ACTAGEOGRAPHICA GEOGRAFSKI ZBORNIK SLOVENICA 2019 59 1 ACTA GEOGRAPHICA SLOVENICA GEOGRAFSKI ZBORNIK 59-1 • 2019 Contents Maja KOCJANČIČ, Tomislav POPIT, Timotej VERBOVŠEK Gravitational sliding of the carbonate megablocks in the Vipava Valley, SW Slovenia 7 Małgorzata KIJOWSKA-STRUGAŁA, Anna BUCAŁA-HRABIA Flood types in a mountain catchment: the Ochotnica River, Poland 23 Irena MOCANU, Bianca MITRICĂ, Mihaela PERSU Socio-economicimpactofphotovoltaicpark:TheGiurgiucountyruralarea,Romania 37 Andrej GOSAR The size of the area affected by earthquake induced rockfalls: Comparison of the1998 Krn Mountains (NW Slovenia) earthquake (Mw 5.6) with worldwide data 51 Matej GABROVEC, Peter KUMER Land-use changes in Slovenia from the Franciscean Cadaster until today 63 Mojca FOŠKI Using the parcel shape index to determine arable land division types 83 Mateja FERK, Matej LIPAR, Andrej ŠMUC, Russell N. DRySDALE, Jian ZHAO Chronology of heterogeneous deposits in the side entrance of Postojna Cave, Slovenia 103 Special issue – Green creative environments Jani KOZINA, Saša POLJAK ISTENIČ, Blaž KOMAC Green creative environments: Contribution to sustainable urban and regional development 119 Saša POLJAK ISTENIČ Participatory urbanism: creative interventions for sustainable development 127 Jani KOZINA, Nick CLIFTON City-region or urban-rural framework: what matters more in understandingthe residential location of the creative class? 141 Matjaž URŠIČ, Kazushi TAMANO The importance of green amenities for small creative actors in Tokyo: Comparing natural and sociocultural spatial attraction characteristics 159 ISSN 1581-6613 9 771581 661010 ACTA GEOGRAPHICA SLOVENICA 2019 ISSN: 1581-6613 COBISS: 124775936 UDC/UDK: 91© 2019, ZRC SAZU, Geografski inštitut Antona Melika Internationaleditorialboard/mednarodniuredniškiodbor: DavidBole(Slovenia),MichaelBründl(Switzerland),RokCiglič(Slovenia), Matej Gabrovec (Slovenia), Matjaž Geršič (Slovenia), Peter Jordan (Austria), Drago Kladnik (Slovenia), BlažKomac (Slovenia), Andrej Kranjc (Slovenia), Dénes Lóczy (Hungary), Simon McCharty (United Kingdom), SlobodanMarković (Serbia), Janez Nared (Slovenia), Drago Perko (Slovenia), Marjan Ravbar (Slovenia), Nika Razpotnik Visković(Slovenia), Aleš Smrekar (Slovenia), Annett Steinführer (Germany), Mimi Urbanc (Slovenia), Matija Zorn (Slovenia) Editor-in-Chief/glavni urednik: Blaž Komac; blaz@zrc-sazu.si Executive editor/odgovorni urednik: Drago Perko; drago@zrc-sazu.si Chief editor for physical geography/glavni urednik za fizično geografijo: Matija Zorn; matija.zorn@zrc-sazu.siChief editor for human geography/glavna urednica za humano geografijo: Mimi Urbanc; mimi@zrc-sazu.si Chief editor for regional geography/glavni urednik za regionalno geografijo: Drago Kladnik; drago.kladnik@zrc-sazu.si Chief editor for spatial planning/glavni urednik za regionalno planiranje: Janez Nared; janez.nared@zrc-sazu.si Chiefeditorforruralgeography/glavnaurednicazageografijopodeželja:NikaRazpotnikVisković;nika.razpotnik@zrc-sazu.si Chief editor for urban geography/glavni urednik za urbano geografijo: David Bole; david.bole@zrc-sazu.si Chief editor for geographic information systems/glavni urednik za geografske informacijske sisteme: Rok Ciglič; rok.ciglic@zrc-sazu.siChief editor for environmental protection/glavni urednik za varstvo okolja: Aleš Smrekar; ales.smrekar@zrc-sazu.si Editorial assistant/uredniški pomočnik: Matjaž Geršič; matjaz.gersic@zrc-sazu.si Issued by/izdajatelj: Geografski inštitut Antona Melika ZRC SAZUPublished by/založnik: Založba ZRC Co-published by/sozaložnik: Slovenska akademija znanosti in umetnosti Address/Naslov: Geografski inštitut Antona Melika ZRC SAZU, Gosposka ulica 13, SI – 1000 Ljubljana, Slovenija The papers are available on-line/prispevki so dostopni na medmrežju: http://ags.zrc-sazu.si (ISSN: 1581–8314) Ordering/naročanje: Založba ZRC, Novi trg 2, p. p. 306, SI – 1001 Ljubljana, Slovenija; zalozba@zrc-sazu.si Annual subscription/letna naročnina: 20 € for individuals/za posameznike, 28 € for institutions/za ustanove. Single issue/cena posamezne številke: 12,50 € for individuals/za posameznike, 16 € for institutions/za ustanove. Cartography/kartografija: Geografski inštitut Antona Melika ZRC SAZU Translations/prevodi: DEKS, d. o. o. DTP/prelom: SYNCOMP, d. o. o. Printed by/tiskarna: Tiskarna Present, d. o. o. Print run/naklada: 350 copies/izvodov The journal is subsidized by the Slovenian Research Agency and is issued in the framework of the Geography of Slovenia coreresearchprogramme(P6-0101)/revijaizhajaspodporoJavneagencijezaraziskovalnodejavnostRepublikeSlovenijein nastajav okviru raziskovalnega programa Geografija Slovenije (P6-0101). The journal is indexed also in/revija je vključena tudi v: SCIE – Science Citation Index Expanded, Scopus, JCR – Journal