Uporaba stabilnih izotopov za študij toka podzemne vode v nezasičeni coni prodnega vodonosnika Selniške Dobrave

The use of environmental isotopes in groundwater flow study in the unsaturated zone of the Selniška Dobrava coarse gravel aquifer (Slovenia)

Nina MALI & Janko Urbanc

Geološki zavod Slovenije, Dimičeva 14, SI – 1000 Ljubljana, Slovenija E-pošta: nina.mali@geo-zs.si janko.urbanc@geo-zs.si

Ključne besede: podzemna voda, nezasičena cona, stabilni izotopi, lizimeter, Selniška Dobrava, Slovenija

Key words: groundwater, unsaturated zone, stable isotopes, lysimeter, Selniška Dobrava, Slovenia

Povzetek

Poznavanje toka in transporta vode skozi nezasičeno cono vodonosnika postaja pomembno vprašanje pri varovanju vodnih virov. V terenskem laboratoriju – lizimetru Selniška Dobrava smo izvedli študij toka vode in transportnih procesov v visoko prepustnem vodonosniku na osnovi izotopskih metod. Vsebnost stabilnih izotopov δ^{18} O smo spremljali v mesečnih vzorcih vode nezasičene cone in padavin skozi daljše časovno obdobje 2001-2005. Iz nihanj izotopske sestave δ^{18} O v posameznih točkah lahko sledimo padavinski sezonski efekt δ^{18} O v vzorcih vode v lizimetru s časovnim zamikom in dušeno amplitudo z globino. Srednje zadrževalne čase vode na posameznih globinah smo modelirali z integriranimi modeli (lumped parameter models – LP modeli) v programskem paketu FLOWPC 3.1. Ocena hitrosti vode skozi nezasičeno cono visoko prepustnega proda vodonosnika Selniške Dobrave z LP modeli je 0.015 m/dan. Na lokaciji lizimetra je ocena srednjega zadrževalnega časa vode v nezasičeni coni 5 let, oz. v redu velikosti 3,8 - 9,4 let. Raziskava je pokazala, da so izotopske metode primerne tudi za sledenje toka podzemne vode skozi nezasičeno cono visoko prepustnega prodnega vodonosnika in da so LP modeli primerno orodje za oceno srednjih zadrževalnih časov infiltrirane vode.

Abstract

The knowledge about water flow and transport properties in the unsaturated zone is becoming an important predisposition for groundwater protection. The water flow and transport processes were studied in a field laboratory – a lysimeter in the coarse gravel aquifer of Selniška Dobrava, using isotope methods. The $\delta^{18}O$ isotope values were measured monthly in the sampled unsaturated zone water and precipitation during the long-term period from 2001 to 2005. The isotope oscillations in the measuring points show that the $\delta^{18}O$ seasonal effect in precipitation can be observed in the unsaturated zone with some delay in peak and with amplitude reduction with depth. Mean residence times of the water in the unsaturated zone were modelled with the FLOWPC 3.1 computer package. The estimation of water flow velocity in the Selniška Dobrava coarse gravel unsaturated zone by lumped-parameter (LP) models is 0.015 m/day. The estimation of water mean residence time at lysimeter location is 5 years, i.e. in the range of 3.8-9.4 years. The research confirmed that the isotope methods are suitable tools for water flow tracing in the coarse gravel unsaturated zone, and that lumped-parameter models can be used to estimate water mean residence time in the unsaturated zone.

Uvod

Učinkovito varovanje vodnih virov postaja vedno večji problem. Širjenje onesnaženja v vodonosniku je direktno povezano s hidravličnimi lastnostmi zgornje nezasičene in spodnje zasičene cone. Pri reševanju te problematike je zelo pomembno terensko določanje hidravličnih lastnosti materialov v nezasičeni coni. Eden glavnih problemov je, kako čim bolje določiti lastnosti nezasičene cone. Izvedba in-situ meritev v zelo prepustni prodni nezasičeni coni je zelo zahtevna, včasih skoraj nemogoča. Z metodami sledenja (tako z naravnimi kot umetnimi sledili) lahko izboljšamo ocene hidravličnih parametrov (Seiler & Zojer, 2001). Uporaba tako klasičnih hidravličnih metod za izračun izcejanja vode kot metod sledenja omogoča optimalne rezultate v povezavi z numeričnimi simulacijami in primernimi konceptualnimi modeli.

Študij toka in transporta vode v nezasičeni coni je tema številnih raziskav. Pri tem se uporabljajo tudi naravni izotopi kot devterij (²H), tritij (³H) in kisik (¹⁸O) (Maloszewski et al., 2006). Pri raziskavah porazdelitve starosti vode in mešalnih procesov v Fontainebleau-jskem peščenem vodonosniku (Corcho et al., 2004) so uporabili naravna sledila (³H, ⁸⁵Kr, ³⁹Ar, ¹⁴C in stabilne žlahtne pline) v povezavi s kemijskimi parametri.

