Radiol Oncol 2004; 38(1): 55-60. Evaluation of water equivalency of Plastic Water™ for high-energy electron beams using IAEA TRS-398 Code of Practice Božidar Casar1, Urban Zdešar2 and Vlado Robar1 1Institute of Oncology, Ljubljana, Slovenia 2Institute of Occupational Safety, Ljubljana, Slovenia Introduction. In the International Code of Practice for dosimetry TRS-398 published by International Atomic Energy Agency (IAEA), water is recommended as the reference medium for the determination of ab-sorbed dose for high-energy electron beams. Plastic phantoms may be used under certain circumstances for electron beam dosimetry for beam qualities R50 < 4g/cm2 (E0 below 10 MeV). In our study, water equiva-lency of Plastic Water™ was evaluated in order to determine fluence scaling factors hpl for Plastic Water. Extended set of measurements in water and in Plastic Water were performed. Material and methods. The absorbed dose was determined according to IAEA TRS-398 dosimetry proto-col following recommendations for all relevant parameters involved. Water equivalency of Plastic Water was evaluated for five electron beams with nominal energies from 6 MeV to 18 MeV generated by linear ac-celerator Varian Clinac 2100 C/D. Adequate dosimetry equipment was used throughout the measurements and reference conditions, set by IAEA TRS-398, were followed carefully. Results. The results are presented as ratios Dpl /Dw of absorbed dose in Plastic Water and water. Upon the selection of electron energy, the ratios vary from 0.9990 - 1.0058 with combined uncertainties (1SD) of 0.46% - 0.68%. From the measured data, the fluence scaling factors hpl were determined and found to be in the range from 0.9942 to 1.0010. Measurements were taken over a period of 18 months, within the frame of a Coordinated Research Project of the International Atomic Energy Agency. Conclusions. Our results are compatible with previously published data. Key words: dosimetry; electron bcams; Plastic Water; IAEA TRS-398 Introduction Received 20 January 2004 Accepted 2 February 2004 Correspondence to: Božidar Casar, Head of Radiophysics Department, Institute of Oncology, Zaloška 2, 1000 Ljubljana; Phone +386 1 522 3946; Fax: +386 1 4319108; E-mail: bcasar@onko-i.si In the International Code of Practice for dosimetry TRS-398 published in the year 2000 by International Atomic Energy Agency (IAEA),1 water is recommended as the reference medium for the determination of ab-sorbed dose for high energy photon and electron beams. Plastic phantoms should not be 56 Casar B et al. / Evaluation of water equivalency of Plastic Water™ used for reference dosimetry in photon beams, however, they can be used for routine quality assurance measurements (daily or weekly output checks), provided a transfer factor between plastic and water has been es-tablished. According to IAEA TRS-398 dosimetry protocol, plastic phantoms in the form of slabs may be used under certain cir-cumstances for electron beam dosimetry for the beam qualities R50 < 4 g/cm2 (E0 below 10 MeV); their use is permitted when no water-proof chamber is available or when accurate positioning in water is not possible. Presently, many different plastic materials are used for dosimetry purposes in radiother-apy and radiophysics departments: white and clear polystyrene, PMMA, Solid water WT1, Solid water RMI-457, Virtual water, Plastic water and possibly a few others. Several arti-cles comparing the equivalency of various plastics as phantom material to water for electron beam dosimetry have been pub-lished.2-8 Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter proper-ties as water for selected range of photon or electron energies used clinically. In our study we evaluated the water equiv-alency of Plastic Water™ developed by Computerized Imaging Reference Systems Inc. Norfolk, VA, USA, also marketed by Nuclear Associates, Inc. Carle Place, NY, USA. We limited our evaluation only to five electron beams within a range of energies from 6 MeV to 18 MeV. The aim of the study was to determine the energy fluence scaling factor hpl for Plastic Water at the selected five electron energies and to compare this factor to the recommended one in the IAEA TRS-398 dosimetry protocol. Material and methods A. Theoretical background According to IAEA TRS-398 Code of Practice, Radiol Oncol 2004; 38(1): 550-60. the calculation of absorbed dose by water DwQ(zrefw) for high-energy electron beams at the reference depth z f,w in water, for the reference beam