Citation Report/Science Edition, ERIH PLUS, GEOBASE Journals, Current geographical publications, EBSCOhost,Geoscience e-Journals, Georef, FRANCIS, SJR (SCImago Journal & Country Rank), OCLC WorldCat, Google scholar,and CrossRef. Oblikovanje/Design by: Matjaž Vipotnik. Front cover photography: Stone bridge over the Rak River on the outskirts of the Rakov Škocjan polje, which is otherwiseknown for its beautiful natural bridges (photograph: Matej Lipar).Fotografija na naslovnici: Kamniti most čez reko Rak na obrobju kraškega polja Rakov Škocjan, ki je sicer bolj znano počudovitih naravnih mostovih (fotografija: Matej Lipar). CHRONOLOGYOFHETEROGENEOUS DEPOSITSINTHESIDEENTRANCE OFPOSTOJNACAVE,SLOVENIA Mateja Ferk, Matej Lipar, Andrej Šmuc, Russell N. Drysdale, Jian Zhao The trail cut into cave deposits. DOI: https://doi.org/10.3986/AGS.7059 UDC: 551.44:552.5(497.4)«628.62« COBISS: 1.01 Chronology of heterogeneous deposits in the side entrance of Postojna Cave, Slovenia ABSTRACT:ThedevelopmentofthetouristtrailinthesidepassageRovNovihPodpisovofPostojnaCave in 2002 exposed an over four metres thick sedimentary succession characterised by horizontal flowstone layersintercalatedbetweenfine-grainedfluvialsediments,andgraveldepositsthatrecordpastenvironmental changes.Thetimeoftheflowstonedepositionwasdeterminedbyradiocarbonanduranium-thoriumdating techniques. The results yielded three distinctiveagegroups of flowstonefacies of 33ka BP, 103kaBP and 153ka BP. These results also indicate that flowstone deposition has not been limited solely to periods of warmclimate,whichsuggeststhatenvironmentalconditionsduringglacialperiodsinsouth-westernSlovenia supported flowstone deposition. KEY WORDS: Geography, geoscience, geology, karst, stratigraphy, dating, 14C, U/Th Časovna interpretacija raznovrstnih sedimentov v stranskem vhodnem rovu Postojnske jame, Slovenija POVZETEK: Primodernizaciji turističnepotivRovu novih podpisov, kijestranski rovPostojnskejame, leta2002jebilovvečkotštirimetreglobokemvkopuodkritozaporedjemenjajočihseplastisige,fluvialnih sedimentov in grušča. Te plasti so pomemben pokazatelj preteklih okoljskih sprememb. Starost sige med plastmi je bila določena z radioogljikovo in uran-torijevo metodo. Siga se je odlagala v treh obdobjih, in sicerokoli33kaBP,103kaBPin153kaBP. Odlaganjesigenibiloomejenozgoljnatoplaobdobja,ampak sejesigaodlagalatudivhladnejšihobdobjih.Rezultatikažejo,dajebilonaobmočjujugozahodneSlovenije vsaj v nekaterih hladnih obdobjih Pleistocena podnebje primerno za rast sige. KLJUČNE BESEDE: Geografija, geoznanost, geologija, kras, stratigrafija, datiranje, 14C, U/Th Mateja Ferk, Matej Lipar Research Centre of the Slovenian Academy of Sciences and Arts, Anton Melik Geographical Institute mateja.ferk@zrc-sazu.si, matej.lipar@zrc-sazu.si Andrej Šmuc University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology andrej.smuc@geo.ntf.uni-lj.si Russell N. Drysdale The University of Melbourne, School of Geography and Université de Savoie-Mont Blanc rnd@unimelb.edu.au Jian Zhao The University of Queensland, Faculty of Science, School of Earth and Environmental Sciences j.zhao@uq.edu.au The paper was submitted for publication on October 25, 2018. Uredništvo je prejelo prispevek 25. oktobra 2018. 1 Introduction PostojnaCaveisa24kmlongsystemofundergroundpassageswithmultipleentrances(CaveRegister2018, Figure1).Itislocatedinsouth-westSlovenia,whichisfamousforitshighdiversity(Perko,Hrvatin,andCiglič 2015;Perko,CigličandHrvatin2017).Since1819thecavehasbeenmanagedasashowcave(ShawandČuk 2015). Duringthelasttwocenturiesdifferentpartsofthecaveweresequentiallyarrangedandequippedfor public access. It has a long tradition of cave exploration and scientific research (Valvasor 1689; Hohenwart1830;Schmidl1854;Perko1910;Gams1968;Gospodarič1969;1971;Ikeya,MikiandGospodarič1983;Šebela1998;ŠebelaandSasowsky1999;Mihevc2002;Stepišnik2004;ŠebelaandTurk2011;Ferk2016;Domínguez­Villaretal.2018;Pipanetal.2018).ItisaponorcaveofthePivkaRiverinthecontactkarstareawherethesurface streams(e.g.,LekinkaRiver)fromimpermeableEoceneflyschrocksinkintothekarstifiedUpperCretaceouslimestone(Buser,GradandPleničar1967;Šebela1998;Pleničar,OgorelecandNovak2009;Stepišnik2017). Thecavepassageswereformedattwomainlevels. Thelower,severalmeterswidepassages,are inthe epiphreatic zone and periodically flooded on a yearly basis. The walls and ceiling contain solutional rock features(e.g.scallops),whilstthefloorismostlycoveredbyfluvialsediments(i.e.flyschgravel)(Gospodarič and Habič 1966). Passages on the higher level have diameters mostly around 10m and are hydrological-lyinactive.However,theypreserveremnantsofsolution(e.g.,scallops)andnumerousinterchangingfluvial andchemogenicsedimentsthatweredepositedinchangingconditions,revealingahydrologicallydynam­icevolutionduringtheirspeleogenesis.Cavesedimentsindicaterepeatedfluvialdepositionandsuccessive