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Abstract

Convex cycles play a role e.g. in the context of product graphs. We introduce con-
vex cycle bases and describe a polynomial-time algorithm that recognizes whether a given
graph has a convex cycle basis and provides an explicit construction in the positive case.
Relations between convex cycles bases and other types of cycles bases are discussed. In
particular we show that if G has a unique minimal cycle bases, this basis is convex. Fur-
thermore, we characterize a class of graphs with convex cycles bases that includes partial
cubes and hence median graphs.
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1 Introduction and basics
The cycle space C(G) of a simple, unweighted, undirected graph G = (V,E) consists of
all its Eulerian subgraphs (or generalized cycles), i.e., all the subgraphs of G for which
every vertex has even degree. It is convenient in this context to interpret subgraphs of G
as edge sets. The generalized cycles form a vector space over GF(2) with vector addition
X ⊕ Y := (X ∪ Y ) \ (X ∩ Y ) and scalar multiplication 1 · X = X , 0 · X = ∅, for
X,Y ∈ C(G). This vector space is generated by the elementary cycles of G, i.e., the
connected subgraphs of G for which every vertex has degree 2. A basis B of the cycle
space C is called a cycle basis of G = (V,E) [9]. The dimension of the cycle space
is the cyclomatic number µ(G) (or first Betti number). For a connected graph we have
µ(G) = |E| − |V |+ 1. Notice that the cycle space of a graph is the direct sum of the cycle
spaces of its 2-connected components.

Cycle bases of graphs have diverse applications in science and engineering. Examples
include structural flexibility analysis [27], electrical networks [11], chemical structure stor-
age and retrieval systems [15], scheduling problems [36], graph drawing [33], and biopoly-
mer structures [34, 35]. Surveys and extensive references can be found in [19, 22, 28, 37].

A convexity space (V,C) [6] consists of a ground set V and a set C of subsets of V
satisfying

(C1) ∅ ∈ C, V ∈ C, and

(C2) K ′,K ′′ ∈ C implies K ′ ∩K ′′ ∈ C.

For a simple, undirected graph G with vertex set V , every set P of paths on G defines
a convexity space (V,C(P)) in the following way: A set of vertices K is P-convex, K ∈
C(P), if and only if, for every path P ∈ P with both end vertices in K, all vertices of P
are contained in K. This construction is discussed in detail in [14]. Several special types
of paths P have been studied in this context, most prominently the set of all paths [5], the
set of all triangle paths [8], the set of all induced paths [13], and the set of all shortest paths
[39].

We will be concerned here only with the latter definition of convexity, usually known as
geodetic convexity, see Section 2 for a formal definition. Geodetically convex cycles play
an important role in the theory of Cartesian graphs products and their isometric subgraphs.
The absence of convex cycles longer than 4, for example, characterizes semi-median graphs
[3]. Such long convex cycles furthermore play a role e.g. in Euler-type inequalities for
partial cubes [31].

It appears natural, hence, to investigate whether there is a connection between the cycle
space and the (geodetic) convexity space of a graph G = (V,E). Note that the cycle
space is defined on the edge set, while the convexity space is defined on the vertex set.
Intuitively, this connection is made possible by the fact that induced elementary cycles in
G are characterized by either their vertex sets or their edge sets.

Definition 1.1. A convex cycle basis of a graph G is a cycle basis that consists of convex
elementary cycles.

We briefly consider a generalized definition of convex cycle bases relaxing the require-
ment for elementary basis cycles in the final section.

Cycle bases with special properties have been investigated in much detail in the liter-
ature. Examples include minimum cycle bases [2, 17, 19, 29, 44], (strictly) fundamental
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cycle bases [20, 32, 38], or (quasi) robust cycle bases [26, 40]. Here, we consider convex
cycle bases. We show that convex cycle bases are not related to other types of cycle bases,
we introduce a polynomial-time algorithm to compute a convex cycle basis for an arbi-
trary input graph, and we construct a class of graphs with convex cycles bases by means of
Cartesian products that in particular includes partial cubes.

2 Geodetic convexity and characterization of convex cycles
For a graph G we denote the vertex set and edge set of G by V (G) and E(G), respectively.
Similarly, we write C(G) for the cycle space of G. An edge that joins vertices x and y is
denoted by the unordered pair {x, y}. The lengths |P | and |C| of a path P and a cycle C
in G, respectively, is the number of their edges. For simplicity, we will refer to a path with
end vertices u and v as uv-path. The distance distG(u, v) between two vertices u and v of
G is the length of a shortest uv-path. It is well known that this distance forms a metric on
V . The set of all shortest uv-paths will be denoted by PG[u, v]. The cardinality of this set,
i.e., the number of shortest uv-paths, will be denoted by Suv = |PG[u, v]|. A modification
of Dijkstra’s algorithm computing both the distance matrix of G and the matrix S is given
in the appendix.

A subgraph H of G is isometric if distH(u, v) = distG(u, v) holds for all u, v ∈
V (H). We say that H is a (geodetically) convex subgraph of G if for all u, v ∈ V (H),
all shortest uv-paths P ∈ PG[u, v] are contained in H . In the following, convex will
always mean geodetically convex. The empty subgraph will be considered as convex. The
intersection of convex subgraphs of G is again a convex subgraph of G [42].

Since H is an isometric subgraph of G if and only if H contains at least one P ∈
PG[u, v] for every pair u, v ∈ V (H), we see that convex implies isometric. Furthermore,
if H is an isometric subgraph of G, it is in particular an induced subgraph of G. Finally,
the connectedness of G implies that all its isometric subgraphs are connected.

