© Acta hydrotechnica 23/38 (2005), Ljubljana ISSN 1581-0267 1 UDK / UDC: 519.61/.64:532.5 Prejeto / Received: 14. 7. 2005 Izvirni znanstveni članek – Original scientific paper Sprejeto / Accepted: 9. 1. 2006 PRIMERJA V A MED FORCHEIMERJEVIM IN BRINKMANOVIM MODELOM KONVEKTIVNEGA TOKA V POROZNI KOTANJI Z ROBNOOBMO ČNO INTEGRALSKO METODO COMPARISON BETWEEN THE FORCHEIMER AND THE BRINKMAN MODEL FOR CONVECTIVE FLOW IN POROUS CA VITY WITH BOUNDARY DOMAIN INTEGRAL METHOD Renata JECL, Leopold ŠKERGET, Janja KRAMER V prispevku je predstavljena uporaba Forcheimerjevega modela za analizo konvektivnega toka v porozni kotanji s poudarkom na dolo čitvi vpliva dodatnega (Forcheimerjevega) vztrajnostnega člena v gibalni ena čbi na hitrost in skupni prenos toplote. Znano je, da je vpliv tega člena pri inženirskih problemih v zasi čeni porozni snovi minimalen, kar pa še ni bilo dokazano z uporabo metode robnih elementov (MRE) ali s katero od njenih razširitev. V prispevku je zato podana numeri čna rešitev problema naravne konvekcije v porozni kotanji z uporabo robnoobmo čne integralske metode (ROIM), pri čemer so hitrosti in skupni prenos toplote izra čunani za razli čna modificirana Rayleighova in Darcyjeva števila, rešitve pa primerjane z objavljenimi rezultati na osnovi Brinkmanovega modela. Klju čne besede: Forcheimerjev model, robnoobmo čna integralska metoda, porozna snov, naravna konvekcija The use of the Forcheimer model for analyzing the convective flow in a porous cavity is represented, emphasizing the investigation of the effect of the additional (Forcheimer) inertia term in momentum equation on the velocity and global heat transfer through the cavity. The effects that this term has upon the engineering parameters of interest for the case of a fluid saturated media, are known to be minimal, however, this has not been confirmed yet with the use of the boundary element method (BEM) or any of its extensions. Therefore the numerical solution of the problem of natural convection in porous cavity using the boundary domain integral method (BDIM) is presented, where the velocities and the total heat transfer are calculated for different modified Rayleigh and Darcy numbers and the solutions are compared with published results obtained with the Brinkman model. Key words: Forcheimer model, boundary domain integral method, porous medium, natural convection 1. UVOD Z vzgonom povzro čen konvektivni tok v zasi čeni porozni snovi je pomemben zaradi mnogih aplikacij v inženirski praksi. V literaturi najdemo kar nekaj študij, ki obravnavajo ta problem v razli čnih geometrijah in z razli čnimi toplotnimi robnimi pogoji. Rezultati za kotanjo, pri kateri so vertikalne stene razli čnih temperatur, dobljeni z uporabo Brinkman-Darcyjeve formulacije, so podani drugje (med drugim tudi v Lauriat & 1. INTRODUCTION Buoyancy induced convection in a fluid saturated porous media is of considerable interest, due to its many applications in energy-related engineering problems. Studies have been reported dealing with different geometries and a variety of heating conditions. For example, a vertical cavity in which a horizontal temperature gradient is induced by side walls maintained at different temperatures has been analyzed by using the Brinkman- Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 2 Prasad, 1987; Vasseur et al., 1990; Jecl et al., 2001; Lauriat & Prasad, 1989), za primer naravne konvekcije v horizontalnem poroznem sloju, gretem od spodaj, pa v (Lage, 1992). Numeri čne metode, uporabljene za reševanje osnovnih ena čb, so v ve čini primerov metoda končnih razlik (MKR) in metoda kon čnih elementov (MKE), medtem ko je v pri čujo čem prispevku uporabljena robnoobmo čna integralska metoda (ROIM). Gibalna ena čba toka teko čine skozi porozno snov je ekvivalent Navier-Stokesovi gibalni ena čbi za čisto teko čino. Pri študiju prenosnih pojavov v porozni snovi najdemo v literaturi kar nekaj razli čnih oblik gibalne ena čbe (Nield & Bejan, 1999). Namen našega prispevka je ugotoviti vpliv Forcheimerjevega člena v gibalni ena čbi na hitrost in skupni prenos toplote z uporabo robnoobmo čne integralske metode. Teorija laminarnega toka skozi porozno snov temelji na eksperimentih, ki jih je pri študiju enodimenzijskega toka vode skozi homogen in nedeformabilen porozen material izvajal francoski inženir Henry Darcy leta 1856. Rezultat njegovih poizkusov je linearni zakon prepustnosti (Darcyjev zakon), ki podaja proporcionalno zvezo med hitrostjo toka in tla čno razliko kot () P v ∇ − = µ K , kjer je µ dinami čna viskoznost teko čine, koeficient K pa prepustnost. Prepustnost je neodvisna od teko čine, njena vrednost je odvisna le od geometrije porozne snovi, v splošnem je tenzor drugega reda. V primeru izotropne porozne snovi je prepustnost skalar in Darcyjev zakon lahko zapišemo kot: extended Darcy formulation, given elsewhere (among others in Lauriat & Prasad, 1987; Vasseur et al., 1990; Jecl et al., 2001; Lauriat & Prasad, 1989) and for the natural convection in the porous layer heated from below by (Lage, 1992). The numerical methods used for the solution of governing equations are the finite difference method (FDM) and the finite element method (FEM) while in the present contribution the boundary domain integral method (BDIM) is used. The momentum equation for flow of the fluid through the porous media is similar to the Navier-Stokes momentum equation for pure fluid. When studying transport phenomena in porous media different models of momentum equations could be found (Nield & Bejan, 1999). The aim of this paper is to determine the influence of the Forcheimer term in momentum equation to velocity and heat transfer using the boundary domain integral method. The theory of laminar flow through the porous media is based on an experiment, of unidirectional flow through a homogenous, fixed and nondeformable porous medium, originally performed by the French engineer Henry Darcy (1856). The result of his experiment was the linear law of permeability (Darcy’s law), where the relationship between velocity and pressure difference is given as ( ) P v ∇ − = µ K , where µ is the fluid dynamic viscosity and K is permeability of the porous media. Permeability depends only on geometry of porous media and is generally a second order tensor. In