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Abstract

We classify those 2-groups G which factorise as a product of two disjoint cyclic sub-
groups A and B, transposed by an automorphism of order 2. The case where G is meta-
cyclic having been dealt with elsewhere, we show that for each e ≥ 3 there are exactly
three such non-metacyclic groups G with |A| = |B| = 2e, and for e = 2 there is one.
These groups appear in a classification by Berkovich and Janko of 2-groups with one non-
metacyclic maximal subgroup; we enumerate these groups, give simpler presentations for
them, and determine their automorphism groups.
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1 Introduction
Groups that factorise as products of isomorphic cyclic groups have been studied for over
fifty years [4, 7, 9, 10, 11]. In several recent papers [5, 6, 13, 14, 15, 16, 17, 18] these groups
have emerged as an important tool for the classification of regular embeddings of complete
bipartite graphs in orientable surfaces. They also arise naturally in the theory of finite p-
groups, for example in the recent classification by Berkovich and Janko [1, Chapter 87]
of 2-groups with a unique non-metacyclic maximal subgroup. Our aim in this paper is to
demonstrate some connections between these two problems by showing that a certain class
of non-metacyclic 2-groups play an important role in both situations. As a consequence,
we are able to give more information and simpler presentations for some of the groups
described by Berkovich and Janko.

As shown in [15], the problem of classifying orientably regular embeddings of complete
bipartite graphs Kn,n is closely related to that of determining those groups G that factorise
as a productAB of two cyclic groupsA = 〈a〉 andB = 〈b〉 of order n such thatA∩B = 1
and there is an automorphism of G transposing the generators a and b. Such groups are
called isobicyclic, or n-isobicyclic if we wish to specify the value of n (see [15]). We will
call (G, a, b) an isobicyclic triple, and (a, b) an isobicyclic pair for G.

A result of Itô [9] shows that an isobicyclic groupG, as a product of two abelian groups,
must be metabelian. In particular it is solvable, so it satisfies Hall’s Theorems, which extend
Sylow’s Theorems from single primes to sets of primes. This fact, together with results of
Wielandt [19] on products of nilpotent groups, allows one to reduce the classification of
n-isobicyclic groups to the case where n is a prime power (see [13] for full details).

When n is an odd prime power, a result of Huppert [7] implies that G must be meta-
cyclic. When n is a power of 2, however, Huppert’s result does not apply, and indeed for
each n = 2e ≥ 4 there are non-metacyclic n-isobicyclic groups. In this paper we will study
all n-isobicyclic groups where n = 2e, our main goal being to give a complete description
of the corresponding isobicyclic triples (G, a, b).

In order to state our main result, let us define

G1(e, f) = 〈h, g
∣∣ h2e = g2

e

= 1, hg = h1+2f 〉 (1.1)

where f = 2, . . . , e, and

G2(e; k, l) = 〈a, b
∣∣ an = bn = [b2, a2] = 1, [b, a] = a2b−2(an/2bn/2)k,

(b2)a = b−2(an/2bn/2)l, (a2)b = a−2(an/2bn/2)l〉 (1.2)

where n = 2e ≥ 4 and k, l ∈ {0, 1}, with k = l = 0 when n = 4. In fact, it is easily seen
that this last group G2(2; 0, 0) has a simplified presentation

G2(2; 0, 0) = 〈a, b
∣∣ a4 = b4 = [a2, b] = [b2, a] = 1, [b, a] = a2b2〉. (1.3)

Our main result shows that if n = 2e then every n-isobicyclic group has one of the
above two presentations.

Theorem 1.1. Let G be an n-isobicyclic group where n = 2e ≥ 4. Then either

(i) G is metacyclic, and G ∼= G1(e, f) for some f ∈ {2, . . . , e}, or

(ii) G is not metacyclic, in which case either G ∼= G2(2; 0, 0), or e ≥ 3 and G ∼=
G2(e; k, l) where k, l ∈ {0, 1}. In the latter case there are, up to isomorphism, just
three groups for each e, with G2(e; 0, 1) ∼= G2(e; 1, 1).
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The metacyclic groups G1(e, f) were treated in detail in [5]; for instance, it was shown
there that, up to automorphisms of G, one can take the isobicyclic pair to have the form
a = gr and b = grh, where r is an odd integer such that 1 ≤ r ≤ 2e−f . This paper is
therefore devoted to the non-metacyclic groups G2(e; k, l).

These groups G2(e; k, l) have recently arisen in a purely group-theoretic context. In [1,
Chapter 87] Berkovich and Janko, having classified the minimal non-metacyclic 2-groups
(i.e. those with all their maximal subgroups metacyclic), then classify those 2-groups with
a unique non-metacyclic maximal subgroup. Clearly such a group requires at most three
generators (two to generate a metacyclic maximal subgroup, and one more outside it).
The 3-generator groups of this type are relatively easy to deal with, and Berkovich and
Janko devote most of their analysis to the 2-generator groups. In Corollary 87.13 they
show that any such group factorises as a product of two cyclic groups, and conversely in
Theorem 87.22 they show that any non-metacyclic group which factorises in this way (and
is therefore a 2-generator group) has a unique non-metacyclic maximal subgroup. Their
analysis of the 2-generator groups depends on considering the different possibilities for the
commutator subgroup, and one part of the classification (essentially Theorem 87.19, see
also [12, Theorem 4.11]) is as follows:

Theorem 1.2. (Berkovich and Janko) Let G be a 2-generator 2-group with exactly one
non-metacyclic maximal subgroup. Assume that G′ ∼= C2r × C2r+1 where r ≥ 2. Then

G = 〈a, x | a2
r+2

= 1, [a, x] = v, [v, a] = b, v2
r+1

= b2
r

= [v, b] = 1,

v2
r

= z, b2
r−1

= u, x2 ∈ 〈u, z〉 ∼= C2 × C2, b
x = b−1,

vx = v−1, ba = b−1, a4 = v−2b−1w, w ∈ 〈u, z〉 〉
(1.4)

with |G| = 22r+4 and G′ = 〈b〉 × 〈v〉 ∼= C2r × C2r+1 .

