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SEBASTIAN L ÜCK1, ANDREAS KUPSCH2, AXEL LANGE2, MANFRED P HENTSCHEL2 AND
VOLKER SCHMIDT1

1Institute of Stochastics, Ulm University, D-89069 Ulm, Germany;2BAM Federal Institute for Materials
Research and Testing, D-12200 Berlin, Germany
e-mail: sebastian.lueck@uni-ulm.de
(Accepted March 17, 2010)

ABSTRACT

We suggest a procedure for quantitative quality control of tomographic reconstruction algorithms. Our
task-oriented evaluation focuses on the correct reproduction of phase boundary length and has thus a clear
implication for morphological image analysis of tomographic data. Indirectly the method monitors accurate
reproduction of a variety of locally defined critical image features within tomograms such as interface positions
and microstructures, debonding, cracks and pores. Tomographic errors of such local nature are neglected if
only global integral characteristics such as mean squared deviation are considered for the evaluation of an
algorithm. The significance of differences in reconstruction quality between algorithms is assessed using a
sample of independent random scenes to be reconstructed. These are generated by a Boolean model and thus
exhibit a substantial stochastic variability with respectto image morphology. It is demonstrated that phase
boundaries in standard reconstructions by filtered backprojection exhibit substantial errors. In the setting of
our simulations, these could be significantly reduced by theuse of the innovative reconstruction algorithm
DIRECTT.

Keywords: metrology, morphological image analysis, non-destructive testing, phase boundary, reconstruction
algorithm, tomography.

INTRODUCTION

The principle of tomographic reconstruction of
a volume from lower-dimensional projections as,
e.g., applied in X-ray or electron tomography was
mathematically discovered by Radon (1917). For a
comprehensive introduction and important aspects of
applications see,e.g., Frank (2005), Banhart (2007),
and Buzug (2008). Tomographic reconstructions can
be computed by a variety of different techniques such
as filtered backprojection (FBP) (Feldkampet al.,
1984; Kak and Slaney, 1988), algebraic reconstruction
techniques (ART) (Gilbert, 1972; Carazoet al., 2005),
geometric tomography (Gardner, 1995) or discrete
tomography (Batenburg, 2005; Herman and Kuba,
2007). The comparative evaluation of these algorithms
is naturally dependent on the choice of quality
criteria. These are mathematically formulated by a
figure of merit (FOM) measuring the deviation of a
phantom data set from its reconstruction, which is
computed from simulated projections of the phantoms.
Since ranking of the reconstruction quality provided
by different algorithms is FOM-dependent (Herman
and Odhner, 1991), FOMs need to be chosen in a
task-oriented way (Hanson, 1990). That means, the
FOM needs to detect differences in reconstruction
quality which are relevant to the further analysis

of the tomograms in a specific application,e.g.,
from medicine or materials science. Typical FOMs
for medical applications are based on curves of
the receiver operator characteristics. They allow to
study the detectability of different tissues and thus
the reliability of diagnostics (Herman and Yeung,
1989; Hanson, 1990). There is a large variety of
FOMs focusing on the correct reproduction of gray
values. The most common representative of gray value
oriented FOMs is the mean squared deviation

d =

√

∑
j

(

xrec
j −xphan

j

)2/
√

∑
j

(

xphan
j

)2
, (1)

which averages over the gray value differencesxrec
j −

xphan
j between all pixelsj in the reconstruction and

the phantom (Gilbert, 1972; Hansiset al., 2008).
Alternatively, mean absolute differences of gray values
as well as deviations of gray value means and variances
in the reconstruction from the respective values of the
phantom have been considered (Sorzanoet al., 2001).
Moreover, phase-specific mean gray values have been
used to assess the detectability of different components
within a material (Sorzanoet al., 2001).

Especially if – as in real experiments – the density
to reconstruct is unknown, reconstruction residuals can
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be a valuable source of information for assessing the
quality of a tomogram (Langeet al., 2008). These
residuals are obtained by subtracting a simulated
projection of the reconstruction from the measured
projection for all rotation angles.

All approaches described above focus on global
accuracy of the reconstruction, whereas evaluation
results can hardly be interpreted with respect to the
preservation of locally defined image characteristics
such as little cracks in the material or the exact shape
of phase boundaries. Correct reconstruction of locally
defined characteristics is however crucial for unbiased
computation of morphological image characteristics
such as connectivity, boundary length or surface area.
Quantitative information on these characteristics is
a valuable source of information in a wide range
of applications such as metrology (Neuschaefer-Rube
et al., 2008), pathology (Mattfeldtet al., 2007),
environmental health (Stoegeret al., 2006) or design
of materials (Frostet al., 2006). We therefore suggest
to directly incorporate measurements of morphological
image characteristics into the FOMs used to evaluate
tomographic reconstruction algorithms. Apart from
measurements of phase boundary length and surface
area (see,e.g., Park et al., 2000) many other
morphological characteristics such as connectivity
(Ohser and Schladitz, 2008) and fractal dimension
(Baumannet al., 1993) are sensitive to the shape of
phase boundaries. We nevertheless decided to assess
local reconstruction quality along phase boundaries by
measuring deviations in boundary length between the
original 2D phantom images and their tomographic
reconstructions. Other approaches, which have been
suggested to study reconstruction quality with focus
on the vicinity of phase boundaries, are based on
weighted averaging of gray value deviations between
phantom and reconstruction (Sorzanoet al., 2001),
where weighting is with respect to distance from
phase boundaries. In contrast to this FOM our method
provides a direct assessment of reconstruction quality
in terms of quantitative morphological image analysis.
Previous methods to locally evaluate reconstruction
quality consider average gray value deviations within
certain regions of interest (Furuieet al., 1994) and thus
have the additional disadvantage that these regions
need to be specifieda priori.

