

Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (2014) 441–452

Average distance, radius and remoteness of a graph*

Baoyindureng Wu[†]

College of Mathematics and System Science, Xinjiang University Urumqi 830046, P.R. China

Wanping Zhang

Foundation department, Karamay Vocational and Technical College Karamay 833600, P.R. China

Received 28 February 2012, accepted 25 August 2013, published online 26 December 2013

Abstract

Let G = (V, E) be a connected graph on *n* vertices. Denote by $\overline{l}(G)$ the average distance between all pairs of vertices in *G*. The *remoteness* $\rho(G)$ of a connected graph *G* is the maximum average distance from a vertex of *G* to all others. The aim of this paper is to show that two conjectures in [5] concerned with average distance, radius and remoteness of a graph are true.

Keywords: Distance, radius, eccentricity, proximity, remoteness. Math. Subj. Class.: 05C12, 05C35

1 Introduction

All graphs considered in this paper are finite and simple. For notation and terminology not defined here, we refer to West [21]. Let G = (V, E) be a finite simple graph with vertex set V and edge set E, |V| and |E| are its order and size, respectively. The distance between vertices u and v is denoted by d(u, v), is the length of a shortest path connecting u and v. The average distance between all pairs of vertices in G is denoted by $\overline{l}(G)$. That is $\overline{l}(G) = \frac{1}{\binom{n}{2}} \sum_{u,v \in V(G)} d(u, v)$, where the summation run over all unordered pairs of vertices. The eccentricity $e_G(v)$ of a vertex v in G is the largest distance from v to another vertex of G, i.e. $\max\{d(v,w) | w \in V(G)\}$. The diameter of G is the maximum eccentricity in G,

^{*}This research was supported by NSFC (No. 11161046).

[†]Corresponding author.

E-mail addresses: baoyinwu@gmail.com (Baoyindureng Wu), zwp19980126@163.com (Wanping Zhang)

denoted by diam(G). Similarly, the radius of G is the minimum eccentricity in G, denoted by rad(G); and the average eccentricity of G is denoted by ecc(G). In other words,

$$rad(G) = \min_{v \in V} e_G(v), \quad diam(G) = \max_{v \in V} e_G(v) \text{ and } ecc(G) = \frac{1}{n} \sum_{v \in V} e_G(v).$$

For a connected graph G of order n, $\sigma_G(u)$ denotes the average distance from u to all other vertices of G, that is $\sigma_G(u) = \frac{1}{n-1} \sum_{v \in V(G)} d(u, v)$. The proximity $\pi(G)$ of a connected graph G is the minimum average distance from a vertex of G to all others. Similarly, the remoteness $\rho(G)$ of a connected graph G is the maximum average distance from a vertex of G to all others. They were recently introduced in [2, 3], that is

$$\pi(G) = \min_{v \in V} \sigma_G(v) \text{ and } \rho(G) = \max_{v \in V} \sigma_G(v).$$

The sum of distances from a vertex of G to all others is known as its transmission. Proximity and remoteness can also be seen as the minimum and maximum normalized transmission in a graph. Indeed, by their definitions

$$\pi(G) \leq rad(G) \leq ecc(G) \leq diam(G)$$
 and $\pi(G) \leq \overline{l}(G) \leq \rho(G) \leq diam(G)$.

There are a number of results which are devoted to the relation between average distance and other graph parameters (see [6-15, 22]). A vertex $u \in V(G)$ with the minimum eccentricity is called a *center* of G. It is well-known that every tree has either exactly one center or two, adjacent centers. The center of graphs have been extensively studied in the literature (see [16]). Some more results on the radius of graphs can be found in [18, 17].

A Soltés or a path-complete graph is the graph obtained from a clique and a path by adding at least one edge between an endpoint of the path and the clique. The Soltés graphs are known to maximize the average distance \bar{l} when the number of vertices and of edges are fixed [20].

In [4] Aouchiche and Hansen established the Nordhaus-Gaddum-type theorem for $\pi(G)$ and $\rho(G)$. In [5] the same authors gave the upper bounds on $rad(G) - \pi(G)$, $diam(G) - \pi(G)$ and $\rho(G) - \pi(G)$, and proposed five related conjectures, two of which are the following.

Conjecture A. (Conjecture 5, [5]) Among all connected graphs G on $n \ge 3$ vertices with average distance \bar{l} and remoteness ρ , the Soltés graphs with diameter $\lfloor \frac{n+1}{2} \rfloor$ maximize $\rho - \bar{l}$.

Conjecture B. (Conjecture 1, [5]) Let G be a connected graph on $n \ge 3$ vertices with remoteness ρ and radius r. Then connected graph G on $n \ge 3$ vertices,

$$\rho-r \geq \begin{cases} \frac{n^2}{4n-4} - \frac{n}{2}, & \text{if } n \text{ is even,} \\ \frac{3-n}{4}, & \text{if } n \text{ is odd.} \end{cases}$$

The inequality is best possible as shown by the cycle C_n if n is even and of the graph composed by the cycle C_n together with two crossed edges on four successive vertices of the cycle.