Our first result characterizes elementary convex cycles.

Lemma 2.1. Let C be an elementary cycle of G.
If |C| is odd, then C is convex if and only if for every edge e = {x, y} in C there is a unique
vertex z in C such that distG(x, z) = distG(y, z) = (|C| − 1)/2 and Sxz = Syz = 1.
If |C| is even, then C is convex if and only if for every edge e = {x, y} in C there is a
unique edge h = {u, v} in C such that (i) distG(x, u) = distG(y, v) = |C|/2 − 1, (ii)
distG(x, v) = distG(y, u) = |C|/2, (iii) Sxu = Syv = 1, and (iv) Sxv = Syu = 2.

Proof. SupposeC is convex. Consider two vertices p and q inC with distG(p, q) < |C|/2.
If C is convex, then the unique shortest path between p and q must run along C, so that
Spq = 1. Clearly, this condition characterizes convex cycles provided C is odd.

The situation is more complicated for even cycles. Let us first suppose that C is con-
vex and fix an arbitrary edge {x, y}. In an even elementary cycle there is a unique edge
h = {u, v} satisfying (i) distC(x, u) = distC(y, v) = |C|/2 − 1, (ii) distC(x, v) =
distC(y, u) = |C|/2. Isometry of C implies that properties (i) and (ii) are satisfied. The
argument of the preceding paragraph shows that (iii) holds. For x, the only point inC at dis-
tance |C|/2 is v. Thus there are two paths P ′ and P ′′ in C of length distG(x, v) = |C|/2.
By the convexity of C, these paths are contained in C (so that C = P ′ ∪ P ′′) and must be
the only shortest paths connecting x and v; hence consequently Sxv = 2. An analogous
argument shows that Syu = 2.
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In order to prove the converse, consider an even elementary cycle C satisfying (i)
through (iv). Again we fix an arbitrary edge {x, y} of C. Since C is even, there is a
unique antipodal point v of x and a unique antipodal point u of y with distC(x, v) =
distC(y, u) = |C|/2. We claim that {u, v} is the required edge. If this were not the case,
then there would be some other edge with both endpoints closer to x along C than v that
satisfies condition (ii). This is impossible, however, since for such a vertex v′ we would
have |C|/2 = distG(x, v′) ≤ distC(x, v′) < distC(x, v) = |C|/2. We easily check that
distC(x, u) = |C|/2−1 and distC(y, v) = |C|/2−1. By property (i), therefore, the paths
from x to u and from y to v along C are shortest paths in G. Furthermore, the two paths
from x to v along C via either u or y are also shortest paths in G by property (ii). Thus
distC(x, q) = distG(x, q) for all vertices q in C. Repeating this argument for all x in C
shows that C is isometric. By property (iii), the shortest path from x to u is unique. Since
all sub-paths of shortest paths are again shortest path, this is also true for all vertices q in C
along the shortest path from x to u. The same is true for all q in C along the unique shortest
path from v to y. By property (iv), finally, there are exactly two shortest paths from x to v.
We have already seen that two of these run along either half of the cycle C. The same is
true for the two paths connecting y with u. Thus all shortest path connecting a vertex q in
C with either x or y are contained in C. Repeating the argument for all edges {x, y} in C
shows that C is convex.

A direct consequence of Lemma 2.1 is that a cycle C in G can be efficiently tested
for convexity provided both the distance matrix and the matrix S containing the number of
shortest paths have been pre-computed: it suffices to verify, in constant time, the conditions
of the lemma for each antipodal pair of edges or pair of edge and vertex, respectively. The
test thus requires O(|C|) time provided that C is given as ordered list of its vertices.

As a simple corollary of Lemma 2.1 we have

Corollary 2.2. Let C be an elementary convex cycle of G. Then, for every e = {x, y} ∈ C
there is a vertex z in C such that C = P ′∪P ′′∪{x, y}, P ′ ∈ PG[x, z], and P ′′ ∈ PG[y, z].

A closely related, but much weaker, condition appears in the theory of minimal cycles
bases [22]:

Definition 2.3. A cycle C is edge-short if it contains an edge e = {x, y} and a vertex z
such that C = Cxy,z := {x, y} ∪ Pxz ∪ Pyz where Pxz and Pyz are shortest paths.

Corollary 2.4. If C is an elementary convex cycle of G then it is edge-short.

3 Convex cycle bases
Corollary 2.2 sets the stage for enumerating all elementary convex cycles in a graph. The
following result establishes an upper bound and provides a polynomial time algorithm for
this purpose.

Theorem 3.1. Any graph G = (V,E) contains at most |E||V | elementary convex cycles.
These can be constructed and listed in O(|E||V |2) time.

Proof. Every pair of an edge e = {x, y} and a vertex z specifies at most one elementary
convex cycle in the following way: If distG(x, z) = distG(y, z) and Sxz = Syz = 1 we set
Cez := Pxz ∪ Pyz ∪ {x, y}. If distG(x, z) = distG(y, z) + 1, Sxz = 2 and Syz = 1, then
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we choose a neighbor u of z such that distG(x, u) = distG(y, z), Sux = 1 and Suy = 2,
and set Cez := Pxu ∪ {u, z} ∪ Pyz ∪ {x, y}. Note that the choice of u is unique if C is
convex. The selection of these |E| |V | candidates thus requires O(|E| |V |2) time.

