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ABSTRACT

In the literature on point processes the by far most popular option for introducing inhomogeneity into a point
process model is the location dependent thinning (resulting in a second-order intensity-reweighted stationary
point process). This produces a very tractable model and there are several fast estimation procedures available.
Nevertheless, this model dilutes the interaction (or the geometrical structure) of the original homogeneous
model in a special way. When concerning the Markov point processes several alternative inhomogeneous
models were suggested and investigated in the literature. But it is not so for the Cox point processes, the
canonical models for clustered point patterns. In the contribution we discuss several other options how to
define inhomogeneous Cox point process models that result inpoint patterns with different types of geometric
structure. We further investigate the possible parameter estimation procedures for such models.
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INTRODUCTION

In this paper we want to discuss the problem
of introducing inhomogeneity into spatial Cox
point processes. In contrast with the Markov point
processes, where several models with different types
of inhomogeneities (or different mechanisms how
to introduce inhomogeneity into the homogeneous
model) were introduced (see,e.g., Jensen and Nielsen,
2001 for the overview), looking through the papers
about Cox point processes we see that the only
used type of inhomogeneous model is the location
dependent thinning (resulting in the so-called second
order intensity reweighted point process, Baddeleyet
al., 2000).

There are two reasons for this situation. The
first is the simplicity and tractability of moment
estimation procedures for the parameters of the
location dependent thinning model whereas for other
kind of inhomogeneities it is not clear what to do since
the models are highly “nonlinear” in nature. We will
show in the sequel that certain approximations can deal
with this problem and it is possible to derive reasonable
parameter estimators also for the more complicated
inhomogeneities.

The second reason is that by Markov point
processes with strong negative interactions (e.g.,
hardcore interaction) it is clearly visible that different
types of inhomogeneities produce point patterns with
very different geometrical structure. Which means that
for fitting the data with such strong interactions (like,

e.g., cell tissues or advanced materials like sinter
filters with gradient structure – see,e.g., Hahnet al.,
2003 for examples) it is necessary to have a correct
inhomogeneous model. On the other side, the type of
data usually modelled by Cox point processes (like
different plant communities in ecology) do not usually
exhibit interactions strong enough to make the misfit
we get by fitting the location dependent thinning type
inhomogeneity obvious at first sight. Thus the misfit is
pragmatically ignored in the applications.

Let us start by explaining what we mean
by different geometrical structure. In Fig. 1, we
see examples of realizations of four different
inhomogeneous hardcore point processes with the
same intensity function.

Fig. 1. Examples of different inhomogeneous Markov
point processes with the same intensity function. For
details see the text.
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The inhomogeneity was introduced into the model
by (from left to right) an inhomogeneous first-
order potential (Ogata and Tanemura, 1986), location
dependent thinning (Baddeleyet al., 2000), a 1-1
spatial transformation of the homogeneous point
pattern (Nielsen and Jensen, 2004) and by location
dependent scaling (Hahnet al., 2003).

When examining the point pattern produced by
location dependent thinning we see that this model
dilutes the interaction (or the geometrical structure)
of the original homogeneous model in a special way
– the repulsive interactions so obvious in the area
with high intensity are hardly recognizable in the area
with low intensity – the point pattern there looks
almost like a Poisson point process. All the other
models preserve more interactions in the area with
low intensity,i.e., more from the geometrical structure
of the homogeneous version of the hard-core model.
The other extreme is the point pattern produced by
location dependent scaling which keeps the same
geometrical structure in any part of the observation
window independently of the intensity function.

The fact, that the situation is similar also for the
Cox point processes is illustrated in Fig. 2 where
we can see realizations of several shot-noise Cox
processes with the same first order intensity function.
All three processes were derived from the same
homogeneous Thomas process but different types of
inhomogeneity were used.

Here we can see the location dependent thinning
type inhomogeneity in the middle panel and again we
observe the dilution of the clusters in the area with
low intensity. The point pattern in the low intensity
area looks not like a cluster process but almost like
a Poisson process. The other two point patterns are
obviously different – the left one having the same
clusters but distributed inhomogeneously in the space,
the right one showing a location dependent scaling
type of behaviour where the point patterns in areas
with different intensity look like scaled copies of the
same homogeneous template process. The clustered
nature of the point pattern is preserved also in the areas
of low intensity. We will discuss the exact models from
which the point patterns were generated in detail later
in the paper.