The aim of this note is to confirm the validity of the above conjectures.

Conjecture 2 in [5] is solved in [19], and Conjecture 4 in [5] is solved in [1]. Up to now, Conjecture 3 in [5] still remains open.

2 Proof of Conjecture A

For convenience, we use some additional definition and notations. Let G be a connected graph. A vertex $u \in V(G)$ is called a *peripheral* vertex if $\sigma(u) = \rho(G)$. For a vertex $u \in V(G)$, let $V_i(u) = \{v \in V(G) | d(u, v) = i\}$ and $n_i(u) = |V_i(u)|$ for each $i \in \{1, \ldots, d\}$, where $d = e_G(u)$. In what follows, $V_i(u)$ is simply denoted by V_i for a peripheral vertex u of G.

Lemma 2.1. Let G be a connected graph of order $n \ge 3$. Let u be a peripheral vertex of G and let $d = e_G(u)$. Let G' be the graph obtained from G by joining each pair of all nonadjacent vertices x, y of G, where $x, y \in V_j \cup V_{j+1}$ for some $j \in \{1, \ldots, d-1\}$. We have

$$\rho(G') - l(G') \ge \rho(G) - l(G),$$

with equality if and only if G' = G.

Proof. It is clear that for any $x \in V(G)$, $d_{G'}(u, x) = d_G(u, x)$ and $d_{G'}(v, w) \leq d_G(v, w)$ for any $v, w \in V(G)$. It follows that $\sigma_{G'}(u) = \sigma_G(u)$ and $\sigma_{G'}(v) \leq \sigma_G(v)$ for any $v \in V(G')$. Combining this with the assumption that u is a peripheral vertex of G, it follows that u is also a peripheral vertex of G'. Thus $\rho(G') = \sigma_{G'}(u) = \sigma_G(u) = \rho(G)$. Moreover, it is obvious that $\overline{l}(G') \leq \overline{l}(G)$, with equality if and only if G' = G. So, $\rho(G') - \overline{l}(G') \geq \rho(G) - \overline{l}(G)$, with equality if and only if G' = G.

Lemma 2.2. Let G be a connected graph of order $n \ge 3$. Let u be a peripheral vertex of G and $e_G(v) = d$. Assume that $G[V_j \cup V_{j+1}]$ is a clique for each $j \in \{0, \ldots, d-1\}$. Let G' be the graph with V(G') = V(G) and $E(G') = E(G) \cup \{xy : x \in V_{d-2}, y \in V_d\}$. If $d > \lfloor \frac{n+1}{2} \rfloor$, then

$$\rho(G') - \bar{l}(G') \le \rho(G) - \bar{l}(G),$$

with equality if and only if n is even and $d = \frac{n}{2} + 1$.

Proof. Note that

$$\sigma_{G'}(x) = \begin{cases} \sigma_G(x) - \frac{1}{n-1}n_d, & \text{if } x \in \bigcup_{j=1}^{d-2} V_j \ \cup \{u\} \\ \sigma_G(x), & \text{if } x \in V_{d-1} \\ \sigma_G(x) - \frac{1}{n-1}(n - n_{d-1} - n_d), & \text{if } x \in V_d \ . \end{cases}$$

Since u is a peripheral vertex of G, $\sigma_{G'}(u) \ge \sigma_{G'}(x)$ for any $x \in \bigcup_{j=1}^{d-2} V_j$. Moreover, since $d > \lfloor \frac{n+1}{2} \rfloor$, $n_{d-1} + n_d \le \frac{n}{2}$, with equality if and only if n is even and $d = \frac{n}{2} + 1$.

Thus $n - n_{d-1} - n_d \ge \frac{n}{2}$. Again by the assumption that u is a peripheral vertex of G, $\sigma_{G'}(u) \ge \sigma_{G'}(x)$ for any $x \in V_d$. Also, for any $y \in V_{d-1}$, $\sigma_{G'}(y) = \sigma_{G'}(x)$ for any $x \in V_d$. Thus $\sigma_{G'}(u) > \sigma_{G'}(y)$. It means that u is a peripheral vertex of G', and $\rho(G') = \sigma_{G'}(u)$. So, $\rho(G) - \rho(G') = \sigma_{G'}(u) - \sigma_G(u) = \frac{1}{n-1}n_d$. On the other hand, one can see that

$$\bar{l}(G) - \bar{l}(G') = \frac{1}{\binom{n}{2}} \left[\left(n - n_{d-1} - n_d\right) n_d \right] = \frac{2}{(n-1)n} \left[\left(n - n_{d-1} - n_d\right) n_d \right] \ge \frac{1}{n-1} n_d.$$

It follows that

$$\bar{l}(G) - \bar{l}(G') \ge \rho(G) - \rho(G'),$$

with equality if n is even and $d = \frac{n}{2} + 1$.

