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PHARMACOGENETICS OF ANTIDEPRESSANTS

FARMAKOGENETIKA ANTIDEPRESIVOV
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Abstract

Background Antidepressant drug therapy is characterised by a high rate of therapeutic failure, which
can not be predicted in advance.
Pharmacogenetic studies in mood disorders aim to the identification of gene polymor-
phisms associated with therapeutic efficacy and side effects of antidepressants. During the
recent years the possible influence of a set of candidate genes in the pharmacodynamic
pathway as possible genetic predictors of antidepressant response efficacy were investigat-
ed and will be reviewed here. The functional polymorphism in the upstream regulatory
region of the serotonin transporter gene (5-HTTLPR), the A218C gene variant on the tryp-
tophan hydroxylase gene (TPH), the 102TC variant in the 5HT2A receptor, the G-protein
beta3-subunit (Gbeta3) C825T gene variant, the glucocorticoid receptor-regulating cochap-
erone (FKBP5) and the Circadian Locomotor Output Cycles Kaput (CLOCK) genes vari-
ants were independently associated with short term SSRIs antidepressant efficacy. Cyto-
chromes P450 appear so be the most important determinant of the pharmacokinetics of
antidepressants, especially polymorphic CYP2D6 that metabolizes most of the selective se-
rotonin reuptake inhibitors (SSRI). Also polymorphic MDR1 gene coding for P-glycopro-
tein (ABCB1), a brain-to-blood efflux drug transporter, seems to be an important detemi-
nant of antidepressant efficacy.

Conclusions Although in its preliminary phase, the results obtained in the pharmacogenetics of antide-
pressants are promising for an individualized therapy. Pharmacogenetic testing could
help to identify the most effective treatment, improve the quality of life of affected persons
and reduce the health-care costs.
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Izvleček

Izhodišča Pri zdravljenju z antidepresivi velik problem predstavlja neodzivnost na zdravljenje, ki je
ni mogoče vnaprej napovedati, pojavi pa se kar pri tretjini bolnikov. S farmakogenetskim
pristopom so v zadnjih letih odkrili številne genetske polimofizme, ki so povezani z učinko-
vitostjo zdravljenja z antidepresivi in/ali z neželenimi učinki the zdravil. Prispevek pri-
naša pregled genetskih dejavnikov, ki lahko vplivajo na farmakodinamiko in farmakoki-
netiko antidepresivov. Med najpomembnejši polimorfizmi, ki vplivajo na farmakodinamiko
in na kratkoročno učinkovitost zdravljenja z antidepresivi, so: polimorfizem (insercija/
delecija 44bp) v promoterju gena za serotoninski transporter SERTPR), ki vpliva na hitrost
prepisovanja; polimorfizem A218C gena za triptofan hidroksilazo (TPH), polimorfizem
T102C gena za serotoninski receptor 2A (5HT2A, polimorfizem C825T gena za beta3-
podenoto G proteina (Gbeta3), ko-šaperon, ki uravnava glukokortikoidni receptor (FKBP5)
in polimorfizmi gena, ki uravnava cirkadiano aktivnost (Circadian Locomotor Output
Cycles Kaput – CLOCK).
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Na famakokinetiko antidepresivov pa najpomembneje vplivajo citokromi P450, zlasti
CYP2D6 preko katerega se presnavlja večina selektivnih zaviralcevi prevzema serotonina
(SSRI). Na učinkovitost zdravljenja z antidepresivi pa vpliva tudi polimorfizem gena za p-
glikoprotein (MDR1 oz. ABCB1), ki transportira antidepresive preko hematoencefalne
bariere.

Zaključki Čeprav so farmakogenetske raziskave zdravljenja z antidepresivi še v začetni fazi, so re-
zultati obetavni in kažejo, da farmakogenetsko testiranje lahko pripomore k individualiz-
iranemu in bolj racionalnemu zdravljenju z antidepresivi in k boljši kvaliteti življenja
bolnikov.

