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Abstract This brief review presents the role of neuroimaging, both structural and functional, in
dementia diagnosis and monitoring with emphasis on recent developments in positron
emission tomography imaging of dementia-related pathology. Neurodegenerative demen-
tias (with Alzheimer disease as the most prominent representative) affect a large propor-
tion of elderly population worldwide. Structural neuroimaging, either computerized to-
mography or magnetic resonance imagining, is routinely used to exclude non-neurode-
generative and potentially treatable dementia causes. Global or localized brain atrophy is
the most frequent morphological findings in the majority of neurodegenerative dementia
types, regardless of the cause. Functional neuroimaging detects changes in brain activity
before first detectable structural changes can be observed. Traditional applications of
positron emission tomography in dementia (brain perfusion and metabolism quantifica-
tion) have recently been joined by experimental imaging of brain amyloid deposition us-
ing several new imaging probes. In vivo imaging of dementia-related pathology shows
potential for early disease detection, progression monitoring and in research of treatment
strategies.

Key words magnetic resonance imaging; positron emission tomography; Alzheimer disease; prion
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Izvleček Alzheimerjeva bolezen in druge nevrodegenerativne demence prizadanejo številne sta-
rostnike. Prispevek podaja kratek pregled vloge strukturnih in funkcionalnih slikovnih
metod pri diagnostiki in spremljanju demenc. Posebna pozornost je namenjena nedavne-
mu napredku rabe pozitronske izsevne tomografije za zaživljenjsko prepoznavo speci-
fičnih, z demenco povezanih sprememb v možganih bolnikov. Strukturne slikovne metode
(magnetno resonančna tomografija in računalniška tomografija) sodijo med rutinske
preiskovalne metode, katerih namen je izključiti strukturne in potencialno reverzibilne
vzroke demence; najpogostejša strukturna najdba pri bolnikih z demenco je splošna ali
lokalizirana možganska atrofija. Funkcionalne slikovne metode prikažejo spremembe v
delovanju možganov preden se pojavjo zaznavne morfološke spremembe. Njihovi ustalje-
ni uporabi za prikaz in kvantifikacijo delovanja možganov (z merjenjem področne
prekrvitve ali rabe glukoze) so pred kratkim dodali novo področje – prepoznavo amiloid-
nih patoloških odlag v možganih. Raba molekularnih označevalcev amiloida v povezavi s
pozitronsko izsevno tomografijo utegne pomembno prispevati k zgodnjemu odkrivanju
demence, spremljanju patološkega dogajanja v možganih in raziskovanju novih pristop-
ov k zdravljenju.

Ključne besede magnetno resonančna tomografija; pozitronska izsevna tomografija; Alzheimerjeva
bolezen; prionske bolezni; amiloid
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Introduction

Aging of the population is causing a steady rise in the
dementia prevalence. The availability of new neuro-
imaging approaches, developed in the last decades,
provides neuroscientists and clinicians with a set of
valuable noninvasive tools for research, early diagno-
sis and monitoring of the course of these disorders.
Improved in vivo diagnostic tools, which would
better differentiate between the causes and types of
dementia, could enable a more reliable and earlier
diagnosis, opening the door to development of treat-
ment strategies, which may be effective early in the
clinical course. New neuroimaging approaches are
particularly promising in this context, since they
convey information necessary for the understanding
of the mechanisms behind clinical disease presenta-
tion and represent objective and quantitative methods
for determination of disease onset and progression.
A number of imaging modalities are currently being
used in neurodegenerative disease patients. This
review briefly describes major neurodegenerative
dementias and gives an overview of structural and
functional neuroimaging approaches in these disor-
ders. It then focuses on recent developments in de-
mentia-related pathology detection using amyloid
specific molecular imaging probes.

