


Zbornik 25. mednarodne multikonference

INFORMACIJSKA DRUZBA
Zvezek I

Proceedings of the 25th International Multiconference

INFORMATION SOCIETY
Volume I

 

Srednjeevropska konferenca o 
uporabnem teoreticnem racunalnistvu

Middle-European Conference on   
Applied Theoretical Computer Science

Uredniki Editors:
Andrej Brodnik, Gabor Galambos, Branko Kavsek

httpis.ijs.si

Koper, Slovenija

13.–14. oktober

13–14 October
Koper, Slovenia

scz





 
Zbornik 25. mednarodne multikonference 

INFORMACIJSKA DRUŽBA – IS 2022 
Zvezek I 

 
 

Proceedings of the 25th International Multiconference 

INFORMATION SOCIETY – IS 2022 
Volume I 

 
 
 
 
 

Srednjeevropska konferenca o uporabnem 
teoretičnem računalništvu 

Middle-European Conference on Applied Theoretical 
Computer Science 

 
 
 

Uredniki / Editors 
 

Andrej Brodnik, Gábor Galambos, Branko Kavšek 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://is.ijs.si 
 

 
13.-14. oktober 2022 / 13-14 October 2022 

Koper, Slovenija 

http://is.ijs.si/


 

Uredniki: 

 

 

Andrej Brodnik 

Univerza na Primorskem in Univerza v Ljubljani 

 

Gábor Galambos 

Univerza v Szegedu 

 

Branko Kavšek 

Univerza na Primorskem 

 

 

 

 

 

Založnik: Institut »Jožef Stefan«, Ljubljana 

Priprava zbornika: Mitja Lasič, Vesna Lasič, Lana Zemljak 

Oblikovanje naslovnice: Vesna Lasič 

 

 

 

 
Dostop do e-publikacije: 
http://library.ijs.si/Stacks/Proceedings/InformationSociety 

 

 

Ljubljana, oktober 2022 

 

 

Informacijska družba 

ISSN 2630-371X 

 
Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni 

knjižnici v Ljubljani 

COBISS.SI-ID 127517187 

ISBN 978-961-264-248-8 (PDF) 

 

 

http://library.ijs.si/Stacks/Proceedings/InformationSociety
https://cobiss.si/
https://plus.cobiss.net/cobiss/si/sl/bib/127517187


 

PREDGOVOR MULTIKONFERENCI  

INFORMACIJSKA DRUŽBA 2022 
 
Petindvajseta multikonferenca Informacijska družba je preživela probleme zaradi korone. Zahvala za skoraj 

normalno delovanje konference gre predvsem tistim predsednikom konferenc, ki so kljub prvi pandemiji modernega 

sveta pogumno obdržali visok strokovni nivo.  

 

Pandemija v letih 2020 do danes skoraj v ničemer ni omejila neverjetne rasti IKTja, informacijske družbe, umetne 

inteligence in znanosti nasploh, ampak nasprotno – rast znanja, računalništva in umetne inteligence se nadaljuje z že 

kar običajno nesluteno hitrostjo. Po drugi strani se nadaljuje razpadanje družbenih vrednot ter tragična vojna v 

Ukrajini, ki lahko pljuskne v Evropo. Se pa zavedanje večine ljudi, da je potrebno podpreti stroko, krepi. Konec 

koncev je v 2022 v veljavo stopil not raziskovalni zakon, ki bo izboljšal razmere, predvsem leto za letom povečeval 

sredstva za znanost.  

 

Letos smo v multikonferenco povezali enajst odličnih neodvisnih konferenc, med njimi »Legende računalništva«, s 

katero postavljamo nov mehanizem promocije informacijske družbe. IS 2022 zajema okoli 200 predstavitev, 

povzetkov in referatov v okviru samostojnih konferenc in delavnic ter 400 obiskovalcev. Prireditev so spremljale 

okrogle mize in razprave ter posebni dogodki, kot je svečana podelitev nagrad. Izbrani prispevki bodo izšli tudi v 

posebni številki revije Informatica (http://www.informatica.si/), ki se ponaša s 46-letno tradicijo odlične znanstvene 

revije. Multikonferenco Informacijska družba 2022 sestavljajo naslednje samostojne konference: 

• Slovenska konferenca o umetni inteligenci 

• Izkopavanje znanja in podatkovna skladišča 

• Demografske in družinske analize 

• Kognitivna znanost 

• Kognitonika 

• Legende računalništva 

• Vseprisotne zdravstvene storitve in pametni senzorji 

• Mednarodna konferenca o prenosu tehnologij 

• Vzgoja in izobraževanje v informacijski družbi 

• Študentska konferenca o računalniškem raziskovanju 

• Matcos 2022 

Soorganizatorji in podporniki konference so različne raziskovalne institucije in združenja, med njimi ACM 

Slovenija, SLAIS, DKZ in druga slovenska nacionalna akademija, Inženirska akademija Slovenije (IAS). V imenu 

organizatorjev konference se zahvaljujemo združenjem in institucijam, še posebej pa udeležencem za njihove 

dragocene prispevke in priložnost, da z nami delijo svoje izkušnje o informacijski družbi. Zahvaljujemo se tudi 

recenzentom za njihovo pomoč pri recenziranju. 

 

S podelitvijo nagrad, še posebej z nagrado Michie-Turing, se avtonomna stroka s področja opredeli do najbolj 

izstopajočih dosežkov. Nagrado Michie-Turing za izjemen življenjski prispevek k razvoju in promociji 

informacijske družbe je prejel prof. dr. Jadran Lenarčič. Priznanje za dosežek leta pripada ekipi NIJZ za portal 

zVEM. »Informacijsko limono« za najmanj primerno informacijsko potezo je prejela cenzura na socialnih omrežjih, 

»informacijsko jagodo« kot najboljšo potezo pa nova elektronska osebna izkaznica. Čestitke nagrajencem! 

 

Mojca Ciglarič, predsednik programskega odbora 

Matjaž Gams, predsednik organizacijskega odbora 

i



 

FOREWORD - INFORMATION SOCIETY 2022 
 

The 25th Information Society Multiconference (http://is.ijs.si) survived the COVID-19 problems. The multiconference 

survived due to the conference chairs who bravely decided to continue with their conferences despite the first 

pandemics in the modern era.  

 

The COVID-19 pandemic from 2020 till now did not decrease the growth of ICT, information society, artificial 

intelligence and science overall, quite on the contrary – the progress of computers, knowledge and artificial 

intelligence continued with the fascinating growth rate. However, the downfall of societal norms and progress seems 

to slowly but surely continue along with the tragical war in Ukraine. On the other hand, the awareness of the majority, 

that science and development are the only perspective for prosperous future, substantially grows. In 2020, a new law 

regulating Slovenian research was accepted promoting increase of funding year by year. 

 

The Multiconference is running parallel sessions with 200 presentations of scientific papers at twelve conferences, 

many round tables, workshops and award ceremonies, and 400 attendees. Among the conferences, “Legends of 

computing” introduce the “Hall of fame” concept for computer science and informatics. Selected papers will be 

published in the Informatica journal with its 46-years tradition of excellent research publishing.  

 

The Information Society 2022 Multiconference consists of the following conferences:  

• Slovenian Conference on Artificial Intelligence 

• Data Mining and Data Warehouses 

• Cognitive Science 

• Demographic and family analyses 

• Cognitonics  

• Legends of computing 

• Pervasive health and smart sensing 

• International technology transfer conference 

• Education in information society 

• Student computer science research conference 2022 

• Matcos 2022 

The multiconference is co-organized and supported by several major research institutions and societies, among them 

ACM Slovenia, i.e. the Slovenian chapter of the ACM, SLAIS, DKZ and the second national academy, the Slovenian 

Engineering Academy. In the name of the conference organizers, we thank all the societies and institutions, and 

particularly all the participants for their valuable contribution and their interest in this event, and the reviewers for 

their thorough reviews.  

 

The award for life-long outstanding contributions is presented in memory of Donald Michie and Alan Turing. The 

Michie-Turing award was given to Prof. Dr. Jadran Lenarčič for his life-long outstanding contribution to the 

development and promotion of information society in our country. In addition, the yearly recognition for current 

achievements was awarded to NIJZ for the zVEM platform. The information lemon goes to the censorship on social 

networks. The information strawberry as the best information service last year went to the electronic identity card. 

Congratulations! 

 

Mojca Ciglarič, Programme Committee Chair 

Matjaž Gams, Organizing Committee Chair 

 

 

ii



KONFERENČNI ODBORI 

CONFERENCE COMMITTEES 

 

International Programme Committee Organizing  Committee 

Vladimir Bajic, South Africa 

Heiner Benking, Germany 

Se Woo Cheon, South Korea 

Howie Firth, UK 

Olga Fomichova, Russia 

Vladimir Fomichov, Russia 

Vesna Hljuz Dobric, Croatia 

Alfred Inselberg, Israel 

Jay Liebowitz, USA 

Huan Liu, Singapore 

Henz Martin, Germany 

Marcin Paprzycki, USA 

Claude Sammut, Australia 

Jiri Wiedermann, Czech Republic 

Xindong Wu, USA 

Yiming Ye, USA 

Ning Zhong, USA 

Wray Buntine, Australia 

Bezalel Gavish, USA 

Gal A. Kaminka, Israel 

Mike Bain, Australia 

Michela Milano, Italy 

Derong Liu, Chicago, USA 

Toby Walsh, Australia 

Sergio Campos-Cordobes, Spain 

Shabnam Farahmand, Finland 

Sergio Crovella, Italy 

Matjaž Gams, chair 

Mitja Luštrek 

Lana Zemljak 

Vesna Koricki 

Mitja Lasič 

Blaž Mahnič 

 

 

 

Programme Committee 

Mojca Ciglarič, chair 

Bojan Orel, 

Franc Solina, 

Viljan Mahnič, 

Cene Bavec, 

Tomaž Kalin, 

Jozsef Györkös, 

Tadej Bajd 

Jaroslav Berce 

Mojca Bernik 

Marko Bohanec 

Ivan Bratko 

Andrej Brodnik 

Dušan Caf 

Saša Divjak 

Tomaž Erjavec 

Bogdan Filipič 

Andrej Gams 

Matjaž Gams 

Mitja Luštrek 

Marko Grobelnik 

 

Nikola Guid 

Marjan Heričko 

Borka Jerman Blažič Džonova 

Gorazd Kandus 

Urban Kordeš 

Marjan Krisper 

Andrej Kuščer 

Jadran Lenarčič 

Borut Likar 

Janez Malačič 

Olga Markič 

Dunja Mladenič 

Franc Novak 

Vladislav Rajkovič 

Grega Repovš 

Ivan Rozman 

Niko Schlamberger 

Stanko Strmčnik 

Jurij Šilc 

Jurij Tasič 

Denis Trček 

 

Andrej Ule 

Boštjan Vilfan 

Baldomir Zajc 

Blaž Zupan 

Boris Žemva 

Leon Žlajpah 

Niko Zimic 

Rok Piltaver 

Toma Strle 

Tine Kolenik 

Franci Pivec 

Uroš Rajkovič 

Borut Batagelj 

Tomaž Ogrin 

Aleš Ude 

Bojan Blažica 

Matjaž Kljun 

Robert Blatnik 

Erik Dovgan 

Špela Stres 

Anton Gradišek 

 

iii



 

iv



KAZALO / TABLE OF CONTENTS 
 

Srednjeevropska konferenca o uporabnem teoretičnem računalništvu / Middle-European Conference on 
Applied Theoretical Computer Science .............................................................................................................. 1 
PREDGOVOR / FOREWORD ................................................................................................................................. 3 
PROGRAMSKI ODBORI / PROGRAMME COMMITTEES ..................................................................................... 5 
A Neural Network Based Classification Algorithm for Asthma Using Capnography /  Békési József, Galambos 

Gábor, Kelemen András, Papp Imre, Tolnai József ........................................................................................... 7 
Online Bin Covering with Exact Advice /  Brodnik Andrej, Nilsson Bengt J., Vujovic Gordana............................. 11 
Subsets without arithmetic subsequences: computational experiments and unsatisfiable cores /  Čibej Uroš, 

Győri Ervin ........................................................................................................................................................ 15 
Exact time measuring challenges /  Dobravec Tomaž .......................................................................................... 19 
Systematic generation of precedence based MILP models with P-graphs for multipurpose scheduling problems /  

Hegyháti Máté .................................................................................................................................................. 23 
On relations of Watson-Crick finite automata to other computational paradigms /  Nagy Benedek ..................... 27 
Surrogate Component Approach for a Synchronization Problem /  Olivas González Alejandro, Quilliot Alain, 

Toussaint Hélène .............................................................................................................................................. 31 
Local reflection symmetry detection in Earth observation data /  Podgorelec David, Lukač Luka, Žalik Borut .... 35 
Approximate Keys and Functional Dependencies in Incomplete Databases With Limited Domains--Algorithmic 

Perspective /  Sali Attila, Alatar Munqath ......................................................................................................... 39 
Building energy demand regression /  Storcz Tamás, Kistelegdy István, Ercsey Zsolt ........................................ 44 
Clique relaxations of zero-one linear programs /  Szabo Sandor, Zavalnij Bogdan .............................................. 48 

Indeks avtorjev / Author index ................................................................................................................................ 53 
 

 
 

1



2



 
Zbornik 25. mednarodne multikonference 

INFORMACIJSKA DRUŽBA – IS 2022 
Zvezek I 

 
 

Proceedings of the 25th International Multiconference 

INFORMATION SOCIETY – IS 2022 
Volume I 

 
 
 
 
 

Srednjeevropska konferenca o uporabnem 
teoretičnem računalništvu 

Middle-European Conference on Applied Theoretical 
Computer Science 

 
 
 

Uredniki / Editors 
 

Andrej Brodnik, Gábor Galambos, Branko Kavšek 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://is.ijs.si 
 

 
13.-14. oktober 2022 / 13-14 October 2022 

Koper, Slovenija 

3

http://is.ijs.si/


4



PREDGOVOR 

 

 

Leta 2019 – ko smo organizirali 3. MATCOS konferenco – smo trdno verjeli, da smo 

vzpostavili tradicionalni dogodek v Kopru. V naslednjih letih smo bili osredotočeni na 

premagovanje covida. Ob tem smo spoznali možnosti uporabe domačih pisarne in 

sodelovanja na spletnih izvedbah konferenc. Vsemu navkljub smo prepričani, da ostaja 

konferenca, na kateri pride do osebnega stika in pogovora, nenadomestljiva. 

Zato smo pričeli s pripravo naslednje konference MATCOS, 4. po vrsti. Pri organizaciji in 

izvedbi smo imeli srečo, da so člani tako organizacijskega kot programskega odbora 

večinoma sprejeli tudi letošnje povabilo ter izdatno prispevali k organizaciji in izvedbi 

konference. 

Vabljeno predavanje je običajno eden osrednjih dogodkov konference. Letos bo to predavanje 

Györgyja Turána z University of Illinois at Chicago (USA) z naslovom »Interpretability of 

deep-learned error-correcting codes«. Predavanje nam bo posredovalo uvid v vpliv sodobne 

UI na načrtovanje klasičnih kod za popravljanje napak. 

Poleg vabljenega predavanja bo na konferenci predstavljen še izbor člankov iz širokega 

področja računalništva in informatike vključno s primeri uporabe. 

Tradicionalno prihaja na konferenco večina prispevkov in avtorjev iz Madžarske in Slovenije. 

Vendar je naš napor letos obrodil sad, saj so se jim na naše veliko zadovoljstvo pridružili 

avtorji še iz sedmih drugih držav in predstavili svoje delo. 

Člani tako organizacijskega kot programskega odbora so v zadnjih nekaj mesecih opravili 

odlično delo. Zato vsem, ki so pomagali pri organizaciji in izvedbi konference MATCOS-22, 

iskrena zahvala. 

Zaključujemo z željo, da boste te dni uživali v Kopru in da vzpostavite nove profesionalne 

stike na konferenci MATCOS-22. 

 

 

V imenu organizatorjev 

Andrej Brodnik in Gábor Galambos 

sopredsedujoča 

 

 

  

5



FOREWORD 

 

 

In 2019 – when we organized the 3rd MATCOS conference – we strongly believed that we 

established a new tradition here in Koper. Then, the next few years we had to concentrate to 

win over the covid. We got acquainted with the possibilities of home offices and the 

organization of online conferences became current. But we are sure that a conference with 

personal interviews and discussions are irreplaceable. 

So, this year we started to organize the next MATCOS conference, the 4th one. Fortunately, 

the former members of the Organizing Committee and the Program Committee accepted our 

invitation and took part actively in organization. 

The invited talk is a central point while you organize a conference. This year György Turán 

from the University of Illinois at Chicago (USA) will present a talk on “Interpretability of 

deep-learned error-correcting codes”, and so, we can take a look the influence of modern AI 

research to the design of classical error-correcting processes. 

Selecting among the submitted papers we sorted out those ones that came from a wide range 

of the computer science and its applications. 

Following the “traditions” most of the participants come from Hungary and Slovenia, but it is 

really a great pleasure to see that our efforts have been successful: the authors represent new 

research results from 7 countries. 

The members of PC and OC did an excellent job during the last few months. Thanks to 

everybody who helped to organise the MATCOS-22. 

We hope you will enjoy these days in Koper and you can establish new professional contacts 

during the MATCOS-22 conference. 

 

 

On behalf of the organisers 

Andrej Brodnik and Gábor Galambos 

co-chairs 

 

 

6



PROGRAMSKI ODBOR / PROGRAMME COMMITTEE 

 

 

Andrej Brodnik, co-chair 

Gábor Galambos, co-chair 

Neil Hurley 

Gabriel Istrate 

Ivana Kolingerova 

Miklós Krész 

Ujjwal Maulik 

Silvano Martello 

Benedek Nagy 

Rolf Niedermeier 

Ion Petre 

Ulrich Pferschy 

Gerhard Reinelt 

Giovanni Rinaldi 

Borut Žalik 

7



8



A Neural Network Based Classification Algorithm for
Asthma Using Capnography

[Extended Abstract]

József Békési
Institute of Informatics
University of Szeged

Árpád tér 2.
H-6720 Szeged, Hungary

bekesi@inf.u-szeged.hu

Gábor Galambos
Juhász Gyula Faculty of

Education, Department of
Applied Informatics

University of Szeged
Boldogasszony sgt. 6.

H-6725 Szeged, Hungary
GalambosGabor@szte.hu

András Kelemen
Juhász Gyula Faculty of

Education, Department of
Applied Informatics

University of Szeged
Boldogasszony sgt. 6.

H-6725 Szeged, Hungary
kelemen.andras.felix@szte.hu

Imre Papp
Juhász Gyula Faculty of

Education, Department of
Applied Informatics

University of Szeged
Boldogasszony sgt. 6.

H-6725 Szeged, Hungary
pap.imre@szte.hu

József Tolnai
Albert Szent-Györgyi Medical

School, Department of
Medical Physics and

Informatics
University of Szeged

Korányi fasor 9.
H-6720 Szeged, Hungary
tolnai.jozsef@med.u-

szeged.hu

ABSTRACT
This article presents a neural network-based method to help
physicians diagnose and monitor asthma and other chronic
respiratory diseases. The method is based on capnography,
using measurement data from a specially developed hand-
held device.

After proper preparation, various parameters are calculated
on the capnographic curve from which healthcare profession-
als can conclude the condition of the patient’s respiratory
system.

Another purpose of using the calculated parameters is to
serve as a learning base for an artificial intelligence applica-
tion that can be used in the decision support of physicians.
The shape of the capnogram obtained from the gas sample
exhaled by the patient and thus the parameters calculated
from it are different for healthy people and those with res-
piratory diseases.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Decision Support;
J.3 [Computer Applications]: LIFE AND MEDICAL SCI-

ENCES—Capnography

General Terms
Applications

Keywords
Decision support, Neural networks, Capnography

1. INTRODUCTION
Capnography is a non-invasive method for the numerical
and graphical analysis of exhaled CO2 concentration. Time-
based capnography is part of routine daily patient monitor-
ing during mechanical ventilation and anesthesia. For spon-
taneously breathing patients, the method has the advantage
that it does not require the patient to carry out any special
breathing maneuvers, the measurement is easy to perform,
and therefore requires minimal cooperation. It also holds
the potential for the diagnosis of obstructive airway disease,
as bronchospasm severity can be quantitatively assessed [4,
6]. The feasibility of non-invasive examinations is essential
in pediatrics, so it also opens up new areas of application for
capnography [7, 9, 10]. Although the analysis of capnogram
shape parameters is not yet a standard part of patient mon-
itoring, it appears promising in the monitoring of chronic
respiratory diseases, as it provides useful information on the
pathophysiological processes of pulmonary ventilation, such
as airway patency and lung recoil tendency.

In capnographic studies, the carbon dioxide content of ex-
haled air can be considered as a function of time or plotted
against the exhaled gas volume. In the former case, we are

9



talking about time-based, while in the latter case we are
talking about volumetric capnography.

In the first part of the article, we examine the formal prop-
erties of time-based capnograms. Possible parameters de-
scribing the shape of the curve are presented. In the second
part we introduce a neural network based method that uses
these parameters to help physicians in diagnosing patients.

2. THE CAPNOGRAMS AND THEIR PARAM-
ETERS

The capnogram curve plots the partial pressure of the CO2

content of the exhaled gas against time or volume. The par-
tial pressure of a given gas in a gas mixture is the pressure
that a gas in question would create alone if it filled the avail-
able space alone. The partial pressure of CO2 is denoted by
PCO2.

The capnogram consists of an exhalation segment and an
inhalation segment. In this study we focused only on the
shape indices of the exhalation section. The three phases of
the exhalation segment (Phases 1-3) contain different slopes,
angles and other parameters which are described in many
articles and textbooks (e.g. [2, 3, 8]).

Figure 1: General form of time-based capnograms

Figure 2: Phases of a capnogram with End-tidal
CO2(ETCO2)

2.1 The calculated parameters
The various morphological parameters are calculated using
mathematical methods, which are presented in this subsec-
tion. The resulting capnographic indices - in the knowledge
of the patients’ condition - provide an opportunity to assess
the characteristics of healthy and chronic respiratory pa-
tients (see [12] for more details). We aim to calculate these
parameters as accurately and objectively as possible. This

creates the opportunity to apply learning algorithms and au-
tomatically determine the condition of the patients studied.
As a first step, faulty respiratory cycles were filtered out
based on physiological rules that were supported by mea-
surement techniques.The parameter calculator smoothed the
points of the raw curve using the moving average method. In
this case, each point was replaced by an average calculated
from a specified number of adjacent points. For the 100Hz
sampling frequency used for recording, we found the 9-point
moving average to be the most suitable. Then, for each
point of the smoothed curve, we calculated the first-order
derivatives using the standard differential quotient. Since
the curve containing the first derivatives can also be slightly
noisy, we performed the previous smoothing algorithm for
this as well. Then, following the same method, we calculated
the curve containing the second derivative and its smoothed
version. Finally, using the smoothed derivative 2 curve, the
starting point of Phase 2 (local maximum) and the end point
of Phase 3, i.e. the end of exhalation (local minimum) can
be determined. It should be noted that the starting point of
the exhalation cannot be precisely determined only from the
time capnogram curve. However, before the start of Phase
2, we can find the point where the curve still takes approxi-
mately a value of 0, and then this point can be considered as
the starting point of the fitting algorithm described below.
We then fit a function to the exhalation sections obtained as
previously described using the method introduced by Tus-
man et al. in [11]. The beginning of Phase 2 and the end of
Phase 3 have already been determined as described above,
and its post-fitting correction is not necessary. However, af-
ter fitting, the first, second, and third derivatives must be
re-determined (now on the fitted curve). The end point of
Phase 2 (the starting point of Phase 3) is obtained from the
local maximum of the calculated third derivative.

2.1.1 The slopes of Phases 2 and 3 (S2, S3)
To determine the inflection point of Phase 2, we use the first-
order derivative values, which mathematically represent the
slope of the line drawn at a given point on the curve. The
slope at the inflection point will be the largest. The slope of
Phase 2 (S2) is the maximum slope that can be read at this
inflection point [11]. The slope of Phase 3 (S3) is the slope
of the line fitted to the middle third of Phase 3, which is a
simplified but not significantly different modification of the
method used by Tusman et al [11].

Figure 3: The slopes of time-based capnograms

2.1.2 End-tidal CO2 (ETCO2)

10



The carbon dioxide concentration increases throughout Phase
3, so it normally peaks at the end of the phase. This is the
final exhalation CO2 concentration (ETCO2, PETCO2),
which is equal to the carbon dioxide partial pressure read at
the end of Phase 3.

2.1.3 The normalized slopes of Phases 2 and 3 (Sn2,
Sn3)

The normalized slopes of Phase 2 (Sn2) and Phase 3 (Sn3)
are obtained by dividing the slopes of the second and third
phases (S2, S3) by the value of ETCO2.

2.1.4 Sn3/Sn2
The quotient of the Sn3 and Sn2 values.

2.1.5 D2min and D2max
The maximum and minimum of the second derivative, the
rate of change of the start and end points of Phase 2 (the
lower and upper curves).

2.1.6 The α angle (Q)
The angle enclosed by the slopes of Phases 2 and 3.

2.1.7 The area ratio (AR)
The area ratio in the section between the inflection point
and the beginning of Phase 3 is the quotient of the area
under the curve and the area of the entire rectangle. It is
practically the shape of the transition from Phase 2 to Phase
3.

2.1.8 Squared difference (R2SUM)
The sum of the squares of the differences between the points
of the raw, original curve and the fitted one. As previously
described, the original capnogram curve contains higher fre-
quency noises, which may have physiological reasons. There-
fore, these sums of squares are used to examine the differ-
ences in the curves of the patients in each group.

2.1.9 Respiratory rates (RR)
In the absence of flow data, the exact length of respiratory
cycles cannot be determined from the time capnogram alone.
Thus, the length of the given respiratory cycle can be esti-
mated from the combined length of Phases 2 and 3. Exam-
ining the measurements in parallel with the flow measure-
ment, we found that the combined length of Phases 2 and 3
is about 65 percent of the respiratory cycle. Currently, we
use this ratio to estimate respiratory length, from which we
calculate the actual respiratory rate.

3. THE INPUT DATA AND THE STRUCTURE
OF THE NETWORK

The data used for teaching the network were as follows:

• All time-based parameters calculated from mainstream
measurements: S2T, S3T, ETCO2, Sn2, Sn3,
Sn3/Sn2, D2min, D2max, Q, AR, R2SUM, RR (Sep-
arate records for each breathing cycle).

• Gender of the patient.

• Class of the patient’s age at the time of examina-
tion. (The patient’s age was divided into 10-year-long
classes. For example: 13 years old, 17 years old ->
class: 1, 33 years old -> class: 3, 60 years old, 62
years old -> class: 6, etc. This was necessary because
without classification only a few measurements would
belong to some ages, which would impair the effective-
ness of learning.)

