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Abstract

In the present paper we are interested in the saturation number of closed benzenoid
chains and certain families of nanotubes. The saturation number of a graph is the cardinal-
ity of a smallest maximal matching in the graph. The problem of determining the saturation
number is related to the edge dominating sets and efficient edge dominating sets in a graph.
We establish the saturation number of some closed benzenoid chains and C4C6-tubes. Fur-
ther, upper and lower bounds for the saturation number of armchair, zig-zag, TUC4C8(S)
and TUC4C8(R) nanotubes are calculated.
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1 Introduction
The saturation number s(G) of a graphG is the cardinality of a smallest maximal matching
in G. Maximal matchings serve as models of adsorption of dimers (those that occupy
two adjacent atoms) to a molecule. It can occur that the double bonds in a molecule are
not efficiently saturated by dimers, and therefore, their number is below the theoretical
maximum. Hence, the saturation number provides an information on the worst possible
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case of adsorption. Besides in chemistry the saturation number has a list of interesting
applications in engineering and networks.
A lot of work has been done on enumeration problems of different matchings in some
chemical graphs, for example see [4, 5], but not much has been done on the smallest max-
imal matchings. Previous work on the saturation number includes research on benzenoid
systems [8] and fullerenes [6, 1, 2]. Recent results on related concepts can be found in
[3, 7].
The saturation number is closely related to the edge dominating sets. Actually, for any
graph, the saturation number equals the edge domination number. The problem of deter-
mining the saturation number of a graph is NP-complete [13].
In this paper we show how to use an efficient edge dominating set in a graph to determine its
saturation number. Also, the saturation number is established for certain closed benzenoid
chains. Further, some bounds for the saturation number of different families of nanotubes
are calculated.

2 Preliminaries
A matching M in a graph G is a set of edges of G such that no two edges from M share
a vertex. A matching M is a maximum matching if there is no matching in G with greater
cardinality. The cardinality of any maximum matching in G is denoted by ν(G) and called
the matching number of G. If every vertex of G is incident with an edge of M , the match-
ing M is called a perfect matching (in chemistry perfect matchings are known as Kekulé
structures).
A matching M in a graph G is maximal if it cannot be extended to a larger matching in
G. Obviously, every maximum matching is also maximal, but the opposite is generally not
true. A matching M is a smallest maximal matching if there is no maximal matching in
G with smaller cardinality. The cardinality of any smallest maximal matching in G is the
saturation number of G.
The following lemma is very useful for proving lower bounds for the saturation number.
The proof can be found online, but for the sake of completeness we provide it.

Lemma 2.1. Let G be a graph and let A and B be maximal matchings in G. Then |A| ≥
|B|
2 and |B| ≥ |A|2 .

Proof. First note that each edge in B \ A can be adjacent to at most two edges in A \ B
since A is a matching. Moreover, each edge in A \ B is adjacent to an edge in B \ A by
maximality of B. Therefore,

|A \B| ≤ 2|B \A|.

Hence, we obtain

|A| = |A ∩B|+ |A \B| ≤ 2|B ∩A|+ 2|B \A| = 2|B|.

The other inequality can be proven analogously.

An independent set is a set of vertices in a graph G, no two of which are adjacent. A
maximum independent set is an independent set of largest possible cardinality for a given
graph G. This cardinality is called the independence number of G, and denoted α(G).
It is obvious that if M is a maximal matching and A is the set of endpoints of edges in
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M , then the set of vertices in V (G)− A is an independent set of vertices in G. Therefore,
α(G) ≥ |V (G)|−2s(G). Hence, we obtain another lower bound for the saturation number:

s(G) ≥ |V (G)| − α(G)
2

.

Another graph invariant closely related to the saturation number is the edge domination
number. An edge dominating set for a graph G is a subset D ⊆ E(G) such that every
edge not in D is incident to at least one edge in D. An independent edge dominating set
is an edge dominating set in which no two elements are adjacent. An independent edge
dominating set is in fact a maximal matching and a smallest independent edge dominating
set is a smallest maximal matching, i.e. the cardinality of a smallest independent edge
dominating set is the saturation number. The edge domination number of a graphG, γ′(G),
is the smallest cardinality taken over all edge dominating sets of G. If M is a smallest
maximal matching of G, then M is also an edge dominating set, therefore γ′(G) ≤ s(G).
For the contrary, if D is a smallest edge dominating set with k elements, we can construct
a maximal matching of cardinality k (for the details see [13]). Therefore, s(G) ≤ γ′(G).
Hence, for every graph G it holds

s(G) = γ′(G). (2.1)

Figure 1: Illustration of a (4,−3)-type tubulene.

