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Abstract

Let G = (V,E) be a connected graph on n vertices. Denote by l̄(G) the average
distance between all pairs of vertices in G. The remoteness ρ(G) of a connected graph G
is the maximum average distance from a vertex of G to all others. The aim of this paper is
to show that two conjectures in [5] concerned with average distance, radius and remoteness
of a graph are true.
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1 Introduction
All graphs considered in this paper are finite and simple. For notation and terminology not
defined here, we refer to West [21]. Let G = (V,E) be a finite simple graph with vertex
set V and edge set E, |V | and |E| are its order and size, respectively. The distance between
vertices u and v is denoted by d(u, v), is the length of a shortest path connecting u and v.
The average distance between all pairs of vertices in G is denoted by l̄(G). That is l̄(G) =
1

(n2 )

∑
u,v∈V (G) d(u, v), where the summation run over all unordered pairs of vertices. The

eccentricity eG(v) of a vertex v in G is the largest distance from v to another vertex of
G, i.e. max{d(v, w)| w ∈ V (G)}. The diameter of G is the maximum eccentricity in G,
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denoted by diam(G). Similarly, the radius of G is the minimum eccentricity in G, denoted
by rad(G); and the average eccentricity of G is denoted by ecc(G). In other words,

rad(G) = min
v∈V

eG(v), diam(G) = max
v∈V

eG(v) and ecc(G) =
1

n

∑
v∈V

eG(v).

For a connected graph G of order n, σG(u) denotes the average distance from u to
all other vertices of G, that is σG(u) = 1

n−1
∑

v∈V (G) d(u, v). The proximity π(G) of
a connected graph G is the minimum average distance from a vertex of G to all others.
Similarly, the remoteness ρ(G) of a connected graph G is the maximum average distance
from a vertex of G to all others. They were recently introduced in [2, 3], that is

π(G) = min
v∈V

σG(v) and ρ(G) = max
v∈V

σG(v).

The sum of distances from a vertex of G to all others is known as its transmission.
Proximity and remoteness can also be seen as the minimum and maximum normalized
transmission in a graph. Indeed, by their definitions

π(G) ≤ rad(G) ≤ ecc(G) ≤ diam(G) and π(G) ≤ l̄(G) ≤ ρ(G) ≤ diam(G).

There are a number of results which are devoted to the relation between average dis-
tance and other graph parameters (see [6-15, 22]). A vertex u ∈ V (G) with the minimum
eccentricity is called a center of G. It is well-known that every tree has either exactly one
center or two, adjacent centers. The center of graphs have been extensively studied in the
literature (see [16]). Some more results on the radius of graphs can be found in [18, 17].

A Soltés or a path-complete graph is the graph obtained from a clique and a path by
adding at least one edge between an endpoint of the path and the clique. The Soltés graphs
are known to maximize the average distance l̄ when the number of vertices and of edges
are fixed [20].

In [4] Aouchiche and Hansen established the Nordhaus-Gaddum-type theorem for
π(G) and ρ(G). In [5] the same authors gave the upper bounds on rad(G) − π(G),
diam(G) − π(G) and ρ(G) − π(G), and proposed five related conjectures, two of which
are the following.

Conjecture A. (Conjecture 5, [5]) Among all connected graphs G on n ≥ 3 vertices with
average distance l and remoteness ρ, the Soltés graphs with diameter bn+1

2 cmaximize ρ−l.

Conjecture B. (Conjecture 1, [5]) Let G be a connected graph on n ≥ 3 vertices with
remoteness ρ and radius r. Then connected graph G on n ≥ 3 vertices,

ρ− r ≥

{
n2

4n−4 −
n
2 , if n is even,

3−n
4 , if n is odd.

The inequality is best possible as shown by the cycle Cn if n is even and of the graph
composed by the cycle Cn together with two crossed edges on four successive vertices of
the cycle.