Nevertheless the differences between the different
inhomogeneities become less pronounced when the
interactions are weaker (i.e., the clustering is weaker).
Fig. 3 shows what happens if we double the scale of
the clusters (of the homogeneous template) and keep
the rest of the model parameters the same as in Fig. 2.
Here we still can see the differences in the geometrical
structure in the areas of low intensity but the difference
is not as obvious as in Fig. 2.

Fig. 2. Examples of different inhomogeneous shot-
noise Cox point processes with strong interactions and
the same intensity function. For details see the text.

Fig. 3. Examples of different inhomogeneous shot-
noise Cox point processes with moderate interactions
and the same intensity function. For details see the text.

Concerning the estimation of the models we
already said that the reason, why the location
dependent thinning models are so popular, is the
simplicity of moment estimation in such models. The
higher order intensity functionsρ(k)(x1, . . . ,xk), k ≥ 2
are namely equal to the product

ρ(k)(x1, . . . ,xk) = ρH(x1, . . . ,xk)
k

∏
i=1

ρ(xi) , (1)

of the k-th order intensity function of some
homogeneous point process and the product of the first
order intensity function of the thinned processρ(xi) =

ρ(1)(xi) for the pointsxi from the point configuration
x = (x1, . . .xk). And this fact makes it possible to
estimate first the inhomogeneity –i.e., the (first
order) intensity functionρ, and then conditionally on
this estimate to proceed with the estimation of the
interaction parameters from the higher order intensity
functions in the same way as in the homogeneous case.
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However this strategy is not applicable to the other
types of inhomogeneities. There the inhomogeneity
enters the model in a more “nonlinear” way, thus we
do not have the product structure for the higher order
intensity functions.

But we can use other properties of the models for a
2-step estimation of the inhomogeneity parameters and
subsequently the interaction parameters. For example
in the transformation model we can estimate the
transformation from the intensity function, transform
the point pattern back by the estimated transformation
and then estimate the interaction parameters like in
the homogeneous case (Nielsen and Jensen, 2004). Or
for the locally scaled model we can estimate the local
scaling function from the intensity function and then
conditionally on this estimate of the inhomogeneity
parameters (parametrizing the local scaling function)
use the pseudolikelihood methods to estimate the
interaction parameters of the model (Prokešov́a et al.,
2006). Inspired by some of these ideas we derive two
step moment estimation procedures for several kinds
of inhomogeneous Cox processes.

PRELIMINARIES

We first recall the basic notions and introduce
our notation. For more detailed information see the
standard references Daley and Vere-Jones (1988) and
Stoyanet al. (1995).

Let X ⊆ R
d andX be a point process onX . For

a Borel setA in R
d |A| will denote the volume ofA and

|X ∩A| the number of pointsX has inA. For anR > 0
we will denoteB(0,R) the ball centered in the origin
with radiusR.

For any given point u ∈ R
d let du be the

infinitesimal region that contains the pointu.
Following Diggle (2003) we can define the (first-order)
intensity functionρ of X by

ρ(u) = lim
|du|→0

(

E|X ∩du|
|du|

)

, (2)

i.e., the mean number of points fromX occurring in
du; and the second-order intensity functionρ(2)(u,v)
by

ρ(2)(u,v) = lim
|du|,|dv|→0

(

E|(X ∩du)(X ∩dv)|
|du||dv|

)

. (3)

When X is simple (it does not have multiple
points) then the intuitive meaning ofρ(2)(·, ·) is that
ρ(2)(u,v)|du||dv| is the approximate probability that
du and dv each contain a point fromX , where

u 6= v. Higher order intensity functions are defined
analogically.

If X is stationary (i.e., its distribution is invariant
with respect to the simultaneous shifts of all the points
in X), thenρ(u) = ρ = const, and

ρ(k)(u,v1, . . . ,vk−1) =

ρ(k)(0,v1−u, . . . ,vk−1−u) . (4)

Thus all the k-th order intensity functions can be
reduced to equivalent functions of only(k − 1)
arguments.