case of an isotropic porous media the permeability is a scalar and the Darcy law can be written as: v K P µ − = ∇ . (1) Tako kot pri katerem koli problemu, definiranem v toku teko čine, je tudi v porozni snovi režim toka definiran z Reynoldsovim številom Re, ki dolo ča razmerje med vztrajnostnimi in viskoznimi silami. V splošnem je obveljalo prepri čanje, da Darcyjev zakon velja, dokler je 10 Re < – hitrosti so majhne in govorimo o laminarnem režimu toka skozi porozno snov, pri katerem prevladujejo As in any fluid flow problem, the flow regime in porous media is given with Reynolds number Re, defined as the ratio between inertia and viscous forces. It is generally believed that the Darcy law is valid until 10 Re < , velocities are small, the flow regime through porous media is laminar and viscous forces are predominant. When the Reynolds number is greater, the inertia forces Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 3 viskozne sile. Ko pa je Reynoldsovo število ve čje, so ve čje tudi vztrajnostne sile in Darcyjevemu zakonu je treba dodati člene, s katerimi zajamemo vpliv pove čanja hitrosti. Najenostavnejša dopolnitev linearnega zakona je Darcyjev zakon z upoštevanjem vztrajnostnih u činkov po analogiji z Navier- Stokesovo ena čbo: are higher than the viscous ones and some new terms have to be added to the Darcy equation to take into account the effect of the velocity deviations. First, a very simple extension of the Darcy law is the one with the addition of the terms covering the influence of inertia effects analogous to the Navier-Stokes equation: () v K P v v 1 t v 1 2 µ φ ∂ ∂ φ ρ − ∇ − = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∇ + , (2) kjer so ρ gostota teko čine, φ poroznost in t čas. Naslednja velikokrat uporabljena gibalna ena čba je Brinkmanova ena čba: where ρ is the fluid density, φ is the porosity and t time. Next, often used momentum equation is the Brinkman momentum equation: () v v K P v v 1 t v 1 2 e 2 ∇ + − ∇ − = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∇ + µ µ φ ∂ ∂ φ ρ ,( 3 ) kjer e µ predstavlja dinami čno viskoznost porozne snovi. Z ena čbo je mogo če zadostiti brezzdrsnemu robnemu pogoju, ki pravi, da je hitrost na trdnem robu (na površini, ki omejuje porozno snov) enaka ni č. Pri tem velja omeniti, da se Brinkmanova ena čba prevede v Navier-Stokesovo gibalno ena čbo za čisto nestisljivo teko čino, ko prepustnost naraš ča preko vseh meja ( ∞ → K ), ko pa se prepustnost zmanjšuje in približuje ni č ( 0 K → ), dobimo Darcyjevo ena čbo. V literaturi zasledimo tudi uporabo Forcheimerjeve gibalne ena čbe: where e µ is the effective dynamic viscosity. The equation enables us to satisfy the no-slip boundary condition on impermeable surfaces that bound the porous media (the velocity on the boundaries is set to zero). It is important to stress out that the Brinkman equation reduces to the classical Navier Stokes equation for pure uncompressible fluid when the permeability tends to infinity ( ∞ → K ). When the permeability approaches zero ( 0 K → ) we recover the Darcy equation. In some references the Forcheimer momentum equation is also introduced as: () v v K c v K P v v 1 t v 1 2 1 F 2 ρ µ φ ∂ ∂ φ ρ − − ∇ − = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∇ + ,( 4 ) kjer je F c koeficient odvisen od geometrije por in prepustnosti in je definiran v nadaljevanju v ena čbi (8). where F c is the coefficient, which varies with the nature of porous media and permeability and is defined below in equation (8). 2. OSNOVNE ENA ČBE 2. GOVERNING EQUATIONS Makroskopske ena čbe ohranitve mase, gibalne koli čine in energije v porozni snovi dobimo s postopkom povpre čenja po reprezentativnem elementarnem volumnu The general set of macroscopic equations for conservation of mass, momentum and energy in porous media are obtained by averaging the Navier-Stokes equation for pure Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 4 (Bear & Bachmat, 1991) iz Navier-Stokesovih ena čb za čisto nestisljivo teko čino ob upoštevanju dejstva, da je za tok teko čine na voljo samo del obravnavanega volumna (izražen s poroznostjo). Te ena čbe v literaturi najdemo pod imenom Brinkmanov model, ki ga sestavljajo kontinuitetna, Brinkmanova gibalna in energijska ena čba (Lauriat & Prasad, 1987). V našem primeru smo gibalno ena čbo dopolnili še s Forcheimerjevim členom, dobljeni sistem pa je v literaturi znan kot Forcheimerjev model (Lauriat & Prasad, 1989) v obliki: uncompressible fluid over a representative elementary volume, (Bear & Bachmat, 1991), considering that only a part of the volume (expressed with porosity) is available for the flow of the fluid. These equations are known as the Brinkman model and consist of continuity equation, Brinkman momentum equation and energy equation, (Lauriat & Prasad, 1987). In our case the Forcheimer term is added to the momentum equation, and the whole set, in the literature known as the Forcheimer model (Lauriat & Prasad, 1987), can be written as: 0 x v i i = ∂ ∂ ,( 5 ) i F j j i 2 e i f i i j i j 2 i v v K c x x v v K g F x P 1 x v v 1 t v 1 − ∂ ∂ ∂ + − + ∂ ∂ − = ∂ ∂ + ∂ ∂ ν ν ρ φ φ ,( 6 ) ()() () [] () ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ = ∂ ∂ + − + ∂ ∂ j e j j j f s s f x T x x T v c T c 1 c t λ ρ ρ φ ρ φ ,( 7 ) kjer je zadnji člen na desni strani ena čbe (6) dodaten Forcheimerjev vztrajnostni člen zaradi nelinearnih u činkov, ki so posledica pove čanja hitrosti. Ostale oznake so: i v i-ta komponenta filtracijske hitrosti, v absolutna vrednost hitrosti ( 2 z 2 y 2 x v v v v v + + = = ), i x i-ta koordinata, φ poroznost, f ν kinemati čna viskoznost teko čine, e ν kinemati čna viskoznost porozne snovi, K prepustnost porozne snovi, i x P ∂ ∂ tla čni gradient, ρ gostota teko čine, i g gravitacijski pospešek. Povezava med gostoto in temperaturo je podana s funkcijo F kot () () 0 T 0 0 T T F − − = − = β ρ ρ ρ , kjer je 0 ρ referen čna gostota teko čine pri temperaturi 0 T in T β koeficient temperaturnega volumskega raztezka. Nadalje so s ρ in ρ gostote trdne in teko če faze porozne snovi, s c in f c specifi čne toplote pri konstantnem tlaku za trdno in teko čo fazo, T je temperatura, e λ pa predstavlja dejansko toplotno prevodnost zasi čene porozne snovi. Ta se obi čajno dolo či z uporabo klasi čnega ’’mešalnega’’ pravila where the last term on the r.h.s. of equation (6) is the additional Forcheimer inertia term, which includes non-linear effects due to the increase of velocity. Other parameters are i v volume-averaged velocity, v absolute value of velocity ( 2 z 2 y 2 x v v v v v + + = = ), i x the i -th coordinate, φ is porosity, f ν the fluid kinematic viscosity, e ν the effective kinematic viscosity, K permeability of porous media, i x P ∂ ∂ pressure gradient in the flow direction, ρ the fluid density, i g gravity. The normalized density-temperature variation function F is ( ) ( ) 0 T 0 0 T T F − − = − = β ρ ρ ρ , with 0 ρ denoting the reference fluid mass density at temperature 0 T and T β being the thermal volume expansion coefficient of the fluid. Furthermore s ρ and ρ are the solid and fluid densities respectively, s c and f c the solid and the fluid specific heats at constant pressure, T stands for temperature, and e λ represents the effective thermal conductivity of the saturated porous media, which is given as ( ) s f e 1 λ φ λ φ λ − + = , where f λ and s λ are Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 5 () s f e 1 λ φ λ φ λ − + = , kjer f λ in s λ predstavljata toplotne prevodnosti teko čine in trdne snovi. Forcheimerjev člen – zadnji člen na desni strani ena čbe (6) povezuje kvadrat hitrosti s koeficientom F c , odvisnim od geometrije por s prepustnostjo K. Oba koeficienta lahko izra čunamo po Ergunu, podano v (Nield and Bejan, 1999), v odvisnosti od poroznosti z naslednjimi relacijami: thermal conductivities for fluid and solid matter, respectively. Forcheimer term – the last on the r.h.s. of equation (6) connects the square of velocity with coefficient F c , dimensionless form-drag constant varying with nature of porous media, and permeability K . Using the Ergun model, as described in (Nield and Bejan, 1999), it is possible to calculate both coefficients as: () 2 1 3 F 2 3 2 150 75 . 1 c ; ) 1 ( 150 d K φ φ φ = − = ,( 8 ) kjer je d srednja vrednost premera delca. Gibalna ena čba (6), imenovana tudi Brinkman-Forcheimerjeva ena čba, ima v našem primeru dva viskozna in dva vztrajnostna člena. Prvi viskozni je obi čajen Darcyjev člen (tretji na desni), drugi pa je Brinkmanov člen ( četrti na desni), ki je analogen Laplaceovemu členu v Navier- Stokesovi ena čbi za čisto teko čino. V tem členu (Brinkmanov člen ali Brinkmanova razširitev) nastopa dejanska viskoznost e ν , ki je odvisna od geometrije porozne snovi in ima praviloma druga čno vrednost od viskoznosti teko čine f ν . Prvi vztrajnostni člen je konvektivni vztrajnostni člen, podan kot produkt hitrosti in divergence hitrosti (drugi člen na levi), drugi pa je Forcheimerjev vztrajnostni člen, zapisan kot produkt hitrosti in njene absolutne vrednosti (zadnji na desni). where d is the mean particle diameter. The momentum equation (6), commonly known as the Brinkman-Forcheimer equation, consists of two viscous and two inertia terms. The first viscous term is the usual Darcy term (third on the r.h.s.), and the second is analogous to the Laplacian term that appears in the Navier-Stokes equations for pure fluid (fourth on the r.h.s.). In the Laplace term (Brinkman term or Brinkman extension) the effective viscosity e ν is used which normally has a different value than the fluid viscosity f ν . The first inertia term is the convective inertia term represented by the velocity times its divergent (second on the l.h.s.) and the second inertia term is the Forcheimer inertia term (drag) represented by the velocity times its absolute value (last term on the r.h.s.). 3. ROBNOOBMO ČNA INTEGRALSKA METODA 3. BOUNDARY DOMAIN INTEGRAL METHOD Numeri čna metoda, izbrana za reševanje problema, je robnoobmo čna integralska metoda (ROIM), katere osnova je klasi čna metoda robnih elementov (MRE, Škerget et al., 1999). Če viskoznost razdelimo na konstantni in spremenljivi del, tako da velja f f f ν ν ν ~ + = , se Brinkmanov člen v gibalni ena čbi razdeli na dva dela in ena čba (6) se zapiše kot: The numerical method chosen for this investigation is the Boundary Domain Integral Method (BDIM) based on the classical Boundary Element Method (BEM, Škerget et al., 1999). If the viscosity is partitioned into constant and variable parts so that f f f ν ν ν ~ + = , the Brinkman extension in momentum equation is divided into two parts and the equation (6) becomes: Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 6 () i F ij f j j j i 2 f i f i i j i j 2 i v v K c ~ 2 x x x v v K g F x P 1 x v v 1 t v 1 − ∂ ∂ + ∂ ∂ ∂ + − + ∂ ∂ − = ∂ ∂ + ∂ ∂ ε ν Λ ν Λ ν ρ φ φ ,( 9 ) kjer je ij ε deformacijski tenzor, () i j j i ij x v x v 2 1 ∂ ∂ + ∂ ∂ = ε . Parameter Λ predstavlja razmerje med dejansko viskoznostjo porozne snovi e ν in viskoznostjo teko čine f ν , definirano kot f e ν ν Λ = . Nadalje se toplotna difuzivnost porozne snovi p a , definirana kot f e p c a ρ λ = , podobno kot kinemati čna viskoznost razdeli na konstantni in spremenljivi del p p p a ~ a a + = . Če razmerje toplotnih kapacitet zapišemo z izrazom () () () f s s f c c 1 c ρ ρ φ ρ φ σ − + = , se ena čba ohranitve energije (7) preoblikuje v naslednjo obliko: where ij ε represent the strain rate tensor, ( ) i j j i ij x v x v 2 1 ∂ ∂ + ∂ ∂ = ε . Parameter Λ represents the ratio between the effective viscosity of the porous media e ν and the fluid viscosity f ν defined as f e ν ν Λ = . Furthermore, the thermal diffusivity of the porous media p a , defined as f e p c a ρ λ = , is similarly as the kinematic viscosity, partitioned into constant and variable parts p p p a ~ a a + = . Introducing the heat capacity ratio with ( )() () f s s f c c 1 c ρ ρ φ ρ φ σ − + = , the heat energy equation (7) can be rewritten in the following form: ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ = ∂ ∂ + ∂ ∂ j p j j j 2 p j j x T a ~ x x x T a x T v t T σ . (10) Vodilne ohranitvene ena čbe (5), (9) in (10) z uporabo hitrostno vrtin čne formulacije zapišemo v obliki prenosnih ena čb za kinematiko, kinetiko vrtin čnosti in temperaturno kinetiko (Jecl et al., 2001). Z vektorjem vtrin čnosti i ω , ki predstavlja rotor hitrostnega polja The governing equations (5), (9) and (10) are in the next step transformed with the use of the velocity-vorticity variables formulation into transport equations for kinematics and