Ključne besede farmakogenetika; antidepresivi; genetski polimorfizem

Pharmacodynamic aspects

The monoamine hypothesis, which identifies the bi-
ological basis for depression in a deficiency of brain
monoamine neurotransmitters,17 is still considered a
valid model to account for the mechanism of action
of antidepressant drugs.18 Increasing evidence dem-
onstrates that monoaminergic systems and other bio-
logical systems implicated in the pathophysiology of
depression such as the substance P and stress-hor-
mone systems have reciprocal interactions, and ulti-
mately stimulate neurogenesis.19, 20 These pathways
showed to be affected by several antidepressant treat-
ments, thus they represent the main focus of pharma-
cogenetic research. Other lines of investigation have
included inflammatory cytokines21 and the endoge-
nous clock system.22

Brain monoamine systems

Tryptophan Hydroxylase

Tryptophan hydroxylase (TPH) catalyzes the rate-lim-
iting step in 5-HT biosynthesis. Its prominent role in
the pathophysiology of depression is underscored by
the fact that tryptophan depletion can induce a tran-
sient depressive state in individuals with a known his-
tory of depressive disorder.23 The gene encoding TPH
has been cloned and mapped on 11p15.3-p14.24 It in-
cludes two bi-allelic polymorphisms in position 218
(A218C) and 779 (A779C) of intron 7, which are in
strong disequilibrium.25 The A218C polymorphism is
located in a potential GATA transcription factor-bind-
ing site, therefore it may influence gene expression,
and consequently antidepressant (AD) response. The
rarer TPH*A-allele of A218C polymorphism showed
in fact to be associated with a decreased 5-HT synthe-
sis,26 even if this finding has not been replicated.
The presence of this allele may predispose to suicidal
behaviour as emerged from two recent meta-analy-
ses.27, 28 The A-allele was also associated with a slower
and less marked HAMD improvement in two double-
blind trials with fluvoxamine and paroxetine we car-
ried out in our center in Milan.29, 30 Subsequent stud-
ies performed in Japan31 and Korea32 failed to dem-
onstrate a correlation between the TPH A218C poly-
morphism and response to Selective Serotonin Re-
uptake Inhibitors (SSRIs). Recently a new TPH isoform
was discovered and called TPH-2.33 while the original

Since the serendipitous discovery of imipramine, in
1957, different classes of antidepressant drugs have
been used to treat depressive syndromes. Although
their efficacy is well established, still 30–40 % of pa-
tients do not show a significant response (> 50 % re-
duction in baseline score on the Hamilton Rating Scale
for Depression – HAMD) to therapeutic doses of anti-
depressant medications administered for 6–8 weeks
of treatment, while 60–70 % fail to achieve full remis-
sion (17-item HAMD < 7).1 Partial remission has been
associated with a higher recurrence, a greater func-
tional impairment and a worse quality of live.2, 3 All
antidepressants have a lag phase and it takes at least
3–4 weeks to observe the real effect of treatment ad-
ministration.4 Such a delayed response may increase
the patients’ suffering and the risk of suicidal behav-
iour and early discontinuation of treatment. Patients
have to stay in hospital for longer periods and this
results in higher costs. Therefore early identification
of responders to a specific antidepressant treatment
would be of great usefulness both from a clinical and
economical point of view. Unfortunately, in spite of
some evidence concerning the predictive power of
demographic characteristics, illness features and so-
cial factors,5–7 none of such variables could unequivo-
cally be linked to treatment outcome and antidepres-
sant choice is still based on a trial and error proce-
dure.
Inherited differences in drug response have been
described for a variety of compounds supporting the
influence of genetic factors on treatment outcome.8, 9

This has been investigated in antidepressant short
term treatment.10–13

Further, one important determinant in treatment de-
cision making is the occurrence of side effects, which
can negatively impact compliance. This was reported
to be of 40 % to 90 % in different studies of antide-
pressant drugs with an average of 65 %.14 The preva-
lence and severity of side effects follow interindivid-
ual variations, therefore it is reasonable to hypothe-
size a genetic basis for drug tolerability.15 The present
paper will review the literature concerning genetic
influence on the efficacy and tolerability of antide-
pressant. Traditional approaches based on the analy-
sis of candidate genes which act throughout pharma-
codynamic and pharmacokinetic mechanisms are
now integrated by complementary genome-wide ap-
proaches.16
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isoform is now TPH-1. The gene encoding TPH-2
(chromosome 12) is 150-fold more expressed in
mouse brain than the TPH-1 gene,34 therefore it might
represent a promising candidate for pharmacogenet-
ic investigation. Peters and colleagues tested both TPH
isoforms in 96 unipolar depressives treated with flu-
oxetine for 12 weeks.35 While the TPH-1 gene was as-
sociated with general response, TPH-2 variants were
implicated in specific response to fluoxetine. These
findings are in line with the latest published studies
demonstrating that all TPH isoforms are expressed in
the human brain, with different levels of each isoform
between the brain areas.36 Two studies examined the
relationship between TPH-2 polymorphisms and re-
sistant depression:37, 38 a marginal association emerged
with the TPH-2 G1463A single-nucleotide polymor-
phism.38