quality Q, and in the absence of the chamber, is given by the equation w,Q\Zref,w) = ^"Q "D.w.Qo "'Q.Qo [1] where MQ is electrometer reading M1 correct-ed for temperature and pressure kT , as well as for other influencing quantities - polarity k l and recombination effects ks. NDWQo is the calibration factor of the selected ionisa-tion chamber in terms of absorbed dose by water in 60Co beam (reference quality Qo), and kQ,Qo is chamber specific factor correcting for the difference between the beam of reference quality Qo and user quality Q. In TRS-398, electron beam quality is characterized in terms of half-value depth in water R50, which is a depth in water where the absorbed dose in water is 50 % of the maximum absorbed dose. The reference depth z f is also peci re,w s fied by R50 and is given by the equation Zref,w(Cm) = ^-6 -^50 " ^ [2] To determine the absorbed dose in water at zrefw using a plastic phantom, the reference point of the chamber must be positioned at a scaled reference depth z , l in plastic. For particular beam quality, the measurement depth in plastic expressed in g/cm2 is obtained from the equation _ ref,w Zref pi ~ ^,----- [3] where c l is a depth-scaling factor. The c l is the ratio of the average depth of electron penetration in water zavw and in plastic z l, where these depths are expressed in g/cm2 av,wAw vl ~ _ [4] Zav,plPpl Additonally to depth scaling, the electrometer reading MQ, l at the reference depth in Casar B et al. / Evaluation of water equivalency of Plastic Water™ 57 plastic z f l must be converted to the equiva-lent reading MQ, at the reference depth in water z f using the relation re,w ß.w(Zre/,w) = -™ß ,pl\Zref,pl)hpl [5] where hpl is the fluence scaling factor and is generally energy dependant. The uncertainty associated with this scaling factor is the main reason for avoiding the use of plastic phantoms. B. Experimental conditions and setup Experimental equipment In the study, well guarded waterproof plane parallel ionisation chamber PPC 40 was used together with DOSE 1 electrometer (both produced by IBA Scanditronix - Wellhöfer). The ionisation chamber was calibrated at the IAEA Standard Dosimetry Laboratory in Seibersdorf. The comparison was done for five high-energy electron beams with the energies of 6 MeV, 9 MeV, 12 MeV, 15 MeV and 18 MeV generated by linear accelerator Varian Clinac 2100 C/D. The temperature was monitored with a digital thermometer of the resolution of 0.1°C and the pressure with a digital barometer of resolution of 0.1 mbar. 1D water phantom (produced by MED- Table 1. Chemical composition in terms of fractional weight, nominal density p[g/cm3], mean atomic number — and depth scaling factor c l for Plastic Water. Liquid water data are included for comparison Liquid water Plastic Water H 0.1119 0.0925 C 0.6282 N 0.0100 O 0.8881 0.1794 Cl 0.0096 Ca 0.0795 Br 0.0003 ?[g/cm3] 1.000 1.013 — Z 6.6 6.62 cpl 1.000 0.982 TEC) with PMMA walls was used for the measurements in water. The phantom was equipped with a fine mechanical depth ad-justment mechanism with the resolution of 0.1 mm. Distilled water was used throughout the measurements. For the measurements in plastic phantom, Plastic Water (cream coloured) in the form of slabs of the size of 30 x 30 cm2 was used. The thickness of the slabs varied from 1 mm up to 60 mm. Chemical composition (fraction by weight), nominal density, mean atomic num-ber and depth scaling factor for Plastic Water are given in Table 1. For comparison, the data for liquid water are included. Reference conditions and set-up Measurements were done in four sessions on four different days. In each session five meas-urements were done in water as well as in plastic for five high-energy electron beams. Chamber, water and plastic were left in a bunker for several hours before measure-ments in order to reach as thermal equilibri-um. Before we started with measurements in water, the chamber was dipped into water for at least 15 minutes. Reference conditions were always the same: SSD = 100 cm, 10 x 10 cm2 electron applicator was used and the irradiation time was 200 MU at a constant dose-rate of 300 MU/min. Gantry and colli-mator were set to 0° and all the measure-ments were made along the central axis of the beam. Polarising voltage of the chamber was +300 V - the same as during the chamber cal-ibration. The reference depths were set according to the expressions [2] and [3] for water and plas-tic, respectively. R50 was determined in separate relative dosimetry measurements using a computer controlled water phantom (Blue Phantom made by IBA Scanditronix -Wellhöfer), where the data were collected in 0.4 mm increments. As the thinnest available slab was 1 mm thick, the actual depth of the Radiol Oncol 2004; 38(1): 55-60. 