erosion (Gams 1966; Gospodarič 1976). Palaeomagnetic analyses show that the oldest sediments are upto2.15Maold,revealingthatthecavesystemhasevolvedoveralongperiodoftime(ŠebelaandSasowsky 1999; Zupan Hajna et al. 2008). The fluvial deposits and layers of flowstone close to the cave entrances are intersected by sequences of slope-derived gravel, remnants of Pleistocene large mammals and stone tools of Palaeolithic hunters (Rakovec 1954; Brodar 1966; 1969; Bavdek 2003). About 50m east of the main entrance to Postojna Cave is the entrance to one of its side passages called Rov Novih Podpisov that joins the main channel Stare Jame after about 150m. The passage belongs to the higher and hydrologically inactive level. The passage floor at the entrance is on the elevation of 530m a.s.l. whichisfrom10to19mabovethepresentponorofPivkaRiver(from511to520m a.s.l.)dependingonthe waterlevel.Theshallowcavepassage,from2to4mhighandinaverage10mwide,wasequippedasabiospele­ologicallaboratoryin1931. AtpresentitoperatesastheVivariumwitharesearchfacilityandanexhibition sectionwherebasicconceptsofkarstologyandspeleobiologyarepresentedtothevisitors.Recentslope-derived gravelcoveringtheentrancewasremovedduringconstructionworksinthe1930s.In2002theentrancepart was modified to ease access to the Vivarium for tourists. An over four metres deep trench was cut into the floor exposing a flowstone covered sedimentarysuccession composed of various cave sediments. Palaeomagnetic research on the exposed sediments showed only N polarized magnetisation corre­spondingtotheBrunhesChronindicatingthesedimentwasdepositedwithinthelast780ka(ZupanHajna et al.2008).Despitelackinganydataofnumericaldatingtheprofilevasinterpretedas»veryyoung«(Zupan Hajnaet al.2008,176).BasedonMousterianartefactsfoundinanearbycavechannelalsofilledwithvar­ious sediments (Brodar 1966; Bavdek 2003), the middle and upper part of the profile was interpreted to belessthan40kaoldandtheflowstonelayercoveringtheprofiletobeofHoloceneage(MihevcandZupan Hajna2004;GabrovšekandMihevc2009;MihevcandGabrovšek2012).However,resultsofthefirstnumer­ical dating of the uppermost flowstone revealed it was deposited 36ka BP (Ferk 2016) strongly implying the previous chronological interpretations of the profile were inaccurate. The aim of the paper is to present results of two different dating techniques coupled with additional mineralogical and grain size analyses to provide the robust chronological timeline of the exposed het­ erogeneous deposits, which will be beneficial for further palaeoenvironmental studies. 2 Methods The4.16mthickprofilewasrecordedinresolutionbed-tobedusingstandardsedimentologicallogin1:10 scale. Six stratigraphic levels were identified (Figure 2). From the succession five flowstone samples were Figure 1: Location of the Postojna Cave System and the analysed cave sediments. p p. 106 siphon (477 m) PIVKA CAVE (492 ) m MAGDALENA CAVE – 497 m Vodni Dol Collapse Doline ČRNA CAVE Mala Jeršanova Dolina Collapse Doline Velika Jer šanova Dolina – 540 m Collapse Doline Lepe Čarobni undergroundPivkaRiver jame vrt – 540 m Velika gora 522 m Koncertna dvorana Pisani rov Zgornji Tartar Male jame Stara OTOŠKA CAVE Spodnji (525 m) jama (525 m) Rov brez imena Tartar Stara Apnenica Collapse Doline Razpotje (545 m) (526 m) POSTOJNA CAVE Plesna dvorana (528 m) N The ponor of Pivka River (511 m) Main entrance Rov novih podpisov (530 m) (529 m) Location of the profile 0 250 500 m acquiredforageandgeochemicalanalysisandonefine-grainedclasticsedimentsamplewascollectedfor mineralogical and grain size analyses. 2.1 Laboratory analyses for chemically precipitated sediment layers (flowstone) Two stratigraphically older samples of flowstone were dated by the uranium-thorium (U/Th) method at theUniversity ofQueensland (Brisbane,Australia). Toassurethat samples have enoughU/Thfordating, they were first sampled to provide ICP-MS trace element data. Ages were corrected for non-radiogenic230Th incorporated at the time of deposition. Full details of the method are provided in Hellstrom (2003; 2006). Age errors are reported as 2. uncertainties. Inaddition,theflowstonesampleswereanalysedforboth.13Cand.18Oisotopesatthestableisotope laboratoryattheUniversityofMelbourne(Australia),alongsidewithfoursamplesofpresent-formingflow-stone to compare the results for basic interpretation of climatic differences between the times of older flowstone deposition and present. Analyses were performed on CO2 produced by reaction of the sample with100% H3PO4 at 70°Cusingcontinuous-flowisotoperatio mass spectrometry (CF-IRMS),following themethod previouslydescribedinDrysdaleet al. (2009)andemployinganAP2003instrument. Results are reported using the standard . notation (‰) relative to the