In the stationary case two important summary
statistics, which are often used in the applications,
are defined by means of the second order intensity
function ρ(2). The so-called pair correlation function
(sometimes called simply theg-function) is defined by

g(u,v) =
ρ(2)(u,v)

ρ2 , (5)

and because of the reducibility (Eq. 4) ofρ(2) it is
equivalent to a function of one argument

g(u,v) = g(u− v), u,v ∈ R
d . (6)

The fact that the correlation function of a stationary
point process depends only on the difference of the
locationsu andv and not on the locations themselves is
an important property of the stationary point processes.
In the sequel we will denote theg-function of a
stationary process as a function of just one argument,
as is usual in the literature. For the Poisson point
process (i.e., a process with no interactions) theg-
function is identically equal to 1.g-function values
larger than 1 indicate positive correlation between the
occurrence of the points of the point process in the
locationsu, v, smaller values than 1 indicate negative
correlations.

The second important statistic is theK-function
defined by

K(r) =
∫

‖u‖<r
ρ(2)(0,u)du/ρ2

=
∫

‖u‖<r
g(u)du , r > 0,

The K-function corresponds to the mean number of
points of the point pattern in a ballB(x,r) centered
in a random pointx of the point pattern divided by
the intensity. ThusK(r) = πr2 for the Poisson point
process inR2, larger/smaller values ofK-function than
πr2 indicating respectively clustering/inhibition in the
point process at ranger.
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COX PROCESSES

Let X ⊆ R
d and{Λ(u),u ∈ X} be a non-negative

random field. The well-known definition states that a
point processX on X is a Cox point process with
the driving fieldΛ if conditionally onΛ = λ , X is a
Poisson point process with the (first order) intensity
functionλ . For the intensity functions then holds

ρ(k)(v1, . . . ,vk) = E
k

∏
i=1

Λ(vi) . (7)

A Cox point process is stationary if and only if the
driving field is stationary.

The two most often used classes of spatial Cox
point processes are the log Gaussian Cox processes
(Møller et al., 1998) and the shot noise Cox
processes (Møller, 2003). Even though these can be
generalized and unified in the framework of Lévy
based Cox processes (Hellmundet al., 2008) for ease
of exposition we stick to the two classical models.

Let {Ψ(u) : u ∈ X } be a Gaussian random
field. Then the Cox processX with the driving field
Λ(u) = exp(Ψ(u)) is called the log Gaussian Cox
process. Since the distribution of the Gaussian field
Ψ is completely determined by the mean value field
m(u) = EΨ(u) and the covariance functionc(u,v) =
Cov(Ψ(u),Ψ(v)) so is the distribution ofX and it holds

ρ(u) = exp

(

m(u)+
1
2

c(u,u)

)

, (8)

ρ2(u,v) = ρ(u)ρ(v)exp(c(u,v)) . (9)

The other class of shot noise Cox processes is
defined by the driving fieldΛ of the form

Λ(u) = ∑
(r,w)∈Φ

r k(w,u) . (10)

Here k is a kernel,i.e., a measurable, nonnegative
function onR

d ×R
d such thatk(w, ·) is a probability

density for all w, and Φ is a Poisson point process
on (0,∞) × X with a locally integrable intensity
measureζ . Thus the shot noise Cox process has the
same distribution as the superposition

⋃

(r,w)∈Φ X(r,w)

of independent Poisson processesX(r,w) with intensity
functions rk(w, ·). The shot noise Cox process is
stationary if the measureζ is translation invariant
with respect to shifts in the spatial coordinatew ∈ X

and if the kernelk is invariant under simultaneous
translations in both coordinates, thus being just a
function of the differencek(w,u) = k(w−u).

The first and second order intensity function are
given by

ρ(u) =
∫ ∫

r k(w,u)ζ (dr,dw) (11)

ρ(2)(u,v) = ρ(u)ρ(v) (12)

+
∫ ∫

r2k(w,u)k(w,v)ζ (dr,dw) .

