
ELEKTROTEHNIŠKI VESTNIK 78(4): 181–192, 2011
ENGLISH EDITION

Of n-dimensional Dice, Combinatorial Optimization,
and Reproducible Research: An Introduction

Franc Brglez
Computer Science, NC State University, Raleigh, NC 27695, USA
E-mail: brglez@ncsu.edu

Abstract. When throwing a solid object like a hexahedron, an octahedron or a tetrakis-hexahedron on a flat
surface, we expect it to roll onto any of the faces with probabilities of exactly 1/6, 1/8, or 1/24, respectively.
Informally, we view such objects as instances from the n-dimensional dice family; formally, they are instances
from a hyperhedron family H(Θ, b, n). Each of the faces is assigned a label {ξ; Θ(ξ)}; ξ represents a
unique n-dimensional coordinate string ξ, Θ(ξ) represents the value of the function Θ for ξ. The number
of coordinates is defined as |H(Θ, b, n)| = bn(n!); each coordinate string is an oriented permutation with
parameter b denoting the number of symbols that encode the unique orientation of each permutation. Special
cases include the combinational family C(Θ, b, n) with |C(Θ, b, n)| = bn (each coordinate string is a unique
n-tuple) and the (single orientation) permutation family P(Θ, b, n) with |P(Θ, b, n)| = n! (each coordinate
string is a unique permutation). The paper introduces the hyperhedron not only as a model for instances that
arise in the context of combinatorial optimization but also as a metaphor to illustrate a number of combinatorial
search algorithms whose meta-structures do not change when instance coordinates change from an n-tuple
to a simple or an oriented permutation of length n. The dice metaphor is applied to statistical performance
experiments with instances whose dimension increases monotonically while the number of “best faces” remains
constant. All results are archived as an integral part of reproducible research environment, controlled by
components encapsulated in tcl, R, and LATEX.

Keywords: combinatorial algorithms and optimization, dice metaphor, statistical performance experiments,
reproducible research, literate programming

1 INTRODUCTION

The ultimate goal of combinatorial optimization is to
find an optimal configuration from a finite set of config-
urations. Instances of combinatorial problems arise in
many contexts such as operations research, automated
reasoning, computer-aided design, computer-aided man-
ufacturing, machine vision, databases, robotics, schedul-
ing, integrated circuit design, computer architecture de-
sign, computer networking, etc. Many problems are NP-
hard and, due to the number of feasible configurations,
an explicit exhaustive search for an optimum configura-
tion is not possible for most problem instances.

Dice such as a hexahedron, an octahedron or a
tetrakis-hexahedron are instances of combinatorial ob-
jects with 6, 8, and 24 configurations, with faces num-
bered from 0-to-5, 0-to-7, and 0-to-23, respectively.
Assume that any of these dice is thrown repeatedly until
the first appearance of best face such as “0”. Then, the
probability distribution of the number of times the dice
is thrown is a geometric distribution with p = 1/6,
p = 1/8, and p = 1/24, respectively [1]. A larger

Received August 24, 2011
Accepted November 8, 2011

family of polyhedra is described in [2]. A comprehensive
collection of applets, on pages that not only render
polyhedra dynamically in three dimensions but also
catalogue their parameters, is accessible in [3].

The probability model associated with the dice ex-
amples above suggests a metaphor to view dice as
instances of combinatorial problems, generalized as the
n-dimensional hyperhedron family: H(Θ, b, n). Each
face of the hyperhedron is assigned a label {ξ; Θ(ξ)};
ξ represents a unique n-dimensional coordinate string
ξ, Θ(ξ) represents the value of the function Θ for ξ.

A comprehensive introduction to the hyperhedron
family of dice is illustrated with examples in Section 2.
Section 3 introduces classes of combinatorial problem
instances, including a class of the number partitioning
problems. In Section 4, the model of dice metaphor
illustrates an example of a combinatorial search al-
gorithm whose meta-structures does not change when
instance coordinates change from an n-tuple to a simple
or an oriented permutation of length n. In Section 5,
the dice metaphor is applied to statistical performance
experiments with instances whose dimension increases
monotonically while the number of “best faces” remains

182 BRGLEZ

constant. All results are being archived for open access
on the Web as an integral part of reproducible research
environment, controlled by components encapsulated in
tcl, in R, and in LATEX. Some of these components,
combinatorial solvers in particular, are modules natively
compiled in Fortran, C, C++, and Java.

The notion of reproducible research, discussed in
[4], [5] and illustrated in [6], has its roots in literate
programming [7], [8]. The approach taken in this paper
is a pragmatic one: it combines elements of program-
ming in tcl [9], [10], [11], R [12], [13], [14], and
LATEX [15], with tcl as being the top-level driver for each
of the experiments. The environment is still evolving; if
interested in participation, contact the author.

This paper is an introduction to the series of musings
in progress on combinatorial optimization, supported by
reproducible research. The dice metaphor introduced in
the paper reveals the principal factors that contribute to
the notorious performance variability of combinatorial
solvers on specific problems. In contrast to Einstein’s
God does not play dice, a number of controlled per-
formance experiments shows that combinatorial solvers
do play dice on hard instances: e.g. large variability in
solver performance is reported in [16], [17].

2 BACKGROUND AND MOTIVATION

The subsections below introduce notation, key concepts,
and motivation for the remainder of the paper:

• Hasse Graphs
• On Geometric and Exponential Distributions
• Walks in Hyperhedrons: The First Steps

Hasse Graphs. Dice such as hexadron and octahedron
introduced in Section 1 and the simple underlying
probability model motivates the metaphor to view dice
as instances of combinatorial problems, generalized as
the n-dimensional hyperhedron family H(Θ, b, n). Each
face of the hyperhedron is assigned a label {ξ; Θ(ξ)};
ξ represents a unique n-dimensional coordinate string
ξ, Θ(ξ) represents the value of the function Θ for ξ.
The number of coordinates is defined as |H(Θ, b, n)| =
bn(n!); each coordinate string is an oriented permutation
with parameter b denoting the number of symbols that
encode the unique orientation of each permutation. Spe-
cial cases of interest include the combinational family
C(Θ, b, n) where |C(Θ, b, n)| = bn (each coordinate
string is a unique n-tuple) and the permutation family
with single orientation P(Θ, n) where |P(Θ, n)| = n!
(each coordinate string is a unique permutation). We
simplify the notation for C(Θ, b, n) further: for b = 2
we denote C(Θ, 2, n) as B(Θ, n) so that |B(Θ, n)| = 2n.
Similarly, we denoteH(Θ, 2, n) asH2(Θ, n), C(Θ, 3, n)
as T (Θ, n), and C(Θ, 4, n) as Q(Θ, n). The common
model for any n-dimensional hyperhedron is the Hasse
graph: examples for H2(index, 2) and B(index, 3)

are shown in Figure 1; examples for H2(index, 3),
B(npp0, 5), and P(jss, 4) are shown in Figure 2.