Definition and classification of
dementia

Dementia is an acquired, persistent and progressive
pathologic decline of intellectual ability, beyond those
normal for individuals age, and manifests itself with
deficits in memory, personality, language, visiospa-
tial skills and other cognitive abilities (e. g. abstrac-
tion, mathematics, judgment).1 It may occur at any age
but primarily affects the elderly (about 5 % of those
aged 65 to 74 and 40 % of those > 85). Current demo-
graphic trends are causing a steady increase in de-
mentia prevalence along with its heavy emotional
and financial burdens.2 The availability of specific
treatment strategies, which are most effective when
started early,3 and identification of predisposing con-
ditions (such as mild cognitive impairment) raise the
importance of reliable and early dementia diagnosis.
Diagnosis of dementia is clinical and determination
of the cause is based on its characteristic features.4–6

Clear clinical distinctions between dementias how-
ever appear late and are often impossible to discern
at an early stage of the disease. Laboratory tests and
structural imaging are currently employed to identify
potentially treatable dementia causes and identify
other secondary causes, or to support the diagnosis
of primary dementia. Definitive diagnosis is estab-
lished by postmortem neuropathologic examination,
which is often not done, precluding verification of
most clinical diagnoses.
Dementias can be classified in several ways, depend-
ing on the criteria employed. The predominant distri-
bution of pathological changes in the brain and the
resulting clinical picture differentiates cortical demen-
tias (with prominent disturbances of memory, lan-

guage and calculation) form subcortical dementias
which are associated with basal ganglionic diseases
(e.g. progressive supranuclear palsy, Parkinson and
Huntington disease). Cognitive decline associated
with these disorders presents as slowed thought pro-
cess, lack of initiative and depression of mood with
sparing of vocabulary and praxis.7 Dementias can also
be classified as irreversible or potentially reversible.
The latter group accounts for approximately one tenth
of dementia cases and includes patients with possi-
bly treatable structural brain lesions, secondary de-
mentias due to systemic disorders and patients with
pseudodementia caused by psychiatric disorders.8

The pathogenesis of the vast majority of irreversible
dementias is either neurodegenerative or vascular.
The presentation of vascular multi-infarct dementia
can be one of stepwise cognitive decline caused by
episodes of stroke accompanied by focal deficits on
neurological examination and demonstration of
ischemic lesions by structural neuroimaging. Recent
evidence suggests frequent coexistence or even
interaction of vascular and neurodegenerative pro-
cesses in demented patients. Presence of cerebro-
vascular disease should thus not be used for exclu-
sion of underlying neurodegenerative pathology.9

Neurodegenerative diseases are progressive neuro-
logic disorders caused by gradual neuronal loss; de-
mentia can be the only presentation of neurodegene-
rative process or can be accompanied by other neu-
rologic abnormalities.
There are four clinical dementia syndromes that
account for 90 % of all cases after excluding revers-
ible causes of cognitive decline: Alzheimer disease,
vascular dementia, dementia with Lewy bodies and
frontotemporal dementia. All except vascular demen-
tia are primary neurodegenerative disorders, as are
most of the remaining 10 % of dementia syndromes.
This short review deals mostly with neuroimaging
approaches to the four types of neurodegenerative
dementia, namely Alzheimer disease, dementia with
Lewy bodies, frontotemporal lobar degeneration and
prion disorders. All included neurodegenerative
diseases are characterized by disordered metabolism
of different proteins, pathologic protein aggregation
with intra and extracellular deposition.10

Alzheimer disease is the most common neurodegene-
rative disorder and accounts for approximately two
thirds of cases of dementia. It is estimated that 1.5 %
of population of 60 to 69 years suffers from this disor-
der and the prevalence doubles every 5 years until
about age 90.11 Insidious onset of forgetfulness,
gradual restriction of vocabulary, dyscalculia, loss of
visiospatial orientation and apraxia are all part of
typical clinical presentation of the Alzheimer disease.
Neurofibrillary tangles, which result form intraneuro-
nal deposition of hyperphosphorylated tau protein
and beta amyloid senile plaques are the two hallmark
pathohistologic findings in this disorder. The patho-
logical changes can first be detected in transentorhi-
nal cortex and gradually spread to the limbic and then
to the neocortical brain regions with relative sparing
of the primary somatosensory and motor cortices and
the cerebellum.12
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Dementia with Lewy bodies differs from Alzheimer
disease in its clinical presentation by fluctuating
cognitive decline, presence of visual hallucinations
and extrapyramidal signs. The characteristic neuro-
pathological finding in this disorder are Lewy bodies
(alpha synuclein deposits); both senile plaques and
fibrillary tau inclusions can also be present to a vari-
able extent.5