Example. The simplest example of a shot noise
Cox process is the so-called modified Thomas process
(Thomas, 1949) (in the sequel we will call it shortly a
Thomas process). InR2 it is given by the choice

ζ (dr,dw) = µ δν(dr)dw , (13)

where δν denotes the Dirac measure inν , dw
integration with respect to the Lebesgue measure
and k(x) = exp(−‖x‖2/(2σ2))/(2πσ2) the bivariate
normal kernel with scale parameterσ > 0. Thus it
corresponds to a superposition of clusters

⋃

w∈Φ′ Xw
whereΦ′ is a stationary Poisson process with intensity
µ (mother intensity) and each motherw generates
a Poisson clusterXw of daughter points with mean
number of daughter points in the cluster equal toν
and probability distribution function of the location of
the daughter points relative to its parent is a bivariate
radially symmetric normal distribution. We can easily
derive thatρ(u) = µν and

ρ(2)(u,v) =

µ2ν2
(

1+
1

4πσ2µ
exp

(

−
‖u− v‖2

4σ2

))

. (14)

LOCATION DEPENDENT
THINNING

Now we review the most popular type of
inhomogeneity in spatial point processes and the
moment estimation methods available for this type of
(parametric) models.

Let X ⊆ R
d and X be a homogeneous point

process onX (by homogeneous we mean stationary
- for X = R

d , or a restriction of a stationary point
process toX ⊂ R

d) and let p : X → [0,1] be a
function onX . LetY be the point process

Y = {x ∈ X : R(x) ≤ p(x)} , (15)

whereR(x) ∼ Uniform[0,1] are i.i.d. random variables
independent ofX . Then Y is a location dependent
thinning of X with retention probabilitiesp(x). ForY
then holds

ρ(k)
Y (v1, . . . ,vk) = ρ(k)

X (v1, . . . ,vk)
k

∏
i=1

p(vi) , (16)
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which implies Eq. 1 and it is possible to define
consistently an inhomogeneous version of theg-
function

gi(u,v) = gi(u− v) =
ρ(2)(u,v)
ρ(u)ρ(v)

, (17)

which depends only on(u−v) and the inhomogeneous
K-function

Ki(r) =
∫

‖u‖<r
gi(u)du , r > 0 , (18)

which is equal to theK-function of the original
unthinned processX . Like for the stationary processes
the inhomogeneousg-functiongi will be denoted as a
function of only one argument.

Let us remark here, that processes derived by
location dependent thinning are not the only ones for
which Eq. 17 defines consistently the inhomogeneous
g-function. The construction works for a broader
class of processes called second-order intensity-
reweighted stationary (SOIRS) point processes. These
were introduced in Baddeleyet al. (2000), as was the
inhomogeneousg-function. Nevertheless the SOIRS
processes do not generally fulfill Eq. 1 fork > 2.

Let us now suppose that the point process model
is parametrized by a vector parameterψ consisting of
two subvectorsψ = (β ,θ), whereβ parametrizes the
thinning function pβ (x) (inhomogeneity parameter)
and θ parametrizes the original homogeneous point
processXθ with fixed constant intensity.

Example. Inhomogeneous Thomas process with
log-linear intensity function (Waagepetersen, 2007):
Let X ⊆ R

2, Xθ be a Thomas process with mother
intensity µ, mean number of daughter points in a
cluster equal toν and k the bivariate normal kernel
with scale parameterσ . And let z(u) ∈ R

k be a vector
of covariates that are recorded in the locationu ∈ X

and let us define the retention probability

p(u) =
1
M

exp
(

z(u)β T )

, (19)

whereM = maxu∈X (exp(z(u)β T ). Then

ρ(u) =
µν
M

exp
(

z(u)β T )

, (20)

ρ(2)(u,v) = ρ(u)ρ(v)gi(u− v) , (21)

andgi(u− v) = gθ (u− v) is equal to theg-function of
the homogeneous Thomas process

1+
1

4πσ2µ
exp

(

−
‖u− v‖2

4σ2

)

. (22)

After the reparametrizationβ0 = log(µν/M) we have

ρ(u) = ρβ (u) = exp
(

β0 + z(u)β T )

. (23)

Our inhomogeneity parameter is thenβ = (β0, . . .βk)
and interaction parameterθ = (µ,σ).

The estimation in such models then proceeds as
follows: we estimate the inhomogeneity parameter
β̂ from the first order moment propertiesi.e., by
maximization of the Bernoulli composite likelihoodLB
derived from the first order intensity function

LB(β ) = exp

(

−
∫

X

ρβ (u)du

)

∏
x∈Y∩X

ρβ (x) . (24)

If there is a uniqueβ which maximizesLB we can get
it as the solution of the estimating equation

∑
x∈Y∩X

d
(

logρβ (x)
)

dβ
−

∫

X

d
(

logρβ (x)
)

dβ
ρβ (u)du = 0 .