Since the paper focuses on nanotubes, we will formally define open-ended carbon nan-
otubes, also called tubulenes (see [11]). Choose any lattice point in the hexagonal lat-
tice as the origin O. Let −→a1 and −→a2 be the two basic lattice vectors. Choose a vector
−→
OA = n−→a1+m−→a2 such that n and m are two integers and |n|+ |m| > 1, nm 6= −1. Draw
two straight lines L1 and L2 passing through O and A perpendicular to OA, respectively.
By rolling up the hexagonal strip between L1 and L2 and gluing L1 and L2 such that A
and O superimpose, we can obtain a hexagonal tessellationHT of the cylinder. L1 and L2

indicate the direction of the axis of the cylinder. Using the terminology of graph theory,
a tubulene T is defined to be the finite graph induced by all the hexagons of HT that lie
between c1 and c2, where c1 and c2 are two vertex-disjoint cycles of HT encircling the
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axis of the cylinder. The vector
−→
OA is called the chiral vector of T and the cycles c1 and

c2 are the two open-ends of T .
For any tubulene T , if its chiral vector is n−→a1 + m−→a2, T will be called an (n,m)-type
tubulene (see Figure 1). A tubulene T is called zig-zag if n = 0 or m = 0 and armchair if
n = m.

3 Graphs with an efficient edge dominating set
One other concept is also very useful in studying the saturation number. A matching D of
a graph G is called an efficient edge dominating set if for each edge e ∈ E(G) \ D there
is exactly one edge f in D such that e and f are incident (this concept is equivalent to the
efficient dominating set in the line graph ofG, for the details see [10]). Using the following
theorem we can exactly determine the saturation number for some graphs.

Theorem 3.1. If a graph G has an efficient edge dominating set D, then

s(G) = |D|.

Proof. It follows from Equation 2.1 that s(G) = γ′(G). Hence it is enough to show that
γ′(G) = |D| (see [9]).

Obviously, if D is an efficient edge dominating set then D is also an edge dominating
set. Therefore, γ′(G) ≤ |D|. Conversely, let P be a smallest edge dominating set and let
e ∈ D. It follows that either e ∈ P or there is an edge f ∈ P such that e and f are incident.
Therefore, for an edge e ∈ D there always exists fe ∈ P such that e = fe or e and fe are
incident. It is also clear that since D is an efficient edge dominating set, for given edges e
and e′ in D, e 6= e′, it follows that fe 6= fe′ . Hence, |D| ≤ |P | = γ′(G). The proof is
complete.

Example 3.2. One infinite family of graphs with an efficient edge dominating set are
C4C6-tubes, which are constructed of cycles C4 and C6 - see Figure 2. Let T (p, q) be
a C4C6-tube with p layers of hexagons and with q hexagons in every layer. The set of dou-
ble edges in Figure 2 is obviously an efficient edge dominating set of cardinality pq = 15.
Therefore, by Theorem 3.1, the saturation number of T (p, q) is s(T (p, q)) = pq.

Figure 2: A C4C6-tube T (3, 5). Edges e1, e2 and e3 are joined with edges e′1, e′2 and e′3,
respectively.

For example, polyacenes and closed polyacenes are also such graphs (see Section 4). How-
ever, not many graphs posses an efficient edge dominating set.
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4 Closed benzenoid chains
Recall that benzenoid graphs are 2-connected subgraphs of the hexagonal lattice such that
every bounded face is a hexagon. The vertices lying on the border of the non-hexagonal
face of a benzenoid graph are called external; other vertices, if any, are called internal.
A benzenoid graph without internal vertices is called catacondensed. If no hexagon in a
catacondensed benzenoid is adjacent to three other hexagons, we say that the benzenoid
is a chain. In each benzenoid chain there are exactly two hexagons adjacent to one other
hexagon; those two hexagons are called terminal, while any other hexagons are called in-
terior. An interior hexagon is called straight if the two edges it shares with other hexagons
are parallel, i.e., opposite to each other. If the shared edges are not parallel, the hexagon is
called kinky. If all interior hexagons of a benzenoid chain are straight, we call the chain a
polyacene.