Serotonin transporter

Extracellular monoamines are cleared from the syn-
aptic cleft and carried into the synaptic terminal by
plasma membrane proteins that are termed transport-
ers. As these proteins are high-affinity targets for psy-
chostimulants (cocaine, amphetamine) and different
classes of ADs, they are suitable candidates for phar-
macogenetic research. To date a large amount of stud-
ies have involved the serotonin transporter (SERT)
gene. The brain SERT is the principal site of action of
many antidepressant drugs (SSRI, TCA) and mediates
the behavioral and toxic effects of cocaine and am-
phetamines. SERT knockout mice show robust phe-
notypic abnormalities when compared to normal
mice, with increased anxiety and inhibited explorato-
ry locomotion.39 The deletion of the SERT gene pro-
duces also a reduction in aggressive behavior and
home cage activity of knockout mice; this effect is
further enhanced by desensitization of 5-HT1A and
5-HT1B receptors.40

Ramamoorthy et al. identified and cloned a single
gene encoding the human SERT (SLC6A4), localized
to chromosome 17q11.1-q12.41 The gene spans 31 kb
and consists of 14 exons.42 Heils et al. reported a poly-
morphism in the transcriptional control region up-
stream of the SERT coding sequence.43 The polymor-
phism is located approximately 1000 bp upstream of
the transcription initiation site within a region com-
posed of 16 repeat units (5-HTTLPR). It consists of a
44-bp insertion/deletion involving units 6 to 8. It is
known that the long (l) 5-HTTLPR allele has twice the
SERT expression in the basal state than the short (s)
form. As the 5-HTTLPR polymorphism can affect SERT
expression and SERT is the main target of SSRIs, it is
reasonable to hypothesize the influence of 5-HTTL-
PR variants on SSRI response. This has been tested in
several studies (see Table 1): a better outcome in l-
allele carriers44–51 has been a consistent findings
among Caucasian patients. Instead Asian studies pro-
duced conflicting results, with some samples show-
ing the same genotype-response association pattern
as Caucasians52–54 and others revealing a better re-
sponse in 5-HTTLPR s-allele carriers55, 56 or no effect
of the 5-HTTLPR.57 Most likely the small sample sizes,

different ethnicity and different definition of respond-
ers do not allow drawing a definite conclusion on the
role of the 5-HTTLPR polymorphism. This appears to
influence treatment outcome independently from oth-
er predictors including antidepressant dose and SERT
affinity.48 Recent studies suggest that the 5-HTTLPR
polymorphism may also affect antidepressant tolera-
bility. Thus in a double-blind trial of elderly outpa-
tients s-allele carriers treated with paroxetine were
characterized by more severe adverse effects and
higher discontinuation rates compared to l/l homozy-
gotes while in a subgroup on mirtazapine the s-allele
was associated with a better tolerability and fewer dis-
continuations.51 Still the s-allele was shown to identi-
fy patients at risk for developing insomnia and agita-
tion with fluoxetine treatment.58 However other stud-
ies reported no association between 5-HTTLPR vari-
ants and side effects occurring with SSRIs.59 Two stud-
ies demonstrate an increased risk for antidepressant-
induced mania with carriage of the s-allele60, 61 but neg-
ative findings were also reported.62, 63

Over the last few years new polymorphisms within
the SERT gene have attracted attention as predictors
of antidepressant response, their interaction with the
5-HTTLPR waiting to be elucidated Ogilvie et al. iden-
tified a different variable number tandem repeat
(VNTR) polymorphism in the second intron of the
SERT gene (Stin2) which was related to susceptibility
to major depression.64, 65 Ito and colleagues reported
no association of Stin2 with fluvoxamine response.66

A single nucleotide polymorphism (rs25531 SNP), lo-
cated just upstream of the 5-HTTLPR revealed a sig-
nificant influence on antidepressant response to flu-
oxetine and, intriguingly, a moderation effect on
5-HTTLPR alleles. In the presence of the G-allele of
this SNP, the l-allele of the 5-HTTLPR is associated with
non-response, as the s-allele where it is expressed to-
gether with the A-allele of the rs25531 SNP.67

Norepinephrine transporter

One study determined whether NET gene variants
could affect response to minalcipram.57 Significant
associations were reported with the T-128C (T-allele
predicting a better response) and A1287G polymor-
phisms (slower onset of response in A/A genotype
carriers).