(25)
This is an unbiased estimating equation for processes
of location dependent thinning type. Note thatLB is
actually equal to the likelihood of an inhomogeneous
Poisson process with intensity functionρβ (u). Thus
the estimate of the first-order parameterβ is obtained
by ignoring the interactions in the point processY .
In the sequel we will denotêρ = ρβ̂ . Asymptotic
properties of the estimator̂β were investigated in
Waagepetersen (2007) and Waagepetersen and Guan
(2009).

In the second step we estimate the interaction
parameterθ conditionally onβ = β̂ . There are several
options, how to do this.

The oldest one is the minimum contrast estimation
for thegi or Ki function (Diggle, 2003; Waagepetersen
and Guan, 2009). Or we can use the composite
likelihood approach (Guan, 2006) and findθ as the
argument of maxima for the composite (log) likelihood
function

logCL(θ) =

∑
x 6=y∈Y∩X ,‖x−y‖<R

[

log(ρ̂(x)ρ̂(y)gθ (y− x))−

log

(

∫

X

∫

X

ρ̂(u)ρ̂(v)gθ (u− v)I(‖u− v‖ < R)dudv

)

]

,

whereI(·) denotes the indicator function andR > 0 is
a user specified tuning constant.

Another version of the composite log likelihood
function may be defined by

logCL′(θ) = ∑
x 6=y∈Y∩X ,‖x−y‖<R

log(ρ̂(x)ρ̂(y)gθ (y− x))−

∫

B(0,R)

∫

X ∩(X −u)
ρ̂(x)ρ̂(x+u)gθ (u)dxdu .
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This was introduced under the name of second order
object function in Waagepetersen (2007).

Or we can apply a so called Palm likelihood
function LP. This was recently introduced for the
stationary case by Tanakaet al. (2007) and the
method is based on the Poisson approximation of the
likelihood of the process of differences(X ∩W ) −
(X ∩W ) between the observed points ofX . Because
the intensity function of (X ∩ W ) − (X ∩W ) is
expressed by means of the intensityλ0 of the Palm
measure ofX the function

logLP(θ) = ∑
x 6=y∈X∩X ,‖x−y‖<R

log (|X ∩W |λ0(x− y;θ))

−|X ∩W |
∫

Rd
I(‖u‖ < R)λ0(u;θ)du ,

is called the (log)-Palm likelihood. For details see
Tanakaet al. (2007). This method can be directly
generalized to the inhomogeneous case of location
dependent thinned processes if we define

logLP = ∑
x 6=y∈Y∩X ,‖x−y‖<R

log(ρ̂(y)gθ (y− x))

− ∑
x∈Y∩X

∫

X ∩B(x,R)
ρ̂(u)gθ (u− x)du ,

whereR > 0 is a tuning constant. The maximum Palm
likelihood estimate ofθ is the value which maximizes
logLP = logLP(θ). Further details and a simulation
study comparing the methods introduced above can be
found in (Prokěsov́a and Jensen, in preparation).

Example. For the inhomogeneous Thomas process
with log-linear intensity function the (vector) first
order estimation equation (Eq. 25) becomes simply

∑
x∈Y∩X

(1,z(x)) =
∫

X

(1,z(u))exp
(

β0 + z(u)β T )

du .

(26)

The implementation of the composite or
Palm likelihood estimation ofθ = (µ,σ) is then
straightforward when using the closed form of
the g-function (Eq. 22). The last parameterν is
obtained fromβ0 = log(µν/M) and the valueM =

maxu∈X (exp(z(u)β̂ T ).

INTRODUCING INHOMOGENEITY
INTO COX PROCESSES

Let us start again with the log Gaussian Cox
processes. We said already that their distribution is
completely determined by the mean value field and

the covariance function of the corresponding Gaussian
field Ψ or equivalently it is completely determined by
the first and second order intensity function (since we
have the 1-1 correspondence given by the Eqs. 8 and
9). This means that as far as the covariance function
c(u,v) is translation invariant, the (inhomogeneous)
log Gaussian Cox processX is of the location
dependent thinning type. For the case of the log-linear
intensity function dependent on the covariatesz(u) we
can reparametrize

Λ(u) = exp
(

z(u)β T +Ψ(u)
)

, (27)

with EΨ(u) = −c(0,0)/2 which means
E exp(Ψ(u)) = 1 (Ψ is now a stationary Gaussian
field) and having the covariance function parametrized
by θ we can apply the estimation procedures from
the preceding chapter. Since in the literature there
are not any cases with covariance function which
is not translation invariant we can conclude that all
practically usable log Gaussian Cox processes are of
the location dependent thinning type.