Frontotemporal lobar degeneration accounts for a
substantial proportion of neurodegenerative demen-
tia cases occurring in the population before the age
of 65 years. The three main syndromes associated with
this disorder are frontotemporal dementia, progres-
sive nonfluent aphasia and semantic dementia. Two
types of histopathologic changes are associated with
this disease: neuronal loss and microvacuolation or
astrocytic gliosis and formation of Pick bodies by
aggregation of hyperphosphorylated tau protein.
The clinical presentation however, depends on the
distribution of pathology rather than on its type.6

Prion diseases, or transmissible spongiform ence-
phalopathies, are a group of neurodegenerative dis-
orders associated with formation and accumulation
of conformationally altered prion protein. The most
common form is sporadic Creutzfeldt-Jakob disease
(CJD), presenting as rapidly progressive dementia.
Inherited prion disorders are autosomal dominantly
inherited conditions of variable clinical presentation
(Fatal familial insomnia, Gerstmann-Sträussler-
Scheinker disease, GSS). Prions can also be transmit-
ted, either iatrogenically (e.g., through dural grafts,13

human cadaveric growth hormone14 or even blood
transfusion15) or by ingestion of affected animal (or
human) tissue (variant CJD16 and Kuru).17

Overview of imaging modalities

Neuroimaging modalities can be divided into two
groups, based on the objective of their use. Structural
imaging uses physical properties of the brain to
obtain accurate data about its anatomy and composi-
tion, while functional neuroimaging conveys data
related to physiology and activity in different regions
of the brain.

Structural neuroimaging

Computed tomography generates a three-dimensio-
nal image of the brain based on the different block-
ing of X-rays by different types of tissue. Its routine
use in patients with dementia18 is becoming less
frequent, since magnetic resonance (MR) imaging
provides more detailed images because of its superi-
or soft tissue contrast.19

MR scanner uses a combination of a powerful
magnetic field (which aligns the magnetization of
hydrogen atoms) and specific combinations of pul-
ses of radio waves (which alter the alignment of this
magnetization) to elicit emissions of weak radio sig-
nals from the scanned tissue. These emitted signals
are used for construction of three-dimensional imag-
es of the brain. Different radio wave pulse sequences
are used in MR imaging in order to acquire images

with different tissue contrast. T2-weighted images are
used in imaging of white matter, cerebrovascular,
basal ganglia and thalamic pathology,19 while high res-
olution T1-weighted images are used for analysis of
global and localized brain atrophy.20

Diffusion weighted imaging (DWI) is a specific MR
imaging modality, which is sensitive to the random
mobility of water molecules in the tissue (called
diffusivity).21 Microstructural alterations in the brain
that cannot be detected using conventional MR can
alter the pattern of water diffusivity and thus become
apparent upon DWI.

Functional neuroimaging

Functional neuroimaging modalities use a range of
different approaches to collect and display informa-
tion related to brain activity. The potential clinical
applications of these modalities stem from numerous
studies which found that alterations in brain function
occur prior to morphologic changes detectable by CT
or MR.19 Functional neuroimaging studies in neuro-
degenerative dementias are based on functional MR,
SPECT and PET modalities.
Functional MR detects difference in ferromagnetic
properties of oxygenated and deoxygenated hemo-
globin; regional brain activity is thus measured as a
function of local changes in deoxygenated hemo-
globin concentration in response to defined stimuli
or tasks.22 This technique is the least invasive of all
functional neuroimaging modalities. It also has the
highest spatial and temporal resolution. Higher tem-
poral resolution enables advanced task designs such
as event related designs, which enable more detailed
study of cognitive processes that could be impaired
in neurodegenerative dementias.
Cerebral single photon emission computed tomogra-
phy (SPECT) is a widely available technique based on
local brain uptake of technetium 99m-labeled lipid-
soluble compounds hexamethylpropylene amine
oxime (HMPAO),ethyl cysteinate dimer (ECD) or
iodine-labeled 123I-isopropyl-iodoamphetamine
(123I-IMP).23 Radioactivity measured by a rotating
gamma camera is used as an indicator of local neural
tissue perfusion. Semiquantitative, relative values
of brain perfusion can thus be obtained, which can
be normalized to the activity measured in cerebellum,
as this region is among those least affected by the
disease.24