kinetics (Jecl et al., 2001). With the vorticity vector i ω , representing the curl of the velocity field 0 x , x v e j j j k ijk i = ∂ ∂ ∂ ∂ = ω ω (11) in je po definiciji solenoidni vektor, se ra čunska shema razdeli na kinemati čni in kineti čni del, tako da se kontinuitetna ena čba in ena čba ohranitve gibalne koli čine ter energije nadomestita z ena čbama kinematike in kinetike. Kinematika je podana v obliki vektorske elipti čne Poissonove ena čbe za hitrostni vektor which is a solenoidal vector function by its definition the computational scheme is partitioned into its kinematic and kinetic parts so that the continuity and momentum equations are replaced by the equations of kinematics and kinetics. The kinematics is given by vector elliptic Poisson equation for the velocity vector 0 x e x x v j k ijk j j i 2 = ∂ ∂ + ∂ ∂ ∂ ω , (12) Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 7 ki izraža kompatibilitetni in omejitveni pogoj med vektorskim poljem hitrosti in poljem vektorja vrtin čnosti. Z namenom pospešitve konvergence in pove čanja stabilnosti vezane hitrostno-vrtin čne iterativne sheme, ena čbo (12) zapišemo v nepravi nestacionarni obliki, tako da dodamo umetni akumulacijski člen in jo zapišemo v naslednji paraboli čni difuzijski obliki: representing the compatibility and restriction conditions between velocity and vorticity field functions. To accelerate the convergence and the stability of the coupled velocity-vorticity iterative scheme, the false transient approach is used by adding the artificial accumulation term and hence the equation (12) can be written as a parabolic diffusion one: 0 x e t v 1 x x v j k ijk i j j i 2 = ∂ ∂ + ∂ ∂ − ∂ ∂ ∂ ω α , (13) kjer je α relaksacijski parameter. O čitno je, da je vodilna hitrostna ena čba (12) natan čno izpolnjena v stacionarnem stanju ( ∞ → t ), ko umetni časovni odvod hitrosti odpade. Vrtin čno kinetiko podamo z nelinearno paraboli čno difuzivno-konvektivno prenosno ena čbo vrtin čnosti, ki jo izpeljemo z delovanjem operatorja rotor na gibalno ena čbo (6), pri čemer vpeljemo še novo spremenljivko v τ , ki predstavlja modificirani vrtin čni časovni korak, definiran kot φ τ t v = : where α is a relaxation parameter. It is obvious that the governing velocity equation (12) is exactly satisfied at the steady state ( ∞ → t ), when the false time derivative vanishes. The vorticity transport is governed by the nonlinear parabolic diffusion-convection equation obtained as a curl of the momentum equation (6), where the new variable v τ , the so called modified vorticity time step, is introduced as φ τ t v = : j k ijk F 2 i F 2 j ij 2 j i f j 2 i f 2 j k ijk 2 j j i 2 f 2 j i j j i j v x v v e K c v K c x f x ~ x K x F g e x x x v x v ∂ ∂ − − ∂ ∂ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ + − ∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ φ ω φ Λ φ ω ν Λ φ ω ν φ φ ω ν Λ φ ω ω τ ω , (14) V ena čbi (14) člen ij f predstavlja prispevek zaradi u činkov spremenljivih lastnosti snovi. Forcheimerjev člen je razdeljen na dva dela. Prvi del (sedmi člen desne strani ena čbe) bo skupaj z Darcyjevim členom pridružen sistemski matriki, drugi del (zadnji člen desne strani ena čbe), ki vklju čuje prvi odvod hitrosti, pa bo skupaj z vzgonskim členom in členom nelinearnih lastnosti snovi modeliran kot del izvornega člena. Zaradi uporabe hitrostno- vrtin čne formulacije pri transformaciji energijske ena čbe vpeljemo še modificiran temperaturni časovni korak T τ , σ τ t T = v energijsko ena čbo (10) in jo zapišemo v naslednji obliki: In equation (14), the term ij f represents a contribution arising on account of non-linear material properties. The Forcheimer term is split into two parts. The first part (seventh term on the r.h.s) will be combined with the Darcy term and numerically treated in the system matrix. The second part (last term on the r.h.s), involving first-order derivatives of the velocity modulus as well as the buoyancy term and non-linear material properties term, will be modelled as a source term. For the same reason as with vorticity kinetics, we introduce the new modified temperature time step σ τ t T = into the energy equation which permits us to rewrite equation (10) in the form: Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 8 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ = ∂ ∂ + ∂ ∂ j p j j j 2 p j j T x T a ~ x x x T a x T v T τ . (15) Ena čbe (13), (14) in (15) predstavljajo nelinearni sistem ena čb, ki jih z uporabo metode utežnih ostankov (v kombinaciji z ustreznimi Greenovimi osnovnimi rešitvami) preoblikujemo v ustrezen sistem integralskih ena čb. Vsaka od teh ena čb se lahko zapiše v obliki naslednje splošne diferencialne ohranitvene ena čbe: The equations (13), (14) and (15) represent the non-linear set of equations to which the weighted residuals technique (in combination with the suitable Green function) has to be applied resulting in a set of integral equations. Each of these equations can be written as the following general differential conservation equation: [ ] 0 b u = + ℵ , (16) kjer je linearni diferencialni operator [ ] ⋅ ℵ paraboli čni difuzijski diferencialni operator, zapisan v obliki: where the linear differential operator [ ] ⋅ ℵ will be the parabolic diffusion differential operator of the form: [] t u x x u a u j j 2 ∂ ∂ − ∂ ∂ ∂ = ℵ , (17) u je poljubna funkcija polja (hitrost, vrtin čnost ali temperatura), člen b pa predstavlja nehomogeni del nelinearnih vplivov oziroma volumskih izvorov. Spremenljivka a ustreza α za kinematiko, f 2 ν Λ φ za vrtin čno in p a za temperaturno kinetiko. Ker so numeri čni rezultati v pri čujo čem prispevku omejeni na dvodimenzionalni problem, bodo vse ena čbe v nadaljevanju zapisane samo za primer ravninske geometrije. Integralska predstavitev kinematike se preoblikuje in zapiše v naslednji obliki: u is an arbitrary field function (velocity, vorticity or temperature), while the nonhomogeneous term b is generally used for the nonlinear transport effects or pseudo body forces. The term a equals α for kinematics, f 2 ν Λ φ and p a for vorticity and temperature kinetics, respectively. As the computational results of the present work are limited to the two-dimensional case, all the subsequent integral equations will consequently be written for the case of