We would like to remark here, that the main
advantage of the log Gaussian Cox processes,i.e.,
the simplicity of the specification of the model,
changes to a disadvantage from the viewpoint of the
modelling of point patterns with diverse geometrical
structure. Namely simple specification by onlyµ and
c corresponds to the full determination of the model
by only ρ(1) and ρ(2). It follows that all the higher
(≥ 3) order product intensity functions are determined
by the first and second order intensity functions and
consequently the possible geometrical structure of
the resulting point patterns is highly restricted. Thus,
e.g., for modelling the first and third point pattern
from Fig. 2 log Gaussian Cox processes are not a
good choice. Here one should use the shot noise Cox
processes which are more flexible.

We can introduce inhomogeneity in the shot noise
Cox process in several ways. Let us suppose that
fβ : X → R

+ is a function bounded away from zero
and infinity onX , parametrized by the inhomogeneity
parameterβ and k and ζ are a translation invariant
kernel and an intensity measure on(0,∞) × X

invariant with respect to shifts in the spatial coordinate
x ∈ X .

We can define a model with a new kernel

k′β (w,u) = fβ (u)k(w,u) , (28)

(thus the kernel k′ no longer integrates to 1,
nevertheless it is possible to reparametrize this model
in such a way, that we still havek′ a probability kernel,
but the formulas are more complicated (Hellmundet
al., 2008). Then we obtain a point process of the
location dependent thinning type withρ(u) ∝ fβ (u)
and a well defined inhomogeneousg-function equal
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to theg-function of the homogeneous model and we
can use the estimation procedures from the preceding
chapter.

An example of such a point process can be seen
in the middle panel of Fig. 2. This is a realization of
the inhomogeneous Thomas process model from the
preceding chapter withβ = (β0,β1), z(u) = u2 and
fβ = exp(β1u2). We see clearly how the strength of the
clustering disappears in the areas with low intensity
since the clusters are gradually thinned out even to
individual points in the bottom part of the panel. Such
a point pattern would correspond,e.g., to a situation
when we want to model a biological population of
seedlings, produced by a homogeneous population
of older plants, where the seedlings were thinned
by different ecological conditions at their respective
location.

A completely different point pattern can be seen in
the first panel of Fig. 2 – here we have the same clusters
(same size of clusters and number of points in the
clusters) but their number (=intensity) in different parts
of the observation window is different. Keeping to
our plant community example this would correspond
to a situation, where we have homogeneous outer
ecological conditions but the sources of seedlings
(older plants) are unevenly distributed in space. This
point process was derived from the homogeneous one
by setting

ζ ′(dr,dw) = fβ (w)ζ (dr,dw) , (29)

and keeping the same kernelk.

Concerning the question of parameter estimation
of the model (Eq. 29) by moment methods we can plug
in into Eqs. 11 and 12

ρ(u) =
∫ ∫

r k(w,u) fβ (w)ζ (dr,dw) , (30)

ρ(2)(u,v) = ρ(u)ρ(v) (31)

+
∫ ∫

r2k(w,u)k(w,v) fβ (w)ζ (dr,dw) ,

and see that the separation of the inhomogeneity
parameters is no longer possible. Nevertheless we
can still accept the pragmatic attitude and under
the assumption that the scale of change of the
inhomogeneity function is larger than the size of the
clusters (i.e., the scale/practical range of the kernel
functionk) we can use the approximation

ρβ ,θ (u) ∼ fβ (u)
∫ ∫

r kθ (w,u)ζθ (dr,dw) , (32)

to obtain from the estimation (Eq. 25) a (biased, but
under the above mentioned assumption reasonable)

estimateβ̂ of the inhomogeneity parameterβ and
subsequently with the approximation

ρ(2)

β̂ ,θ
(u,v) ∼ ρβ̂ ,θ (u)ρβ̂ ,θ (v)

+ fβ̂ (
u+ v

2
)
∫ ∫

r2kθ (w,u)kθ (w,v)ζθ (dr,dw) ,

we can use the composite or Palm likelihood to obtain
the estimate of the interaction parameterθ .