Positron emission tomography (PET) is a nuclear medi-
cine imaging technique, which measures the body
or organ distribution of imaging tracers labeled
with short-lived positron-emitting radioisotopes. The
emitted positron, which is an antimatter particle, is
combined with electron and the mass of these two
particles is then converted into energy in the process
called annihilation; two high-energy photons are
emitted from the site of annihilation and this electron
pair is detected by PET scanner camera. The detec-
tion of pairs of photons traveling in exactly opposite
directions makes PET more sensitive than SPECT (with
a spatial resolution of approx. 5 mm), which allows
quantification of the concentration of the radiotracer
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and in vivo assessment of the molecular processes
that the tracer is involved in.25 PET can be used for
regional cerebral perfusion imaging, glucose meta-
bolism analysis and assessment of neurotransmitter
systems in vivo; its application is defined by the
pharmacological properties of the tracer.
Oxygen-15 labeled water (H2

15O) and 15-O2 (15O2) are
two PET tracers used for brain perfusion imaging;
regional cerebral perfusion is directly proportional
to cortical activity and the short half-life of isotope
15-O (2 minutes) makes it suitable for repetitive
administrations in activation studies.26 The most
commonly performed PET studies of the brain in
patients with dementia that are aimed at cerebral
metabolism assessment are those using 2-deoxy-2-
[F18]fluoro-D-glucose (FDG). FDG concentration is
proportional to cell glucose metabolism, since it com-
petes with glucose for the uptake into the cells and
undergoes phosphorylation as the first step in glyco-
lytic pathway, but is not metabolized further and re-
mains trapped in cells.27 A promising new strategy has
recently been employed in PET dementia imaging.
Several amyloid-specific PET tracers were developed
with the intention of in vivo quantification of demen-
tia-associated pathology.28

Imaging findings in
neurodegenerative dementias

Numerous neuroimaging approaches have been used
in patients with dementia. Structural neuroimaging
can detect differences in localized brain atrophy dis-
tribution, functional neuroimaging modalities provide
an early insight into altered functioning of the brain
whereas novel imaging probes provide promise of
in-vivo detection of protein deposits.

Computed tomography and structural
magnetic resonance imaging

Noncontrast CT or MR scan is currently recommend-
ed as part of routine diagnostic procedures in patients
presenting with dementia4 in order to exclude poten-
tially treatable structural causes, such as subdural
hematomas, intracranial tumors and normal pressure
hydrocephalus.18 The most frequent finding of struc-
tural neuroimaging in neurogenerative dementias is
generalized brain atrophy, a non-specific condition
that is also common in the non-demented individuals
of the same age.29

Localized medial temporal lobe atrophy, in particular
of the hippocampus, parahippocampal gyrus and
amygdala, is the main structural feature detected and
analyzed in Alzheimer disease.20 Early CT-based me-
thods demonstrated significant reduction in hippo-
campal volumes30 and linear width of the temporal
lobe31 in these patients. Several approaches to quantifi-
cation of medial lobe atrophy were later proposed,
based on linear measurements, complex volumetry
of the hippocampus or visual rating scales. A simple
linear measurement that can be used on both, CT and
MR images and yields high specificity and sensitivity
for Alzheimer disease detection (93 % and 75 %, re-

spectively) is the width of the temporal horn of the
lateral ventricle.32 Scheltens et al. described a visual
rating scale for medial temporal lobe atrophy which
encompasses subjective assessment of choroidal
fissure, temporal horn and hippocampus;33 this
method was compared to objective volumetry and
was found to be more practical and equally effective.34

Dementia with Lewy bodies is associated with atro-
phy of the putamen35 and less pronounced atrophy
of the medial temporal lobe36 when compared to Alz-
heimer disease using MR imaging. Voxel based mor-
phometry study of both disorders showed significant
atrophy of basal forebrain associated with dementia
with Lewy bodies.37 Interestingly, severe atrophy of
hippocampus was described in dementia associated
with Parkinson disease, a finding that positions this
disorder closer to Alzheimer disease then to (patho-
histologically similar) dementia with Lewy bodies.38

