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Quantum computing is rising as a new type of computer that theoretically reduces the time complexity
of classical methods exponentially because of the nature of superposition. It is promising to reduce run
times on large datasets in machine learning (ML). Meanwhile, k-nearest neighbor (kNN) is a simple ML
algorithm that can be translated to a quantum version (QkNN) to perform classification tasks efficiently.
Here, we show a new version of QkNN which has a speed up in time complexity by using a new design
of quantum circuits called integrated swap test. This quantum circuit can load two N - dimensional states
and calculate the fidelity between them. Results show that QkNN allows us to take a different approach to
the ML field.

Povzetek:

1 Introduction

Important progress was made in the fields of quantum com-
putation [1, 2, 3] and machine learning [4, 5, 6, 7]. Nor-
mally, when a machine learning algorithm is loaded with
large data, it shows the limitations of classical computing.
Meanwhile, quantum computation provides us with a mod-
ern computing model. The integration of these two fields
has resulted in a new field - quantum machine learning
(QML). QML uses superposition and entanglement to cre-
ate methods that can handle large data even more quickly
than classical computers. Not only can QML outperform
its classical counterpart in terms of speed, but it can also
handle quantum data effectively. Several classical ML al-
gorithms are ported to quantum versions, such as quantum
k-means clustering (QkM) [8], quantum k nearest neighbor
(QkNN) [11] quantum support vector machine (QSVM)
[9], quantum principal component analysis (QPCA) [10],
. . . However, there is a gap in accuracy between QML and
traditional ML. So, in this paper, we will propose some
methods for optimizing one of the QML algorithms (the
QkNN algorithm) to achieve nearly equal accuracy to its
classical version.

Although these QkNN algorithms have their merits, they
also have several limitations. For example, the method pre-
sented in Ref. [12] just measures the overlap between two
binary states. The algorithm in Ref. [13] attempts to load
the database with M data points into the circuit, which de-
mands a greater number of qubits than is usual. The meth-
ods proposed in Ref. [14] have a limit since they can only

perform binary classification. Besides, the algorithm pre-
sented in Ref. [12] requires complete knowledge of the test
state which is limited when dealing with quantum data. The
research in Ref. [11] deals with the pure quantum prob-
lems that can not be applied while quantum computing is in
NISQ era [15]. Almost all materials that attempt to explain
the benefit of QkNN on real-world data (Iris [16], Breast
Cancer [17]) still have worse results than the classical ver-
sion, such as Refs. [19, 20], ...

This paper is divided into three sections. Sec. 2 re-
views the background of our QkNN algorithm, including
classical kNN [21], swap test procedure [22], and divide-
and-conquer algorithm for quantum state preparation [20],
which we used to improve QkNN. Sec. 3 will be the main
of this paper which describes our methodology. Sec. 4
shows the main result, the proof of the reliability of our
proposed circuit, and its application in QkNN which test
on the Iris dataset. Sec. 5 discusses the conclusion and
potential future works.

2 Related works

2.1 Classical kNN

kNN[21] is a supervised classical machine learning algo-
rithm used to identify test states (say |v〉) whose labels must
be determined, it is based on the premise: "Two states that
are similar to each other are more likely to belong to the
same class or pattern". Since it is a straightforward algo-
rithm, kNN enables us to reason about the structure of the
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data we are dealing with. The test and training states are
also N - dimensional complex states. The working mech-
anism is simple: find |v〉’s k nearest neighbors based on
some distance metric between it and training states (sayU ),
and then decide its mark based on the details of these neigh-
bors through majority voting. For the requirements of kNN,
any concept of a distance metric may be used, the most
common is Euclidean distance d(|u〉, |v〉) with |u〉 ∈ U ,
defined as Eq. (1).

d(|u〉, |v〉) =

√√√√N−1∑
i=0

(ui − vi)2 (1)

Here ui, vi are |u〉, |v〉 components, respectively. When
we get into the quantum world, the popular alternative
choice for the distance measure is fidelity F (u, v). Fidelity
between two such normalized states |u〉 and |v〉 is defined
as Eq. (2) [23]:

F (ρ, σ) =

(
Tr
(√√

ρσ
√
ρ

))2

(2)

with ρ = |u〉〈u| and σ = |v〉〈v|. In case û, v̂ are pure
state, the fidelity function can simply as:

F (û, v̂) = |〈û|v̂〉|2

with |û〉 = |u〉
‖x‖

and |v̂〉 = |v〉
‖v‖

.
(3)

It ranges from 0 (if the states are orthogonal or com-
pletely distinguishable) to 1 (if the states are equal). As a
result, the greater the fidelity between the two states is, the
closer they will be. If we get the square root of F (û, v̂),
it will return the cosine similarity between |u〉 and |v〉,
(|u〉, |v〉), defined as Eq. (4).