Monoamine oxidase A

MAO-A is a major degrading enzyme in the metabolic
pathways of monoamine neurotransmitters (NE, DA,
5-HT). The gene encoding MAO-A – chromosome
Xp11.2368 – is supposed to influence the mechanism
of action of SSRIs through an interaction with SERT.69

A polymorphism located 1.2 kb upstream the MAO-A
coding sequences (VNTR) was reported to affect the
transcription of the MAO-A promoter.68 Its influence
on AD treatment efficacy was investigated in three
studies which yielded negative results.31, 70, 71. More
recently in a sample of Chinese inpatients with major
depressive disorder the 3-repeat variant of the MAO-
A VNTR was positively associated with antidepressant
treatment outcome in females.72
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Catechol-o-methyltransferase

COMT is involved in the catabolic pathways of NE
and DA. Moreover this enzyme can indirectly affect
brain 5-HT given reciprocal interactions between DA
and 5-HT. Lachman and collaborators73 reported a
functional polymorphism consisting on a transition
of guanine to adenine at codon 158 leading a substi-
tution of Val to Met in MB-COMT (and in position 108
in S-COMT). It has been shown that the Met allele re-
sults in a three to four fold lower enzymatic activity
than Val allele.74, 75 Two recent studies report that pa-
tients with Met-Met homozygosity are less likely to
respond to mirtazapine76 and citalopram.77

Beta1 adrenoreceptor

These receptors serve as important regulators of cen-
tral nervous system mediated behavior and of sever-
al neural functions, including mood, memory, neu-
roendocrine control, stimulation of autonomic func-
tion and are involved in the mediation of AD effects.78

This may also explain why beta-blocker medications
are associated with side effects such as depression
and lethargy.79

Beta1 adrenergic receptor gene ADRB1 was mapped
on 10q24-q26.80 A polymorphism in the intracellular
cytoplasm tail, consisting of a G/C transversion at po-
sition 1165 of the ADRB1 gene, was shown to alter
the receptor-Gs protein interaction, with functional
consequences on signal transduction.81 This polymor-
phism was also found to affect response to »noradr-
energic« antidepressant agents, even if the finding was
only marginally significant.82

Dopamine receptors

DA containing neurons are located primarily in the
midbrain and a number of experimental observations
suggested that a decreased dopaminergic neurotrans-
mission might be associated with depression. More-
over, an interaction between the serotonergic and
dopaminergic systems in the nucleus accumbens has
been established, since motivation and hedonia have
been associated with DA release in the nucleus ac-
cumbens.83 In spite of these data suggesting a patho-
genic role for the dopamine system in depressive dis-
orders, no significant association of DRD2 and DRD4
variants with SSRI efficacy was observed in a large
sample (N = 364) of depressed inpatients collected in
our center in Milan.84

5-HT1A receptor

These receptors are located on cortical and limbic
neurons, both at postsynaptic and presynaptic level
where they act as autoreceptors, preventing the fur-
ther release of 5HT with a negative feedback. Pindolol
is thought to accelerate the onset of AD action by
blocking 5-HT1A autoreceptors.85 A SNP in the pro-
moter region of the 5-HT1A gene (G to C substitution
at position – 101986) was associated with the diagno-
sis of major depression in a case-control study87 and,
more recently, with antidepressant treatment out-
come. Since 2004 five independent studies reported

Table 1. 5-HTTLPR polymorphism and antidepressant
treatment response.

Razpr. 1. Polimorfizem 5-HTTLPR in odziv na zdrav-
ljenje z antidepresivi.

Positive
Authors Study design association Ethnicity

with response
Pozitivna

Preisko-Avtorji Zasnova študije povezava
vanciz odzivom

Smeraldi et al., 1998 N = 99 (BP + MDD) L-allele Caucasian
Fluvoxamine P = 0.017

Zanardi et al., 2001 N = 155 (BP + MDD) L-allele Caucasian
Fluvoxamine P = 0.029

Zanardi et al, 2000 N = 64 (BP + MDD) L-allele Caucasian
Paroxetine (s-allele

slower)
P < 0.001

Pollock et al., 2000 N = 95 (late life MDD) L-allele Caucasian
Paroxetine (s-allele

slower)
P = 0.028

Arias et al., 2001 N = 102 (MDD) L-allele Caucasian
Citalopram (s-allele more

no remission)
P = 0.006

Minov et al., 2001 N = 104 (MDD) No association Caucasian
Various ADs and ECT

Joyce et al., 2003 N = 169 (MDD) L-allele Caucasian
Fluoxetine or (ss slower
Nortryptiline response

In patients
> 25y)

Durham et al., 2004 N = 206 L-allele Mostly
(MDD geriatric) (sertraline Caucasian
Sertraline or placebo group)

Serretti et al., 2004 N = 221 (MDD + BP) L-allele Caucasian
Fluvoxamine or (ss poor
Paroxetine response)