• Class of the patient’s body weight at the time of exam-
ination. (The patient’s body weight was divided into
classes of 10 kilograms, in the same way as for age.)

We used one label for teaching, which was a manual medical
diagnosis of the patient for the test. (One test could include
several measurements. One measurement could only belong
to one test. One test could only have one diagnosis.) We
only used measurements with a ”healthy” or ”asthmatic” di-
agnosis. We omitted from teaching the load measurements
and the measurements marked as incorrect.

The method was implemented in Java and relied on the
Deeplearning4j library [1]. The training of the neural net-
work and the diagnosis prediction with the trained neural
network ran on the following configuration: Intel Core i7
10700K CPU, 32GB DDR4 RAM, 256GB SSD, 2TB HDD,
Nvidia GeForce 8500 GT video card.

The neural network had 3 hidden layers, each with 50 neu-
rons. For each hidden layer, the activation function was the
TANH function. The activation function of the output layer
was the SIGMOID function. We gave 6000 epochs for teach-
ing, but according to the log files, no significant learning took
place after the 652nd epoch. The training was performed on
a record of 3141 healthy and 16670 asthmatic breathing cy-
cles, which lasted 2169 seconds on the configuration given
above.

4. RESULTS
Since the training was done per respiratory cycle (the pa-
rameters are also calculated separately for each cycle), the
diagnosis prediction with the trained neural network is also
done per respiratory cycle. For each measurement, we cal-
culated how many cycles of the measurement were ”healthy”
and how many cycles were ”asthmatic”. (The prediction is
not performed for cycles marked as incorrect.) If the num-
ber of healthy predictions is lower than the number of asth-
matic predictions, then the entire measurement is considered
asthmatic. Otherwise, the entire measurement is considered
healthy. The number of measurements used in the predic-
tion was 648. Considering the ”asthmatic” diagnosis as pos-
itive and the ”healthy” diagnosis as negative we found the
followings:

• True positive (TP): 517 (79.78%)

• True negative (TN): 107 (16.51%)

• False positive (FP): 23 (3.55%)

• False negative (FN): 1 (0.15%)

TP: The number of measurements for which the manual
diagnosis of the test is ”asthmatic” and the diagnosis ob-
tained with the neural network is also ”asthmatic”. TN:

11



The number of measurements for which the manual diagno-
sis of the test is ”healthy” and the diagnosis obtained with
the neural network is also ”healthy”. FP: The number of
measurements for which the manual diagnosis of the test is
”healthy”, but the diagnosis obtained with the neural net-
work is ”asthmatic”. FN: The number of measurements for
which the manual diagnosis of the test is ”asthmatic”, but
the diagnosis obtained with the neural network is ”healthy”.

The metrics calculated from these are:

• Accuracy: 0.96,

• Precision: 0.96,

• Recall: 1.00,

• F1 Score: 0.98.

Here we used the usual metrics of classifiers, based on the
following formulas [5]: Accuracy: (TP + TN) / (TP + FP
+ TN + FN) Precision: TP / (TP + FP) Recall: TP / (TP
+ FN) F1 score: 2* precision * recall / (precision + recall)

All of the above metrics must fall within the interval [0.0,
1.0]. The closer the value is to 1.0, the better the result.
The total running time of the diagnosis prediction was 240
seconds for 1361 measurements, so the prediction takes an
average of 0.1763 seconds per measurement. Comments:

1. The evaluation is somewhat distorted by the fact that we
have fewer healthy subjects than asthmatics.

2. It is similarly distorted by the fact that we used all the
measurements of all asthmatic and healthy tests from the
database for teaching. This is due to the limited number
of measurements. In the case of several measurements, we
could use only a small part of the measurements during
teaching, and test the neural network on the larger part.
That way we would get more objective test results.

5. CONCLUSIONS
In this research we developed a neural network based ap-
plication that uses capnography measurements to help the
diagnosis of asthma. Possible future works are the follow-
ings:

1. Training the neural network with the raw measure-
ment data as well, not only with the calculated pa-
rameters. This is expected to require more hardware
resources and time. An advantage may be that the
neural network can also learn useful information that
is lost during the parameter calculation.

2. Training the neural network with the volumetric pa-
rameters or together with volumetric and time-based
parameters. The disadvantage here may be that there
are no volumetric parameters for purely time-based
measurements without flow data.

3. Teaching the neural network for the different severities
of asthma, and using the trained neural network to
distinguish between them.

4. Teaching the neural network for other diseases, e.g.
COPD (and its sub-conditions), ACOS (and its sub-

conditions), COVID, etc. Distinguishing these diseases
with the help of a trained neural network.

6. ACKNOWLEDGMENTS
This study was carried out in cooperation with PROFIT-
EXPERT Ltd., University of Szeged, Bay Zoltán Nonprofit
Ltd. for Applied Research, Optin Ltd. in the framework
of the EU-funded Hungarian project ”CAPNO - research
on the application possibilities of capnography and develop-
ment of an instrument for the diagnosis of asthma and other
respiratory diseases (GINOP-2.2.1-15-2017-00046).”

7. REFERENCES
[1] Deeplearning4j Suite Overview.

https://deeplearning4j.konduit.ai/. [Accessed
16-Jul-2022].

[2] K. Bhavani-Shankar, A. Y. Kumar, H. S. L. Moseley,
and R. Ahyee-Hallsworth. Terminology and the
current limitations of time capnography: A brief
review. Journal of Clinical Monitoring, 11(3):175–182,
May 1995.

[3] K. Bhavani-Shankar and J. H. Philip. Defining
segments and phases of a time capnogram. Anesthesia
& Analgesia, 91(4):973–977, Oct. 2000.

[4] J. B. Chambers, P. J. Kiff, W. N. Gardner,
G. Jackson, and C. Bass. Value of measuring end tidal
partial pressure of carbon dioxide as an adjunct to
treadmill exercise testing. BMJ, 296(6632):1281–1285,
may 1988.

[5] D. Chicco and G. Jurman. The advantages of the
matthews correlation coefficient (MCC) over f1 score
and accuracy in binary classification evaluation. BMC
Genomics, 21(1), jan 2020.

[6] C. Chopin, P. Fesard, J. Mangalaboyi, P. Lestavel,
M. C. Chambrin, F. Fourrier, and A. Rime. Use of
capnography in diagnosis of pulmonary embolism
during acute respiratory failure of chronic obstructive
pulmonary disease. Critical Care Medicine,
18(4):353–357, apr 1990.

[7] N. Eipe and D. R. Doherty. A review of pediatric
capnography. Journal of Clinical Monitoring and
Computing, 24(4):261–268, jul 2010.

[8] J. S. Gravenstein, M. B. Jaffe, N. Gravenstein, and
D. A. Paulus, editors. Capnography. Cambridge
University Press, Mar. 2011.

[9] B. D. Guthrie, M. D. Adler, and E. C. Powell.
End-tidal carbon dioxide measurements in children
with acute asthma. Academic Emergency Medicine,
14(12):1135–1140, dec 2007.

[10] S. Kunkov, V. Pinedo, E. J. Silver, and E. F. Crain.
Predicting the need for hospitalization in acute
childhood asthma using end-tidal capnography.
Pediatric Emergency Care, 21(9):574–577, sep 2005.

[11] G. Tusman, A. Scandurra, S. H. Böhm,
F. Suarez-Sipmann, and F. Clara. Model fitting of
volumetric capnograms improves calculations of airway
dead space and slope of phase III. Journal of Clinical
Monitoring and Computing, 23(4):197–206, June 2009.

[12] B. You, R. Peslin, C. Duvivier, V. D. Vu, and
J. Grilliat. Expiratory capnography in asthma:.
European Respiratory Journal, 7(2):318–323, Feb.
1994.

12



Online Bin Covering with Exact Advice
∗

Andrej Brodnik
University of Ljubljana

Slovenia
andrej.brodnik@upr.si

Bengt J. Nilsson
Malmö University

Sweden
bengt.nilsson.TS@mau.se

Gordana Vujovic
University of Ljubljana

Slovenia
gogili.vujovic@gmail.com

ABSTRACT
We show a 2/3-competitive strategy for the bin covering
problem using O(b+ log n) advice, where b is the number of
bits used to encode a rational value and n is the length of
the input sequence.

Categories and Subject Descriptors
500 [Theory of computation]: Online algorithms

1. INTRODUCTION
In the bin covering problem, we are given a set of items of
different sizes in the range ]0, 1] and the goal is to find a
maximum number of covered bins where a bin is covered if
the sizes of items placed in it is at least 1. It has been shown
that is NP-hard [1]. The covering problem has applications
in various situations in business and in industry, from pack-
ing snack pieces into boxes so that each box contains at least
its defined net weight, to such complex problems as redistri-
bution tasks/items to a maximum number of factories/bins,
all working at or beyond the minimal feasible level. The
problem is, as mentioned, maximizing the number of cov-
ered bins, and is NP-hard [9]. The bin covering problem
was studied in-depth in Assmann’s Ph.D. thesis [2]. In the
online version, items are delivered successively (one-by-one)
and each item has to be packed, either in an existing bin or a
new bin, before the next item arrives. The quality of online
strategies is measured by their competitive ratio, the mini-
mum ratio between the quality of the strategy’s solution and
that of an optimal one. The first known online strategy that
has been proposed for the problem is Dual Next Fit (DNF),
analogous to Next Fit for the bin packing problem. A com-
petitive ratio of DNF is 1/2 proved by Assmann et al. [1].
A few years later, Csirik and Totik [8] prove that no online
algorithm can achieve a competitive ratio better than 1/2.
Further lower bounds ar given by Balogh et al. [3]. Thus, the
only way to improve on the competitive ratio is to change

∗This work is sponsored in part by the Slovenian Research
Agency (research program P2-0359 and research projects J1-
2481, J2-2504, and N2-0171).

the computational model. Boyar et al. [4] look at bin cov-
ering using extra advice provided by an oracle through an
advice tape that the strategy can read. If the input sequence
consists of n items, they show that with o(log log n) bits of
advice, no strategy can have better competitive ratio than
1/2. They also provide a strategy with O(log log n) bits of
advice having competitive ratio 8/15 and then show that a
linear number of bits of advice is necessary to achieve com-
petitive ratio greater than 15/16.

We show a 2/3-competitive strategy for the one-dimensional
bin covering problem using O(b + log n) advice, where b is
the number of bits used to encode a rational value in the
input sequence and n is the length of the input sequence.

2. PRELIMINARIES
The online bin covering problem we consider is, given an
input sequence σ = (v1, v2, . . .), of rational values vi ∈ [0, 1],
find the maximum number of unit sized bins that can be
covered online with items from the input sequence σ. The
bin covering problem is a dual version of the bin packing

problem.

We define the load of a bin B to be

ld(B)
def
=

∑

v∈B

v. (1)

We can similarly define the load of a sequence σ to be

ld(σ)
def
=

∑

v∈σ
v.

A covering is a partitioning of the items into bins B1, B2, . . .
such that for each bin Bj

ld(Bj) ≥ 1 (2)

and our objective is to find the maximum number of bins
that satisfy Inequality (2). In contrast to the bin packing
problem, a strategy can open any number of bins at any
time. However, only those that are filled to a load of at
least 1 are counted in the solution.

We measure the quality of an online maximization strategy
by its competitive ratio, the maximum bound R such that

∣

∣A(σ)
∣

∣ ≥ R ·
∣

∣OPT(σ)
∣

∣− C, (3)

for every possible input sequence σ, where A(σ) is the solu-
tion produced by the strategy A on σ, OPT(σ) is a solution
on σ for which |OPT(σ)| is minimal, and C is some constant.

Of particular interest is the Dual Next Fit strategy (DNF),
where DNF maintains one active bin B, and packs the items
into B until it is covered. It then opens a new empty bin as

13



the active bin and continues the process. Assmann et al. [1]
prove that DNF has a competitive ratio of 1/2 and Csirik
and Totik [8] prove that no online algorithm can achieve a
competitive ratio better than 1/2.

If we know some further structure of the input sequence, we
can do slightly better as is shown in the next lemma that
we will make extensive use of in the sequel.

Lemma 1. The online strategy DNF for the bin cover-

ing problem on an input sequence σα where the items have

weights bounded by α < 1 has cost

∣

∣DNF(σα)
∣

∣ >
1

1 + α

∣

∣OPT(σα)
∣

∣−
1

1 + α
.

Proof. Assume that DNF opens m+1 bins when access-
ing the sequence σα, m of which are covered. Since every
item has weight at most α, it means that each of the m cov-
ered bins are filled at most to a total weight of 1 + α. A
bin not obeying this limit would have been covered already
before DNF places the last item in it, a contradiction. Thus
the total load of the sequence σ is

(1 + α)m+ 1 > ld(σα) ≥
⌊

ld(σα)
⌋

≥
∣

∣OPT(σα)
∣

∣,

whereby |DNF(σα)| = m > |OPT(σα)|/(1 + α) − 1/(1 + α)
as claimed.

Another strategy of interest is Dual Harmonic (DHk), where
the strategy subdivides the items by sizes into k groups,

]0, 1/k[, [1/k, 1/(k − 1)[, . . . , [1/3, 1/2[, [1/2, 1[,

and packs items in each group, maintaining k groups, ac-
cording to DNF. Evidently, DHk is at best 1/2-competitive
using the same argument as in Csirik and Totik [8].

In certain situations, the complete lack of information about
future input is too restrictive. In a sense, the online strat-
egy plays a game against an all-powerful adversary who can
construct the input sequence in the worst possible manner.
To alleviate the adversary’s advantage, we consider the fol-
lowing advice-on-tape model [6]. An oracle has knowledge
about both the strategy and the full input sequence from
the adversary, it writes information on an advice tape of un-
bounded length. The strategy can read bits from the advice
tape at any time, before or while the requests are released by
the adversary. The advice complexity is the number of bits
read from the advice tape by the strategy. Since the length
of the advice bit string is not explicitly given, the oracle is
unable to encode information into the length of the string,
thereby requiring some mechanism to infer how many bits
of advice the strategy should read at each step. This can be
done with a self-delimiting encoding that extends the length
of the bit string only by an additive lower order term [5].

A bit string s is encoded as e(s) = u(s) ◦ b(s) ◦ s (◦ denotes
concatenation), where b(s) is a binary encoding of the length
of the string s and u(s) consists of

∣

∣b(s)
∣

∣ ones followed by a
single zero, thus indicating how many bits the strategy needs
to read in order to obtain the length of the string s. The
encoding has length at most

∣

∣e(s)
∣

∣ = |s|+2⌈log(|s|+1)⌉+1.
We henceforth assume that all advice information is encoded
in this way. An integer m can thus be encoded exactly using
O(logm) bits and a rational valueme/md, where me andmd

are integers can be encoded using O(logme + logmd) bits.

If the rational value lies in the interval [0, 1], then me ≤ md

and the encoding can be made using O(logmd) bits.

We will base our strategy on DHk with added advice to
improve on the competitive ratio, as do Boyar et al. [4].

3. AN EXACT ADVICE STRATEGY FOR BIN

COVERING
Each item v corresponds to a rational value 0 < v < 1, since
any v above or equal to 1 will cover a bin and the optimum
solution can be assumed to place v alone in a bin to cover
it. Also, values of size 0 could be placed in the first covered
bin without loss of generality.

Fix an integer k ≥ 2. We will subdivide the set of items into
k subsets, such that 1/t ≤ v < 1/(t − 1) for each integer
2 ≤ t ≤ k, the t-items, and items v < 1/k, the small items.

Consider a fixed optimal covering OPT(σ) for the input
sequence σ. We can partition the solution OPT(σ) into
groups, Gt1t2···tj , where the index t1t2 · · · tj , with 2 ≤ t1 ≤
t2 ≤ · · · ≤ tj ≤ k, denotes that each bin in group Gt1t2···tj

contains one t1-item, one t2-item, etc, multiplicity denoting
the number of times each item type occurs in the bin in ad-
dition to the small items needed to fill it. We say that a bin
in group Gt1t2···tj is easy, if

∑

t∈{t1,t2,...,tj}
1/t ≥ 1 and we

can assume without loss of generality that easy bins contain
no small items. Furthermore, we assume that if the bins in
Gt1t2···tj are easy, then any bin group Gt1t2···tjtj+1

is empty,
if t1t2 · · · tj is a subsequence of t1t2 · · · tj+1, as the tj+1-item
in a bin in Gt1t2···tjtj+1

can be moved to other bins while we
still maintain coverage in the bin. We also say that a bin
in Gt1t2···tj is a gap bin, if

∑

t∈{t1,t2,...,tj}
1/(t − 1) < 1, as

each of these bins must contain small items to the amount of
more than 1−

∑

t∈{t1,t2,...,tj}
1/(t−1) to be covered. Lastly,

we denote the group of bins that are only covered by small
items by GS.

As an example, G22 are those bins that each contain two 2-
items (bins in G22 are easy), G2 are those bins that each con-
tain one 2-item and some small items, and G3 are those bins
that each contain one 3-item and some small items (bins in
G3 are gap bins since they require small items to the amount
of more than 1/2 to be covered).

The size of the optimal solution is given by

|OPT(σ)| =
∑

∀t1t2···tj

|Gt1t2···tj |+ |GS|, (4)

for all valid index combinations t1t2 · · · tj .

We modify the Dual Harmonic strategy to operate on advice
and describe this strategy, denoted DH

a
k, dependent on the

parameter k, the number of item types used to partition the
items into. The superscript a indicates that the strategy
admits advice. Let x1, . . . , xn, n = |σ|, be an ordering of
the items in σ, such that xi ≥ xi+1, for 1 ≤ i ≤ |σ|. The
oracle provides the strategy with an integer m and the value
xm through a self-delimiting encoding.

The strategy DH
a
k initially reads the parameters m and xm

and opens m bins that we call critical bins and that will
each be covered with one of the m largest items of the input
sequence σ together with small items. Initially, each criti-
cal bin is assumed to have a virtual load of xm. When an
item of size ≥ xm is placed in a critical bin, its virtual load

14



is increased to the actual value of the item. The strategy
further opens a t-bin for every item type t ∈ {2, . . . , k}, and
a small bin for the small items. As the next item v of the
input sequence arrives, it is handled as follows:

1. if xm ≤ v, place v in the next critical bin that does not
yet contain a large item and update the virtual load of
the critical bin,

2. if 1/k ≤ v < xm is a t-item, place v in the correspond-
ing t-bin using DNF. If the bin becomes covered, close
it and open a new t-bin,

3. if v < 1/k is small, place v in the next critical bin that
does not contain small items up to a virtual load of at
least 1 and update the virtual load of this critical bin.
If all critical bins are filled up to a virtual load of 1,
place v in the small bin using DNF. If the small bin
becomes covered, close it and open a new small bin.

Lemma 2. Assume that the strategy DH
a
4 has access to

the exact values of m and xm, then it has competitive ratio

∣

∣DH
a
4(σ)

∣

∣ ≥
2

3

∣

∣OPT(σ)
∣

∣−
173

60

for serving any sequence σ of size n.

Proof. Note that the number of t-items, for t = 2, 3,
and 4, in the instance is

T2 = |G2|+ 2|G22|+ |G23|+ |G24|+ |G233|+ |G234|+

+ |G244|, (5)

T3 = |G3|+ |G23|+ 2|G33|+ |G34|+ 2|G233|+ |G234|+

+ 3|G333|+ 2|G334|+ |G344|+ 2|G3344|,+|G3444|, (6)

T4 = |G4|+ |G24|+ |G34|+ 2|G44|+ |G234|+ 2|G244|+

+ |G334|+ 2|G344|+ 3|G444|+ 2|G3344|+ 3|G3444|+

+ 4|G4444|. (7)

For each non-easy bin group G2, . . . ,G444 (there are eleven of
them), let St1···t4 denote the weight of the small items that
the optimum solution packs in the bins of group Gt1···t4 . In
addition, we denote by SS =

∑

B∈GS
ld(B) the total load of

the small items covering the bins in GS.

We consider first some arbitrary set of covered bins G, where
each bin only contains small items. Assume that these bins
have a total load of S =

∑

B∈G ld(B) ≥ |G| and that the
input sequence restricted to these small items is σS . From
Lemma 1 we have that

∣

∣DNF(σS)
∣

∣ >
4

5
S −

4

5
≥

4

5

∣

∣G
∣

∣−
4

5
(8)

We can analyze the competitive ratio of the critical bins by
first considering a decreasing ordering of the binsB1, . . . , B|G2|

in G2 by the weight of their 2-item, wi. We let ui = ld(Bi)−
wi be the weight of the small items in Bi, whereby S2 ≥
(

|G2| −m
)

·
(

1− wm

)

for arbitrary choice of m ≤ |G2| since
Bm+1, . . . , B|G2|, each contains at least 1 − wm amount of
small items; see Figure 1. The critical bins, Ci, 1 ≤ i ≤ m,
each contains one 2-item of weight ai, a small item of weight
zi that was the last small item placed in Ci by our strategy,
and small items to the weight of yi = ld(Ci)−ai−zi. Again,
by construction, yi ≤ 1−wm for each 1 ≤ i ≤ m.

Consider next the gap bins in the optimal solution. These
are the bins in groups G3, G4, G34, and G44. Each bin in

these groups is guaranteed to have small items to the amount
of at least 1/2, 2/3, 1/6, and 1/3, respectively. Thus, for
each of those groups we have S3 ≥ |G3|/2, S4 ≥ 2|G4|/3,
S34 ≥ |G34|/6, and S44 ≥ |G44|/3.

For each group of non-easy bins G2, . . . ,G444, let It1···t4(m) ⊆
{1, . . . , m} be the set of indices i such that the last small el-
ement (of weight zi) that was placed in critical bin Ci was
placed by the optimal solution in a bin from bin group Gt1···t4 .
Easy bins are assumed, without loss of generality, to not
contain any small items. Also, let IS(m) =

{

1, . . . ,m
}

\
(
⋃

t1···t4 6∈Easy
It1···t4(m)

)

be the set of remaining indices.

The possible values of m range between 0 ≤ m ≤ m+ =
⌊

(|G2| − |I2(m
+)|)/2

⌋

, where m+ is the largest integer such

that 2m+ + |I2(m
+)| ≤ |G2|, since the strategy needs to

guarantee that it can cover all the critical bins.

The oracle reveals m = m+ =
⌊

(|G2| − |I2(m
+)|)/2

⌋

and

xm = xm+ , the mth largest item in the input sequence σ, so
our strategy constructs m critical bins,

⌊

(T2−m)/2
⌋

2-bins,
⌊

T3/3
⌋

3-bins,
⌊

T4/4
⌋

4-bins, and some bins corresponding
to the amount of unused small items, giving us

∣
∣DH

a
4(σ)

∣
∣ > m +

⌊
T2 −m

2

⌋

+

⌊
T3

3

⌋

+

⌊
T4

4

⌋

+
4

5

(

SS

+ S2 + S3 + S4 + S34 + S44 −

(
m∑

i=1

yi + zi

))

−
4

5

≥
m

2
+

T2

2
+

T3

3
+

T4

4
+

4

5



SS −
∑

i∈IS(m)

zi



+
4

5



S3 −
∑

i∈I3(m)

zi





+
4

5



S4 −
∑

i∈I4(m)

zi



+
4

5



S34 −
∑

i∈I34(m)

zi



+
4

5



S44 −
∑

i∈I44(m)

zi





+
4

5



S2 −
m∑

i=1

(1− wm)−
∑

i∈I2(m)

zi





︸ ︷︷ ︸

≥0

−
163

60

≥
m

2
+

T2

2
+

T3

3
+

T4

4
+

2

3



SS −
∑

i∈IS(m)

zi





+
2

3



S3 −
∑

i∈I3(m)

zi



+
5

8



S4 −
∑

i∈I4(m)

zi





+
1

2



S34 −
∑

i∈I34(m)

zi



+
1

2



S44 −
∑

i∈I44(m)

zi



−
163

60

≥
m

2
+

T2

2
+

T3

3
+

T4

4
+

2SS

3
−

|IS(m)|

6
+

2S3

3
−

|I3(m)|

6

+
5S4

8
−

5|I4(m)|

32
+

S34

2
−

|I34(m)|

8
+

S44

2
−

|I44(m)|

8
−

163

60

≥
m

2
+

T2

2
+

T3

3
+

T4

4
+

2SS

3
−

m

6
+

|I2(m)|

6
+

|I3(m)|

6

+
|I4(m)|

6
+

|I34(m)|

6
+

|I44(m)|

6
+

2S3

3
−

|I3(m)|

6

+
5S4

8
−

5|I4(m)|

32
+

S34

2
−

|I34(m)|

8
+

S44

2
−

|I44(m)|

8
−

163

60

>
m

3
+

T2

2
+

T3

3
+

T4

4
+

|I2(m)|

6
+

2|GS |

3
+

|G3|

3
+

5|G4|

12

+
|G34|

12
+

|G44|

6
−

163

60

15



y1

z1

a1

z2

a2

y2

zm

am

ym

. . .

C2C1 Cm

u1

w1

u2

w2 wm

um um+1

wm+1 w|G2|

u|G2|

B1 B2 Bm

. . .. . .

Bm+1 B|G2|

Figure 1: The critical bins and their relationship to the G2-bins in the optimal covering. In the G2-bins, blue

are 2-items and light green are the small items. In the critical bins, red represents the last small items in

the bin, dark green are the remaining small items, grey items are the 2-items, and dark grey represents the

overlap between the virtual and actual load of the 2-item.

=
2|G2|

3
+

2|G3|

3
+

2|G4|

3
+

2|G33|

3
+

2|G34|

3
+

2|G44|

3
+

2|GS |

3

+
3|G24|

4
+

3|G444|

4
+

5|G23|

6
+

5|G344|

6
+

11|G334|

12
+ |G22|

+ |G244|+ |G333|+ |G4444|+
13|G234|

12
+

13|G3444|

12
+

7|G233|

6

+
7|G3344|

6
−

173

60
≥

2

3
|OPT(σ)| −

173

60

bins, by applying Equalities (5)–(7) in the second to last
step, while using that each zi < 1/4, that SS ≥

∑

i∈IS(m) zi
and St1···t4 ≥

∑

i∈It1···t4
(m) zi, for each bin group Gt1···t4 ,

that critical bin Ci can be covered by a large item of size
at least wm plus the small items from a bin among the last
bins Bm+1, . . . , B|G2| in G2 and one extra small item from a
non-easy bin in the optimal solution; see Figure 1, and that
m = |IS(m)| +

∑

t1···t4
|It1···t4(m)|, for any m. The com-

petitive ratio is the smallest coefficient of any of the terms
corresponding to bin groups, since an adversary can ensure
that the groups with larger coefficient contain no bins. This
gives a competitive ratio of 2/3 ≈ 0.6666 . . ..

For completeness sake we mention that using the same proof
technique it is possible to show that |DHa

2(σ)| ≥ 3|OPT(σ)|/5−
19/15, where 3/5 = 0.6 and |DHa

3(σ)| ≥ 9|OPT(σ)|/14 −
173/84, where 9/14 ≈ 0.64285 . . ., if these strategies are
given the exact values for m and xm.