In order to efficiently retrieve each candidate cycle in O(|C|) time given {x, y} and
z we need the to know the predecessor πsu of u on the shortest path from s to u. Note
that this information is needed only if Ssu = 1. The modified Dijkstra algorithm in the
Appendix computes this array without changing the asymptotic complexity of the shortest
path algorithm. Since each candidate cycle can then be checked for convexity in O(|C|)
time, the total effort to extract all elementary convex cycles is in O(|E||V |2).

This algorithm outlined in the proof of Theorem 3.1 can be regarded as a variant of
Vismara’s construction of prototypes of candidates for relevant cycles [44]. The fact that
the number of elementary convex cycles in G is bounded by |V | |E| immediately implies
that a convex cycle basis can also be found in polynomial time:

Corollary 3.2. For each graph G = (V,E) it can be decided whether G has a convex
cycle basis, and if so, a convex cycle bases can be constructed, inO(|E|2 |V |µ(G)2) time.

Proof. Since the cycles of a graph form a matroid, the canonical greedy algorithm can be
applied to find a maximum set of linearly independent elementary convex cycles, see e.g.
[21]. G has a convex cycle basis if and only if this set has size µ(G) = |E| − |V | + 1.
For each of the at most |V | |E| candidate cycles, this requires a test of linear independence
with a partial basis that is not larger than µ(G) = |E| − |V | + 1, i.e., O(|E|). Apply-
ing Gaussian elimination for this purpose, the total effort is bounded by O(|E| |V |2) +
O(|E|2 |V |µ(G)2) = O(|E|2 |V |µ(G)2) time.

There are graphs that do not have a convex cycle basis. The complete bipartite graph
K2,3 is the simplest counter example (see Fig. 1). None of its three cycles (all have length
4) is convex.

Figure 1: None of the cycles in K2,3 is convex.

4 Relation of convex cycle bases to other types of cycle bases
Although we have an efficient algorithm to test whether a graph has a convex cycle basis,
it will be interesting to characterize the class of graphs that admit convex cycle bases.
However, we first investigate the relation between convex cycle bases and other types of
cycle bases.

A procedure analogous to Corollary 3.2 was introduced in [22] for the purpose of re-
trieving minimal cycle bases from a candidate set of edge-short cycles. One would expect,
therefore, that convex cycle bases and minimal cycles bases are closely related.
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Convex cycle bases of a graph need not have the same length. Consider the graph that
is obtained from the cube Q3 where one edge is contracted. Then the four quadrangles and
two triangles are convex and five of these form a convex cycle basis. Thus convex bases
contain either exactly one or two triangles and thus may have different lengths.

The length `(B) of a cycle basis B is the sum of the lengths of its generalized cycles:
`(B) =

∑
C∈B |C|. A minimum cycle basis M is a cycle basis with minimum length.

The generalized cycles in M are chord-less cycles (see [22]). Hence, we may consider
elementary cycles instead of generalized cycles in the remaining part of this section. For
the sake of completeness we note that a minimum cycle basis is a cycle basis in which the
longest cycle has the minimum possible length [10].

The setR of relevant cycles of a graph is the union of its minimum cycle bases [41, 44].
In analogy to convex cycle bases one may want to consider isometric cycle bases, i.e., cycle
bases consisting of isometric cycles.

Lemma 4.1. All relevant cycles of a graph are isometric. Thus every minimal cycle basis
is an isometric cycle basis.

Proof. We start from Lemma 2 of [44]: If P is a subpath of a relevant cycle C such that
|P | ≤ 1

2 |C|, then P is a shortest path. It follows that every relevant cycle is isometric, and
hence every minimal cycle basis of G consists of elementary isometric cycles.

Theorem 4.2. If G has a uniquely defined minimal cycle basis, then this minimal cycle
basis is convex.

Proof. Assume that G has a unique minimal cycle basis B. By Lemma 4.1 the cycles of
B are necessarily isometric. Now suppose that C ∈ B is not convex. Then there exist
two vertices u, v ∈ C and (at least) three edge disjoint uv-paths P , P ′ and P ′′ such that
|P | ≥ |P ′| = |P ′′| and C = P ∪ P ′. Hence there are two cycles C1 = P ∪ P ′′ and
C2 = P ′ ∪ P ′′ with |C| = |C1| ≥ |C2|. By construction C, C1, and C2 are linearly
dependent and thus one of C1 or C2 cannot be represented as sum of cycles in B \ {C}.
Hence we get a new cycle basis B′ = (B \ {C}) ∪ {C ′} where C ′ is either C1 or C2. In
either case we find `(B′) ≤ `(B) a contradiction to our assumption that B is the unique
minimal cycle basis.

As a consequence, we can conclude that Halin graphs that are not necklaces [43] and
outerplanar graphs [35] have a convex cycle basis.

The converse of Theorem 4.2 is not true, however, as Figure 2 shows. This graph has
a convex cycle basis but its minimal cycle basis is not uniquely defined. Even worse, none
of its minimal cycle bases is convex.