Structural neuroimaging studies in patients with
frontotemporal lobar degeneration show atrophy
in the areas of anterior temporal and frontal cortex39

and volumetric MR imaging analysis was able to
distinguish Alzheimer disease patients from patients
with frontotemporal degeneration based on a topo-
graphical pattern of atrophy involving the frontal
lobes and anterior temporal regions.40 Asymmetric
atrophy is associated with both, semantic dementia
(involving left inferolateral and anterior temporal
regions) as well as progressive nonfluent aphasia,
where left frontal and perislyvian structures are
predominantly affected.41

Generalized brain atrophy can only be seen in a
minority of CT scans performed on patients with
sporadic CJD.42 Inherited prion disorders can be
associated with progressive generalized cortical43 or
cerebellar atrophy;44 similar findings are described in
some variant CJD patients.45 The main MR characte-
ristics of sporadic CJD are bilateral hyperintensive
signal in the area of caudate and putamen46, 47 and
signal intensity increase in the cerebral cortex, termed
cortical ribbon hyperintensity.46 Pulvinar sign is
diagnostic for variant CJD and has a sensitivity of
78 % and specificity of 100 % for diagnosis of variant
CJD48 and is defined as bilateral symmetrical pulvinar
high signal relative to the signal intensity of other deep
gray matter.49 Additionally, high MR signal can also
be seen in the regions of both, pulvinar and dorso-
medial thalamic nuclei in variant CJD.48

Diffusion weighted MR imaging

DWI detected increased diffusivity in the temporal
lobes of Alzheimer disease patients,50 which could be
explained by a reduction of axonal density in the re-
gion as a consequence of neuronal loss. Another study
demonstrated statistically significant difference in
mean diffusivity in the hippocampus was demonstra-
ted between groups affected by Alzheimer disease,
minimal cognitive impairment and healthy popula-
tion.51

Abnormalities seen in prion disorders using DWI
appear early in the course of the disease and may be
the only positive findings in prion disorders.46 DWI
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appears to be the most sensitive imaging modality
for sporadic CJD and it can also be used to monitor
disease progression.44 A possible microstructural
explanation for the change in diffusivity of water,
detected on DWI is the presence of spongiform
degeneration with swelling of cells and restriction of
the extracellular space in the brain tissue in prion
disorders.44 Particularly suitable image acquisition
technique in these patients is echoplanar DWI, which
has lower resolution than conventional MR image, but
can be acquired within seconds.52 Such rapid
technique may be the most valuable (and the only
diagnostic) modality in patients with movement or
attention disorders.

Functional MR imaging

Functional MR studies in groups of individuals at risk
for development of Alzheimer disease have shown
either increased53 or decreased54, 55 brain activation in
temporal lobe regions when compared to control
groups. Increased activation by at-risk group could
be explained by compensatory recruitment of addi-
tional brain tissue to accommodate the task given to
experimental subjects. Substantial neuronal loss (in
symptomatic individuals) presumably results in the
loss of the compensatory response and thus causes
the decrease in activation.53 There were no published
functional MR studies of patients with dementia with
Lewy bodies or frontotemporal lobar degeneration
known to the authors at the time of this review.

Cerebral SPECT

Cerebral SPECT has been widely used in dementia
studies for brain perfusion imaging. Relative hypo-
perfusion of the hippocampus56 and parietotempo-
ral association cortex57 was described in Alzheimer
disease patients, which generally correlated with the
severity of cognitive impairment. The sensitivity and
specificity of brain SPECT for the diagnosis of AD are
reported to be as high as 86 % and 96 %, respective-
ly.58 Dementia with Lewy bodies is associated with
occipital hypoperfusion which is not found in Alz-
heimer disease.59 This disease is also associated with
characteristic distribution of dopaminergic presynap-
tic SPECT ligand with high specificity.60 SPECT can also
detect hypoperfusion in ventromedial frontal region
of patients with frontotemporal dementia before
atrophy becomes evident.61 All prion disorders are
associated with regional decreases in blood flow
which can be seen prior to structural changes.44