The Hasse graph represents an extension of the Hasse
diagram [18]: it is a connected, sparse polar graph with
labeled vertices representing faces, and edges represent-
ing face adjacencies. In addition to its label ξ; Θ(ξ),
each vertex can also be implicitly assigned a unique
Cartesian coordinate (xi, yi); the unit of vertex spacing
in the x direction is computed from the maximum Hasse
graph width wmax, the unit of the vertex spacing in the
y direction is determined by the maximum Hasse graph
height hmax. The unit distance between vertices in the
y direction is computed from the Hasse rank distance
from the bottom face represented by the bottom vertex.
At first glance, the notion of a hypercube graph [19]
may appear similar since it relates to the special case
of |B(Θ, n)| = 2n, but the similarity stops here: in a
hypercube graph, vertex labels are binary strings only,
and, vertices do not represent the faces of the cube.

For instances from family B(Θ, n), the Hasse rank
distance is also known as Hamming distance, thus
hmax = n; for instances from family P(Θ, n) the Hasse
rank distance is the permutation inversion distance,
thus hmax = n(n − 1)/2; for instances from family
H2(Θ, n) the Hasse rank distance combines the notions
of Hamming and permutation inversion distances and
thus hmax = n(n+ 1)/2.

Vertices in the x direction are ordered by the func-
tion value associated with each vertex label. As the
Hasse rank distance increases, so does the number
of vertices at each distance until the mid-point dis-
tance; it decreases afterwards. The vertex distribution is
symmetrical with respect to the midpoint distance: for
B(Θ, n), it is binomial [20], [21] with the Hasse graph
width wmax =

(
n
bn/2c

)
. For P(Θ, n), the distribution is

mahonian [22] with width wmax = T(n, bn(n−1)/4c).
For H2(Θ, n), the distribution is hasonian with width
wmax = h2(n, bn(n+1)/4c)). While binomial, multino-
mial, and mahonian coefficient distributions are readily
available [20], [21], [22], the author is unaware of the
distribution named here whimsically as hasonian (h2).
The name is derived from HASA, an acronym to be
explained later in this section. However, it is possible
to compute vertex distributions in the Hasse graph of
H2(Θ, n) as a function of Hasse rank distance by
combining coefficients from binomial and mahonian dis-
tributions as illustrated for H2(index, 3) in the example
below:

(1 + 3 + 3 + 1)(1 + 2 + 2 + 1)

1 + 3 + 3 + 1

2 + 6 + 6 + 2
2 + 6 + 6 + 2

1 + 3 + 3 + 1

1 + 5 + 11 + 14 + 11 + 5 + 1

OF N-DIMENSIONAL DICE, COMBINATORIAL OPTIMIZATION, AND REPRODUCIBLE RESEARCH: AN INTRODUCTION 183

(b)

(c)

1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

plot_hasse_graph of 'fg_v−002−H2−index_−2,+1'
(diceType=H2, diceFunction=index, bottomFace=−2,+1;3)

vertices and labels are ordered L −> R by function values
 (here, vertex distribution at each rank is a product of binomial and Mahonian)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

!

! ! !

! ! !

!

−2,+1;3

−1,+2;1 −2,−1;4 +2,+1;7

+2,−1;0 −1,−2;2 +1,+2;5

+1,−2;6

1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

plot_hasse_graph of 'fg_v−003−B−index_011'
(diceType=B, diceFunction=index, bottomFace=011;6)

vertices and labels are ordered L −> R by function values
 (for diceType=B, vertex distribution at each rank is binomial)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

!

! ! !

! ! !

!

011;6

111;2 001;4 010;5

101;0 110;1 000;3

100;7

(a) regular octahedron

2

0
1

4
5

3

6
7

(a) The octahedron on the left is a dice, with faces labeled as
numbers (the singular form of die is increasingly uncommon).
When thrown, this dice rolls onto any of its faces with the
probability p of exactly 1/8. The throw is declared as success
if the bottom face reveals a number, agreed on in advance, as
having the best value. Suppose one throws this dice repeatedly
until the first time “0” appears. Given t = 1, 2, 3, ... as the
number of throws, the probability distribution is geometric
with pmf = (1− p)t−1p and the cumulative distribution
function is cdf = 1− (1− p)t.

(b) The structure on the left is a model of a 2-dimensional dice
as a hyperhedron H2(index, 2) where each face is assigned a
coordinate-value pair {ξ; index(ξ)}, here in lex order:

+1,+2;5 +1,-2;6 +2,+1;7 +2,-1;0 -1,+2;1 -1,-2;2 -2,+1;3 -2,-1;4

The function index, with range of [0, 7], has a piecewise-linear
relationship with coordinates when ordered lexographically,
here the breakpoint is at +2,-1;0. We use this function for
performance testing: the breakpoint “hides” the function
minimum value from its “expected” coordinate of “+1,+2”.

(c) The structure on the left is a model of a 3-dimensional
dice as a hyperhedron B(index, 3) where each face is assigned
a a coordinate-value pair {ξ; index(ξ)}, here in lex order:

000;3 001;4 010;5 011;6 100;7 101;0 110;1 111;2

The function index, with range of [0, 7], has a piecewise-linear
relationship with coordinates when ordered lexographically,
here the breakpoint is at 101;0.

(b,c) We model the hyperhedron as a Hasse graph: a
connected, sparse polar graph with labeled vertices
representing faces, and edges representing face adjacencies –
this model extends the Hasse diagram [18]. In addition to its
label ξ; Θ(ξ), each vertex is implicitly assigned a unique
Cartesian coordinate (xi, yi); units of vertex spacing in the
x, y directions are computed from the Hasse graph width wH

and Hasse graph height hH , respectively. The unit distance
between vertices in the y direction also represents the Hasse
rank distance. For instances from family B(Θ, n), the Hasse
rank distance is known as Hamming distance, with maximum
value hmax = n; for instances from family P(Θ, n) the Hasse
rank distance is known as the permutation inversion distance,
with maximum value hmax = n(n− 1)/2; for instances from
family H2(Θ, n) the Hasse rank distance combines the
notions of Hamming and permutation inversion distances, with
maximum value hmax = n(n+ 1)/2.

Vertices in the x direction are ordered by the function value
associated with each vertex label. The Hasse graph width
ranges from

(
n
bn/2c

)
for instances from family B(Θ, n) to

h2(n, bn(n+ 1)/4c) for instances from family H2(Θ, n),
which represents the center coefficient from the hasonian
distribution defined in Section 2. For examples of Hasse
graphs in higher dimensions, see Figure 2.

Figure 1. A regular octahedron and two of its dice models: H2(index, 2) and B(index, 3).

184 BRGLEZ

(a)

2 4 6 8 10 12 14

0
1

2
3

4
5

6

plot_hasse_graph of 'fg_v-003-H2-index_+1,+2,+3'
(diceType=H2, diceFunction=index, bottomFace=+1,+2,+3;28)

vertices and labels are ordered L -> R by function values
 (The vertex distribution at each Hasse rank distance is a product of binomial and Mahonian distributions)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

+1,+2,+3;28

-1,+2,+3;4 +1,+2,-3;29 +1,+3,+2;30 +1,-2,+3;32 +2,+1,+3;36

+2,+3,+1;38 +2,-1,+3;40 +3,+1,+2;44-1,+2,-3;5 -1,+3,+2;6 -1,-2,+3;8 -2,+1,+3;12 +1,+3,-2;31 +1,-2,-3;33 +1,-3,+2;34 +2,+1,-3;37

+3,-1,+2;0 +2,+3,-1;39 +2,-1,-3;41 +2,-3,+1;42 +3,+1,-2;45 +3,+2,+1;46-1,+3,-2;7 -1,-2,-3;9 -1,-3,+2;10 -2,+1,-3;13 -2,+3,+1;14 -2,-1,+3;16 -3,+1,+2;20 +1,-3,-2;35

-3,-1,+2;24 +2,-3,-1;43 +3,+2,-1;47+3,-1,-2;1 +3,-2,+1;2 -1,-3,-2;11 -2,+3,-1;15 -2,-1,-3;17 -2,-3,+1;18 -3,+1,-2;21 -3,+2,+1;22

+3,-2,-1;3 -2,-3,-1;19 -3,+2,-1;23 -3,-1,-2;25 -3,-2,+1;26

-3,-2,-1;27

2 4 6 8 10

0
1

2
3

4
5

plot_hasse_graph of 'fg_v−006−06−npp0_00101'
(diceType=B, diceFunction=npp0, bottomFace=00101;2)

vertices and labels are ordered L −> R by function values
 (for diceType=B, vertex distribution at each rank is binomial)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

!