√
F (û, v̂) = |〈u|v〉| = (|u〉, |v〉)

=

∑N−1
i=0 uivi∑N−1

i=0 u2i
∑N−1

i=0 v2i
.

(4)

The kNN algorithm is composed of the steps which are
presented in Algorithm. 1.

Although the kNN algorithm is simple to understand
and implement, it has some limitations. kNN can easily
become intractable for classical computers as the number
of dimensions of training states increases. Classifying an
N - dimensional test state by applying it to M training
states needs about O(M) multiplication operations. Fur-
thermore, there is no general approach for determining k
so hyperparameter tuning is typically used to determine
the best possible k [18]. So the total complexity O(kM).
Meanwhile, QkNN will take only O(

√
kM) if it combine

with quantum search algorithm [30]. The complexity anal-
ysis will be discussed more in Sec. 3.2.

2.2 Swap test procedure
The swap test is introduced in Ref. [22] can return the cor-
rect value of fidelity between two quantum states |ψ〉 and
|φ〉 as mentioned in Eq. 2 by a lot of measurements. In
order to implement the swap test, we need at least three
registers prepared in states |0〉, |ψ〉 and |φ〉 as Fig. 1.

Figure 1: Circuit diagram for swap test. H is the Hadamard
gate. First register will be measured, second and third reg-
isters respond for load |ψ〉 and |φ〉, respectively.

At point A, the initial system’s state is simply:

|RA〉 = |0〉|ψ〉|φ〉 or |0, ψ, φ〉 for short. (5)

After that, the Hadamard gate convert first qubit q0 into
the superposition state:

H|q0〉 = H|0〉 = 1√
2
(|0〉+ |1〉). (6)

Thus, at point B, the whole system is in the state:

|RB〉 =
1√
2
(|0〉|ψ〉|φ〉+ |1〉|ψ〉|φ〉). (7)

Whereas the action of Fredkin gate (or CSWAP gate) be-
tween point B and point C reads:

CS |0〉|ψ〉|φ〉 = |0〉|ψ〉|φ〉,
CS |1〉|ψ〉|φ〉 = |1〉|φ〉|ψ〉.

(8)

So at point C, we have:

CS |RB〉 = |RC〉

=
1√
2
(|0〉|ψ〉|φ〉+ |1〉|φ〉|ψ〉).

(9)

Finally, we apply Hadamard gate on q0 again that make
system into:

|RD〉 =
1√
2
(|0〉|ψ〉|φ〉+ |1〉|φ〉|ψ〉)

+
1√
2
(|0〉|φ〉|ψ〉 − |1〉|ψ〉|φ〉)

(10)

When we measure the first qubit, there are two possible
states that we can receive:
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Algorithm 1 kNN
Input: training states U = u0, u1, . . . u(M−1) and its labels UL = uL0

, uL1
, . . . , uL(M−1)

, test states (unlabeled)
V = v0, v1, . . . , v(M ′−1) and hyperparameter k.

Output: set of test labels VL = (vL0
, vL1

, . . . , vL
(M′−1)

).

1: function PREDICT
2: for i← 0 to M

′ − 1 do
3: Load all training states U and test states vi on the register.
4: for j ← 0 to M − 1 do
5: Calculate (dist(vi))j = dist(uj , vi).
6: end for
7: Sort dist(vi) = {(dist(vi))0, ...(dist(vi))((M−1)} (descending or ascending
8: Choose k neighbors which are nearest to vi.
9: Conduct majority voting and assign the label vLi

of the majority to the test point.
10: end for

return VL = (vL0 , vL1 , . . . , vL(M′−1)
)

11: end function

P (q0 = 0) or P (0)

=
1

2
(〈ψ|〈φ|+ 〈φ|〈ψ|)1

2
(|ψ〉|φ〉+ |φ〉|ψ〉)

=
1

2
+

1

2
|〈ψ|φ〉|2

P (q0 = 1) or P (1)

=
1

2
(〈ψ|〈φ| − 〈φ|〈ψ|)1

2
(|ψ〉|φ〉 − |φ〉|ψ〉)

=
1

2
− 1

2
|〈ψ|φ〉|2

(11)

The final result now is:

F (ψ, φ) = P (0)− P (1) = |〈ψ|φ〉|2. (12)

If |ψ〉 and |φ〉 are orthogonal, |〈ψ|φ〉|2 = 0, that mean
P (0) = P (1) = 0.5. Otherwise, if |ψ〉 and |φ〉 are identi-
cal, |〈ψ|φ〉|2 = 1, that mean P (0) = 1, P (1) = 0.