V Sloveniji so izvedli več študij transporta vode v nezasičeni coni razpoklinskih in kraških kamnin. Večinoma gre za izvedbo sledilnih poskusov z umetnimi sledili (Kogovšek & Šabela, 2004; Veselič & Čenčur-Curk, 2001; Čenčur-Curk, 2002). Trčkova (2001) poroča o uporabi naravnih izotopov (²H, ¹⁸O, ¹³C) pri študiju transportnih procesov v kraški nezasičeni coni in njeni epikraški coni. Z indirektno raziskovalno metodo z uporabo naravnih izotopov so bile raziskane hidravlične lastnosti nezasičene cone kraškega vodonosnika zaledja izvira Hubelj (Trček et al., 2003). Rezultati so dali odgovore na vprašanja o napajanju, skladiščenju in praznjenju vodonosnika kot tudi o mehanizmih, ki vplivajo na te procese.

Naravna sledila so pomembno orodje za sledenje toka in transportnih procesov v nezasičeni coni. Z metodo naravnih izotopov smo poskušali z raziskavami na lizimetru opisati procese v visoko prepustni prodni nezasičeni coni vodonosnika Selniške Dobrave. Vodni vir Selniške Dobrave leži 20 km zahodno od Maribora in je pomemben potencialni vodni vir za regionalno vodooskrbo. Za njegovo učinkovito zaščito je potrebno poznati lastnosti nezasičene cone, na osnovi katerih bodo lahko predlagane omejitve rabe prostora z namenom zaščite vodnega vira.

Opis območja

Selniška Dobrava leži v severo-vzhodni Sloveniji blizu Maribora (Slika 1). Glavni prodni vodonosnik leži na severni strani reke Drave. Vodonosnik se napaja iz reke Drave, z infiltracijo iz padavin in z izcejanjem iz zgornjega slabše prepustnega vodonosnika. Debelina prodnega zasipa je povprečno 50 m. Gladina podzemne vode je na globini 25-37 m pod površjem, debelina zasičene cone pa je po osi vodonosnika med 7-14 m, na posameznih območjih celo globlje. Prepustnost vodonosnika je ocenjena na 5.10⁻³ m/s (Mali & Janža, 2005). Območje pripada kontinentalnemu podnebju centralne Slovenije s tipičnim celinskim deževnim režimom. Povprečne letne padavine so med 1200 in 1300 mm, srednja letna temperatura ie med 8 in 12°C.

Lokacija lizimetra je na glavnem vodonosniku Selniške Dobrave, dolvodno od črpalnega vodnjaka GV-1 ob piezometru PS-5, v katerem je mogoče meriti gladino podzemne vode in izvajati vzorčenje. Vegetacijski pokrov predstavlja mešani gozd, tla so distrična rjava tla. Litološka struktura proda je mešana, sestavljena iz metamorfnih in karbonatnih kamnin, mestoma inkrustriranih s kalcitom. Na lokaciji lizimetra je prepustnost proda na osnovi granulometričnih analiz ocenjena na 2,9.10⁻³ do 6,8.10⁻² m/ s. Ocena prepustnosti zemljine z infiltracijskimi testi je 1,3.10⁻⁵ - 3,8.10⁻⁵ m/s. Konceptualno smo območje lizimetra definirali kot homogen prodni vodonosnik.

Metodologija

Eksperimentalni sistem

Lizimeter je izdelan kot betonska škatla velikosti 2 m x 2 m, globine 5 m, z 0,2 m debelimi stenami (slika 2). Ima 10 vzorčnih mest na različnih globinah z oznakami JV-1 do JV-10 (Mali et al., 2006a). Lega vzorčnih mest je naključna. Za vzorčevanje vode v nezasičeni coni so namešćene drenaže.

Sl. 2. Prerez lizimetra; lokacije vzorčnih mest od JV-1 do JV-10 Fig. 2. Lysimeter cross-section; locations of sampling points from JV-1 to JV-10

Drenaže so 1,7 m dolgi profili iz nerjavečega jekla (10 cm x 10 cm), z inverznim perforiranim profilom (5 cm x 5 cm) ter z zbiralnim sistemom vode na koncu. Jeklene drenaže so vtisnjene horizontalno v neporušeno steno. Ob lizimetru je postavljen merilec količine padavin z izhodom za zbiranje in vzorčenje padavin.