! ! ! ! !

! !! ! ! ! ! ! ! !

! !! ! ! ! ! ! ! !

! ! ! ! !

!

00101;2

10101;8 01101;12 00001;18 00111;68 00100;84

01001;4 00000;10010001;8 00110;14 11101;22 00011;52 01100;70 10100;74 10111;78 01111;82

01110;0 11111;9210110;4 11001;6 00010;30 11100;60 10011;62 01011;66 01000;86 10000;90

11110;10 01010;16 10010;20 11000;76 11011;76

11010;6

1 2 3 4 5 6

0
1

2
3

4
5

6

plot_hasse_graph of 'fg_v−04−05−wismer−jss_3,4,1,2'
(diceType=P, diceFunction=jss, bottomFace=3,4,1,2;51)

vertices and labels are ordered L −> R by function values
 (for diceType=P, vertex distribution at each rank is Mahonian)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

!

! ! !

! ! ! ! !

! ! ! ! ! !

! ! ! ! !

! ! !

!

3,4,1,2;51

3,4,2,1;47 3,1,4,2;48 4,3,1,2;60

3,2,4,1;43 3,1,2,4;47 4,3,2,1;53 4,1,3,2;56 1,3,4,2;59

3,2,1,4;42 1,3,2,4;52 4,1,2,3;52 1,4,3,2;54 2,3,4,1;55 4,2,3,1;59

4,2,1,3;48 1,4,2,3;49 2,4,3,1;51 2,3,1,4;53 1,2,3,4;60

2,4,1,3;43 1,2,4,3;48 2,1,3,4;52

2,1,4,3;42

(b) (c)

Figure 2. Examples of three dice models: (a) represents a 3-dimensional dice H2(index, 3) with 48 faces, Hasse graph height
hmax = 6, Hasse graph width wmax = 14, with coordinates as oriented permutations of length 3 in two orientations, and
the integer function index computing values on an index problem instance with a single minimum value of “0” at +3,-1,+2;
(b) represents a 5-dimensional dice B(npp0, 5) with 32 faces, hmax = 5, wmax = 10, with coordinates as binary strings of
length of 5, and the integer function npp0 computing values on a number-partitioning-problem instance with a single minimum
value of “0” at 01110; (c) represents a 4-dimensional dice P(jss, 4) with 24 faces, hmax = 6, wmax = 6, with coordinates as
permutations of length 4, and the integer function jss computing values on a job-shop-scheduling instance with two minima of
“42” at 3,2,1,4 and 2,1,4,3. A Hamiltonian path such as shown in (a) also exists for instances shown in (b) and (c).

OF N-DIMENSIONAL DICE, COMBINATORIAL OPTIMIZATION, AND REPRODUCIBLE RESEARCH: AN INTRODUCTION 185

Table 1. Hasse graph parameters for three families of n-dimensional dice.

Family dimension degree |V | |E| density densApprox height width
H2(Θ, n) n 2n− 1 2n(n!) (2n− 1)∗ d(|E|, (|V |) 1/ n(n+ 1)/2 h2(n, ...)

2n−1(n!) (2n−1(n− 1)!)
2 3 8 12 0.4285714 0.5000 3 3
3 5 48 120 0.1063830 0.1250 6 14
4 7 384 1344 0.0182768 0.0208 10 82

. .
B(Θ, n) n n 2n n ∗ 2(n−1) d(|E|, (|V |) n/2n n

`
n
bn/2c

´
3 3 8 12 0.4285714 0.375 3 3
4 4 16 32 0.2666667 0.25 4 6
5 5 32 80 0.1612903 0.15625 5 10
10 10 1024 5120 0.0097751 0.0097656 10 252
20 20 1048576 10485760 1.907e-05 1.907e-05 20 184756
. .

P(Θ, n) n n− 1 n! (n− 1)(n!)/2 d(|E|, (|V |) 1/(n− 1)! n(n− 1)/2 T(n,
bn(n− 1)/4c)

3 2 6 6 0.4000000 0.5 3 3
4 3 24 36 0.1304348 0.1666667 6 6
5 4 120 240 0.0336134 0.0416667 10 22
6 5 720 1800 0.0069541 0.0083333 15 101
7 6 5040 15120 0.0011907 0.0013889 21 573

. .

The generic formula we use for density is d(|E|, (|V |) = 2 ∗ |E|/(|V | ∗ |V | − 1))
The parameters height and width imply maximum height, maximum width.

The explicit formula for the Hasse graph width of the dice family H2(Θ, n) is yet to be derived.

To verify this computation, see the vertex distribution
in Figure 2(a). For a summary of Hasse graph parame-
ters, including the rapidly decreasing graph density (or
conversely, the increasing graph sparsity) as the graph
dimension (number of vertices) increases, see Table 1.
The most important notions about Hasse graphs, whether
or not they are of size that can be plotted in full detail
as shown here, include:

Hasse graph height, width, density: Maximum height
of each graph in B(Θ, n) is n, in P(Θ, n) it is
n(n − 1)/2, and in H2(Θ, n) it is n(n + 1)/2.
The maximum width of each graph in B(Θ, n) is(

n
bn/2c

)
, in P(Θ, n) it is T(n, bn(n− 1)/4c)), and

inH2(Θ, n) it is still to be determined from
(

n
bn/2c

)
and T(n, bn(n−1)/4c)). Here T(n, bn(n−1)/4c))
represents coefficients in the Mahonian distribution
[22]. As the dimension n increases, the density of
each Hasse graph rapidly approaches 0, though it
can never become 0.
Hasse graph degree, Hamiltonicity: The degree of
each vertex in B(Θ, n) is n, in P(Θ, n) it is n−1,
and in H2(Θ, n) it is 2n − 1. Every Hasse graph
in B(Θ, n) is Hamiltonian for n > 1, so is every
Hasse graph in P(Θ, n) and inH2(Θ, n). A Hamil-
tonian path traverses the vertices and edges by
tracing vertex coordinates in the Gray order. Gray
order coordinates in class B are generated with the
algorithm in [23]. Gray order coordinates in class P
are based on ideas from a bell-ringing scheme [24],
dating from 1850, which are simpler to implement

than the better known Steinhaus-Johnson-Trotter
algorithm [25]. Gray order coordinates in class
H2 are implemented by combining the algorithms
in [23] and [24].
top face, top vertex: a specific label {ξ