Positron emission tomography

PET perfusion studies of Alzheimer disease patients
show a pattern of hypoperfusion similar to the
one described by SPECT findings. Parietotemporal re-
gional hypoperfusion correlates well with cognitive
performance62 and posterior cingulate cortex is
described to be affected early in the disease.63 Un-
surprisingly, these same areas also show the most
marked hypometabolism in FDG PET studies with
relative sparing of the basal ganglia, thalamus, cere-
bellum and primary sensory and motor cortex.64

The differential diagnostic value of FDG PET in neuro-
degenerative dementias was evaluated in a number
of studies.65–69 The largest of those68 was multicentric
study of 248 patients, mostly presenting with demen-
tia (mean Mini-Mental State Examination score was
24). The sensitivity of FDG PET for diagnosis of histo-
pathologically confirmed Alzheimer disease was
94 % and the specificity 73 %. The metabolic changes
in nondemented individuals with mild cognitive
impairment can also be detected68, 70 with overall
accuracy of FDG-PET only slightly lower in this group
of patients (from 75 % to 100 %).64 The method can
also be used as a prognostic tool; it can predict the
likelihood of progression of the dementia with high
sensitivity (95 %) and specificity (75 %).68 Dementia
with Lewy bodies can be distinguished form Alzhei-
mer disease with 86 % sensitivity and 91 % specificity
based on FDG PET scan where less sparing of occipi-
tal (visual association) cortex metabolism can be de-
tected.71 A characteristic pattern of hypometabolism
distribution can also be seen in patients with fronto-
temporal lobar degeneration. A recent study of 22
patients with frontotemporal dementia showed a sig-
nificant symmetrical hypometabolism of the frontal
lobes (sparing the motor cortex), the caudate nuclei,
insula and thalamus bilaterally.72 On the other hand,
there is no pattern in hypometabolism in patients with
sporadic CJD, where widespread cortical glucose hy-
pometabolism is the most frequent observation.73–75

PET imaging of pathologic protein deposits in
the brain

A more specific approach to dementia PET imaging
has recently been taken by development of several
amyloid-targeting imaging probes with the aim of
direct in vivo imaging of dementia-related patholo-
gic protein deposits (amyloid) in the brain.76 These
probes show potential role for early disease detec-
tion and monitoring of anti-amyloid therapeutic
approaches. All are small hydrophobic molecules and
some are structurally related to traditional histology
amyloid dyes Congo Red and Thioflavin T. Four of
these compounds have so far been used in human in
vivo neuroimaging: FDDNP, PIB, SB13 and BF-227.
The first successfully used amyloid imaging probe was
FDDNP (2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]
-2-naphthyl}ethylidene)malononitrile77), followed by
PIB (Pittsburgh Compound-B78), a compound struc-
turally related to Thioflavin T. PIB has been used in
the studies of Alzheimer disease, where marked re-
tention of the tracer was reported in the frontal and
parietal cortex when compared to non-demented con-
trol subjects.78 Parkinson disease patients79 and most
of the patients with frontotemporal lobar degenera-
tion80, 81 did not differ from control groups in PIB-PET
studies. C11-SB13 (4-N-methylamino-4'-hydroxystil-
bene) is a Congo Red derivative in which a charged
part of the molecule was removed to enhance blood-
brain barrier permeability; it has shown properties
similar to PIB in Alzheimer disease patients imaging.82

The most recent tracer reported to distinguish Alz-
heimer disease patients from healthy individuals by

Šmid LM, Bresjanac M. Neuroimaging in neurodegenerative dementias



II-48 Zdrav Vestn 2008; 77: SUPPL II

retention of the tracer in the posterior association area
of the brain was BF-227, 2-(2-[2-Dimethylaminothia-
zol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole.83

FDDNP is a small, fluorescent, hydrophobic molecu-
lar imaging probe with high in vitro affinity for beta
amyloid fibrils, as shown by fluorescent and radio-
active assays. Its fluorescence is enhanced by hydro-
phobicity of its microenvironment when bound
to amyloid fibrils.84 It can be used in fluorescence
microscopy85 and its excitation spectrum, which lies
within the visible light wavelenghts (440–490 nm),
minimizes tissue autofluorescence.86 FDDNP fluores-
cently labels several types of pathologic amyloid and
amyloid-like protein deposits in the histological brain
sections of neurodegenerative disorders: senile
plaques, vascular beta amyloid and neurofibrillary
tangles, which are all associated with Alzheimer dis-
ease,84, 87 prion protein amyloid deposits in variant and
sporadic CJD as well as GSS88 and Lewy bodies in
dementia with Lewy bodies and Parkinson disease.87