VPDB scale. Based on the following work­ing standards, the uncertainty was 0.05‰ for .13C and 0.07‰ for .18O based on the NEW 1 standard. Threestratigraphicallyhigherdepositedsamplesofflowstoneweredatedbytheradiocarbontechnique at the Beta Analytic Laboratory in Miami, USA. All samples provided enough carbon for accurate mea­surements. The ages are reported as RCYBP (radiocarbon years before present (AD 1950)). The modern reference standard was 95% the 14C activity of the National Institute of Standards and Technoloy (NIST) Oxallic Acid (SRM 4990C) and calculated using the Libby 14C half-life (5568 years). The Conventional Radiocarbon Age represents the Measured Radiocarbon Age corrected for isotopic fractionation, calcu­latedusingthe.13CrelativetotheViennaPeedeeBelemnite(VPDB)scale.TheCalendarCalibratedresults are calculated from the Conventional Radiocarbon Age and listed as 2. calibrated results. 2.2 Laboratory analyses for clastic sediment sample Thequalitativeandquantitativemineralcompositionofthestratigraphicallyhighestandyoungestloamy sediment (facies B, see chapter3)was determinedby X-ray powderdiffraction(XRD) analysis,which, in turn, indicates the source of the sediment (Haldorsen et al. 1989; Stanley, Nil and Galili 1998). We used the Faculty of Natural Sciences and Engineering, University of Ljubljana (Slovenia) Philips PW3710 dif­fractometerequippedwithaCuK.radiationandagraphitemonochromator,operatingat40kVand30mA in continual scan mode with a speed of 0.5 °/min from 2° to 70° 2.. The Rietveld Method was used for semiquantitative mineralogical analysis. To determine the deposition dynamics of the same sediment the grain size analysis using a Malvern Mastersizer2000particleanalyseratLaTrobeUniversity(Melbourne,Australia)wascarriedout;fulldetails of the latter analytical procedure are provided in Sperazza, Moore and Hendrix (2004). 3 Results and discussion Themaximumthicknessoftheexposedprofileis416cm.Wedivideditintosixstratigraphiclevelsofvar­ious horizontal facies (Figure 2). From bottom to top, these are: • 416to370cm,subangulargravelmixedwithfine-grainedsediment(faciesF); • 370to210cm,veryangulargravelmixedwithfine-grainedsedimentandpartlycementedwithcalcite (facies E); • 210to190cm,whiteflowstonelayersintercalatedbytwoupto1cmthickblacklayers(faciesD); • 190to90cm,angulargravelmixedwithfine-grainedsedimentcontainingbonesinthelowerpart(faciesC); • 90to45cm,fine-grainedsedimentwithindistinctivehorizontalparallellamination(faciesB); • 45to0cm,whiteflowstonelayersintercalatedbymillimetrethinlayersoffine-grainedsedimenttowards the lowest part (facies A). F3 F2 F1 0cm A 45 cm B S1 90 cm C D 190 cm 210 cm F4 F5 E 370 cm F 416 cm 800 cm 700 cm 600 cm 500 cm 400 cm 300 cm 200 cm 100 cm Figure 2: Stratigraphic levels of horizontal facies identified in the analysed sediment profile in the side passage Rov Novih Podpisov of Postojna Cave. 3.1 Facies F Facies F is the oldest recognised facies in the succession (Figure 2). The total thickness cannot be deter­mined due to the limited exposure but is at least 46cm thick. The facies consists of subangular limestone gravelwithclastsizemostlyaround5–10cmandsomelargerpieceswithdiametersupto20cm.Thegrav­elispoorlysortedandmixedwithgreytoyellowfine-grainedsedimentspresumablyoriginatingfromthe flysch rocks in the Pivka Basin (Zupan Hajna et al. 2008). Mihevc and Zupan Hajna (2004) describe the facies F as the oldest sediment deposited in the cave by the Pivka River which was partly eroded away in the upper part. 3.2 Facies E ThefaciesEis160cmthickandisthethickestfaciesinthesuccession(Figure2). Itconsistsofveryangu­larwellsortedlimestonegravelwithclastsizearound5cm.Thegraveloriginatesfromthelocallimestone which builds cave walls and ceiling. It is partly cemented with calcite in the upper part. The amount of calcite cement decreases towards the lower part of the facies. The gravel is mixed with light brown fine-grained sediment. Mihevc and Zupan Hajna (2004) assumed the layer was deposited at the beginning of the last glacial period (Würm glaciation; Marine Isotope Stage (MIS) 5-2) in climate similar to the present one (Mihevc andGabrovšek2012)althoughnonumericaldatationswerepublished.Resultsofthecurrentstudyrevealed anolderageofthedeposits,sincethedepositionofthefaciesEendedmorethan150kaBP(seechapter3.3). 