58 Casar B et al. / Evaluation of water equivalency of Plastic Water™ chamber reference point in plastic was at the depth that was nearest to the calculated one and not exactly at the calculated one. However, the differences were small. As de-fined in TRS-398 dosimetry protocol, the reference point of the chamber (effective point of measurement) is at the inner surface of the entrance window. Reference depths and some other chamber parameters for selected set of energies are presented in Table 2. When dipping the chamber into water we were careful not to trap any air bubble at the chamber bottom because it could lower the absorbed dose. For setting up the chamber in plastic, a special cylindrical disc made of white polystyrene was fitted in the chamber hole at its bottom. This was to ensure that no scattered radiation would be lacking due to the absence of scattered material at the cham-bers bottom. One of the blocks was machined to fit exactly to ionisation chamber PPC40 so that the entrance window of the chamber was at the level of one surface of the block. Under the point of measurement, 6 cm of Plastic Water was always kept to provide an ade-quate backscatter conditions. Results and discussion The results are presented in Table 3 and Figure 1, as the dose ratios Plastic Water/water as a function of nominal beam energy R = _ Dpl,Q\Zref,pl ) D Jz , ) w,Q \ ref,w/ [6] Depending upon the beam energy, the ra-tios varied from 0.9990 to 1.0058. From the calculated ratios, the fluence scaling factors hpl can be determined. The measured doses in Plastic Water are within 1% of those measured in water for all electron beam energies, and all the ratios are higher than 1.0 (apart from the ratios for 18 MeV electron beam, where ratios are lower than 1.0). Combined measurement uncertain-ties (1SD) of type A and type B (detailed ex-planation about uncertainties is given in ref-erence1), joining the uncertainties from re-Table 3. Ratios Dpl /Dw of absorbed doses measured in Plastic Water and in water for five high energy electron beams produced by Varian Clinac 2100 C/D linear accelerator. Combined measurement uncertainties (1SD) of type A and type B (detailed explanation about uncertainties is given in reference1), joining the un-certainties from repeated measurements from four sessions and estimated uncertainties due to setup and other influencing quantities (pressure, temperature.) Corresponding fluence scaling factors hpl for each electron energy are presented without standard devia-tions. Dpl /Dw hpl 6 MeV 1.0020 ± 0.0068 0.9980 9 MeV 1.0035 ± 0.0050 0.9965 12 MeV 1.0058 ± 0.0046 0.9942 15 MeV 1.0022 ± 0.0061 0.9978 18 MeV 0.9990 ± 0.0053 1.0010 Table 2. Various beam and ionisation chamber (PPC40) parameters used for calculation and measurements of the absorbed dose in water for high energy electron beams generated by linear accelerator Varian Clinac 2100 C/D 6 MeV 9 MeV 12 MeV 15 MeV 18 MeV R50 [cm] 2.31 3.54 4.97 6.28 7.58 Rp [cm] 2.91 4.37 6.02 7.54 9.18 zref,wa [cm] 1.29 2.02 2.88 3.67 4.45 zref,plb [cm] 1.31 2.06 2.93 3.74 4.53 zref,plc [cm] 1.30 2.10 2.90 3.70 3.50 a Reference depth in water of the effective measurement point of the chamber according to TRS-398 b Reference depth in Plastic Water of the effective measurement point of the chamber according to TRS-398 obtained from formula expression [3] c Actual depth in PW of the effective measurement point of the chamber due to limitation of minimal slab thickness of 1 mm Radiol Oncol 2004; 38(1): 55-60. Casar B et al. / Evaluation of water equivalency of Plastic Water™ 59 Electron beam quality, RH (cm) Figure 1. Ratios Dpl/Dw of absorbed doses determined with measurements in Plastic Water and in water for five high-energy electron beams - electron beam qual-ities. Measurements were performed with plane parallel ionisation chamber PPC40. Beam data are in Table 2. peated measurements from four sessions and the estimated uncertainties due to setup and other influencing quantities (pressure, temperature) are presented in Table 3 and are in the range from 0.46% to 0.68%. In our study, the average value for hpl for energies below 10 MeV is 0.9973, which is in line with the value published in TRS-398, where hpl is 