One should regard (1.4) as giving sixteen presentations for each r, since there are four
possibilities for each of x2 and w in the Klein four-group 〈u, z〉. In Theorem 4.2, we will
show that the groups G2(e; k, l) for e ≥ 4 are exactly those groups G in Theorem 1.2 for
which x2 = zk and w = zl for some k, l ∈ {0, 1}, with e = r + 2. As noted by Janko
in [12, p. 315], the classification problem is not completely solved since some pairs of pre-
sentations define isomorphic groups. Indeed Theorem 1.1 shows that for each r ≥ 2 there
are, up to isomorphism, just three groups presented by (1.4) with x2 = zk and w = zl,
those with l = 1 and k = 0, 1 being isomorphic to each other. As a consequence of Theo-
rem 4.2, in (1.2) we give slightly more transparent presentations for these groups, showing
that each is an extension of its Frattini subgroup Φ(G) ∼= C2r+1 × C2r+1 by C2 × C2: the
roles of a, b and an/2bn/2 in (1.2) are played by a, ax and the central involution z in (1.4).
Moreover, all our structural results proved in Section 2 for the groups G2(e; k, l) apply to
these groups G. For instance, we show that they are all metabelian, of exponent 2e and
nilpotence class e. In classifying all isomorphisms between the groups G2(e; k, l), we also
determine their automorphisms; in particular, we show that for each e ≥ 3, AutG2(e; k, l)
has order 24e−3 or 24e−4 as l = 0 or 1.

Section 3 begins a structural analysis of isobicyclic 2-groups in general, while Section 4
is devoted specifically to non-metacyclic isobicyclic groupsG. We show that if n = 2e then
either G has a cyclic derived subgroup, in which case e = 2 and G ∼= G2(2; 0, 0), or G
has a derived group generated by two elements, in which case e ≥ 3 and G is isomorphic
to one of the three non-isomorphic groups of the form G2(e; k, l). This proves part (ii) of
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Theorem 1.1, and since part (i) is dealt with in [5], it completes the proof of that theorem.
In Section 5 we apply results from the preceding sections to the classification of regular
embeddings of complete bipartite graphs Kn,n where n is a power of 2.

A completely different proof of Theorem 1.1(ii) has already been given in [6]; it pro-
ceeds by induction on e, based on the fact that if n = 2e then any n-isobicyclic group has
an m-isobicyclic quotient where m = 2e−1. However, the main purpose of that paper was
not to study these groups for their own sake, but rather to enumerate them and to obtain
sufficient information about them to determine the corresponding graph embeddings. Here
we present an alternative proof, designed to shed more light on the internal structure of
these groups, and on how they are related to more general classes of 2-groups.

2 Non-metacyclic groups G2(e; k, l)

In this section we analyse properties of the non-metacyclic groups G2(e; k, l) appearing in
Theorem 1.1. Throughout this section we writeG(k, l), or simplyG, instead ofG2(e; k, l).
For brevity we also write n = 2e and m = n/2 = 2e−1.

It is useful to note that each groupG has a Frattini subgroup Φ = Φ(G) = 〈a2〉×〈b2〉 ∼=
Cm × Cm, with G/Φ ∼= C2 × C2 (see [6, Prop. 2.1]). It therefore has three maximal
subgroups, namely 〈Φ, a〉 = Φ ∪ Φa, 〈Φ, b〉 = Φ ∪ Φb and 〈Φ, ab〉 = Φ ∪ Φab.

Lemma 2.1. The following properties hold in G = G(k, l).

(i) The elements am, bm, and z = ambm are central involutions of G.

(ii)

bjai =


aibj , for i and j even,
aib−jzlj/2, for i odd and j even,
a−ibjzli/2, for i even and j odd,
a−ib−jzk+l(i+j)/2, for i and j odd.

(iii) The element g = aibj has order

|g|


dividing m, for i and j even,
equal to n, with gm = am, for i odd and j even,
equal to n, with gm = bm, for i even and j odd,
dividing 4, and equal to 2 if k = l = 0, for i and j odd.

(iv) The groupG is isobicyclic, that is,G = 〈a〉〈b〉, where |a| = |b| = 2e and 〈a〉∩〈b〉 =
1, and there is an involutory automorphism of G interchanging a and b.

(v) G′ = 〈a2b−2zk〉 × 〈a4zl〉 with 〈a2b−2zk〉 ∼= Cm and 〈a4zl〉 ∼= Cm/2.

(vi) G is not metacyclic.

(vii) G has nilpotence class e, with upper central series 1 = Z0 < Z1 < · · · < Ze = G

where Zi = 〈a2e−i〉〈b2e−i〉 for i = 0, 1, . . . , e.

Proof. Some of these results were proved in [6]; for completeness we give proofs here.
If we define z = ambm, the defining relations for G in (1.2) take the form

an = bn = [b2, a2] = 1, [b, a] = a2b−2zk, (b2)a = b−2zl, (a2)b = a−2zl, (2.1)
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where k, l ∈ {0, 1} with k = l = 0 if n = 4.

(i) Since m is even, and [a2, b2] = 1, the involutions am and bm commute; they are
distinct, so their product z is also an involution. Since z commutes with a2 and b2, and
either m is divisible by 4 or l = 0, we have (bm)a = ((b2)a)m/2 = (b−2zl)m/2 =
b−mzlm/2 = b−m = bm, so bm is an element of the centre Z(G) of G. Similarly, am ∈
Z(G), so z ∈ Z(G).

(ii) Now we compute bjai. Define c = [b, a] = b−1a−1ba. If both i and j are even,
then bjai = aibj . If i is odd and j is even, then since i− 1 is even we have

bjai = (bjai−1)a = ai−1bja = ai((b2)a)j/2 = aib−jzlj/2.

If i is even and j is odd, then

bjai = b−1(bj+1ai) = (b−1aib)bj = ((a2)b)i/2bj = a−ibjzli/2.

If both i and j are odd, then

bjai = bj−1abcai−1 = bj−1ab(b−2a2zk)ai−1 = a(bj−1)a(ai+1)bb−1zk

= ab1−jzl(j−1)/2a−i−1zl(i+1)/2b−1zk = a−ib−jzk+l(i+j)/2.