Let B be a benzenoid chain with terminal hexagons h and h′. Let e = uv and e′ =
u′v′ be edges of h and h′, respectively, such that vertices u, v, u′, v′ have degree 2 in B.
Furthermore, suppose that there exist a path from u to u′ in the perimeter of B, which does
not contain neither v nor v′. A graph obtained by identifying edges e and e′ is called a
closed benzenoid chain. For example see Figure 3.

Figure 3: A closed benzenoid chain. Edges e and e′ are joined together.

Similar as before, a hexagon of a closed benzenoid chain is called straight if the two edges
it shares with other hexagons are opposite to each other. If the shared edges are not parallel,
the hexagon is called kinky.

Remark 4.1. Note that not every closed benzenoid chain is a tubulene in the sense of the
definition in the preliminaries. In fact, if we consider benzenoid chain embedded in the
hexagonal lattice, it is not difficult to see that a closed benzenoid chain is a tubulene if and
only if the distance from u to u′ in the hexagonal lattice is an even number and the edge e
is parallel to e′.

In this section we compute the saturation number of some closed benzenoid chains.
The following lemma claims that every closed benzenoid chain has a perfect matching.

Lemma 4.2. Let B be a closed benzenoid chain. Then B has a perfect matching.

Proof. LetG be a benzenoid chain from whichB is obtained by identifying edges e and e′.
Since every internal hexagon in G has exactly 4 edges on the perimeter and both terminal
hexagons have 5 edges on the perimeter, there is always an even number of edges on the
perimeter of G. Therefore, let M be a perfect matching of the perimeter of G such that
e ∈M . Obviously, M is a perfect matching of G. Now we consider two cases:
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1. If e′ ∈M , then after identifying e and e′ into the new edge f , the set (M \ {e, e′})∪
{f} is a perfect matching of B.

2. If e′ /∈M , then after identifying e and e′, the set M \{e} is a perfect matching of B.

Hence, we have seen that B has a perfect matching.

In the next proposition we prove a lower bound for the saturation number of closed ben-
zenoid chains.

Proposition 4.3. Let B be a closed benzenoid chain with h hexagons. Then s(B) ≥ h.

Proof. LetM be a perfect matching ofB. Since there is 4h vertices inB and every edge in
M covers exactly 2 vertices, perfect matchingM contains 2h edges. Therefore, by Lemma
2.1, any maximal matching contains at least half of the number of edges in M . Hence,
s(B) ≥ 2h

2 = h.

A closed benzenoid chainB is called a closed polyacene (or a hexagonal belt) if it does
not contain kinky hexagons (see Figure 4).

Figure 4: A maximal matching of a closed polyacene with 5 hexagons.

Proposition 4.4. Let B be a closed polyacene with h hexagons. Then s(B) = h.

Proof. Obviously, the set of vertical edges of B (see the edges in matching M from Figure
4) is an efficient edge dominating set and |M | = h. Therefore, by Theorem 3.1 it follows
s(B) = h.

The following theorem completely characterizes closed polyacenes among closed ben-
zenoid chains according to saturation number.

Theorem 4.5. Let B be a closed benzenoid chain with h hexagons. Then s(B) = h if and
only if B is a closed polyacene.

Proof. Let B be a closed polyacene with h hexagons. It follows from Proposition 4.4 that
s(B) = h.

For the converse suppose that B is a closed benzenoid chain with h hexagons and
s(B) = h. Let M be a maximal matching with h edges. Those edges cover exactly 2h
vertices. Let A be the set of vertices that are not covered by edges in M . Since B has 4h
vertices, there are 2h vertices in A. Since M is a maximal matching, no two vertices in A
are adjacent. Let A′ be the set of edges that are incident to vertices in A. Since the degree
of every vertex in B is at least 2, it follows |A′| ≥ 4h. But A′ ⊆ E(B) \M and therefore,
|A′| ≤ 5h − h = 4h. Hence, every vertex in A has degree 2 and every hexagon contains
exactly two elements of A. Therefore, every hexagon of B has 2 non-adjacent vertices of
degree 2. It follows that B is a closed polyacene.
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In the next theorem we compute the saturation number of closed benzenoid chains with
exactly one kinky hexagon. However, such closed benzenoid chain is never a tubulene
since the distance between u and u′ is odd.