3.3 Facies D ThefaciesFiscoveredbya30cmthicklayerofwhiteflowstone(faciesD;Figure2).Theflowstoneincludes two up to 1cm thick black layers that resemble charcoal. Two samples of flowstone from facies D were analysed; sample F4 was taken from the upper part of the facies, from above the black layer, and sample F5 was taken from the lower part of the facies, from beneath the black layer. The results of the ICP-MS trace element data (Table 1) revealed that both samples have U/Th levels high enough for dating. The U/Th dating results yielded an age of 103.2ka (MIS 5c) for the stratigraphi­ cally younger flowstone (F4) and 153.1ka (MIS 6) for the older flowstone (F5) (Table 2). Table 1: ICP-MS trace element data for the flowstone of facies D. Concentration results in ppb or ng/g. Note: 6He (i.e. enriched 6Li), 61Ni, 103Rh, 115In, 187Re and 235Np (i.e. enriched 235U) are internal standards added to the sample solutions. Sample F4 F5 F4 F5 F4 F5 6He 0 0 86Sr 24994 30598 165Ho 2.8 2.8 7Li 72.2 27.7 89Y 106.7 108.8 166Er 7.7 7.8 9Be 28.2 12.8 90Zr 96.2 70.4 169Tm 1.1 1.1 25Mg 31P 102191 341172 104147 162150 93Nb 98Mo 9 4.3 4.8 2.1 172Yb 175Lu 6.5 0.9 6.7 0.9 43Ca 427280107 411705358 103Rh 0 0 178Hf 1.6 1.2 45Sc 112.9 111.8 111Cd 35 47.8 181Ta –0.4 –0.5 49Ti 1702.1 1291.9 115In 0 0 184W 4.7 4 51V 326.8 236.1 120Sn 2.3 –3.9 187Re 0 0 53Cr 55Mn 265.1 1097.7 340.9 1525.3 121Sb 133Cs 2.2 17 2.2 9.3 202Hg 205Tl 46 12.5 45.7 12.7 57Fe 807828 776202 137Ba 2569.5 12116 206Pb 83.8 69.3 59Co 256.4 312.3 139La 84.2 79.5 207Pb 76.1 62.6 60Ni 42550 3658 140Ce 167.5 134.8 208Pb 79.1 64 61Ni 0 0 141Pr 22.3 19.9 209Bi 2.3 1.4 65Cu 66Zn 687.3 1170.7 411.9 550 146Nd 149Sm 84.7 18.7 82.1 17.8 220Bkg 232Th 0 13 0 9.7 69Ga 71Ga 15.2 26.4 –57.8 14.8 151Eu 159Tb 4.1 2.8 4.2 2.4 235Np 238U 0 362.4 0 215.3 74Ge 85Rb 1.6 187.5 0.2 100.2 160Gd 161Dy 17.8 14.8 16.5 12.8 U/Th 28.0 22.2 Table 2: U-Th isotope data for the flowstone of facies D. Two laboratory standards included: YB-1 is an ANU speleothem standard with an age of 30.2±0.6ka. SRM-960 U is a metal standard manufactured during the World War II (~1936). Sample F4 F5 SRM-960 standard YB-1 speleothem std Sample wt. (g) 0.103 0.103 0.1057 0.10214 U (ppm) 0.35038 0.23732 5.53963 0.12525 ±2. 0.00015 0.00010 0.0046 0.00004 232Th (ppb) 51.442 46.151 0.008 0.486 ±2. 0.083 0.062 0.000 0.001 (230Th/ 232Th) 13.091 12.044 1484.971 339.829 ±2. 0.039 0.034 28.251 1.229 (230Th/238U) 0.6334 0.7719 0.0007 0.4343 ±2. 0.0016 0.0020 0.00001 0.0015 (234U/ 238U) 1.0095 1.0055 0.9636 1.7492 ±2. 0.0011 0.0009 0.0007 0.0013 Uncorr. Age (ka) 107.59 159.0 0.0805 30.53 ±2. 0.51 1.0 0.0009 0.12 Corr. Age (ka) 103.2 153.1 0.0805 30.46 ±2. 2.3 3.1 0.0009 0.12 Corr. Initial (234U/ 238U) 1.0132 1.0090 0.9636 1.8174 ±2. 0.0015 0.0015 0.0007 0.0014 Theupto1cmthickblacklayersresemblingcharcoaldepositsinthemiddlepartoftheflowstonehasnot beenexamined.AccordingtothepresenceofaPalaeolithicsiteintheclosevicinitywhereartefactsofMousterian stone tools were discovered (Brodar 1966) it is likely the layer is a cultural deposit. Based on the measured agesoftheflowstoneunderlyingandcoveringtheblacklayeritshouldbeattributedtothepresenceofNeander­thals,whichis inaccordancewiththeMousterianstone toolsfoundnearby(Brodar1966; Bavdek2003). Accordingtothegeneralpalaeoclimaticcurveforthattimeframe(Friedrichet al.2016),theflowstone was deposited during the MIS 6 glacial period with generally colder temperatures and the MIS 5c inter-stadialwithgenerallywarmertemperatures.Inaddition,theflowstonelayershaveheavieroxygenisotopic values (–6.45‰ (F4) and –6.20‰ (F5)) than the present-forming flowstone (~–6.83), which may reflect areducedplantactivityandthuslowerlevelsofsoilCO2production,orahigherproportionofplantsadopt­edtotheclimatewithlesseffectiverainfallduringthetimeofflowstonedeposition(103.2kaand153.1ka BP; Figure 3). This could be especially valid for the MIS 6 glacial period (and the heaviest value of the F5 sample) when global water circulation was reduced due to lower evaporation. 3.4 Facies C FaciesCisa1mthicklayerofmoderatelysortedgravelcomposedofangularlimestoneclasts.Inthelow­ermost part the clasts are up to 10cm large and animal bones are present between them, while the clasts are smaller (up to 5cm) in the middle and upper part of the facies. The gravel is mixed with brown fine-grained sediment. The clasts are composed of the same rock as the cave walls and ceiling. Mihevc and Gabrovšek (2012) interpreted the gravel slided from the entrance deeper into the cave by cryoturbation. BasedonarchaeologicalfindingsofMousterianstonetoolsatthenearbyPalaeolithicsite,fewtensofmetres away(Brodar1966),MihevcandZupanHajna(2004)assumedthefaciesCwasdepositedbetween40and 20ka BP and during the Last Glacial Maximum. However, results of the numerical dating methods show the time of gravel deposition in the cave is constrained by the lower lying 103.2ka old horizontal layer of flowstone (facies D) and the 36.8ka old flowstone toping the profile (facies A). Therefore, the facies C is olderthanpreviouslybelievedandwasdepositedbetweenMIS5candMIS3. Thegravelproductionmay have intensified at the transition between MIS 5a and the glacial maximum during MIS 4 when the gen­eral average temperatures were lower than the present one (Friedrich et al. 2016). Oxygen and Carbon Isotopic Values .13 C –14.00 –12.00 –10.00 –8.00 –6.00 –4.00 –2.00 0.00 Figure 3: Diagramof oxygen andcarbon isotope values of the flowstone (faciesD). Orange colour: flowstonesamples F4and F5; blue colour: present-day samples of flowstone. 