The two principle questions arising in comparison
of reconstruction algorithms ask for the relevance and
for the significance of differences in reconstruction
quality, respectively. Relevant differences can possibly
be detected by computation of an appropriately chosen
FOM for a single phantom such as the well-known
section of a head introduced in Shepp and Logan
(1974). The use of such deterministic input offers

the advantage that specific features which typically
present challenges for correct reconstruction (e.g.,
certain gray value gradients) can be incorporated.
However, insights with respect to the statistical
significance of differences in reconstruction quality
can only be gained if instead of a small number of
deterministic phantoms a sufficiently large sample of
random phantom data is investigated (Herman and
Yeung, 1989; Hanson, 1990; Matejet al., 1994 and
1996; Herman, 2009). This way statistical tests can
be applied to compare reconstruction errors caused
by different algorithms. Many types of artifacts in
tomographic reconstructions such as smearing or
stripes result from the relative positions of single
objects within the scene to be reconstructed (Hanson,
1990). Thus, a sample of random phantoms resembling
the experimentally occurring range of scenes ensures
that statistically significant errors of this type are
taken into account, whereas they may not even
occur in deterministic phantom data. To the best
of our knowledge in previous studies samples of
phantoms have only been generated under moderate
randomization with respect to object positioning.
In particular, objects were clearly separated from
each other (Hanson, 1990). For studies discussing
detectability of tumors in biological tissue potential
tumor locations were even fixeda priori and random
effects were limited to Bernoulli experiments marking
the sites as occupied by a tumor or by regular tissue
(Herman and Yeung 1989; Hanson, 1990). Compared
to these images the phantoms considered in our
study exhibit a substantially higher morphological
variability. They are realizations of a model from
stochastic geometry, namely a 2D Boolean model
consisting of overlapping discs (Molchanov, 1997;
Schneider and Weil, 2008), which are placed at
randomly chosen locations within the image (for
details see Section Phantom Data). Thus, our phantom
data reflect properties of composite or porous materials
with an irregular spatial structure, which nevertheless
exhibit spatial homogeneity in the sense of stochastic
geometry. Repeated sampling from the Boolean model
sets us in a position to compare reconstruction errors
of different algorithms by two-sample-goodness-of-
fit tests. In this way, differences in reconstruction
quality of two algorithms can be assessed on a
statistically sound basis. The approach we suggest
occurs particularly natural for the selection of
tomographic reconstruction algorithms in applications
aiming at the quantitative analysis of complex
materials. For a specific experimental setting, the
methodology suggested in this study can be adapted to
phantom data sets resembling structural properties of
the experimentally investigated material. Additionally,
artifacts related to the specific imaging technique or
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even to a specific experimental instrument need to be
taken into account. Simulations of projections would
thus,e.g., incorporate noise, beam hardening, limited
rotation or alignment problems (Carazoet al., 2005;
Haibel 2008).

In the following the suggested methodology
will be applied to investigate the performance of
standard FBP algorithms in comparison to the
innovative reconstruction technique DIRECTT (Direct
Iterative Reconstruction of Computed Tomography
Trajectories) (Langeet al., 2008). The phantom data
will be two-dimensional. In many applications such
as electron tomography, projections are acquired in
parallel beam geometry. As a consequence, tomograms
of 3D volumes are a stack of 2D reconstructions from
1D projection data. Thus, in parallel beam geometry
our results on 2D datasets are also relevant for the 3D
case. The exact consequences for 3D morphological
image analysis remain an interesting subject for future
applications of our methodology.

We will see that the applied FBP algorithms
alter the structure of phase boundaries in such a way
that boundary length measurements are substantially
affected whereas the DIRECTT reconstructions
preserve boundary structures in a much better way.
In a first step we will demonstrate these effects for
projections of phantoms without noise (referred to as
‘ideal projections’ below). Afterwards we will show
that the superiority of the DIRECTT reconstruction
remains valid under the addition of simulated noise to
the projection data.

The paper is organized as follows. After discussing
phantom generation and simulation of projections we
give an introduction to the investigated reconstruction
techniques in order to illustrate their principle ideas
to a non-expert reader. Then we briefly discuss
the estimation techniques for measuring boundary
length, leaving additional details for the appendix.
Furthermore, we introduce the FOMs serving as basis
for the evaluation and the statistical tests we applied.
We conclude by the presentation of the results and their
discussion.

METHODS

PHANTOM DATA

The phantoms projected and reconstructed for
this study were discretized versions of realizations of
Boolean models in 2D, which were sampled on an
observation window W = [0,500]2  (Fig. 1a). Boolean
models are a class of random closed sets whose
construction is based on a homogeneous Poisson point

pattern {Sn}n≥1. In our specific setting we used a
Boolean model which is defined as the unionB =
⋃∞

n=1B(Sn, r) of circles B(Sn, r) of radius r = 10
centered atSn. The intensity of the homogeneous
Poisson process on IR2 determining the random
locations {Sn}n≥1 was chosen such that the mean
number of points inW = [0,500]2 was 1200. Since
reconstructions are pixel images, throughout our study
we investigated discretized realizations of this Boolean
model on a grid of 500×500 pixels. The gray value of
each pixel was chosen proportional to its area fraction
covered by the realization of the Boolean model.
Notice that gray values are chosen independently of
the number of circles covering a location. All gray
values were rounded to integers and the maximum gray
value was set to 255. In order to allow for statistical
analysis, 100 independent realizationsb1, . . . ,b100 of
B were generated and discretized.

SIMULATION OF IDEAL AND NOISY
PROJECTIONS

Projections were performed in parallel beam
geometry. The sample was rotated in steps of 0.5◦ up
to a maximum angle of 180◦. For the ideal projections
model elements were projected individually and added
to the sinogram,i.e., we performed a projection of
mass (or density, resp.) instead of intensities. This
approach is equivalent to integration over strips of
detector width, and thus reflects that detector elements
as well as the pixels of the phantom are not points but
area elements. The detector elements had exactly the
same size as the reconstruction pixels. The original
observation window was extended by a two pixel
edge of zero entries on all sides. The rotation axis
was set at the windows’ center. In order to ensure
complete visibility of the reconstruction pixels under
all projection angles, the length of the line detector was
chosen sufficiently large.

In order to assess the impact of noise on
the reconstruction results we simulated intensity
sinograms under a noisy X-ray source. Other
experimental artifacts such as cross-talking, focal
smearing, beam hardening or limited dynamic range
(non-linearities in detection) were not simulated. For
the noisy intensity measured at detector locationξ
under rotation angleγ one obtains the approximative
formula

Iγ(ξ ) = Xξ ,γ exp(−pγ(ξ )) , (2)

where the process{Xξ ,γ} denotes Gaussian white
noise with fixed expectationEXξ ,γ = µ > 0 and
variance VarXξ ,γ = σ2 > 0 and pγ(ξ ) denotes
the corresponding ideal projection of density for a
given object. This approximates a Poisson-distributed
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(a) Phantom (b) DIRECTT

(c) FBP Inspect3D (d) FBP IMod

(e) fast FBP

Fig. 1.Sample phantom and its reconstructions from projection data. The right upper corner has been scaled by
factor 3.
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number of X-ray quanta with high expectation (Buzug,
2008). Notice that for each detector locationξ
and rotation angleγ the recorded intensityIγ(ξ )
has a normal distribution. However, expectation and
variance differ from the respective values of the initial
intensity Xξ ,γ and are given byµ exp(−pγ(ξ )) and
σ2exp(−pγ(ξ ))2, respectively. Thus, the stochastic
counting rate at the detector depends not only on the
input intensity but also on the projected object. The
noise level is expressed by the signal-to-noise-ratio
(SNR) µ

σ . In an experimental setting under Gaussian
approximation of Poisson noise one hasσ =

√µ .
However, for simulation purposes we fixedµ and
variedσ , since the parameter of interest was the SNR
rather than the absolute value of the initial intensity.