In vivo FDDNP-PET scanning of Alzheimer disease
patients has evolved from early »proof of principle«
studies,77 to recently published longitudinal study
of FDDNP use in Alzheimer disease and minimal
cognitive impairment. FDDNP-PET was shown to
differentiate between groups of Alzheimer disease
patients, individuals with mild cognitive impairment
and cognitively non-impaired subjects better that
FDG-PET or structural MR imaging. Furthermore,
global FDDNP binding increase was shown to be
related to disease progression during the two year
follow-up.89 In vitro study of FDDNP labeling proper-
ties in histological brain sections in CJD, vCJD and
GSS88 has led to the use of FDDNP-PET as the first suc-
cessful prion amyloid in vivo detection method.90, 91

Discussion

Structural neuroimaging has evolved beyond its main
role as a method for exclusion of potentially revers-
ible conditions underlying dementia. The major ad-
vantage of structural neuroimaging and also the main
reason for its frequent use as a research tool is its wide
accessibility. It should be noted that variant CJD is the
only neurodegenerative condition reviewed here, that
lists MR imaging finding among its diagnostic crite-
ria.49 Apart from prion disorders and obvious struc-
tural causes discussed previously, there are several
limitations in the use of structural neuroimaging tech-
niques for the diagnosis of the dementia cause. First,
the approaches to quantification of localized brain
atrophy can be complex and time consuming and
therefore hardly suitable for routine clinical use.
Automated voxel-based morphometry is suitable for
group-level studies and cannot yet be reliably applied
to individual patients. Most importantly, structural
changes occur late in the course of the disease and
represent gross and predominantly irreversible chan-
ges in the brain.
Functional imaging detects dementia-associated chan-
ges in the brain prior to the occurrence of detectable
atrophy. Currently, MRI data is limited to Alzheimer

disease patients, where compensatory hyperactiva-
tion has been demonstrated to occur early in the
disease. Both, SPECT and PET have been used to
demonstrate similar regional perfusion and metabolic
deficits in neurodegenerative dementias.
The importance of early diagnosis of dementia was
shown in studies of long-term effects of cholinesterase
inhibitors in Alzheimer disease patients. Treatment
postponed the need for institutionalization of the pa-
tients,92 whereas a delayed start of therapy correlated
with faster cognitive decline later in the disease.3 PET
detection of dementia-related pathology shows huge
promise. FDDNP and other amyloid PET probes may
play a role in diagnosis of neurodegenerative demen-
tias by helping to identify the group of the patients
that would benefit most by the timely therapy.
Furthermore, amyloid PET imaging could also help
to reduce the risks and cost of dementia-related thera-
peutic trials. The number of research subjects enrolled
could be lowered by reliable identification of
brain amyloid presence in asymptomatic or mildly
symptomatic individuals, and by providing a sensi-
tive and objective method to measure anti-amyloid
therapy efficacy. A study demonstrating the use of PET
amyloid imaging in the monitoring of effects of
anti-amyloid therapy was recently performed in a
transgenic mice study using PIB.93

Conclusions

Different imaging modalities serve a range of roles in
the neuroimaging of dementia. Wide accessibility of
CT and MR imaging is a prerequisite for their routine
use in everyday diagnostic procedures and exclusion
of obvious treatable conditions causing cognitive
decline. These modalities can also be used in analysis
of disease-specific localized brain atrophy. Changes
in brain physiology occur earlier than atrophy and
functional neuroimaging techniques detect those
changes with high specificity and provide useful prog-
nostic information. Recent advances in PET imaging
of dementia-related pathology in vivo are opening
new possibilities as a specific and sensitive method
for detection of neurodegenerative disorders. It could
allow early recognition of dementia patients, and pro-
vide a specific method for monitoring of disease pro-
gression. Additionally, amyloid imaging may provide
an objective method for evaluation of anti-amyloid
therapy strategies.
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