3.5 Facies B Facies B is a 45cm thick layer of homogenous red fine-grained sediment with partially preserved hori­zontaland parallellamination which wassampledformineral and grainsizeanalyses. TheX-ray powder diffraction(XRD)analysisshowedthatthesedimentconsistsofquartz(47%),muscovite/illite(24%),chlo­rite(18%),K-Nafeldspar(7%)andkaolinite(4%)(Ferk2016).Basedonthemineralcompositiontheprovenance of this sediments are flysch rocks (Orehek 1970) present in the Pivka River catchment (Buser, Grad and Pleničar1976;Pleničar,OgorelecandNovak2009).Thegrainsizeanalysisshowedthesedimentissiltloam according to the Soil Bulk Density Calculator (Wentworth 1922; Plaster 1992), consisting of 68.61% silt, 21.9% clay, and 9.49% sand (Table 3; Figure 4). Table 3: Grain size characteristics of the facies B sediment (sample S1). Grain size (mm) Classification Percentage (%) Major Minor 2-1 Sand Very coarse sand 0.59 9.49 1-0.5 Coarse sand 2.21 0.5-0.25 Medium sand 2.18 0.25-0.125 Fine sand 1.27 0.125-0.062 Very fine sand 3.24 0.062-0.031 Silt Very coarse silt 10.15 68.61 0.031-0.016 Coarse silt 18.43 0.016-0.008 Fine silt 21.07 0.008-0.004 Very fine silt 18.96 < 0.004 Clay Clay 21.9 21.9 Particle Size Distribution % 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0.01 0.1 1 10 100 1000 10000 µm S1.a S1.b S1.c S1.average Figure 4: Grain size characteristics of the facies B sediment (sample S1). Supposedly, these sediments were washed into the cave from the Pivka Basin during episodic flood­ingandsedimentationfromsuspensioninastandingorslow-movingwaterassuggestedbyparallelhorizontal laminationandsiltloamtextureofthesediment(cf.FarrantandSmart2011;Ferk2016).Consideringthat thelaminasarelessthan1mmthick,the45cmthicknessofthesedimentwouldsuggestalongtime-scale of periodical flooding and not a single extreme event. However, laminated silt loam deposits can derive from aeolian material redeposited by overland flow (Mücher and De Ploey 1984) which is in accordance withZupanHajnaet al.(2008)whosuggestedthatthesedimentoffaciesBwaswashedintothecavefrom the surface. Nevertheless, the age of the flowstone (facies A) above the silt loam sediment shows that the sedimentation of facies B ceased around 36.8ka BP. 3.6 Facies A The top layer of the profile, facies A, is a 45cm thick white flowstone. In the lower half the flowstone is intercalated with thin layers of red fine-grained sediment. Three flowstone samples from facies A were datedusingradiocarbontechnique(Table4). Themicrolocationofthesampleswithintheflowstonewas chosen based on theirstratigraphic location (Figure 2): sampleF1 was taken from the top of the facies A, sample F2 was taken from the middle of the facies A underlying an up to 5cm thick layer of fine-grained sediment,andsampleF3wastakenfromthelowestpartofthefaciesunderlyinganupto1cmthicklayer of intercalated fine-grained sediment. The calibrated radiocarbon ages of flowstone F1, F2 and F3 yield­ed ages of 33.2ka, 34.9ka and 36.8ka BP, respectively. Their accordance with the stratigraphical position strengthensthereliabilityoftheresultsandsuggeststhedepositionofthefaciesAbetween33.2and36.8ka (Ferk 2016). The age of the facies A is older than previously thought when it was linked to the Holocene (Mihevc and Zupan Hajna 2004; Zupan Hajna et al. 2008). The deposition of flowstone occurred during MIS 3 which is characterised by high variation of aver­age temperature amplitudes, although the stage in general is part of the last glacial period (Lisiecki and Raymo2005).DuringtheMIS3thetemperaturesweregloballyslightlyhigherthanduringtheMIS2and MIS 4 periods. The cave entrance at that time must have been blocked as flowstone deposition requires absence offrost weathering. This is strongly indicated also bythe absence of broken speleothems or frost weatheringaffectedspeleothemsduringtheLastGlacialMaximum(e.g.MIS2).Theendofflowstonedepo­sition towards the final stage of MIS 3 marks the beginning of a still ongoing hiatus in deposition at the location of the analysed profile. The carbon isotopic values of the flowstone are heavier than the present values (see Section 3.3) and suggest a reduced plant activity compared to a modern vegetation above the cave or a higher proportion ofplantsmoreadaptedtodrought(Gillies2011),whichcouldbearesultofcolderclimatewithlesseffec­tive precipitation. Table 4: Results of radiocarbon dating of the topmost flowstone (facies A). Sample Measured Radiocarbon Age (BP) ±1RSD Conventional Radiocarbon Age (BP) ±1RSD .13C (‰ PDB) Calibrated Radiocarbon Age (BP) ±2. F1 28410 140 28720 140 –5.9 33165 