Kraft et al, 2005 N = 96 (MDD) L-allele if Mostly
Fluoxetine rs25531 = A Caucasian

S-allele if
rs25531 = G

Murphy et al., 2004 N = 122 L-allele Mostly
(MDD geriatric) P < 0.05 Caucasian
Paroxetine

Murphy et al., 2004 N = 124 No association Mostly
(MDD geriatric) Caucasian
Mirtazapine

Kim et al., 2000 N = 120 S-allele Asian
(MDD/Korean) P = 0.007
Fluoxetine or
Paroxetine

Yoshida et al., 2002 N = 66 S-allele Asian
(MDD/Japanese)
Fluvoxamine

Yu et al., 2002 N = 121 L-allele Asian
(MDD/Chinese) P = 0.013
Fluoxetine

Ito et al., 2002 N = 66 No association Asian
(MDD/Japanese)
Fluvoxamine

Lee et al., 2004 N = 128 L-allele Asian
(MDD/Korean) Ss genotype
Various ADs poor

longterm
(1-3 yrs)
prognosis

Kato et al., 2005 N = 81 L-allele Asian
(MDD/Japanese)
Paroxetine or
Fluvaxamine

Legend: MDD – Major Depressive Disorder, BP – Bipolar disorder, AD –
Antidepressant
Legenda: MDD – depresivna motnja, BP – bipolarna motnja, AD –
antidepresiv
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either a better response to SSRI drugs in 5-HT1A
– 1019C/C homozygotes88 or a worse response in
G-allele carriers.89–91 A different Gly272Asp polymor-
phism was explored in Japanese MDD outpatients
treated with fluvoxamine. Asp allele carriers showed
a more marked reduction in depressive symptoma-
tology compared to Gly/Gly homozygotes.92 This find-
ing was not confirmed by subsequent studies.93

5-HT2A receptors

The activation of 5-HT2A receptors in medial prefron-
tal cortex and anterior cingulate cortex is thought to
mediate the hallucinogenic properties of LSD, where-
as in amygdala the 5-HT2A receptor activation is a
component of antidepressant response. The 5-HT2A
receptors may mediate some of the AD effects seen
in experimental animal models of depression.94 An
antidepressant drug such as nefazodone was found
to (partially) exert its therapeutic effect via a 5-HT2A
receptor antagonism.95 The gene coding for 5-HT2A
receptor was mapped to chromosome 13q14-q21.96

A T to C substitution at position 102 was implicated in
AD response,97 even if the finding could not be repli-
cated in two independent samples.71, 88 In addition
more side effects were reported in patients with the
5-HT2A-102C/C genotype who were treated with
either paroxetine or mirtazapine for 8 weeks.98 An-
other polymorphism in the promoter region of the
5-HT2A gene (-1438 G/A SNP) was independently ex-
plored by three research groups:57, 99, 100 one study
showed a greater improvement of »core« depressive
symptomatology and somatic anxiety in 5-HT2A–
1438G allele carriers.100 Finally the T/T variant of the
5-HT2A -C1420T SNP revealed a marginal association
with a worse response to SSRI treatment.71

5-HT6 receptor

is a G-protein coupled receptor which stimulates ade-
nylyl cyclase. In the rat it shows high affinity for ADs
such as mianserin and clomipramine.101 5HT6 recep-
tor antagonists seem to improve retention perfor-
mance in experimental animals which has implicated
a role for 5HT6 in cognition enhancement.102, 103

Kohen et al. reported a silent polymorphism consist-
ing of a thymidine to cytosine substitution at position
267 (TC 267) within the first exon of the 5-HT6 recep-
tor gene.104 This SNP was investigated for association
with AD response in two studies, the first one, thirty-
four MDD patients receiving various ADs, yielded neg-
ative results.105 More recently, in a study involving a
larger MDD sample (N = 71), 5-HT6 receptor CT het-
erozygotes were found to have a better response to
AD treatment than homozygotes (CC + TT geno-
types).106

Intracellular signal transduction pathways

G-protein Beta-3 subunit

G-proteins are key components of intracellular sig-
nal transduction in all cells of the body including neu-
rons. Inactive G-proteins are trimers coupled with re-
ceptors on the cell-membrane. The active form is a

GTP bound alpha monomer resulting from the disso-
ciation of a beta-gamma dimer.107 Chronic treatment
with fluoxetine showed to attenuate GTP binding to
gamma subunit in the dorsal raphe nucleus of rats,
thus inducing desensitization of 5HT1A receptors.108