2.3 Prepare quantum state
Normally, loading quantum states requires the quantum
system a lot of gates because the state |ψ〉 = c0|0〉 + ... +

cN−1|N−1〉 (or
∑N−1

j=0 cj |j〉 has the dimensionalN which
frequently greater than 2, and components in it are belong
to the complex space.

An easiest approach is to encode m - bits of binary data
into qubit strings. Let dj = {d(k)j }

m

k=1
(d

(k)
j = 0, 1; j =

0, . . . , N − 1) be the binary bit-strings, the equation for
encoding can be described by Ref. [24]:

|ψ〉 = 1√
N

N−1∑
j=0

|j〉|d(m)
j ...d1j 〉. (13)

This method of encoding is simple and can represent any
state by using a series of NOT gate. The downside is that
it not only does not use superposition but also needs more

qubits - mN qubits for one state to encode N components
in it. The greater m is, the more precisely the component
is defined.

Another way which is provided in Ref. [28, 29, 20] will
help us use fewer qubits a lot, this devised method is based
on quantum forking [25]. The basic theory is to break a
problem into sub-problems of the same class and then com-
bine the solutions of these sub-problems to offer the solu-
tion to the original problem. The main idea is building the
quantum state in each level of the state tree in a top-down
or divide-and-conquer strategy. At each step, they divide
the input into bi-dimensional sub-vectors, load it on qubit
and repeat until reached the desired quantum state.

In case of loading N - dimensional real vectors, these
method [28, 29] take only O(log2N) qubits and O(N)
computation cost. But it have an exponential depth in re-
lation to the number of qubits. Another method is comes
from Ref. [20] which has overall depth O(log22N) but us-
ing O(N) qubits.

Three above methods proposed a trade-off between the
number of qubits and circuit depth, when using more qubits
we have a short execution time and vice versa. For fitting
with the NISQ device and simulation’s resources, we will
choose Ref. [20] as the loading component for dealing with
states that have small or medium dimensions.

3 Methodology

3.1 Integrated swap test circuit

As discussed in the previous section, if we want to perform
the calculation about the fidelity between two N - dimen-
sional states like |ψ〉 and |φ〉, we must have a quantum cir-
cuit that has two separate functions. The first will load 2N
components {ψi}N−1i=0 , {φi}N−1i=0 . The second will apply
the N - swap test to measure and calculate the probability
of value 0 or 1 on the first qubit,

√
P (0)− P (1) will be
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Figure 2: A circuit generated by the divide-and-
conquer strategy described in Ref. [20] that encode the
8–dimensional state |ψ〉 = [ 1√

8
1√
8
... 1√

8
]T .

the final result. The idea to create a quantum circuit that
meets the above requirement is to combine the circuit in
Ref. [20], log2N (or n) Fredkin gates and two Hadamard
gates. The outcome from the circuits in Ref. [20] will be
the input of the second component. This new design of
the quantum circuit whose name is integrated swap test, is
described in Fig. 3.

The total qubits that need to be used in this circuit in
detail is (2(N−1)+1) for three sub - circuits. The first sub
- circuit also the first qubit, will be measured to calculate
the probability of value 0 or 1 on c (a classical channel,
show in Fig. 3). The second and third sub - circuits (v1 and
v2) have (N − 1) qubits which is from index 1 to (N −
1) and from N to 2(N − 1) use to encode |ψ〉 and |φ〉,
respectively. It continued to be active on wires which has
indices:

Iv1 = {i2|1 ≤ i ≤ n} for |ψ〉,
Iv2 = {i2 + (N − 1)|1 ≤ i ≤ n} for |φ〉.

(14)

Our n Fredkin gates are attached on:

InCS
= {ICS

|ICS
= (0, (iv1)j , (iv2)j),

iv1 ∈ Iv1 , iv2 ∈ Iv2 , j = 1, . . . , n)}.
(15)

Control qubits in n Fredkin gates always have index 0,
the second iv1 and the third iv2 in the tuple ICS

are the
target qubits which swap each other if the first qubit has
value 1, nothing happened otherwise. Two Hadamard gates
remain on the first wire like the original swap test.

About the complexity, the number of qubits used to com-
pute 2 N - dimensional states is still O(N), and the circuit
depth isO(log22N +log2N +1) which is the sum of load-
ing stage and N - swap test stage.

Figure 3: Our new circuit that can calculate the fidelity be-
tween two 8 - dimensional states |ψ〉 = [0 1 0 1 0 1 0 1]T

and |φ〉 = [1 0 1 0 1 0 1 0]T .