Theorem 4.6. Let B be a closed benzenoid chain with h hexagons such that exactly one of
them is a kinky hexagon. Then s(B) = h+ 1.

Proof. Let M be the set of edges in B that lie on exactly two hexagons. Moreover, let
one other edge of the kinky hexagon be in M . Then it is easy to see that M is a maximal
matching and therefore, s(B) ≤ h+ 1.
Since B is not a closed polyacene, s(B) ≥ h+ 1 and the proof is complete.

Proposition 4.7. LetB be a closed benzenoid chain with exactly two kinky hexagons which
are consecutive. Then s(B) = h+ 1.

Proof. LetM be a maximal matching with h+1 edges from Figure 5. Hence, s(B) ≤ h+1.

Figure 5: A closed benzenoid chain with two consecutive kinky hexagons and its maximal
matching.

Since B is not a closed polyacene, s(B) ≥ h+ 1 and the proof is complete.

5 Zig-zag tubulenes

Figure 6: Zig-zag tubulene ZT (3, 4).

Let T be a zig-zag tubulene such that c1, c2 are the shortest possible cycles encircling
the axis of the cylinder (see Figure 6). If T has n layers of hexagons, each containing
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exactly h hexagons, then we denote it by ZT (n, h). Note that ZT (n, h) is a (0, h) or
(h, 0)-type tubulene. First we show an upper bound for the saturation number of ZT (n, h),
which is essentially of order 2nh

3 .

Theorem 5.1. Let ZT (n, h) be a zig-zag tubulene. Then

s(ZT (n, h)) ≤


h(2n+3)

3 , 3 | n
h(2n+1)

3 , 3 | n− 1
h(2n+2)

3 , 3 | n− 2.

Proof. Let ZT (n, h) be drawn in a plane such that some edges are vertical and such that
cycles c1 and c2 lie on the bottom and on the top. To show an upper bound, we construct
a maximal matching of ZT (n, h). This maximal matching is obtained by alternating two
different layers of edges - vertical and non-vertical. We start with vertical edges in the first
layer (at the bottom of a tubulene) and we need 2 layers of edges for every 3 layers of
hexagons. Obviously we have exactly h edges in every layer. Now consider three different
cases.

Figure 7: A maximal matching of zig-zag tubulenes. Lines L1 and L2 are joined together.

1. If 3 | n: then we need 2n
3 layers of edges and one additional layer at the top of a

tubulene. Hence, we obtain h(2n+3)
3 edges in M . See Figure 7(a).

2. If 3 | n − 1: in this case we need 2(n−1)
3 layers of edges and we have to add one

vertical layer. Hence, |M | = h(2n+1)
3 . See Figure 7(b).
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3. If 3 | n − 2: in this case we have 2(n−2)
3 layers of edges and we have to add 2

additional layers (one vertical and one non-vertical) to obtain a maximal matching.
Hence, |M | = h(2n+2)

3 . See Figure 7(c).

It is obvious that in such a way we always obtain a maximal matching. Therefore, the proof
is complete.

In the next lemma we prove a lower bound.

Lemma 5.2. Let ZT (n, h) be a zig-zag tubulene. Then

s(ZT (n, h)) ≥ (n+ 1)h

2
.

Proof. Obviously ZT (n, h) has a perfect matching with (n + 1)h edges. Therefore, by
Lemma 2.1, any maximal matching contains at least (n+1)h

2 edges.

Theorem 5.1 and Lemma 5.2 together imply the following corollary.

Corollary 5.3. Let ZT (n, h) be a zig-zag tubulene. Then

(n+ 1)h

2
≤ s(ZT (n, h)) ≤


h(2n+3)

3 , 3 | n
h(2n+1)

3 , 3 | n− 1
h(2n+2)

3 , 3 | n− 2.