TOMOGRAPHIC RECONSTRUCTION
ALGORITHMS

Filtered backprojection

A standard technique for the tomographic
reconstruction of projection data is filtered
backprojection (FBP) (Feldkampet al., 1984; Kak
and Slaney, 1988). FBP is widely utilized in computed
tomography using X-rays (Buzug, 2008) as well as
electrons (Carazoet al., 2005). In the following we
will briefly summarize the mathematical foundations
of FBP.

Let f : IR2 → [0,∞) denote a density distribution on
IR2 with bounded support which is to be reconstructed
from the set of projections{pγ : γ ∈ [0,2π)} whereγ
denotes the rotation angle. A single projectionpγ(ξ ) =
∫

e⊥ξ ,γ
f (x)dx is an integral taken along the line

e⊥ξ ,γ = {ξ
(

cos(γ)

sin(γ)

)

+s

(−sin(γ)

cos(γ)

)

: s∈ IR} , (3)

which is perpendicular to the first axis rotated byγ
and has distanceξ from the origin. The mathematical
key ingredient of FBP is the Fourier slice theorem. For
the Fourier transformPγ(q) =

∫ ∞
−∞ pγ(ξ )e−2π iqξ dξ of

a projectionpγ(ξ ) at a fixed rotation angleγ ∈ [0,2π)
the Fourier slice theorem states the identity (cf. Buzug,
2008)

Pγ(q) = F(qcos(γ),qsin(γ)) . (4)

That is, the Fourier transform of the one-
dimensional projection at rotation angleγ corresponds
to the slice of the two-dimensional Fourier transformed
object F passing through the origin in directionγ.
Substituting polar coordinates in the formula of the
inverse Fourier transform and a subsequent application

of the Fourier slice theorem yields the identity (for
detailscf. Buzug, 2008)

f (x) =
∫ π

0

∫ ∞

−∞
|q|Pγ(q)e2πqi(x1 cos(γ)+x2 sin(γ))dqdγ,

for all x∈ IR2 . (5)

The most commonly used FBP algorithm is
based on this formula and organized as follows.
In a first step the Fourier transformsPγ(q) of the
projections are computed. These are subjected to
an inverse Fourier transform after radial weighting
by the factor |q|, which yields filtered projection
images. Backprojections without weighting result in
a convolution of the image to be reconstructed with
the point spread function 1/‖x‖ (Buzug, 2008). In
practice, the transforms are naturally done by discrete
(inverse) Fourier transforms of the discretely sampled
signal. In the backprojection step, for every pixel of
the discrete output image the corresponding position
on each filtered projection image is determined and
the corresponding value is added to the sum which
discretizes the outer integral in Eq. 5. Since this
position will in most cases be a non-integer pixel
position, interpolation schemes need to be applied to
neighboring pixels. By Shannon’s sampling theorem,
at a given real space sampling distance∆ξ the
signal can only be correctly reconstructed up to a
frequencyQ = (2∆ξ )−1 in Fourier space. Thus, the
radial weighting by the function|q| in Eq. 5 is
only reasonable for|q| < Q. In other words, the
sampling scheme imposes a band limitation which
naturally determines the range of integration in the
discrete approximation of the inner integral in Eq. 5.
In applications high frequencies are often considered
as noise. Therefore, in practice frequencies are not
weighted radially but the filter function is replaced
by a modified version|q|W(q), where W(q) is a
window function that decreases the weight of the
high frequency band. Apart from a simple cutoff
at frequencyqmax (i.e., settingW(q) = 1I[0,qmax](|q|))
(Ramachandran and Lakshminarayanan, 1971), a
variety of smoother kernel functions have been
suggested, which suppress undesired local extrema
in the reconstructions (cf. Buzug, 2008). A less
commonly used alternative algorithm to the real space
FBP outlined above directly exploits the sampling on
a polar grid, which is determined by the Fourier slice
theorem (Sandberget al., 2003). This Fourier space
algorithm is more efficient than real space FBP if the
number of projections is sufficiently large. Moreover,
it allows for higher order spline interpolation of the
data without additional cost. In order to monitor the
impact of the FBP algorithm, reconstructions were
computed by the real space and the Fourier space
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approach. The latter will be referred to as ‘fast FBP’.
For this study the implementation of the fast FBP
provided by the IMod software (Kremeret al., 1996)
was applied. Notice that the license for this component
is not included in the standard version. In order
to assess the influence of specific implementations
on the reconstruction quality of the commonly used
real space FBP we computed real space FBPs by
two different software packages namely Inspect3D
(version 3.0, FEI companyTM) and the IMod software
(version 3.11.2).

An unmodified radial filter with simple cutoff was
used for comparison of FBP to other reconstruction
techniques. The cutoff frequency was set to the
maximum spatial frequency that could occur in our
image data. We will nevertheless demonstrate the
effect on reconstructions which is caused by switching
to a Gaussian decay of the filter function at varying
cutoff frequencies.

Both software packages we applied are designed
to reconstruct 3D volumes from 2D projections.
However, the software backprojects each 2D slice of
the volume separately and thus each sample of our 2D
phantom data could be considered as a single slice of
a 3D volume. Sample reconstructions can be found in
Fig. 1.