3.2 Hybrid QkNN algorithm when using
integrated swap test circuit

Formally, our QkNN algorithm still consists of many steps
that are described in Algorithm 1 but it has other crucial
points. Not like other QkNN versions that deal with pure
quantum problems [12, 13, 11], we use the idea that can
combine the advantages of classical computing and quan-
tum computing. The classical computer will do its best job
including load states (Step 1 in Fig. 4), sort descending
(Step 6 in Fig. 4), and mark label for test state (Step 7 in
Fig. 4). The quantum computer only does the calculating
fidelity task that outperforms the classical computer in case
the dimension of states increases exponentially.

In the first step, the classical computer will put a train-
ing state uj and a test state vi into the integrated swap test
circuit. This step will be repeated MM

′
times with M

and M
′

are the cardinality of the training set and test set,
respectively. In the second and third steps, the quantum
computer creates phases {ωi}N−2i=0 for the Ry gates in the
circuit, these gates will be recreated MM

′
times. For the

pair (uj , vi), the circuit must perform - measure niter times
to reduce the noise from the real environment, it finally re-
turns the average of all results. The fifth, sixth and seventh
steps are not hard to understand, it is completely similar to
the classical kNN. All of the steps from 2 to 7 described
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above will be repeated until the test set does not have any
unlabeled states.

Because all computation is done during prediction, there
is no training phase, and we have O(1) for both time and
space. The prediction part is split into 2 parts: classical and
quantum. Computing the distances between all train states
and each test state will consume aboutO(M log22N), when
taking k nearest neighbors will depend on the classical al-
gorithm. If we use the Brute-force algorithm, the com-
plexity is O(kM) or use some Sort algorithm, the com-
plexity is O(M logM). So the total complexity when pre-
dicting M

′
test states is O(M ′

(M log22N + kM) + 1) or
O(M ′

(M log22N +M logM) + 1).
In some research about fully quantum kNN, the

above complexities can be reduced to O(M ′
M(log22N +√

kM) + 1) by replacing Brute-force or Sort algorithm by
Grover algorithm [12, 13]. Obviously, this way will make
our circuit deeper.

4 Experiments

To evaluate the proposed methods, we perform two experi-
ments. In the first experiment, we prove that the proposed
circuit can be applied in some algorithms. In the second
experiment, we use this circuit in our new QkNN on Iris
dataset.

We use Qiskit SDK [27] (version 0.24.1) in all exper-
iments because of its completeness and ease of use, the
maximum number of qubits is 31 on Intel core i5-5250U
and 8 GB RAM classical computer. The maximum of di-
mensional of state is 15, so 2(N−1)+1 < 31 andN < 16.
The number of shots is 16384.

The codes in this paper, including documentation, are
available on Ref. [26].

4.1 Proof of reliability of integrated swap
test circuit

We evaluate the integrated swap test circuit on various it-
erations from 0 to 10000 and the number of dimensions
{2k}3k=1. As in the Fig. 5, we easily see that the error is
quite chaotic in 0 - 1000 iterations. It tends to be in an or-
der and gets smaller according to the iterations from 1000
to 10000. For the 2 - dimensional state, the error is accept-
able with Standard error (RE) between 0.25% and 0.75%.
But in case of higher dimensional state, the average RE are
0.27%, 1.01% and 5.34% for 2, 4 and 8 - dimensional re-
spectively, it increases exponentially. We can explain this
phenomenon as: the higher dimensional state, smaller the
value of components. Meanwhile, we can use only a fi-
nite number of shots (nshot = 16384), the smallest divi-
sion is 1

16384 that can not be reduced anymore, note that
P (0) =

n(c=0)

nshot
and P (1) = n(c=1)

nshot
.

4.2 Hybrid QkNN on Iris dataset
Since the number of qubits in the quantum circuit are re-
stricted, the resources for describing the states are limited.
Currently, the way the quantum circuit works is that one
circuit is madeM times per test data point andMM

′
times

in the whole predicting stage. That means the number of
training states and test states is not the largest limiting fac-
tor because the quantum circuit can be recreated once the
machine runs out of memory. The limiting factor is the di-
mensionality, the memory accepted with these values at 8.
Values not following the relation of N = 2n can be chosen
but can be considered a waste of qubit resources.

The Iris dataset is 4 - dimensional and consists of 150
examples in total of three classes. It consists of length and
width measurements of sepals and petals from three differ-
ent flowers: Iris Setosa, Iris Versicolour, and Iris Virginica.
In short, the dimensionality does not need to be changed,
and the instances of each class will be equal to each other.
The values of a state |x〉 must to be encoded to quantum
state through dividing components {xi}3i=0 by norm |x| be-
fore conducting the experiment.