The two advice values m ≤ n and xm can be represented by
O(log n) bits and O(b) bits respectively, where b is the num-
ber of bits required to represent the integer denominator of
the rational value xm, since xm < 1. We have the following
immediate theorem.

Theorem 1. The strategy DH
a
4 receives O(b+ log n) bits

of advice and has competitive ratio

∣

∣DH
a
4(σ)

∣

∣ ≥
2

3

∣

∣OPT(σ)
∣

∣−
173

60

for serving any sequence σ of size n, where b is the number

of bits required to represent any rational value in σ.

One could venture to think that strategy DH
a
k, for k > 4,

would give improved competitive ratio, or even that extend-
ing the strategy with more sets of critical bins could improve
it further. However, this is not possible, since an adversary
can simply provide an instance where all bin groups except
G2 in an optimal solution are empty. Thus, the instance

consists of only 2-items and small items. Any critical bin-
based strategy must solve this instance and does so, even if
the adversary provides all the small items first and the 2-
items last, by choosing m = ⌊|G2|/3⌋, since the index set is
I2(m) = {1, . . . ,m}, for all m, to guarantee that all critical
bins are covered, thus opening m critical bins, and packing
the remaining 2-items in pairs to cover ⌊(|G2| −m)/2⌋ bins.
The strategy covers

m+

⌊

|G2| −m

2

⌋

=

⌊

|G2|

3

⌋

+

⌊

|G2| − ⌊|G2|/3⌋

2

⌋

≤
|G2|

3
+

|G2|

3
+

1

3
≤

2

3

∣

∣OPT(σ)
∣

∣+
1

3
(9)

bins, proving that our analysis in Lemma 2 is asymptotically
tight.

4. REFERENCES
[1] Susan Fera Assmann, David S. Johnson,

Daniel J. Kleitman, and Joseph Y-T. Leung. On a dual
version of the one-dimensional bin packing problem.
Journal of Algorithms, 5(4):502–525, 1984.

[2] Susan Fera Assmann. Problems in discrete applied

mathematics. PhD thesis, Massachusetts Institute of
Technology, 1983.

[3] János Balogh, Leah Epstein, and Asaf Levin. Lower
bounds for online bin covering-type problems. Journal
of Scheduling, 22(4):487–497, 2019.

[4] Joan Boyar, Lene M. Favrholdt, Shahin Kamali, and
Kim S. Larsen. Online bin covering with advice.
Algorithmica, 83(3):795–821, 2021.

[5] Joan Boyar, Shahin Kamali, Kim S. Larsen, Alejandro
López-Ortiz. Online bin packing with advice.
Algorithmica, 74(1):507–527, 2016.

[6] Hans-Joachim Böckenhauer, Dennis Komm, Rastislav
Královič, Richard Královič, Tobias Mömke. On the
advice complexity of online problems Proc. 20th

ISAAC, LNCS 5878, pages 331–340, 2009.

[7] Edward G. Coffman Jr., Joseph Y-T. Leung, and
D.W. Ting. Bin packing: Maximizing the number of
pieces packed. Acta Informatica, 9(3):263–271, 1978.

[8] János Csirik and Vilmos Totik. Online algorithms for a
dual version of bin packing. Discrete Applied

Mathematics, 21(2):163–167, 1988.

[9] Michael R. Garey and David S. Johnson. Computers

and intractability, volume 174. Freeman San
Francisco, 1979.

16



Subsets without arithmetic subsequences: computational
experiments and unsatisfiable cores

Uroš Čibej
University of Ljubljana

Faculty of Computer and Information Science
1000 Ljubljana, Slovenia
uros.cibej@fri.uni-lj.si

Ervin Győri
Alfréd Rényi Institute of Mathematics

Hungarian Academy of Sciences
H-1053 Budapest, Reáltanoda u. 13-15.

gyori@renyi.hu

ABSTRACT
A reduction to satisfiability of a combinatorial problem of
minimal saturated subset without arithmetic subsequences
is given in this paper. We conduct an empirical evaluation
and present previously unknown optimal solutions for cer-
tain instances of the problem. The results also show where
the limits for computing the optimal solutions are. Finally,
we present a new possibility for solving such combinatorial
problems, namely the unsatisfiable cores of the SAT expres-
sions, which could give new insights to mathematicians and
possibly new methods for solving the problem computation-
ally.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathematics—
combinatorics

Keywords
satisfiability, solvers, modelling

1. INTRODUCTION
The problem of satisfiability has been at the center of com-
puter science for more than half a century. It has been
widely used to show some of the most important results in
computational complexity and it is used as a showcase prob-
lem of a hard computational problem. But on the other
hand, there has been a huge interest in developing better
and better algorithms that can solve impressively large in-
stances. The main driving force of this development is the
annual SAT competition [5], spawning a huge research field
and resulting in an enormous improvement in the speed and
efficiency of these solvers in the past decade.

In this paper, we are exploring the possibilities of solving
a set of instances of a hard combinatorial problem with the
final goal of getting some new insights into the problem with
such an empirical exploration. One way to implement this
search could be to hand-tailor an efficient solver for this

particular problem, but from our experience, we established
that it takes a huge effort to construct a competitive solver
which could outperform a state-of-the-art SAT solver. So
instead of putting the effort into a custom-made solver, we
construct a reduction to SAT and explore where are the
limits of this approach.

The paper is structured as follows. The next section gives
a short definition of the combinatorial problem and the re-
duction of this problem to SAT. Furthermore, we show what
the reduced expressions look like for the instances that we
are interested in. Section 3. describes the computational re-
sults, namely what are the optimal solutions for our problem
and what are the times required to obtain them. This will
give us some insight into what are the feasible sizes that can
be solved with any kind of solver. Section 4. describes an
interesting concept that can be obtained with SAT solvers
and could be a new approach to solving this problem, either
theoretically or empirically.

2. PROBLEM DEFINITION AND REDUC-
TION TO SAT

2.1 Problem definition
Definition 1 (Arithmetic triple). A set {a, b, c} (assuming
a < b < c) is an arithmetic triple if b− a = c− b.

The set of all arithmetic triples of a set A will be denoted
as

arith(A) = {{a, b, c} ⊆ A|{a, b, c} is an arithmetic triple}

.

Definition 2 (Non-arithmetic set). A set A is said to be non-
arithmetic if arith(A) = ∅.

With these two definitions in place, we can define our opti-
mization problems.

Definition 3 (MinNArith). Given a set A = {1 . . . n}, what
is the smallest non-arithmetic subset A′ ⊆ A, which is also
maximal (or saturated), i.e. it is not possible to enlarge this
set without creating an arithmetic triple, formally:

∀i ∈ A \A′ : arith(A′ ∪ {i}) ̸= ∅

In our case, we are mostly interested in the size of such a
set, given a particular value of n.

17



Example:. Let us say the set A = {1, . . . , 16}, one sat-
urated set that does not contain any arithmetic triple is
A′ = {6, 7, 10, 11}. It can be easily checked that by adding
any other number from A, we create an arithmetic triple.
We will see that this is also the smallest such subset of A.

What is known about this problem? [7, 6]
1. it seems to be a hard mathematical problem
2. for n = 4k there exists a construction of such a set of size√
n,i.e., 2k

3. it is conjectured that this is the smallest possible such set
4. It has been proven that this is indeed the case for n =
4, 16, and 64.

The goal of this work is to push this boundary further, as
much as possible, with the final goal to explore the feasibility
of computing the size of the minimal set for n = 256. Since
we already know such a set of size 16, the goal is to prove
that there is no such set of size 15.

2.2 Reduction to SAT
In principle, this is a minimization problem, but we will use
a decision version of this problem to reduce to SAT.

Definition 4 (MinNArithDEC). Given a set A = {1, . . . , n}
and a number k, does a saturated non-arithmetic subset A′ ⊆
A exist, such that |A′| ≤ k.

In what follows, we give a reduction MinNArithDEC →
SAT . The input to this problem are two numbers n and k,
the reductions construct a logical expression (in CNF form)
that is satisfiable if there exists a saturated non-arithmetic
subset of A = {1 . . . n} with the size ≤ k.

Each element in i ∈ A has a corresponding logical vari-
able xi, which is true if i ∈ A′. To describe the problem
MinNArithDEC, we introduce three types of constraints
on this set of logical variables.

1. Cardinality constraint, i.e., at most k of the variables
xi can be true. We will denote this constraint as
CARD.

2. In order for the set of true variables to describe a non-
arithmetic subset, we have to check every arithmetic
triplet {a, b, c} ∈ arith(A) and assure that not all three
elements are in A′:

xa ∧ xb ∧ xc

. We will denote this type of constraint as NARITH.

3. And the third type of constraints assure the satura-
tion of the set A′. For every element, a ∈ A, either a
is already in the chosen subset, or there exists an arith-
metic triplet where both of the other two elements are
in the set. We will denote this type of constraint as
SATUR.

The final expression is the conjunction of these three con-
straints:

E(n, k) = CARD ∧NARITH ∧ SATUR

The NARITH constraints have already been described (if
we apply DeMorgan’s rule it is already in CNF form), now
we need to define more precisely how CARD and SATUR
constraints are written as logical expressions.

Cardinality constraints. The problem of encoding cardi-
nality constraints in SATs is a research topic on its own,
and many different approaches are known. The main issue
we are addressing in this problem is how to enforce that
at most a certain number of variables are set to true. The
most researched version of this problem is known as at-most-
one (AMO) constraint [9]. Generalizations (at-most-k con-
straints) have been explored and are now part of most stan-
dardized SAT modeling toolboxes. It is also well-known [12]
that different encodings can have varying effects on the ex-
ecution times of different solvers.

In order to explore this impact, we tested 4 different stan-
dard encodings: Sequential counting [10], Sorting network [2],
Cardinality network [1], and k-modulo totalizer [8].

Saturation constraints. For each element i ∈ A, we have
to express that either it is in the set A′, or that there exists
an arithmetic triple {i, j, k} ∈ arithA such that j, k ∈ A′.

This is straightforwardly transformed into a logical expres-
sion:

xi ∨ (
∨

(i,j,k)∈arith(A)

(xj ∧ xk))

However, there is a technical difficulty with this expression.
Namely, it is not in CNF, which is a typical requirement
of SAT solvers. A straightforward transformation to CNF
would result in exponentially large expressions, which would
quickly make them practically unusable. Luckily, there ex-
ists a transformation, called the Tseitin transform [11], that
transforms any logical expression into CNF, and the final
expression is linear in the size of the original expression.
The downside of this transformation is that also introduces
a linear number of new variables.

2.3 Sizes of instances
To give an impression of the sizes of the reduced problem, the
number of clauses and the number of variables for different
n and k are given in Table 1.

Two different parameters describe the size of the expression,
those are the number of variables and the number of clauses
in the expression.

The table gives these two sizes for three different expressions,
E(16, 3), E(64, 7), E(256, 15). These are the expressions at
n = 4k since we are testing the hypothesis that the solution
at this n is 2k and these expressions should all be unsatisfi-
able based on this hypothesis. We also show the difference
in sizes if different cardinality encodings are used. We can
see that the encoding does not greatly influence the entire
size of the expression, since the largest difference is only a
few percent.

18



Table 1: Sizes of reduced problems

n, k CC # of vars # of clauses

(16,3)

seqcount 391 1168
cardnet 440 1213
sortnet 416 1265

kmtotalizer 397 1182

(64,7)
seqcount 6415 19760
cardnet 6600 19789
sortnet 7102 20542

kmtotalizer 6251 19598

(256,15)
seqcount 101407 316576
cardnet 101248 314305
sortnet 105470 320638

kmtotalizer 98712 312147

But that does not describe the entire picture of the struc-
ture of these expressions. A more detailed view is given
in Figure 1 which shows the percentage of clauses and new
variables introduced by each type of constraint. The first
graph shows how the ratio of the three types of clauses. It
can be seen that the SATUR constraint contributed to the
vast majority of clauses. As n grows, the dominance of the
SATUR clauses gets even bigger. A similar situation can be
seen on the right graph that shows the ratio of the newly in-
troduced variables. First, notice that NARITH constraints
do not introduce any new variables and are thus omitted
from this graph. Again, the vast majority of newly intro-
duced variables originate from the SATUR constraints.

16
-3

32
-4

64
-7

12
8-
11

25
6-
15

0

20

40

60

80

100
100 100 100 100 100
95 95 95 95 95

8 6 3 2 1

%
cl
a
u
se
s

Clauses

card satur narith

16
-3

32
-4

64
-7

12
8-
11

25
6-
15

100 100 100 100 100

12
7 4 2 1

Additional vars

Figure 1: The structure of the SAT expression.

3. COMPUTATIONAL RESULTS
These generated SAT expressions have been given to the
state-of-the-art solver. We used currently the fastest solver
kissat [3], which won the 2020 and 2021 SAT competitions.

The minimal size of the set is obtained by finding a number
k, such that E(n, k) is satisfiable and E(n, k − 1) is unsat-
isfiable. In the evaluation description, we will be mostly
describing the unsatisfiable expressions, since these expres-
sions are usually much harder for the SAT solvers.

Figure 2 shows the sizes of minimal saturated subsets. The
black plot is

√
n, i.e., the hypothesized lower bound. The

results give further empirical evidence for this hypothesis to
be true since the

√
n lower-bound is reached only at points

n = 4k, which makes it more plausible that the proposed
construction of such sets is also optimal.

20 40 60 80 100

2

4

6

8

10

12 y =
√
n

y = min

Figure 2: The plot of the minimal saturated set sizes. The
black plot shows the lower bound which was reached only at
the points n = 4k.

An even more important aspect of our empirical test is the
running times to prove the optimality for a certain n. Fig-
ure 3 shows the measurements for 4 different cardinality con-
straint encodings. The first chart gives the running times (y
axis is log scale) and it can be seen that all four encodings
follow the same trend. Nonetheless, some differences cannot
be seen on this log-plot, so we show the results for E(75, 10)
and E(81, 11) which shows that that k modulo totalizer has
a significant advantage over the other three encodings.

4. UNSATISFIABLE CORES
Based on the results described above, it seems unlikely that
we could solve the expression E(256, 15) in a reasonable
amount of time. This also gives little hope for solving the
problem using some other reductions or even hand-crafted
solvers for this particular problem.

However, there could be a different path, using the byprod-
uct of SAT solvers. Namely, these solvers produce proof that
their claim (satisfiable or unsatisfiable) is true. For satisfi-
able expressions, the proof is simply the variable assignment
that yields a true value of the expression. But for unsatis-
fiable expressions, the proof is the trace of the execution of
the solver.

The trace of the execution is very large, but a more compact
proof can be extracted from it, and that is the unsatisfiable
core [4] of the expression. Unsatisfiable cores are subexpres-
sions that are unsatisfiable, but if we remove any clause, the
expression becomes satisfiable. This can thus be viewed as
the core ”reason” why this expression is unsatisfiable.

As an example, let us examine the unsatisfiable core of the
expression E(16, 3). The entire expression has 397 variables
and 1182 clauses (k modulo totalizer), but the unsatisfiable
core has only 399 clauses. We can brake down the structure
of the unsatisfiable core even further:

• original size of the CARD expression is 102 and the
core contains only 73,

• NARITH has 56 clauses, but the core only contains
19 of these,

• and SATUR has 1024 clauses, but the core only 307.

These results show that there is a more compact reason for

19



20 30 40 50 60 70 80

10−2

100

102

104

n

se
c

kmtot
seq

sortnet

cardnet

75-10 81-11

0

0.5

1

1.5

·105

se
c

kmtot
seq

sortnet

cardnet

Figure 3: Run times for solving the problem E(n, k), by
varying n and k being the largest value where the expres-
sion is unsatisfiable. The left plot shows the log plot of
the time for four different encodings of the cardinality con-
straint. The right plot shows only the times for E(75, 10)
and E(81, 11) to show a more significant difference between
different encodings.

the impossibility of the existence of a saturated set of size 3.
There are two possible usages of these unsatisfiable cores:

• reverse engineering the unsatisfiable core to obtain the
rules and find a general pattern and thus the proof for
the lower bound as it is currently hypothesized.

• knowing the shape of the unsatisfiable cores, we could
solve the problem by explicitly finding such a sub-
structure in the entire expression, e.g. E(256, 15).
This would require a search for a known substructure,
which is a computationally simpler problem than prov-
ing that a certain structure does not exist.

5. CONCLUSIONS
In this paper, we described a reduction of the problem of
finding a minimal saturated non-arithmetic subset. This is a
hard mathematical problem and empirical results could shed
some new light on this problem, giving potential insights for
future exploration of the problem.

The current hypothesis is, that the lower bound for the size
of such a set is

√
n and it can be reached for values n = 4k.

Our initial hope was to be able to reach n = 256, where a
known set is of size 16 and we need to prove or disprove that
this is the smallest possible one.

Using state-of-the-art solvers, we attacked this problem and
obtained optimal solutions for values up to 100. All the
results are in favor of the current hypothesis, but there is also

a pessimistic result that it seems unlikely to obtain optimal
results for a much larger n without a significant new insight
into this problem.

But the reduction to SAT also has another potentially useful
side-effect, namely the unsatisfiable cores. These subexpres-
sions that can be obtained by SAT solvers carry some new
insight into the problem and the study of their structure
and reverse-engineering the rules for their creation might
lead to discoveries in this and maybe other similar problems
as well.

6. REFERENCES
[1] R. Aśın, R. Nieuwenhuis, A. Oliveras, and

E. Rodŕıguez-Carbonell. Cardinality networks and
their applications. In O. Kullmann, editor, Theory and
Applications of Satisfiability Testing - SAT 2009,
pages 167–180, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[2] K. E. Batcher. Sorting networks and their
applications. In Proceedings of the April 30–May 2,
1968, Spring Joint Computer Conference, AFIPS ’68
(Spring), page 307–314, New York, NY, USA, 1968.
Association for Computing Machinery.

[3] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger.
CaDiCaL, Kissat, Paracooba, Plingeling and
Treengeling entering the SAT Competition 2020. In
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, editors, Proc. of SAT Competition 2020
– Solver and Benchmark Descriptions, volume
B-2020-1 of Department of Computer Science Report
Series B, pages 51–53. University of Helsinki, 2020.

[4] A. Cimatti, A. Griggio, and R. Sebastiani. A simple
and flexible way of computing small unsatisfiable cores
in sat modulo theories. In J. Marques-Silva and K. A.
Sakallah, editors, Theory and Applications of
Satisfiability Testing – SAT 2007, pages 334–339,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[5] N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and
M. Suda. Sat competition 2020. Artificial Intelligence,
301:103572, 2021.

[6] E. Győri. personal communication, 2022.

[7] S. J. Miller. Combinatorial and additive number
theory problem sessions: ’09–’19, 2014.

[8] A. Morgado, A. Ignatiev, and J. Marques-Silva. Mscg:
Robust core-guided maxsat solving. J. Satisf. Boolean
Model. Comput., 9:129–134, 2014.

[9] V.-H. Nguyen, V.-Q. Nguyen, K. Kim, and
P. Barahona. Empirical study on sat-encodings of the
at-most-one constraint. In The 9th International
Conference on Smart Media and Applications, pages
470–475, 2020.

[10] C. Sinz. Towards an optimal cnf encoding of boolean
cardinality constraints. In P. van Beek, editor,
Principles and Practice of Constraint Programming -
CP 2005, pages 827–831, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[11] G. S. Tseitin. On the complexity of derivation in
propositional calculus. In Automation of reasoning,
pages 466–483. Springer, 1983.

[12] N.-F. Zhou. Yet another comparison of sat encodings
for the at-most-k constraint, 2020.

20



Exact time measuring challenges

Tomaž Dobravec
University of Ljubljana

Faculty of Computer and Information Science
tomaz.dobravec@fri.uni-lj.si

ABSTRACT
In this paper, we focus on implementations of the Bubble-
Sort algorithm in three different programming languages:
Java, C, and x86 assembler. Using the ALGator system we
execute these implementations with different inputs and per-
form an empirical evaluation of the results. We discuss the
importance of test repetition for achieving accurate timing
results. We show that the Java and the C implementations
achieve similar efficiency and that the quality order depends
on the type of input data.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]: Relia-
bility and Testing; D.2.8 [Software Engineering]: Metrics—
complexity measures, performance measures

General Terms
Algorithm Engineering

Keywords
empirical algorithm analysis, time measuring, accuracy, re-
liability, comparing Java and C

This work is sponsored in part by the Slovenian Research

Agency (research project N2-0171).

1. INTRODUCTION
The theoretical complexity analysis of algorithms is a very
important part of the algorithm design process. This anal-
ysis usually estimates the amount of resources (e.g. time or
memory storage) that is going to be utilized during the al-
gorithm execution [4]. The result of the analysis depends on
the selected computation model [3] which implies the execu-
tion environment and its limitations. Roughly, the results of
such theoretical analysis are used to distinguish between fast
(i.e. polynomial) and slow (exponential) algorithms. But in
practice these results are of limited value especially if the
two algorithms compared have the same (theoretical) time

complexity. The model that is used in theoretical study
does usually not take into account all the peculiarities of
the real execution environment (like memory caching, pag-
ing, branch prediction, etc.), which are revealed only during
the execution of the algorithm on a real computer. There-
fore, for practical comparison of actual algorithms’ capacity
theoretical analysis has to be replaced with empirical mea-
surements of resource usage during the algorithms’ execu-
tions on various types of input data [5]. In order to provide
quality results, these measurements have to be performed
carefully since many factors impact the measured data. In
this paper we focus on some of them and present results of
our measurements that highlight the importance of each of
them. Namely, we use three programming languages and
present the impact of language selection on the speed of
execution. Furthermore, we present the importance of rep-
etition of tests, especially when the size of the input (and
therefore the execution time) is small. In addition, we dis-
cuss how the type of input data can affect the algorithms’
quality rankings.

2. TESTING ENVIRONMENT SETUP
For all our tests in this research we will use the Bubble-
Sort [1] algorithm for sorting arrays of integers. Since this
is a very well known and a simple algorithm we are able to
perform a precise theoretical analysis and provide very ac-
curate (theoretical) forecast for the time complexity of its
implementations. The algorithm is so simple that we can
count the number of operations performed during the exe-
cution for different inputs. Thus we will be able to compare
theoretical predictions with the empirical results.
One of the goals of this research was to analyse the impact
of the selected programming language on the efficiency of
algorithm execution. Therefore we used three programming
languages (namely the Java, the C and the x86 assembler)
to implement BubbleSort. Due to the simplicity of the al-
gorithm we managed to write the three implementations in
such a way that they provide semantically identical code.
For further reference, we named implementations BubbleJ,
BubbleC and BubbleA, where the last letter denotes the pro-
gramming language used (J for Java, C for C and A for
x86 assembler). When executing these implementations on
the same inputs they will perform the same number of each
programming-language-dependant atomic operations. Any
differences in the execution speed will thus reflect the differ-
ences in the execution speed of these operations in the se-
lected programming language. The C implementation was
compiled with the gcc compiler in two ways: without op-

21



timization (the -O0 flag) and with full optimization (the -

O3 flag). In this way we got two distinct implementations
(namely BubbleC0 and BubbleC3). In the following we will
analyze the impact of this optimization to the speed of exe-
cution.

To facilitate the empirical evaluation in our research we used
the ALGator system [2]. We used its tools to configure
the Sorting project, to provide the test sets of input data
and implementations and to execute the algorithms’ imple-
mentations in a controlled environment. For the execution
machine we used the Intel(R) Core(TM) i7-6700 CPU @
3.40GHz computer with 32GB RAM and with the Linux
Ubuntu operating system installed.

The inputs for our algorithms consist of arrays of integers
prearranged in three different orders: random order (RND),
sorted order (SOR) and inversely sorted order (INV). These
three distributions of input data are well manageable from
a theoretical point of view, since we know for all three the
number of operations that will be performed during the sort-
ing process. In all three case BubbleSort will perform exactly
n(n− 1)/2 comparisons, and n2/4, 0, n(n− 1)/2 swaps for
RND, SOR, INV respectively. Note that all the numbers
of operations are exact, except for the number of swaps in
RND case - here we only have the expected (instead of ex-
act) number of swaps, since the sequence is randomly mixed.
Since BubbleSort performs only comparisons and swaps (and
some auxiliary increments of indices to maintain the loops)
we could expect that, for example, sorting RND array will
be faster than sorting INV array of the same size. But as
we will see in the following this in not the case.

In the ALGator project inputs (i.e. test cases) are grouped
into test sets. Each test case has its own identifier (Test
ID), so the results can also be compared on the test-basis.
To provide accurate results each test case is executed sev-
eral times (each execution of the test case has its identifier,
Repetition ID). Besides a list of all execution times of a
test case ALGator provides two information, the time of the
first execution (Tfirst) and the time of the fastest execution
(Tmin) of this test case. The first execution is usually much
slower than other executions since (this is true especially for
the java environment) the execution machine needs to warm
up. As we will see in the following the Tfirst time can even
be twice as big as the Tmin time.

To measure the time in Java we can only use the wall-clock
(Java does not provide any processor usage information).
To minimize the unreliability of the measured time (which
is due to the fact that the process may spend time waiting
for I/O or for other processes that are also using the CPU)
we use a ”clean” computer which is dedicated only for exe-
cution of the algorithms. Besides that, we usually take the
Tmin time as a reference data, since this is a time in which
the computer is capable of solving the problem (the number
of disturbing factors is minimal). For he algorithms imple-
mented in the C programming language we use the CPU
time obtained by the clock() function (which returns the
number of clock ticks used by the process). By calling this
function before and after the algorithm execution and sub-
tracting the returned values we get the total amount of time
a process has actively used a CPU. The time measured this

way is much more reliable and accurate quality indicator.

3. THE MEANING OF TEST REPETITION
In our first experiment we would like to find out the meaning
of several repetitions of a given test case execution. For this
we used a test set consisting of three groups of test cases:
in each group there are 50 identical tests of sizes 500, 5000
and 20000. All the input arrays in these test cases were
ordered in inverse order (to ensure the identical number of
operations during the sort process). We executed each test
case 50 times. By analysing the results we noticed that the
(absolute) difference between Tfirst and Tmin is approxi-
mately the same for all three groups of test cases. The rela-
tive difference is therefore smaller for bigger measured times.
We can conclude that the measurement of both Tfirst and
Tmin is important for small inputs and that the importance
of distinguishing between Tfirst and Tmin decreases with
increasing input size. Measurements have shown that some-
thing similar to the Java’s ”Tfirst phenomenon”also happens
with C, except that in this case ”warming up the machine”
adds significantly less to the overall time complexity, so the
differences in speed between Tfirst and Tmin are noticeable
only in experiments that take very little time. From Table 1,
which shows the relationship between the average first and

the minimum execution time of a test case, f =
Tfirst

Tmin
it

can be seen that for small n the ratio is similar in both im-
plementations, but for larger n the difference between Tfirst
and Tmin is almost negligible for the BubbleC3, while for
the BubbleJ the value decreases significantly more slowly.
At n = 20000 the difference is still more than 5%.