A cycle basis B = {C1, . . . , Cµ(G)} of G is called fundamental [20, 46] if there is an
ordering π such that for 2 ≤ k ≤ µ(G):

Cπ(k) \

k−1⋃
j=1

Cπ(j)

 6= ∅ . (4.1)

Fundamental cycle bases are obtained from ear decomposition, suggesting that there could
be a relation between convex and fundamental cycles bases. Champetier’s graph [4], how-
ever, has a cycle basis consisting entirely of triangles, which obviously is convex. On the
other hand, this basis is not fundamental [1]. Conversely, fundamental cycle bases need not
be convex, as shown, e.g., by the planar basis of K2,3.
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Figure 2: The cyclomatic number of the graph is 7. All minimal cycle bases consist of
the two triangles, all quadrangles that do not contain the upper dashed edge and two of the
three quadrangles that contain the upper dashed edge (which also includes the outer cycle).
However, two of these three quadrangles that contain the upper dashed edge are not convex.
Hence none of the minimal cycle bases is a convex cycle basis.
On the other hand there is a unique convex cycle basis that consists of all triangles, all
quadrangles that do not contain the upper dashed edge, the outer quadrangle and the cycle
of length 5 at the bottom.

5 Convexity in subgraphs and intersections
This section contains some auxiliary results which we will need for our investigation of
isometric subgraphs in Section 6 below.

Lemma 5.1. Let M be an isometric (convex) subgraph of G and F ⊆ M be a subgraph
of M . Then F is isometric (convex) in M if and only if it is isometric (convex) in G.

Proof. If F is an isometric subgraph of G, then for each pair of vertices u, v ∈ V (F ), F
contains a shortest uv-path. Since F ⊆ M , this path is also a shortest uv-path in M and
hence F is isometric in M . If F is a convex subgraph of G, then it contains all shortest
uv-paths which are also shortest paths in M and thus F is convex in M .

Now assume that F is not isometric in G. Then there exist two distinct vertices u, v ∈
V (F ) ⊆ V (M) such that there are shortest uv-paths P in G with |P | < distF (u, v). At
least one of these paths must be contained in M since M is an isometric subgraph of G.
Thus F cannot be an isometric subgraph of M , either. If F is not convex in G then there
exist two distinct vertices u, v ∈ V (F ) ⊆ V (M) such that there is at least one shortest
uv-path P which is not contained in F . Since M is convex, P must be contained in M and
thus F cannot be convex in M , either.

Lemma 5.2. Let M be an isometric subgraph of G and F be a convex subgraph of G.
Then F ∩M is convex in M .

Proof. For each pair of vertices x, y ∈ V (F ) ∩ V (M), F contains all shortest xy-path in
G. Since M is an isometric subgraph of G it must contain at least one of these and thus the
proposition follows.

Lemma 5.3. Assume that G has a convex cycle basis. Let M be a convex subgraph of G
that has a convex cycle basis BM . Then BM can be extended to a convex cycle basis BG of
G.
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Proof. By Lemma 5.1 the cycles in BM are convex subgraphs of G. By assumption there
exists a convex cycle basis B′G of G. By the Austauschsatz we can replace appropriate
cycles in B′G by the cycles in BM . Thus we obtain a convex cycle basis BG of G which
such that BM ⊆ BG as claimed.

Figure 3 shows that the converse of this lemma is not true in general: a convex subgraph
of a graph that has a convex cycle basis need not necessarily have a convex cycle basis.

Figure 3: The cyclomatic number of this graph is |E| − |V | + 1 = 16 − 9 + 1 = 8. The
three triangles and the five quadrangles that do not entirely consist of dashed edges form a
convex cycle basis. The subgraph that consists of the dashed edges is convex but does not
have a convex cycle basis (see Fig. 1).

6 Isometric subgraphs of Cartesian products
In this section, we will be concerned with the Cartesian productG�H and its isometric and
convex subgraphs. The Cartesian product has vertex set V (G�H) = V (G)× V (H); two
vertices (xG, xH) and (yG, yH) are adjacent in G�H if {xG, yG} ∈ E(G) and xH = yH ,
or {xH , yH} ∈ E(H) and xG = yG. For detailed information about product graphs we
refer the interested reader to [18, 24].

For the Cartesian product G�H the subgraph Gv induced by all vertices (x, v) with
x ∈ V (G) and a fixed vertex v ∈ V (H) is called a layer of G (or G-layer) in G�H .
The projection πG : G�H → G is the usual weak homomorphism defined as (x, y) ∈
V (G�H) 7→ x ∈ V (G). Note that edges in G-layers are mapped into edges in G and
edges in H-layers are mapped into vertices in G.

There is a close relationship between (geodetic) convexity and Cartesian products, see
[7] for a general result. The fundamental result for this purpose is the distance lemma.

Proposition 6.1 (Distance Lemma, [23]). Let x = (xG, xH) and y = (yG, yH) be arbi-
trary vertices of the Cartesian product G�H . Then

distG�H(x, y) = distG(xG, yG) + distH(xH , yH) .

Moreover, if P is a shortest xy-path in G�H , then πG(P ) is a shortest xGyG-path in G.

It seems natural that convexity properties of products also hold for layers and projec-
tions.

Lemma 6.2 ([24]). The layers Gv and Hw are convex subgraphs of the Cartesian product
G�H . Moreover, if F is an isometric (convex) subgraph of G�H , then for all v ∈ V (H)
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and w ∈ V (G) the following holds: F ∩Gv and F ∩Hw are isometric (convex) subgraphs
of F , Gv and Hw, respectively.

Corollary 6.3. Let M be an isometric subgraph of G�H . If (xG, xH) and (yG, yH) are
two vertices in M with xG = yG, then there exists a shortest xHyH -path in M ∩ HxG .
Moreover, all shortest (xG, xH)(yG, yH)-paths in M are contained in HxG .

Another consequence of the distance lemma is the following auxiliary result.