Vzorčenje in analitika

Od l. 2002 smo mesečno zbirali vzorce vode iz nezasičene cone na različnih globinah v lizimetru. Iz zbranega mesečnega vzorca vode smo odvzeli vzorec za analizo izotopov δ^2 H in δ^{18} O v 120 ml plastenke. Vzorce smo zbirali do konca l. 2005. V aprilu 2004 smo izvedli sledilni poskus na območju lizimetra z vodo, obogateno z devterijem, zato je bila od takrat v mesečnih vzorcih analizirana samo vsebnost ¹⁸O. Mesečno so bili odvzeti tudi vzorci zbranih padavin. Nekajkrat letno smo podzemno vodo vzorčili tudi v piezometru PS-5.

Vse analize stabilnih izotopov so bile opravljene v Gradcu v laboratoriju Joanneum Research Forshungsgesellschaft GmbH, Institute of Water Resources Management, Hydrogeoloy and Geophysics. Vrednosti izotopske sestave δ^{18} O in δ^{2} H so podane glede na VSMOW standard (Vienna Standard Mean Ocean Water). Razmerje je predstavljeno z δ :

$$\delta_{vzorec} = \begin{pmatrix} R_x \\ R_{st} \\ R_{st} \\ -1 \end{pmatrix} .1000\% \quad VSMOW$$
(1)

 R_{x} - razmerje izotopov (O_{18}/O_{16}) v vzorcu, R_{st} - razmerje izotopov (O_{18}/O_{16}) v VSMOW standardu.

Integrirani modeli (Lumped parameter models)

Z uporabo integriranih modelov (lumped parameter models) lahko z izotopskimi metodami ocenimo zadrževalne čase vode v sistemu, to je dolžino obdobja, v katerem se voda nahaja v vodonosniku (Ozyurt & Bayari, 2003). Ker je podzemna voda v različnih situacijah mešanica preteklega napajanja z različnimi zadrževalnimi časi, je bolj primeren izraz srednji zadrževalni čas (mean residence time - MRT). Analiza MRT je pomembna, ker podaja informacijo o časovni porazdelitvi podzemne vode v vodonosniku. Integrirani modeli omogočajo določitev in analizo MRT v vodonosniku, kjer teh informacij nimamo.

Pri integriranih modelih je področje toka podzemne vode (vodonosnik) vzeto kot črna skrinjica (black-box) v kateri je vhodna koncentracija sledila (signal) pretvorjena v izhodno koncentracijo (odmev) glede na izbrano reakcijsko funkcijo. Če izbrana reakcijska funkcija dobro opisuje tok podzemne vode v sistemu, se bo teoretična izhodna serija prilagajala opazovanim časovnim serijam.

Reakcijska funkcija sistema se imenuje tudi tehtana funkcija, ker ocenjuje težo preteklega impulza v vsakem času. Uteženo funkcijo g(t) lahko izrazimo splošno z

$$g(t) = \frac{C_{in}(t)}{\int\limits_{t=0}^{t=\infty} C_{in}(t)dt} = \frac{C_{in}(t)Q}{M}$$
(2)

 C_{in} (t) je vstopna koncentracija sledila v času t, Q je pretok in M je vsa količina ali aktivnost sledila, vnešenega v sistem (Maloszewski, 1996). Rezultat g(t) je povprečna tehtana funkcija koncentracije sledila v toku.

V uravnoteženem sistemu podzemne vode, je izhodna koncentracija $C_{out}(t)$ v času t odvisna od vstopne koncentracije sledila $C_{in}(t)$ v dotoku v času t' z naslednjim konvolucijskim integralom:

$$C_{out}(t) = \int_{t'=-\infty}^{t'=0} C_{in}(t')g(t-t')\exp(-\lambda(t-t'))dt'$$
(3)

(t - t') je pripadajoči zadrževalni čas, g(t - t') je utež posamezne vstopne koncentracije $C_{in}(t)$ v času vstopa (t'), in λ je konstanta radioaktivnega razpada sledila. Iz enačbe 3 sledi, da je izhodna koncentracija sledila v času t seštevek vstopnih koncentracij v preteklosti v času (t - t'), pomnožena s pripadajočo utežjo g(t - t') in korigirana z radioaktivnim razpadom (ali sorpcijo) v času (t - t').

Zadrževalni čas sledila (ali vode) v sistemu lahko opišemo tudi z izrazom:

$$MRT = \frac{\int_{t=-\infty}^{t'=0} fC_{in}(t)dt}{\int_{t=-\infty}^{t=0} C_{in}(t)dt}$$
(4)

V sistemu toka, kjer se delci sledila gibljejo enako kot vodne molekule, je enačba 4 enaka izrazu:

$$MRT = \frac{V}{Q}$$
(5)

V in Q sta volumen in pretok vode. V tem primeru imenujemo MRT tudi povratna doba sistema, kar se nanaša na čas, ki je potreben za napolnitev celotnega volumna V s pretokom (izdatnostjo) Q.