Lemma 2.3. Let G be a connected graph of order $n \ge 3$. Let u be a peripheral vertex of G and $e_G(v) = d$. Assume that $G[V_j \cup V_{j+1}]$ is a clique for each $j \in \{0, \ldots, d-1\}$. Let i be the smallest integer in $\{1, \ldots, d\}$ such that $n_i(u) \ge 2$. Let $V_{i-1}(u) = \{u_{i-1}\}$ and v a vertex in $V_i(u)$. Denote by G' the graph with V(G') = V(G) and $E(G') = E(G) \setminus (\{u_{i-1}y : y \in V_i \setminus \{v\}\} \cup A)$, where $A = \{vx : x \in V_{i+1}\}$ if $i \le d-1$, and $A = \emptyset$ otherwise. If $d < \lfloor \frac{n+1}{2} \rfloor$, then

$$\rho(G') - \overline{l}(G') > \rho(G) - \overline{l}(G).$$

Proof. One can see that if $i \leq d - 1$, then

$$\sigma_{G'}(x) - \sigma_G(x) = \begin{cases} \frac{1}{n-1}(n-i-1), & \text{if } x \in \bigcup_{j=1}^{i-1} V_j \cup \{v, u\} \\ \frac{1}{n-1}i, & \text{if } x \in V_i \setminus \{v\} \\ \frac{1}{n-1}(i+1), & \text{if } x \in \bigcup_{j=i+1}^d V_j, \end{cases}$$

if i = d, then

$$\sigma_{G'}(x) - \sigma_G(x) = \begin{cases} \frac{1}{n-1}(n-d-1), & \text{if } x \in \bigcup_{j=1}^{d-1} V_j \cup \{v, u\} \\ \frac{1}{n-1}d, & \text{if } x \in V_d \setminus \{v\} \end{cases}$$

If $i \leq d-1$, then by $d \leq \lfloor \frac{n+1}{2} \rfloor - 1$, we have $i+1 \leq \lfloor \frac{n+1}{2} \rfloor - 1$ and n-i-1 > i+1. Moreover, since u is a peripheral vertex of G, u is also a peripheral vertex of G'. If i = d, then it is trivial to see that u is a peripheral vertex of G'. So, $\rho(G') - \rho(G) = \sigma_{G'}(u) - \sigma_G(u) = \frac{1}{n-1}(n-i-1)$.

On the other hand, if $i \leq d - 1$, then

$$\bar{l}(G') - \bar{l}(G) = \frac{1}{\binom{n}{2}} \left[(i+1)(n_{i+1} + n_{i+2} + \dots + n_d) + i(n_i - 1) \right]$$

$$= \frac{1}{\binom{n}{2}} \left[(i+1)(n-i-n_i) + i(n_i - 1) \right]$$

$$= \frac{2}{(n-1)n} \left[(i+1)n - i^2 - 2i - n_i \right].$$

Define a function: $f(i) = (n - i - 1) - \frac{2}{n}[(i + 1)n - i^2 - 2i - n_i]$. By an easy calculation, one has $f(i) = n - 3(i + 1) + \frac{2}{n}(i^2 + 2i + n_i)$ and thus $f'(i) = -3 + \frac{2}{n}(2i + 2)$. Since $i \le d - 1$, by $d < \lfloor \frac{n+1}{2} \rfloor$, we have f'(i) < 0. Thus f(i) is a decreasing function on $[0, \lfloor \frac{n+1}{2} \rfloor - 2]$, and achieves its minimum value at $\lfloor \frac{n+1}{2} \rfloor - 2$. One can check that

$$f(\lfloor \frac{n+1}{2} \rfloor - 2) > 0.$$

Therefore f(i) > 0, and thus $\rho(G') - \rho(G) > \overline{l}(G') - \overline{l}(G)$, the result follows.

If
$$i = d$$
, then $\rho(G') - \rho(G) = \frac{1}{n-1}(n-d-1)$, and
 $2d(n-1) = 2d(n-1)$

$$\bar{l}(G') - \bar{l}(G) = \frac{2d(n_d - 1)}{(n - 1)n} = \frac{2d(n - d - 1)}{(n - 1)n}.$$

Since $d \leq \lfloor \frac{n+1}{2} \rfloor - 1$,

$$\frac{\rho(G') - \rho(G)}{\bar{l}(G') - \bar{l}(G)} = \frac{n}{2d} > 1.$$

Lemma 2.4. Let G be a connected graph of order $n \ge 3$. Let u be a peripheral vertex of G and $e_G(v) = d$. Assume that $G[V_j \cup V_{j+1}]$ is a clique for each $j \in \{0, \ldots, d-1\}$ and that $n_i(u) \ge 2$ for some $i \in \{1, \ldots, d-1\}$. Further, assume that i is the minimum subject to the above condition. Let v be a vertex in $V_i(u)$ and $V_{i-1} = \{u_{i-1}\}$. Let G' be the graph with V(G') = V(G) and $E(G') = E(G) \cup A \setminus \{vu_{i-1}\}$, where $A = \{vy : y \in V_{i+2}\}$ if $i \le d-2$, and $A = \emptyset$ otherwise. If $d = \lfloor \frac{n+2}{2} \rfloor$, then