6 Armchair tubulenes
Let T be an armchair tubulene such that c1 and c2 are the shortest possible cycles encircling
the axis of the cylinder and such that there is the same number of hexagons in every column
of hexagons (see Figure 8). If T has n vertical layers of hexagons, each containing exactly
p hexagons, then we denote it by AT (n, p). Obviously, n must be an even number. Note
thatAT (n, p) is a (n2 ,

n
2 )-type tubulene. In the following theorem we prove an upper bound

for the saturation number of AT (n, p).

Theorem 6.1. Let AT (n, p) be an armchair tubulene. Then

s(AT (n, p)) ≤


2n(p+1)

3 , 3 | n
(2n+1)(p+1)

3 , 3 | n− 1
2(n+2)(p+1)

3 , 3 | n− 2.

Proof. Let AT (n, p) be drawn in a plane such that some edges are horizontal and such that
cycles c1 and c2 lie on the bottom and on the top. To show an upper bound, we construct
a maximal matching of AT (n, p). This maximal matching is obtained by alternating two
different columns of edges - horizontal and non-horizontal. We start with horizontal edges
in the first column (at the left side of a tubulene) and we need 2 columns of edges for every
3 columns of hexagons. Obviously we have exactly p + 1 edges in every column. Now
consider three different cases.

1. If 3 | n: then we need 2n
3 columns of edges to obtain a maximal matching. Hence,

we obtain 2n(p+1)
3 edges in M . See Figure 8.
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Figure 8: A maximal matching of armchair tubulene AT (6, 4). Curves L1 and L2 are
joined together.

2. If 3 | n − 1: in this case we need 2(n−1)
3 columns of edges and we have to add one

horizontal column. Hence, |M | = (2n+1)(p+1)
3 .

3. If 3 | n − 2: in this case we have 2(n−2)
3 columns of edges and we have to add 2

additional horizontal layers of edges to obtain a maximal matching. Hence, |M | =
2(n+2)(p+1)

3 . See Figure 9.

Figure 9: A maximal matching of armchair tubulene AT (8, 4). Curves L1 and L2 are
joined together.

It is obvious that in such a way we always obtain a maximal matching. Therefore, the proof
is complete.

In the next lemma we prove a lower bound.

Lemma 6.2. Let AT (n, p) be an armchair tubulene. Then

s(AT (n, p)) ≥ n(p+ 1)

2
.

Proof. Obviously AT (n, p) has a perfect matching with n(p + 1) edges (we can put all
horizontal edges in a perfect matching). Therefore, by Lemma 2.1, any maximal matching
contains at least n(p+1)

2 edges.
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Theorem 6.1 and Lemma 6.2 together imply the following corollary.

Corollary 6.3. Let AT (n, h) be an armchair tubulene. Then

n(p+ 1)

2
≤ s(AT (n, p)) ≤


2n(p+1)

3 , 3 | n
(2n+1)(p+1)

3 , 3 | n− 1
2(n+2)(p+1)

3 , 3 | n− 2.

7 TUC4C8(S) nanotubes
A C4C8 net is a trivalent pattern made by alternating squares C4 and octagons C8. Iden-
tifying some edges in such a lattice we obtain a TUC4C8(S) nanotube (see Figure 10).
Such nanotubes could appear by successive low energy Stone-Wales edge flipping [12] in
polyhex nanotubes. In this section we prove an upper and a lower bound for the saturation
number of TUC4C8(S) nanotubes. We denote nanotube with q layers and p squares (or
octagons) in every layer with TS(p, q).

Figure 10: TS(4, 4) with a maximal matching.

Theorem 7.1. Let TS(p, q) be a TUC4C8(S) nanotube. Then

s(TS(p, q)) ≤


4pq
3 , 3 | p

(4p+2)q
3 , 3 | p− 1

(4p+1)q
3 , 3 | p− 2.

Proof. To prove the theorem we construct a maximal matching for nanotube TS(p, q). In
every layer we put every third edge in the matching M . In layer with k = 1 we put the first
edge in M and in layer with k = 2 we start with the second edge (see Figure 10). Next, in
the third layer, we repeat the first layer.