Obstaja več računalniških programov z različnimi integrirnimi modeli, kjer vsak opisuje različne tokovne sisteme, ki jih lahko simuliramo z batnim, eksponencialnim, kombiniranim, linearnim in disperzijskim tokovnim sistemom. Srednje zadrževalne čase smo izračunali s programskim paketom FLOWPC 3.1 (Maloszewski, 1996), ki vsebuje naslednje modele:

- Model batnega toka (piston flow model
 PFM)
- Eksponencialni model (exponential model EM)
- Linearni model (linear model LM)

- Disperzijski model (dispersion model
 DM)
- Model eksponencialno-batnega toka (exponenial-piston-flow model - EPM)
- Model linerno-batnega toka (linear-piston flow model - LPM)

Podroben opis modelov lahko najdemo v člankih Maloszewski & Zuber (1982, 1996) in Zuber (1986).

Rezultati in diskusija

Rezultati meritev

Rezultati meritev izotopske sestave δ^{18} O in δ^{2} H mesečnih vzorcev podzemne vode nezasičene kot zasičene cone in padavin so predstavljeni na sliki 3. V analizo podatkov δ^{18} O smo vključili niz podatkov celotnega opazovalnega obdobja (2002–2005). Pri analizi δ^{2} H smo upoštevali samo niz podatkov za obdobje 2002 – aprila 2004, ker po tem datumu me-

Sl. 3. Škatlasti diagrami rezultatov izotopske sestave δ^2 H in δ^{18} O mesečnih vzorcev vode Fig. 3. Boxplots of δ^2 H and δ^{18} O isotope composition results of the monthly sampled water

ritve zaradi sledilnega poskusa z vodo, obogateno z devterijem niso bile relevantne.

Oba izotopa sta porazdeljena simetrično v padavinah, podzemni vodi in v vzorcih vode nezasičene cone. Največji razpon dosegajo vrednosti δ¹⁸O v padavinah, najmanjšega pa v podzemni vodi. Mejne vrednosti na posameznih merilnih mestih so večinoma posledica vpliva sezonskega efekta, snega ali nevihtnega dogodka v času vzorčevalnega obdobja. Razpon izotopske sestave $\delta^{18}O$ v padavinah, vključno s snegom, je med -17,6 ‰ in -3,0 ‰, s srednjo vrednostjo -8,9 ‰. Razpon vrednosti δ^2 H je med -135,3 ‰ in -25,4 ‰, s srednjo vrednostjo -61,9 ‰. V podzemni vodi so vrednosti izotopske sestave δ^{18} O med -10,4 ‰ in -8,8 ‰, srednja vrednost -9,6 ‰, vrednosti δ^{2} H pa nihajo med -71,6 ‰ in -63,5 ‰, srednia vrednost -67,8 ‰.

Vrednosti δ^{18} O in δ^{2} H v vodi nezasičene cone so v podobnem razponu. Vrednosti δ^{18} O so v razponu od -13,0 ‰ (JV-1) in -5,7 ‰ (JV-5), srednje vrednosti pa v razponu med -9,2 ‰ in -8,7 ‰. Najbolj razpršene vrednosti v lizimetru so izmerjene v vzorčnih mestih JV-1, JV-2 in JV-6. Vrednosti δ^{2} H so se gibale med -97,2 ‰ (JV-3) in -40,8 ‰ (JV-5), razpon srednjih vrednosti je bil med -66,1 ‰ in -62,6 ‰.

Sezonska nihanja izotopske sestave kisika v vodi

Več informacij o gibanju podzemne vode lahko dobimo iz sezonskih nihanj vrednosti δ^{18} O v posameznih merskih točkah. Na sliki 4 je prikazana časovna serija izotopske sestave δ^{18} O v podzemni vodi nezasičene cone na vzorčnem mestu JV-5. V diagramu je prepoznaven vpliv sprememb izotopske sestave kisika v padavinah. Isti efekt lahko sledimo tudi na ostalih vzorčnih mestih v nezasičeni coni.

Na sliki 5 so podrobno prikazane vrednosti δ^{18} O za vzorčna mesta JV-5, JV-7, JV-10 in padavin za leto 2002. Iz diagrama je razvidno, da je najvišja vrednost poletnega padavinskega signala dobro prepoznavna v nezasičeni coni, z globino se amplituda signala zmanjšuje. Z globino sledimo tudi časovni zamik največje vrednosti. Oba fenomena, dušeno nihanje in zamik največje vrednosti lahko sledimo na vseh merskih točkah. Meritve v točki JV-1 kažejo najhitrejšo reakcijo na padavinski signal. Z globino postane reakcijski čas daljši in krivulja postane sploščena.