$$\rho(G') - \overline{l}(G') > \rho(G) - \overline{l}(G).$$

Proof. Note that if $i \leq d - 2$, then

$$\sigma_{G'}(x) - \sigma_G(x) = \begin{cases} \frac{1}{n-1}, & \text{if } x \in \bigcup_{j=1}^{i-1} V_j \cup \{u\} \\ 0, & \text{if } x \in V_i \cup V_{i+1} \\ -\frac{1}{n-1}, & \text{if } x \in \bigcup_{j=i+2}^{d} V_j \end{cases},$$

if i = d - 1, then

$$\sigma_{G'}(x) - \sigma_G(x) = \begin{cases} \frac{1}{n-1}, & \text{if } x \in \bigcup_{j=1}^{d-2} V_j \cup \{u\}\\ 0, & \text{if } x \in V_{d-1} \cup V_d \end{cases}.$$

Thus $\rho(G') = \sigma_{G'}(u) = \sigma_G(u) + \frac{1}{n-1} = \rho(G) + \frac{1}{n-1}$. On the other hand, since $i \leq d-1 = \lfloor \frac{n-1}{2} \rfloor < \frac{n}{2}$, we have

$$\bar{l}(G') - \bar{l}(G) = \frac{1}{\binom{n}{2}} \left[i - \left(n_{i+2} + n_{i+3} + \dots + n_d \right) \right]$$
$$= \frac{2}{(n-1)n} \left(n_i + n_{i+1} + 2i - n \right)$$
$$\leq \frac{2}{(n-1)n} i$$
$$< \frac{1}{n-1}.$$

The results follows.

The statement of Conjecture A is refined as follows.

Theorem 2.5. Among all connected graphs G on $n \ge 3$ vertices with average distance \overline{l} and remoteness ρ , the maximum value of $\rho - \overline{l}$ is attained by the Soltés graphs with diameter d, where

$$\begin{cases} d = \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ d \in \{\frac{n}{2}, \frac{n}{2} + 1\} & \text{if } n \text{ is even} \end{cases}$$

Proof. It is immediate from Lemmas 2.1-2.4.

In the remaining sections, we prove Conjecture B.

3 Some preparations

Let G be a connected graph. Recall that for a vertex $u \in V(G)$, let $V_i(u) = \{v \in V(G) | d(u, v) = i\}$ and $n_i(u) = |V_i(u)|$ for each $i \in \{1, ..., d\}$, where d = diam(G).

Lemma 3.1. Let G be connected graph with order n and radius $r \ge 2$. If u is a center of G, then $n_i(u) \ge 2$ for all $i \in \{1, ..., r-1\}$.

Proof. By contradiction, suppose that $n_i(u) = 1$ for some $1 \le i \le r - 1$ and let $V_i(u) = \{w\}$. Let P be a shortest path connecting u and w in G, v be the neighbor of u on P. For a vertex $x \in V(G) \setminus \{v\}$,

$$d(v, x) \begin{cases} = d(u, x) - 1, & \text{if } d(u, x) \ge i \\ \le d(u, x) + 1, & \text{if } d(u, x) < i. \end{cases}$$

It follows that ecc(v) = r - 1, a contradiction.

Corollary 3.2. If G is a connected graph with order n and radius r, then $r \leq \frac{n}{2}$.

Proof. Let u be a center of G. By Lemma 3.1, $n_i(u) \ge 2$ for all $i \in \{1, \ldots, r-1\}$. So, $n \ge 1 + \sum_{i=1}^r n_i(u) \ge 2r$, the result then follows.

For a graph G, p(G) denotes the maximum cardinality of a subset of vertices that induce a path in G.

Theorem 3.3. (*Erdős*, Saks, Sós [18]) For any connected graph G, $p(G) \ge 2rad(G) - 1$.

Corollary 3.4. Let G be a connected graph of order $n \ge 3$. For an even n, $rad(G) = \frac{n}{2}$ if and only if $G \cong P_n$ or $G \cong C_n$.

Proof. The sufficiency is obvious. Next we prove its necessity. By Theorem 3.3, $p(G) \ge n-1$. Let $P = v_1 \dots v_{n-1}$ be an induced path of G, and let v_n be the remaining vertex of G. We consider the vertex $v_{\frac{n}{2}}$. Since $d(v_{\frac{n}{2}}, v_i) < \frac{n}{2}$ for each $i \neq \frac{n}{2}$, and $rad(G) = \frac{n}{2}$, we have $d(v_{\frac{n}{2}}, v_n) = \frac{n}{2}$. So, $v_n v_i \notin E(G)$ for each $2 \le i \le n-2$, and thus $N(v_n) \subseteq \{v_1, v_n\}$. It implies that $G \in \{P_n, C_n\}$.