planar geometry only. The integral representation of the kinematic equation is given with the following equation: ()( ) Ω Ω ω α Γ ω α α Γ α ξ ξ Ω Ω Γ Γ d u v d t d x u e d t d u n e n v d t d n u v t , v c * 1 F 1 F , i t t j * ij t t * j ij i t t * i F i F 1 F F 1 F F 1 F ∫ ∫∫ ∫∫ ∫∫ − − + ∂ ∂ − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ∂ ∂ = ∂ ∂ + − − − . (18) Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 9 Parameter ) ( c ξ predstavlja geometrijski koeficient, povezan z osnovno rešitvijo, in je odvisen od lege izvorne to čke ξ , Γ pa je rob obmo čja Ω . Ena čba (18) opisuje kinematiko toka teko čine skozi porozno snov v integralski obliki. Transportna ena čba vrtin čnosti v integralski obliki je podana z naslednjim izrazom: Parameter ) ( c ξ denotes the fundamental solution related coefficient depending on the position of the source point ξ , Γ is the boundary of domain Ω. Equation (18) expresses the kinematic of fluid flow in the porous medium in the integral form. The vorticity transport equation is given with the following integral representation: ∫ ∫∫ ∫∫ ∫∫ ∫∫ − − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + − − ∂ ∂ − + ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ − + + − ∂ ∂ = ∂ ∂ + − − − − Ω Ω τ τ Ω τ τ Γ τ τ Γ τ τ Ω ω τ ∆ Ω τ ω φ ν φ Ω τ φ Λ φ φ ω ν Λ φ ω Γ τ φ Λ φ φ ω ω ν Λ φ Γ τ ω ν Λ φ ξ ω ξ d u 1 d d u v K c K d d x u v v e K c f F g e x ~ v d d u n v v e K c n f n F g e v n d d n u ) ( ) ( c * 1 F 1 F v v * F 2 f 2 v j * j ij F 2 j 2 j ij 2 j f 2 j v * j j ij F 2 j j 2 j j ij 2 n f 2 v * f 2 F 1 F F 1 F F 1 F F 1 F . (19) Ob uporabi opisanega postopka preoblikovanja parcialne diferencialne ena čbe ohranitve energije (15) izpeljemo naslednjo integralsko obliko: Applying a similar procedure to the heat transport equation (15) finally the next integral statement is derived: ∫ ∫∫ ∫∫ ∫∫ − − + ∂ ∂ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ∂ ∂ − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ∂ ∂ = ∂ ∂ + − − − Ω Ω τ τ Γ τ τ Γ τ τ Ω τ ∆ Ω τ Γ τ Γ τ ξ ξ d u T 1 d d x u x T a ~ T v ~ d d u v T n T a d d n u T a ) ( T ) ( c * 1 F 1 F T T j * j p j T * n p T * p F 1 F F 1 F F 1 F . (20) V vseh integralskih ena čbah smo upoštevali konstantni potek vseh funkcij polja () T , , v i ω znotraj posameznega časovnega intervala 1 F F t − − = τ τ ∆ , kar omogo ča, da lahko časovne integrale rešimo analiti čno, pri čemer velja: In all integral equations the constant variation of field functions () T , , v i ω is assumed within the individual time increment 1 F F t − − = τ τ ∆ , therefore the time integrals may be evaluated analytically, for example: ∫ − = F 1 F dt u a U * * τ τ . (21) Prav tako smo pri preoblikovanju vseh diferencialnih ena čb v integralske uporabili paraboli čno difuzijsko osnovno rešitev * u v obliki: Also in the transformation of all differential equations into integral ones, the parabolic diffusion fundamental solution * u is used as given by: Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 10 at 4 r * 2 e t a 4 1 u π = , (22) kjer je pravilna uporaba spremenljivke a opisana zgoraj in je r dolžina vektorja od izvorne do referen čne to čke. Za numeri čno aproksimativno rešitev razli čnih obravnavanih funkcij polja, npr. hitrosti, vrtin čnosti, temperature, moramo pripadajo če robnoobmo čne integralske ena čbe zapisati v diskretni obliki, tako da robne in obmo čne integrale aproksimiramo z vsoto integralov po posameznih robnih elementih in notranjih celicah. Rezultirajo ča matri čna oblika ena čb za kinematiko, vrtin čno kinetiko in temperaturno kinetiko se zapiše v naslednji obliki: where the proper use of a is as expressed above and r is the magnitude of the vector from the source point to the reference point. For the numerical approximate solution of the field functions, namely the velocity, vorticity, and temperature, the integral equations are further written in a discretized manner in which the integrals over the boundary and domain are approximated by a sum of the integrals over all boundary elements and over all internal cells. The resulting matrix forms of the equations for kinematics, vorticity kinetics and heat energy kinetics are represented here as: [] {} [ ] { } [ ] { } [] {}[] {}[] {} ω ω x x y y y x v v v v D H H D H H t t − = − = , (23) [] {} [] [] [] {} [] {} [] ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ − ∂ ∂ − − − + + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + − ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ + + + − ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ = − v v e K c x ~ f F g e v 1 1 v K c K 1 v v e K c n f n F g n e v 1 n j ij F 2 j f 2 j 2 j ij 2 j f 2 1 F f 2 F 2 f 2 f 2 n ij F 2 j j 2 j j i ij 2 n f 2 f f φ ω ν Λ φ Λ φ φ ω ν Λ φ ω β ν Λ φ ω φ ν φ ν Λ φ φ Λ φ φ ω ν Λ φ ∂ ω ∂ ν ν ω j D B B G G H , (24) [] {} [] [] [] {} [] [] {} [] [] {} 1 F p j p p j p n p p p T a 1 x T a a ~ T v a 1 T v a 1 n T a a T − + ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ − + − ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ = B D D G G H j j β ∂ ∂ ∂ ∂ . (25) V zgornjih ena čbah pomenijo [][] [ ] D , G , H in [] B matrike, sestavljene iz integralov, ki predstavljajo integracijo po robnih elementih in notranjih celicah, zapisanih za vsa robna in obmo čna vozliš ča. Vidimo, da je Forcheimerjev člen v ena čbi (24) razdeljen na tri dele, pri čemer sta prispevka, pomnožena z matrikama [] G in [] B , pridružena sistemski matriki, zadnji del člena z matriko [] j D pa je In the equations given above the matrices [ ] [ ] [ ] D , G , H and [ ] B are the influence matrices and they are composed of integrals taken over the individual boundary elements and over the internal cells. The Forcheimer term in vorticity kinetic matrix equation, equation (24) is split into three parts. The first two contributions multiplied with matrices [ ] G and [ ] B are numerically treated in the system Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 11 obravnavan kot del izvornega člena oziroma člena, s katerim zajamemo vpliv nelinearnosti. Sistem diskretiziranih ena čb je rešen kot vezan sistem kineti čnih in kinemati čnih ena čb, upoštevaje nelinearne osnovne konstitutivne zveze in ustrezne robne in za četne pogoje. Ker se implicitni sistem ena čb zapiše isto časno za vsa robna in obmo čna