Podatki daljšega časovnega obdobja omogočajo proučevanje razlik med posameznimi hidrološkimi obdobji. Leta 2002 smo zaznali

Sl. 4. Izotopska sestava $\delta^{18}O$ vode za JV-5 Fig. 4. $\delta^{18}O$ isotope composition of the water for JV-5

Sl. 5. Izotopska sestava $\delta^{18}O$ vode v l.2002 Fig. 5. $\delta^{18}O$ isotope composition of the water for the year 2002

Sl. 6. Srednje letne vrednosti izotopske sestave δ^{18} O mesečno vzorčene vode Fig. 6. Average values of δ^{18} O isotope composition of the monthly sampled water

	JV-1	JV-2	JV-3	JV-4	JV-5	JV-6	JV-7	JV-8	JV-9	JV-10
2001		-7.28	-8.54	-8.57	-8.70	-6.98	-8.30	-8.14	-7.63	-7.74
2002	-8.47	-7.91	-8.48	-8.12	-8.35	-7.53	-7.86	-8.48	-8.33	-8.13
2003	-8.95	-9.93	-10.22	-10.17	-9.89	-10.49	-10.31	-9.71	-10.32	-10.03
2004	-8.82	-9.50	-9.02	-9.44	-9.05	-9.97	-10.20	-9.45	-9.30	-9.76
2005	-8.42	-9.51	-8.43	-9.36	-9.28	-8.73	-9.00	-8.89	-8.84	-8.85

Tabela 1. Srednje vrednosti izotopske sestave δ^{18} O vode v posameznih letih

Table 1. Mean values of δ^{18} O isotope composition of the water by particular year

poletni signal v vseh merskih točkah v 3-5 mesecih. Leta 2003 so se vrednosti zniževale od zime do septembra. To je bila posledica izredno sušnega spomladanskega in poletnega obdobja. Zaradi pomanjkanja dotoka sveže vode v nezasičeni coni je prišlo do negativnega trenda v povprečni izotopske sestavi δ^{18} O vode v nezasičeni coni. Nasprotno je bilo leta 2004 veliko padavin spomladi in poleti. Vrednosti δ^{18} O v vodi nezasičene cone so naraščale hitreje kot prejšnja leta. V tabeli 1 so srednje vrednosti izotopske sestave δ^{18} O za posamezna leta po vzorčnih mestih. Slika 6 prikazuje padec povprečnih vrednosti δ^{18} O v letu 2003.

Srednji zadrževalni časi

Eden od ciljev izotopskih raziskav v nezasičeni coni je bil tudi ocena srednjih zadrževalnih časov (mean residence time - MRT). Dolgi časovni nizi podatkov vrednosti δ¹⁸O mesečnih vzorcev so zelo primerni za oceno MRT z integrirnimi modeli (lumped parameter models). Aplikacijo smo izvedli z modeli, ki so zajeti v program FLOWPC 3.1 (Maloszewski, 1996). V modeliranje smo vključili vse merske točke razen JV-1, kjer podatki niso bili primerni.

Niz podatkov izotopske sestave kisika v padavinah ni popoln, zato smo manjkajoče vrednosti dopolnili iz baz podatkov Instituta Jožef Stefan za padavine v Ljubljani. Poleg vrednosti δ^{18} O v padavinah smo v vstopni funkciji upoštevali tudi delež infiltracije. Infiltracija je bila privzeta iz matematičnega modela prodnega vodonosnika Selniške Dobrave (Mali & Janža, 2005). V tabeli 2 so podane ocenjene odstotne vrednosti infiltracije za gozdne površine na Selniški Dobravi po mesecih, ki smo jih vključili v vhodno funkcijo.

Uporabili smo linearni model, model linearno-batnega toka, eksponencialni model, model eksponencialno-batnega toka in di-

(%)	Jan.	Feb.	Mar.	April	Maj	Jun.	Jul.	Avg.	Sept.	Okt.	Nov.	Dec.
Infiltracija	1	1	1	0.5	0.5	0.5	0.5	0.5	0.5	1	1	1

Tabela	a 2.	Odsto	otne	vredn	osti i	nfiltr	acije,	, upo	rablj	ene '	v vs	stopn	i fuı	nkciji	i mo	delov
	Τa	able 2.	Ave	rage p	berce	ntage	of in	filtra	ation	used	l in	inpu	t fu	nctio	ns	