Beta subunit is subdivided into three subtypes. The
gene encoding beta3 subunit (GNB3) is located at
human chromosome 12p13, in a region which har-
bors other five genes.109 Its sequence spans 7.5 kb and
includes 11 exons and 10 introns. A polymorphism in
GNB3 exon 10 (C825T SNP) has been shown to mod-
ulate signal transduction and ion transport activity.110

GNB3 825T variant is associated with the occurrence
of the splice variant Gbeta3s, which, despite a dele-
tion of 41 amino acids, is functionally active in recon-
stituted systems. To date four independent studies
have demonstrated a better antidepressant response
in patients with one or two copies of the Gbeta3
T-allele.50, 111–113 Hong and colleagues reported the only
negative study in an Asian sample.88

Stress hormone system

Stressful or traumatic events occurring in early life sig-
nificantly increase the risk for depression in adult-
hood.114 To further underscore the relationship be-
tween stress response and depressive disorder, genes
coding for components of the stress hormone system
have so far been associated with AD treatment out-
come.

CRH receptor 1

A number of animal studies have displayed the anti-
depressant properties of CHR receptor I antago-
nists.115, 116 A three SNP haplotype within the corticotro-
phin releasing hormone receptor 1 (CRHR1) could
be associated with response to desipramine or fluox-
etine in a sample of Mexican-Americans.117

Glucorticoid receptor gene

A research group in Munich (Germany) identified a
functional polymorphism of the glucorticoid recep-
tor (GR) gene (ER22/23EK) and a series of SNPs with-
in the gene encoding the hsp90 co-chaperone FKBP5
(a part of the mature GR heterocomplex that regu-
lates GR sensitivity) which were shown to modulate
the onset of response to various classes of antidepres-
sant drugs.118 However no replication followed.

ACE – substance P system

Angiotensin converting enzyme

There is increasing evidence pointing to the involve-
ment of the substance P system in the pathophysiolo-
gy of depression. NK1 receptor antagonists have
shown preclinical activity in several paradigms of anx-
iety and depression.119, 120 Mutant mice lacking the NK1
receptor gene have an increased firing rate of dorsal
raphe serotonergic neurons, an effect that can also
be seen after the administration of substance P antag-
onists.121 When given chronically, NK1 antagonists
promote an enhancement of serotonergic transmis-
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sion in the hippocampus that seems to be mediated
by interaction with other neurotransmission sys-
tems.122 Clinical efficacy of such drugs has also been
demonstrated among patients with major depression,
although the results have been inconclusive.123 In the
central nervous system substance P is colocalized with
the angiotensin converting enzyme (ACE) which is
thought to participate in its degradation. An intronic
insertion (I) / deletion (D) polymorphism determines
functional variants of the ACE gene with a secondary
impact on substance P levels and antidepressant ac-
tivity. Indeed the D allele, which determines higher
ACE plasma levels,124 was recently associated with
higher substance P levels125 and a faster response to
antidepressant treatments,126 including total sleep
deprivation,127 particularly among females.128 Interest-
ingly, this polymorphism also influences HPA-axis
reactivity in depressed patients, with patients carry-
ing the D/D genotype having the highest cortisol re-
sponse in the Dex-CRH test administered at admis-
sion.129 More recently another component of the ACE-
substance P system, the angiotensin II receptor gene
(ATI), was added to outcome predictors in major de-
pression.130

Proinflammatory cytokines

Interleukin 1-Beta

Interleukin-1 (IL-1), produced mainly by blood mono-
cytes, mediates the host reactions of acute phase re-
sponse. In female rats IL-1 may induce a behavioural
complex called sickness behaviour, characterized by
loco-motor retardation, sleep disorders, soporific ef-
fects, anorexia, weight loss, hyperalgesia, decreased
social exploration, and inhibition of sexual behav-
iour.131 This animal behaviour, which resembles hu-
man depression, can be inhibited by chronic antide-
pressant treatment.132 Increased production of IL-1 has
been reported in patients with major depression and
dysthymia.133, 134 IL-1, like other cytokines, may cause
hyperactivity of the hypothalamic-pituitary-adrenal
(HPA) axis and reduction in 5-HT levels which ulti-
mately result in the onset of depression.132 The asso-
ciation of a biallelic polymorphism (-511C/T SNP) lo-
cated in the promoter region of the IL-1beta gene to
fluoxetine response was studied in 119 depressed
patients who underwent a 4-week treatment with flu-
oxetine. Trial results showed a trend towards T/T ho-
mozygotes having milder depressive symptoms and
a more favourable fluoxetine response compared to
C-allele carriers.135