Lemma 6.4. Let P be a shortest xy-path in G�H . Then πG(P ) is a path with |πG(P )| =
distG(xG, yG) =

∑
v∈H |P ∩Gv|, where the last term is the total number of edges of P in

G-layers. The result holds analogously for πH(P ).

Proof. If (w, xH) and (w, yH) are two distinct points of P , then by Corollary 6.3 all short-
est xHyH -paths are contained in layer Hw. Consequently, there cannot be two distinct
edges e1 and e2 in G with πG(e1) = πG(e2) that belong to P since otherwise P also
must contain two shortest paths in different H-layers that connect corresponding vertices
of these edges, that is, P would contain a cycle. Hence all vertices of πG(P ) have degree
2 except its end vertices which have degree 1 (or 0 in the case where πG(P ) is a single
vertex). Thus πG(P ) is path of length |πG(P )| = distG(xG, yG) =

∑
v∈H |P ∩ Gv|, as

claimed.

Lemma 6.5. For every isometric (convex) subgraph F of G�H , πG(F ) is an isometric
(convex) subgraph of G.

Proof. Let x = (xG, xH) and y = (yG, yH) be two vertices in F . If F is isometric in
G�H , then there exists a shortest xy-path P in F . By the distance lemma, πG(P ) is a
shortest xGyG-path inG and contained in πG(F ). Thus πG(F ) is an isometric subgraph of
G. Now if πG(F ) is not convex in G, then there exists a shortest xGyG-path PG in G that
is not contained in πG(F ). Let PH be a shortest xHyH -path in H . Then P = PG�{xh} ∪
PH�{yG} is a shortest xy-path as its length is |P | = distG(xG, yG) + distH(xH , yH) =
distG�H(x, y). However, by construction P cannot be contained in F and hence F is not
convex in G�H . Consequently, if F is convex in G�H , then πG(F ) is convex in G, as
claimed.

On the other hand convexity and isometry properties of factors are also propagated to
their Cartesian product. The following result is well-known and holds for more general
notions of convexity.

Lemma 6.6 ([7]). If F and M are convex subgraphs of G and H , respectively, then F�M
is a convex subgraph of G�H .

The last lemma also holds for isometric subgraphs.

Lemma 6.7. If F and M are isometric subgraphs of G and H , respectively, then F�M is
an isometric subgraph of G�H .

Proof. Immediate corollary of the distance lemma.

We now want to extend convex cycle bases of two graphs G and H to a cycle basis
of their Cartesian product G�H . Let TG and TH denote spanning trees of G and H ,
respectively. Let

B� = {e�f : e ∈ E(G), f ∈ TH} ∪ {e�f : e ∈ TG, f ∈ E(H)} . (6.1)
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Then for fixed vertices v ∈ V (H) and w ∈ V (G) and respective cycle basis BG and BH

{Cv : C ∈ BG} ∪ {Cw : C ∈ BH} ∪ B� (6.2)

is a cycle basis of G�H [25].

Theorem 6.8. Let G and H be two graphs that have convex cycle bases BG and BH ,
respectively. Then their Cartesian product G�H has a convex cycle basis that can be
constructed using Eq. (6.2).

Proof. Notice that all quadrangles in B� are convex subgraphs in G�H . By Lemma 5.1
Cv is a convex cycle in G�H . Thus we get a convex cycle basis of G�H by means of
basis (6.2) when both BG and BH are convex cycle basis.

Remark 6.9. An analogous statement for the strong product (see [18]) is not true, as the
strong product of an elementary cycle and an edge K2 shows.

We have seen in Figure 3 that a convex subgraph of a graph that has a convex cycle
basis does not necessarily have a convex cycle basis. However, a more restrictive property
appears to propagate under the formation of Cartesian products: we consider the class of
graphs for which every convex subgraph has a convex cycles basis.

Theorem 6.10. Let G be a graph that has a convex cycle basis. Then every isometric
subgraph M of G�K2 with πG(M) = G has a convex cycle basis.

For the proof of this theorem we need some intermediate results.

Lemma 6.11. Let C be an isometric elementary cycle in G�H . Then one of the following
holds:

(1) πG(C) ∼= K1, i.e., a single vertex, or

(2) πG(C) ∼= K2, i.e., a single edge, or

(3) πG(C) is an isometric elementary cycle in G.

Proof. Notice that πG(C) =
⋃
v∈V (H) πG(C ∩Gv). Let x = (xG, xH) and y = (yG, yH)

be two vertices in C with xG = yG and xH 6= yH . Analogously to the proof of Lemma 6.4
no vertex v in πG(C) can have degree greater than 2. Now ifC ⊆ Hw for somew ∈ V (G),
then πG(C) = {w} ∼= K1, i.e., case (1). If there is a vertex x where πG(x) has degree 1,
then there exist two distinct vertices u, v ∈ V (H) such that πG(C ∩Gu) and πG(C ∩Gv)
have a common edge e. However, this only can happen if πG(C) = {e} ∼= K2, i.e., for
case (2). Otherwise, there would be two vertices y′ and y′′ inC so that πG(y′) = πG(y′′) is
adjacent to πG(x) with vertex degree larger than 1 in the projection, contradicting isometry
of C. If we have neither case (1) nor case (2), then all vertices of πG(C) have degree 2
and hence πG(C) is an elementary cycle which is isometric in G by Lemma 6.5, i.e., case
(3).