vozliš ča, dobimo po opisanem postopku zelo veliko, polno sistemsko matriko, ki vsebuje vplive difuzije in konvekcije. Rezultat je stabilna in natan čna numeri čna shema, ki pa za reševanje potrebuje veliko ra čunalniškega spomina in časa. Za izboljšanje oziroma optimizacijo izra čuna se uporablja tehnika podobmo čij, pri čemer se celotno obmo čje rešitve razdeli na podobmo čja, pri katerih uporabimo enak numeri čni postopek, kot je opisan zgoraj. Kon čni sistem ena čb za celotno obmo čje dobimo z združevanjem sistemov ena čb za vsako posamezno podobmo čje, upoštevaje ustrezne pogoje enakosti in kontinuitetne pogoje na vmesnih robovih. Rezultirajo ča sistemska matrika je veliko bolj prazna, tako da je dobljeni matri čni sistem primernejši za reševanje z iterativnimi tehnikami. V našem primeru je vsako podobmo čje sestavljeno iz štirih nezveznih 3-to čkovnih kvadratnih robnih elementov in ene zvezne 9-to čkovne kvadratne notranje oziroma obmo čne celice (Jecl & Škerget, 2003). matrix and the last part, involving first-order derivatives of the velocity modulus multiplied with [ ] j D , is modelled as a source term. The system of discretized equations is solved by coupling kinetic and kinematic equations, accounting for the non-linear constitutive hypothesis and considering the corresponding boundary and initial conditions. Since the implicit set of equations is written simultaneously for all boundary and internal nodes, this procedure results in a very large fully populated system matrix influenced by diffusion and convection. The consequence of this approach is a very stable and accurate numerical scheme with substantial computer time and memory demands. To improve the economics of the computation, the subdomain technique is used, where the entire solution domain is partitioned into subdomains to which the same described numerical procedure can be applied. The final system of equations for the entire domain is then obtained by adding the sets of equations for each subdomain considering the compatibility and equilibrium conditions between their interfaces, resulting in a much sparse system matrix suitable to solve with iterative techniques. In our case each subdomain consists of four discontinuous 3-node quadratic boundary elements, and 9-node corner continuous quadratic internal cell, (Jecl & Škerget, 2003). 4. TESTNI PRIMER U činkovitost metode ter pravilnost delovanja predlagane numeri čne sheme, temelje če na dodanem Forcheimerjevem členu, smo testirali na primeru naravne konvekcije v porozni kotanji, greti od strani. Kotanja je zapolnjena s homogeno, nedeformabilno porozno snovjo, popolnoma zasi čeno z Newtonsko teko čino. Leva stena kotanje je greta, desna hlajena, horizontalni pa toplotno izolirani. Za porozno snov predpostavimo, da ima konstantno poroznost in prepustnost ter da je hidrodinami čno in toplotno izotropna. 4. TEST CASE To test the validity and accuracy of the proposed numerical scheme, which includes the additional Forcheimer term, the problem of natural convection in a porous cavity heated from the side was investigated. The cavity is filled with the homogeneous, nondeformable porous media saturated with Newtonian fluid. Thr left vertical wall of the cavity is isothermally heated and the right is isothermally cooled while the horizontal walls are adiabatic. The porosity and permeability of the porous media are assumed to be uniform throughout the system. Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 12 Teko čina, s katero je porozna snov zasi čena, je v toplotnem ravnovesju s trdno fazo, kar pomeni, da lahko toplotno obnašanje porozne snovi opišemo z eno samo ena čbo za povpre čno temperaturo. Geometrija ter hidrodinami čni in temperaturni robni pogoji obravnavanega problema so podani na sliki 1. Izra čune smo opravili za dva primera, in sicer za pravokotno kotanjo z razmerjem stranic ( D H A = ) 1 A = in za vertikalno kotanjo pri 5 A = . Furthermore, the solid and the fluid phase are assumed to be in the local thermal equilibrium, therefore the thermal behaviour of the porous media can be described by a single equation for the average temperature. Detailed presentations of the geometry and boundary conditions are given in Figure 1. The calculations are performed for a square cavity with aspect ratio ( D H A = ) 1 A = and for the tall cavity with aspect ratio 5 A = . Slika 1. Geometrija ter robni pogoji. Figure 1. Geometry and boundary conditions. Ostali parametri problema so še Darcyjevo število ) D K ( Da 2 Λ = , teko činsko Prandtlovo število f f f a Pr ν = , modificirano Rayleighovo število λ Da Ra Ra * = , kjer je Ra teko činsko Rayleighovo število, f f 3 T a T D g Ra ν ∆ β = , λ razmerje toplotnih prevodnosti, e f λ λ λ = in σ razmerje toplotnih kapacitet. Zaradi poenostavitve smo upoštevali 1 Pr f = , 1 = λ in 1 = σ . Za pravokotno kotanjo je poroznost φ enaka 0,5, Forcheimerjev koeficient F c , dolo čen po Ergunovem modelu, je 0,404. Uporabili smo dve neekvidistantni ra čunski mreži 20 x 20 m in 40 x 40 m podobmo čij, pri čemer je bilo razmerje med najdaljšo in najkrajšo stranico 6 r = za prvo in 12 r = za drugo mrežo. Redkejša mreža daje namre č primerljive Other relevant governing parameters for the present problem are Darcy number ) D K ( Da 2 Λ = , fluid Prandtl number f f f a Pr ν = modified Rayleigh number λ Da Ra Ra * = , where Ra represents fluid Rayleigh number, f f 3 T a T D g Ra ν ∆ β = , λ is the ratio of heat conductivity, e f λ λ λ = and σ is the heat capacity ratio. For simplification: 1 Pr f = , 1 = λ and 1 = σ . In square cavity porosity φ equals 0.5 and coefficient F c , is 0.404 as calculated by using the Ergun model. Two non-uniform computational meshes of 20 x 20 m and 40 x 40 m subdomains were used with a ratio 6 r = for the first and 12 r = for the second mesh with r indicating the ratio between the longest and the shortest element. This is due to the fact 0 y T = ∂ ∂ , y 0 y T = ∂ ∂ , D x H g porozna snov/ porous medium 1 T h = 0 T c = 0 v i = 0 v i = 0 v i = 0 v i = Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 13 rezultate za ve čja Darcyjeva števila, 3 10 Da − ≥ , ko pa se Da zmanjšuje, potrebujemo gostejšo mrežo zaradi velikih hitrostnih gradientov v bližini vertikalnih sten. Časovni koraki so se zmanjševali z zmanjševanjem Darcyjevega števila od s 10 t 16 = ∆ do s 10 t 5 − = ∆ , konvergen čni kriterij pa je bil 6 10 5 − × = ε . Za visoko kotanjo smo upoštevali poroznost 8 0, = φ in koeficient 2 0 c F , = . Neekvidistantna ra čunska mreža je bila v tem primeru sestavljena iz 40 30 × podobmo čij z razmerji 30 r x = in 20 r y = . that the first mesh provides results in good agreement with the published values for 3 10 Da − ≥ and the second mesh is required for smaller values of Da because of the steep velocity gradients near the vertical walls. Time steps ranging from s 10 t 16 = ∆ to s 10 t 5 − = ∆ have been employed and the convergence criterion is determined to be 6 10 5 − × = ε . For tall cavity the porosity is 8 . 