Endogenous clock system

Circadian Locomotor Output Cycles Kaput (CLOCK)

The endogenous control of circadian rhythms is un-
der the control of a central pacemaker localized in
the suprachiasmatic nuclei (SCN) of the anterior hy-
pothalamus. Several genes are thought to interact in
rhythms control and they are called »clock« for their
function of regulation of timing in biological func-
tions.136 In particular the Circadian Locomotor Out-
put Cycles Kaput (CLOCK) gene was identified in

mice137 and in humans.138 The mRNA of human CLOCK
gene has been found in the SCN, hippocampus, piri-
form cortex and cerebellum,138 all areas involved in
biological rhythms. One polymorphism, named 3111
T/C located in the 3' flanking region, has been shown
to affect mRNA stability and half-life.139 The C allele
has been associated with significantly higher »evening-
ness« in healthy subjects and with a delay in preferred
timing for activity or sleep episodes, with no changes
in sleep architecture.140. In mood disorders the same
C variant was associated with higher recurrence rates
in bipolar patients,141 increased lifetime sleep distur-
bances142 and persistence of insomnia during antide-
pressant treatment.143

Pharmacokinetic aspects

Cytochrome P450 enzyme complex

The cytochrome P450 (CYP) superfamily exists in over
50 isoenzymes that catalyze the oxidation of many
drugs and chemicals. In humans seven isoforms –
CYP1A, CYP2A6, CYP2B6, CYP2C, CYP2D6, CYP2E1
and CYP3A enzymes – account for approximately 70
% of the liver cytochromes. CYP2D6 has been impli-
cated in the metabolism of most antidepressant
drugs.144 So far, up to 75 different alleles have been
reported for CYP2D6, more than 15 of these encode
an inactive or no enzyme at all, while others consist
of gene duplications.145 Such gene variants have
shown a clear influence on drug metabolism – indi-
vidulas are classified as poor (PM), intermediate (IM),
extensive (EM) and ultra-rapid (UM) metabolizers ac-
cording to their inherited genetic profile146 –, howev-
er their effect on AD response and tolerability is less
consistent and still under investigation.
A direct correlation was observed between the num-
ber of functional CYP2D6 gene copies and plasma
levels of some TCAs such as nortryptiline.147 From
these pharmacokinetic studies it has been extrapolat-
ed that starting doses of nortryptiline are probably
enough to reach therapeutic plasma levels in subjects
with no or only one functional copy of the CYP2D6
gene, among whom higher doses might increase tox-
icity. On the contrary high-normal doses of the drug
may be required for patients with 2–4 copies.145 Dose
adjustments according to CYP2D6 genotype have
been proposed for TCAs in view of their small thera-
peutic »windows«.148

Like TCAs, CYP2D6 variants have been shown to mod-
ify the plasma concentrations of the SSRI paroxetine149

and the SNRI venlafaxine.150 For the latter a relation-
ship between PM status and the increased occurrence
of cardiovascular side effects or toxicity has been re-
ported. On the contrary no relationship between
CYP2D6 genotype, tolerability and efficacy was ob-
served in a sample of geriatric inpatients on paroxet-
ine.98 So, even if dose recommendations based on
CYP2D6 genotypes have been put forward for SSRIs
too, the relevance of such dose-adjustments is ques-
tionable given their flat dose-response curve.151 The
impact of CYP2D6 variants might be greater for SSRI
+ TCA combined treatments. Indeed co-administra-
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tion of paroxetine and desipramine in EM who had at
least two functional copies of the CYP2D6 gene was
found to result in a 5-fold decrease in desipramine
clearance.152

P-glycoprotein

P-glycoprotein is a member of the highly conserved
superfamily of ATP-binding cassette (ABC) transport-
er proteins. It acts as a pump that, in view of its local-
ization – liver, kidney and small capillars of the blood-
brain barrier153 –, appears to regulate the clearance of
xenobiotics and access to the brain for psychotropic
drugs.154 The gene encoding p-glycoprotein – formerly
MDR1, now ABCB1 – is localized to chromosome 16.
An intronic ABCB1 polymorphism was found to be
associated with remission to antidepressant therapy
but not with drug plasma levels.155 It is therefore like-
ly that ABCB1 variants influence antidepressant re-
sponse by affecting the transport of drugs across the
blood-brain barrier, with a mechanism that does not
implies modification of drug plasma concentration.