For an odd integer $n \ge 5$, we define some special graphs of order n with $rad(G) = \frac{n-1}{2}$: $C_{n-1}(1)$ is the graph obtained from C_{n-1} by adding a new vertex which joins two adjacent vertices of C_{n-1} ; $C_{n-1}(2)$ is the graph obtained from C_{n-1} by adding a new vertex which joins two vertices with distance two on C_{n-1} ; $C_{n-1}(3)$ is the graph obtained from C_{n-1} by adding a new vertex which joins three consecutive vertices of C_{n-1} . One can see that $p(C_n) = p(C_{n-1}(1)) = n - 1$ and $p(C_{n-1})(2) = p(C_{n-1}(3)) = n - 2$.

The construction of the following graphs are illustrated in Figure 1. For an $i \in \{1, \ldots, n-1\}$, $P_{n-1}(i-1, i, i+1)$ is the graph obtained from P_{n-1} by adding a new vertex which is adjacent to the vertices v_{i-1}, v_i, v_{i+1} ; $P_{n-1}(i-1, i+1)$ is the graph obtained from P_{n-1} by adding a new vertex which is adjacent to the vertices v_{i-1}, v_{i+1} ; $P_{n-1}(i, i+1)$ is the graph obtained from P_{n-1} by adding a new vertex which is adjacent to the vertices v_{i}, v_{i+1} ; For $j \in \{2, \ldots, n-2\}$, $P_{n-1}(j)$ is the graph obtained from P_{n-1} by adding a new vertex which adjacent to v_j , where i-1, i+1 are taken modulo n-1.

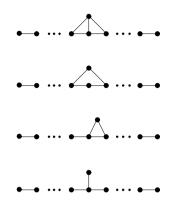


Figure 1. Graphs with an odd order n, $rad(G) = \frac{n-1}{2}$ and p(G) = n-1

Note that $P_{n-1}(n-1, n, n+1) = P_{n-1}(n-1, 1, 2) \cong C_n(1)$ and $P_{n-1}(n-1, n) \cong C_n$. It is easy to see that $p(P_{n-1}(i-1, i, i+1)) = p(P_{n-1}(i-1, i+1)) = p(P_{n-1}(i, i+1)) = n-1$ for each $i \in \{1, \ldots, n-1\}$, and $p(P_{n-1}(j)) = n-1$ for each $j \in \{2, \ldots, n-2\}$.

The result of Lemma 3.5 is straightforward. But its proof is somewhat tedious and will be given in Section 4.

Lemma 3.5. Let G be a connected graph of order $n \ge 5$. If n is odd and $rad(G) = \frac{n-1}{2}$, then

(1) p(G) = n if and only if $G \cong P_n$ (2) p(G) = n-1 if and only if $G \in \{P_{n-1}(i-1,i,i+1), P_{n-1}(i-1,i+1), P_{n-1}(i,i+1)\}$ (3) p(G) = n-2 if and only if $G \in \{C_{n-1}(2), C_{n-1}(3)\}$.

Corollary 3.6. Let G be a connected graph of order $n \ge 5$. If n is odd and $rad(G) = \frac{n-1}{2}$, then $\rho(G) \ge \frac{n+1}{4}$, with equality if and only if

 $G \in \{C_n, C_n(1), C_n(2), C_n(3)\}.$

Proof. By Lemma 3.5, we consider the following cases. If $G \cong P_n$, then

$$\rho(G) = \frac{1}{n-1} \sum_{i=1}^{n-1} i = \frac{n}{2} > \frac{n+1}{4}.$$

Assume that either $G \cong P_{n-1}(1,2)$ or $G \in \{P_{n-1}(i-1,i,i+1), P_{n-1}(i-1,i+1), P_{n-1}(i,i+1), P_{n-1}(i): i \in \{2,\ldots,n-2\}$. Let $P = v_1 \ldots v_{n-1}$ be the induced path of G, and v_n be the new vertex, added to P in the construction of G. Since $n \ge 5$,

$$\rho(G) \ge \rho(v_1) > \frac{1}{n-1} \sum_{i=1}^{n-2} i = \frac{n-2}{2} \ge \frac{n+1}{4}$$

We saw that $P_{n-1}(n-1,1) \cong C_n$, $P_{n-1}(n-1,n,n+1) \cong C_n(1) \cong P_{n-1}(n-1,1,2)$. It is easy to check that $\rho(G) = \frac{n+1}{4}$ for $G \in \{C_n, C_n(1), C_n(2), C_n(3)\}$ and $\rho(P_{n-1}(2,n-1)) = \rho(P_{n-1}(n-2,1)) > \frac{n+1}{4}$.

Now we are ready to prove Conjecture B.