Now let C be an elementary cycle inG andM be an isometric subgraph ofG�K2. Let
Z(C,M) denote the set of elementary cycles C ′ ⊆ M that are convex in M and satisfy
πG(C ′) = C. We set Z(C,M) = ∅ if no such cycle exists.
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Lemma 6.12. Let M be an isometric subgraph of G�K2 and let C ∈ G be a convex
elementary cycle with C ⊆ πG(M). Then Z(C,M) is non-empty.

Proof. First notice that C�K2 is a convex subgraph of G�K2 by Lemma 6.6. M ′ =
M ∩ (C�K2) is isometric in C�K2 by Lemma 5.1 and convex in M by Lemma 5.2.
Let M1 and M2 denote the respective intersections of M ′ with the two K2-layers of
C�K2. If M1 ∼= C (or M2 ∼= C) then M1 (M2) is a convex elementary cycle in C�K2

by Lemma 6.2, and thus also in M ′ by Lemma 5.2. Otherwise, both M1 and M2 are
paths of length |M i| ≤ 1

2 |C| for i = 1, 2, since M ′ is isometric. As πC(M ′) = C,
πC(M1) ∪ πC(M2) = C. Consequently, as M ′ is isometric, M ′ is an elementary cy-
cle that is trivially convex in M ′. In all cases Z(C,M ′) is non-empty. Since Lemma 5.1
implies that Z(C,M ′) ⊆ Z(C,M), the proposition follows.

Remark 6.13. The arguments in the proof of Lemma 6.12 together with the distance
lemma also show that the elements of Z(C,M) form the set of all shortest cycles C ′ in
M with the property πC(C ′) = C.

Proof of Theorem 6.10. Let BG be a convex cycles basis of G. Let B� be as in (6.1) and
define BZ be a set of cycles that contains exactly one cycle C ′ ∈ Z(C,M) for each C ∈
BG. By Lemma 6.12 all these sets Z(C,M) are non-empty. Clearly, the cycles in B�∪BZ
are linearly independent and thus form a cycle basis of G�K2. Now let BM be the set
of all cycles in B� ∪ BZ that are contained in M . By construction all cycles in BM are
convex subgraphs of M and BZ ⊆ BM . Thus it remains to show that |BM | = µ(M).
Let m̄G and m̄K2 denote the numbers of edges in (G�K2) \M that lie in G-layers and
K2-layers, respectively. Let n̄ be the number of vertices in (G�K2)\M . Since πG(M) =
G and M is an isometric subgraph of G�K2 we find that m̄K2

= n̄. Thus µ(M) =
(|E(G�K2)| − m̄G − m̄K2

) − (|V (G�K2)| − n̄) + 1 = |E(G�K2)| − |V (G�K2)| +
1 − m̄G = µ(G�K2) − m̄G. On the other hand, there are exactly m̄G cycles in B� that
are not contained in M and hence |BM | = µ(G�K2) − m̄G = µ(M), i.e., BM is a cycle
basis of M . This finishes the proof of the theorem.

We easily can generalize Theorem 6.10 to arbitrary isometric subgraphs of G�K2.

Theorem 6.14. Let G be a graph such that every isometric subgraph has a convex cycle
basis. Then every isometric subgraph of G�K2 also has a convex cycle basis.

Proof. Let H be an isometric subgraph of G�K2. By Lemma 6.5, G′ = πG(H) is an
isometric embedding into G and thus has a convex cycle basis by our assumptions. Hence
by Theorem 6.10 every isometric subgraph M of G′�K2 ⊆ G�K2 has a convex cycle
basis.

Theorem 6.14 has quite strong implications. A d-dimensional hypercube is the d-fold
product of K2 by itself, Qd = �di=1K2. Partial cubes are isometric subgraphs of Qd and
form a very rich graph class that contains hypercubes, trees, median graphs, tope graphs
of oriented matroids, benzenoid graphs, tiled partial cubes, netlike partial cubes, and flip
graphs of point sets that have no empty pentagons; see [30, 31] and references therein. As
K2 has a convex cycle basis (namely ∅) we immediately obtain the following results by a
recursive application of Theorem 6.14.

Theorem 6.15. Partial cubes have a convex cycle basis.
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Theorem 6.16. Let G be a graph such that every isometric subgraph has a convex cycle
basis and let Q be any partial cube. Then every isometric subgraph of G�Q has a convex
cycle basis.

Proof. Let G be as claimed. Theorem 6.14 implies that every isometric subgraph of
G�K2� · · ·�K2 = G�Qn has a convex cycle basis. Lemma 6.7 implies that G�Q is an
isometric subgraph ofG�Qn. Moreover, Lemma 5.1 implies that every isometric subgraph
of G�Q is an isometric subgraph of G�Qn and thus, has a convex cycles basis.

Figure 4 shows that the class covered by Theorem 6.16 is much larger than the class
of partial cubes. Recall that partial cubes are characterized by the so-called Djoković-
Winkler-Relation Θ: Two edges e = {u, v} and f = {x, y} are in relation Θ, (ef) ∈ Θ, if
dist(u, x) + dist(v, y) 6= dist(u, y) + dist(v, x). A graph is a partial cube if and only if it
is bipartite and the relation Θ is an equivalence relation [47].

e1

e2

e3

Figure 4: Observe that (e1e2) ∈ Θ and (e2e3) ∈ Θ, but (e1e3) 6∈ Θ. Thus Θ is not an
equivalence relation. Therefore, this bipartite graph is not a partial cube. However, it has a
convex cycle base consisting of the three planar faces.