After prepared data, the QkNN may be configured to be-
gin classifying it. As mentioned in Sec. 4, Qiskit used
in this project so the circuits will be simulated with the
qasm_simulator. This simulator would run the circuit as
if it were running on a quantum computer, which means
it will have to run several times in order to reach the state
provided by the quantum circuit. The setups of experiment
include:

1. Using full features of Iris dataset (4 features).

2. Number of training states and test states will be
ntrain = {2i}7i=3 and ntest = {b0.3 ∗ 2ic}7i=3 respec-
tively. The train set and test set are not overlapped
together.

3. Conduct on a variety of k number of neighbors with
k = {1, 3, 5, 7}. In case of k is large compared to
ntrain (k = {5, 7} and ntrain = {8, 16}), the experi-
ment will not be conducted because the kNN will pro-
duce an underfitted model.

The first thing we can see is that the accuracy of classical
and quantum method varies. From the metrics in Tab. 1, it
is observable that on the Iris dataset, Hybrid QkNN outper-
forms classical kNN in some cases (k = {3, 5}) but aver-
agely classical algorithm is still better than Hybrid QkNN.
When comparing with recent QkNN [13, 19], our method
was outperformed in almost all cases, these old methods
have struggled when dealing with a large number of train
states. On the other hand, Hybrid QkNN runs faster than
a little bit, the total run-times shown as Tab. 3. The old
QkNN have more disadvantage in that the train set must be
small, all train states was loaded on the Oracles at the same
times. So the experiments on ntrain = 128 can not be con-
ducted because the algorithm makes the simulation run out
of memory quickly.
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Some of the facts in Tab. 2 also indicate that the classi-
cal kNN and Hybrid QkNN both tend to increase as ntrain
increases. This phenomenon can be explained by looking
at the confusion matrices in Fig. 7.

It is apparent that in the confusion matrices, accuracy
which is smaller than 100% is always in the case of the
truth label is belong to class 2 (Virginica) but our algorithm
labeled class 1 (Versicolor). This comes from the fact that
we encoded the normal state in terms of quantum state as
shown from Fig. 6. a to Fig. 6. b, all states now occupy
on the surface of 4 – dimensional ball and make the ratio
between the interference space between the states labeled 1
and the states labeled 2 and the whole space of all states is
larger. Meanwhile, the space of the states labeled 0 is quite
separate. That leads to the states of these two labels being
confused.

5 Conclusion

In this paper, we present the Hybrid QkNN algorithm, this
algorithm uses the new design of quantum circuits that can
achieve higher functionality compared to its previous ver-
sion (swap test). One of the most important advantages of
the Hybrid QkNN is that it is capable of handling a large
number of train states without many qubits because it is
combined with a classical computer to reduce a lot of tasks.
The task that classical computer accomplishes currently do
not have their corresponding quantum version so it is still
performed well on a classical computer.

In our experiment, we simulated the Hybrid QkNN to
solve the problem of classifying the Iris dataset. The re-
sults showed that our method can provide a high degree of
accuracy that is nearly equal to the classical kNN. The rea-
sons which make this algorithm does not achieve the same
or higher accuracy come from the fact that we are forced
to encode the normal state into the quantum state and the
number of shots is limited. This can be fixed in the future
if we have a more efficient simulator or simply experiment
on a real quantum computer which is considered by experts
to exist in the next few decades or earlier [15].
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ntrain 8 16 32 64 128
QkNN [13, 19] 7s 51s 464s 4138s *
Our method 8s 32s 257s 2835s 45600s

Table 3: Total of run-times between QkNN [13, 19] and our method (Hybrid QkNN) on the same dataset based on ntrain.
*The experiments of QkNN [13, 19] on ntrain = 128 can not be conducted because the algorithm makes the simulation
run out of memory.
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Figure 4: Hybrid QkNN’s diagram, a version of QkNN with collaboration between classical computer and quantum
computer.

Figure 5: Standard error (SE) and relative error (RE) when calculating fidelity between two states, are defined as: SE =∑niter−1
i=0 |fpredicti−ftruth |

niter
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Figure 6: Visualisation of the encoding method on the dataset (Sepal width and Sepal height do not display in this figure).
The untouched dataset (a), and the dataset encoded to be loaded into the quantum circuit (b).

Figure 7: The confusion matrices on different ntrain and k nearest neighbors. The color of boxes ranges from white to
black corresponding for high to low integer values.
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