0 = φ and coefficient 2 . 0 = F c . A nonuniform computational mesh of 40 30 × subdomains was used in this case with 30 r x = and 20 r y = . Preglednica 1. Skupni prenos toplote skozi kotanjo, Nu. Table 1. Total heat transfer across the cavity, Nu . razmerje stranic Da 10 -1 10 -2 10 -3 10 -4 10 -5 Aspect ratio * Ra mreža/mesh sedanji rezultati 20 x 20 1.084 1.647 2.322 2.762 2.588 Current results 40 x 40 1.085 1.655 2.330 2.783 2.902 Lauriat & Prasad (1987) 41 x 41 / 1.70 2.41 2.84 3.02 Jecl & Škerget (2003) 20 x 20 1.086 1.685 2.402 2.823 2.67 100 Jecl & Škerget (2003) 40 x 40 1.088 1.695 2.414 2.847 2.995 sedanji rezultati Current results 40 x 40 1.660 3.021 4.844 6.633 7.812 500 Jecl & Škerget (2003) 40 x 40 1.681 3.145 5.235 7.185 8.428 sedanji rezultati Current results 40 x 40 2.07 3.79 6.57 9.31 10.61 A = 1 1000 Jecl & Škerget (2003) 40 x 40 2.08 4.03 6.98 9.89 11.45 sedanji rezultati Current results 30 x 40 5.299 7.033 8.834 9.609 / A = 5 100 Jecl & Škerget (2003) 30 x 40 5.312 7.254 9.134 9.953 / Za prikaz vpliva dodatnega Forcheimerjevega člena na prenos toplote skozi kotanjo smo Nusseltova števila, () ∫ = ∂ ∂ − = 1 0 0 x dy x T Nu , ki predstavljajo skupni prenos toplote skozi kotanjo in so izra čunana z uporabo Brinkmanovega modela (Lauriat & To demonstrate the effect of the additional Forcheimer term on the heat transfer across the cavity, the overall Nusselt number representing the total heat transfer across the cavity, () ∫ = ∂ ∂ − = 1 0 0 x dy x T Nu , calculated by using the Brinkman model (Lauriat & Prasad, Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 14 Prasad, 1987; Jecl & Škerget, 2003), primerjali z Nusseltovimi števili, izra čunanimi na podlagi Forcheimerjevega modela. Primerjava je podana v preglednici 1. Iz nje je razvidno, da je razlika v skupnem prenosu toplote skozi kotanjo, izra čunana po obeh modelih, minimalna in nikoli ne preseže 7 %. Ve čje razlike se pri čakovano pojavijo s pove čevanjem modificiranega Rayleighovega števila in z zmanjševanjem Darcyjevega števila. Ugotovimo lahko tudi, da Forcheimerjev model daje nižje vrednosti skupnega prenosa toplote skozi kotanjo v primerjavi z Brinkmanovim modelom. Rezultati se ujemajo z ugotovitvami, podanimi v Lauriat & Prasad (1989) za vertikalno porozno kotanjo kot tudi z zaklju čki v Lage (1992) za horizontalni porozni sloj. Spremembe Nusseltovega števila za oba modela glede na razli čna Darcyjeva in modificirana Rayleighova števila za primer kvadratne kotanje so grafi čno podane na sliki 2. 1987; Jecl & Škerget, 2003), is compared with the Nusselt number gotten by using the above described numerical procedure based on the Forcheimer model. The comparison is given in Table 1. It shows that the difference in the heat transfer rate as calculated with both models is minimal and never exceeds 7%. Higher distinction is, as expected, obtained with an increase in the modified Rayleigh numbers and decrease in the Darcy number. Table 1 further shows that the Forcheimer model predicts lower total heat transfer across the cavity than the Brinkman model. These results are in agreement with the conclusions reported in Lauriat & Prasad (1989) for the vertical porous cavity and also with the conclusions reported in Lage (1992) for the horizontal porous layer. The variation of the overall Nusselt number for both models considering different Darcy and modified Rayleigh numbers for the case of square cavity are represented in Figure 2. 0 5 10 15 0.00001 0.0001 0.001 0.01 0.1 Darcyjevo število - Da Nusseltovo število - Nu Ra*=100, Brinkman Ra*=100, Forcheimer Ra*=500, Brinkman Ra*=500, Forcheimer Ra*=1000, Brinkman Ra*=1000, Forcheime Slika 2. Sprememba Nusseltovega števila pri razli čnih * Ra in Da za oba modela. Figure 2: Variation of overall Nusselt number with different * Ra and Da for both models. Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 15 01 02 03 0 0 0.1 0.2 0.3 0.4 0.5 x v-y Brinkman, Da=1E-2 Forcheimer, Da=1E-2 Brinkman, Da=1E-4 Forcheimer, Da=1E-4 Slika 3. Vertikalni hitrostni profili skozi vodoravno središ čnico za polovico kvadratne kotanje pri 100 Ra * = za oba modela. Figure 3. Vertical velocity profiles at the horizontal midplane for 100 Ra * = for both models. Iz slike 2 lahko povzamemo, da skupni prenos toplote skozi kotanjo vedno naraš ča z modificiranim Rayleighovim številom in pada glede na Darcyjevo število ter da vklju čitev Forcheimerjevega člena v gibalno ena čbo ne spremeni asimptoti čnega obnašanja krivulje odvisnosti med Nusseltovim in Darcyjevim številom. Vpliv Forcheimerjevega vztrajnostnega člena je prikazan še na sliki 3, na kateri so podani vertikalni hitrostni profili skozi vodoravno središ čnico leve polovice kotanje, izra čunani po obeh modelih za dve razli čni Darcyjevi števili 2 10 Da − = in 4 10 Da − = za primer kvadratne kotanje, za 1 A = in 100 Ra * = . Pri majhnem Darcyjevem številu ima porazdelitev hitrosti strme gradiente v bližini vertikalne stene, z naraš čanjem Darcyjevega števila se hitrost zmanjšuje, mesto nastopa maksimalne hitrosti se pomakne proti središ ču kotanje, pri čemer pa lahko vidimo, da je razlika v hitrostih za oba modela From Figure 2 we can observe that the total heat transfer across the cavity always increases with the modified Rayleigh number, but the effect of the Darcy number is just the reverse. The inclusion of the additional Forcheimer term in the equation of motion does not change the asymptotic behaviour of the Nusselt number versus the Darcy number curve. The effect of the Forcheimer additional term is illustrated also in Figure 3, where the