(iii) If i and j are both even then (ii) implies that

g2 = (aibj)2 = ai(bjai)bj = a2ib2j ∈ 〈a4〉 × 〈b4〉 ∼= Cm/2 × Cm/2,

so gm = 1. If i is odd and j is even then (ii) gives

g2 = ai(bjai)bj = a2ib−jzlj/2bj = a2izlj/2,

so 〈g4〉 = 〈a4i〉 = 〈a4〉; thus 〈g2r 〉 = 〈a2r 〉 for all r ≥ 2, so |g| = |a| = n with gm = am.
The proofs in the other two cases are similar.

(iv) The formulæ in (ii) show that every element ofG can be expressed in the form aibj ,
so G = 〈a〉〈b〉. In order to see that 〈a〉 ∩ 〈b〉 = 1, note that ai and bj lie in distinct cosets
of Φ unless i and j are both even; in this case the fact that Φ = 〈a2〉 × 〈b2〉 ensures that
〈a〉∩〈b〉 = 1. The defining relations ofG are equivalent to those obtained by transposing a
and b, so this transposition can be extended to an automorphism α of order 2 of G. Hence
G is an n-isobicyclic group.

(v) SinceG = 〈a, b〉,G′ is the normal closure 〈cg | g ∈ G〉 inG of the commutator c =
[b, a]. We will show that this is the subgroup M := 〈c, ca〉. Since c = [b, a] = a2b−2zk we
have ca = (a2b−2zk)a = a2b2zk+l, and conjugation by a transposes these two generators
of M since [c, a2] = 1. Similarly, conjugation by b transposes the generators c and (ca)−1

of M , so M is normal in G and hence M = 〈cg | g ∈ G〉 = G′. Thus G′ has generators
c = a2b−2zk = akm+2bkm−2 and cac = a4zl = alm+4blm; these generate disjoint cyclic
groups of orders m and m/2, so

G′ = 〈a2b−2zk〉 × 〈a4zl〉 ∼= Cm × Cm/2.
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(vi) For e ≥ 3 the fact thatG′ is not cyclic immediately implies thatG is not metacyclic.
In the case e = 2 it is easily seen that the only cyclic normal subgroups of G are contained
in Φ, and these do not have cyclic quotients.

(vii) This follows by induction on e, using the facts that Z(G) = {1, am, bm, z} (a
simple consequence of (ii)), thatG/Z(G) ∼= G(e−1; 0, 0), and thatG(2; 0, 0), as presented
in (1.3), clearly has class 2.

Proposition 2.2. Each isomorphism σ : G(k1, l1)→ G(k, l) is given by setting aσ1 = aibj

and bσ1 = afbh, where

(i) k1 ≡ k + l(f+h−i−j)
2 (mod 2),

(ii) l1 = l, and

(iii) either i and h are odd and j and f are even, or i and h are even and j and f are odd.

Moreover, each choice of the parameters i, j, f and h satisfying the above conditions de-
termines an isomorphism G(k1, l1)→ G(k, l).

Proof. Recall that

G = G(k, l) = 〈a, b
∣∣ an = bn = [b2, a2] = 1, [b, a] = a2b−2zk,

(b2)a = b−2zl, (a2)b = a−2zl〉

with z = ambm, and define

G1 = G(k1, l1) = 〈a1, b1
∣∣ an1 = bn1 = [b21, a

2
1] = 1, [b1, a1] = a21b

−2
1 zk11 ,

(b21)a1 = b−21 zl11 , (a21)b1 = a−21 zl11 〉,

where z1 = am1 b
m
1 .

An isomorphism σ : G1 → G is uniquely determined by an assignment

a1 7→ a2 = aibj , b1 7→ b2 = afbh

for some integers i, j, f and h such that a2 and b2 generate G and satisfy the defining
relations of G1, when substituted for a1 and b1.

Now a1 has order n, whereas Lemma 2.1(iii) shows that a2 has order less than n if i
and j are both even or both odd. We may therefore restrict attention to mappings σ for
which i and j have opposite parity, that is, a2 ∈ Φa ∪ Φb. A similar argument shows that
b2 ∈ Φa ∪ Φb. If a2 and b2 are both in Φa, or both in Φb, they are both contained in a
maximal subgroup Φ ∪ Φa or Φ ∪ Φb of G and hence cannot generate G. They therefore
lie in distinct cosets Φa and Φb, and by composing σ with the automorphism α of G
transposing a and b if necessary, we may assume that a2 ∈ Φa and b2 ∈ Φb, that is, i and
h are odd while j and f are even. This ensures that a2 and b2 generate G, since none of the
three maximal subgroups of G contains both of them.

For any g ∈ Gwe have g2 ∈ Φ ∼= Cm×Cm, so a2 and b2 satisfy the first three relations
an2 = bn2 = [b22, a

2
2] = 1 for G1.

Now σ sends z1 = am1 b
m
1 to am2 b

m
2 . Since i is odd and j is even, we have am2 = am by

Lemma 2.1(iii). Similarly bm2 = bm, so σ sends z1 to ambm = z.
We can now consider the fourth relation. Straightforward calculations give

[b2, a2] = [afbh, aibj ] = a2ib−2hzk+l(h−i)/2
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and
a22b
−2
2 zk1 = a2ib−2hzk1+l(j−f)/2,

so we require

k1 ≡ k +
l(f + h− i− j)

2
(mod 2),

giving condition (i) of the Lemma.
For the fifth relation, we have

(b22)a2 = ((afbh)2)a
ibj = ((b2hzlf/2)a

ibj = b−2hzl+lf/2

and
b−22 zl1 = b−2hzl1−lf/2;

since f is even and h is odd we require l1 = l. Similar arguments show that the sixth and
final relation is also equivalent to this, so we have condition (ii).

Conditions (i) and (ii) are necessary and sufficient conditions for σ to be an isomor-
phism, in the case where a2 ∈ Φa and b2 ∈ Φb, that is, i and h are even while j and f are
odd. For the case where a2 ∈ Φb and b2 ∈ Φa we can compose σ with α, transposing i
with j, and f with h; this gives condition (iii) of the Lemma, leaving conditions (i) and (ii)
unchanged.

Corollary 2.3. For each e ≥ 3 we have G(1, 1) ∼= G(0, 1) while G(0, 0), G(1, 0) and
G(0, 1) are pairwise non-isomorphic.