275 F2 30060 160 30330 160 –8.4 34860 180 F3 32080 180 32360 180 –7.8 36800 240 4 Conclusion Construction works for touristic purposes in the Postojna Cave led to the exposure of an over 4 metres deepsedimentarysuccessioncomposedofvariouscavesedimentsinthesidepassageRovNovihPodpisov of the Postojna Cave. Six horizontal stratigraphic levels of depositional facies were identified (bottom to top);subangulargravel(faciesF),veryangulargravel(faciesE),flowstone(faciesD),angulargravel(faciesC), red silt loam (facies B), and flowstone (facies A). Figure 5: The profile of deposits at the side entrance of the Postojna Cave with the timeline of sediment deposition. The temperature curve is based on data by Friedrich et al. (2016). Flowstonefromtwostratigraphiclevels(faciesAandD)wascollectedforradiocarbon(3samples)and uranium-thorium(2samples)dating,respectively.Thedatingresultsshowthedepositsareolderthanpre­viously thought. The stratigraphically higher and younger flowstone was deposited in the second half of MIS3(33,2–36,8kaBP),andthestratigraphicallylowerflowstonewasdepositedinthesecondhalfofMIS 6 (153,1ka BP) and in MIS 5c (103,2ka BP). The numerical dates of the flowstone age show its deposition duringperiodsoflowaveragetemperatures.Consequently,wearguethatdespitelowertemperaturesinthese periods the amount of precipitation was probably lower, but still sufficient to allow flowstone deposition. During MIS 6 and MIS 5c the flowstone deposition was probably occasionally interrupted which is indicated by two distinctive up to 1cm thick black layers resembling charcoal, stretching throughout the sidepassage.TheblacklayerscouldbeaculturaldepositattributedtotheNeanderthalactivitiesandrelat­ed to the nearby Palaeolithic site where Mousterian stone tools were found. The dated facies of flowstone are separated by a 1m thick layer of gravel (facies C) and a 45cm thick layerofredsiltloam(faciesB). Thesiltloamwassampledformineralandgrainsizeanalyses,provingthe sedimentsorigininflyschrocksfromwhereitwastransportedintothecaveanddepositedwhetherfrom calmwaterduringfloodsoroverlandflowredepositionofaeoliansediment.Bothfaciesbetweentheflow-stone layers were deposited between MIS 5c and MIS 3. Basedontheflowstoneage,thestratigraphicallylowermostlayersofgravel(faciesFandE)weredeposit­edearlierthan153.1kaBP.Especiallythelowermostsubangulargravel(faciesF)couldreachasignificant age, since the upper boundary of the facies shows traces of an erosion phase during which at least some of the gravel was removed before the next depositional phase of gravel deposition begun (facies E). ACKNOWLEDGEMENT:WethankPostojnskajama,d. d. andthe Ministry of EnvironmentandSpatial PlanningofSloveniaforthepermissionstoaccessthecavesandtocollectsamples.Theresearchwasfinan­ciallysupportedbytheSlovenianResearchAgencyresearchcorefundingGeographyofSlovenia(P6-0101), andtheEuropeanRegionalDevelopmentFund:EuropeanUnion&RepublicofSlovenia,MinistryofEducation, Science and Sport (research programme OP20.01261). 5 References Bavdek, A. 2003: Arheološki nadzor v Postojnski jami. Naše jame 45. Brodar, S. 1966: Pleistocenski sediment in paleolitska najdišča v Postojnski jami. Acta Carsologica 4. Brodar, S. 1969: Latest Palaeolithic discoveries in the Postojna Caves. Acta Archaeologica 20. Buser,S.,Grad,K.,Pleničar,M.1967:OsnovnageološkakartaSFRJ1:100.000,listPostojna.Saveznigeološki zavod. Beograd. Cave Register 2018. Speleological Association of Slovenia. Ljubljana. Domínguez-Villar, D., Lojen, S., Krklec, K., Kozdon, R., Edwards, R. L., Cheng, H. 2018: Ion microprobe .18O analyses to calibrate slow growth rate speleothem records with regional .18O records of precipitation.EarthandPlanetaryScienceLetters482.DOI:https://doi.org/10.1016/j.epsl.2017.11.012 Drysdale,R.N.,Hellstrom,J.C.,Zanchetta,G.,Fallick,A.E.,SánchezGoni,M.F.,Couchoud,I.,McDonald, J.,Maas,R.,Lohmann,G.,Isola,I.2009:EvidenceforobliquityforcingofglacialterminationII.Science 325-5947. DOI: https://doi.org/10.1126/science.1170371 Farrant, A. R., Smart, P. L. 2011: Role of sediment in speleogenesis; sedimentation and paragenesis. Geomorphology 134, 1-2. DOI: https://doi.org/10.1016/j.geomorph.2011.06.006 Ferk, M. 2016. Paleopoplave v porečju kraške Ljubljanice. Geografija Slovenije 33. Ljubljana. Friedrich,T.,Timmermann,A.,Tigchelaar,M.,Timm,O.E.,Ganopolski,A.2016:Nonlinearclimatesensitivity anditsimplicationsforfuturegreenhousewarming.ScienceAdvances2-11.DOI:https://doi.org/10.1126/ sciadv.1501923 Gabrovšek, F., Mihevc, A. 2009: Cave Climate: Guide-booklet for the excursions and abstracts of presentations at the 17th International Karstological School »Classical Karst«. Postojna. Gams,I.1966:KhidrologijiozemljamedPostojnskim,PlaninskiminCerkniškimpoljem.ActaCarsologica4. Gams, I. 1968: Prispevek k vprašanju starosti Postojnske