vertical velocity profiles at the horizontal midplane for the left half of the cavity are presented for both Brinkman and Forcheimer model for two different Darcy numbers, 2 10 Da − = and 4 10 Da − = in the case of tall cavity 5 A = and for 100 Ra * = . For a small Darcy number the vertical velocity distribution shows its largest gradient near the vertical walls. But when Da is increased the maximum velocity reduces and the velocity peaks move away from the walls. It can be seen that the difference between both models Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 16 minimalna. Vsi izra čuni so bili opravljeni na delovni postaji Hewlett - Packard B1000 s procesorjem PARISC 300 MHz in 1 GB pomnilnika. Uporabljen je bil operacijski sistem HP-UX 10.20. Ra čunski časi za predstavljene primere se gibljejo od nekaj sekund za kvadratno kotanjo pri redkejši mreži 20 x 20 m in relativno velikem Darcyjevem številu 1 10 − = Da do treh dni in pol (81 ur) za najzahtevnejši primer visoke kotanje pri mreži 30 x 40 m za 4 10 − = Da . Ti časi veljajo za Brinkmanov model, medtem ko so časi ob dodanem Forcheimerjevem členu daljši, in sicer v povpre čju za 35 %. is minimal. The calculations were obtained by using the Hewlett - Packard workstation B1000 with PARISC 300 MHz processor and 1 GB of memory. The operating system was HP-UX 10.20. The computational time for the presented test cases ranged from several seconds for square cavity with 20 x 20 m subdomains and relatively high Darcy number 1 10 − = Da to three and a half days (81 hours) for the most demanding case of tall cavity with the mesh consisting of 30 x 40 m subdomains and for 4 10 − = Da . Those values are valid for the Brinkman model while in the case of the additional Forcheimer term included, the computational times are greater by about 35 %. 5. ZAKLJU ČKI 5. CONCLUSIONS Prikazana je uporaba robnoobmo čne integralske metode (ROIM) za primer naravne konvekcije v porozni kotanji, greti od strani. Za prikaz vpliva Forcheimerjevega vztrajnostnega člena je uporabljena s Forcheimerjevim členom razširjena Darcy- Brinkmanova ena čba, rezultati pa so primerjani z vrednostmi, dobljenimi na osnovi Brinkmanovega modela. Vklju čitev Forcheimerjevega člena povzro ča minimalno zmanjšanje prenosa toplote skozi kotanjo in tudi minimalno zmanjšanje hitrosti, ne spremeni pa se asimptoti čna oblika krivulje odvisnosti med Nusseltovim in Darcyjevim številom. Numeri čna shema je zaradi dodanega nelinearnega člena še bolj kompleksna, kar vodi do povpre čno 35 % pove čanega ra čunskega časa, potrebnega za konvergenco. Na podlagi teh rezultatov je mogo če potrditi, da v obravnavanem primeru Forcheimerjev člen ne vpliva bistveno na skupni prenos toplote, kot je bilo to že objavljeno v literaturi, kjer so bile za izra čun uporabljene druge numeri čne metode. The problem of natural convection in porous cavity heated from the side is investigated utilizing the Boundary Domain Integral Method (BDIM). The Brinkman- Forcheimer extended Darcy momentum equation is used to examine the influence of the additional Forcheimer inertia term and the results are compared with reported values obtained based on the Brinkman model. The inclusion of the Forcheimer term in the momentum equation leads to a minimal reduction of the heat transfer rate and velocity but does not change the asymptotic behaviour of the Nusselt number versus the Darcy number curve. The numerical code becomes more complex and also the computation time required to achieve convergence is increased by about 35 %. Therefore it is possible to conclude that in the range covered by the present investigation the Forcheimer term is not really relevant to the calculation of the global heat transfer parameter, as reported in the literature in which the calculations were performed with other numerical methods. Jecl, R., Škerget, L., Kramer, J.: Primerjava med Forcheimerjevim in Brinkmanovim modelom konvektivnega toka v porozni kotanji z robnoobmo čno integralsko metodo – Comparison between the Forcheimer and the Brinkman model for convective flow in a porous cavity with Boundary-Domain Integral Method © Acta hydrotechnica 23/38 (2005), 1–17, Ljubljana 17 VIRI – REFERENCES Bear, J., Bachmat, Y. (1991). Introduction to Modelling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht. Jecl, R., Škerget, L., Petrešin, E. (2001). Boundary domain integral method for transport phenomena in porous media, Int. Journal for Numerical Methods in Fluids 35, 39–54. Jecl, R., Škerget, L. (2003). Boundary element method for natural convection in non-Newtonian fluid saturated square porous cavity, Eng. Anal. with Boundary Elements 27, 963–975. Lage, J. L. (1992). Comparison between the Forcheimer and the convective inertia terms for Benard convection within a fluid saturated porous medium, HTD 193, Fundamentals of Heat Transfer in Porous Media, ASME, 49–55. Lauriat, G., Prasad, V. (1987). Natural convection in a vertical porous cavity: a numerical study for Brinkman-extended Darcy formulation, Journal of Heat Transfer 109, 688–696. Lauriat, G., Prasad, V. (1989). Non-Darcian effects on natural convection in a vertical porous enclosure, International Journal of Heat and Mass Transfer 32, 2135–2148. Nield, D. A., Bejan, A. (1999). Convection in porous media (Second ed.), Springer-Verlag, New York. Škerget, L., Hriberšek, M., Kuhn, G. (1999). Computational fluid dynamics by boundary domain integral method, Int. Journal for Numerical Methods in Engineering 46, 1291–1311. Vasseur, P., Wang, C.H., Sen, M. (1990). Natural convection in an inclined rectangular porous slot: Brinkman-extended Darcy model, Journal of Heat Transfer 112, 507–511. Naslovi avtorjev – Authors’ Addresses izr. prof. dr. Renata Jecl Univerza v Mariboru – University of Maribor Fakulteta za gradbeništvo – Faculty of Civil Engineering Smetanova 17, SI-2000 Maribor, Slovenia E-mail: renata.jecl@uni-mb.si prof. dr. Leopold Škerget Univerza v Mariboru – University of Maribor Fakulteta za strojništvo – Faculty of Mechanical Engineering Smetanova 17, SI-2000 Maribor, Slovenia E-mail: leo@uni-mb.si Janja Kramer Univerza v Mariboru – University of Maribor Fakulteta za gradbeništvo – Faculty of Civil Engineering Smetanova 17, SI-2000 Maribor, Slovenia E-mail: janja.kramer@uni-mb.si