DIRECTT

The algorithm DIRECTT (Langeet al., 2008)
represents a promising alternative to conventional
reconstruction algorithms such as FBP or ART.
Fig. 2 schematically displays the algorithm’s iterative
philosophy. The 2D algorithm is applicable to parallel
as well as fan beam geometry of projection. In
the following we study parallel beam projections as
illustrated in Fig. 2, which are computed in strips for
each detector element. Fig. 2a (top left) indicates a
model volume at the example of a 14 pixel object.
Fig. 2b (bottom left) represents the respective density
sinogram (Radon transform (Radon, 1917)) which
is either achieved by computed projection of model
densities (Fig. 2a) or is the initial experimental
intensity data converted according to Lambert-Beer’s
law (cf. Buzug, 2008). Demanding that each element
of the reconstruction array corresponds to exactly
one sinusoidal trajectory of the sinogram (Fig. 2b),
the DIRECTT algorithm selects pixels,i.e., area
elements, corresponding to trajectories of dominant
weight for an update of the reconstruction. The given
density sinogram can optionally be filtered along the
detector direction. This is helpful to avoid artifact
formation equivalent to the effects of an unfiltered
backprojection. However, an intriguing feature of
DIRECTT is that adaptations of the filter function can

be used to evaluate trajectories with focus on specific
aspects of interest such as mass or contrast. Switching
filters between subsequent iteration steps can be used
to incorporate a variety of different aspects of the
image into the reconstructions step by step. Let the
discrete sinogram be given by the matrixS = (si j ),
such thati = 1, . . . ,N and j = −ℓ, . . . , ℓ, where N
denotes the number of projection angles and 2ℓ + 1
is the number of detector elements. Then the filtered
sinogram is given by the matrixS∗, where theith row
s∗i of S∗ is obtained by a convolution of theith rowsi of
S (extended byℓ zeros at both ends) with the discrete
filter function c : {−2ℓ, . . . ,2ℓ} → IR, more precisely
s∗i j = ∑ℓ

k=−ℓ sikc(k− j).

Computation of the DIRECTT reconstructions in
the present study involved switching between two
different filter functions. The first six iteration steps
were performed after application of the mass filter

cm(k) =

{

− 1
k2 for k∈ {−2ℓ, . . . ,2ℓ}\{0},

2∑2ℓ
k̃=1

1
k̃2 for k = 0.

The subsequent steps of iteration (fourteen for
reconstructions of ideal projections) were based on
contrast-filtered sinograms, where the contrast filtercc
is given by

cc(k) =







−1 for k∈ {−1,1},
2 for k = 0,

0 else.

The weights of all possible trajectories
(corresponding to integer reconstruction positions) are
computed by averaging along the respective traces
within the optionally filtered sinogram. This involves
interpolation between neighboring sinogram pixels
corresponding to different detector elements. This is
a substantial difference to FBP, where interpolation
is performed in Fourier space (fast FBP) or in the
backprojection step after the sinogram has been
(inversely) Fourier transformed and filtered (real space
FBP).

In the update step of DIRECTT, a fraction of
the trajectory weight is added to the respective area
element in the reconstruction array if the weight ranks
within a predefined top percentage of all trajectory
weights. This is illustrated in Fig. 2c, where 11 out
of the 14 original elements in the example have
been added. The projection (Radon transform) of the
reconstruction array (i.e., a computed sinogram) is
then subtracted from the original data set. The obtained
residual sinogram (Fig. 2d, containing trajectories of 3
remaining elements in the example) is subject to the
same procedure in the subsequent iteration steps until
a pre-selected criterion of convergence is reached. This
procedure can be described as an iterative Radon and
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inverse Radon transform. In contrast to FBP there is no
integral computation along the line detector (including
limited sampling due to its element size) but an
optional over-sampling along the numerous projection
angles. One of DIRECTT’s unique characteristics is
its very precise projection of reconstruction elements
taking into account their actual size and shape
which is essential for enhanced spatial resolution.
That is, reconstruction pixels are considered as a
set of densely packed elements instead of being
(circularly smeared) point functions only. Hence, all
previously described calculations are performed based
on squared area elements in a Cartesian matrix.
DIRECTT is of particular interest when the focus is
on reconstruction of finely structured details or on
precise location of reconstructed elements rather than
on computing time. In contrast to FBP, DIRECTT does
not treat each (detector) projection individually,i.e.,
it is not deconvolved globally or (Fourier) filtered,
but the entire trajectory of a reconstruction element
is considered over all projections. In contrast to
ART, DIRECTT does not modify the entity of all
reconstruction elements simultaneously.

Fig. 2. Reconstruction principle of the iterative
procedure applied by DIRECTT. (a) Model volume of
a 14 pixel object. (b) Density sinogram of the model.
Each trajectory corresponds to one of the pixels. (c)
Intermediate reconstruction array, where11 out of
the14 pixels have been added. (d) Residual sinogram
after subtraction of the sinogram generated by the
intermediate reconstruction in (c) from the sinogram
in (b).

ESTIMATION OF AREA AND
BOUNDARY LENGTH

For the evaluation of reconstruction algorithms
we compared the area as well as the boundary
length as measured by two different computational
methods in the discretized input data to values found

for the various reconstructed images. Notice that
we are interested in the boundary length and area
of the discretized version of the entire Boolean
modelB =

⋃∞
n=1B(Sn, r) rather than in the cumulated

morphological characteristics of the single circles
B(Sn, r), n ≥ 1. Comparison of morphological image
characteristics requires a binarization of the images,
which was done by simple thresholding, where the
threshold parameter was set to 50% of the maximum
greyvalue. In order to exclude bias by pure scaling
differences, thresholding was done after normalizing
the gray values of each image in such a way that
the average gray values occurring in the background
and the foreground phase were set to 0 and 255,
respectively.

Any attempt to measure morphological
characteristics of a discretized set faces the problem
that the shape of the set before discretization cannot
be reconstructed from the pixel image. In order to
estimate the foreground area we applied the natural
approach of counting the number of foreground pixels.
For estimating the original boundary length, different
formulae from integral geometry and stereology
can be exploited. Nevertheless, estimation results
and consequently approximation errors are more
than likely to differ with respect to the estimation
method chosen. In order to ensure reliability of
our statistical results on reconstruction quality, we
therefore implemented two different methods for
measuring the boundary length of the foreground
phase.

The first method we applied has been introduced in
Klenk et al.(2006) and further discussed in Guderleiet
al. (2007). It will be referred to as the Steiner method
since it is based on a discretized version of a Steiner-
type formula known from the geometry of polyconvex
sets. Details of this method are given in the appendix.
As input parameter the algorithm needs a sequence of
so-called dilation radiir1 . . . , rn. Measurement results
are dependent on the choice ofr1 . . . , rn. Therefore,
for our investigations we used two different sets of
dilation radii. The first choicer i = 4.2 + 1.3i, i =
1, . . . ,1000, was suggested in Guderleiet al. (2007),
whereas the second choicer i = 0.4 + 0.09i, i =
1, . . . ,158, was optimized to obtain results whose mean
coincides with the theoretical mean boundary length
of the Boolean model used for phantom generation.
The corresponding mean value formulae of Boolean
models can be found in Schneider and Weil (2008).