The aim of this note is to confirm the validity of the above conjectures.
Conjecture 2 in [5] is solved in [19], and Conjecture 4 in [5] is solved in [1]. Up to

now, Conjecture 3 in [5] still remains open.
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2 Proof of Conjecture A
For convenience, we use some additional definition and notations. Let G be a connected
graph. A vertex u ∈ V (G) is called a peripheral vertex if σ(u) = ρ(G). For a vertex u ∈
V (G), let Vi(u) = {v ∈ V (G)| d(u, v) = i} and ni(u) = |Vi(u)| for each i ∈ {1, . . . , d},
where d = eG(u). In what follows, Vi(u) is simply denoted by Vi for a peripheral vertex u
of G.

Lemma 2.1. Let G be a connected graph of order n ≥ 3. Let u be a peripheral vertex
of G and let d = eG(u). Let G′ be the graph obtained from G by joining each pair of all
nonadjacent vertices x, y of G, where x, y ∈ Vj ∪ Vj+1 for some j ∈ {1, . . . , d − 1}. We
have

ρ(G′)− l̄(G′) ≥ ρ(G)− l̄(G),

with equality if and only if G′ = G.

Proof. It is clear that for any x ∈ V (G), dG′(u, x) = dG(u, x) and dG′(v, w) ≤ dG(v, w)
for any v, w ∈ V (G). It follows that σG′(u) = σG(u) and σG′(v) ≤ σG(v) for any
v ∈ V (G′). Combining this with the assumption that u is a peripheral vertex of G, it
follows that u is also a peripheral vertex of G′. Thus ρ(G′) = σG′(u) = σG(u) = ρ(G).
Moreover, it is obvious that l̄(G′) ≤ l̄(G), with equality if and only if G′ = G. So,
ρ(G′)− l̄(G′) ≥ ρ(G)− l̄(G), with equality if and only if G′ = G.

Lemma 2.2. Let G be a connected graph of order n ≥ 3. Let u be a peripheral vertex of
G and eG(v) = d. Assume that G[Vj ∪ Vj+1] is a clique for each j ∈ {0, . . . , d− 1}. Let
G′ be the graph with V (G′) = V (G) and E(G′) = E(G) ∪ {xy : x ∈ Vd−2, y ∈ Vd}. If
d > bn+1

2 c, then
ρ(G′)− l̄(G′) ≤ ρ(G)− l̄(G),

with equality if and only if n is even and d = n
2 + 1.

Proof. Note that

σG′(x) =


σG(x)− 1

n−1nd, if x ∈
⋃d−2

j=1 Vj ∪ {u}
σG(x), if x ∈ Vd−1
σG(x)− 1

n−1 (n− nd−1 − nd), if x ∈ Vd .

Since u is a peripheral vertex of G, σG′(u) ≥ σG′(x) for any x ∈
⋃d−2

j=1 Vj . Moreover,
since d > bn+1

2 c, nd−1 + nd ≤ n
2 , with equality if and only if n is even and d = n

2 + 1.
Thus n − nd−1 − nd ≥ n

2 . Again by the assumption that u is a peripheral vertex of
G, σG′(u) ≥ σG′(x) for any x ∈ Vd. Also, for any y ∈ Vd−1, σG′(y) = σG′(x) for
any x ∈ Vd. Thus σG′(u) > σG′(y). It means that u is a peripheral vertex of G′, and
ρ(G′) = σG′(u). So, ρ(G)− ρ(G′) = σG′(u)− σG(u) = 1

n−1nd. On the other hand, one
can see that

l̄(G)− l̄(G′) =
1(
n
2

)[(n−nd−1−nd)nd] =
2

(n− 1)n

[(
n−nd−1−nd

)
nd
]
≥ 1

n− 1
nd.