Proof. From Proposition 2.2 we immediately deduce that G(k, 0) 6∼= G(k′, 1) for any k
and k′, and that G(0, 0) 6∼= G(1, 0). Furthermore, taking i = 3, j = f = 0 and h = 1 in
the definition of σ, we get an isomorphism from G(0, 1) to G(1, 1).

Corollary 2.4. The automorphisms of G(k, l) are given by σ : a 7→ aibj , b 7→ afbh

where

(i) either i and h are odd and j and f are even, or i and h are even and j and f are odd,
and

(ii) i+ j ≡ f + h (mod 4) if l = 1.

Proof. This follows immediately from Proposition 2.2, with k1 = k and l1 = l.

By counting choices of i, j, f, h ∈ Zn satisfying the conditions of Corollary 2.4, we
deduce that |AutG(k, l)| = n4/8 or n4/16 as l = 0 or 1.

3 The derived group of an isobicyclic 2-group
In this section we begin an analysis of the structure of an isobicyclic 2-group. Let (G, a, b)
be an n-isobicyclic triple where n = 2e ≥ 4. As before, let c = [b, a] and let Φ denote the
Frattini subgroup Φ(G) ofG. Let 0i(G) = 〈g2i | g ∈ G〉, and letKi(G) = [G,G, · · · , G]
(i times); in particular, K2(G) = G′. Each of these subgroups Φ(G),0i(G) and Ki(G) is
a characteristic subgroup of G.

The following properties of G follow from more general known results.

Lemma 3.1. Let (G, a, b) be a non-abelian n-isobicyclic triple where n = 2e ≥ 4, and let
A = 〈a〉 and B = 〈b〉. Then the following hold.
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(i) The derived group G′ is abelian (see [9]).

(ii) G′/(G′ ∩A) is isomorphic to a subgroup of B (see [3, Corollary C]).

(iii) G is metacyclic if and only if G/Φ(G′)K3(G) is metacyclic (see [2] or [8, Hilfssatz
III.11.3]).

Lemma 3.2. [5, Lemma 3.1] Let G be an isobicyclic 2-group of exponent 2e ≥ 4. Then
G has a central series 1 = Z0 < Z1 < Z2 < · · · < Ze = G of subgroups Zi =

〈a2e−i〉〈b2e−i〉 of order 22i. Moreover, 0i(G) = Ze−i and Zi/Zi−1 ∼= C2 × C2 for each
i ∈ {1, 2, . . . , e}. In particular, for every element g ∈ Zi we have |g| ≤ 2i.

Outline proof. We proved this result as Lemma 3.1 of [5], so we simply outline the ar-
gument here. By a result of Douglas [4] and Itô [10] (see also [8, VI.10.1(a)]), the core
of A in G is nontrivial. Since 〈a2e−1〉 is the unique minimal normal subgroup of A it is
therefore normal inG, and hence central. The same applies to 〈b2e−1〉, so these two disjoint
subgroups generate a central subgroup Z1

∼= C2 × C2. Now apply the same argument to
the isobicyclic group G/Z1, and iterate. �

Lemma 3.3. Let (G, a, b) be a non-abelian n-isobicyclic triple where n = 2e ≥ 4, and let
A = 〈a〉 and B = 〈b〉. Then G has the following properties.

(i) There exist an odd integer d < 2e and integers u and v such that 0 ≤ u < v ≤ e,
c = [b, a] = ad2

u

b−d2
u

and G′ = 〈c〉 × 〈a2v 〉 = 〈c〉 × 〈b2v 〉. In particular, G′ is
cyclic if v = e. Moreover, [a2

u

, b2
v

] = [b2
u

, a2
v

] = 1.

(ii) 〈c〉 ∩ A = 〈c〉 ∩ B = 1, |c| = 2e−u, and for each integer j such that 0 ≤ j ≤ e− u
there exists an odd integer h such that c2

j

= ah2
u+j

b−h2
u+j

.

(iii) Either G′ = 〈c〉, or G′ = 〈c, ca〉 = 〈c, cb〉 with ca = csat2
v

and cb = csb−t2
v

where
s and t are odd.

Proof. Since G = AB, each element can be written as aibj , and since A ∩ B = 1 this
representation is unique. Let c = [b, a] = arbw. Since the automorphism α interchanges a
and b, we have

braw = [bα, aα] = [a, b] = [b, a]−1 = b−wa−r.

Therefore w ≡ −r (mod 2e) and so c = arb−r. We can write r = d2u where d is odd,
d < 2e and 0 ≤ u ≤ e. Similarly, for every integer j there is an integer k such that
cj = akb−k. In particular, 〈c〉 ∩A = 〈c〉 ∩B = 1, as claimed in (ii).

Let the cyclic group G′ ∩ A be generated by a2
v

, where v ≤ e. Applying α gives
G′ ∩B = 〈b2v 〉. Since G = 〈a, b〉, Lemma III.1.11 of [8] implies that G′ = 〈cg

∣∣ g ∈ G〉.
By Lemma 3.1(i), G′ is abelian, so c is an element ofG′ of maximal order. Since 〈c〉∩A =
〈c〉 ∩ B = 1, we see that 〈c〉 × 〈a2v 〉 ≤ G′. By Lemma 3.1(ii), G′/〈a2v 〉 is cyclic. Since
〈c〉 ∩A = 1 again, the image of c in G′/〈a2v 〉 has order |c|, so it is an element of G′/〈a2v 〉
of maximal order and therefore generates G′/〈a2v 〉. This gives G′ = 〈c〉 × 〈a2v 〉 and
hence, by applying α, G′ = 〈c〉 × 〈b2v 〉.

From a2
v

c = ca2
v

and c = ad2
u

b−d2
u

we see that [bd2
u

, a2
v

] = 1. Hence it follows
that [〈bd2u〉, a2v ] = 1, and in particular, since d is odd, [b2

u

, a2
v

] = 1. By symmetry,
[a2

u

, b2
v

] = 1.
Since 〈c〉 = 〈ad2ub−d2u〉 ≤ 0u(G) = Ze−u, Lemma 3.2 shows that |c| ≤ 2e−u. Since

c is an element of maximal order in G′, we have 2e−v = |a2v | ≤ |c| ≤ 2e−u, so u ≤ v.
This proves (i), apart from the inequality u 6= v, which follows later.