0.998. Average value of hpl for all electron energies in our study is 0.9975. A slight disagreement with results obtained by Tello et al.5 was observed, but well within the reported uncertainties. We can conclude that our results confirm previously published data for hpl for Plastic Water. However, we must emphasize, that the temperature of the air in the chamber cavity was probably not the same as the temperature of water when the measurements in water phantom were performed. Due to specific temperature conditions in the accelerators bunker, we could assume that the temperature of the air in the chamber cavity was al-ways at least a little bit higher than the meas-ured water temperature; this, sometimes large difference (up to 3°C) between the temperature measured in water and the room temperature was due to a slow but permanent rising of room temperature (air condition did-n't work optimally). The measured and re- ported ratios Dpl /Dw could thus be too high by up to 0.3%, which corresponds to the temperature difference of 1°C. As it was not pos-sible to measure actual temperature of the air in the chamber cavity, we included 0.3% of possible temperature variation in the uncer-tainties of our measurements, rather that in the systematic errors. We can conclude, that when no water phantom is available in the clinic, or when the use of plastic phantom would be less time consuming or, from any other reason, more appropriate for physicists, the Plastic Water phantom can be used for routine constancy checks of high energy electron beams within the energy range checked in this study and also taking into account the fluence scaling factors as suggested in this study. Even if we take an average fluence scaling factor for all beams in the energy range from 6 MeV - 18 MeV, which is in our case 0.9975, the esti-mated difference of the absorbed dose determination in Plastic Water should be below 1% comparing to the absorbed dose in water. However, before Plastic Water is to be used as water substitute for reference dosimetry, a careful comparison with measurement in water should be performed. Acknowledgements Present study was done in the framework of Co-ordinated Research Project (CRP E2.40.09) of the International Atomic Energy Agency. The main goal of the extended proj-ect was testing of the procedures recom-mended in TRS-398 dosimetry protocol for different types of radiation beams and ionisation chambers as well as comparison of the results obtained with the existing protocols. Authors would like to thank colleagues in the project group: Mariella Affonseca, Ivaldo Ferreira, Günther Hartmann, Saiful Huq, Govinda Rajan and specially to Scientific Officer of the project Stanislav Vatnitsky. Radiol Oncol 2004; 38(1): 55-60. 60 Casar B et al. / Evaluation of water equivalency of Plastic Water™ References 1. IAEA International Atomic Energy Agency. Absorbed dose determination in external beam ra-diotherapy: An international Code of Practice for Dosimetry Based Standards of Absorbed Dose to Water. IAEA Technical Reports Series No. 398. Vienna: IAEA; 2000. 2. Thwaites DI. Measurements of ionisation in water, polystyrene and 'solid water' phantom material for electron beams. Phys Med Biol 1985; 30: 41-53. 3. Bruinvis IAD, Heukelom S, Mijnheer BJ. Comparison of ionisation measurements in water and polystyrene for electron beam dosimetry. Phys Med Biol 1985; 30: 1043-53. 4. Thomadsen B, Constantinou C, Ho A. Evaluation of water-equivalent plastics as phantom material for electron-beam dosimetry. Med Phys 1995; 22: 291-6. 5. Tello VM, Tailor RC, Hanson WF. How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams? Med Phys 1995; 22: 1177-89. 6. Nilsson B, Montelius A, Andreo P, Johansson J. Correction factors for parallel-plate chambers used in plastic phantoms in electron dosimetry. Phys Med Biol 1997; 42: 2101-18. 7. Björeland A, Svensson H. Testing of the Code of Practice at different electron energies and phantom material. IAEA-TECDOC-1173: Review of data and meth-ods recommended in the international code of practice for dosimetry IAEA Technical Reports Series No. 381, The use of plane parallel Ionization chambers in high energy electron and photon beams. Vienna: IAEA; 2000. p. 97-103. 8. Saitoh H, Tomaru T, Fujisaki T, Abe S, Myojoyama A, Fukuda K. A study on properties of water sub-stitute solid phantom using EGS code. Proceedings of the Tenth EGS4 Users Meeting in Japan, KEK Proceedings 2002; 18: 55-64. Radiol Oncol 2004; 38(1): 550-60.