The difference in measured times of multiple executions of
the BubbleJ and BubbleC3 implementations is depicted in
Fig. 1. Here we used 50 inversely ordered arrays of size
5000, each test case was repeated 50 times. On the graph,
the time of the first execution of the test case is shown in
gray (Tfirst, Repetition ID=0), the first 20 repetitions are
shown in orange, and the next 30 in red. With BubbleJ, we
see that the first times (Tfirst) deviate considerably from
the other measured times; the Tfirst times are somewhere
between 18k and 22k, and the other times are much smaller
(between 12k and 14k), which corresponds to the factor of
1.4 from Table 1. Other measured times on this graph does
not show much fluctuation, as the scale of the display is
reduced due to the large Tfirst times; we see that some Tfirst
times are almost 100% larger than the smallest measured
times. With BubbleC3, all times are quite similar to each
other; the graph shows some variations, but everything is
between 14.6k and 15.6k; the differences between measured
times are relatively small (approx. 6%).

For the conclusion: is it important to repeat the algorithm
execution for several times to find the minimum time? As

Table 1: The ratio f =
Tfirst

Tmin
between the average of the

first and the minimal measured times

22



Figure 1: Times of execution of 50 identical test cases (50 repetitions of each test case) with BubbleJ and BubbleC3

the measurements show, the answer depends on the size of
the input - the smaller the input, the more measurements
are unreliable, so we need to take more measurements to get
a good result.

Bar charts in Fig. 2 depict the proportion of measurements
that differ from the smallest measurement by the given per-
centage range. The measurements on small inputs for the
BubbleJ vary a lot. More than 36% of all measurements
differ from the minimal time more than 10%. For the Bub-

bleC3 on the other hand only 17% of the measurements are
that bad. When increasing the size of the input the results
for both algorithms improve. For n=20000, for example,
more than 73% (98%) of measurements differ from the min-
imal measurements for less than 1% for BubbleJ (BubbleC3)
implementation.

The relative standard deviations of all measured times for
BubbleJ are 21%, 7% and 1% for n=500, 5000 and 20.000
respectively. This confirms the claim that as the size of the
input increases, the importance of multiple tests decreases.
Since the relative standard deviations are even smaller for
BubbleC3 (namely 15%, 1%, 0.24%), the importance of a
large number of measurements is even smaller here.

4. THE IMPACT OF THE PROGRAMMING
LANGUAGE

We compared the times of execution of four implementations
(BubbleJ, BubbleA, BubbleC0 and BubbleC3) on randomly
ordered sequences (RND) of length 500 to 50000 (step 500).
Each test was executed 30 times. Fig. 3 shows the minimum
measured times Tmin of all four algorithms.
We expected the BubbleC3 to be the best, which was also
proven with the measurements. The difference between Bub-

bleC0 and BubbleC3 is somewhat surprising. Since Bub-
bleSort is a simple algorithm, one would expect that the
speedup resulting from the optimization would not be that
great. But this is not the case, the difference is almost 2
times for large n. The relationship between BubbleJ and
BubbleA is interesting. In a battle between fast implemen-

tations, Java turned out to be the slowest, although the dif-
ferences in speed are not so great. Fitting all measurements
with a quadratic functions results in the following:

BubbleC0: Tmin(n) = 2.438n2 µs
BubbleJ: Tmin(n) = 1.372n2 µs
BubbleA: Tmin(n) = 1.311n2 µs
BubbleC3: Tmin(n) = 1.246n2 µs

The ratio between the best (BubbleC3) and the worst (Bub-
bleC0) implementation is 1 : 1.956, which we also noticed
from the graph. More interesting is the ratio between the
optimized C3 and Java implementation: BubbleC3 : Bub-

bleJ = 1 : 1,101. This means that for sorting random se-
quences Java is 10% slower than C. To find out, how good
this conclusion is, lets calculate and depict the relative error

Error =
|BubbleC3.Tmin − 1.1 ∗BubbleJ.Tmin|

BubbleJ.Tmin
∗ 100%

Fig. 4 shows that for small inputs (n < 5000) the error is
very big (as big as 1200%), but for larger inputs (n > 10000)
the error is always less than 5% and it seems that it decreases
when n increases.

As the last experiment we compared the times of execu-
tion of four implementations on inversely ordered sequences
(INV) of length 500 to 50,000 (step 500). The results that
are presented in Fig. 5 are somehow surprising.

The quality ranking of algorithms when sorting INV data
changes comparing to the ranking on RND data. While
BubbleC0 remains the worst implementation, on the first
place there is a swap - BubbleC3 gives way to BubbleA and
BubbleJ. Something similar happens with the sorted (SOR)
data. This change in ranking is hard to explain, but ac-
cording to our other research results which shown that the
processor’s branch predictor has a great impact to the exe-
cution time, we could speculate that the code generated by
JVM is less suitable for branch prediction. With INV (and

23



Figure 2: The proportion of measurements that differ from the smallest measurement by the given percentage range.

Figure 3: Tmin, RND data, n = 500, ..., 50000

Figure 4: Relative error of estimating BubbleJ.Tmin with
1.1*BubbleC3.Tmin

SOR) data the code predictor is always correct, which could
reflect in better performance. Anyway, the results unequiv-
ocally shows that the type of the input has a great impact
on the quality of implementation. While with random data
BubbleC3 implementation was faster than BubbleJ, for in-
versely ordered data (and sorted, as we also found out) the
Java implementation is the fastest.

5. CONCLUSIONS
The results presented in this paper show that there are many
factors that have impact to the execution time of the algo-
rithms. We have shown that despite a carefully controlled
environment, deviations occur in measurements. The devi-
ations are particularly pronounced in Java, since the way
of measuring time here is significantly more sensitive to the
influence of the environment than in C. We have seen that
repeated execution of algorithms is especially important for

Figure 5: Tmin, INV data, n = 500, ..., 50000

small inputs. We also compared the differences between the
programming languages. We showed that the difference be-
tween Java and C is not very big and that it depends on
the type of input data - for randomly sorted arrays, the C
implementation was faster, while for inversely ordered and
already sorted data, Java took the first place in the ranking.
In the future we could provide similar results for some other
problems (to see if the results can be generalized), we could
use another popular programming language (like Python)
and we could investigate the real impact of the branch pre-
dictor the final results.

6. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[2] T. Dobravec. Algator — an automatic algorithm
evaluation system. Advances in Computers,
116(1):65–131, 2019.

[3] M. Fernández. Models of Computation, An Introduction
to Computability Theory. Springer, 2009.

[4] B. Swathi. A comparative study and analysis on the
performance of the algorithms. International Journal of
Computer Science and Mobile Computing, 5(1):91–95,
Januar 2016.

[5] M. Tedre and N. Moisseinen. Experiments in
computing: A survey. The Scientific World Journal,
2014(1):1–11, 2014.

24



Systematic generation of precedence based MILP models
with P-graphs for multipurpose scheduling problems

Máté Hegyháti
Institute of Informatics and Mathematics

Bajcsy-Zs. u. 4.
Sopron, Hungary

hegyhati.mate@uni-sopron.hu

ABSTRACT
Scheduling of various processes is a widely researched topic
in the literature. Different fields have their own specific
constraints and parameters, thus, specialized approaches of-
ten emerge to tackle these needs efficiently. Solution meth-
ods have many flavors from general mathematical models
such as mathematical programming, constraint program-
ming; through general purpose heuristics, e.g., genetic al-
gorithms, ant colony optimization; to problem specific tools
like the S-graph framework.

A general aim of any newly developed method is to perform
efficiently, and provide the optimal solution quickly, prefer-
ably faster than existing approaches. However, each tool
has its strengths and weaknesses, and even for a well de-
fined problem class, it is often not trivial to select the best
approach for a problem instance in advance. This work fo-
cuses on a prerequisite of this dilemma: having the set of
approaches to consider.

The aim of the paper is to present a modeling approach
which enables the systematic generation of sound MILP
models for a problem class. To illustrate this approach, a
well known scheduling problem class from the batch pro-
cess industry is considered, and the investigation is limited
to only a specific type of MILP formulations, namely the
general precedence models.

Keywords
scheduling, model generation, precedence, P-graph, MILP

1. INTRODUCTION AND LITERATURE
In general, the goal of scheduling is to time processes and
often to allocate resources wisely in order to achieve a plan
that meets all requirements or to find the best one among
them. Due to its general nature, scheduling has been in-
vestigated in many different fields of science. In this work,
the focus is on the production industry, where machines or

equipment units are used to produce a certain set of goods.
More specifically, makespan minimization for multipurpose
batch processes is investigated, which has been addressed
with various techniques over the last few decade, such as
Mixed-Integer Linear Programming (MILP), S-graph frame-
work, Linearly-Priced Timed Automata, and others[1, 7].
Even among MILP models, several different branches have
emerged, the two main categories are precedence based and
time discretization based formulations[2].

A lot of effort has been invested into the testing various mod-
els on case studies, benchmark examples, or a large number
of randomly generated examples. When such a study is car-
ried out, the examiner has to make a decision about the
models to be included. This is not a straight forward de-
cision even for only MILP models, as there is a huge num-
ber of them, often developed for a slightly different problem
classes, and usually have several variants. Moreover, even
with expert knowledge on the field, one can only include
models that have already been published.

The aim of this work is to introduce a modeling approach,
that results in a mathematical model enabling systematic
generation of possible general precedence based models, in-
cluding the ones published in the literature. Such a method
would ensure for a comparative study, that it is not limited
on manually hand-picked models, but consider all options
within a given set of limitations. For the sake of simplicity
and the illustration if this approach, this work focuses only
on precedence based MILP models with general precedence
variables for the most basic multipurpose batch scheduling
problems without any common real life requirements such as
changing- and setup times, storage limitations, etc. It would
have been too ambitious for this study to include a a wider
range of model types or a more complex scheduling problem
class. This is left to future research. It is not the aim of
this paper to provide any comparative results between the
various MILP models, neither is to present the list of the nu-
merous MILP formulations generated. The key messages of
this study are the concepts and techniques used for building
this model.

For the aforementioned purposes, the P-graph framework
was utilized. P-graphs have been originally introduced as
combinatorial models of process networks[3], that allows the
developed algorithms to find feasible or optimal solution
structures to synthesis problems[5, 4]. Since then, the mod-
els and the algorithms of the framework have been widely

25



applied in different areas of science from renewable supply
chain optimization through polygeneration plant modeling
to mobile workforce optimization[8, 6, 9].

The paper is structured as follows: Section 2 provides the
definition of the scheduling problem class selected for illus-
tration. Different modeling techniques among precedence
based MILP formulations are briefly discussed in Section
3. Due to space limitations, completeness is not the aim of
this section, only the showcasing of variations. To facilitate
understanding, the utilized parts of the P-graph framework
are briefly introduced in Section 4. The P-graph formulation
of precedence based MILP models is illustrated in 5, again
without the aim of completeness. Concluding remarks are
shared in 6 along with possible directions of further research.

2. PROBLEM DEFINITION
The goal of the considered problem class is to minimize
makespan of producing a set of products P with the set of
equipment units: J . The production recipe of each product
p ∈ P is linear, and np ∈ Z+ denotes the number of steps. A
derived set, I =

{
(p, n) | p ∈ P, n ∈ {1, 2, . . . , np}

}
denotes

the set of all tasks to be carried out. For simpler notation,
a task is denoted by i instead of (p, n) when that level of
detail is unnecessary. Ij ⊆ I refers to the tasks that can be
carried out by unit j ∈ J , and for all i ∈ Ij , the execution
time is denoted by ptij in that unit. Ji is used to refer to
units that can perform i ∈ I, i.e., Ji = {j ∈ J | i ∈ Ij}.

Each task is uninterruptible, must be assigned to exactly one
unit, and a unit may not work on two tasks at the same time.
Other common timing parameters for setups, changeovers,
etc., are neglected, and intermediate materials can be stored
at any amounts for any duration of time, i.e., Unlimited
Intermediate Storage (UIS) Policy is considered. 1

3. VARIATIONS FOR GENERAL PRECE-
DENCE BASED MILP MODELS

Precedence based models for the described problem class
usually rely on decision variables about the assignment, se-
quencing, and starting time of tasks.

Assignment is generally modeled by a binary variable, Yij

denoting whether unit j ∈ J is assigned to task i ∈ I. Sim-
ilarly, the exact starting time of task i ∈ I is modeled by a
continuous variable Si ∈ R0+. The models also always define
the makespan, MS as a target variable to be minimized.

This is the point, where models start to diverge. Some dedi-
cate a continuous variable Ci for the completion time of each
task, similar to Si. The largest difference, however, appears
in the sequencing variables, usually denoted by X. In some
models, Xiji′ takes the value of 1 if and only if both tasks i
and i′ are assigned to unit j and the decision has been made
to perform i before i′. With such a variable, the constraint
to properly sequence tasks can be expressed by the following

1In this simplified form, the problem class is reduced to Flex-
ible Job Shop Scheduling. However, as the research was mo-
tivated by the batch production industry, its terminology is
kept along with its standard notation, that has less conflicts
with that of the P-graph framework.

inequality, where M is a sufficiently large number:

Si′ ≥ Si + ptij −M · (1−Xiji′) ∀j ∈ J, i, i′ ∈ Ij

This formulation, however, requires an unnecessarily large
number of binary variables, thus models often employ an-
other variable, Xii′ that takes the value of 1 if tasks i and
i′ are assigned to the same unit, and the decision has been
made that i is performed before i′. With such variables, the
constraint above can be replaced with another:

Si′ ≥ Si+ptij−M ·(3−Xii′−Yij−Yi′j) ∀j ∈ J, i, i′ ∈ Ij

Note, that the value of Xii′ is irrelevant if i and i′ are as-
signed to different units. If that feature is ensured by an-
other constraint, and a separate completion variable is de-
fined, sequencing can be enforced via the following simple
constraint:

Si′ ≥ Ci −M · (1−Xii′) ∀i, i′ ∈ I, Ji ∩ Ji′ 6= ∅

Again, this constraint does not require Xii′ to be 0 if the
tasks are assigned to different units, it only needs them to
be allowed to be 0.

Following similar thinking, other variants of the X variables
and their corresponding constraints can be derived. Such
further discussion is omitted here, however, there other ways
how different model variants can be generated. For example,
Xii′ variables could either be defined for all i, i′ pairs in both
directions or only for i < i′ if a total ordering is defined. Or,
when Ci is introduced, it may be required to be the exact
time when i finishes, or just any time point after that, as
discussed in a bit more detail in Section 5. Also, if the same
requirement of the problem class can be expressed in vari-
ous ways, only one can be selected or even several of them
redundantly. The latter may seem unreasonable, however,
testing experience often shows, that redundant constraints
may affect the search space in such a way, that MILP solvers
and their heuristics can find better solutions or bounds.

4. BRIEF INTRODUCTION TO P-GRAPHS
The P-graph framework was introduced to provide a rigor-
ous and efficient framework to generate feasible process net-
works [3], or find the optimal one among them[5, 4]. This
work relies only on the original P-graph model (without any
extensions or additional parameters) and the SSG (Solution
Structure Generator) algorithm, that generates all combina-
torially feasible solution structures.

A P-graph is an (M,O) pair, where M denotes the set of
materials, and O the set of operating units. Each operating
unit o ∈ O is a pair of material sets: its (mandatory) inputs
and outputs. A Process Network Synthesis (PNS) problem
is defined by a triple (P,R,O) where

P is the set of product materials that must be produced by
at least one operating unit.

R is the set of raw materials that can be consumed without
being produced by an operating unit.

O is the set of possible operating unit to be included in the
network.

26



The SSG algorithms takes (P,R,O) as its input, and gener-
ates all of the feasible subsets of O that satisfy the 5 axioms
for feasible solution structures.

5. SYSTEMATIC MODEL GENERATION
In many industrial applications of the P-graph framework,
the original meaning of operating units and materials is ex-
tended to broader concepts. Materials often represent logical
states, and operating units may model transportation, etc.
This application of P-graphs follows the same idea. There
are, however, terms like intermediates, product, unit, etc.,
that both appear in the underlying process to be scheduled
and in the P-graph model, that is used to generate MILP
models. To avoid confusion, the elements of the P-graph
model will be referred to as M-, P-, I-,R- and O-nodes.

5.1 P- and R-nodes
The R-nodes of the proposed model are the variable decla-
rations with their domain, such as:

• Si ∈ R0+ ∀i ∈ I

• Ci ∈ R0+ ∀i ∈ I

• Yij ∈ {0, 1} ∀j ∈ J, i ∈ I

• Xii′ ∈ {0, 1} ∀i, i′ ∈ I, i < i′, Ji ∩ Ji′ 6= ∅

• Xii′ ∈ {0, 1} ∀i, i′ ∈ I, i > i′, Ji ∩ Ji′ 6= ∅

• Xiji′ ∈ {0, 1} ∀j ∈ J, i, i′ ∈ Ij , i < i′

• Xiji′ ∈ {0, 1} ∀j ∈ J, i, i′ ∈ Ij , i > i′

The P-nodes are the feasibility constraints of the scheduling
problem:

P1 Each task must be carried out.

P2 Production steps of a product must be in order.

P3 Tasks assigned to the same unit can not overlap.

P4 The shutdown of the facility must happen after all of the
products are produced.

These are the results that has to be produced (ensured) from
the R-nodes. To do so, O-nodes are available.

5.2 O- and I-nodes
One type of O-nodes are the possible constraints in a prece-
dence based MILP model.

As an example, the following constraint is an O-node, that
consumes the R-node representing Y and generates P1:∑

j∈J

Yij = 1 ∀i ∈ I

As another example, the following constraint is another O-
node that generates P2:

S(p,n+1) ≥ C(p,n) ∀p ∈ P, n ∈ {1, 2, . . . , np − 1}

The inputs of this O-node are less obvious and worth a short
discussion. Seemingly there should be two of them, the R-
nodes representing the Si and Ci variables. However, that
is not correct, as the R-nodes only represent the availability
of those variables, but don’t ensure additional semantic fea-
tures. Namely, the R-node for Ci only ensures that there is
a variable named C but nothing about its timing. For the
O-node above to produce P2, such a C variable is needed,
whose value is ensured to be greater or equal than the com-
pletion time of the task. This semantically correct C variable
is different from the R-node above, and can be represented
by an I-node. In turn, this I-node can be produced by the
following O-node:

Ci ≥ Si +
∑
j∈Ji

Yij · ptij ∀i ∈ I

or by another O-node:

Ci ≥ Si + Yij · ptij ∀i ∈ I, j ∈ Ji

Both O-nodes require the R-nodes for C and S variables as
inputs. Again, the R-node representing the Y variables is
not an input, as it does not hold the semantic meaning, that
one unit is assigned to a task. This is represented by P1.

An observant reader may point out that the first suggested
O-node above should have had equality:

Ci = Si +
∑
j∈Ji

Yij · ptij ∀i ∈ I

This constraint, of course is a valid, and a different O-node
in the proposed model. However, the output of this node
is not the same, as in this case, it is ensured that Ci is
exactly the finishing time of a task, not a time point at least
that much. Some O-nodes may require this more specific
version of C, others the previous one. On the other hand,
if this new I-node for the C variables with exact timing is
available, the other I-node is also implied. This implication
is also represented by an O-node, that has no constraint
assigned to it.

Thus, I-nodes in the proposed model are concepts similar
to the P-nodes, albeit more specific to the variables of the
model. O-nodes represent either constraints or logical im-
plications.

5.3 Illustration
Figure 1 illustrates the part of the model that in the previous
section.

It is easy to see, that there are 7 feasible solution structures
(3 of them without redundancy) to just this small part of
the P-graph model. Generating the model from a solution
structure is straight forward, the constraints and variable
declarations corresponding to included O-nodes and R-nodes
compose the MILP model together with the objective func-
tion to minimize the makespan.

Note, however, that there could be other O-nodes producing
P2, further increasing the number of possible models. For
example:

S(p,n+1) ≥ S(p,n) +
∑

j∈J(p,n)

Y(p,n)j · pt(p,n)j ∀(p, n) ∈ I

27



Figure 1: Part of the proposed P-graph model

5.4 Remarks on extendability
The rest of the model could be formulated in a similar fash-
ion. Naturally, the presented model only considers con-
straints that are included as O-nodes. It will not discover
new type of constraints, only find the sound combinations
of proposed ones.

The modeling procedure, however, allows extension by addi-
tion. For example, if one were to consider immediate prece-
dence variables as well, that would introduce an additional
I-node for an X variable that satisfies the required condi-
tions, that are more strict than the ones required by general
precedence models. Moreover, O-nodes would be added to
produce and consume this I-node. Some models also em-
ploy an integer variable, that denotes the position of a task
in the assigned units production sequence. This could be
implemented by adding R-, I- and O-nodes similarly.

Thus, this is a model that can continuously grow, and fea-
sible solution structures of a previous version would still re-
main feasible.

There are still options, that were not discussed here due to
space limitations, and to the early stage of this research. For
example, in an extended model, some I-nodes could require
a mutually exclusive relation. This is a feature, that is not
supported by the P-graph tools introduced here. P-graphs
with material balances and an underlying MILP model can,
however, easily model this.

Also, the presented model only allows redundancy among
constraints, but not among variables. Simplest example to
this would be, if two sets of Ci variables were introduced, and
some would be used by one subset of O-nodes, and the other
one by others. This feature, again, could be modeled by
introducing material balances and quantities into the model.

6. CONCLUSIONS & FUTURE RESEARCH
In this paper, an approach is presented to develop a model,
that can generate MILP models for a specific problem class.
This modeling technique - based on P-graphs - is illustrated
on the simple class of multipurpose batch process scheduling
problems and with the scope on general precedence based
MILP models by P-graphs. Following this technique results
in a large PNS problem, where raw materials are variable

declarations and operating units are linear constraints on
them. An MILP model can easily be derived for the orig-
inal illustrative problem class for every solution structure
generated by SSG for this PNS problem. The model is
backwards-compatible with addition, i.e., the introduction
of new variables and constraints does not render previous
solution structures (MILP formulations) infeasible (invalid).

This research is in an early stage. There are numerous ad-
ditions and extensions of the proposed approach that could
be considered for future research. After the inclusion of
intermediate precedence variables, parts of time discretiza-
tion models may be added, which may help uncover previ-
ously unknown hybrid models. Extensive performance test-
ing of generated models, and observing the reduction be-
tween model variants by the preprocessor of various MILP
solvers could be of interest.

7. ACKNOWLEDGEMENT
The author thanks Nikolett Sós, whose diploma project con-
sultations sparked the idea behind this work.

8. REFERENCES
[1] State-of-the-art review of optimization methods for

short-term scheduling of batch processes. Computers &
Chemical Engineering, 30:913–946, 2006.

[2] C. A. Floudas and X. Lin. Continuous-time versus
discrete-time approaches for scheduling of chemical
processes: a review. Computers & Chemical
Engineering, 28:2109–2129, 2004.

[3] F. Friedler, K. Tarján, Y. W. Huang, L. T. Fan,
K. Tarjan, Y. W. Huang, and L. T. Fan.
Graph-theoretic approach to process synthesis: Axioms
and theorems. Chem. Engng Sci., 47:1973–1988, 1992.

[4] F. Friedler, B. J. Varga, E. Fehér, and L. T. Fan. State
of the Art in Global Optimization, chapter
Combinatorially Accelerated Branch-and-Bound
Method for Solving the MIP Model of Process Network
Synthesis, pages 609–626. Kluwer Academic Publishers,
Dordrecht, 1996.

[5] F. Friedler, J. B. Varga, and L. T. Fan.
Decision-mapping: A tool for consistent and complete
decisions in process synthesis. Chemical Engineering
Science, 50:1755–1768, 1995.

[6] F. Friedler, Ákos Orosz, and J. P. Losada. P-graphs for
Process Systems Engineering. Springer, Cham, 1
edition, 2022.

[7] M. Hegyhati and F. Friedler. Overview of industrial
batch process scheduling. Chemical Engineering
Transactions, 21:895–900, 2010.

[8] J. Klemes and P. Varbanov. Spreading the message:
P-graph enhancements: Implementations and
applications. Chemical Engineering Transactions,
45:1333–1338, 10 2015.

[9] A. Éles, I. Heckl, and H. Cabezas. New general
mixed-integer linear programming model for mobile
workforce management. Optimization and Engineering,
Feb. 2021. IF: 2.760.

28



On relations of Watson-Crick finite automata to other
computational paradigms

[Extended Abstract]

Benedek Nagy
Department of Mathematics, Eastern Mediterranean University

Famagusta, North Cyprus, via Mersin 10, Turkey
Institute of Mathematics and Informatics, Eszterházy Károly Catholic University, Eger, Hungary

nbenedek.inf@gmail.com

ABSTRACT
We study language classes that are accepted by some vari-
ants of Watson-Crick finite automata, i.e., with a 2-head
model of finite automata working on Watson-Crick tape
modeling DNA molecules. We show a relation between sti-
cker systems and stateless traditional Watson-Crick automa-
ta where the two heads scan the input in the same direction.
We also establish a new connection between external contex-
tual grammars with choice to the sensing 5′ → 3′ Watson-
Crick automata, i.e., to the 2-head model of finite automata
where the two heads starting from the two extremes of the
input and they move in opposite direction till they meet.

Categories and Subject Descriptors
F.4.3 [Formal Languages]

General Terms
Theory, Automata, Languages, Computing paradigms

Keywords
Watson-Crick automata, sticker systems, formal languages,
finite state machines, stateless automata, external contex-
tual grammars, linear languages

1. INTRODUCTION
On the one hand, contextual grammars are one of the formal
methods developed to generate languages [2, 9, 21] initiated
by Solomon Marcus in the end of 1960s. The generation of
the words, i.e., the derivation process is going by inserting
or attaching two subwords at the same time to the actual
word. The inserted/attached subwords are called context
and the condition how the process is done, the “choice”, is
handled by selection languages. The main motivation comes
from linguistics, as there are various non-context-free struc-
tures that occur in natural languages, in general. Contextual
grammars give a somewhat orthogonal classes of languages

to the Chomsky hierarchy. However, they are not indepen-
dent of each other, as in the former model, the class of selec-
tion languages is frequently chosen as one of the classes of the
Chomsky hierarchy. There are two main types of contextual
grammars, the internal and the external types, in the former
the words of a context are inserted inside the actual word,
while in the latter the words of the context are attached to
the two ends of the actual word. In this paper, we are inter-
ested mostly in the external contextual grammars, thus we
will only recall those in Section 2. On the other hand, DNA
computing belongs to new computing paradigms emerged in
the end of the last century. Two of the ‘traditional’ mod-
els of DNA computing, the filtering and the sticker systems
are in close relation to the ground breaking experiments of
Adleman and Lipton solving (some instants) of the Hamil-
tonian path and SAT problems by coding graphs in sets of
DNA molecules, filtering out and detecting the result [1, 8].
DNA computing and its models can also be used to gen-
erate/accept formal languages, and not only to solve some
(combinatorially hard) problems. The sticker systems can
also be used for language generation based on the sticking
operation: DNA molecules having single stranded, so-called
‘sticky’ ends, can stick together to form a larger molecule.
For a good analogy, one may think about how a (long) line
can be built by dominos. (A more formal description is given
in Section 2.)