Perspectives in
psychopharmacogenetics

In spite of the popular claim that pharmacogenetics
holds promises for an individualized approach to psy-
chopharmacology, important shortcomings have so
far hampered the use of research data in clinical prac-
tice:

1. the literature provides us with an increasing num-
ber of candidate genes, however only few of them
could be consistently associated with drug effica-
cy or tolerability

2. even those genes with a proven influence on drug
behavior could show opposite effects in different
studies

3. only a small amount of variance in individual re-
sponse to psychotropic drugs could be explained
by genetic factors.

Accordingly, improving the consistence of results
across studies and expanding the number of candi-
date genes appear to be priorities in the agenda of
today’s psychopharmacogenetics.
In the study of clinical response focus is classically
decreasing in overall psychopathology. However in-
creasing evidence suggests that single candidate
genes can have a selective impact on few clusters of
symptoms rather than on the global clinical pictures
of mood disorders. For instance the therapeutic ef-
fect of 5-HTTLPR variants is principally directed to
somatic anxiety.52, 54 Similarly the C/C genotype of the
CLOCK gene was associated with persistence of in-
somnia during SSRI treatment while it had no effect
on overall antidepressant response.143 This may im-
ply that a major cause of contrasting findings in pub-
lished studies is the presence of different symptom
profiles in their samples. So future pharmacogenetic
analyses should target symptom dimensions.
Each candidate gene may also be related to factors
that independently affect treatment outcome. For ex-

ample personality traits and disorders are known to
worsen the outcome of treated mood disorders; there-
fore genes that are associated with these factors
should predict a poor drug response. Accordingly re-
cent studies demonstrate an excess of anxiety traits
in the presence of the 5-HTTLPR s-allele156, 157 which
was already linked with a negative prognosis of anti-
depressant treatment (see above). Most findings in
the field of pharmacogenetics could be obtained by
exploring a relatively small number of candidate
genes which encoded proteins that were involved in
drug activity. In spite of some appreciable results this
hypothesis-driven approach is probably too restric-
tive and leaves out a large number of candidate poly-
morphisms. Indeed all observed gene variants do not
reach the putative 50 % of variance explained by ge-
netic factors in the complex trait of antidepressant
response. Pharmacogenomics may then aid in identi-
fying more candidates by discovering those genes that
are activated or deactivated in response to treat-
ment.158 One popular method of experimental genom-
ics is expression array.16 This involves hybridization
of fluorescent or radioactively labeled mRNA species
to cDNA arrays. So thousands of mRNA transcripts
are analyzed simultaneously, those that change after
treatment are related to candidate genes. Alternative-
ly, proteomics evaluates gene activity by detecting pro-
tein expression instead of mRNA transcripts.159 Both
animal and human tissues have been used for these
studies. Most literature has investigated antidepres-
sant treatment related genome-wide mRNA expres-
sion changes in rodent brain tissue.160–163 A few stud-
ies have investigated the effects of antidepressant
treatment on peripheral blood monocytes.164 Overall
results have been largely inconsistent. In fact whole
genome SNP analyses have an expected high num-
ber of false positive associations due to the high de-
gree of multiple testing. To bypass this problem the
last few years have witnessed the development of new
experimental designs that combine the methods of
linkage analysis, pharmacogenomics and proteomics.
Examples of such sequential approaches were already
published with promising results.165, 166

Besides individualizing drug treatment pharmacoge-
netics/pharmacogenomics would offer a good solu-
tion to the problem of biological diversity in psychi-
atric disorders. Thus response to a given drug could
be used to identify homogeneous forms within patho-
physiologically heterogeneous syndromes, which
may facilitate the discovery of new susceptibility
genes for psychiatric conditions. This strategy has
been proposed and successfully applied to lithium
response in bipolar disorder.167 However the emerg-
ing literature has extended the influence of single
genes to a wide range of psychological and psycho-
pathological phenomena in addition to drug re-
sponse. The SERT gene is an emblematic example of
such multiple effects. Indeed the 5-HTTLPR polymor-
phism has been associated with different characteris-
tics of mood disorders – age of onset,168, 169 illness re-
currence,62, 170 drug response (see above), reactivity
to stressful life events,171 personality traits172 and sev-
eral psychiatric diagnoses such as alcoholism,173 smok-
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ing,174 psychosomatic disorders,175 eating disorders,176,

177 suicide,178 autism179 and attention deficit hyperac-
tivity disorder.180 Future studies will clarify whether
such phenotypes are all simultaneously present or at
different times in the same individuals. Complex phe-
notypic profiles will then be obtained by pooling to-
gether such different features on the basis of their lin-
ear association with gene variants.181 This is a simple
methodology to resume solitary data in comprehen-
sive models, and we suggest it as a starting-point for
future research on the role of crucial genes in modu-
lating human behaviors.
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