Theorem 3.7. Let G be a connected graph on $n \ge 3$ vertices with remoteness ρ and radius r. Then

$$\rho-r \geq \begin{cases} \frac{n^2}{4n-4}-\frac{n}{2}, & \text{if n is even,} \\ \frac{3-n}{4}, & \text{if n is odd,} \end{cases}$$

with equality if and only if

$$\begin{cases} G \cong C_n, & \text{if } n \text{ is even,} \\ G \in \{C_n, C_{n-1}(1), C_{n-1}(2), C_{n-1}(3)\}, & \text{if } n \text{ is odd} \end{cases}$$

Proof. If n = 3, then $G \cong P_3$ or $G \cong K_3$. Since $\rho(P_3) = \frac{3}{2}$, $\rho(K_3) = 1$, and $rad(P_3) = rad(K_3) = 1$,

$$\rho - r \ge 0,$$

the result holds. Next we assume that $n \ge 5$, and consider $r - \rho$, instead of $\rho - r$. Let u be a center of G, and $n_i = n_i(u)$ for each $i \in \{1, \ldots, r\}$.

Define a function $f(r) = r - \frac{1}{n-1}(n-2r+r^2)$. By Corollary 3.2, since $r \leq \frac{n}{2}$, $f'(r) = 1 - \frac{1}{n-1}(2r-2) > 0$. Thus f(r) is a strictly increasing function on the interval $[1, \frac{n}{2}]$, and achieves its maximum value $\frac{n}{2} - \frac{n^2}{4n-4}$ at $r = \frac{n}{2}$.

Case 1. n is even

By Lemma 3.1, $n_i \ge 2$ for each $i \in \{1, \ldots, r-1\}$. Therefore,

$$\begin{aligned} r - \rho &\leq r - \frac{1}{n-1} \sum_{i=1}^{r} i n_i \\ &\leq r - \frac{1}{n-1} \left((n-2r+2) + \sum_{i=2}^{r-1} 2i + r \right) \\ &= r - \frac{1}{n-1} (n-2r+r^2) \\ &\leq \frac{n}{2} - \frac{n^2}{4n-4}. \end{aligned}$$

By Corollary 3.4, it is easy to check that $r - \rho = \frac{n}{2} - \frac{n^2}{4n-4}$ if and only if $G \cong C_n$. Case 2. *n* is odd

By the similar argument as in Case 1, we have

$$r - \rho \le r - \frac{1}{n-1}(n - 2r + r^2) = f(r).$$

Since f(r) is a strictly increasing function on the interval $[1, \frac{n-1}{2}]$, if $r \leq \frac{n-1}{2} - 1$, then

for $n \geq 5$,

$$\begin{split} f(\frac{n-1}{2}-1) &= (\frac{n-1}{2}-1) - \frac{1}{n-1}(3 + (\frac{n-1}{2}-1)^2) \\ &= \frac{n-1}{4} - \frac{2n-6}{n-1} \\ &< \frac{n-3}{4}. \end{split}$$

So, it remains to consider the case when $r = \frac{n-1}{2}$. By Corollary 3.6, since $\rho(G) \ge \frac{n+1}{4}$,

$$r - \rho \le \frac{n-1}{2} - \frac{n+1}{4} \le \frac{n-3}{4}$$

with equality if and only if $G \in \{C_n, C_n(1), C_n(2), C_n(3)\}$.

4 Proof of Lemma 3.5

(1) is trivial.

The sufficiency of (2) is obvious by the construction of those graphs. To show the necessity of (2), let $P = v_1 \dots v_{n-1}$ be an induced path of G and v_n be the remaining vertex of G.

Claim 1. If v_n has two neighbors $v_i, v_j \in N(v_n)$ with $i, j \in \{1, ..., n-1\}$, then $|i-j| \le 2$ or $|i-j| \ge n-3 = (n-1)-2$.

Proof of Claim 1. If n = 5, the cliam holds trivially. Next we show the claim by contradiction for $n \ge 7$. Suppose that there exist two vertices $v_i, v_j \in N(v_n)$ with $i, j \in \{1, ..., n-1\}$ such that $3 \le |i - j| \le n - 4 = (n - 1) - 3$. Without loss of generality, let i < j.

Case 1. $i \ge \frac{n-1}{2}$ or $j \le \frac{n+1}{2}$

By the symmetry, we just consider the case when $i \ge \frac{n-1}{2}$. Note that

$$d_P(v_{\frac{n-1}{2}}, v_k) < \frac{n-1}{2}$$

for each $k \in \{1, \dots, n-2\}$, $d_P(v_{\frac{n-1}{2}}, v_{n-1}) = \frac{n-1}{2}$, and

$$d_G(v_{\frac{n-1}{2}}, v_n) \le d_G(v_{\frac{n-1}{2}}, v_i) + 1.$$

Since $3 \le |i-j| \le n-4 = (n-1)-3$, we have $d_G(v_{\frac{n-1}{2}}, v_i) \le \frac{n-1}{2}-3$, and $d_G(v_{\frac{n-1}{2}}, v_n) \le \frac{n-1}{2}-2$. Furthermore

$$d_G(v_{\frac{n-1}{2}}, v_{n-1}) \le d_P(v_{\frac{n-1}{2}}, v_i) + 2 + d_P(v_j, v_{n-1}) < \frac{n-1}{2}.$$

This proves that $ecc(v_{\frac{n-1}{2}}) < \frac{n-1}{2}$, which contradicts $rad(G) = \frac{n-1}{2}$.