S. Du et al.: 2-Groups that factorise as products of cyclic groups. . . 163

To prove (ii), let L denote the subgroup G′〈b2u〉. Then

L = 〈ad2
u

b−d2
u

, b2
v

〉〈b2
u

〉 = 〈a2
u

, b2
u

〉 = 〈a2
u

〉〈b2
u

〉 = Ze−u.

Computing the order

22(e−u) = |L| = |G′||〈b2
u

〉|/|G′ ∩ 〈b2
u

〉| = |c|2e−v2e−u/2e−v = |c|2e−u,

we see that |c| = 2e−u.
For each j = 0, 1, . . . , e − u we have c2

j ∈ Ze−(u+j), so c2
j

= ah2
u+j

b−h2
u+j

for
some integer h. Since |c2j | = 2e−(u+j), it follows that c2

j 6∈ Ze−(u+j+1), so h is odd.
This proves (ii).

We now consider (iii). Since ca ∈ G′ = 〈c〉 × 〈a2v 〉, either ca ∈ 〈c〉, or ca =
csat2

q

for some integers s, t and q where t is odd and q ≥ v. In the former case we have
G′ = 〈c〉, satisfying (iii); we may therefore assume the latter, in which case we also have
cb = csb−t2

q

. Define M = 〈c, ca〉, so M = 〈c〉× 〈a2q 〉. From the preceding paragraph we
know that c2

q−u

= ah2
q

b−h2
q

for some odd h. Therefore

b2
q

∈ 〈bh2
q

〉 = 〈c−2
q−u

ah2
q

〉 ≤ 〈c2
q−u

, a2
q

〉 ≤M,

which implies that M = 〈c〉 × 〈b2q 〉. Now Ma = 〈c, a2q 〉a = M and M b = 〈c, b2q 〉b =
M , so Mg = M for each g ∈ G. In particular, cg ∈ M for each g ∈ G. Therefore
G′ = 〈cg

∣∣ g ∈ G〉 = M. In other words, q = v, that is ca = csat2
v

where t is odd.
We now show that u 6= v. Recall that G′ = 〈c〉 × 〈a2v 〉 = 〈c〉 × 〈b2v 〉, so Ze−v =

〈a2v 〉× 〈b2v 〉 ≤ G′. On the other hand c = ad2
u

b−d2
u

, so G′ ≤ 〈a2u〉〈b2u〉 = Ze−u. Now
suppose that u = v, so G′ = Ze−v , with e− v > 0 since G is non-abelian. By Lemma 3.2,
the subgroupG′/Ze−(v+1) = Ze−v/Ze−(v+1) is central inG/Ze−(v+1). We have seen that
G′ = 〈c, ca〉, so caZe−(v+1) = cZe−(v+1) since c ∈ G′. Thus

G′/Ze−(v+1) = 〈c, ca〉/Ze−(v+1) = 〈c〉/Ze−(v+1)

is cyclic, contradicting the fact that Ze−v/Ze−(v+1)
∼= C2 × C2 by Lemma 3.2. Thus

u < v, completing the proof of (i).
Finally, since ca = csat2

v ∈ G′ = 〈c〉 × 〈a2v 〉 we have

2e−u = |c| = |ca| = |csat2
v

| = max{|cs|, |at2
v

|},

with |at2v | = 2e−v < 2e−u since v > u, so |cs| = |c| and hence s must be odd.

The next result uses the parameter u, where c has order 2e−u, to distinguish between
metacyclic and non-metacyclic n-isobicyclic groups G.

Lemma 3.4. Let (G, a, b) be a non-abelian n-isobicyclic triple where n = 2e ≥ 4. With u
and v defined as in Lemma 3.3, the following statements hold.

(i) If u ≥ 2 then G is metacyclic, with 2 ≤ u < v = e and G′ = 〈c〉 = 〈(ab−1)r〉 ∼=
C2e−u .

(ii) If u < 2 then G is non-metacyclic, with u = 1, v = 2 and G′ = 〈a2b−2〉 × 〈a4〉 =
〈a2b−2〉 × 〈b4〉, where 〈a2b−2〉 ∼= C2e−1 and 〈a4〉 ∼= 〈b4〉 ∼= C2e−2 .
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In particular, if G is non-metacyclic and G′ is cyclic, then e = 2 and G′ = 〈a2b−2〉 ∼= C2.

Proof. By Lemma 3.3, G′ = 〈c〉 × 〈a2v 〉 where c = [b, a] = arb−r with r = d2u for an
odd integer d and some integers u and v such that 0 ≤ u < v ≤ e.

(a) We first consider the case whereG′ is cyclic, so that v = e. By Lemma 3.3,G′ = 〈c〉
and hence ca = cs for some s, which must be odd. By applying α, which inverts c, we
also have cb = cs. It follows that cab

−1

= c. Moreover, [c, a] = [c, b] = cs−1 ∈ 〈c2〉,
which means that the image c〈c2〉 of c in G/〈c2〉 is a central involution in that group. (As
a characteristic subgroup of 〈c〉 = G′, 〈c2〉 is normal in G.) Now we have

(ab−1)2 = ab−1ab−1 = a2(a−1ba)−1b−1 = a2(bc)−1b−1

= a2c−1b−2 ≡ a2b−2c (mod 〈c2〉)

and

a2b2 = abac−1b = bac−1ac−1b ≡ baab ≡ babac−1 ≡ b2ac−1ac−1 ≡ b2a2 (mod 〈c2〉).

(a1) Suppose that u ≥ 2, as in (i). Then r/2 is even, so

(ab−1)r = ((ab−1)2)r/2 ≡ (a2b−2c)r/2 ≡ (a2b−2)r/2cr/2

≡ (a2b−2)r/2 ≡ arb−r ≡ c (mod 〈c2〉).

Thus (ab−1)r is an odd power of c, so 〈(ab−1)r〉 = 〈c〉 and |(ab−1)r| = |c| = 2e−u by
Lemma 3.3. Since G = 〈a, b〉, the quotient group G/G′ = G/〈c〉 is generated by the
images a and ab−1 of a and ab−1 in this group. Now 〈c〉 ∩ A = 1 by Lemma 3.3(ii), so a
has order |a| = 2e. Since (ab−1)r ∈ 〈c〉, we see that ab−1 has order dividing r, and hence
dividing 2u. But G/〈c〉 is an abelian group of order |G|/|〈c〉| = 22e/2e−u = 2e+u, so
ab−1 must have order 2u with G/G′ = 〈a〉 × 〈ab−1〉 ∼= C2e × C2u .