Example. Let us consider the inhomogeneous
Thomas process withζ (dr,dw) = fβ (w)µδν(dr)dw,
i.e., the mothers are distributed inhomogeneously
according to the intensity functionfβ µ. Then by the
approximation (Eq. 32) we get

ρβ ,θ (u) ∼ fβ (u) ·const, (33)

and by choosing,e.g., fβ (u) = exp(z(u)β T )/M we see
that we obtain the same estimate ofβ like for the
log-linear inhomogeneous Thomas process of location
dependent thinning type from the previous chapter.
Nevertheless for the second order intensity function we
get the approximation

ρ(2)

β̂ ,θ
(u,v) ∼ ρβ̂ (u)ρβ̂ (v) ·



1+
fβ̂ (u+v

2 )

fβ̂ (u) fβ̂ (v)

exp
(

−‖u−v‖2

4σ2

)

4πσ2µ



 , (34)

thus the obtained estimate ofθ by either the composite
or Palm likelihood method will be influenced by the
weighting factor offβ̂ (u+v

2 )/( fβ̂ (u) fβ̂ (v)).

When constructing the inhomogeneous models it is
also possible to include the inhomogeneity functionfβ
into several ingredients of the shot noise Cox process
specification, thus obtaining point patterns with more
complicated geometrical structure. Our last example is
the point pattern in the right hand panel of Fig. 2. We
can notice a certain resemblance with the right hand
panel in Fig. 1 – the locally scaled point pattern. Here
also the different parts of the figure look like a scaled
version of the same clustered point pattern, where the
intensity is high, the clusters are more compact and
where the intensity is low, they are more loose.

This type of inhomogeneous shot noise Cox
process was derived from the homogeneous model by
defining the kernelk′

k′(w,u) = kθ

(

w
fβ (w)

,
u

fβ (w)

)

1
f (w)d , (35)

(note thatk′ is again a probability density inu) and the
intensity measureζ ′ of Φ′ by

ζ ′(dr,dw) = ζθ (dr,dw)/ fβ (w)d . (36)
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Hered is the dimension of the spaceX , i.e., d = 2 for
the planar case andfβ has the meaning of the scaling
function – i.e., the point pattern looks at different
places like a scaled version of some homogeneous
template point process scaled with the factorfβ (u).

Concerning the parameter estimation we would
suggest to proceed analogically to the Markov point
process case (Prokešov́a et al., 2006),i.e., with a two
step estimation procedure, first estimating the function
fβ from the Poisson likelihood (Eq. 24) using the
approximation

ρβ (u) ∼
1

f d
β

∫ ∫

r kθ (w,u)ζθ (dr,dw) , (37)

and then instead of the pseudolikelihood (used in
the Markov point process case) use the composite
likelihood or Palm likelihood with the approximation
for the second order intensity function

ρ(2)

β̂ ,θ
(u,v) ∼

1
fβ̂ (u)d fβ̂ (v)d

[

(

∫ ∫

r kθ (w,u)ζθ (dr,dw)

)2

+
∫ ∫

r2 kθ

(

w,
u

fβ̂ ( u+v
2 )

)

kθ

(

w,
v

fβ̂ ( u+v
2 )

)

ζθ (dr,dw)

]

∼ ρβ̂ (u)ρβ̂ (v)gX





u

f d
β̂
( u+v

2 )
,

v

f d
β̂
( u+v

2 )



 ,

wheregX denotes the homogeneous version of theg-
function for the homogeneous shot noise Cox process
with kernelkθ and intensity measureζθ .

CONCLUSIONS

In this paper we discussed the problem of defining
an inhomogeneous model for clustered point process
data, which possess a specific geometrical structure
which makes the modelling by the locally thinned
point process models inappropriate. The disadvantage
of such models is a complex structure of the intensity
functions which makes the parameter estimation by
moment methods (be it minimum contrast ofK-
function, Poisson likelihood, composite likelihood
or Palm likelihood estimation) intractable without
accepting certain approximations which lead to biased
estimates. But parameter estimation in these models is
possible, which was illustrated by the methods in this
paper. Nevertheless the suggested methods and their
properties deserve further investigation.
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