Model	JV-2	JV-3	JV-4	JV-5	JV-6	JV-7	JV-8	JV-9	JV-10
LM	2.5		3.5	3.5	3.5				
LPM	3	4	4	4	4.5		8.6		11
EM	3	3.5	4	3.5		8		7	
EPM	2.5	5	3.5	4	4.5	8	7	7	9
DM	2.2	5.5	3	4	4	7	6	6	9
Sred.vred.	2.6	4.5	3.6	3.8	4.1	7.7	7.2	6.7	9.7
Sledilni-04	1.9	4.5	3.5	4	4.7	8.9	7.5	7.7	9.1
Modeli	LM.LPM	LPM	LPM	LM.LPM	LM.LPM		DM.EPM	DM.EPM	EPM.DM

Tabela 3. Srednje vrednosti srednjih zadrževalnih časov, modeliranih z različnimi integriranimi modeli
in primerjava z rezultati sledilnega poskusa (MRT-srednji zadrževalni časi so izraženi v mesecih)
 Table 3. Mean values of mean residence time modelled by different lumped parameter models and
compared with results of the tracing experiment (MRT-mean residence time is expressed in months)

Sl. 7. Opazovane in prilagajane $\delta^{18} O$ izstopne funkcije za vzorčno mesto JV-5 (modelirane vrednosti predstavljajo MRT v mesecih)

Fig. 7. Observed and fitted $\delta^{18}O$ output functions for sampling point JV-5 (model numbers present MRT in months)

sperzijski model. Na sliki 7 so predstavljene tipične izhodne funkcije za vzorčno mesto JV-5. Modelirane vrednosti so zajele časovno obdobje več kot treh hidroloških obdobij, ki so bila zelo različna. Kot je bilo že omenjeno, je bilo l. 2003 izjemno sušno, kar je povzročilo nepravilen vhodni izotopski signal v tem obdobju. Ker smo želeli oceniti zadrževalni čas v letih z običajno količino padavin, smo kalibracijo izvedli na obdobje običajnih hidroloških let (2001-2002 in 2004-2005). Na posameznih merilnih točkah uporaba določenih modelov ni dala primernih rezultatov. Opazili smo, da je z večjo globino vse manj primerna uporaba linearnega modela in njegove izvedenke. Modelirani zadrževalni časi za posamezni model za določena vzorčna mesta so v tabeli 3. Rezultati MRT in oblike krivulj izhodnih funkcij za posamezne modele kažejo primerljive vrednosti. Z globino se MRT povečuje z izjemo dveh vzorčnih mest JV-3 in JV-7, kjer so zadrževalni časi daljši. Sklepamo na lokalno drugačne strukturne pogoje. Verjetno gre za vpliv slabše prepustnih plasti laporjev, peska ali konglomerata.

Na podlagi MRT smo izračunali tudi povprečne hitrosti. Rezultati kažejo, da tok v nezasičeni coni ni enoten. Največje hitrosti toka podzemne vode smo izračunali v merskih točkah JV-5, JV-6 in JV-9 (0,018-0,02 m/dan), najnižje pa v JV-3 in JV-1 (0,008-0,01 m/dan). V ostalih točkah smo ocenili srednjo hitrost toka vode v nezasičeni coni med 0,013-0,016 m/dan. Lahko zaključimo, da je povprečna hitrost toka podzemne vode v nezasičeni coni prodnega vodonosnika Selniške Dobrave približno 0,015 m/dan (tabela 4).

	JV-2	JV-3	JV-4	JV-5	JV-6	JV-7	JV-8	JV-9	JV-10
Globina	0.82	1.08	1.52	2.04	2.41	2.95	3.4	3.93	4.39
Sred. zadrževalni časi (mesec)	2.6	4.5	3.6	3.8	4.1	7.7	7.2	6.7	9.7
Hitrost toka (m/mes.)	0.3	0.2	0.4	0.5	0.6	0.4	0.5	0.6	0.5
Hitrost toka (m/d)	0.010	0.008	0.014	0.018	0.019	0.013	0.016	0.020	0.015

Tabela 4. Povprečni zadrževalni časi in ocenjene hitrosti toka vode Table 4. Average mean residence time and estimated flow velocities

Metoda-	Srednja hitrost	MRT	MRT	Razpon hitrosti	MRT-razpon	MRT-range
Model	m/d	dan	leto	m/d	dan	leto
Integrirani m.	0.015	1860	5.09	0.008-0.02	1375-3438	3.77-9.42
Konvekcijsko-disperzijski m.	0.0143	1919	5.26	0.008-0.017	1618-3438	4.43-9.42

MRT- srednji zadrževalni časi

Tabela 5. Ocene srednjih zadrževalnih časov vode v nezasičeni coni visoko prepustnega prodnega vodonosnika Selniške Dobrave

Table 5. Estimation of the water mean residence time in the coarse gravel unsaturated zone in Selniška Dobrava

Za vsako točko v lizimetru smo ocenili primernost uporabljenega modela (tabela 3). Lahko zaključimo, da do globine 2.4 m (JV-6) linearni in linearno-batni model bolje opisujeta realne transportne procese kot ostali modeli. Od te globine naprej so za opis toka bolj primerni ostali modeli (EPM, EM in DM). V prvih nekaj metrih v nezasičeni coni mešalni in disperzijski procesi niso tako izraziti.