Now consider the following cases:

1. If 3 | p, then we have 4pq
3 edges in M .

2. If 3 | p−1: in this case we have 4(p−1)q
3 edges and we have to add 2 additional edges

in every layer to obtain a maximal matching. Hence, |M | = 4(p−1)q
3 +2q = (4p+2)q

3 .

3. If 3 | p−2: in this case we have 4(p−2)q
3 edges and we have to add 3 additional edges

in every layer to obtain a maximal matching. Hence, |M | = 4(p−2)q
3 +3q = (4p+1)q

3 .
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In the next proposition we prove a lower bound.

Lemma 7.2. Let TS(p, q) be a TUC4C8(S) nanotube. Then s(TS(p, q)) ≥ pq.

Proof. First notice that TS(p, q) always has a perfect matching. For example, we can take
every second edge in every layer. Since the number of vertices in TS(p, q) is 4pq, a perfect
matching of TS(p, q) contains 2pq edges, since every edge covers two vertices. Now it
follows from Lemma 2.1 that every maximal matching contains at least pq edges. Hence,
s(TS(p, q)) ≥ pq.

Theorem 7.1 and Lemma 7.2 together imply the next corollary.

Corollary 7.3. Let TS(p, q) be a TUC4C8 nanotube. Then

pq ≤ s(TS(p, q)) ≤


4pq
3 , 3 | p

(4p+2)q
3 , 3 | p− 1

(4p+1)q
3 , 3 | p− 2.

8 TUC4C8(R) nanotubes
Again we begin with a C4C8 net, but this time squares are not in the horizontal position.
Identifying some edges in such a lattice we obtain a TUC4C8(R) nanotube (see Figure
11). In this section we prove an upper and a lower bound for the saturation number of
TUC4C8(R) nanotubes. We denote a nanotube with p octagons in every layer and q oc-
tagons in every column with TR(p, q).

Figure 11: TR(4, 3) with a maximal matching. Left and right side are joined.

Theorem 8.1. Let TR(p, q) be a TUC4C8(R) nanotube. Then

s(TR(p, q)) ≤


4qp
3 + p, 3 | q

4(q−1)p
3 + 3p, 3 | q − 1

4(q−2)p
3 + 4p, 3 | q − 2.
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Proof. We construct a maximal matching M for nanotube TR(p, q). For every 3 rows of
octagons we put 4 layers of edges in the matching M . Of course, every layer contains
exactly p edges. See Figure 11.

Now consider the following cases:

1. If 3 | q: in this case we have 4qp
3 edges in M and we need one additional layer of

horizontal edges at the top - see Figure 11.

2. If 3 | q−1: in this case we have 4(q−1)p
3 edges and we have to add 3 additional layers

of edges to obtain a maximal matching. Hence, |M | = 4(q−1)p
3 + 3p.

3. If 3 | q−2: in this case we have 4(q−2)p
3 edges and we have to add 4 additional layers

of edges to obtain a maximal matching. Hence, |M | = 4(q−2)p
3 + 4p.

In the next lemma we prove a lower bound.

Lemma 8.2. Let TR(p, q) be a TUC4C8(R) nanotube. Then s(TR(p, q)) ≥ p(q + 1).

Proof. First notice that TR(p, q) always has a perfect matching. Since the number of
vertices in TR(p, q) is 4p(q+1), a perfect matching of TR(p, q) contains 2p(q+1) edges,
since every edge covers two vertices. Now it follows from Lemma 2.1 that every maximal
matching contains at least p(q + 1) edges. Hence, s(TR(p, q)) ≥ p(q + 1).

Theorem 8.1 and Lemma 8.2 together imply the next corollary.

Corollary 8.3. Let TR(p, q) be a TUC4C8(R) nanotube. Then

p(q + 1) ≤ s(TR(p, q)) ≤


4qp
3 + p, 3 | q

4(q−1)p
3 + 3p, 3 | q − 1

4(q−2)p
3 + 4p, 3 | q − 2.

Concluding remarks
In the paper we have established some bounds for the saturation number of certain families
of nanotubes. However, the exact values are unknown. There are still many open problems
regarding the saturation number of molecular graphs, for example coronenes, coronoids,
polyomino chains, etc.
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