Case 2. $i < \frac{n-1}{2} < \frac{n+1}{2} < j$

 \square

We show that $ecc(v_n) < \frac{n-1}{2}$. Let *C* be the cycle obtained from the segment of *P* between v_j and v_j adding the vertex v_n and joining it to v_i and v_j . It is clear that the length of *C* is at most n-2. So, for any vertex v on *C*, $d(v_n, v) \leq \frac{|C|}{2} < \frac{n-1}{2}$. To prove $d(v_n, w) < \frac{n-1}{2}$, it suffices to show that $\max\{d(v_n, v_1), d(v_n, v_{n-1})\} < \frac{n-1}{2}$. This holds, because

$$d_G(v_n, v_1) \le d_P(v_{\frac{n-1}{2}}, v_1) < \frac{n-1}{2}, \quad d_G(v_n, v_{n-1}) \le d_P(v_{\frac{n-1}{2}}, v_{n-1}) < \frac{n-1}{2}.$$

So, $ecc(v_n) < \frac{n-1}{2}$, which contradicts $rad(G) = \frac{n-1}{2}$.

By Claim 1 and p(G) = n - 1, one has $d(v_n) \le 3$. Furthermore, if $d(v_n) = 3$, then $N(v_n) = \{v_{i-1}, v_i, v_{i+1}\}$ for some $i \in \{1, ..., n-1\}$, and thus $G \cong P_{n-1}(i-1, i, i+1)$. Also, if $d(v_n) = 2$, then $1 \le |i-j| \le 2$, and thus $G \in \{P_{n-1}(i, i+1), P_{n-1}(i-1, i+1)\}$ for some $i \in \{1, ..., n-1\}$. If $d(v_n) = 1$, then by p(G) = n - 1, $G \cong P_{n-1}(j)$ for some $j \in \{2, ..., n-2\}$. This completes the proof of (2).

The sufficiency of (3) is trivial. Next we show its necessity. By Theorem 2.3, let $P = v_1 \dots v_{n-2}$ be an induced path of G, and v_{n-1} , v_n the remaining two vertices of G.

Claim 2. Either
$$N(v_{n-1}) \setminus \{v_n\} = \{v_1, v_{n-2}\}$$
 or $N(v_n) \setminus \{v_{n-1}\} = \{v_1, v_{n-2}\}$.

Proof of Claim 2. By contradiction, suppose that Claim 2 is not true. If there exist $i, j \in \{2, \ldots, n-3\}$ such that $v_i \in N(v_{n-1})$ and $v_j \in N(v_n)$, $d(v_{\frac{n-1}{2}}, v_k) \leq \frac{n-1}{2} - 1$ for $k \in \{n-1, n\}$. Together this with $d(v_{\frac{n-1}{2}}, v_k) \leq \frac{n-1}{2} - 1$ for $k \in \{1, \ldots, n-2\}$, we have $ecc(v_{\frac{n-1}{2}}) \leq \frac{n-1}{2} - 1$, a contradiction. Hence,

either
$$N(v_{n-1}) \setminus \{v_n\} \subseteq \{v_1, v_{n-2}\}$$
 or $N(v_n) \setminus \{v_{n-1}\} \subseteq \{v_1, v_{n-2}\}.$

Without loss of generality, assume that $N(v_{n-1}) \setminus \{v_n\} \subseteq \{v_1, v_{n-2}\}$. Since $N(v_{n-1}) \setminus \{v_n\} \neq \{v_1, v_{n-2}\}$ and p(G) = n - 2, we have $N(v_{n-1}) \setminus \{v_n\} = \emptyset$. Moreover, since G is connected, we conclude that

$$N(v_{n-1}) = \{v_n\} and N(v_n) \setminus \{v_{n-1}, v_1, v_{n-2}\} \neq \emptyset.$$

If there exists $i \in \{3, \ldots, n-4\}$ such that $v_i \in N(v_n) \setminus \{v_{n-1}, v_1, v_{n-2}\}$, then it follows $d(v_{\frac{n-1}{2}}, v_n) \leq \frac{n-1}{2} - 2$ and thereby $d(v_{\frac{n-1}{2}}, v_{n-1}) \leq \frac{n-1}{2} - 1$. So, $ecc(v_{\frac{n-1}{2}}) < \frac{n-1}{2}$, which contradicts $rad(G) = \frac{n-1}{2}$. This means that

$$N(v_n) \setminus \{v_{n-1}, v_1, v_{n-2}\} \subseteq \{v_2, v_{n-3}\}.$$

Since $N(v_n) \setminus \{v_{n-1}, v_1, v_{n-2}\} \neq \emptyset$, let $v_2 \in N(v_n)$, without loss of generality. If n = 5, then by p(G) = 3, $v_1, v_3 \in N(v_5)$, and thus $e(v_5) = 1$, a contradiction. For $n \ge 7$, since p(G) = n - 2, $v_{n-3} \in N(v_n)$ or $v_{n-2} \in N(v_n)$. In both cases, one can see that $ecc(v_n) \le \max\{\frac{n-3}{2}, 2\} < \frac{n-1}{2}$. This proves Claim 2.