Another early formal DNA computing model, named by the
Nobel price winners Watson and Crick, who discovered the
structure of the DNA molecules, is a generalisation of finite
state automata working on two-stranded DNA molecules
(also called Watson-Crick tape) instead of the traditional
tape [3]. These models of computation, namely Watson-
Crick automata, are entirely defined to describe some for-
mal languages, in a similar manner as models of traditional
automata theory do. Already it is mentioned in [20, 22]
that Watson-Crick finite automata are developed as a kind
of accepting counterpart of the language generating sticker
systems.

In this paper, our aim is twofold, first we investigate a formal
connection between some sticker systems and some variants
of Watson-Crick finite automata, and then, we also concen-
trate on connections of reverse Watson-Crick automata and
external contextual grammars. Some variants of the reverse
Watson-Crick automata are also called 5′ → 3′ Watson-

29



Crick automata as the heads of these automata are scan-
ning the input DNA in opposite physical directions, i.e.,
both strands from their 5′ to 3′ direction. We note here
that there is an expansive literature on the sensing 5′ → 3′

Watson-Crick automata [10, 11, 12, 13, 14, 16, 17, 18, 19]
in which the process on the input finishes when the heads
meet if the automaton does not get stuck earlier. The struc-
ture of this paper is as follows. In the next section we re-
call some formal definitions from the literature mentioned
earlier. In Section 3, the first part of the main results are
presented, by establishing a connection between sticker sys-
tems and Watson-Crick automata. Then, in Section 4, we
present connections between external contextual grammars
and sensing 5′ → 3′ Watson-Crick automata.

2. NOTATIONS AND DEFINITIONS
Here, we recall some important definitions and fix our nota-
tions. We assume that the reader already knows the basic
concepts of finite automata, formal languages, generative
grammars and computing. We denote the empty word by λ.

Let us start with external contextual grammars with choice
(also called selection). Formally, an external contextual
grammar EC is a triplet (V,A, P ) where V is a finite al-
phabet, A is a finite set of words over V , the set of axioms
and P is a finite set of pairs. The elements of P are of the
form (C, S) where C ⊂ V ∗ × V ∗ contains the contexts and
S is a language over V , the selection language for context
C. The direct derivation relation is defined as follows: for
any word x ∈ V ∗, x ⇒ uxv if there is a context C = (u, v)
such that x ∈ S, for a pair (C, S) ∈ P . As usual, the direct
derivations (or also called derivation steps) can be extended
to the derivation relation, denoted by ⇒∗ by taking their
reflexive and transitive closure. The generated language is
then defined as

L(EC) = {w ∈ V ∗| there exists x ∈ A such that x⇒∗ w}.

We say that an external contextual grammar is without
choice if S = V ∗ for every element of P . If all choice lan-
guages are regular/linear etc., then we say that this is an ex-
ternal contextual grammar with regular/linear, etc. choice.

Now we describe some basic facts about DNA. DNA mole-
cules are built up by 4 types of nucleotides which are usu-
ally abbreviated as A,C,G,T by their name. A DNA strand
can be seen as a sequence of nucleotides. The sequence has
two ends, one of them is denoted by 5′ and the other by
3′. These ends can easily be distinguished chemically. The
nucleotides have a so-called Watson-Crick complementarity
relation meaning that A and T are pairs of each other as
well as C and G are pairs of each other. Two DNA strands
could form a DNA molecule that is double stranded, if they
are complement of each other as follows. At each position of
a strand the nucleotide is the Watson-Crick pair of the nu-
cleotide of the other strand at that position. Moreover, the
direction of the two strands are opposite, i.e., the nucleotide
of the 5′ end of a strand is paired to the nucleotide of the
3′ end of the other. A full double stranded DNA molecule
is denoted by

[
u
v

]
with u on the upper and v on the lower

strand. With the notation
(
u
v

)
we may denote a DNA which

has u on the upper and v on the lower strand, but it may not
be a full double stranded molecule, e.g., their lengths may
not be identical. When one of the strands has some extra

nucleotides on one of the ends, than this is called a sticky
end, as the molecule can be expanded by sticking there an
appropriate other molecule...

Instead of the original nucleotides, in formal models we may
use letters of any alphabet. Moreover, as [6] has proven,
we may use the identity relation in the role of the comple-
mentarity relation without loss of generality, both at sticker
systems and at traditional Watson-Crick automata. Thus,
for simplicity, from now on we use always the identity rela-
tion.

Now, we are ready to see Watson-Crick automata (WK
automata shortly). These automata work on (full double
stranded) DNA molecules; they have two reading heads one
for each of the two DNA strands. Formally, a Watson-Crick
automaton is a 6-tuple M = (V, ρ,Q, q0, F, δ), where V is
the (input) alphabet, ρ ⊆ V ×V denotes a complementarity
relation, (in this paper, we use the identity), Q represents a
finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the
set of final (accepting) states and δ is called transition map-

ping and it is of the form δ : Q×
(
V ∗

V ∗

)
→ 2Q, such that

it is non empty only for finitely many triplets of q, u and v,
i.e., (q,

(
u
v

)
), where q ∈ Q, u, v ∈ V ∗. In case Q = F = {q0},

we say that the automaton is stateless.

The description so far has not distinguished the traditional
and the sensing 5′ → 3′ models. Thus, the configuration and
the computation steps, i.e., the transitions between config-
urations play crucial role to specify the type of the model.
In a traditional WK automaton, both heads of the automa-
ton starts from the same place, from one of the ends of
the input DNA molecule, and both of them read the entire
strand in an accepting computation. The input molecule is
accepted, if the automaton could reach an accepting state
when both strands are fully scanned. Formally, a configu-
ration of a traditional WK automaton is a triplet

((
u
v

)
, q
)

in which u, v ∈ V ∗ are the upper and lower strand parts
of the input that have not processed yet, and q ∈ Q is
the actual state. The initial configuration is

((
w
w

)
, q0
)

with
the input word w in both strands, as at that stage of the
computation the whole input DNA

[
w
w

]
is to be processed.

From the configuration
((
bu
cv

)
, q
)

the configuration
((
u
v

)
, p
)

directly computed (or computed in one step), denoted by((
bu
cv

)
, q
)
⇒
((
u
v

)
, p
)
), if p ∈ δ

(
q,
(
b
c

))
. The reflexive and

transitive closure of ⇒ is denoted by ⇒∗ and called compu-
tation. A DNA molecule

[
w
w

]
or, let us say, the word w, is

accepted if
((
w
w

)
, q0
)
⇒∗

((
λ
λ

)
, p
)

for some p ∈ F . The set
of accepted words is the accepted language.

However, as we have already mentioned, the two strands of
the DNA molecule have opposite 5′ → 3′ orientations, thus it
is worth to take into account such variants of Watson-Crick
automata that parse the two strands of the Watson-Crick
tape in opposite directions. These automata are also called
reverse WK automata. Obviously, if each head starts to read
its strand from its 5′ end, as usually enzymes also do, then
they start to scan the input DNA from physically different
ends [7, 22]. On the other hand, as the two strands of a
DNA molecule are determined by each other via the Watson-
Crick complementarity relation, we may also think about the
sensing 5′ → 3′ WK automata, in which the two heads sense

30



if they arrived into the same position. Since, actually, by this
point of the computation, exactly one of the letters of each
position has been already read, this model finishes the work
on the input at this point and decides on the acceptance.
It is easy to see, that the complementarity relation can also
be substituted by the identity in case of these automata
without changing their computational power, (i.e., the class
of languages that can be formed by the words on the upper
strands of the accepted molecules).

Formally, a configuration of a sensing 5′ → 3′ WK automa-
ton is a pair (q, w) where q is the current state of the au-
tomaton and w is the (double stranded) part of the input
word which has not been processed (read) yet by any of the
heads. For w′, x, y ∈ V ∗, q, q′ ∈ Q, we write a transition, a
step of a computation, between two configurations as:
(q, xw′y) ⇒ (q′, w′) if and only if q′ ∈ δ(q,

(
x
y

)
). We denote

the reflexive and transitive closure of the relation ⇒ by ⇒∗
also in this case. Therefore, for a given w ∈ V ∗, an accepting
computation is a sequence of transitions (q0, w) ⇒∗ (p, λ),
starting from the initial state and ending in a final state
p ∈ F . The language accepted by a sensing 5′ → 3′ WK
automaton M is:

L(M) = {w ∈ V ∗ | (q0, w)⇒∗ (p, λ), p ∈ F}.

Finally, let us recall the sticker systems. We note here that
sticker systems, as computing model, can be used to pro-
vide efficient solutions to computationally hard, e.g., NP-
complete problems (at least theoretically) [1, 4, 8, 15, 23].
However, in this paper we are concentrating in their lan-
guage generating feature, thus we present them in the sequel
from this point of view [5].

Single stranded DNA molecules of the form
(
u
λ

)
are called

upper dominos, while ones of the form
(
λ
v

)
are called lower

dominos. The set of double stranded DNA molecules with
sticky end on the right side are denoted by R(V ): they are
either of the form

[
w
w

] (
u
λ

)
or
[
w
w

] (
λ
v

)
.

A simple regular sticker system is a pentuple
(V, %,Du, Dl, A), where
• V is an alphabet,
• % is the complementarity relation (we use identity in this
paper),
• Du and Dl are sets of dominos that are associated to the
upper and lower strand, respectively,
• A ⊂ R(V ) is a finite set of axioms.

The generation starts with an axiom and goes step by step.
Depending on the position of the sticky end of the actual
molecule, only dominos of the other strand may stick to it
by filling that strand without gaps and maybe further ex-
panding it. The generation has finished when a full double
stranded DNA is produced. The generated language is de-
fined consequently [5, 15].

Those special cases are called sticker systems without ax-
ioms, when A =

{(
λ
λ

)}
to infer the fact that the molecules

are built up only by dominos and the generation could start
from any dominos in this case.

Let (V, %,Du, Dl, A) be a simple regular sticker system. Let

T be a finite alphabet and u : Du → T , ` : Dl → T be two
mappings to T . For a finished computation, let us assign
the string wu ∈ T ∗, by using u, to the sequence of dominos
used in the upper strand. Similarly, let us assign wl ∈ T ∗,
by using `, for the sequence of dominos used in the lower
strand.

Further, a computation is coherent, if wu = wl. Based on
that, the language generated by a simple regular sticker sys-
tem R in coherent way is{

w |
[w
w

]
can be generated in coherent way in R

}
.

3. STICKER SYSTEMS AND
WATSON-CRICK AUTOMATA

In this section we present relations between two paradigms
dealing with formal languages in DNA computing.

It is known that if a language L can be obtained by a simple
regular sticker system in a coherent way, then there is a WK
automaton that accepts L [22].

Now, we give a kind of extension of this result.

Theorem 1. If the language L can be obtained by a sim-
ple regular sticker system without axiom in a coherent way,
then L is also accepted by a stateless WK automaton.

Proof. Let (V, %,Du, Dl, A) be a simple regular sticker
system that generates L in coherent way with the mappings
u : Du → T and ` : Dl → T with some alphabet T . Let us
construct a stateless WK automaton M that accepts L as
follows. Let M = (V, %, {q}, q, {q}, δ), where δ is defined in

the following way: q ∈ δ
(
q,
(
x
y

))
, for all pairs

(
x
λ

)
∈ Du,(

λ
y

)
∈ Dl, if u(x) = `(y).

By the construction, the application of the sticking opera-
tion in a coherent way is matched with the computing steps
of M , and thus, exactly those molecules can be generated
by the given sticker system as the ones accepted by M .

4. 5′ → 3′ WK AUTOMATA AND EXTER-
NAL CONTEXTUAL GRAMMARS

In this section we present two new links between Watson-
Crick automata and external contextual grammars. On the
first hand, sensing 5′ → 3′ WK automata accept exactly
the class of linear languages of the Chomsky hierarchy [10,
11, 13, 14, 17, 18]. It is also known (see, e.g., [2]) that ex-
ternal contextual grammars without choice generate exactly
those languages which can be generated by linear grammar
with exactly one nonterminal symbol. First, we complement
these results as follows.

Theorem 2. If the language L is generated by external
contextual grammars without choice such that the only axiom
is the empty word λ, then L is accepted by a stateless sensing
5′ → 3′ WK automaton.

Proof. We prove by construction. Let EC = (V, {λ}, P )
be an external contextual grammars without choice, where

31



P contains pairs (Ci, V
∗) with Ci = (ui, vi). Let M =

(V, ρ, {q}, q, {q}, δ) be a stateless 5′ → 3′ WK automaton
with the identity relation on V as ρ and let δ be defined
as follows based on P : q ∈ δ(q,

(
ui
vi

)
) for each Ci. It is

easy to see that derivations, i.e., generations of words in EC
correspond step by step in an opposite order to accepting
computations in M and vice versa.

Further, we can establish the following new connection be-
tween these models.

Theorem 3. If the language L is accepted by sensing
5′ → 3′ WK automaton, then it can be generated by external
contextual grammars with linear choice languages.

Proof. Let M = (V, ρ,Q, q0, F, δ) be a 5′ → 3′ WK au-
tomaton that accepts L, where ρ is the identity relation on
V . For each state q ∈ Q, let Lq denote the linear language
that can be accepted from q, i.e., the language accepted by
Mq = (V, ρ,Q, q, F, δ). Obviously, L = Lq0 . Now, we give
an external contextual grammar EC with linear choice. Ob-
viously the same alphabet V is used. Further, let the set of
axioms be A = {λ}. Now, for each transition p ∈ δ(q,

(
u
v

)
) of

M (where p, q ∈ Q, u, v ∈ V ∗), let the pair (C, S) C = (u, v)
and the choice Lp be in P . Thus, the system EC = (V,A, P )
is able to produce exactly L by a backward stepwise simu-
lation of the accepting computations.

5. CONCLUSIONS
Languages that can be obtained by a simple regular sticker
system without axiom in a coherent way, are shown to be
accepted by WK automaton with a sole state. On the other
hand, languages generated by external contextual grammar
without choice and with linear choice are related to lan-
guages of sensing 5′ → 3′ WK automata.

6. REFERENCES
[1] L. M. Adleman. Molecular computation of solutions to

combinatorial problems. Science,
226(5187):1021–1024, 1994.

[2] R. Ceterchi. Marcus contextual grammars. In Formal
languages and applications (C. Mart́ın-Vide,
V. Mitrana and Gh. Păun, eds.), Springer, pp.
335–366, 2004.

[3] R. Freund, Gh. Păun, G. Rozenberg and A. Salomaa.
Watson-Crick finite automata. In 3rd DIMACS
Sympozium On DNA Based Computers, Philadelphia,
pp. 305–317, 1997.

[4] Z. Ignatova, I. Mart́ınez-Pérez and
K.-H. Zimmermann. DNA computing models.
Springer, New York, 2008.

[5] L. Kari, Gh. Păun, G. Rozenberg, A. Salomaa and
S. Yu. DNA computing, sticker systems, and
universality. Acta Informatica 35: 401–420, 1998.

[6] D. Kuske and P. Weigel. The role of the
complementarity relation in Watson-Crick automata
and sticker systems. In Developments in Language
Theory, DLT 2004, LNCS 3340, Springer, Berlin,
Heidelberg, pp. 272—283, 2004.

[7] P. Leupold and B. Nagy. 5′ → 3′ Watson-Crick
automata with several runs. Fundamenta Informaticae
104, pp. 71-–91, 2010.

[8] R. J. Lipton. DNA solution of hard computational
problems. Science, 268(5210), pp. 542–545, 1995.

[9] S. Marcus. Contextual grammars. Revue Roum. Math.
Pures Appl., 14, pp. 1525—1534, 1969.

[10] B. Nagy. On 5′ → 3′ sensing Watson-Crick finite
automata. In: Preliminary proceedings of DNA13: The
13th International Meeting on DNA computing,
Memphis, Tennessee, USA, pp. 327–336, 2007.

[11] B. Nagy. On 5′ → 3′ sensing Watson-Crick finite
automata. In: DNA Computing. DNA 2007: Selected
revised papers, LNCS 4848, Springer, Berlin,
Heidelberg, pp. 256—262, 2008.

[12] B. Nagy. On a hierarchy of 5′ → 3′ sensing WK finite
automata languages. In: Computaility in Europe, CiE
2009: Mathematical Theory and Computational
Practice, Abstract Booklet, Heidelberg, pp. 266—275,
2009.

[13] B. Nagy. 5′ → 3′ Sensing Watson-Crick Finite
Automata. In: G. Fung, ed.: Sequence and Genome
Analysis II - Methods and Applications, iConcept
Press, pp. 39—56, 2010.

[14] B. Nagy. On a hierarchy of 5′ → 3′ sensing
Watson-Crick finite automata languages. Journal of
Logic and Computation 23(4), pp. 855—872, 2013.

[15] B. Nagy. DNS számı́tógépek és formális modelljeik (in
Hungarian). Typotex, Budapest, Hungary, 2014.

[16] B. Nagy and S. Parchami. On deterministic sensing
5′ → 3′ Watson–Crick finite automata: a full hierarchy
in 2detLIN. Acta Informatica 58 pp. 153–175, 2021.

[17] B. Nagy and S. Parchami. 5′ → 3′ Watson-Crick
automata languages – without the sensing parameter.
Natural Computing, online first, 2022. doi:
10.1007/s11047-021-09869-9

[18] B. Nagy, S. Parchami and H. M. M. Sadeghi. A new
sensing 5′ → 3′ Watson-Crick automata concept. In:
Proc. 15th Int. Conf. Automata and Formal
Languages, AFL 2017, EPTCS 252, pp. 195–204, 2017.

[19] S. Parchami and B. Nagy. Deterministic Sensing
5′ → 3′ Watson-Crick Automata Without Sensing
Parameter. In: Unconventional Computation and
Natural Computation, UCNC 2018, LNCS 10867,
Springer, pp. 173–187, 2018.

[20] Gh. Păun. DNA Computing by Matching: Sticker
Systems and Watson-Crick Automata, In Pattern
Formation in Biology, Vision and Dynamics
(A. Carbone, M. Gromov, P. Prusinkiewicz, eds.),
World Scientific, Singapore, pp. 336—362, 2000.

[21] Gh. Păun. Marcus Contextual Grammars. Kluwer
Publ. House, Doordrecht, 1998.

[22] Gh. Păun, G. Rozenberg and A. Salomaa. DNA
Computing: New Computing Paradigms.
Springer-Verlag, Berlin, Heidelberg, 2002.

[23] S. Roweis, E. Winfree, R. Burgoyne, N. V. Chelyapov,
M. F. Goodman, P. W. K. Rothemund, and
L. M. Adleman. Sticker-based model for DNA
computation. Journal of Computational Biology 5, pp.
615–629, 1998.

32



Surrogate Component Approach for a Synchronization
Problem

Alejandro Olivas
González

Labex IMOBS3
LIMOS Lab, UCA/CNRS

Clermont-Ferrand, France

Alain Quilliot
Labex IMOBS3

LIMOS Lab, UCA/CNRS
Clermont-Ferrand, France
alain.quilliot@uca.fr

Hélène Toussaint
LIMOS UCA/CNRS

Clermont-Ferrand, France

ABSTRACT
We deal here with electric vehicles, provided in energy by
a local photovoltaic micro-plant, with limited storage and
time-dependent production capacities. Our goal is to syn-
chronize energy production and consumption. Because of
the complexity of resulting bi-level model, we handle it by
short-cutting the production level through surrogate esti-
mators, whose values are computed with the help of flexible
pricing and machine learning devices.

Keywords
Operational Research, Combinatorial Optimization, Machine
Learning

1. INTRODUCTION
Multi-level decisional [1] models usually involve several pla-
yers, tied together by some hierarchical or collaborative links.
They aim at providing scenario which would be the best
in case all the players accept a common rule (centralized
paradigm), or at searching for a compromise (collabora-
tive paradigm). Standard approaches involve decomposition
schemes, hierarchical (Benders, Stackelberg,...) or transver-
sal (Lagrangean). Main difficulties are related to the re-
trieval of information from the different levels in order to
make them interact, and to the collaborative issue, which
may impose the players to deal with incomplete informa-
tion. A trend, boosted by the rise of machine learning tech-
nology [5], is to bypass some levels and replace them by
surrogate constraints or estimators. We follow this trend
here while dealing with the joint management of local pho-
tovoltaic energy [3] production and its consumption by a
fleet of electric vehicles [2, 4]. This problem arose in the con-
text of the activities of IMOBS3 (Innovative Mobility) Labex
in Clermont-Ferrand, which conducts research on both au-
tonomous electric vehicles and solar energy, and of the na-
tional PGMO program promoted by power company EDF.

So we consider here a fleet of K small identical electric vehi-

cles, initially located at a depot Depot = 0, and required to
perform VRP: Vehicle Routing Problem tours, that means to
visit a set of stations J = {1, . . . ,M} within a time horizon
[0, TMax ]. Moving from station j to station k requires ∆j,k

time units and an amount Ej,k of energy. Recharge trans-
actions take place at the depot. An Elementary Trip is any
VRP sub-tour that a vehicle may perform without recharg-
ing at the depot. The fleet relies on a set B of identical
batteries, with capacity C and charge speed CS , initially lo-
cated at Depot, and vehicles switch their battery every time
they come back to Depot. This plug out/in operation is
instantaneous and avoids that the vehicle waits for recharg-
ing. It comes that while the vehicles are running with active
batteries, idle batteries are recharged at Depot before be-
ing used again by the vehicles. For any battery b in B, Vb

denotes the energy load of b at time 0.

In order to implement a self-consumption policy, Depot is
provided with a PV-Plant, that means a photovoltaic faci-
lity which assigns the batteries to the vehicles and produces
energy that it distributes between the currently idle bat-
teries or that it sells to the market. In case this energy
is not enough, the PV-Plant can also buy energy to the
market. The time space [0, TMax ] is divided into small pe-
riods i = 1, ..., N , all with same length p. We denote by
CR, the recharge per period capacity, that means the quan-
tity p · CS of energy which may be loaded into a battery
during a period. We also denote by Ri the expected pro-
duction of the PV-Plant at period i, by Ai the energy unit
purchase price at period i, and by Bi the energy unit sale
price. For technical reasons, a battery switch takes place
only at the junction between 2 periods, that means at a time
t = p · i, i = 0, . . . , N . So resulting PV Prod VRP decision
problem, represented in the Figure 1, comes as follows:

PV Prod VRP: Simultaneously schedule the vehicles and
the PV-Plant, in such a way that:

• Every station is visited at least once by the fleet;
• Every time a vehicle k comes back to Depot, it is as-

signed a battery charged in such a way that it will
make possible its next elementary trip;

• The global energy load of the batteries does not to de-
crease between the beginning and the end of the pro-
cess.

• Some global cost is minimized, which combines stan-
dard VRP cost with the PV-Plant cost of energy self-

33



consumption.

Figure 1: The PV-Plant, the batteries and the vehicle fleet.

In order to formalize, let us suppose that a collection Π0 of
elementary trips π has been computed and that every such a
trip π has been scheduled inside a set of consecutive periods
I(π). We denote by Σ0 = {(π, I(π)), π ∈ Π0} the resulting
set of scheduled trips σ = (π, I(π). For any trip π we denote
by E(π) the energy that its requires, by T (π) its duration,
and by S(π) the set of stations that it visits. We extend
those notations to scheduled trips σ and set EMean(σ) =
E(σ)/Card(I(σ)). Then, PV Prod resulting sub-problem is
about the way the PV-Plant loads the batteries and assign
them to scheduled trips σ.

PV Prod(Σ0) MILP (Mixed Integer Linear Program) Model:
Compute:

• XA = (XA
i , i = 1, ..., N), XB = (XB

i , i = 1, ..., N)
and XD = (XD

b,i, b ∈ B, i = 1, ..., N): respectively
the energy amount bought on the market, sold to the
market, and distributed to battery b by PV-Plant;

• W = (Wb,i, b ∈ B, i = 0, ..., N): the amount of energy
inside the battery b at the period i ;

• U = Uσ,b, σ ∈ Σ0, b ∈ B : Uσ,b = 1 if the battery b is
assigned to the process σ;

• δ = δb,i, b ∈ B, i = 1, ..., N : δb,i = 1 if the battery b is
idle at period i.

Objective function:
∑

i(Ai ·XA
i −Bi ·XB

i ).
Constraints:

• For any b, i : Wb,i ≤ C and XD
b,i ≤ CR · δb,i ; (R1)

• For any b : Wb,0 = Vb; (R2)
•

∑
b Wb,N ≥

∑
b Vb; (R3)

• For any i : Ri +XA
i = XB

i +
∑

b X
D
b,i ; (R4)

• For any b, i : (1− δb,i) =
∑

σ s.t. i∈I(σ) Uσ,b ≤ 1 ; (P1)

• For any σ ∈ Σ0 :
∑

b Uσ,b = 1. (P2)

• For any b, i : Wb,i = Wb,i−1 +XD
b,i

−
∑

σ s.t. i∈I(σ) E
mean(σ) · Uσ,b; (P3)

Explanation: (R1): We charge a battery b only if it is idle.
(R3): The batteries must be globally loaded with at least
as much energy at the end of the whole process as at the
beginning. (R4) tells the way energy is distributed between
sale, purchase and battery loading. (P1): b is active at
period i only if has been assigned to a unique scheduled trip
σ active at period i. (P2): any scheduled trip σ is assigned a
unique battery b. (P3) describes the evolution of a battery
b from a period i− 1 to next period i.

Any VRP decision means a collection Σ0 of scheduled trips
σ = (π, I(π)) such that:
- For any period i, Card({σ ∈ Σ0 s.t. i ∈ I(σ)}) ≤ K; (S1)
- For any station j, Card({σ ∈ Σ0 s.t j ∈ S(σ)}) ≥ 1; (S2)

If we consider as standard VRP cost of Σ0 the global riding
time

∑
σ T (σ) (Driver Cost) then, a time versus money coef-

ficient α being given, a bi-level setting of our PV Prod VRP
problem comes as follows:

PV Prod VRP Problem: Compute a collection Σ0 of sche-
duled trips, such that (S1, S2) hold and which minimizes the
sum α

∑
σ T (σ) + V al PV Prod(Σ0) where V al PV Prod

is the optimal PV Prod(Σ0) value.

2. HANDLING PV_PROD_VRP WITH
SURROGATE COMPONENTS

MILP formulation of PV PROD VRP is hardly practicable
and does not fit uncertain or collaborative contexts. So we
try:

• First approach: It aims at benchmarking. We solve
PV Prod VRP through the MILP model restricted to
a set Σ0 of scheduled trips, pre-computed through suc-
cessive applications of a randomized simple greedy pro-
cedure.