t
; Θ(ξ

t
)}, a

coordinate and function value pair, associated with
the top vertex, given that the Hasse graph is a polar
graph by definition.
bottom face, bottom vertex: a specific label
{ξ

b
; Θ(ξ

b
)}, a coordinate and function value pair,

associated with the bottom vertex. Metaphorically,
the bottom face represents the face on which the
dice lands after a random throw.
Hasse rank distance: A measure of distance between
two coordinates. Frequently but not always, one of
the coordinates is the bottom vertex which induces
the ordering and position in the Hasse graph ver-
tices as shown in Figures 1 and 2. For instances
from family B(Θ, n) the Hasse rank distance is
also known as Hamming distance. For instances
from family P(Θ, n) the Hasse rank distance is the
permutation inversion distance. For instances from
family H2(Θ, n) the Hasse rank distance combines
the definitions of Hamming and permutation inver-
sion distances.
coordinate complement: implies a pairing of two
coordinates: a reference coordinate and its comple-
ment coordinate with the property that the Hasse
rank distance between the two is the maximum
distance – equivalent to the height of the Hasse
graph defined for B(Θ, n), P(Θ, n), and H2(Θ, n)

186 BRGLEZ

earlier. As also seen in Figures 1 and 2, coordinates
associated with the bottom face and the top face are
complements of each other.
function symmetry: We say that the function
is symmetric with respect to its complement
coordinate if for each coordinate and its
complement the function evaluates to the same
value. In practice, such cases do arise. For
example, consider a list of integers {4 5 7 8
35 41} which associates with a 6-dimensional
dice B(npp, 6) where ’npp’ is the name of the
number-partitioning function. This function returns
a ’discrepancy’ of 0 for any coordinate that
represents a perfect partition. For this example,
there are two coordinates with perfect partitions:
001110 and 110001 which we can write either as

4 + 5 + 41 = 7 + 8 + 35
or

7 + 8 + 35 = 4 + 5 + 41

The coordinates 001110 and 110001 are
complements of each other and we can reduce the
dimensions of the Hasse graph from 6 to 5 by
removing the first variable, making the modified
function ’npp0’ unsymmetrical in the remaining
5 variables. As shown in Figure 2(b) the Hasse
graph B(npp0, 5) now has 01110 as the only
coordinate with the function value of “0”. When
a function is known to be intrinsically symmetric,
we can reduce the number of its configurations
by making it unsymmetrical as shown here. On
the other hand, consider the 4-dimensional dice
P(jss, 4) in Figure 2(c): it has 24 faces with ’jss’
defined as a job-shop-scheduling function [26] that
exhibits two minima of “42” at 3,2,1,4 and 2,1,4,3.
These two coordinates are not complements of
each other, hence ’jss’ is not symmetric. We could
arrive at the same conclusion about symmetry
just by observing the labels associated with the
bottom and the top face of this dice: ’3,4,1,2;51’
and ’2,1,4,3;42’. While the coordinates in these
two label are complements of each other, the ’jss’
function evaluates to 51 and 42 respectively.
HASA, Hyperhedron Association for Scientific Appli-
cations: Extrapolating from the examples in Figure
2, the height of the Hasse graph increases at most
as O(n2) while the width increases as O(αn(n!))
where α < b and b denotes the number of sym-
bols that encode the unique orientation of each
permutation. In other words, as n increases, each
hyperhedron may be seen as a huge, almost flat,
galaxy of stars that form an extremely sparsely
connected polar graph. Each of these stars is char-
acterized by a unique coordinate and an internal
temperature that can only be determined by probing
in situ. In principle, the dice throwing metaphor for

finding the planet with lowest (highest) temperature
still applies; however, we argue for the application
of scientific methods to finding solutions that will
scale better as the dimensionality of the problem
space increases.

Geometric and Exponential Distributions Primer. A
cummulative distribution for dice has been introduced
in Figure 1:

cdf = 1− (1− p)t

where p implies the probability of success and t =
1, 2, 3, ... is the number of throws required to observe
the first success. Nominally, dice are expected to have
only a single designated face that is considered “suc-
cess”. We proceed with this analogy in this paper, and,
without loss of generality, consider only hyperhedrons
whose combinatorial functions have an optimum value
at a single coordinate. Generalizations to functions with
multiple occurrences of optima are straightforward.

We consider problems where p << 1 so we can
approximate the discrete cdf above with the continu-
ous exponential function cdf = 1 − exp(−pt) where
mean = 1/p, median = ln(2)/p, and standard devi-
ation sd = 1/p. Furthermore, we rewrite this cdf as
a solvability function [27] which in the current context
takes the form

S(τ) = 1− exp((−pbf)τ))

where τ refers to a standardized unit of cost to find the
optimal solution and bf is the boost factor associated
with the characteristics of the solver. The cost that
dominates finding an optimum solution to combinatorial
problem is the cost of evaluating the combinatorial
function; it may take a significant fraction of CPU time.
In this paper, we refer to it as the cost of probing and
we measure it strictly by incrementing the probe counter
each time we evaluate the function. Compared to the
cost of probing, we consider the cost of generating and
comparing coordinate values as negligible.

For example, if we employ a gambler as the solver
with a strategy of probing for best value by simply
tossing a dice and evaluating the function value for
each toss counted as t, then τ = t, bf = 1 and the
mean value to reach the optimum is 1/p. However, as
we show shortly in this section, if the gambler changes
the strategy by following each toss (and a probe) with a
segment of random walk that probes coordinates without
repetition, this strategy rewards the gambler with a
boost factor of bf = 2. Not surprisingly, the value of
about bf = 2 is expected also if we are to perform a
Hamiltonian walk which, by definition, visits each vertex
only once.

Choosing a gambler to solve combinatorial problems
optimally is not expected to scale as the dimensions of
the problem increase (unless there is an proportionate
increase in the number of optima). However, the model
does provide a useful metaphor for walk strategies we

OF N-DIMENSIONAL DICE, COMBINATORIAL OPTIMIZATION, AND REPRODUCIBLE RESEARCH: AN INTRODUCTION 187

Table 2. Experiments with B(index, 5): gambler’s approaches to finding the face with minimum value.

B(index, 5) Throws only Walks With Repetitions Walks With No Repetitions
instance: all uniq throws probes throws walk dist. throws probes throws walk tries dist.
firstSeed +probes length +probes length

0:1776 11 10 1 29 30 79 3 1 20 21 19 63 3
1:61110 74 29 1 23 24 46 2 1 5 6 4 17 2
2:27423 4 4 1 14 15 18 4 1 23 24 22 72 4
3:16076 1 1 1 1 1 0 0 1 1 1 0 0 0

...
127:68095 49 27 1 27 28 72 4 3 26 29 25 76 2
128:6568 11 8 1 28 29 71 3 1 4 5 3 14 1

median 21.5 17.0 1 16.0 17.0 22.5 3.0 1.0 15.5 16.5 14.5 52.0 2.0
mean 32.9 16.8 1 16.1 17.0 33.1 2.4 1.3 15.1 16.3 14.1 47.1 2.4
stdDev 31.7 9.3 0 9.0 9.1 31.2 1.2 1.0 9.0 9.5 9.0 25.3 1.3
stdErr 2.8 0.8 0 0.8 0.8 2.8 0.1 0.1 0.8 0.8 0.8 2.2 0.1

(1) The count of operations stops on the first observance of the face with minimum value, computed by the function ’index’.
(2) The value of ’dist.’ measures Hasse rank distance, here Hamming distance, from the coordinate with minimum value

to the dice bottom, determined by first throw (associated with firstSeed).
(3) All statistics are based on 128 instances of B(index, 5), each associated with a randomly selected firstSeed.