The second method we applied in order to measure
the boundary length of the input images and the
reconstructed data is discussed in Ohser and Mücklich
(2000) and will be referred to as the Cauchy method. It
approximates the boundary length of a discretized set
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by a discrete analog of Cauchy’s surface area formula,
which expresses the boundary lengthL(K) of the setK
as an integral of the total projection length ofK over
all directions (see appendix). The algorithms discussed
in this section were implemented in the Geostoch
software library (Mayeret al., 2004).

STATISTICAL TESTS FOR
COMPARISON OF RECONSTRUCTION
ERRORS

Reconstruction algorithms were statistically
compared via the empirical probability distribution
of the reconstruction error. The error was defined as
relative deviation of the morphological characteristics
on the reconstructions from the phantom data.
The morphological characteristics measured were
boundary length and area of the foreground. The
following definition of reconstruction error is given
for the example of a measurement method for the
boundary length which leads to an estimatorL̂ for
this morphological characteristic. Effects of different
reconstruction algorithms on area measurements were
compared in an analogous way.

Given two reconstruction algorithmsA1 and A2
and an estimator̂L for the boundary length, for the
phantomsbphan

1 , . . . ,bphan
100 and their reconstructions

bAk
1 , . . . ,bAk

100, k= 1,2, the relative reconstruction errors

eA1
i =

∣

∣

∣

∣

L̂(bphan
i )−L̂(b

A1
i )

L̂(bphan
i )

∣

∣

∣

∣

and

eA2
i =

∣

∣

∣

∣

L̂(bphan
i+50)−L̂(b

A2
i+50)

L̂(bphan
i+50)

∣

∣

∣

∣

(6)

were computed for i = 1, . . . ,50. Since the
phantomsbphan

1 , . . . ,bphan
100 were discretized versions

of independently sampled realizations of a Boolean
model, the entire collection of errors from the two
sampleseA1

1 , . . . ,eA1
50,e

A2
1 , . . . ,eA2

50 inherited stochastic
independence. Consequently, two-sample-goodness-
of-fit tests could be applied in order to compare
the two distributions the error sampleseA1

1 , . . . ,eA1
50

and eA2
1 , . . . ,eA2

50 were drawn from. Given a pair of
reconstruction algorithmsA1 and A2, Kolmogorov-
Smirnov (KST), Wilcoxon rank (WRT) and Ansari-
Bradley (ABT) tests were performed. For KST and
WRT two different null hypotheses were considered,
firstly that the cumulative distribution functions (CDF)
FA1 and FA2 of the error distributions are equal, and
secondly, that the error of algorithmA1 tends to be
smaller than the one produced byA2 in the stochastic
sense defined below.

– The Kolmogorov-Smirnov testchecks the null
hypothesis H0 : FA1(x) = FA2(x) for all x ∈ IR
against the two-sided-alternative that the values
of the two CDFs differ for somex ∈ IR. Any
differences between the two samples will lead
to the rejection ofH0 if they are too large in
the statistical sense. In the one-sided version
of the KST the null hypothesisH0 : FA1(x) ≥
FA2(x) for all x ∈ IR is tested, which would imply
that the first sample ofA1 statistically consists of
smaller values than the second one. For details
see Conover (1971, p. 309) and Gibbons (1985,
p. 127).

– The Wilcoxon rank test is equivalent to the
Mann-Whitney U-test. It is especially sensitive to
deviations in the location parameters ofFA1 and
FA2, i.e., it is used to determine whether one of
the distribution functions is shifted relative to the
other. If the random variablesX1 andX2 have CDFs
FA1 andFA2, respectively, the two-sided version of
the WRT testsH0 : P(X1 > X2) = 1

2 againstH1 :
P(X1 > X2) 6= 1

2. Thus, differences in variabilities
of reconstruction errors within the two samples
will not lead to the rejection ofH0 as easily as
differences in the means or medians of the two
samples. The one-sided version testsH0 : P(X1 <
X2) ≥ 1

2 againstH1 : P(X1 < X2) < 1
2, i.e., whether

the sample ofA1 is statistically smaller than the
second sample. For mathematical details, see,e.g.,
Gibbons (1985, p. 164) and Lehmann and Romano
(2005, p. 243).

– TheAnsari-Bradley testassumes thatFA1(x−m) =
FA2(θ(x−m)) for all x∈ IR, an unknown nuisance
parameterm used to normalize the location of the
sample and some scaling ratioθ > 0. The test
focuses on the question if the distributions differ
in dispersion rather than in location. Thus, the
ABT tests H0 : θ = 1 againstH1 : θ 6= 1. One-
sided alternatives are possible but not considered in
this study. Details can be found in Gibbons (1985,
p. 179).

For all tests in this study version 2.8.1 of theR
programming language (R Development Core Team,
2007) was applied. Test results are given in terms of
a p-value, which is the largest level of significance at
which the null hypothesis is not rejected.

RESULTS

Reconstruction errors are visualized by boxplots
(Figs. 3–6). The box depicts the median and the
(possibly approximated) quartiles of the data. The
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centered vertical lines show the smallest and largest
observations if their distance from the box does not
exceed 1.5 times the box size. More extreme values
within the sample are plotted as circles. Note that in
the boxplots we consider signed relative errors, where
these quantities are defined as in Eq. 6 but without
taking absolute values. However, all statistical tests are
based on unsigned relative errors.

RECONSTRUCTIONS FROM IDEAL
PROJECTIONS

For DIRECTT the classic FOM of MSD defined in
Eq. 1 had a value of 0.0139, whereas the corresponding
values for the FBP algorithms were in the interval
between 0.069 and 0.074, with best results for the
Inspect3D software and the highest error measured
for the standard FBP in IMOD (Fig. 3). Although
very small, the differences in MSD between the FBP
techniques were found to be statistically significant by
KST and WRT. This is plausible since there was hardly
stochastic variability in the single MSD samples.
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Fig. 3. Mean squared deviations of reconstructions
from original phantoms.

The area measurements of the foreground
phase behaved rather stable under all reconstruction
algorithms and relative errors were only at the level
of few per mille (Fig. 4). Errors fluctuated around 0
for DIRECTT and were only around 0.002 for the
fast FBP and the Inspect3D software. The standard
FBP implemented in IMod showed a slightly increased
error level of around 0.006. KST and WRT classified
the differences between the algorithms as statistically
significant, though the absolute level was very small.