• Second Approach: We short-cut the PV Prod level
through the introduction of surrogate constraints and
estimators.

2.1 Solving the PV_Prod_VRP bi-level model,
while partially short-cutting the slave
PV_Prod level.

Our purpose here is to compute the scheduled trip set Σ0

without involving the PV-Plant. But, while the schedule
σ → I(σ) must take into account prices Ai, Bi and produc-
tion rates Ri, we can only say that a well-fitted collection Σ0

requires small amounts of both time and energy. This sug-
gests that we should distinguish between the design of the
trip collection Π0 and the way we turn it into a collection Σ0

of scheduled trips. This leads us to the following parametric
VRP Surrogate process:

VRP Surrogate Parametric Algorithm:
Initialize flexible scaling parameter γ; Not Stop; current best
solution Best Sol is undefined;
While Not Stop do

1st step: Compute an ad hoc elementary trip collection
Π0 which minimizes α ·

∑
π∈Π0

T (π) + γ ·
∑

π∈Π0
E(π);

2nd step: Turn Π0 into a scheduled trip collection Σ0,
that means compute the period sets I(π), π ∈ Π0 in such
a way that some surrogate constraints (SURR1) be sat-
isfied and that some surrogate cost Φ(π → I(π) be min-
imized;
3rd step: Update γ and Stop; Solve PV Prod(Σ0) and
update Best Sol.

2.2 Dealing with Step 1: A Branch and Cut
Algorithm based upon Strong No Subtour
constraints

For any subset A of the station set J = {1, . . . ,M}, we
set: δ+(A) = {arcs (j, k) such that j /∈ A and k ∈ A} and

34



Cl(A) = { arcs e = (j, k) s. t. at least j or k is in A}. Then
the auxiliary Elementary Trip ILP model comes as follows:

Elementary Trip ILP model:
Compute a (0, 1)-valued vector Z = (Zj,k, j, k = 0, ...,M)
in such a way that :

• For any j in {1, ...M} :
∑

k Zj,k =
∑

j Zj,k = 1 ; (S2)

• For any subset A of {1, ...M} :
C ·

∑
(j,k)∈δ+(A) Zj,k ≥

∑
(j,k)∈Cl(A) Ej,k · Zj,k; (SNS)

• Minimize α · (
∑

j,k Zj,k · Tj,k) + γ · (
∑

j,k Zj,k · Ej,k).

Explanation: Above SNS: Strong No Sub-Tour constraints
not only forbid sub-tours in the usual sense, but also en-
sure us that vector Z represents a collection of elementary
trips, that means of routes π from Depot to Depot such that
E(π) ≤ C.

Theorem 1: {0, 1} vector Z satisfies (S2, SNS) if and only
if arcs (j, k) such that Zj,k = 1 define a collection Π0 of
sub-tours π1, ..., πS with S =

∑
k Z0,k such that:

• For every s = 1, ..., S, πs starts from Depot = 0 and
ends into Depot, and spends less than C energy;

• Every station is visited exactly once by collection Π0.

Constraints SNS may be separated in polynomial time through
application of a max flow (min cut) procedure.

Sketch of the Proof: (S2, SNS) imply that Z gives rise to
a collection τ of sub-tours τ0, ..., τS , and that if some tour
τS spends more energy than capacity C, then a subset A
of {0, . . . ,M + 1} exists which makes Z violate (SNS). We
get our first statement. As for the second, we see that, Z
(integral or rational) being given, separating (SNS) means
searching for A ⊆ {1, ...,M} and B = {1, ...,M} − A, such
that (*):∑

j,k∈B Zj.k · Ej,k + C ·
∑

(j,k)∈δ+(B) Zj,k < ∆ =
∑

j,k ·Ej,k

So we construct a network GAux, whose node set is {0, 1, ...,
M + 1} and whose arc set may be written as UAux = U ∪
Copy(U) with:

• U = {all pairs (j, k), j, k = 0, ...,M} s.t Zj,k ̸= 0: such
an arc u = (j, k) is provided with a capacity wu =
Zj,k · (C − Ej,k);

• With any arc e = (j, k) in U, we associate an arc u =
Copy(e) = (j,M + 1): such an arc u = Copy(e) =
(j,M +1) is provided with a capacity wu = Zj,k ·Ej,k.
Then arc set Copy(U) is the set of all arcs Copy(e),
e ∈ U .

We conclude, by checking that searching for B such that
(*) holds is equivalent to solving a Max Flow problem in
GAux.

Theorem 1 and related proof provide us with an efficient
separation procedure which opens the way to the implemen-
tation of a Branch and Cut process. Still, because such a
Branch and Cut approach remains difficult to use in case of
large size instances and in case of uncertainty, we also im-
plement a heuristic Insertion/Removal (Build/Destroy) al-
gorithm.

2.3 Dealing with Step 2: Surrogate
Components

In order to enhance PV Prod(Σ0) feasibility, we impose
the following surrogate necessary (but not sufficient) cons-
traints:

• For any period i : Card({σ ∈ Σ0 such that i ∈ I(σ)}) ≤
K; (S1)

• For any subset i0 = 1, ..., N : CR ·
∑

i≤i0−1 n(Σ0, i) +

ΣbVb ≥
∑

σ s.t. Start(σ)≤i0
E(σ), where n(Σ0, i) is the

number of scheduled trips σ idle at period i, and Start(σ)
is the starting period of σ. (SURR1)

The constraint (SURR1) means that we must be able to
feed the batteries in such a way that trips becomes possible.
Then, in order to make possible the use of any surrogate esti-
mator Φ(π → I(π)), we implement Step 2 while relying on a
non deterministic local search heuristic Scheduled Trip(Π0,Φ).
So, what remains to be done is to discuss estimator Φ.

Defining Φ(Σ0) according to a Pricing Mechanism. The idea
here is that the cost of a schedule (π → I(π)) is determined
by the distribution of above defined values n(Σ0, i). Let
E =

∑
π∈Π0

E(π) be the global charge loaded into the bat-

teries and I =
∑

π∈Π0
⌈T (π)/p⌉ be the number of periods

required by the trips of Σ0. If all batteries receive a same
charge EMean = E/I at every period when they are idle,
then the cost of the production process is I ·QStand

i,n(Σ0,i)
, where

QStand
i,n = Ai·(n·EMean−Ri) if n·EMean ≥ Ri andQStand

i,n =

Bi ·(n·EMean−Ri) else. This suggests us to express the sur-
rogate cost Φ(π → I(π)) involved into the VRP Surrogate
algorithm as a sum

∑
i Qi,n(Σ0,i), where Qi,n is the estima-

tion of the cost induced by n batteries in recharge (idle) at
period i. We notice that if n(Σ0, i) ·EMean ≥ Ri, then Qi,n

should increase with Ai and that if n(Σ0, i) · EMean < Ri,
then Qi,n should decrease as Bi increases. This suggests to
set:

• AMean = mean value Ai, i = 1, ..., N ; BMean = mean
value Bi, i = 1, ..., N ;

• Qi,n = QStand
i,n · (1 + ρ1(Ai − AMean)) if n(Σ0, i) ·

EMean ≥ Ri, and Qi,n = QStand
i,n ·(1+ρ2(Bi−BMean))

else, where ρ1 and ρ2 are 2 non negative flexible pa-
rameters.

Computing Φ(Σ0) through a Neural Network N Energy.
Instead of relying on energy price coefficients Qi,n, we use
a neural network N Energy in order to provide us with the
quality of a scheduled trip collection Σ0. N Energy is im-
plemented with the help of the TensorFlow open software
and trained with a large number (4000) of PV Prod(Σ0)
instances. It is designed as a convolutional neural network.
Such a network, whose main purpose is to be adaptable to
inputs with flexible sizes, usually works in 2 (or more) steps:
In the first step, a same standard perceptron called convolu-
tional mask is applied to fixed size neighbours of the compo-
nents of the input vector IN = (INm,m ∈ M), and yields
an output vector OUT = (OUTm,m ∈ M). In the next
step, a pooling mechanism is applied to OUT, in order to
compact it into the fixed size input of another perceptron
which computes the final output. In the present case this
final output is a number Θ between 0 and 1, such that the
optimal value V AL PV Prod(Σ0) of PV Prod(Σ0) may be
written V AL PV Prod(Σ0) = V al Min+Θ · (V al Max−
V al Min), where Val Max and Val Min are respectively

35



lower and upper easy to compute bounds of V AL PV Prod(Σ0).
More precisely we homogenize any input Σ0, A,B,R, V of
PV Prod as a vector IN, with IN [i] = (A∗

i , B
∗
i , R

∗
i , µ

∗
i , Qi, C

∗,
CR∗) as follows:

• A∗
i = Ai/A

Mean;B∗
i = Bi/A

mean;
• RMean = Mean values of coefficients Ri;
• µi =

∑
σ s.t. i∈I(σ) E

Mean(σ);µ∗
i = µi/R

Mean;

• R∗
I = Ri/R

Mean;Qi = n(Σ0, i)/Card(B);
• C∗ = C/RMean;CR∗ = CR/RMean.

The convolutional mask CM works on any sub-vector IN∗
i =

(IN [i], . . . , IN [i+ 4]), which means an input with 35 input
arcs. It contains 3 inner layers, respectively with sizes 8,
4 and 2, and ends into an output layer, with 1 input value
OUTi. This network is complete in the sense that all 322
synaptic arcs are allowed, together with standard biased sig-
moid activation functions whose derivative value in 0 is equal
to 1/2. The pooling mechanism works by merging consecu-
tive values OUTi into a single value, in such a way it yields
an intermediate vector AUX, with 13 entries, all with values
between 0 and 1, which we handle with a perceptron N Pool,
with intermediate layers with size 6 and 3, and a final layer
with size 1. At the very end, we must learn 421 synaptic
coefficients.

3. NUMERICAL EXPERIMENTS
Technical Context: We use libraries CPLEX12 (for ILP mo-
dels) and TensorFlow/Keras (for Machine Learning).

Instances: The main characteristics of an instance are: N =
Number of periods, M = Number of stations, S = Expected
number of elementary trips involved into a VRP solution, Q
= number of macro-periods, which are associated with gene-
ral trends in the production rate and in the market prices, L
= expected length of an elementary trip, µ = Battery Stress
coefficient, β = Recharge Stress coefficient, H = Production
Stress coefficient and α = time versus money coefficient.
Stress is related to the difficulty that one may have in com-
puting the solution of the instance, in such a way that de-
creasing the Stress parameters increases the difficulty. The
Table 1 shows the characteristics of the instances used dur-
ing the experimentation.

Table 1: Characteristics of the instances
Instance N M S Q L µ β H α

1 40 50 20 4 5 2 1.5 1 1.2
2 40 75 25 5 5 1.5 2 1.5 0.8
3 40 100 32 4 3 2.5 1.5 0.8 1.2
4 60 150 42 3 8 3 3 0.5 1.5
5 60 200 55 5 10 2 1.5 0.75 1.2

Outputs: For every instance, we apply the VRP Surrogate
resolution scheme while relying on both the pricing mecha-
nism and the machine learning mechanism, performing the
first VRP Surrogate step through the Insertion / Removal
algorithm. We denote by W Price the value obtained with
the pricing device and we denote by W ML the value ob-
tained while involving Machine Learning. UB G denote an
upper bound obtained through the first approach described
in Section 2. The Table 2 shows these results. When the
size of the instances increases, it tends to outperform the
results produced by the global MILP model. Notice that

the cost value of PV Prod VRP may be negative, due to
the fact that the cost may become a profit. Also, we try

Table 2: Behavior of the Price and Machine Learning based
VRP Surrogate Algorithms

Inst. UB G W ML W Price
1 -235.91 -193.38 -116.28
2 -1311.60 -835.27 -1165.42
3 248.43 409.91 631.02
4 1760.33 1861.24 2138.38
5 3742.12 1602.39 1900.69

the Branch and Cut algorithm and the Insertion / Removal
heuristic algorithm of Section 2.2 on the Elementary Trip
model, and retrieve in less that 1 CPU h:

• The lower and upper bounds LB BC and UB BC com-
puted by the algorithm;

• The value Relax induced by the relaxation of the inte-
grality constraint;

• The number CUT of SNS cuts generated during the
Branch and Cut process;

• The value W Heur computed by the heuristic algo-
rithm.

• Related CPU time Time of the heuristic algorithm.
The Branch and Cut algorithm was executed during 1
hour.

Related results are contained into the Table 3.

Table 3: Behavior of the Branch and Cut Algorithm
Inst. LB BC UB BC Relax CUT W Heur Time
1 366.258 424.268 362.979 2917 428.08 1.19
2 362.481 470.942 359.901 904 470.50 5.41
3 421.34 528.725 420.884 712 534.73 10.38
4 1514.61 1809.3 1514.6 583 1776.16 28.30
5 2425.26 3372.26 2425.26 367 3025.93 41.79

Comments: Taken as a whole, solving PV Prod VRP while
relying on surrogate component happens to be rather ef-
ficient. We also see that, even with Strong No Sub-Tour
constraints, the Elementary Trip model is difficult for large
instances. The heuristic algorithm allows us to get close
upper bounds to the Branch and Cut in reasonable time.

4. REFERENCES
[1] S. Dempe, V. Kalashnikov, Pérez-Valdés, and

N. Kalashnykova. Bilevel Programming Problems
Theory. Springer, 2015.

[2] T. Erdelić and T. Carić. A survey on the electric vehicle
routing problem: variants and solution approaches.
Journal of Advanced Transportation, 2019, 2019.

[3] S. Irani and K. R. Pruhs. Algorithmic problems in
power management. ACM Sigact News, 36(2):63–76,
2005.

[4] G. Macrina, L. D. P. Pugliese, and F. Guerriero. The
green-vehicle routing problem: a survey. In Modeling
and Optimization in Green Logistics, pages 1–26.
Springer, 2020.

[5] J. Wojtusiak, T. Warden, and O. Herzog. Machine
learning in agent-based stochastic simulation:
Inferential theory and evaluation in transportation
logistics. Computers & Mathematics with Applications,
64(12):3658–3665, 2012.

36



Local reflection symmetry detection in Earth observation
data

David Podgorelec
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Maribor, Slovenia
david.podgorelec@um.si

Luka Lukač
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Maribor, Slovenia
luka.lukac@student.um.si

Borut Žalik
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Maribor, Slovenia
borut.zalik@um.si

ABSTRACT
We propose a new algorithm which detects patterns with re-
flection symmetry in Earth observation data. It must con-
sider approximate symmetries, as the acquisition of input
datasets is not able to provide exact pairs of symmetric el-
ements. Therefore, we look for symmetries between voxels,
not between the input points. Furthermore, the nature of
such data implies that the symmetric patterns in the top
view are the most interesting and, thus, it suffices to detect
symmetries with vertical symmetry planes. The symmetry
detection may thus be split into horizontal voxel slices and
the results with the same symmetry plane are then merged.
At the end, the resulting symmetries are ranked with respect
to the number of voxels involved. Early results obtained for
some voxelisations of two LiDAR datasets of different sizes
are promising both in terms of the detection speed and qual-
ity of solutions.

Categories and Subject Descriptors
I.3.5 [Computing Methodologies]: Computer Graphics—
Computational Geometry and Object Modeling

General Terms
Algorithms, Performance, Theory

Keywords
Approximate symmetry, voxelization, line segment, merging

1. INTRODUCTION
An object is symmetric if there is a transformation (such as
translation, scaling, rotation, reflection, etc.) that maps it
onto itself [6]. The symmetry perception has been studied
and demonstrated in humans, but also in birds, dolphins,
apes and even honey bees [3]. It is assumed that symme-
try perception has become an integral part of the individ-
ual’s perceptual organization process during the evolution

of visual systems where individual regularities have been se-
lected on the basis of their relevance [9]. This explains why
symmetry has always inspired people in different fields, in-
cluding arts, architecture, biology, medicine, mathematics,
and various engineering disciplines [1]. However, in con-
trast to natural, almost self-evident symmetry perception
processes in living beings, computer-aided symmetry detec-
tion is anything but simple [1]. Machine learning approaches
are increasingly popular as everywhere else [8], but they rely
heavily on training datasets, which are usually incomplete.
Traditional constructive approaches for individual types of
symmetries, particularly the reflection and rotational one,
still prevail. Symmetry can be global when it concerns the
whole object, or local when only parts of the scene are in-
corporated. A local symmetry containing a single connected
component is called partial symmetry. Furthermore, sym-
metry can be perfect (strong) or approximate (weak) [5].
Approaches of Žalik et al. [1] and Hruda et al. [4] are
representatives of global reflection symmetry detection al-
gorithms. Local (partial) symmetry is sometimes handled
by decomposing the scene into individual parts and then
detecting global symmetry separately on each of them [7].
Cailliere et al. [2] presented a true local reflection symmetry
detection operating on triangular meshes. In 2006 already,
Mitra et al. [5] presented a powerful general algorithm that
detects different types of global and local symmetry.

In this paper, a new algorithm is presented, predominantly
designed to detect local reflection symmetries in Earth ob-
servation (EO) data. Section 2 illustrates the overall idea
of the proposed approach, while section 3 experimentally
confirms its usability. Section 4 briefly summarizes the pre-
sented work and discusses future research challenges.

2. METHODOLOGY
The presented algorithm is predominantly designed to de-
tect local reflection symmetries in EO and complementary
geographic information systems (GIS) data. Current imple-
mentation reads LiDAR (light detection and ranging) point
clouds stored in LAS files only, but these data are immedi-
ately voxelized and, thus, 3D or 2D raster grids may also
be considered valid inputs. The algorithm is fully scalable,
as the resolution of the voxelisation can vary from a few
centimetres or even lower up to tens or hundreds of me-
tres, depending on the data acquisition technology and the
intended use. Furthermore, grayscale and colour raster im-

37



Figure 1: Concept of the new algorithm.

ages may be processed if colours are interpreted as altitudes.
Whether these input datasets are 2D or 3D, they are mostly
acquired downwards from satellites, airplanes, drones, etc.
This means that much more data are collected from the vis-
ible top surfaces than from the side and bottom surfaces.
Furthermore, width and length of a considered geographic
area are usually much greater than the range of altitudes, i.e.
bigger geographic areas are relatively flat. All these findings
have the following implications on symmetry detection:

• Due to sampling, points of an
”
original“ part and mir-

rored part rarely match exactly.

• Due to higher density of acquired data on visible top
sides, it is more likely to detect symmetric parts there.

• Due to
”
flatness“ of acquired areas, it is more likely to

explore symmetries from above than from side.

For these reasons, the algorithm is designed to detect locally
symmetric patterns with approximate (and not the ideal) re-
flection symmetries with regard to vertical symmetry planes
only. The latter implies that it is sufficient to detect symme-
tries in horizontal slices and then combine them on the basis
of the common detected symmetry planes. This constraint
crucially contributes to the affordable time complexity of the
algorithm in the EO data domain, although the majority of
the algorithm’s steps can be easily generalized when we can
afford a slower execution.

Bottom-up approach is another crucial feature of the pro-
posed algorithm. The idea is to find basic symmetries first
and then construct larger ones by merging. In the context
of the reflection symmetry, the basic symmetry is the sym-
metry of two geometric primitives, while the construction
means merging the symmetric pairs which share the same
symmetry plane. Primitives may be points (voxels), line seg-
ments, or more complex structures, and our choice are line
segments. Core idea is that each line segment which appears
in some symmetry should have a symmetric pair (copy) or
more of them with the same length somewhere (in the slice).

A rough outline of the algorithm is presented in Figure 1,
and a more detailed explanation of the individual steps is
given in the subsections that follow.

2.1 Voxelization
A user enters the total number of voxels, and the program
computes subdivisions in each coordinate direction, where

the ratios between the three sides of the bounding box are
tried to be kept and, furthermore, the number of voxels in
each coordinate direction must be above some user-defined
threshold. Consequently, the actual number of voxels may
be significantly lower than the value entered by the user.

The material voxels are then identified in the grid. Each
material voxel contains at least one point from the input
point cloud. Theoretically, the symmetries should be identi-
fied among these voxels, but this would result in numerous
trivial solutions (e.g. “infinitely” many symmetries could be
found on a flat surface), so we further reduce the set of candi-
dates for the symmetry detection by extracting the so-called
interesting voxels.

A voxel is considered interesting for further processing if its
surroundings is not flat. We therefore test each material
voxel against the patterns of 26 adjacent voxels and filter
out the interesting ones which are not in the middle of a
vertical, horizontal or diagonally slanted local surface. Such
interesting voxels represent the input for the next step.

2.2 Clustering
Our algorithm is designed to determine the basic symmetries
between pairs of LSs. Such a pair may be symmetric only if
both LSs have the same length. Furthermore, only the LSs
which mainly pass through the interesting voxels are consid-
ered in this step. It is worthless to compare two LSs of the
same length where one lies on the objects’ surfaces and the
other penetrates the air. The default threshold for amount
of material voxels in a regular LS is set to 80. Therefore,
the “regular” LSs are extracted in this step and arranged
into clusters due to their lengths.

2.3 Basic Symmetry Detection
As this step runs separately for each horizontal voxel slice,
it appears quite straightforward. However, the distance
between two voxels differs from the distance between two
points inside these voxels, and the angle between two LSs
defined by four points differs from the angle between two
LSs defined by the centres of four voxels. Some user defined
tolerances must be considered in this step. Smaller voxels
decrease relevance of these tolerances, but they significantly
increase the time complexity. Note that this is computation-
ally most demanding task with the theoretical time complex-
ity O(n4), where n is the number of voxels. The previous
steps of extracting interesting voxels and grouping them into
clusters not only prevent the calculation of trivial (meaning-
less) symmetries, but above all reduce the number of pairs
of LSs that need to be compared here.

2.4 Merging
The previous step determines all symmetry planes between
pairs of “regular” LSs. Next, we join all pairs that share
a common plane of symmetry. This step simultaneously
considers both the clusters in a single slice and the results
in different slices, as seen in the concept from Fig. 1.

2.5 Postprocessing
After determining all symmetry planes and arranging all in-
teresting voxels into individual symmetries, the method con-
cludes its work by coupling the rest of the material (non-

38



Table 1: Results for two voxelizations of the Maribor
Cathedral and two of the Slomšek Square

Measure Cathedral Cathedral Square Square
Points 11779 11779 35985 35985
Input voxels 500 1500 1000 2000
Voxels 384 1089 960 1680
Material 78 193 64 428
Interesting 37 64 129 132
Symmetries 45 152 1490 2340
Time [s] 0.38 1.86 48.73 55.93

interesting) voxels with respect to each symmetry plane.
Furthermore, input points within the voxels participating
in an individual symmetry may be checked, whether they
have a mirrored sibling close enough on the other side of
the symmetry plane. The same effect can be reached by
increasing the number of voxels, which requires less effort
for implementation but importantly slows down the perfor-
mance. The classification of points on the two sides of the
symmetry plane is based on a simple vector product test.

3. RESULTS
Two point clouds read from LiDAR LAS files were used to
demonstrate the performance of the algorithm. The first one
represents Slomšek Square with the Cathedral of Saint John
the Baptist to the east, the Rectorate of the University of
Maribor to the west, the Slovene National Theatre to the
north, and the building of the main Maribor Post office to
the south. The second file contains the Cathedral extracted
from the first one. Experiments were carried out on a PC
computer with Intel Core i7-5820K and 32GB DDR4 RAM.
The algorithm was programmed in C++ in QtCreator 7.0.1.
Two different voxelizations of the Maribor Cathedral and
two voxelizations of the Slomšek Square point cloud were
used in the measurements.

Fig. 2 shows the results for the strongest symmetry detected
on the Maribor Cathedral point cloud, voxelized with 384
voxels (the input was set to 500). Red and blue points are
those inside the detected symmetric pairs of voxels on both
side of the symmetry plane (in black), while gray points are
in material voxels not participating in this strongest sym-
metry. Fig. 3 shows only the points in the bottommost
horizontal slice of voxels. By merging this slice and other 7
slices above it, the results from Fig. 2b are obtained. In an-
other voxelization with 1089 voxels (the input se to 1500),
the symmetry from Fig. 4 was detected as the strongest.
Nearly the same symmetry was at the sixth place (out of
45) in the previous voxelization, while the strongest sym-
metry from Fig. 2 and Fig. 3 is the 11th strongest (out of
152) in this different voxelization. In the top part of Table
1, a process of decreasing the number of entities from the
LiDAR points to interesting voxels is demonstrated. Instead
of 11779 points, only 37 or 64 interesting voxels were used
in the basic symmetry detection step in both voxelizations
of the Cathedral.

Fig. 5 shows two different local reflection symmetries de-
tected in the point cloud representing the Slomšek Square
in Maribor. The first one (Fig. 5a) is the strongest one ob-
tained from the voxelization with 960 voxels (the input set

Figure 2: The Maribor Cathedral – the strongest
symmetry in the 384 voxels grid: a) side view, b)
top view.

Figure 3: The Maribor Cathedral – the bottommost
slice of 8 in the strongest symmetry in the grid of
384 voxels.

Figure 4: The Maribor Cathedral – the side view in
the strongest symmetry in the grid of 1089 voxels.

39



Figure 5: Slomšek Square in Maribor: a) the
strongest symmetry out of 1490 in the grid of 960
voxels and b) the 68th strongest symmetry out of
2340 in the grid of 1680 voxels.

to 1000), and the bottom one (Fig. 5b) was obtained from
the voxelization with 1680 voxels (the input set to 2000).
Relatively low number of red in blue points indicates that
this symmetry (Fig. 5b) is not among the strongest – it is
indeed at the 68th place out 2340. Note that this example
was not chosen at random. Namely, the symmetry plane
here coincides with that of the Cathedral in Fig. 2.

In each voxelization, the algorithm detects as many symme-
tries as possible. They are ranked with respect to the num-
ber of voxels in a symmetry. Table 2 shows indicators of the
three strongest and the weakest symmetries for the Cathe-
dral with 384 voxels and Slomšek Square with 1680 voxels.
The former is described wit 11,779 LiDAR points and with
78 material voxels, while the latter has 35,985 points and
428 material voxels.

We have also carried out experiments with bigger point
clouds. Of course, the execution time and the quality of
detected symmetries depend on voxelization. For an urban
area about 20 times the size of Slomšek Square, described
by half a million points and voxelised with 5000 voxels, the
algorithm took just over 1 hour.

4. CONCLUSIONS
In this paper, we introduce a new algorithm for local reflec-
tion symmetry detection. It was predominantly designed
for EO data processing, where it typically suffices to detect
symmetries with vertical symmetry planes. The algorithm

Table 2: Number of points and voxels in individ-
ual symmetries and the proportion of the latter (%)
among the material voxels

The Cathedral Slomšek Square
Points Voxels % Points Voxels %

Best 2493 26 33.33 7489 133 31.07
2nd 2129 18 23.08 5715 116 27.10
3rd 779 10 12.82 7428 106 24.77
Last 174 4 5.13 131 4 0.93

first voxelizes the point cloud, extracts the so-called inter-
esting voxels, and then finds basic symmetries between pairs
of line segments of the same length, separately in each hor-
izontal voxel slice. Basic symmetries sharing the symmetry
plane are then merged into larger ones. The first results are
promising, but there is a plenty of work left in order to ulti-
mately affirm the method. The code and particularly some
data structures must be optimized for faster performance.
Individual voxel slices could be easily processed in parallel.
Besides this, the inputs and the results must be filtered to
eliminate connected parts with the number of voxels below
some threshold. Finally, the algorithm must be evaluated in
comparison to state-of-the-art methods.