Operation counts for the first instance, instance ’0’, are not included.

introduce later on, strategies that are also based on rules
and not chance alone.
Walks in Hyperhedrons: The First Steps. The initial
group of experiments that sets the tone is summarized
in Table 2. Here, the gambler engages in three strategies
using the hyperhedron B(index, 5). In the experiment,
gambler uses 129 hyperhedron instances for each strat-
egy: the seed for the first instance is chosen by the
gambler and is used to generate the random seeds for
the next 128 instances. Only the last 128 instances are
used to evaluate the reported statistics.

The first strategy is based on random throws only:
we observe the mean number of throws as 32.9 and
the standard deviation as 31.7. The second strategy is
based on a random walk following the first throw where
coordinate repetitions are allowed: we observe the mean
value of walk length as 33.1 and the standard devia-
tion as 31.2. The third strategy is based on a random
walk where coordinate repetitions are not allowed. This
restriction may terminate the walk before reaching the
optimum, but the gambler is allowed to repeat throws
and walks until the optimum value is found. Here, we
observe the mean value of walk length as 14.1 and the
standard deviation as 9.0.

We use Hasse graphs to illustrate the two walk-
ing strategies employed by the gambler, see Figure
3(a-c). The statistics such as shown in Table 2 are
computed for hyperhedrons with dimensions of n =
5, 6, 7, 8, 11, 13, 15 and are plotted in Figure 3(d). The
parameter “cntOps” implies the mean values of random
throws (xRT), the mean values of random walk lengths
for random walks with coordinate replication (xRW1),
and the mean values of random walk lengths for random
walks without coordinate replication (xRW2). Clearly,

both xRT and xRW1 have the boost factor of bf ≈ 1 as
a statistician would readily predict, and for xRW2 we
observe the boost factor of bf ≈ 2.

3 PROBLEM INSTANCE SELECTION

Instances of problems that arise in practice have typ-
ically more than one optimal solution; the more such
solutions, the easier are they to solve in principle. In
this paper, we normalize all instances to having a single
optimum: we achieve this property either by direct in-
stance construction (functions in the index family) or by
iterated sieving methods that also include removing the
symmetries in the original problem (generating functions
in the npp0 family).
Instances in the index family. We provide two sets of
instances based on related functions: index and index-
perm. The function index is piewise-linear as described
in Figure 1, function values of index-perm are created by
randomly permuting values of index under a lexograph-
ical coordinate order for both. Scatter plots differences
between these two functions under lexographical order
are significant as shown for a 5-variable example in
Figures 5-(b) and 5-(d) (fully introduced in Section 5).
The purpose of the function index in this form is for
performance testing when n is increasing: the breakpoint
“hides” the function minimum value from its “expected”
coordinate of “00000”.

The purpose of the function index-perm is to show
that order matters: compared to index, instances based
on index-perm are significantly harder to solve optimally
with the method we use in this paper. Three families
of dice instances can be tested with the function in-
dex: H2(index, n), B(index, n), P(index, n). Similar

188 BRGLEZ

2 4 6 8 10

0
1

2
3

4
5

xRW1 walk in 'fg_v−005−B−index_11110', seedBottom=1215
(diceType=B, diceFunction=index, bottomFace=11110;11)

vertices and labels are ordered L −> R by function values
 (for diceType=B, vertex distribution at each rank is binomial)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

!

! ! ! ! !

! !! ! ! ! ! ! ! !

! !! ! ! ! ! ! ! !

! ! ! ! !

!

11110;11

10110;3 11010;7 11100;9 11111;12 01110;27

10100;1 10010;3110111;4 11000;5 11011;8 11101;10 00110;19 01010;23 01100;25 01111;28

10011;0 10000;2910101;2 11001;6 00010;15 00100;17 00111;20 01000;21 01011;24 01101;26

00000;13 00011;16 00101;18 01001;22 10001;30

00001;14

2 4 6 8 10
0

1
2

3
4

5

xRW2 walk in 'fg_v−005−B−index_11110', seedBottom=1248
(diceType=B, diceFunction=index, bottomFace=11110;11)

vertices and labels are ordered L −> R by function values
 (for diceType=B, vertex distribution at each rank is binomial)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

!

! ! ! ! !

! !! ! ! ! ! ! ! !

! !! ! ! ! ! ! ! !

! ! ! ! !

!

11110;11

10110;3 11010;7 11100;9 11111;12 01110;27

10100;1 10010;3110111;4 11000;5 11011;8 11101;10 00110;19 01010;23 01100;25 01111;28

10011;0 10000;2910101;2 11001;6 00010;15 00100;17 00111;20 01000;21 01011;24 01101;26

00000;13 00011;16 00101;18 01001;22 10001;30

00001;14

(a) (b)

(c) (d)

2 4 6 8 10

0
1

2
3

4
5

xRW2 walk in 'fg_v−005−B−index_11110', seedBottom=20973
(diceType=B, diceFunction=index, bottomFace=11110;11)

vertices and labels are ordered L −> R by function values
 (for diceType=B, vertex distribution at each rank is binomial)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

!

! ! ! ! !

! !! ! ! ! ! ! ! !

! !! ! ! ! ! ! ! !

! ! ! ! !

!

11110;11

10110;3 11010;7 11100;9 11111;12 01110;27

10100;1 10010;3110111;4 11000;5 11011;8 11101;10 00110;19 01010;23 01100;25 01111;28

10011;0 10000;2910101;2 11001;6 00010;15 00100;17 00111;20 01000;21 01011;24 01101;26

00000;13 00011;16 00101;18 01001;22 10001;30

00001;14

20
50

10
0

50
0

20
00

50
00

20
00

0

plot_compare_asymp of 'fg_walk_random_11110−cntOps'
(sampleSize= 128 , diceType= B , diceFunction= index)

values of n (instance dimension)

cn
tO

ps
 (m

ea
n

+−
 2

*s
e−

of
−m

ea
n,

 s
am

pl
eS

ize
=1

28
)

5 6 7 9 11 13 15

!

!

!

!

!

!

!!!!! xRT_1066
xRW1_1066
xRW2_1066
2^n

xRT_1066
xRW1_1066
xRW2_1066
2^n

xRT_1066
xRW1_1066
xRW2_1066
2^n

xRT_1066

Figure 3. Hasse graphs illustrate the walk strategies summarized in Table 2. In (a), a single throw (bottom coordinate 11110)
is followed by a random walk with coordinate replication until the minimum value of “0” is found at 10011. In (b), a random
walk without coordinate replication, is blocked at the coordinate 11100 (immediately above the bottom coordinate) and another
throw (which landed a 11010) is needed before reaching the minimum value of “0”. In (c), a walk without coordinate replication
finds the minimum value of “0” in just 9 steps after the first throw. In (d), we compare statistics for strategies outlined in Table
2 as dice increase in size.

choices are available for the the function index-perm.
Instances in the npp0 family. We provide a set of
instances based on functions that evaluate the number
partitioning problem, npp [28], [29], [30], [31]. All
instances are normalized to have a single optimum by an
iterated sieving method (to be described elsewhere). The
method also removes the function symmetry, as already
explained in the preceding section for the npp0 family

of functions. Properties of these instances include:
• the number of bits used to construct each integer

in the list and the total number of integers in the
list to be partitioned is the same (a conjectured
prerequisite for the hardest instance with perfect
partition);

• under the function npp0, each instance has one and
only one perfect partition with discrepancy = 0;

OF N-DIMENSIONAL DICE, COMBINATORIAL OPTIMIZATION, AND REPRODUCIBLE RESEARCH: AN INTRODUCTION 189

• when solved by the Largest Differencing Method
(LDM) algorithm [31], each instance reports dis-
crepancy > 0 (i.e. the LDM heuristic fails to find
the perfect partition).