Rezultate povprečnih zadrževalnih časov z integriranimi modeli na podlagi izotopa δ^{18} O smo primerjali z rezultati enodimenzionalnega konvekcijsko-disperzijskega modela sledilnega poskusa, ki smo ga izvedli v aprilu 2004 (Mali et al., 2006 b). Primerjava rezultatov je v tabeli 3. Čeprav je bilo modeliranje z integriranimi modeli izpeljano za obdobje 2001-2004, sledilni poskus pa je zavzemal obdobje 2004-2005, so srednji zadrževalni časi primerljivi. Srednji zadrževalni časi, izračunani z integriranimi modeli, kažejo na krajše zadrževalne čase kot rezultati sledilnega poskusa. Največje razlike smo zaznali v točkah JV-7 (1.2 meseca) in JV-9 (1 mesec). Primerjava srednjih hitrosti toka kaže na razliko 0–0,004 m/dan (tabela 5).

Zaključki

Glavni cilj raziskave dinamike podzemne vode v nezasičeni coni prodnega vodonosnika je bil podrobnejši opis toka podzemne vode z uporabo izotopskih metod. Dinamika podzemne vode v nezasičeni coni je zelo odvisna od količine padavin, ki neposredno vplivajo na parametre, povezane s tokom v nezasičeni coni), kar je razvidno iz dolgih nizov podatkov izotopske sestave. Iz rezultatov lahko zaključimo, da ima vsako hidrološko leto svoje značilnosti v dinamiki podzemne vode v nezasičeni coni.

Čeprav vodonosnik Selniške Dobrave obravnavamo kot homogen, je med posameznimi točkami v lizimetru precej razlik, ki kažejo na lokalne razlike v geološki strukturi. Heterogenosti vodonosnika v mikroskali so razlog za razlike v toku podzemne vode. Rezultati raziskav kažejo, da je na severni strani v lizimetru bolj poudarjen prednostni tok pretakajoče vode. Očitno lokalna struktura nezasičene cone, posebej v prodnem vodonosniku, zelo vpliva na tok podzemne vode. Glede na študij dinamike vode v lizimetru lahko razvrstimo vzorčna mesta v tri skupine. Vzorčna mesta JV-1, JV-5 in JV-8 so bolj pod vplivom prednostnih tokov. JV-3 in JV-7 kažeta na daljše zadrževalne čase in lahko sklepamo na lokalno bolj neprepustno strukturo. Ostala vzorčna mesta so pod vplivom matričnega toka s srednjimi zadrževalnimi časi.

Rezultati kažejo, da ima batni efekt pomembno vlogo v toku podzemne vode v nezasičeni coni medzrnskega vodonosnika. Ob velikem enkratnem vnosu sveže vode v vodonosni sistem (taljenje snega, nevihte ali sledilni poskus) večinoma nismo zaznali večjega deleža sveže vode v iztoku. Tudi primerjava z LPM kaže, da mešalni in disperzijski procesi v prvih metrih nezasičene cone niso tako izraziti.

Na osnovi rezultatov raziskav smo ocenili posamezne parametre toka vode v nezasičeni coni, s pomočjo katerih lahko ocenimo napajanje vodonosnika Selniške Dobrave ter pridobimo podrobnejše informacije o vplivu možnega onesnaženja na vodonosnik, kar je osnova načrtovanja ukrepov za zaščito vodnega vira.

Rezultate lahko na kratko povzamemo v naslednje zaključke:

 Naravna izotopa ²H in ¹⁸O sta primerno sledilo za spremljanje dinamike vode v nezasičeni coni. Sledenje toka podzemne vode v nezasičeni coni je možno s spremljanjem poti izotopskega signala δ¹⁸O med posameznimi točkami ter dušenjem signala po globini.

- Integrirane modele (LPM) lahko uporabljamo za oceno povprečnih zadrževalnih časov v nezasičeni coni.
- Srednji zadrževalni časi vode v nezasičeni coni, izračunani z različnimi modeli, so primerljivi z rezultati sledilnega poskusa. Obe metodi sta primerni za oceno MRT.
- Ocena srednjih hitrosti toka vode v nezasičeni coni prodnega vodonosnika Selniške Dobrave je 0,014 - 0,015 m/dan.
- Ob upoštevanju dejstva, da je globina podzemne vode 27,5 m pod površino, lahko zaključimo, da je povprečni srednji zadrževalni čas vode v nezasičeni coni prodnega vodonosnika Selniške Dobrave med 5 in 5,3 let.