It seems natural that Theorem 6.16 should remain true also for a more general type of
Cartesian products. We state this as

Conjecture 6.17. Let G1 and G2 be graphs such that each of their isometric subgraphs
have convex cycle bases. Then every isometric subgraph of G1�G2 has a convex cycle
basis.

A further step towards a proof of this conjecture is given by the following special case:

Theorem 6.18. Let G be a graph such that every isometric subgraph has a convex cycle
basis and let Cn be an elementary cycle. Then every isometric subgraph of G�Cn has a
convex cycle basis.

Notice that this theorem is an immediate corollary of Theorem 6.16 if n is even since
cycles of even length are partial cubes [30, 45]. The proof of the general case is present
after Lemma 6.19 below. For this purpose we first have to introduce a graph operation for
the case when C is a cycle of odd length. So assume that C = C2k−1 for some integer
k ≥ 2. First fix three vertices u, v, w ∈ V (C) with {u, v}, {v, w} ∈ E(C2k−1). Create a
new cycle C ′ ∼= C2k by splitting vertex v, that is, replace v by two vertices v′ and v′′ and
the edges {u, v}, {v, w} by three edges {u, v′}, {v′, v′′}, {v′′, w}.

This splitting operation can be generalized to subgraphs F of G�C. In essence,
we replace F ∩ Gv by (F ∩ Gv)�K2. In more detail, we introduce the graph opera-
tions Υ and its converse Υ∗ as follows: For a fixed vertex v ∈ C, and any subgraph
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F ⊆ G�C, we obtain the subgraph Υ(F ) ⊆ G�C ′ by splitting all vertices (x, v) ∈ F
with x ∈ G in the following way: Replace vertex (x, v) by (x, v′) and (x, v′′), and replace
the edges {(x, u), (x, v)}, {(x, v), (x,w)}, and {(x, v), (y, v)}, when present, by the cor-
responding edges {(x, u), (x, v′)}, {(x, v′), (x, v′′)}, {(x, v′′), (x,w)}, {(x, v′), (y, v′)}
and {(x, v′′), (y, v′′)}. Conversely, for a subgraph F ′ ⊆ B�C ′ we obtain the subgraph
Υ∗(F ′) ⊆ G�C by contracting all edges {(x, v′), (x, v′′)} ∈ E(G�C ′) and remove pos-
sible double edges. This construction in particular has the property that Υ(G�C) = G�C ′

and Υ∗(G�C ′) = G�C.

Lemma 6.19. Let C = C2k−1 be an elementary cycle of odd length 2k − 1. If P is a
shortest xy-path in G�C, then Υ(P ) contains a shortest x′y′-path P ′ in G�C ′ where x′

and y′ are vertices in Υ(x) and Υ(y), resp.

Proof. Let x = (xG, xC) and y = (yG, yC) be two vertices in G�C and let x′ =
(x′G, x

′
C′) and y′ = (y′G, y

′
C′) be two vertices in Υ(x) and Υ(y), resp. Let P ′ be a shortest

x′y′-path in Υ(P ). We have to show that P ′ is also a shortest x′y′-path in G�C ′. Ob-
serve that Lemma 6.4 implies that |πG(P )| = |πG(P ′)| and |πC(P )| = |πC′(P ′)| − δ(P ′)
where δ(P ′) = 1 if πC′(P ′) contains edge {v′, v′′} and δ(P ′) = 0 otherwise. More-
over, distC(xC , yC) ≤ k − 1 and distC′(x′C′ , y′C′) ≤ k. Now suppose that P ′ is not
a shortest x′y′-path in G�C ′. Then there exists a x′y′-path P ′′ that is strictly shorter
than P ′, that is, |πC′(P ′′)| < |πC′(P ′)| ≤ k. As P is a shortest xy-path we have
|πC(Υ∗(P ′′))| = |πC(Υ∗(P ′))| = |πC(P )| ≤ k−1. Again |πC(Υ∗(P ′′))| = |πC′(P ′′)|−
δ(P ′′). Consequently πC′(P ′′) must contain edge {v′, v′′}while πC′(P ′) must not. There-
fore πC′(P ′′) ∩ πC′(P ′) ∼= C ′. However |πC′(P ′′)|+ |πC′(P ′)| < k + k = 2k = |C ′|, a
contradiction. This completes the proof.

Proof of Theorem 6.18. Let C be an odd cycle. Thus C ′ is even and hence a partial cube.
Lemma 6.19 implies that Υ(M) is an isometric subgraph of G�C ′ if M is an isometric
subgraph in G�C. In this case, Υ(M) has a convex cycle basis B′. Now consider a
convex cycle D′ ∈ B′. Lemma 6.11 implies that Υ∗(D′) is either an elementary cycle or
Υ∗(D′) is a single edge in layer Gv . The latter happens if and only if D′ contains edges
{(x, v′), (x, v′′)} and {(y, v′), (y, v′′)}. In this caseD′ must be a convex quadrangle. There
are |E(M ∩Gv)| quadrangles of this type, and they form an linearly independent set Q of
convex cycles. Thus we can assume, w.l.o.g., that they all are contained in B′. Lemma 6.19
implies that Υ∗(D′) is a convex subgraph of M . Thus let

B :=
{

Υ∗(D′)
∣∣D′ ∈ B′ and Υ∗(D′) is an elementary cycle

}
.