An example of a npp0 function where 5-variable binary
coordinates are listed in lexographical order is shown
in Figure 5-(c) (fully introduced in Section 5). Clearly,
there is no obvious correlation of function values to this
variable order; the scatter plot is similar when binary
coordinates are listed in gray order. Scatter plots such
as this one may indicate that the problem will be hard
to solve for its optimum value with any search method;
this conjecture is confirmed with experimental results in
this paper as well as anticipated earlier in [32].

4 STOCHASTIC SEARCH STRATEGIES

Neither the tossing nor the combinations of tossing
and walking strategies introduced by the gambler in
Section 2 scale adequately for sizes of problems encoun-
tered in practice. Today, all stochastic search methods
rely on strategies that are based not only on a combina-
tion of random choices but also on rules where decisions
depend on dynamic probing the function values of the
instance being solved.

Historical milestones on stochastic search methods
include the Metropolis-Hastings algorithm [33], [34],
simulated annealing, based on a model of a cauldron of
hot liquid where liquid is crystalizing under a controlled
cooling schedule [35], [36], Gibbs sampling [37], and
tabu search that uses memory structures to describe the
visited solutions [38], [39]. Entries on these topics are
continually updated on Wikipedia, and expanded with
new metaphors such as ant colonies [40], bird flocks and
particle swarms [41], natural disasters [42], genetics and
biological processes [43], etc.

The approach described briefly in this paper has roots
in a deterministic hill-climbing procedure with a well-
defined stopping criterion, known as the Kernighan-Lin
(KL) algorithm [44], [45] which can also be applied
in contexts other than graph partitioning [46], [47]. A
version of randomized KL has been introduced in [47]
by repeated application of a random toss, followed by
an invocation of the KL algorithm until the specified
objective has been met. In the follow-up experiment,
the performance of the randomized KL algorithm could
be compared fairly with the best known version of
the Evolutionary Search (ES) algorithm, applied to the
notoriously hard low autocorrelation binary sequence
(labs) problem [48]. Surprisingly, the randomized KL
not only held ground against ES in the operations count
(number of function evaluations), its implementation
was also significantly faster, so that larger problems
could be solved with KL for the (then) known exact
values provided by the branch-and-bound method [49].

The brief description and the context of the random-
ized KL algorithm in this paper is different from the one
in [47]. Foremost, the flow of execution is mapped onto
a Hasse graph and proceeds from the bottom face: the
first vertex whose label (coordinate;value pair) is also
known as the first pivot pair. Before making a step (or
walk) to a new pivot pair, all adjacent vertices at the
Hasse rank distance of 1 above the current pivot are
probed for function value. A new pivot pair is chosen
from the list of most recently probed vertices with the
‘best’ (minimum) function value. The vertex probing,
the pivot selection, and the walk continues upwards until
reaching the top face (the last pivot pair in the first walk).
At this point, the first walk is terminated, and the next
bottom face is selected from the list of current pivots
as the pivot with the ‘best’ (minimum) function value.
A second walk is now initiated from the new bottom
face, and the process repeats. The probing and the walk
is terminated either when the value associated with the
best pivot pair is repeated or when all vertices adjacent
to the current pivot pair have been visited already.

The walking process just described is illustrated for
the 5-variable binary function index with a Hasse graph
in Figure 4: the first walk is depicted with the solid
lines (blue), the second walk is depicted with dashed
lines (black). While it is not immediately obvious from
Figure 4 that the second walk is again from new bottom
face; this is indeed the case and can be illustrated by
drawing a new Hasse graph, now with ’10100;1’ as the
new bottom face in place of ’11110;11’ shown in the
current graph.

Vertices probed during the first walk are marked
with triangles (blue), vertices that were probed during
the second walk are marked with solid black circles.
The spreadsheet adjacent to the Hasse graph provides
additional details, including explicit markings for the
neighborhood vertices that were probed before making
the selection about the choice of the next best pivot. It
should also be noted that pivot pairs are never marked,
even if they were marked as ‘neighbors’ earlier. Pivot
pairs can also re-appear in the follow-up walk.

As shown in in Figure 4, the number of probes taken
by the first KL walk for hyperhedrons in the family
B(Θ, n) is O(0.5n2) since the height of the Hasse graph
is is n. However, the description of the walk would
not change if we were considering hyperhedron under
different coordinate systems such as P(Θ, n) or the
family H2(Θ, n). What would change is the number
of probes during the walk. In either case, the number
of probes taken by the first KL walk would be O(n4),
primarily due to the increased height in each Hasse
graph; details will be provided elsewhere.

190 BRGLEZ

2 4 6 8 10

0
1

2
3

4
5

xKL walk in 'fg_v−005−B−index_11110'
(diceType=B, diceFunction=index, bottomFace=11110;11)

vertices and labels are ordered L −> R by function values
 (for diceType=B, vertex distribution at each rank is binomial)

H
as

se
 ra

nk
 d

is
ta

nc
e

fro
m

 th
e

bo
tto

m
 fa

ce
 o

f t
he

 d
ic

e

!

! ! ! ! !

! !! ! ! ! ! ! ! !

! !! ! ! ! ! ! ! !

! ! ! ! !

!

11110;11

10110;3 11010;7 11100;9 11111;12 01110;27

10100;1 10010;3110111;4 11000;5 11011;8 11101;10 00110;19 01010;23 01100;25 01111;28

10011;0 10000;2910101;2 11001;6 00010;15 00100;17 00111;20 01000;21 01011;24 01101;26

00000;13 00011;16 00101;18 01001;22 10001;30

00001;14

probes probes
Cum

pivotPair neighbor
1

neighbor
2

neighbor
3

neighbor
4

neighbor
5

5 5 11110;11 10110;3 11010;7 11100;9 11111;12 01110;27
4 9 10110;3 10100;1 10111;4 00110;19 10010;31 NA
3 12 10100;1 10101;2 00100;17 10000;29 NA NA
2 14 10101;2 00101;18 10001;30 NA NA NA
1 15 00101;18 00001;14 NA NA NA NA
0 15 00001;14 NA NA NA NA NA

0 0 10100;1 10101;2* 10110;3* 11100;9* 00100;17* 10000;29*
1 1 10101;2 10111;4* 11101;10 00101;18* 10001;30* NA
2 3 10111;4 10011;0 11111;12* 00111;20 NA NA
2 5 10011;0 11011;8 00011;16 NA NA NA
1 6 11011;8 01011;24 NA NA NA NA
0 6 01011;24 NA NA NA NA NA

0 0 10011;0 10111;4* 11011;8* 00011;16* 10001;30* 10010;31*
0 0 10111;4 10101;2* 10110;3* 11111;12* 00111;20* NA

A * attached to the value of the function denotes that the coordinate
associated with this value has been visited already, for example
10101;2 is marked as 10101;2* -- however, only vertices in neighbor
columns are so marked, not vertices found in the pivotPair column!!