Since (ab−1)r is an odd power of c we have 〈(ab−1)r〉 = 〈c〉, so the cyclic subgroup
H := 〈ab−1〉 contains G′ with index 2u. Since the image of H in G/G′ has order 2u,
and G′ has order 2e−u, it follows that H has order 2e. Since H contains G′ it is a normal
subgroup of G. Thus AH = HA is a subgroup of G, and since it contains both a and b we
have G = AH , so G is metacyclic. This proves (i) in the case where G′ is cyclic.

(a2) Now suppose that G′ is cyclic and u = 0. Then G′ = 〈c〉 has order 2e−u = 2e by
Lemma 3.3(ii). SinceG′∩A = 1 by Lemma 3.3(ii) we have |G′A| = |G′||A| = 22e = |G|,
soG = G′A andG/G′ is cyclic. But thenG/Φ is cyclic and hence so isG, a contradiction.
Hence u 6= 0.

We therefore have u = 1, so r = 2d, giving c = a2db−2d, where d is odd. By
Lemma 3.3(ii), |c| = 2e−1, and since G = 〈a, ab−1〉 we have G/G′ = G/〈c〉 ∼= C2e ×C2.

(a3) Suppose first thatG is metacyclic. Huppert gives the general form for a metacyclic
p-group in [8, III.11.2]; taking p = 2 we have

G = 〈g, h | h2
i

= 1, g2
j

= h2
k

, hg = hq〉

with 0 ≤ k ≤ i, q2
j ≡ 1 (mod 2i) and 2k(q − 1) ≡ 0 (mod 2i). Thus G has a normal

subgroup H = 〈h〉 ∼= C2i with G/H ∼= C2j , so |G| = 2i+j and hence i + j = 2e. Since
|h| = 2i and G has exponent n = 2e we have i ≤ e and hence j ≥ e. Since |g| = 2i+j−k

we have i+ j − k ≤ e and hence k ≥ e. But k ≤ i, so i = j = k = e. Thus

G = 〈g, h | gn = hn = 1, hg = hq〉
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for some q satisfying 1 < q < n. Now G′, being cyclic, is generated by [h, g] = hq−1. We
are assuming that u = 1, so G′ ∼= C2e−1 and hence q ≡ 3 (mod 4).

Each element of G has the form gihj for a unique pair i, j ∈ Zn. By using the relation
(hj)g

i

= hjq
i

, we obtain

(gihj)m = gim(hj)g
i(m−1)

(hj)g
i(m−2)

. . . (hj)g
i

hj

= gimhj(q
i(m−1)+qi(m−2)+···+qi+1)

= gimhj(q
im−1)/(qi−1)

for all m ≥ 1. Let m = n/2 = 2e−1. If i is even then gim = 1 and qi ≡ 1 (mod 4); if
2k ‖ qi − 1 then 2k+e−1 ‖ qim − 1, so 2e−1 ‖ (qim − 1)/(qi − 1) and hence (gihj)m =
hjm. If i is odd then gim = gm and qi ≡ 3 (mod 4); if 2k ‖ qi + 1 (so k ≥ 2) then
2k+e−1 ‖ qim − 1, and 2 ‖ qi − 1, so 2e | (qim − 1)/(qi − 1) and (gihj)m = gm. Thus

(gihj)m =

{
hjm, for i even,
gm, for i odd,

so gihj has order n if and only if i or j is odd, that is, gihj 6∈ Φ = 〈g2, h2〉.
If a and b are an isobicyclic pair for G then they have order n, so they are not elements

of Φ. Since they generate G, they are in different cosets of Φ, namely gΦ, hΦ or ghΦ. The
subgroups A = 〈a〉 and B = 〈b〉 are disjoint, so am 6= bm; hence these two cosets cannot
be gΦ and ghΦ (otherwise am = gm = bm), so one of them must be hΦ, say a ∈ hΦ.
Then AΦ = HΦ, so HαΦ = BΦ = gΦ or ghΦ, giving (hα)m = gm 6= hm and hence
Hα ∩H = 1. Since H is a normal subgroup of G, so is Hα. Hence G = Hα ×H , which
is abelian, contradicting the assumption. Thus G cannot be metacyclic.

(a4) Now suppose that G is non-metacyclic, with G′ cyclic and u = 1 as before. We
consider the subgroupN := 〈c, ab−1〉 ofG; this is abelian since cab

−1

= c, and it is normal
in G since it contains G′ = 〈c〉. Note that N is the preimage in G of 〈ab−1〉 ≤ G/G′. In
the abelian group G/G′ = G/〈c〉 we have (ab−1)2d = a2db−2d = c = 1, which means
that ab−1 is of order 2. Since |c| = 2e−1, we have |N | = 2e. Since 〈N, a〉 = 〈a, b〉 = G,
we deduce that G = N o 〈a〉. Since G is not metacyclic, N can not be cyclic and so
N ∼= C2e−1×C2. Let c′ be an involution ofN different from c2

e−2

, so thatN = 〈c〉×〈c′〉.
Then the conjugacy action of a on N is defined by ca = cs and (c′)a = cj2

e−2

c′, where
j = 0 or 1, and s is odd. Now G = 〈c, c′, a〉 with [c, c′] = 1, so G′ = 〈[c, a]g, [c′, a]g

∣∣ g ∈
G〉 ≤ 〈c2, cj2e−2〉. Since G′ = 〈c〉, we see that j2e−2 must be odd, so j = 1 and e = 2,
giving |G| = 16. Since v = e we have v = 2, and we have proved (ii) in the case where G′

is cyclic. (Note that a4 = b4 = 1 in this case.)
(b) We now consider the case where G′ is not cyclic, that is, v < e. This immediately

implies that G is not metacyclic. Recall that u < v. Since G′ = 〈c〉 × 〈a2v 〉, we have
Φ(G′) = 〈c2〉×〈a2v+1〉. Moreover, by Lemma 3.3(iii) we have ca = csat2

v

for some
odd integers s and t. Then at2

v

= c−s+1[c, a] ∈ L := Φ(G′)K3(G), which implies that
a2

v ∈ L. Since L is a characteristic subgroup of G, it also contains b2
v

= (a2
v

)α, and
hence it contains the subgroup Ze−v = 〈a2e−v 〉〈b2e−v 〉.