Zahvala

Predstavljene raziskave so bile opravljene v okviru projekta Urbana hidrogeologija – Vpliv infrastrukturnih objektov na podzemno vodo (Pr. Št. L-1-6670-0215) in v okviru programa Podzemne vode in geokemija, ki ju financira Agencija za raziskovalno dejavnost Republike Slovenije.

Literatura

Corcho Alvarado, J.A., Purtchert, R., Barbecot, F., Chabault, C., Rüedi, J., Schneider, V., Aeschabach-Hertig, W., Kipfer, R. & Loosli, H.H. 2004: Tracer transport in the unsaturated zone of the Fontainebleau sands aquifer. International workshop on the application of isotope techniques in hydrological and environmental studies, Proc., 65, Paris.

Čenčur-Curk, B. 2002: Tok in prenos snovi v kamnini s kraško in razpoklinsko poroznostjo. Doktorska disertacija, Univerza v Ljubljani, NTF, 252 s., Ljubljana.

Kogovšek, J. & Šebela, S. 2004: Water tracing through the vadose zone above Postonjska Jama, Slovenia. - Environmental Geology, 45, 992-1001.

Mali, N. & Janža, M. 2005: Ocena možnosti zajema podzemne vode z uporabo MIKE SHE programskega orodja za hidrogeološko modeliranje. - Geologija, 48/2, 281-294, Ljubljana.

Mali, N., Herič, J. & Urbanc, J., 2006 (a): Wali, N., Herič, J. & Urbanc, J., 2006 (a): Water transport monitoring in unsaturated zone - lysimeter construction in Selniška Dobrava gravel aquifer. V: Laftouhi, N. (ur.), Hanich, L. (ur.). Gestion Intégrée des Ressources en Eaux et Défis du Développement Durable (GIRE3D) = Integrated Water Resource Management and Challenges of the Sustainable Development, Marrakech, 23-25 May 2006. GIRE3D'2006. Marrakech.

Mali, N., Urbanc, J. & Leis, A. 2006 (b): Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environmental Geology, Online First, 12 str.

Maloszewski, P. 1996: LP models for the interpretation of environmental tracer data. In: Manual On Mathematical Models in Isotope Hydrology. IAEA-TECDOC-910, 9-58, Vienna.

Maloszewski, P., Maciejewski, S., Stumpp, C., Stichler, W., Trimborn, P. & Klotz, D. 2006: Modelling of water flow through typical Bavarian Soils (Germany) based on lysimeter experiments: 2. Environmental deuterium transport. - Hydrological Sciences Journal, *51*(2), 298-313.

Maloszewski, P. & Maloszewski, A. 1982: Determining the turnover time of groundwater systems with the aid of environmental tracers – 1. Models and their applicability. – Jornal of Hydrology, 57, 207–231. Maloszewski, P. & Zuber, A. 1996: Lumped

Maloszewski, P. & Zuber, A. 1996: Lumped parameter models for interpretation of environmental tracer data. Manual on Mathematical Models in Isotope Hydrogeology, IAEA, 9-58, Vienna.

Ozyurt, N.N. & Bayari, C.S. 2003: LUMPED: a Visual Basic code of lumped-parameter models for mean residence time analyses of groundwater system. - Computers & Geoscience, 29, 79-90.

Seiler, K.P. & Zoejer, H. 2001: Role of tracers in the unsaturated zone. In: Tracers in the Unsaturated Zone. Berg et.al., Beiträge zur Hydrogeologie, *52*, 11-15, Graz.

Trček, B. 2001: Spremljanje prenosa snovi v nezasičeni coni kraškega vodonosnika z naravnimi sledili. Doktorska disertacija, Univerza v Liubljani. NTF 125 s.. Liubljana.

Trček, B., Veselič, M. & Pezdič, J. 2003: The vulnerability of karst springs – a cave study of the Hubelj spring (SW Slovenia). - Materials and geoenvironment, *50*, 385-388.

Veselič, M. & Čenčur-Curk, B. 2001: Test studies of flow and solute transport in the unsaturated fractured and karstified rock on the experimental field site Sinji Vrh, Slovenia.-in. New Approches Characterizing Groundwater Flow, Proceed. XXXI. IAH Congress, Munich, 10-14 September 2001, p. 211-214, A.A. Balkema, Lisse.

Zuber, A. 1986: Mathematical models for the interpretation of environmental radioisotopes in groundwater system. In: Handbook of Environmental Isotope Geochemistry, Fritz P., Fontes J Ch. (eds); Amsterdam, Elsevier, 1-59.