Boxplots in Fig. 5 indicate that the signed
relative errors for measurements of boundary length
differed between reconstruction algorithms. Stochastic
variability of the errors within the sample was similar
for all four reconstruction algorithms as indicated
by the high p-values of the Ansari-Bradley test
(Table 1). In the DIRECTT reconstructions the Steiner

method measured a decrease in boundary length of
around 1.5% and the Cauchy method a decrease of
around 0.5% in comparison to the original phantoms.
However, the FBP algorithms produced significantly
higher relative errors than DIRECTT as indicated by
the p-values of the tests in their one-sided versions in
Table 1. The error produced by the fast FBP algorithm
was significantly smaller than the error produced by
the standard FBP implemented in IMod, which in turn
was slightly but significantly smaller than the error
found in the FBP reconstruction done with Inspect3D.
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Fig. 4. Relative deviation of area measurements on
reconstructions from original phantoms.

For all reconstruction algorithms error levels
depended on the method used to measure boundary
length. Averaging over all three FBP implementations,
the Steiner method yielded a slightly stronger decrease
in boundary lengths of around 13%. The choice
of radii for the Steiner method had only a hardly
noticeable impact on the measurements of relative
errors (Fig. 5a vs. Fig. 5b). In summary, it should
be emphasized that on the FBP-reconstructions all
methods of measurement consistently indicated a
decrease of boundary length in comparison to the
original phantoms, whereas the deviation on the
DIRECTT reconstructions was significantly smaller.
All p-values of tests for equality of error distributions
were so small that the KST as well as the WRT
detected differences when the level of significance was
set toα = 0.001/2. This in particular implies that the
hypothesis of equal error distributions was rejected in
a Bonferroni-corrected setting for multiple testing at
level α = 0.01. The latter defines that a hypothesis
H0 is rejected at a levelα once a single one ofn
tests performed on the same data rejectsH0 at level
α/n. As a consequence, the probability of a false
rejection is bounded byα, which in most cases is quite
a conservative estimate for the type 1 error of the test.
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DIRECTT FBP IMod FBP Inspect3D fast FBP

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

si
gn

ed
 r

el
at

iv
e 

er
ro

r

(a) Steiner method; dilation radiir i = 4.2+1.3i, i = 1, . . . ,1000
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(b) Steiner method; dilation radiir i = 0.4+0.09i, i = 1, . . . ,158
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(c) Cauchy method

Fig. 5. Relative deviation of boundary length
measurements on reconstructions from original
phantoms.

The cutoff frequency, at which FBP algorithms
switch from highpass to Gaussian filtering of the
Fourier transformed projections before backprojecting
them, had a noticeable impact on the error in boundary
length measurement. Suppression of high frequencies
increased the relative deviation in boundary length
measurements on the reconstructions from the original
images independently of the method of measurement
(Fig. 6).
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(a) Steiner method; dilation radiir i = 4.2+
1.3i, i = 1, . . . ,1000
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(b) Cauchy method

Fig. 6. Relative deviation of boundary length
measurements on FBP reconstructions from original
phantoms for different cutoff frequencies. These
reconstructions were performed by the real space FBP
algorithm implemented in the IMod software. The
highest spatial frequency that could occur in the image
data was0.5.

RECONSTRUCTIONS FROM NOISY
PROJECTIONS

The sensitivity of the relative error in boundary
length measurements to noise in the projection data
was investigated for the DIRECTT algorithm and
FBP (Fig. 7). Since the errors of the different
FBP algorithms were of similar order, we chose
the standard FBP implementation of IMod for the
comparison. Empirical 96% confidence intervals were
computed from the two error samples under ideal
projections. SNRs were considered between 50 and
400 in steps of 50. For each SNR a phantom
was picked at random and noise was added to its
projections as described in Section “Simulation of
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ideal and noisy projections”. These were then used as
input data for DIRECTT and FBP.
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(a) Steiner method; dilation radiir i = 4.2+
1.3i, i = 1, . . . ,1000
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Fig. 7.Sensitivity of relative errors of boundary length
measurements to noise in the projections. The red lines
mark a 96% confidence interval of the error under
ideal, i.e., noiseless projections found for FBP, the
blue lines mark a corresponding confidence interval
for DIRECTT. Red points are reconstruction errors of
FBP found for single randomly picked phantoms under
the noise level depicted on the x-axis. The blue points
are the corresponding errors using DIRECTT.

For noisy projections the quality of the DIRECTT
reconstructions improved in terms of MSD over the
first iterations but from a certain point on decreased
again. This deterioration of the reconstruction quality
occurs when the residual sinograms are dominated by
noise and thus, further iterations introduce erroneous
information into the reconstructions. The number of
iterations for the DIRECTT reconstructions under
noise evaluated in Fig. 7 was chosen such that
MSD was minimized. Fig. 7 shows that the error of
the DIRECTT reconstructions under noise was not

contained in the confidence interval of the error under
ideal projections. For SNRs higher than 150 the FBP
reconstructions from noisy input data stayed within
or close to the range of error under ideal projections.
Nevertheless, the relative loss in boundary length
caused by DIRECTT was in all cases less than in the
FBP reconstructions. SNRs of less than 20 did not
yield reasonable reconstruction results.

DISCUSSION

Our results demonstrate that standard FBP
reconstruction algorithms for projection data may
alter the boundary structure of two-phase phantom
images in such a way that measurements of boundary
length are substantially affected. As a standard
gray value oriented global measure of reconstruction
quality, MSD already indicated errors in the FBP
reconstructions. Locally defined image characteristics
such as phase boundaries and quantitative image
characteristics can however hardly be related to
global integral FOMs such as MSD in a direct
way. Thus, for monitoring reconstruction artifacts
distorting fine details and their consequences for
quantitative image analysis it is important to consider
alternative FOMs. In this context boundary length
measurements can be a valuable source of information
since they are sensitive to changes of local pixel
configurations. Corresponding FOMs can thus provide
a more comprehensive view on reconstruction quality.

Apart from boundary length also other
characteristics frequently considered in quantitative
morphological image analysis and spatial statistics
such as connectivity (Ohser and Schladitz, 2008;
Thiedmannet al., 2009), spherical contact distribution
function (Mayer, 2004; Thiedmannet al., 2008)
and fractal dimension are dependent on adequate
reproduction of phase boundaries. Since we have
seen that FBP algorithms alter the structure of phase
boundaries, estimation of these image characteristics
from FBP reconstructions occurs to be problematic,
even if comparative studies of different materials
or scenarios may still be possible. On the other
hand, foreground area showed very limited sensitivity
to the reconstruction artifacts produced by FBP
algorithms. Thus, measurements of foreground area
can be regarded as stable with respect to standard FBP
techniques.