5. ACKNOWLEDGMENTS
This research was funded by Slovene Research Agency un-
der Research Project N2-0181 and Research Programme P2-
0041.

6. REFERENCES
[1] B. Žalik, D. Strnad, S. Kohek, I. Kolingerová, A. Nerat,

N. Lukač, and D. Podgorelec. A hierarchical universal
algorithm for geometric objects’s reflection symmetry
detection. Symmetry, 14(5), 2022.

[2] D. Cailliere, F. Denis, D. Pele, and A. Baskurt. 3d
mirror symmetry detection using hough transform. In
2008 15th IEEE International Conference on Image
Processing, pages 1772–1775. IEEE, 2008.

[3] M. Giurfa, B. Eichmann, and R. Menzel. Symmetry
perception in an insect. Nature, 382(6590):458–461,
1996.

[4] L. Hruda, I. Kolingerová, and L. Váša. Robust, fast
and flexible symmetry plane detection based on
differentiable symmetry measure. The Visual
Computer, 38(2):555–571, 2022.

[5] N. J. Mitra, L. J. Guibas, and M. Pauly. Partial and
approximate symmetry detection for 3d geometry. ACM
Transactions on Graphics (TOG), 25(3):560–568, 2006.

[6] M. Petitjean. A definition of symmetry. Symmetry:
Culture and Science, 18(2-3):99–119, 2007.

[7] I. Sipiran, R. Gregor, and T. Schreck. Approximate
symmetry detection in partial 3d meshes. In Computer
Graphics Forum, volume 33, pages 131–140. Wiley
Online Library, 2014.

[8] S. Tsogkas and I. Kokkinos. Learning-based symmetry
detection in natural images. In European Conference on
Computer Vision, pages 41–54. Springer, 2012.

[9] C. W. Tyler. Human symmetry perception. Human
symmetry perception and its computational analysis,
pages 3–22, 1996.

40



Approximate Keys and Functional Dependencies in
Incomplete Databases With Limited Domains–Algorithmic

Perspective

[Extended Abstract]

Attila Sali
∗

Alfréd Rényi Institute of Mathematics
and Department of Computer Science,
Budapest University of Technology and

Economics
Budapest, Hungary

sali.attila@renyi.hu

Munqath Alattar
ITRDC, University of Kufa, Iraq

munqith.alattar@uokufa.edu.iq

ABSTRACT
A possible world of an incomplete database table is obtained
by imputing values from the attributes (infinite) domain
to the place of NULL s. A table satisfies a possible key or
possible functional dependency constraint if there exists a
possible world of the table that satisfies the given key or
functional dependency constraint. A certain key or func-
tional dependency is satisfied by a table if all of its possible
worlds satisfy the constraint. Recently, an intermediate con-
cept was introduced. A strongly possible key or functional
dependency is satisfied by a table if there exists a strongly
possible world that satisfies the key or functional depen-
dency. A strongly possible world is obtained by imputing
values from the active domain of the attributes, that is from
the values appearing in the table. In the present paper, we
study approximation measures of strongly possible keys and
FDs. Measure g3 is the ratio of the minimum number of tu-
ples to be removed in order that the remaining table satisfies
the constraint. We introduce a new measure g5, the ratio of
the minimum number of tuples to be added to the table so
the result satisfies the constraint. g5 is meaningful because
the addition of tuples may extend the active domains. We
prove that if g5 can be defined for a table and a constraint,
then the g3 value is always an upper bound of the g5 value.
However, the two measures are independent of each other in

∗Research of the second author was partially supported by
the National Research, Development and Innovation Office
(NKFIH) grants K–116769 and SNN-135643. This work was
also supported by the BME- Artificial Intelligence FIKP
grant of EMMI (BME FIKP-MI/SC) and by the Ministry
of Innovation and Technology and the National Research,
Development and Innovation Office within the Artificial In-
telligence National Laboratory of Hungary.

the sense that for any rational number 0 ≤ p
q
< 1 there are

tables of an arbitrarily large number of rows and a constant
number of columns that satisfy g3 − g5 = p

q
. A possible

world is obtained usually by adding many new values not
occurring in the table before. The measure g5 measures the
smallest possible distortion of the active domains. We study
complexity of determining these approximate measures.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous; F.2 [Analysis of
Algorithms and Problem Complexity]: Miscellaneous

General Terms
Theory

Keywords
Strongly possible functional dependencies, Strongly possible
keys, incomplete databases, approximate functional depen-
dencies, approximate keys.

1. INTRODUCTION
The information in many industrial and research databases
may usually be incomplete due to many reasons. For ex-
ample, databases related to instrument maintenance, med-
ical applications, and surveys [8]. This makes it necessary
to handle the cases when some information missing from a
database and are required by the user. Imputation (filling
in) is one of the common ways to handle the missing values
[13].

In the present paper the classical relational model is consid-
ered that is the underlying concept of practical SQL database
systems. The database is considered as a table, where rows
(tuples) represent individual records, while columns corre-
spond to properties or attributes. Important properties of
these tables are the integrity constraints they (must) sat-
isfy. In particular, keys and functional dependencies are the
most common ones of those. An attribute set is a key if it
determines all other attribute values in individual records,
while functional dependency X → Y means that the values
in attributes of X determine the values in attributes of Y .

41



A new approach for imputing values in place of the missing
information was introduced in [3], to achieve complete data
tables, using only information already contained in the SQL
table attributes (which are called the active domain of an
attribute). Any total table obtained in this way is called a
strongly possible world. We use only the data shown on the
table to replace the missing information because in many
cases there is no proper reason to consider any other at-
tribute values than the ones that already exist in the table.
Using this concept, new key and functional dependency con-
straints called strongly possible keys (spKeys) and strongly
possible functional dependencies (spFDs) were defined in [5,
4] that are satisfied after replacing any missing value (NULL)
with a value that is already shown in the corresponding at-
tribute. In Section 2, we provide the formal definitions of
spKeys and spFDs.

The present paper continues the work started in [5], where
an approximation notion was introduced to calculate how
close any given set of attributes can be considered as a key.
A classical measure is the ration of tuples needed to be re-
moved. Tuple removal may be necessary because the active
domains do not contain enough values to be able to replace
the NULL values so that the tuples are pairwise distinct on
a candidate key set of attributes K. In the present paper,
we introduce approximation measures of spKeys and spFDs
by adding tuples. Adding a tuple with new unique values
will add more values to the attributes’ active domains, thus
some unsatisfied constraints may get satisfied. Adding tu-
ples is only meaningful for strongly possible worlds. Earlier
concept of possible worlds when any value of the attribute
domain could be added is not appropriate, as adding tuples
does not change the range of values usable for imputation.
However, for strongly possible constraints the minimum ra-
tio of tuples added to satisfy the constraint shows a smallest
possible extension such that the constraint holds.

We denote by g3 the minimum ratio of necessary tuple dele-
tions and g5 is the minimum ratio of necessary tuple ad-
ditions. These two measures were shown to be basically
independent of each other in [1]. In the present paper we
review these results then turn our attention to interesting
algorithmic and complexity problems involving the two ap-
proximation measures. The structure of the paper is as fol-
lows. Section 2 contains the necessary definitions, Section 3
discusses some related work. Section 4 reviews the defi-
nitions and main theorems about approximation measures.
Subsection 4.2 contains the new results about complexity
questions. Finally, Section5 includes some summary and
concluding remarks.

2. DEFINITIONS
Let R = {A1, A2, . . . An} be a relation schema. The set of
all the possible values for each attribute Ai ∈ R is called the
domain of Ai and denoted as Di = dom(Ai) for i = 1,2,. . . n.
Then, for X ⊆ R, then DX =

∏
∀Ai∈K

Di.

An instance T = (t1,t2, . . . ts) over R is a list of tuples such
that each tuple is a function t : R →

⋃
Ai∈R dom(Ai) and

t[Ai] ∈ dom(Ai) for all Ai in R. By taking a list of tuples
we use the bag semantics that allows several occurrences of
the same tuple. Usage of the bag semantics is justified by

that SQL allows multiple occurrences of tuples. Of course,
the order of the tuples in an instance is irrelevant, so math-
ematically speaking we consider a multiset of tuples as an
instance. For a tuple tr ∈ T and X ⊂ R, let tr[X] be the
restriction of tr to X.

It is assumed that ⊥ is an element of each attribute’s domain
that denotes missing information. tr is called V -total for a
set V of attributes if ∀A ∈ V , tr[A] ̸= ⊥. Also, tr is a total
tuple if it is R-total. t1 and t2 are weakly similar on X ⊆ R
denoted as t1[X] ∼w t2[X] defined by Köhler et.al. [12] if

∀A ∈ X (t1[A] = t2[A] or t1[A] = ⊥ or t2[A] = ⊥).

Furthermore, t1 and t2 are strongly similar on X ⊆ R de-
noted by t1[X] ∼s t2[X] if

∀A ∈ X (t1[A] = t2[A] ̸= ⊥).

For the sake of convenience we write t1 ∼w t2 if t1 and t2 are
weakly similar on R and use the same convenience for strong
similarity. Let T = (t1, t2, . . . ts) be a table instance over R.
Then, T ′ = (t′1, t

′
2, . . . t

′
s) is a possible world of T , if ti ∼w t′i

for all i = 1, 2, . . . s and T ′ is completely NULL -free. That
is, we replace the occurrences of ⊥ with a value from the
domain Di different from ⊥ for all tuples and all attributes.
A active domain of an attribute is the set of all the distinct
values shown under the attribute except the NULL. Note that
this was called the visible domain of the attribute in papers
[3, 4, 5, 2].

Definition 1. The active domain of an attributeAi (V DT
i )

is the set of all distinct values except ⊥ that are already used
by tuples in T :

V DT
i = {t[Ai] : t ∈ T} \ {⊥} for Ai ∈ R.

To simplify notation, we omit the upper index T if it is clear
from the context what instance is considered.

While a possible world is obtained by using the domain val-
ues instead of the occurrence of NULL, a strongly possible
world is obtained by using the active domain values.

Definition 2. A possible world T ′ of T is called a strongly
possible world (spWorld) if t′[Ai] ∈ V DT

i for all t′ ∈ T ′ and
Ai ∈ R.

The concept of strongly possible world was introduced in [3].
A strongly possible worlds allow us to define strongly possible
keys (spKeys) and strongly possible functional dependencies
(spFDs).

Definition 3. A strongly possible functional dependency,
in notation X →sp Y , holds in table T over schema R if
there exists a strongly possible world T ′ of T such that T ′ |=
X → Y . That is, for any t′1, t

′
2 ∈ T ′ t′1[X] = t′2[X] implies

42



t′1[Y ] = t′2[Y ]. The set of attributes X is a strongly possible
key, if there exists a strongly possible world T ′ of T such
that X is a key in T ′, in notation sp⟨X⟩. That is, for any
t′1, t

′
2 ∈ T ′ t′1[X] = t′2[X] implies t′1 = t′2.

If T = {t1, t2, . . . , tp} and T ′ = {t′1, t′2, . . . , t′p} is an spWorld
of it with ti ∼w t′i, then t′i is called an sp-extension or in
short an extension of ti. Let X ⊆ R be a set of attributes
and let ti ∼w t′i such that for each A ∈ R : t′i[A] ∈ V D(A),
then t′i[X] is an strongly possible extension of ti on X (sp-
extension)

3. RELATED WORK
Giannella et al. [9] measure the approximate degree of func-
tional dependencies. They developed the IFD approxima-
tion measure and compared it with the other two measures:
g3 (minimum number of tuples need to be removed so that
the dependency holds) and τ (the probability of a correct
guess of an FD satisfaction) introduced in [11] and [10] re-
spectively. They developed analytical bounds on the mea-
sure differences and compared these measures analysis on
five datasets. The authors show that when measures are
meant to define the knowledge degree of X determines Y
(prediction or classification), then IFD and τ measures are
more appropriate than g3. On the other hand, when mea-
sures are meant to define the number of ”violating” tuples in
an FD, then, g3 measure is more appropriate than IFD and
τ . This paper extends the earlier work of [5] that utilized
the g3 measure for spKeys by calculating the minimum num-
ber of tuples to be removed from a table so that an spKey
holds if it is not. The same paper proposed the g4 measure
that is derived from g3 by emphasizing the effect of each
connected component in the table’s corresponding bipartite
graph (where vertices of the first class of the graph represent
the table’s tuples and the second class represent all the pos-
sible combinations of the attributes’ active domains). In this
paper, we propose a new measure g5 to approximate FDs by
adding new tuples with unique values rather than deleting
tuples as in g3. In [14], Jef Wijsen summarizes and discusses
some theoretical developments and concepts in Consistent
query answering CQA (when a user queries a database that
is inconsistent with respect to a set of constraints). Database
repairing was modeled by an acyclic binary relation ≤db on
the set of consistent database instances, where r1 ≤db r2
means that r1 is at least as close to db as r2. One pos-
sible distance is the number of tuples to be added and/or
removed. In addition to that, Bertossi studied the main con-
cepts of database repairs and CQA in [6], and emphasis on
tracing back the origin, motivation, and early developments.
J. Biskup and L. Wiese present and analyze an algorithm
called preCQE that is able to correctly compute a solution
instance, for a given original database instance, that obeys
the formal properties of inference-proofness and distortion
minimality of a set of appropriately formed constraints in
[7].

4. APPROXIMATION OF STRONGLY POS-
SIBLE INTEGRITY CONSTRAINTS

For examples of the following definitions see [1].

Definition 4. Attribute set K is an approximate strongly
possible key of ratio a in table T , in notation asp−a ⟨K⟩,

if there exists a subset S of the tuples T such that T \ S
satisfies sp ⟨K⟩, and |S|/|T | ≤ a. The minimum a such that
asp−a ⟨K⟩ holds is denoted by g3(K).

The g3 approximation measure for spKeys was introduced
in [5]. In this section, we introduce a new approximation
measure for spKeys.

Definition 5. Attribute setK is an add-approximate strongly
possible key of ratio b in table T , in notation asp+b ⟨K⟩, if
there exists a set of tuples S such that the table TS satisfies
sp ⟨K⟩, and |S|/|T | ≤ b. The minimum b such that asp+b ⟨K⟩
holds is denoted by g5(K).

Definition 6. For the attribute sets X and Y , σ : X →sp

Y is a remove-approximate strongly possible functional de-
pendency of ratio a in a table T , in notation
T |=≈−

a X →sp Y , if there exists a set of tuples S such that
the table T \ S |= X →sp Y , and |S|/|T | ≤ a. Then, g3(σ)
is the smallest a such that T |=≈−

a σ holds.

Definition 7. For the attribute sets X and Y , σ : X →sp

Y is an add-approximate strongly possible functional depen-
dency of ratio b in a table T , in notation T |=≈+

b X →sp Y ,
if there exists a set of tuples S such that the table T ∪ S |=
X →sp Y , and |S|/|T | ≤ b. Then, g5(σ) is the smallest b
such that T |=≈+

b σ holds.

4.1 Relation between g3 and g5 measures
The following Proposition is used to prove Proposition 2.

Proposition 1. [1] Let T be an instance over schema R
and let K ⊆ R. If the K-total part of the table T satisfies
the key sp ⟨K⟩, then there exists a minimum set of tuples U
to be removed that are all non-K-total so that T \U satisfies
sp ⟨K⟩ .

Proposition 2. [1] For any K ⊆ R with |K| ≥ 2, we
have g3(K) ≥ g5(K).

Apart form the previous inequality, the two measures are
totally independent for spKeys.

Theorem 1. [1] Let 0 ≤ p
q

< 1 be a rational number.

Then there exist tables over schema {A1, A2} with arbitrarily
large number of rows, such that g3({A1, A2})−g5({A1, A2}) =
p
q
.

Unfortunately, the analogue of Proposition 1 is not true for
spFDs, so the proof of the following theorem is quiet in-
volved.

Theorem 2. [1] Let T be a table over schema R, σ :
X →sp Y for some X,Y ⊆ R. Then g3(σ) ≥ g5(σ).

Theorem 3 is proven by a construction [1] similar to the
proof of Theorem 1.

43



Theorem 3. [1] For any rational number 0 ≤ p
q

< 1
there exists tables with an arbitrarily large number of rows
and bounded number of columns that satisfy g3(σ)−g5(σ) =
p
q
for σ : X →sp Y .

4.2 Complexity problems
Definition 8. The SPKey problem is the following.

Input Table T over schema R and K ⊆ R.
Question Is it true that T |= sp⟨K⟩?
The SPKeySystem problem is the following.
Input Table T over schema R and K ⊆ 2R.
Question Is it true that T |= sp⟨K⟩?
The SPFD problem is the following.
Input Table T over schema R and X,Y ⊆ R.
Question Is it true that T |= X →sp Y ?

The following was shown in [4].

Theorem 4. SPKey∈P, SPkeySystem and SPFD are NP-
complete

However, the approximation measures raise new, interesting
algorithmic questions.

Definition 9. The SpKey-g3 problem is the following.
Input Table T over schema R, K ⊆ R and 0 ≤ q < 1.
Question Is it true that g3(K) ≤ q in table T?
The SpKey-g5 problem is the following.
Input Table T over schema R, K ⊆ R and 0 ≤ q < 1.
Question Is it true that g5(K) ≤ q in table T?

Theorem 5. Both, SpKey-g3 and SpKey-g5 are in P.

Proof. SpKey-g3: Let bipartite graph G = (T, T ⋆;E)
be defined as in [4]. T ⋆ is the set of sp-extensions of tu-
ples in T on K, {t, t⋆} ∈ E ⇐⇒ t⋆ is an extension of
t. Then T \ X |= sp⟨K⟩ iff there exists a matching cov-
ering T \ X in G. Thus, X is a minimum set of tuples
to be removed iff |T \ X| = ν(G), the matching number

of G. This gives us g3(K) = |T |−ν(G)
|T | , so determination

of g3(K) is equivalent with finding ν(G). The only prob-
lem is that |T ⋆| is usually of exponential size. In order to
avoid exponential sized bipartite graph we only generate as
many extensions as needed.For the sake of simplicity as-
sume that K = {A1, A2, . . . , Ab}. Let T = {t1, t2 . . . tm}
and ℓ(ti) = |{t⋆ ∈ V D1 × V D2 × . . .× V Db : t

⋆ ∼w ti[K]}|.
Note that ℓ(ti) =

∏
j : ti[Aj ]=⊥ |V Dj |, hence these values

can be calculated by scanning T once and using appropriate
search tree data structures to hold values of visible domains
of each attribute. Sort tuples of T in non-decreasing ℓ(ti)
order, i.e. assume that ℓ(t1) ≤ ℓ(t2) ≤ . . . ≤ ℓ(tp). Let
j = max{i : ℓ(ti) < i} and Tj = {t1, t2, . . . tj}, furthermore
T ⋆
j = {t⋆ : ∃t ∈ Tj : t⋆ ∼w t[K]} ⊆ V D1×V D2× . . .×V Db.

Note that |T ⋆
j | ≤ 1

2
j(j − 1). If ∀i = 1, 2, . . . ,m : ℓ(ti) ≥ i,

then define j = 0 and T ⋆
j = ∅. Let G⋆ = (Tj , T

⋆
j ;E

⋆) be the
induced subgraph of G. Clearly ν(G) ≤ ν(G⋆) + |T \ Tj |.
On the other hand, a matching of G of size ν(G⋆) + |T \ Tj |

can be created by extending a maximum matching of G⋆

greedily to the vertices (tuples) in T \ Tj .

SpKey-g5: To check whether g5(K) ≤ q it is enough to add
⌊q|T |⌋ pairwise distinct tuples with pairwise distinct new
values and then check the satisfaction of sp⟨K⟩ in polyno-
mial time in the extended table.

Example. Let R = {A1, A2, A3}, K1 = {A1, A2},K2 =
{A2, A3}.

T =

A1 A2 A3

t1 1 ⊥ 1
t2 1 2 2
t3 2 1 1
t4 2 1 1

T \ {t4} |= sp⟨K1⟩ and T \ {t4} |= sp⟨K2⟩, but the spWorlds
are different. In particular, this implies that for K we have
g3(K) > max{g3(K) : K ∈ K} On the other hand, trivially
g3(K) ≥ max{g3(K) : K ∈ K} holds. This motivates the
following theorem.

Theorem 6. Let Table T over schema R and K ⊆ 2R.
The problem Max-g3 defined as
Is g3(K) = max{g3(K) : K ∈ K}?
is NP-complete.

Proof. The problem is in NP, a witness consists of a set

of tuples U to be removed, an index j : |U|
|T | = g3(Kj), also

an spWorld T ′ of T \ U such that each Ki is a key in T ′.
Verifying the witness can be done in three steps.

1. g3(Kj) ̸≤ |U|−1
|T | is checked in polynomial time using

Theorem 5.

2. For all i ̸= j check that g3(Ki) ≤ |U|
|T | using again

Theorem 5.

3. Using standard database algorithms check that ∀i : Ki

is a key in T ′.

On the other hand, the SPKeySystem problem can be Karp-
reduced to the present question as follows. First check for
each Ki ∈ K separately whether sp⟨Ki⟩ holds, this can be
done in polynomial time. If ∀i : T |= sp⟨Ki⟩ then give K
and T as input for Max-g3. It will answer Yes iff T |=
sp⟨K⟩. However, if ∃i : T ̸|= sp⟨Ki⟩, then give the example
above as input for Max-g3. Clearly both problems have No
answer.

5. CONCLUSIONS
In the present paper we treat approximation measures of
keys and functional dependencies in SQL database tables
with null values. The strongly possible world semantics
is used, that is only values from the active domains of at-
tributes are allowed to be imputed in place of the null values.
This semantics avoids unnecessary distortions of domains,
since the active domain of an attribute is the set of values

44



that actually occur in the table. A classical approximation
measure of an integrity constraint is that what percentage
of the tuples must be deleted in order to that the remain-
ing table satisfies the constraint. This is usually denoted by
g3. The strongly possible world semantics allows to intro-
duce a new approximation measure, namely by adding new
tuples the active domains can be extended and so the in-
tegrity constraints may be made valid in that way, as well.
The minimum set of tuples to be added is a minimum exten-
sion of the current strongly possible world(s) to one, which
satisfies the given constraint. The percentage of the neces-
sary new tuples is denoted by g5. It was shown earlier that
for keys and functional dependencies g3 ≥ g5, but otherwise
they are independent. The approximation measures give rise
to new algorithmic problems and complexity questions. The
new results of the present note are about the complexity to
determine g3(K) and g5(K) for a key constraint K. Also
a natural decision problem about system of keys is investi-
gated and it is shown to be NP-complete.

6. REFERENCES
[1] M. Al-Atar and A. Sali. Approximate keys and

functional dependencies in incomplete databases with
limited domains. In Foundations of Information and
Knowledge Systems 12th International Symposium,
FoIKS 2022 Helsinki, Finland, June 20–23, 2022
Proceedings, volume 13388 of LNCS, pages 147–167.
Springer Nature Switzerland AG, 2022.

[2] M. Al-Atar and A. Sali. Strongly possible functional
dependencies for sql. Acta Cybernetica, 2022.

[3] M. Alattar and A. Sali. Keys in relational databases
with nulls and bounded domains. In European
Conference on Advances in Databases and Information
Systems, pages 33–50. Springer, 2019.

[4] M. Alattar and A. Sali. Functional dependencies in
incomplete databases with limited domains. In
International Symposium on Foundations of
Information and Knowledge Systems, pages 1–21.
Springer, 2020.

[5] M. Alattar and A. Sali. Strongly possible keys for sql.
Journal on Data Semantics, 9(2):85–99, 2020.

[6] L. Bertossi. Database repairs and consistent query
answering: Origins and further developments. In
Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 48–58, 2019.

[7] J. Biskup and L. Wiese. A sound and complete
model-generation procedure for consistent and
confidentiality-preserving databases. Theoretical
Computer Science, 412(31):4044–4072, 2011.

[8] A. Farhangfar, L. A. Kurgan, and W. Pedrycz. A
novel framework for imputation of missing values in
databases. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans,
37(5):692–709, 2007.

[9] C. Giannella and E. Robertson. On approximation
measures for functional dependencies. Information
Systems, 29(6):483–507, 2004.

[10] L. A. Goodman and W. H. Kruskal. Measures of
association for cross classifications. Measures of
association for cross classifications, pages 2–34, 1979.

[11] J. Kivinen and H. Mannila. Approximate inference of

functional dependencies from relations. Theoretical
Computer Science, 149(1):129–149, 1995.

[12] H. Köhler, U. Leck, S. Link, and X. Zhou. Possible
and certain keys for sql. The VLDB Journal,
25(4):571–596, 2016.

[13] W. Lipski Jr. On databases with incomplete
information. Journal of the ACM (JACM),
28(1):41–70, 1981.

[14] J. Wijsen. Foundations of query answering on
inconsistent databases. ACM SIGMOD Record,
48(3):6–16, 2019.

45



Building energy demand regression 
 

 

Tamás Storcz 
Department of Systems 

and Software 
Technologies, University of 

Pécs, Boszorkány u. 2, 
7624 Pécs, Hungary, 

storcz.tamas@mik.pte.hu 

 

István Kistelegdi 
University of Pécs, János 
Szentágothai Research 
Centre, Energy Design 

Research Group, Ifjúság u. 
20, 7624 Pécs, Hungary,  
kistelegdisoma@mik.pte.hu  

 

Zsolt Ercsey 
Department of Systems 

and Software 
Technologies, University of 

Pécs, Boszorkány u. 2, 
7624 Pécs, Hungary, 
ercsey.zsolt@mik.pte.hu 

ABSTRACT 
 

In the paper the applicability of regression models 

for building heating energy estimation is 

examined. During the experiment, regression 

models were created to estimate annual heating 

energy demand of generic family houses. Non-

linearity of regression models was enhanced by 

creating non-linearly correlated new input 

variables. Then performance of generated models 

was measured and compared. As a result, 

multilayer dense neural net model with original 

input parameters was proposed. Its performance 

was almost equal to linear regression with 

extended input variables, but its structural and 

functional flexibility makes the neural network 

applicable in wider range of tasks. 

 

Keywords 
Heating energy, Regression, Neural network, 
Regression tree 

 

INTRODUCTION 
 

Heating energy demand determination by 

simulation for a family house by a special 

energetic simulation software requires time 

consuming setup and calculation per each 

building configuration. For energy optimization, a 

lot of simulations must be done, therefore 

speeding up the process would be very helpful.  

