\left(X^{0}\right) \subset V_{s}\left(Y^{0}\right)$,
- $\left(V_{s}(F) \backslash V_{1}\right) \backslash\left\{s_{2}\right\}=V_{s}\left(\tilde{Y}^{0}\right) \backslash V_{s}\left(X^{0}\right) \subset V_{s}\left(\biguplus_{Z \in \mathcal{Z} \backslash \mathcal{X}} Z\right)$ by (4.10),
- $V_{s}(F) \backslash V_{2}=V_{s}\left(X^{0}\right) \backslash V_{s}\left(Y^{0}\right) \subset V_{s}\left(X^{0}\right)$.

Hence the vertex of $V_{s}(F) \backslash V_{2}$ and the vertex of $V_{s}(F) \backslash V_{1}$ are adjacent to each other except the pair $\left\{s_{1}, s_{2}\right\}\left(s_{1} \in V_{s}(F) \backslash V_{2}, s_{2} \in V_{s}(F) \backslash V_{1}\right)$. Thus the conditions (iv) of Lemma 4.14 holds. Therefore F has a subgraph isomorphic to F_{6}, F_{7} or F_{9}. Let F^{\prime} be a subgraph isomorphic to F_{6}, F_{7} or F_{9}, of F. Then $F^{\prime} \uplus H \subset G$ from Lemma 3.7. Now $\left|V_{f}\left(F^{\prime}\right)\right|=1,\left|V_{s}(H)\right| \geq 4$ by (4.14). Moreover $V_{f}\left(F^{\prime}\right)=V_{f}(F) \subset V_{f}(H)$ from (4.12)(a). Hence the hypothesis of Lemma 4.4 is satisfied. Thus $F^{\prime} \uplus H$ has a slim subgraph isomorphic to one of the graphs in Figure 2, and so does G.

Acknowledgements The author would like to thank his advisor, Professor Akihiro Munemasa, for his valuable suggestions and fruitful discussions on the topic. The author is also grateful to Professors Dragoš Cvetković and Arnold Neumaier for their valuable comments on the presentation of the results contained in this paper.

References

[1] P. J. Cameron, J. M. Goethals, J. J. Seidel and E. E. Shult, Line graphs, root systems and elliptic geometry, J. Algebra. 43 (1976), 305-327.
[2] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Applications, III revised and enlarged edition, Johan Ambrosius Bart. Verlag, Heidelberg - Leipzig, 1995.
[3] D. Cvetković, M. Doob and S. Simić, Generalized line graphs, J. Graph Theory 5 (1981), 385-399.
[4] D. Cvetković, M. Lepović, P. Rowlinson and S. K. Simić, The maximal exceptional graphs, J. Combin. Theory Ser. $B 86$ (2002), 347-363.
[5] D. Cvetković, P. Rowlinson and S. K. Simić, Constructions of the maximal exceptional graphs with largest degree 28, Department of Computing Science and Mathematics, University of Stirling, Scotland, Technical Report CSM-156, Stirling, 2000.
[6] D. Cvetković, P. Rowlinson and S. K. Simić, Spectral Generalizations of Line Graphs - On Graphs with Least Eigenvalue -2, Cambridge Univ Press, 2004.
[7] A. J. Hoffman, On graphs whose least eigenvalue exceeds $-1-\sqrt{2}$, Linear Algebra Appl. 16 (1977), 153-165.
[8] L. Lovász, Combinatorial Problems and Exercises, 2nd edition, North-Holland, 1993.
[9] The Magma Computational Algebra System for Algebra, Number Theory and Geometry, URL: http://magma.maths.usyd.edu.au/magma/
[10] B. D. McKay, Combinatorial Data, URL: http://cs.anu.edu.au/~bdm/data/ graphs.html
[11] T. Taniguchi, On graphs with the smallest eigenvalue at least $-1-\sqrt{2}$, part I, Ars Math. Contemp. 1 (2008), 81-98.
[12] R. Woo and A. Neumaier, On graphs whose smallest eigenvalue is at least $-1-\sqrt{2}$, Linear Algebra Appl. 226/228 (1995), 577-591.

[^0]: E-mail address: tetsuzit@matsue-ct.ac.jp (Tetsuji Taniguchi)