Our evaluation was based on a set of phantom
images consisting of discretized realizations of a
Boolean model, which were independently sampled.
Therefore, classical two-sample tests could be applied
to compare the errors of different algorithms. Since
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Table 1.Bounds for the p-values of the tests conducted for comparisonof the relative errors of boundary length
produced by the different reconstruction algorithms undernoiseless projections. Small p-values of two-sided WR
and KS tests indicate that error distributions are significantly different. Large p-values of the one-sided KST and
WRT mean that the first of the algorithms in column 1 produces a significantly smaller error than the other one.
Large p-values of the two-sided ABT suggest that the variability of the errors is similar for the two reconstruction
algorithms considered.

p-values KST KST WRT WRT ABT
two-sided one-sided two-sided one-sided two-sided

DIRECTT vs. FBP IMod < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
DIRECTT vs. FBP Inspect3D < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
DIRECTT vs. fast FBP < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
fast FBP vs. IMod < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
fast FBP vs. Inspect3D < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
FBP IMod vs. Inspect3D < 0.01 > 0.9999 < 0.001 > 0.9999 > 0.5

differences between error distributions of boundary
length measurements for the considered reconstruction
algorithms were rather pronounced (see the boxplots in
Fig. 5) the unambiguousp-values of the Kolmogorov-
Smirnov and the Wilcoxon rank test in Table 1 were
to be expected. The Ansari-Bradley test indicated that
dispersion of the error samples was not significantly
different between algorithms and was probably mainly
controlled by the stochastic variability of the phantom
data.

The testing methodology we suggested can
be transferred to any other FOM and set of
randomly sampled phantom data. This way also
subtle differences in reconstruction quality can be
evaluated with statistical rigor. It should again be
emphasized that a statistical approach to the evaluation
of reconstruction quality essentially relies on randomly
sampled phantoms. Reconstruction of deterministic
phantom data is a valuable tool to investigate the
capability of reconstruction algorithms to reproduce
certain predefined image features. An approach based
on randomly sampled phantoms is complementary
since it can be used to monitor the statistical
significance of errors produced by reconstruction
algorithms. This information is especially important
for the quantitative investigation of irregularly
structured materials.

Throughout this study the relative error in
boundary length was measured by two different
techniques and – for the Steiner method – two choices
of parameters. This way bias introduced by boundary
measurement techniques could be excluded. Since
the methods are based on discrete approximations
of different formulae for the boundary length of
a polyconvex set (see Appendix), deviations in
measurement results naturally occurred. Although

relative errors measured by the Cauchy method were
found to be slightly smaller than the errors measured
by the Steiner method, qualitative as well as statistical
findings agreed for all methods applied. Thus, our
findings were not tied to a specific measurement
approach.

In order to relate the errors caused by the
general technique of FBP to the effect caused by
different algorithmic approaches, FBP reconstructions
were conducted by the standard real space FBP and
the fast FBP algorithm suggested by Sandberget
al., 2003. Moreover, for the real space FBP two
different implementations from the IMod software
and the Inspect3D package were compared. The
reconstruction errors as assessed by the relative
boundary length were found to be qualitatively
similar for all three FBP implementations, even
if the fast FBP yielded significantly better results
than the two real space algorithms. The statistical
significance of the differences in FBP reconstruction
errors produced by the real space FBP in IMod and
the Inspect3D software suggest that the performance
of FBP techniques depends on their implementation.
It should however again be pointed out that error
levels are very similar and our qualitative findings
are implementation-independent. It should also be
emphasized that rankings of implementations can only
be given with respect to a specific FOM. This is
clearly illustrated by the rankings of the Inspect3D
reconstructions which exhibit a higher boundary error
than the other FBP reconstructions but performed best
within the FBP group with respect to MSD. This rather
good representation of gray values is possibly the
consequence of the 16 bit image representation used
in Inspect3D, whereas IMod computes reconstructions
based on 8 bit images. Principle sources of errors
in real space FBP algorithms are the interpolation
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schemes applied in the backprojection step. Both real
space FBP implementations used a computationally
fast linear interpolation. The slight superiority of the
fast FBP is possibly the result of the Fourier space
approach, which may reduce interpolation errors along
boundaries.

Cutoff frequencies applied in FBPs can hamper
correct reconstructions of phase boundaries in a
substantial way (Fig. 6). This effect is plausible since
edges are represented by high frequencies in Fourier
space. It can also be expected to occur for other types
of window functions which reduce the impact of high
frequencies in comparison to simple radial weighting.

For ideal projection data DIRECTT presented
itself as a powerful reconstruction algorithm, which
reproduced phase boundaries in an almost perfect
way. This has been achieved under the simple
but essential assumptions of homogeneous density
within the pixels, regarded as area elements, and
identical pixel sizes within the model, the detector
and the reconstruction. First tests with DIRECTT
however indicated that the reconstruction quality is
still remarkable when pixels of smaller size than
the detector elements are reconstructed (Lange and
Hentschel, 2007).

In order to challenge the results obtained for
noiseless projections, noise of different level was
added to the projection data of single randomly chosen
phantoms and the reconstruction results of DIRECTT
and FBP were compared. The FBP reconstructions
exhibited a high noise tolerance, since the relative
error in boundary length measurement did hardly leave
an empirical 96% confidence interval that had been
computed for the ideal projections (Fig. 7). This shows
that under noisy projections the reconstruction error in
the phase boundaries is not dominated by the noise but
by properties of the FBP technique. The DIRECTT
reconstructions reacted more sensitively to the noise,
since the errors increased and were outside the 96%
confidence interval for the DIRECTT reconstructions
under ideal projections. Nevertheless, in all cases the
DIRECTT reconstructions exhibited a substantially
smaller error than the FBP tomograms. Thus, the
improvement in reconstruction quality that can be
achieved by DIRECTT appears to not to be limited
to ideal sets of input data but can also be expected
in experimental settings. The simulated projections
of pixel data serving as input for the reconstruction
algorithms do not exactly describe a tomographic
experiment with a spatially continuous material.
However, our methods chosen for the transformation
of the spatially continuous realizations of the Boolean
model into pixel phantoms and the computation of

the projections by strip integrals yield an adequate
approximation of an experimental setting.

It should be mentioned that it is difficult to
determine the optimal number of iterations for the
reconstruction of noisy experimental input data. It is
a challenging problem to judge whether a residual
sinogram is dominated by erroneous information from
projection noise and hence, further steps of iteration
will only result in artifacts. This is an important subject
for further studies.