Suppose that G/Ze−v is metacyclic. Since G/L ∼= (G/Ze−v)/(L/Ze−v), it follows
that G/L is metacyclic. Then Lemma 3.1(iii) implies that G is metacyclic, which is a
contradiction. Therefore G/Ze−v is non-metacyclic.
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Now G/Ze−v is an isobicyclic 2-group. Since it is non-metacyclic, and its derived
group (G/Ze−v)

′ = G′/Ze−v ∼= C2v−u is cyclic, it follows from part (a2) of this proof
that G/Ze−v has order 16, with |G′/Ze−v| = 2. Thus a4 ∈ Ze−v = 〈a2v 〉〈b2v 〉, so v = 2.
Since G′/Ze−v ∼= C2v−u and |G′/Ze−v| = 2, we deduce that v − u = 1, so u = 1. We
have G′ = 〈c〉 × 〈a2v 〉 = 〈c〉 × 〈b2v 〉 with c = ad2

u

b−d2
u

= a2db−2d for some odd d, so
G′ = 〈a2b−2〉× 〈a4〉 = 〈a2b−2〉× 〈b4〉, with first and second factors cyclic of orders 2e−1

and 2e−2 as required for (ii).
The final statement in the Lemma is an immediate consequence of (i) and (ii).

4 Non-metacyclic isobicyclic 2-groups
The following theorem characterises non-metacyclic isobicyclic 2-groups.

Theorem 4.1. Let (G, a, b) be a non-metacyclic n-isobicyclic triple with n = 2e ≥ 4.
(i) If e = 2 then

G = 〈a, b
∣∣ a4 = b4 = [a2, b] = [b2, a] = 1, [b, a] = a2b2〉

∼= G2(2; 0, 0).

(ii) If e ≥ 3 then

G = 〈a, b
∣∣ an = bn = [b2, a2] = 1, [b, a] = a2b−2(an/2bn/2)k,

(b2)a = b−2(an/2bn/2)l, (a2)b = a−2(an/2bn/2)l〉

∼= G2(e; k, l)

where k, l ∈ {0, 1}.

Proof. (i) If e = 2 then c = a2b−2 = a2b2 is an involution commuting with both a and b,
so c is central in G. Thus [a, b2] = [b, a2] = 1 and it follows that G ∼= G2(2; 0, 0).

(ii) Let e ≥ 3. By Lemma 3.4(ii) we see that v = 2 and u = 1, so

G′ = 〈c〉 × 〈a4〉 = 〈a2b−2〉 × 〈a4〉 ∼= C2e−1 × C2e−2

where c = [b, a] = a2db−2d for some odd d. By Lemma 3.3(iii) we have

ca = csa4t and cb = csb−4t (4.1)

for some odd s and t. We will determine d, s and t up to group automorphisms.
By Lemma 3.4(ii), [a4, b2] = [a2, b4] = 1; since d− 1 is even, this implies that

ca
2b−2

= b2a−2a2db−2da2b−2 = b2a2(d−1)b−2da2b−2

= a2(d−1)b−2(d−1)a2b−2 = a2db−2d = c,

so ca
2

= cb
2

. Since

ca
2

= (ca)a = (csa4t)a = (ca)sa4t = cs
2

a4t(s+1)

and
cb

2

= (cb)b = (csb−4t)b = (cb)sb−4t = cs
2

b−4t(s+1),
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we see that a4t(s+1) = b−4t(s+1). However, A ∩ B = 1, so a4t(1+s) = 1 and hence ca
2

=
cs

2

. Since t is odd, we have s ≡ −1 (mod 2e−2). In what follows, we set s = −1 + l2e−2;
since |c| = 2e−1 we can assume that l = 0 or 1. Then s2 ≡ 1 (mod 2e−1), and because
|c| = 2e−1 we have ca

2

= cs
2

= c. Thus a2 commutes with c = a2db−2d, and hence with
b2d; since d is odd we therefore have

[a2, b2] = 1. (4.2)

Using equation (4.1) we see that

b−1a2jb = ((ab)2)j = ((ac−1)2)j = (ac−1ac−1)j = (a2(ca)−1c−1)j

= (a2a−4tc−(s+1))j = a2(1−2t)jc−j(s+1) (4.3)

for each positive integer j. By taking j = 2e−2 we deduce that the involution a2
e−1

is
central inG, and the same holds for b2

e−1

. In what follows we set z = a2
e−1

b2
e−1

= c2
e−2

.
By equations (4.1) and (4.3) we have

ca = c−1a4tzl, cb = c−1b−4tzl, b−1a2jb = a2(1−2t)jzlj . (4.4)

From cb = (a2db−2d)b and equation (4.4) we have

a−2db2db−4tzl = a2(1−2t)dzldb−2d,

so
a4(1−t)d = b4(d−t)

and hence
(1− t)d ≡ d− t ≡ 0 (mod 2e−2).

Solving these equations gives

d ≡ t ≡ 1 (mod 2e−2).

Writing d = 1 + k2e−2 where k = 0 or 1, and using b2
e

= 1, we see from these two con-
gruences that the relations c = a2db−2d, ca = csa4t and cb = csb−4t can be respectively
rewritten as

[b, a] = a2+k2
e−1

b−2+k2
e−1

, (b2)a = al2
e−1

b−2+l2
e−1

, (a2)b = a−2+l2
e−1

bl2
e−1

(4.5)

where k, l ∈ {0, 1}. By combining the relations in (4.5) with the fact that a2
e

= b2
e

=
[a2, b2] = 1, we see that G satisfies all the defining relations of G2(e; k, l) in (1.2). Thus
G is an epimorphic image of G2(e; k, l), and since these two groups have the same order,
they are isomorphic.