Figure 4. The Hasse graph and the spreadsheet next to it illustrate a rule-based walk; in the original context, these rules are
named as Kerninghan-Lin or KL. The walk starts at the bottom vertex (pivot pair) and before choosing the next vertex, all
adjacent vertices above the current vertex, are probed and marked, the vertex with the “ best value” is chosen as the next pivot
pair. After the walk of n steps, we reach the top vertex and choose the best pivot pair as the new bottom vertex to continue
the walk. Traditionally, the walk is terminated when the value associated with best pivot pair is repeated. However, as shown
in Figure 3, termination criteria can also consider whether vertices adjacent to the current pivot pair have been visited already.

5 EXPERIMENTAL RESULTS

Experiments were performed with a version of random-
ized KL algorithm (xKL) described in Section 4 on
instances from families index, index-perm, and npp0
introduced in Section 3. Asymptotic results of exper-
iments, as summarized for values of n ranging from
5 to 19 in Figure 5, are not entirely surprising. The
exponential cost of solving npp0 instances has already
been predicted in [32] and is not likely to change with
the change of the (stochastic search) algorithm. What
may be surprising is the dramatic effect of random
permutation on the piecewise linear function that pro-
duces index-perm. While the performance of the solver
xKL is O(n2.25) on instances from index, the same
solver performance on instances from index-perm is
O(2n) – comparable to the performance of the random
walk with repetition (xRW1) introduced in Section 2.
Applying the random walk without repetition, xRW2
from Section 2, on instances from index-perm improves
on the performance of xKL by a factor of 2.

6 SUMMARY AND CONCLUSIONS

We introduce and argue for the merits of the hyper-
hedron not only as a model for instances that arise in
the context of combinatorial optimization but also as a
metaphor to illustrate a combinatorial search algorithm,

xKL in this paper, whose meta-structure does not change
when instance coordinates change from an n-tuple to a
simple or an oriented permutation of length n.

In this paper, we introduce problem instances where
the cardinality of dice coordinates for each instance
maps directly to bn, n!, or bn(n!), respectively. However,
some problem instance classes are expressed with only
subsets of these coordinates or coordinates may not even
be discrete. In each case, most suitable mapping to dice
coordinates such as defined here needs to be decided
by the user. One example is the class of Golomb Rulers
which continues to consume considerable computational
resources: the current search for the optimal GR is run-
ning at n = 27 since 2009 [50]. Another example is the
class of instances defined in terms cartesian coordinates
in k-dimensional space [51]: the objectives here include
the highly multimodal Rastrigin function with a single
global optimum [52]. Computational experiments with
these and similar problem instances are in progress and
will be reported elsewhere.

Contents for all figures in this paper, including au-
tomatic generation of figure labels and captions for
inclusion in the LaTex source files, can be reproduced by
re-running a few scripts in tcl and R – for any instance
parameters and choices of (encapsulated) solvers. If
interested in getting an early version of this (xBed)
environment, contact the author.

OF N-DIMENSIONAL DICE, COMBINATORIAL OPTIMIZATION, AND REPRODUCIBLE RESEARCH: AN INTRODUCTION 191

0
5

10
15

20
25

30

plot_scatter of 'fg_v−005−B−index_11110'
(diceType= B , diceFunction= index)

x−coords are based on lex−order of binary coordinates
di

ce
Fu

nc
tio

n
va

lu
es

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!
!

!
!

!
!

!

(a)

(c) (d)

(b)

0
5

10
15

20
25

30
plot_scatter of 'fg_v−005−B−perm−index_lex_scatter'

(diceType = B, diceFunction = index−perm (permuted index))

x−coords are based on lex−order of binary coordinates

di
ce

Fu
nc

tio
n

va
lu

es

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
20

40
60

80
10

0

plot_scatter of 'fg_v−006−06−npp0_lex_scatter'
(diceType = B, diceFunction = npp0 (number partitioning prob.))

x−coords are based on lex−order of binary coordinates

di
ce

Fu
nc

tio
n

va
lu

es

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1e
+0

2
1e

+0
3

1e
+0

4
1e

+0
5

1e
+0

6
plot_compare_asymp of 'fg_walk_prober_xKL_1492−cntProbes'

(sampleSize= 128 , diceType= B , diceFunction= ... see legend)

values of n (instance dimension)

cn
tP

ro
be

s
(m

ea
n

+−
 2

*s
e−

of
−m

ea
n,

 s
am

pl
eS

ize
=1

28
)

5 7 9 11 13 15 17 19 21

!

!

!

!

!
!

!
!

!!!! index
npp0
index−perm
2^n

index
npp0
index−perm
2^n

index
npp0
index−perm
2^n

index

Figure 5. In (a) we measure probe counts with an identical xKL solver on instances of three dice functions and dimensions
ranging from n = 5 to n = 19. Functions index and index-perm are related, their distributions of 2n function values are the
same. However, there are significant differences: index is piewise-linear as described in Figure 1, function values of index-perm
are created by randomly permuting values of index under a lexographical coordinate order for both. Scatter plots differences
between these two functions under lexographical order are significant as shown in (b) and (d) – and, it should also be noted that
a scatter plot of index under gray order would look comparable to (d). Now, a scatter plot of function npp0 in (c) looks random
under both lexographical and gray order. Results of asymptotic experiments in (a) demonstrate that problem instances with the
same number of optima but different levels of correlation between function values and their coordinates make the problems with
better correlation also easier to solve (for this solver).

ACKNOWLEDGMENTS

My recent plunge into R has been softened and rewarded
by a number of user-friendly resources on the web and
occasionally, even by email: Brian Ripley, Tony Plate,
Duncan Murdoch, David Hiebeler, I thank you for the

help and the patience. My skills in Tcl would not match
my needs without the generous advice from Hemang
Lavana and Clif Flynt. For prompting a timely delivery
of this manuscript, credits are due to Baldomir Zajc,
Andrej Žemva, and Andrej Trost from University of
Ljubljana, Slovenia.

192 BRGLEZ

Finally, Wikipedia, and its universal accessibility,
provides up-to-date information on a number of topics
related to this paper – and as such is well deserving of
continued support from its readers.

REFERENCES

[1] Wikipedia. http://en.wikipedia.org/wiki/Geometric distribution,
Nov 2011.

[2] Wikipedia. http://en.wikipedia.org/wiki/Polyhedron, Nov 2011.
[3] D. I. McCooey. Java Applets for Visualizing Polyhedra.

http://homepage.mac.com/dmccooey/polyhedra/, Nov 2011.
[4] Wikipedia. Reproducible Research, Nov 2011.
[5] Patrick Vandewalle, Jelena Kovacevic, and Martin Vetterli. Re-

producible Research in Signal Processing. IEEE SIGNAL PRO-
CESSING MAGAZINE, 26(3):37–47, May 2009.

[6] C. Geyer. A Sweave Demo: Literate Programming in R.
http://www.stat.umn.edu/˜charlie/Sweave/, Nov 2011.