The merits of the DIRECTT reconstructions come
at the cost of increased computation time, which
totaled 22 min on an Intel Xeon 5130 processor
(2.0 GHz, one core) for a single input image.
However, standard algebraic reconstruction algorithms
such as SIRT (Gilbert, 1972), which is commonly
used in electron tomography (Balset al., 2007), are
also computationally more demanding than FBP. In
contrast to DIRECTT, in addition to the number
of iterations, they usually require optimization of
other parameters in order to yield satisfactory results
(Carazoet al., 2005). Since for our phantom data
a SIRT reconstruction computed by the Inspect3D
software with 20 iterations exhibited substantially
increased blurring at the phase boundaries in
comparison to the FBP results, we did not include
SIRT in our comparative analysis.

It is possible that other backprojection techniques
than standard FBP are capable of an improved
representation of phase boundaries. These algorithms
comprise λ -tomography, where local inversion
formulae ensure that space-continuously defined
functions and their theoretical reconstructions have
the same jumps. One should however point out
that λ -tomography does not reconstruct the density
distribution f itself but the function Λ f , where
Λ =

√
−△ denotes the Calderon operator which does

not preserve gray values (for details see Louis and
Maass, 1993; Kuchmentet al., 1995; Faridaniet al.,
1997). An innovative and computationally efficient
reconstruction technique has been proposed by
Louis (2008). This approach combines reconstruction
and edge detection and could also enable superior
reconstructions of phase boundaries in comparison to
standard FBP techniques. Furthermore, for samples
consisting of few different materials such as our
phantom data, algorithms from discrete tomography
have been reported to be very promising tools for
tomographic reconstruction (Batenburg, 2005; Bals
et al., 2007; Herman and Kuba, 2007). Discrete
tomography exploitsa priori information on the object
to be reconstructed, namely the number of materials
it is composed of. Therefore, the algorithms can
partially compensate for missing information,e.g.,
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caused by limited rotation of the sample (Lange
et al., 2008). Furthermore, they return an image
which does not require segmentation of the different
materials. By construction, DIRECTT also offers the
option to compute discrete tomograms and thereby
to reconstruct details which cannot be extracted from
the projections in the standard setting. Nevertheless,
our results demonstrate that even without thea priori
information needed for discrete tomography mode,
DIRECTT reconstructions exhibit a level of contrast
and detail preservation which is not achieved by
conventional FBP reconstruction.

We have illustrated that under ideal and noisy
projections reconstruction algorithms can cause
statistically significant changes of image morphology.
For practical applications the error caused by the
reconstruction algorithms needs to be carefully related
to the effect of experimental imperfections in the
projection data. These may comprise alignment
deviations, the specific noise level or limited rotation.
Expert knowledge about these experimental conditions
is important to identify appropriate reconstruction
algorithms and their parameters, that meet the specific
needs of an application. Nevertheless, whenever
realistic projections can be simulated and a FOM
capturing the aspects of interest has been defined,
randomly generated phantom data reflecting the
structural properties of the investigated object and
statistical analysis provide a powerful setting to
compare different reconstruction techniques.

APPENDIX

MEASURING BOUNDARY LENGTH BY
THE STEINER METHOD

The algorithm for boundary length measurement
we refer to as the Steiner method exploits the following
Steiner-type formula: LetK ⊂ IR2 be polyconvex set,
i.e., a finite union of convex sets, then forr > 0 the
so-called weighted volumeρr(K) of the setK can be
written as

ρr(K) = r2πV0(K)+ rV1(K) , (7)

where 2V1(K) is the boundary lengthL(K) of K and
V0(K) denotes the Euler-Poincaré characteristics of
K. In the 2D setting the latter counts the number of
connectivity components in the foreground minus the
number of holes. For a convex setK the weighted
volumeρr(K) coincides with the volume of the parallel
set (K ⊕B(r,o)) \K, which consists of all points not
contained inK but whose distance toK is at most
r (Fig. 8). In case the boundary ofK has concavity

points,ρr(K) is obtained by partitioning(K⊕B(r,o))\
K in a specific way and counting the volumes of
the obtained components with certain multiplicities
(Klenk et al., 2006). If ρr(K) is known for two
different dilation radiir0 and r1, by Eq. 7 we obtain
the linear equation system

ρr0(K) = r2
0πV0(K)+ r0V1(K) ,

ρr1(K) = r2
1πV1(K)+ r1V1(K) ,

(8)

which can be uniquely solved forV0(K) andV1(K).
This equation system can also be exploited to obtain
an estimator for the boundary length of a discretized
version of a setK on a square lattice. For details
on how to compute the left-hand sides in Eq. 8
for discretized sets we refer to Klenket al. (2006).
Nevertheless, it should be pointed out that a central
aspect of the algorithm is a polyhedral approximation
of the set which is used to determine its boundary.
For approximatingρr(K) the occurrences of certain 8-
neighborhood configurations around boundary pixels
are counted. In simulation studies, estimation results
for the boundary length were shown to significantly
improve if instead of approximatingρr(K) for only
two dilation radii a higher number of dilation radii
r1, . . . , rn was used (Klenket al., 2006). This usually
yields an overdetermined system of equations, and
thus, a solution can be obtained by the standard least-
squares method. Estimation results are dependent on
the choice of the radiir1 . . . , rn.

Fig. 8. Parallel set (K ⊕ B(r,o)) \ K of a rectangle
K (gray). The dilation K⊕B(r,o) of K by the circle
B(r,o) around the origin with radius r consists of all
points whose distance to K is at most r.

MEASURING BOUNDARY LENGTH BY
THE CAUCHY METHOD

The algorithm for boundary length measurement
we refer to as the Cauchy method relies on Cauchy’s
surface area formula, which expresses the boundary
length L(K) of the polyconvex setK as an integral
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of the total projection lengthπθ (K) of the setK in
directionθ :

L(K) =
1
2

∫ 2π

0
πθ (K)dθ . (9)

The total projection length is defined asπθ (K) =
∫ ∞
−∞V0(K ∩ er,θ )dr, i.e., as the integral of the number

of connected components of the one-dimensional
intersection ofK and the lineser,θ , where er,θ is
the line with directionθ ∈ [0,π) and the directed
distancer ∈ IR from the origin (Fig. 9). Integration
is with respect to the distancesr from the origin.
On discretized binary images, the total projection
length can be approximated by computing relative
frequencies of certain pixel configurations at the phase
boundary (Ohser and M̈ucklich, 2000). Based on these
approximations of the total projection length in the 8
canonical directions in a 2D square lattice, the integral
Eq. 9 can be numerically evaluated by means of a
quadrature scheme.

Fig. 9. A polyconvex set K intersected by the line
er,θ , which has directionθ ∈ [0,π) and the directed
distance r∈ IR from the origin. In the example
depicted, the number of connected components V0(K∩
er,θ ) is 2.
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