Recall that Theorem 1.2, of Berkovich and Janko, states that a 2-generator 2-group with
exactly one non-metacyclic maximal subgroup, and with a derived group isomorphic to
C2r×C2r+1 for some r ≥ 2, has a presentation of the form (1.4). Here we consider a subset
of these groups, namely those for which x2 and w are powers of the central involution z.
For each r ≥ 2, and for each pair k, l ∈ {0, 1}, let G = G(k, l) denote the group given by
the presentation (1.4) with x2 = zk and w = zl, that is,

G(k, l) = 〈a, x | a2
r+2

= 1, [a, x] = v, [v, a] = b, v2
r+1

= b2
r

= [v, b] = 1,

v2
r

= z, b2
r−1

= u, x2 = zk, bx = b−1,
vx = v−1, ba = b−1, a4 = v−2b−1w, w = zl 〉.

(4.6)
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Our aim is to show that G is isomorphic to the group G2 = G2(e; k, l), where e = r + 2.
To avoid notational confusion, let us present G2 as

G2(e; k, l) = 〈a1, b1 | a2
e

1 = b2
e

1 = [b21, a
2
1] = 1, [b1, a1] = a21b

−2
1 (a2

e−1

1 b2
e−1

1 )k,

(b21)a1 = b−21 (a2
e−1

1 b2
e−1

1 )l, (a21)b1 = a−21 (a2
e−1

1 b2
e−1

1 )l〉.
(4.7)

Theorem 4.2. For each e = r+ 2 ≥ 4 there is an isomorphism from G(k, l) to G2(e; k, l)
sending the generators a and x of G(k, l) to a1 and a−11 b1 in G2(e; k, l).

Proof. We first show that the map a 7→ a1, x 7→ a−11 b1 extends to a homomorphism
G→ G2. We map the other elements of G appearing in (4.6) into G2 by

v 7→ a−21 b21z
k
1 , b 7→ b−41 zl1, z 7→ z1, u 7→ b2

e−1

1 and w 7→ zl1

where z1 = a2
e−1

1 b2
e−1

1 . We need to show that the defining relations for G in (4.6) are
satisfied when a, x, v, b, z, u and w are replaced with their images in G2. This is a routine
matter, using the properties of G2 proved in Section 2, so we will simply illustrate it in a
typical case, namely the relation x2 = zk. For this we need to show that (a−11 b1)2 = zk1 in
G2. Using Lemma 2.1(ii) and the fact that z1 is in the centre of G2, we have

(a−11 b1)2 = a−11 (b1a
−1
1 )b1 = a−11 (a1b

−1
1 zk1 )b1 = zk1 ,

as required. The other cases are similar, so the mapping extends to a homomorphism
θ : G→ G2. This is an epimorphism since a1 and a−11 b1 generate G2.

We proved in [6, Prop. 2.1] that |G2| = 22e, so |G| ≥ 22e. The defining relations

v2
r+1

= b2
r

= [v, b] = 1

for G show that 〈v, b〉 has order at most 22r+1. The relations

x2 = zk (= v2
rk), vx = v−1, bx = b−1

show that 〈v, b〉 is a normal subgroup of index at most 2 in 〈v, b, x〉, so the latter group has
order at most 22r+2. Finally the relations

a4 = v−2b−1zl, ba = b−1, va = vb, xa = xv−1

show that 〈v, b, x〉 is a normal subgroup of index at most 4 in 〈v, b, x, a〉 = G, so |G| ≤
22r+4 = 22e. Thus |G| = |G2|, so θ is an isomorphism.

This confirms the assertions in [1, 12] that the groups G(k, l) have order 22r+4, a fact
which is not immediately apparent from the presentation (4.6).

5 Regular embeddings of Kn,n where n = 2e

A mapM is a cellular embedding of a connected graph K in a closed orientable surface.
It is (orientably) regular if the group Aut(M) of all orientation-preserving automorphisms
of the embedding acts regularly on the oriented edges (darts) of K.

It was shown in [15, Section 2] that every regular embeddingM of a complete bipartite
graph Kn,n determines an n-isobicyclic triple (G, a, b). Here G is the subgroup Aut0(M)
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of index 2 in Aut(M) leaving the bipartition of Kn,n invariant. The generators a and b
rotate a chosen edge e = uv around its incident vertices u and v to the next edge, follow-
ing the orientation of the surface around u or v. The automorphism of G transposing a
and b is induced by conjugation by the map automorphism reversing e. Conversely, every
n-isobicyclic triple (G, a, b) arises in this way, with (G1, a1, b1) and (G, a, b) giving iso-
morphic maps if and only if there is an isomorphism G1 → G sending a1 to a and b1 to b
(see [15] or [14, Proposition 2]). Thus an isobicyclic group G may have inequivalent pairs
a, b leading to non-isomorphic maps.

The following characterisation of regular embeddings of Kn,n, where n = 2e and
Aut0(M) is non-metacyclic, was proved in [6]. Here we give a different proof, using the
structure of non-metacyclic isobicyclic 2-groups described in earlier sections.

Theorem 5.1. For each n = 2e ≥ 8 there are exactly four non-isomorphic regular em-
beddingsM of Kn,n for which Aut0(M) is non-metacyclic; these correspond to the four
isobicyclic triples (G, a, b), where G = G2(e; k, l) and k, l ∈ {0, 1}. There is exactly
one regular embeddingM of K4,4 for which Aut0(M) is non-metacyclic; this map corre-
sponds to the isobicyclic triple (G, a, b) where G = G2(2; 0, 0).

Proof. If e = 2 the result follows directly from Theorem 4.1(i). We may therefore assume
that e ≥ 3, so by Theorem 4.1(ii) there are at most four isomorphism classes of isobicyclic
triples, corresponding to the four presentations G2(e; k, l) where k, l ∈ {0, 1}. By Corol-
lary 2.3, the groups G2(e; 0, 0), G2(e; 1, 0) and G2(e; 0, 1) are mutually non-isomorphic,
and hence so are the corresponding isobicyclic triples. To complete the classification it
is enough to show that the triples corresponding to the isomorphic groups G2(e; 0, 1) and
G2(e; 1, 1) are not equivalent. If there is an isomorphism from G2(e; 1, 1) = 〈a1〉〈b1〉 to
G2(e; 0, 1) = 〈a〉〈b〉 taking a1 to a and b1 to b then condition (i) of Proposition 2.2 gives
1 = k1 ≡ k = 0 (mod 2), a contradiction. Hence there are four non-isomorphic maps, as
claimed.
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