[7] Literate programming. http://www.literateprogramming.com/,
Nov 2011.

[8] D. E. Knuth. Literate Programming. The Computer Journal,
27(2):97–111, 1984.

[9] Tcl Developer Exchange. http://www.tcl.tk/, Nov 2011.
[10] J. K. Ousterhout and K. Jones. Tcl and the Tk Toolkit (2nd

Edition). Addison Wesley, 2009.
[11] Clif Flynt. Tcl/Tk, Second Edition: A Developer’s Guide. Morgan

Kaufmann Publishers, 2003.
[12] The R Project for Statistical Computing. http://www.r-

project.org/, Nov 2011.
[13] P. Dalgaard. Introductory Statistics with R. Springer Verlag,

2008.
[14] Alastair Sanderson. Web pages on using the R statistical envi-

ronment package. http://www.sr.bham.ac.uk/ ajrs/, Nov 2011.
[15] LaTeX – A document preparation system. http://www.latex-

project.org/, Nov 2011.
[16] F. Brglez and J. A. Osborne. Performance Testing of Combina-

torial Solvers With Isomorph Class Instances. In ACM-FCRC,
2007. http://doi.acm.org/10.1145/1281700.1281713.

[17] M. Stallmann and F. Brglez. High-Contrast Algorithm Behavior:
Observation, Conjecture, and Experimental Design. In ACM-
FCRC, 2007. http://doi.acm.org/10.1145/1281700.1281712.

[18] Wikipedia. Hasse Diagram, Nov 2011.
[19] Wikipedia. Hypercube Graph, Nov 2011.
[20] N. J. A. Sloane and M. Bernstein. Pascal’s triangle read by rows.

http://oeis.org/A007318, Nov 2011.
[21] N. J. A. Sloane. Triangle of multinomial coefficients.

http://oeis.org/A036040, Nov 2011.
[22] N. J. A. Sloane. Triangle of Mahonian numbers T(n,k).

http://oeis.org/A008302, Nov 2011.
[23] M. C. Er. On Generating the N-ary Reflected Gray Codes. IEEE

Trans. Computers, C-33(8):739–741, August 1984.
[24] The Art of English Bell-ringing. http://www.chaddesley-

corbett.co.uk/tower history.htm, Nov 2011.
[25] Hale F. Trotter and Selmer M. Johnson. Generation of Permuta-

tions by Adjacent Transposition. Mathematics of Computation,
17(83):282–285, July 1963.

[26] D. A. Wismer. Solution of the Flowshop-Scheduling Problem
with No Intermediate Queues. OpRes, 20(3):689–697, 1972.

[27] F. Brglez, X. Y. Li, and M. F. M. Stallmann. On SAT instance
classes and a method for reliable performance experiments with
SAT solvers. Ann. Math. Art. Intell.,, 43(1):1–34, 2005.

[28] S. Mertens. A physicist’s approach to number partitioning.
Theoretical Computer Science, 265(1-2):79–108, 2001.

[29] Brian Hayes. The Easiest Hard Problem. American Scientist,
90(2):113–117, 2002.

[30] Stephan Mertens. The Easiest Hard Problem: Number Parti-
tioning. In A.G. Percus, G. Istrate, and C. Moore, editors,
Computational Complexity and Statistical Physics, pages 125–
139, New York, 2006. Oxford University Press.

[31] Stefan Boettcher and Stephan Mertens. Analysis of the
Karmarkar-Karp differencing algorithm. European Physics Jour-
nal B, pages 131–140, 2008.

[32] Stephan Mertens. Random Costs in Combinatorial Optimization.
Phys. Rev. Lett., 84(6):1347–1350, February 2000.

[33] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. Equation of State Calculations by Fast
Computing Machines. Journal of Chemical Physics, 21:1087–
1092, June 1953.

[34] W. K. Hastings. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57(1):97–109, 1970.

[35] M. P. Vecchi S. Kirkpatrick, D. Gelatt Jr. Optimization by
simulated annealing. Science, 220(5-6):671–680, 1983.

[36] Wikipedia. Simulated Annealing, Nov 2011.
[37] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs

distributions and the Bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
6(6):721–741, November 1984.

[38] Fred Glover. Tabu Search – Part I. ORSA Journal on Computing,
1(3):190–206, 1989.

[39] Fred Glover. Tabu Search – Part II. ORSA Journal on Computing,
2(1):4–32, 1990.

[40] Wikipedia. Ant Colony Optimization Algorithms, Nov 2011.
[41] Wikipedia. Particle Swarm Optimization, Nov 2011.
[42] Wikipedia. Great Deluge Algorithm, Nov 2011.
[43] Wikipedia. Evolutionary Computation, Nov 2011.
[44] B.W.Kernighan and S.Lin. An efficient heuristic procedure for

partitioning graphs. Bell System Tech. J., pages 291–307, 1970.
[45] Wikipedia. Kernighan–Lin algorithm, Nov 2011.
[46] W.-K. Chen, M. Stallmann, and E.F. Gehringer. Hypercube

embedding heuristics: An evaluation. International Journal on
Parallel Programming, 18(6):505 – 549, 1989.

[47] F. Brglez, X. Y. Li, M. Stallmann, and B. Militzer. Re-
liable Cost Predictions for Finding Optimal Solutions to
LABS Problem: Evolutionary and Alternative Algorithms. In
Proc. of The Fifth Int. Workshop on Frontiers in Evolution-
ary Algorithms (FEA2003), Cary, NC, USA, September 2003.
http://militzer.berkeley.edu/papers/2003-FEA-Brglez-posted.pdf.

[48] B. Militzer, M. Zamparelli, and D. Beule. Evolutionary search
for low autocorrelated binary sequences. IEEE Transactions on
Evolutionary Computation, 2(1):34–39, April 1998.

[49] S. Mertens. Exhaustive search for low-autocorrelation binary
sequences. Journal of Physics A: Mathematical and General,
29:473–481, 1996.

[50] Golomb Rulers Project. http://www.distributed.net/OGR, Nov
2011.

[51] H. Mühlenbein, M. Schomisch, and J. Born. The parallel genetic
algorithm as function optimizer. Parallel Comput., 17:619–632,
September 1991.

[52] Wikipedia. Rastrigin function, Nov 2011.

Franc Brglez received a Dipl-Ing degree in Electrical Engineering
from the University of Ljubljana in 1965, served a year in the
Yugoslav Army, and then continued with graduate studies in Electrical
Engineering at the University of Colorado in Boulder, where he
received a PhD degree in 1970. He spent the next 16 years with Bell-
Northern Research (BNR) in Ottawa, Canada, where he was engaged
in computer-aided design and research of communication circuits. In
1986, he moved to Microelectronics Center of North Carolina (MCNC)
in Research Triangle Park (RTP) of North Carolina, first as BNR
research scientist, where he initiated a series of trend-setting yearly
workshops in Layout Synthesis and Logic Synthesis. Since 1995, he
has been a Research Professor with the Computer Science Department
of North Carolina State University (NCSU) in Raleigh. For some time,
his primary activities have been in experimental design of test pattern
generators, combinatorial optimization, and performance evaluation of
combinatorial solvers, in particular with instances from the area of
CAD of electronic circuits, starting with the ISCAS’85 and ISCAS’89
benchmarks. This paper is an attempt at closure for a subset of these
activities; more musings are in progress.