 

Investigated simulations apply the same, generic 

engineering setup, since finding optimal building 

configurations and construction parameters are in 

the focus of the experiment series. Therefore, 

thermal insulation is, but artificial heating type 

and organization is not taken into consideration. 

Based on priorities specified by architect experts, 

from the collection of optimization aims, annual 

heating energy demand minimization comes first. 

 

Complex and computation-intensive simulations 

could be replaced by multivariate linear 

regression. First test resulted bad regression 

accuracy, because as expected, the estimated 

energy demand function is not linear. But when 

increasing non-linearity of the model by enhance 

it with max. 3rd power of multiplicative 

combination of input variables, the accuracy of 

multivariate linear regression model grew above 

0.95 of R2 points, which is high enough to be 

accepted by architect experts. 

 

But increasing the number of input variables in a 

non-linear extent, makes the model much more 

complex meanwhile the new input features are 

not interpretable by experts.  

 

The proposed dense neutral network-based 

regression model is generated in 346 seconds. 

The created model calculates 3500 (train) 

estimations in 0.12 second and 1500 (test) 

estimations in 0.05 seconds. Its performance in 

accuracy, 0.96 R2 is also acceptable by architect 

experts. The model operates on the initial input 

variables, no need for non-linearity addition by 

increasing number and complexity of input. 

Required non-linear features were extracted by 

the network in the training process. Besides, its 

structural flexibility opens possibilities of 

extended applications. 
 

  

46



ENERGY REGRESSION 
 

The main aim of regression models is to 

approximate unknow or known but complex 

correlation of descriptor and response variables. 

Such procedures are applied in all fields of 

science; thus, their application is not new in 

architectural energetics. 

 

Peña-Guzmán and Rey [1] applied several types 

of linear regression models to estimate future 

development of residential electric power 

consumption with higher than 0.93 R2 accuracy. 

 

Mehedintu et al. [2] also used R2 score for 

efficiency measurement of polynomial and auto 

regression methods. They applied these 

regression methods estimate the rate of total 

energy consumption and its part from renewable 

sources with higher than 0.91 score. 

 

Mohammed et al. [3] estimated energy demand of 

school facilities. For the creation of linear 

regression model, 350 samples were used for 

training and 35 for testing. The accuracy of 

generated model was higher than 90%. 

 

REGRESSION MODELS 
 

Descriptive data 

Building configurations can be used as input 

variables only if an appropriate representation is 

found for the blueprints. To help creation of this 

representation, the building is created from equal 

size boxes joined on sides conforming predefined 

architectural rules.  

Figure 1. shows a valid building configuration. 

 
Figure 1: Building configuration example 

 

Multivariate regression models cannot handle 

close relation of input variables (like coordinate 

triplets) therefore instead of using 3D coordinates 

of building components, count of details with 

special properties (convex edges and vertices, 

side walls, floors, roofs, etc.) were used as 

independent input variables. 

 

Regression is a widely used statistical method [4], 

in which the aim is to model the relation between 

the descriptors and the dependent variable. 

 

Linear regression 

Linear regression [5] is a special case of generic 

regression, in which dependent variable is 

generated as linear combination of descriptor 

variables, as first-order Taylor series. For 

parameter determination in model generation, 

most commonly the least squares method is used. 

Heating energy demand of family houses is a 

non-linear function. Definition of linear 

regression method enables dependency between 

its input variables, therefore multiplicative 

combination of inputs can be added to increase 

input complexity. Difficulty of this is the 

determination of maximum power of these 

combinations. As stated in the results, application 

of maximum 3rd power provides more than 0.95 

of R2 score. 

 

Decision tree 

Regression trees are special decision trees [6] for 

regression tasks. A decision tree is generated by a 

recursive binary partitioning process, which 

results internal nodes of the tree as decision nodes. 

These contain a test of the value of a specific 

input variable. The terminal nodes are the 

predicted output variable values. 

Keys of regression tree generation are first the 

selection of the input variable for the decision – 

what to test. Next the selection of the separator 

value to test for. The idea behind the selection is 

the minimalization of variance of subspaces 

resulted by the split of decision. 

 

For measuring the variances, the following 

methods are used: 

• Mean Absolute Error based on L1 distance 

• Mean Squared Error based on L2 distance 

• Poisson method 

 

Finally for the terminal nodes the predicted 

response value must be selected. This is done by 

averaging the group of samples covered by the 

terminal node. 

47



Benefits of regression trees: 

• greedy algorithm 

• results good approximation 

• short execution time – low resource needs 

• well understandable decisions 

 

Drawbacks of regression trees: 

• not robust – sensitive to training data 

changes 

• creation of optimal tree is NP-complete 

• high chance for overfitting 

 

Dense neural net 

Neural net regression model [7] is inspired by 

nerve system and based on universal 

approximation theorem. 

 

In terms of its structure, consists of independent 

analogue processing units which are organized 

into connected layers. The first layer of the 

network is called input, the last is the output, and 

layer between them (if any) is called hidden layer. 

Figure 2. shows the schematic model of a 

network with one hidden layer and l, m, n 

processors in input, hidden and output layers. 

 

 
Figure 2: Neural net with 3 layers 

 

Processors of consecutive layers are fully 

connected, but there are no connections between 

processors of same or non-consecutive layers. 

The individual elements first calculate weighted 

sum of their inputs, then generate their output 

using an activation function. For providing the 

non-linearity and to support the learning 

procedure, special activations could be chosen.  

 

MODEL GENERATION 
 

For the model generation, 5010 samples were 

created by IDA ICE energy demand simulation 

software. Through simulations, architect experts 

designed 167 configuration of valid family 

houses of the same size. Then had to equip those 

with architectural (wall window ratio and 

orientation) and engineering (thermal insulation, 

heating system) components Then using weather 

data from local statistics of many years annual 

energy demand simulation must be done. 

Simulation outputs are generated by 

summarization of daily demands. 

Using 70% of these samples (3507) 5 different 

type of models were created: 

- linear regression 

- decision tree with L1 metric 

- decision tree with L2 metric 

- decision tree with Poisson metric 

- dense neural net with 1 hidden layer 

3 versions were generated from all 5 model types, 

using different inputs: 

- default inputs 

- inputs extended with max. 2nd power of 

multiplicative combination 

- inputs extended with max. 3rd power of 

multiplicative combination 

That result 15 different model classes. To get rid 

of performance differences caused by 

randomization, 25 instances were generated from 

all 15 model classes. All 375 model instances 

were evaluated, then individual evaluations were 

averaged on classes. 

 

MODEL EVALUATION 
 

For better evaluation of model instance 

performances, a calculation of a single value is 

required for all instances. This single value must 

represent the approximation errors of each 

individual tests. R2 metric is widely used in 

statistics and regression analyses was applied. As 

stated in equation 1, it conforms aforementioned 

requirement to represent individual 

approximation errors. 

𝑅2 = 1 −
∑(𝑦 − �̃�)2

∑(𝑦 − �̅�)2
 Equation 1 

where y is the value to approximate, �̅�  is its 

average and �̃� is the approximation. 

 

In addition to R2 score absolute and relative 

48



(relative to the value to approximate) error 

average and their standard deviation also were 

measured. 

 

RESULTS 
 

After analysing averages and accuracy metrics of 

data groups, it can be stated that linear regression 

with 3rd and 2nd power of input variables and 

dense neural network with 1st (default) input had 

almost same performance, around 0.96 R2 score. 

Score of all other model classes were below 0.75, 

therefore they were rejected. 

Averages of absolute errors of estimations for all 

models are negligible compared to the annual 

demands, but only for the previously selected 3 

model classes did the standard deviance of 

estimation error stayed below 500kWh/year. 

 

CONCLUSION 
 

As a final conclusion, it is stated that linear 

regression with higher power of input and dense 

neural net with default input perform the same. 

But for model selection, structural flexibility is 

also taken into consideration. And linear 

regression model cannot be enhanced in the 

future. In the other hand, neural network structure 

can be extended or with more processors of the 

same type or different type of processor layers 

(convolutional, recurrent).  

Therefore, the proposed model is the dense neural 

network with 1 hidden layer. 

 

 

REFERENCES  
 

[1] Peña-Guzmán C., Rey J. Forecasting 

residential electric power consumption for 

Bogotá Colombia using regression models, 

Energy Reports, (2020) vol. 6 sup. 1., pp. 

561-566 

[2] Mehedintu, A., Sterpu, M., Soava, G 

Estimation and Forecasts for the Share of 

Renewable Energy Consumption in Final 

Energy Consumption by 2020 in the 

European Union. Sustainability 2018, 10(5), 

1515 

[3] Mohammed, A., Alshibani, A., Alshamrani, 

O., Hassanain, M., A regression-based model 

for estimating the energy consumption of 

school facilities in Saudi Arabia. Energy & 

Buildings. 2021 vol. 237, 110809 

[4] Sarstedt, M., Mooi, E. Regression Analysis. A 

Concise Guide to Market Research. pp 193-

233. Springer Texts in Business and 

Economics 2014 ISBN: 978-3-642-53964-0 

[5] Heiberger R., M., Holland B. Linear 

Regression by Least Squares in book 

Statistical Analysis and Data Display 2015 

pp. 235-262, Springer 

[6] Loh, W.Y. Classification and regression trees 

2011. Wiley interdisciplinary reviews: Data 

Mining and KnowledgeDiscovery, 1(1), 14-

23. 

[7] Malte, J. Artificial neural network regression 

models: Predicting GDP growth. 2018. 

HWWI Research Paper, No. 185, 

Hamburgisches WeltWirtschaftsInstitut 

(HWWI), Hamburg 

49



Clique relaxations of zero-one linear programs

Sándor Szabó Institute of Mathematics and
Informatics University of Pécs
sszabo7@hotmail.com

Bogdán Zaválnij Alfréd Rényi Institute of
Mathematics

bogdan@renyi.hu

ABSTRACT
In an earlier work a so-called conflict graph was associated
to a given zero-one linear program basically to accumulate
information to construct cuts to speed up the solution of the
program. Later it was noticed that the conflict graph can
be used in fixing values of variables and fathoming partial
solutions in enumerative type solvers. In this paper we will
show that the conflict graph helps in dividing dividing a
zero-one linear program into independent smaller instances
and so it opens a way for a parallel solution. Further the
conflict graph suggests certain possibilities for preprocessing
and simplifying the given zero-one linear program.

Keywords
discrete optimization, clique, independent set, weighted clique,
zero-one program, parallel computing, preprocessing

1. INTRODUCTION
Given a zero-one linear program P . We assume that ob-
jective function of P is to be maximized, that is, we are
dealing with a maximization problem. A zero-one variable
sometimes called a binary or Boolean variable. The fact
that a zero-one variables takes on the value zero sometimes
expressed saying that variable is on level zero. Similarly, we
can say that the variable is on level one.

Following [1] using the linear program P we construct a so-
called conflict graph H and we assign this graph H to the
program P . Here is the construction of H. Let x1, . . . , xn
be the variables of the given zero-one linear program P and
let y1 = 1 − x1, . . . , yn = 1 − xn. Finally, for the sake of a
uniform notation let

u1 = x1, . . . , un = xn, un+1 = y1, . . . , u2n = yn.

The nodes of the conflict graph H are the variables

u1, . . . , un, un+1, . . . , u2n.

The nodes ui, uj , 1 ≤ i < j ≤ 2n are connected by an edge
in H if the inequality ui + uj ≤ 1 holds.

We distinguish two types of conflict graphs such as totally
computed conflict graphs and partially computed conflict
graphs. In other words a partially computed conflict graph
can be viewed as a relaxed version of the totally computed
conflict graph. Typically one works with partially computed
conflict graphs. The reason of this is the following. Deciding
whether the pair {ui, uj} is an edge of the conflict graph H
amounts to deciding the linear program P has a feasible
solution with the extra constraints ui = uj = 1.

If the zero-one linear program P with the extra constraints
ui = uj = 1 does not have any feasible solution then, the
unordered pair {ui, uj} is an edge of the conflict graph H.
Carrying out these computations for each 1 ≤ i < j ≤
2n can be computationally prohibitive. So one accepts this
limitation and introduces edges into H whose existence can
be verified easily. In this way we end up with a partially
constructed conflict graph.

In [1] a number of properties of the conflict graph were es-
tablished and were used to construct cuts. The next three of
the above results were used to aid an enumerative solutions
in [9].

Lemma 1. (Extension rule) If {xi, uj} and {yi, uk} are
edges of H, then {uj , uk} is an edge of H.

Lemma 2. (Fixing rule) If {ui, ui} is an edge (loop) of
H, then ui = 0 must hold.

Lemma 3. (Fathoming rule) A partial solution in which
xi is fixed on level 0 and yi is fixed on level 0 cannot be a
feasible solution.

We apply the extension rule repeatedly as long as the ex-
tension rule is applicable. This leads to the so-called closure
of the conflict graph. If we are lucky we may fix the value
of some variable in the linear program or we may fathom a
partial solution.

The set of neighbors of a node v of the graph G consists of all
the nodes of G that are adjacent to v. The set of neighbors
of v is denoted by N(v). In practice we apply the extension
rule to the nodes xi and yi for each i, 1 ≤ i ≤ n. Namely,
the edges {x, y}, x ∈ [N(xi) \ {yi}], y ∈ [N(yi) \ {xi}] are
added to the conflict graph. Of course some of these edges

50



Table 1: The adjacency matrix of a conflict graph.

x x x x x y y y y y
1 2 3 4 5 1 2 3 4 5

x 1 • • • • •
x 2 • •
x 3 • •
x 4 • •
x 5 •
y 1 • • •
y 2 • •
y 3 • •
y 4 •
y 5 • •

u
u
u

u

u

u

u

u
u
u

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
� @

@
@

A
A
A
A
A
A

x4

x3

x2

x5

x1

y5

y1

y4

y3

y2

Figure 1: A graphical representation of the conflict graph

may already be an edge of the conflict graph in which case
we do not add any new edge to the conflict graph. Note that
yi ∈ N(xi), xi ∈ N(yi) and so if |N(xi)| = 1 or |N(yi)| = 1,
then we do not add any new edge to the conflict graph. If
[N(xi) \ {yi}] ∩ [N(yi) \ {xi}] 6= ∅, then there are variables
whose values can be fixed. Namely, the variables appearing
in the intersection can be fixed.

To see why let us assume that uj is an element of the in-
tersection. In this situation by the extension rule the un-
ordered pairs {xi, uj} and {yi, uj} are edges of the conflict
graph. Again, by the fixing rule {uj , uj} is an edge of the
conflict graph.

As an illustration we included a small example. In Table 1
the reader can see the adjacency matrix of a conflict graph.
Figure 1 depicts a possible geometric representation of this
conflict graph. Figure 2 shows the new edges we get applying
the extension rule.

Of course the computations are happening on the adjacency
matrices. During a computations only Tables 1 and 2 ap-
pear.

u
u
u

u

u

u

u

u
u
u

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
� @

@
@

A
A
A
A
A
A

x4

x3

x2

x5

x1

y5

y1

y4

y3

y2
�




�

	

�


�
	

Figure 2: Extending the conflict graph. The newly added
edges are bold.

Table 2: The adjacency matrix of the extended conflict graph.
The new edges are indicated by “◦” signs.

x x x x x y y y y y
1 2 3 4 5 1 2 3 4 5

x 1 • • • • •
x 2 • • ◦
x 3 • ◦ •
x 4 • ◦ ◦ •
x 5 •
y 1 • • •
y 2 • ◦ ◦ •
y 3 ◦ • ◦ •
y 4 •
y 5 • •

51



2. THE WEIGHTED AGREEMENT GRAPH
In this section we define a new agreement graph G. This
G can be used to preprocessing or precondition the original
linear program and to divide it into smaller independent
instances.

Let G be the complement of the subgraph of H induced by
the set of nodes {x1, . . . , xn}. To the node xi of G we assign
the coefficient of xi in the objective function as a weight.

A subset C of the vertices {x1, . . . , xn} of the weighted
agreement graph G is called a clique if each two distinct
vertices in C are adjacent in G. The sum of the weights
assigned to the elements of C is called the weight of the
clique. The vector [α1, . . . , αn] is referred to as the charac-
teristic vector of the set C if αi = 1 whenever xi ∈ C and
αi = 0 whenever xi 6∈ C.

The observation we will use is stated formally as a lemma.

Lemma 4. The set of characteristic vectors of the cliques
of G contains each feasible solution of the zero-one linear
program P .

We spell out explicitly Lemma 5 as a corollary to Lemma 4.

Lemma 5. The value of each optimal solution of the zero-
one linear program P is at most the weight of a maximum
weight clique in the graph G.

Any of the maximum weight clique solvers in [2], [4], [5], [6],
[7] can be deployed to locate a maximum weight clique in the
agreement graph G. This clique does not necessarily provide
a feasible solution of the original zero-one linear program P .
What is certain that we can establish upper bound for the
optimal solution of the zero-one linear program P .

The Carraghan-Pardalos algorithm [3] is capable of listing
all maximum weight cliques in the weighted agreement graph
G. The algorithm maintains a partially constructed clique
C and a list consisting of nodes that can be added to C
to get a larger clique. With a slight modification of the
procedure we may also check if C can be part of a feasible
solution of the given zero-one program P . Thus, the mod-
ified Carraghan-Pardalos algorithm could locate a clique in
G, which has maximum weight among the feasible solutions
of P . In short, a clique problem solver can solve moderate
size zero-one linear programs.

3. KERNELIZATION
A node of the graph G is referred to as a full degree node if
it is adjacent to each other node of G. Let v be a full degree
node of G and let G′ be the subgraph of G induced by the
nodes distinct from v. In plain English we get G′ from G by
deleting the node v.

Lemma 6. (Full degree rule) If C′ is a maximum weight
clique in G′, then C = C′ ∪{v} is a maximum weight clique
in G.

Lemma 6 suggests to remove full degree nodes from the
weighted conflict graph, then after locating a maximum weight
clique in the reduced graph we can construct a maximum
weight clique in the original weighted agreement graph.

We say that node v dominates node u of the weighted agree-
ment graph G if u, v are distinct, N(u) ⊆ N(v) and the
weight of u is not larger than the weight of v. (Remember
that N(v) is the set of neighbors of the node v in G.)

We say that the edge e = {u, v} dominates edge f = {v, w}
in the weighted agreement graph G if the unordered pair
{u,w} is not an edge of G, [N(v) ∩N(w)] ⊆ [N(u) ∩N(v)]
and the weight of w is not larger than the weight of u.

More generally, we say that the edge e = {u, v} dominates
edge f = {x, y} in the weighted agreement graph G if at
least one of the unordered pairs

{u, x}, {u, y}, {v, x}, {v, y}

is not an edge of G, [N(x) ∩ N(y)] ⊆ [N(u) ∩ N(v)] and
the sum of weights of x and y is not larger than the sum of
weights of u and v.

The following result is proved in [8].

Lemma 7. If node v dominates node u, then node u can
safely deleted from G when we are looking for a maximum
weight clique in G.

Lemma 8. If edge e dominates edge f , then edge f can
safely deleted from G when we are looking for a maximum
weight clique in G. (We do not delete any of the endpoints
of the edge f .)

Deleting a node from G means that we may fix the value of
the corresponding variable of P on level zero. Deleting an
edge from the weighted agreement graph G means that we
may enter a new edge into the original unweighted conflict
graph H. Applying the extension rule in H may result fixing
variables or fathoming.

3.1 Coloring the vertices
In this section we will show how coloring of the nodes of the
weighted agreement graph G can be used for preprocessing
the zero-one linear program P .

We say that a coloring of the vertices of the graph G is a
proper coloring if each node is colored exactly one color and
the two end points of each edge of G receive distinct colors.
Usually we use the numbers 1, . . . , k as colors. The nodes of
G receiving colors i give the elements of the color i-th color
class Ci. A coloring of the nodes of G can be given by the
color classes C1, . . . , Ck. From the color class Ci we pick a
node with a maximum weight. Summing up these weights
for each i, 1 ≤ i ≤ k we get a number which we call the
weight of G with respect to the given coloring of the nodes
of G.

Let v be a vertex of G. We consider the subgraph L of
G induced by the set N(v). Using a greedy algorithm we

52



properly color the vertices of L. To the vertex v we assign
the weight of the coloring of L and call this number the color
index of v.

Let e = {u, v} be an edge of G. We consider the subgraph
M of G induced by the set N(u) ∩ N(v). Using a greedy
algorithm we properly color the vertices of M . To the edge
e we assign the weight of the coloring of M and call this
number the color index of e.

Using a greedy procedure we locate a clique C in G. The
larger of the weight T of C is the better. Clearly, T is a
lower bound of the weight of any maximum weight clique in
G.

The basic observation we use for preprocessing is stated as
a lemma.

Lemma 9. Let v be a vertex of G. If weight(v)+index(v) <
T , then v can be deleted safely from G when we are looking
for a maximum weight clique in G.

Let e = {u, v} be an edge of G. If weight(u) + weight(v) +
index(e) < T , then e can be deleted safely from G when we
are looking for a maximum weight clique in G. (We do not
delete any of the endpoints of the edge e.)

4. PARALLELIZATION
Let us turn to the parallelization result. Let W1, W2, W3 be
subsets of the nodes of the finite simple graph G and assume
that V is the set of nodes of G. Suppose W1, W2, W3 are
pair-wise disjoint and V = W1 ∪W2 ∪W3. If in addition
there is no edge of G is going from W1 to W3, then we say
that the triple (W1,W2,W3) is a splitting partition of G.

Let G1 be the subgraph of G induced by the set of nodes
W1 ∪W2 and let G3 be the subgraph of G induced by the
set of nodes W2 ∪W3.

The next result is proved in [8].

Lemma 10. If C is a maximum weight clique in the graph
G, then C is a maximum weight clique in either G1 or in
G3.

In the particular case when both of the setsW1, W3 has more
than one elements Lemma 10 offers a way to replace the
original zero-one linear program P by two smaller programs
P1 and P3. The program P1 is constructed from program P
by deleting variables corresponding the elements of the set
W3. Similarly, the program P3 is constructed from program
P by deleting variables corresponding the elements of the
set W1.

Sytematic ways to construct splitting partitions are pre-
sented and tested in [10] and [11].

5. ACKNOWLEDGMENTS
The project has been supported by National Research, De-
velopment and Innovation Office – NKFIH Fund No. SNN-
135643.

6. REFERENCES
[1] A. Atamtürk and M. W. P. Savelsbergh, Conflict

graphs in solving integer programming problems,
European Journal of Operation Research 121 (1994),
40–45.

[2] E. Balas, J. Xue, Weighted and unweighted maximum
clique algorithms with upper bounds from fractional
coloring, Algorithmica 15 (1996), 397–412.

[3] R. Carraghan, P. M. Pardalos, An exact algorithm for
the maximum clique problem, Operation Research
Letters 9 (1990), 375–382.

[4] S. W. Cai and J. K. Lin, Fast solving maximum
weight clique problem in massive graphs. In
Proceedings of 25th International Joint Conference on
Artificial Intelligence, IJCAI, (2016) 568???574.

[5] D. Kumlander, A new exact algorithm for the
maximum weight clique problem based on a heuristic
vertex-coloring and a backtrack search. In Proceedings
of Modeling, Computation and Optimization in
Information Systems and Management Sciences,
MCO, 202???208. Hermes Science Publishing 2004.

[6] P. R. J. Österg̊ard, A new algorithm for the
maximum-weight clique problem, Nordic Journal of
Computing 8 (2001), 424–436.

[7] P. Prosser, Exact algorithms for maximum clique: A
computational study, Algorithms 5 (2012), 545–587.

[8] S. Szabó, Parallel algorithms for finding cliques in a
graph, Journal of Physics: Conference Series 268
(2011)

[9] S. Szabó, Conflict graphs in implicit enumeration,
Pollack Periodica 7 (2012), 145–156.

[10] S. Szabó, Metric space method for constructing
spiltting partitions of graphs, Acta Univ. Sapientiae,
Informatica 11 (2019), 131–141.

[11] S. Szabó and B. Zavalnij, Splitting partitions and
clique search algorithms, Middle-European Conference
on Applied Theoretical Computer Science 2019, 75–78.

53



54



 

Indeks avtorjev / Author index 
 

Alatar Munqath ............................................................................................................................................................................ 39 

Békési József .................................................................................................................................................................................. 7 

Brodnik Andrej ............................................................................................................................................................................. 11 

Čibej Uroš .................................................................................................................................................................................... 15 

Dobravec Tomaž .......................................................................................................................................................................... 19 

Ercsey Zsolt .................................................................................................................................................................................. 44 

Galambos Gábor ............................................................................................................................................................................. 7 

Győri Ervin ................................................................................................................................................................................... 15 

Hegyháti Máté .............................................................................................................................................................................. 23 

Kelemen András ............................................................................................................................................................................. 7 

Kistelegdy István .......................................................................................................................................................................... 44 

Lukač Luka ................................................................................................................................................................................... 35 

Nagy Benedek .............................................................................................................................................................................. 27 

Nilsson Bengt J. ........................................................................................................................................................................... 11 

Olivas González Alejandro .......................................................................................................................................................... 31 

Papp Imre ....................................................................................................................................................................................... 7 

Podgorelec David ......................................................................................................................................................................... 35 

Quilliot Alain ............................................................................................................................................................................... 31 

Sali Attila ..................................................................................................................................................................................... 39 

Storcz Tamás ................................................................................................................................................................................ 44 

Szabo Sandor ................................................................................................................................................................................ 48 

Tolnai József .................................................................................................................................................................................. 7 

Toussaint Hélène .......................................................................................................................................................................... 31 

Vujovic Gordana .......................................................................................................................................................................... 11 

Žalik Borut ................................................................................................................................................................................... 35 

Zavalnij Bogdan ........................................................................................................................................................................... 48 

 
 

55



56





Srednjeevropska konferenca o 
uporabnem teoreticnem racunalnistvu

Middle-European Conference on   
Applied Theoretical Computer Science

Uredniki Editors:
Andrej Brodnik, Gabor Galambos, Branko Kavseksczc

scz


	02 - Naslovnica - notranja - I - TEMP
	03 - Kolofon - I - TEMP
	04 - IS2022 - Predgovor - TEMP
	05 - IS2022 - Konferencni odbori - TEMP
	07 - Kazalo - I
	Blank Page

	08 - Naslovnica - notranja - I - TEMP
	Blank Page

	09 - Predgovor podkonference - I
	10 - Programski odbor podkonference - I
	Blank Page

	MATCOS-2022_paper-01_1132
	MATCOS-2022_paper-02_1441
	MATCOS-2022_paper-03_7512
	MATCOS-2022_paper-04_8329
	MATCOS-2022_paper-05_4523
	MATCOS-2022_paper-06_9505
	MATCOS-2022_paper-07_5263
	MATCOS-2022_paper-08_3938
	MATCOS-2022_paper-09_3644
	MATCOS-2022_paper-10_9189
	MATCOS-2022_paper-11_8913
	12 - Index - I
	Blank Page

	Blank Page
	08 - Naslovnica - notranja - I.pdf
	Blank Page

	Blank Page