jame. Naše jame 9. Gillies, S. L. 2011: CO2 levels and Plants. What’s So Wrong with a Greenhouse? Biology on the Cutting Edge: Concepts, Issues, and Canadian Research around the Globe. Canada. Gospodarič, R. 1969: Speleološki procesi v Postojnski jami iz mlajšega pleistocena. Naše jame 10. Gospodarič,R.1971:PrvipodatkioabsolutnistarostisigevPostojnskijaminapodlagi14C.Našejame13. Gospodarič,R.1976:RazvojjammedPivškokotlinoinPlaninskimpoljemvkvartarju.ActaCarsologica7. Gospodarič,R.,Habič,P.1966:ČrnipotokinLekinkavsistemupodzemeljskegaodtokaizPivškekotline. Naše jame 8. Haldorsen,S.,Jorensen,P.,Rappol,M.,Riezebos,P. A. 1989:Compositionandsourceoftheclay-sizedfraction ofSaaliantillintheNetherlands.Boreas18-2.DOI:https://doi.org/10.1111/j.1502-3885.1989.tb00377.x Hellstrom, J. 2003: Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry 11. DOI: https://doi.org/10.1039/B308781F Hellstrom, J. 2006: U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1-4. DOI: https://doi.org/10.1016/j.quageo.2007.01.004 Hohenwart,F. 1830:WegweiserfürdieWandererinderberühmtenAdelsbergerundKronprinzFerdinands­-Grotte bey Adelsberg in Krain. Laibach. Ikeya, M., Miki, T., Gospodarič, R. 1983: ESR Dating of Postojna Cave Stalactite. Acta carsologica 11. Lisiecki, L. E., Raymo, M. E. 2005: A Pliocene-Pleistocene stack of 57 globally distributed benthic .18O records. Paleoceanography 20. DOI: https://doi.org/10.1029/2004PA001071 Mihevc,A.2002:U-ThdatationofthecollapseprocessesonVelikaGora.Evolutionofkarst:fromprekarst to cessation: programme and guide booklet for the excursions. Postojna. Mihevc,A.,Gabrovšek,F.2012:Karstformsandprocesses:Guide-bookletfortheexcursionsandabstracts of presentations at the 20th International Karstological School »Classical Karst«. Postojna. Mihevc,A.,ZupanHajna,N.(eds.)2004:DatingofCaveSediments:Gu –guide-bookletfortheexcursions and abstracts of presentations at the 12th International Karstological School »Classical Karst«. Postojna. Mücher,H.J.,DePloey,J.1984:Formationofafterflowsiltloamdepositsandstructuralmodificationdue todryingunderwarmconditions:anexperimentalandmicromorphologicalapproach.EarthSurface Processes and Landforms 9. DOI: https://doi.org/10.1002/esp.3290090606 Orehek, S. 1970: Eocenski fliš Slovenije: II. faza – Pivška kotlina in Brkini. Ljubljana. Perko,D.,HrvatinM.,Ciglič,R.2015:AmethodologyfornaturallandscapetypificationofSlovenia.Acta geographica Slovenica 55-2. DOI: https://doi.org/10.3986/AGS.1938 Perko,D.,Ciglič,R.,Hrvatin,M.2017:DeterminationoflandscapehotspotsofSlovenia.Actageographica Slovenica 57-1. DOI: http://dx.doi.org/10.3986/AGS. 4618 Perko, G. A. 1910: Die Adelsberger Grotte in Wort und Bild. Adelsberg. Pipan, T., Petrič, M., Šebela, S., Culver, D. C. 2018: Analyzing climate change and surface-subsurface interactionsusingthePostojnaPlaninaCaveSystem(Slovenia)asamodelsystem. RegionalEnvironmental Change 19-2. DOI: https://doi.org/10.1007/s10113-018-1349-z Plaster, E. J. 1992: Soil Science and Management. New York. Pleničar, M., Ogorelec, B., Novak, M. 2009: Geologija Slovenije/The Geology of Slovenia. Ljubljana. Rakovec, I. 1954: Povodnji konj iz Pivške kotline. Razprave IV. razreda SAZU 2. Schmidl, A. 1854: Die Grotten und Höhlen von Adelsberg, Lueg, Planina und Laas. Wien. Shaw, T., Čuk, A. 2015: Slovene Karst and Caves in the Past. Ljubljana. Sperazza,M.,Moore,J.N.,Hendrix,M.S.2004:High-resolutionparticlesizeanalysisofnaturallyoccurring veryfine-grainedsedimentthroughlaserdiffractometry.JournalofSedimentaryResearch74-5.DOI: https://doi.org/10.1306/031104740736 Stanley,D.J.,Nir,Y.,Galili,E.1998:ClaymineraldistributionstointerpretNilecellprovenanceanddispersal: III. Offshore margin between Nile delta and northern Israel. Journal of Coastal Research 14-1. Stepišnik, U. 2004: The origin of sediments inside collapse dolines of Postojna karst (Slovenia). Acta Carsologica 33-1. DOI: https://doi.org/10.3986/ac.v33i1.326 Stepišnik, U. 2017: Dinarski kras: plitvi kras Zgornje Pivke. E-GeograFF 10. Ljubljana. Šebela, S. 1998: Tektonska zgradba sistema Postojnskih jam. Ljubljana. Šebela, S., Turk, J. 2011: Air temperature characteristics of the Postojna and Predjama cave systems. Acta geographica Slovenica 51-1. DOI: 10.3986/AGS51102Šebela, S., Sasowsky, I. D.1999: Age and magnetism ofcavesediments from Postojnska jama cave system and Planinska jama cave, Slovenia. Acta Carsologica 28-2. DOI: https://doi.org/10.3986/ac.v28i2.498 Valvasor, J. W. 1689: Die Ehre dess Hertzogthums Crain. Laybach. Wentworth, C. K. 1922: A scale of grade and class terms for clastic sediments. Journal of Geology 30-5. ZupanHajna,N.,Pruner,P.,Mihevc,A.,Bosák,P.2008:CavesedimentsfromthePostojnska-Planinskacave system(Slovenia):Evidenceofmulti-phaseevolutioninepiphreaticzone.ActaCarsologica37-1.DOI: https://doi.org/10.3986/ac.v37i1.160