The cycles in B are linearly independent: Consider any linear combination of the form∑
i λiΥ

∗(D′i) = 0. It follows that there is a corresponding linear combination
∑
i λiD

′
i =∑

j ξjQj , where Qj ∈ Q is a quadrangle that is contracted to 0 by Υ∗. Since B′ is linearly
independent by assumption, all ξj and λi must be 0, however.

It remains to show that |B| = µ(M). Observe that Υ(M) contains the subgraph in-
duced by vertices (x, v′) and (x, v′′) if (v, x) ∈ V (M) for some x ∈ G. Otherwise
Υ(M) contains none of these two vertices. Thus we find for the cyclomatic number
µ(M) = µ(Υ(M)) − |E(M ∩ Gv)|. On the other hand |B| = |B′| − |E(M ∩ Gv)| =
µ(Υ(M))− |E(M ∩Gv)| = µ(M). This completes the proof.



136 Ars Math. Contemp. 7 (2014) 123–140

7 Convex Eulerian graphs that are not cycles
Convex cycles need not be elementary, even though they are necessarily connected whenG
is connected. Furthermore, the elementary cycles whose union forms convex Eulerian sub-
graph need not be convex themselves. An example is the K2,4, which can be decomposed
into two elementary but not convex squares. In fact, the sum of convex cycles typically is
not convex:

Lemma 7.1. Let C1 and C2 be two convex cycles in G. If C1 ⊕ C2 is 2-connected, then
C1 ⊕ C2 is not convex.

Proof. If C1 ⊕ C2 is 2-connected, then it contains at least two distinct vertices u, v ∈
V (C1) ∩ V (C2). Since C1 ∩ C2 is also convex, it contains the set of all shortest uv-path
which cannot be empty as u 6= v. Consequently, C1⊕C2 = (C1 ∪C2) \ (C1 ∩C2) cannot
contain any of these shortest path and is thus not convex.

If C1 ⊕ C2 is convex for two convex cycles C1 and C2, then C1 ⊕ C2 = C1 ∪ C2 and
connected (but not 2-connected). Thus V (C1)∩ V (C2) consists of a single vertex. Notice,
however, that even then C1 ⊕ C2 need not be convex.

One may ask, therefore, whether the cycle space of a graph that does not have a convex
cycle basis nevertheless may have a basis consisting of convex Eulerian subgraphs. The
example in Figure 5 shows that this is indeed possible.

Figure 5: The 6 triangles and the whole graph are all convex cycles and form a cycle basis.
However, there is no convex cycle basis according to Definition 1.1: none of the elementary
cycle that pass through the square node is convex.
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[39] H. M. Mulder and L. Nebeský, Axiomatic characterization of the interval function of a graph,
Eur. J. Comb. 30 (2009), 1172–1185.

[40] P.-J. Ostermeier, M. Hellmuth, J. Leydold, K. Klemm and P. F. Stadler, A note on quasi-robust
cycle bases, Ars Mathematica Contemporanea 2 (2009), 231–240.

[41] M. Plotkin, Mathematical basis of ring-finding algorithms in CIDS, J. Chem. Doc. 11 (1971),
60–63.

[42] E. Sampathkumar, Convex sets in a graph, Indian J. pure appl. Math. 15 (1984), 1065–1071.

[43] P. F. Stadler, Minimal cycle bases of Halin graphs, J. Graph Theory 43 (2003), 150–155.

[44] P. Vismara, Union of all the minimum cycle bases of a graph, Electr. J. Comb. 4 (1997), #R9,
printed version J. Comb. 4 (1997), 73–87.

[45] P. M. Weichsel, Distance regular subgraphs of a cube, Discrete Mathematics 109 (1992), 297 –
306.

[46] H. Whitney, On abstract properties of linear dependence, Am. J. Math. 57 (1935), 509–533.

[47] P. M. Winkler, Isometric embedding in products of complete graphs, Discr. Appl. Math. 8
(1984), 209–212.

Appendix A: Modified Dijkstra Algorithm
A shortest path algorithm that keeps track of the multiplicity of shortest paths and keeps
some backtracing information is required as a pre-processing step in the computation of
convex cycle bases. We use a modified version of Dijkstra’s approach [12]. Let `(x, y)
denote the length of the edge {x, y} in G, dxy = distG(x, y) is the length and Sxy is the
number of shortest paths in between x and y, πsx is the predecessor of x along the unique
shortest path from s to x, and πsx = ∅ otherwise. Q denotes a priority queue sorted by dsx
for fixed s.
Input: G = (V,E, `) /∗ an edge-weighted graph ∗/
Output: Matrices [Sxy], [dxy], and [πxy].

1: for all s ∈ V do
2: /∗ Modified Dijkstra algorithm ∗/
3: for all v ∈ V do
4: dsv =∞; Ssv = 0; πsv = ∅
5: dss = 0; Sss = 0; πss = s
6: Q← V ;
7: while (Q 6= ∅) do
8: u := vertex with smallest dsu.
9: if (dsu =∞) then

10: break /∗ G not connected ∗/
11: remove u from Q
12: for all neighbors v ∈ Q ∩N(u) of u do
13: t := dsu + `(u, v)
14: if (dsv = t) then
15: Ssv := Ssv + 1; πs,v = ∅ /∗ more than one shortest path ∗/
16: if (dsv > t) then
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17: dsv := t; Ssv := 1; πsv = u

The algorithm runs in O(|V |(|E| + |V | log |V |)) when the min-priority queue Q is
implemented by means of a Fibonacci heap [16]. The modifications do not change the
asymptotic complexity of the algorithm.