By Claim 2, let $N(v_{n-1}) \setminus \{v_n\} = \{v_1, v_{n-2}\}$. Since $P = v_1 \dots v_{n-2}$ is an induced path, $G[\{v_1, \dots, v_{n-1}\}] \cong C_{n-1}$.

Claim 3. If v_n has two neighbors $v_i, v_j \in N(v_n)$ with $i, j \in \{1, ..., n-1\}$, then $|i-j| \le 2$ or $|i-j| \ge n-3 = (n-1)-2$.

Proof of Claim 3. By contradiction, suppose that v_n has two neighbors $v_i, v_j \in N(v_n)$ with $i, j \in \{1, \ldots, n-1\}$ and $3 \le |i-j| \le n-4$. One can see that, for any vertex v_k , $d(v_n, v_k) \le \max\{\frac{|i-j|+1}{2}, \frac{n-1-|i-j|+1}{2}\} \le \frac{n-3}{2} < \frac{n-1}{2}$, it means that $ecc(v_n) < \frac{n-1}{2}$, a contradiction.

By Claim 3 and p(G) = n - 2, one has $d(v_n) \leq 3$. Furthermore, if $d(v_n) = 3$, then $N(v_n) = \{v_{i-1}, v_i, v_{i+1}\}$ for some $i \in \{1, \ldots, n-1\}$, and thus $G \cong C_{n-1}(3)$. Also, if $d(v_n) = 2$, then |i - j| = 2, and thus $G \cong C_{n-1}(2)$. This completes the proof of the necessity of (3).

Acknowledgement

The authors are grateful to the referees for their valuable comments.

References

- [1] X. An, B. Wu, Average distance and proximity of a graph, in preparation.
- M. Aouchiche, Comparaison Automatisée d'Invariants en Théorie des Graphs, Ph.D. Thesis, École Polytechnique de Montréal, 2006.
- [3] M. Aouchiche, G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs. 20. automated comparison of graph invariants, *MATCH Commun. Math. Comput. Chem.* 58 (2007), 365–384.
- [4] M. Aouchiche and P. Hansen, Nordhaus-Gaddum relations for proximity and remoteness in graphs, *Comput. Math. Appl.* 59 (2010), 2827–2835.
- [5] M. Aouchiche and P. Hansen, Proximity and remoteness in graphs: results and conjectures, *Networks* 58 (2011), 95–102.
- [6] R. A. Beezer, J. E. Riegsecker, B. A. Smith, Using minimum degree to bound average distance, *Discrete Math.* 226 (2001), 365–371.
- [7] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading, MA, 1990.
- [8] F. G. Chung, The average distance and the independence number, *J. Graph Theory* **12** (1988), 229–235.
- [9] P. Dankelmann, Average distance and the independence number, *Discrete Appl. Math.* **51** (1994), 73-83.
- [10] P. Dankelmann, Average distance and the domination number, *Discrete Appl. Math.* 80 (1997), 21–35.
- [11] P. Dankelmann, Average distance and generalized packing in graphs, *Discrete Math.* **310** (2010), 2334–2344.
- [12] P. Dankelmann and R. Entringer, Average distance, minimum degree, and spanning trees, J. Graph Theory 33 (2000), 1–13.
- [13] P. Dankelmann, S. Mukwembi and H. C. Swart, Average distance and edge-connectivity I, SIAM J. Discrete Math. 22 (2008), 92–101.
- [14] P. Dankelmann, S. Mukwembi and H. C. Swart, Average distance and edge-Connectivity II, SIAM J. Discrete Math. 21 (2008), 1035–1052.
- [15] E. DeLaVina and B. Waller, Spanning trees with many leaves and average distance, *Elec. J. Combin.* 15 (2008), R33.

- [16] R. C. Entringer, D. E. Jackson and D. A. Snyder, Distance in graphs, *Czech. Math. J.* 26 (1976), 283–296.
- [17] P. Erdős, J. Pach, R. Pollack and Z. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory Ser. B 47 (1989), 73–79.
- [18] P. Erdős, M. Saks and V. T. Sós, Maximum induced trees in graphs, J. Combin. Theory Ser. B 41 (1986), 61–79.
- [19] B. Ma, B. Wu and W. Zhang, Proximity and average eccentricity of a graph, *Infor. Process. Lett.* 112 (2012), 392–395
- [20] L. Soltés, Trnansmission in graphs: a bound and vertex removing, *Math. Slovaca* **41** (1991), 11–16.
- [21] D. B. West, Introduction to Graph Theory, second Ed., Prentice Hall, Upper Saddle River, NJ, 2001.
- [22] B. Wu, G. Liu, X. An, G. Yan and X. Liu, A conjecture on average distance and diameter of a graph, *Discrete Math. Alog. Appl.* 3 (2011), 337–342.