It follows that
l̄(G)− l̄(G′) ≥ ρ(G)− ρ(G′),

with equality if n is even and d = n
2 + 1.
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Lemma 2.3. Let G be a connected graph of order n ≥ 3. Let u be a peripheral vertex
of G and eG(v) = d. Assume that G[Vj ∪ Vj+1] is a clique for each j ∈ {0, . . . , d − 1}.
Let i be the smallest integer in {1, . . . , d} such that ni(u) ≥ 2. Let Vi−1(u) = {ui−1}
and v a vertex in Vi(u). Denote by G′ the graph with V (G′) = V (G) and E(G′) =
E(G) \ ({ui−1y : y ∈ Vi \ {v}} ∪ A), where A = {vx : x ∈ Vi+1} if i ≤ d − 1, and
A = ∅ otherwise. If d < bn+1

2 c, then

ρ(G′)− l̄(G′) > ρ(G)− l̄(G).

Proof. One can see that if i ≤ d− 1, then

σG′(x)− σG(x) =


1

n−1 (n− i− 1), if x ∈
⋃i−1

j=1 Vj ∪ {v, u}
1

n−1 i, if x ∈ Vi \ {v}
1

n−1 (i+ 1), if x ∈
⋃d

j=i+1 Vj ,

if i = d, then

σG′(x)− σG(x) =

{
1

n−1 (n− d− 1), if x ∈
⋃d−1

j=1 Vj ∪ {v, u}
1

n−1d, if x ∈ Vd \ {v}

If i ≤ d−1, then by d ≤ bn+1
2 c−1, we have i+1 ≤ bn+1

2 c−1 and n− i−1 > i+1.
Moreover, since u is a peripheral vertex of G, u is also a peripheral vertex of G′. If i = d,
then it is trivial to see that u is a peripheral vertex of G′. So, ρ(G′) − ρ(G) = σG′(u) −
σG(u) = 1

n−1
(
n− i− 1

)
.

On the other hand, if i ≤ d− 1, then

l(G′)− l(G) =
1(
n
2

)[(i+ 1
)(
ni+1 + ni+2 + · · ·+ nd

)
+ i
(
ni − 1

)]
=

1(
n
2

)[(i+ 1
)(
n− i− ni

)
+ i
(
ni − 1

)]
=

2

(n− 1)n

[(
i+ 1

)
n− i2 − 2i− ni

]
.

Define a function: f(i) = (n− i− 1)− 2
n [(i+ 1)n− i2− 2i−ni]. By an easy calculation,

one has f(i) = n− 3(i+ 1) + 2
n (i2 + 2i+ ni) and thus f ′(i) = −3 + 2

n (2i+ 2). Since
i ≤ d − 1, by d < bn+1

2 c, we have f ′(i) < 0. Thus f(i) is a decreasing function on
[0, bn+1

2 c − 2] , and achieves its minimum value at bn+1
2 c − 2. One can check that

f(bn+ 1

2
c − 2) > 0.

Therefore f(i) > 0, and thus ρ(G′)− ρ(G) > l(G′)− l(G), the result follows.

If i = d, then ρ(G′)− ρ(G) = 1
n−1

(
n− d− 1

)
, and

l(G′)− l̄(G) =
2d(nd − 1)

(n− 1)n
=

2d(n− d− 1)

(n− 1)n
.

Since d ≤ bn+1
2 c − 1,

ρ(G′)− ρ(G)

l(G′)− l̄(G)
=

n

2d
> 1.
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Lemma 2.4. Let G be a connected graph of order n ≥ 3. Let u be a peripheral vertex of
G and eG(v) = d. Assume that G[Vj ∪ Vj+1] is a clique for each j ∈ {0, . . . , d− 1} and
that ni(u) ≥ 2 for some i ∈ {1, . . . , d− 1}. Further, assume that i is the minimum subject
to the above condition. Let v be a vertex in Vi(u) and Vi−1 = {ui−1}. Let G′ be the graph
with V (G′) = V (G) and E(G′) = E(G) ∪ A \ {vui−1}, where A = {vy : y ∈ Vi+2} if
i ≤ d− 2, and A = ∅ otherwise. If d = bn+1

2 c, then

ρ(G′)− l̄(G′) > ρ(G)− l̄(G).

Proof. Note that if i ≤ d− 2, then

σG′(x)− σG(x) =


1

n−1 , if x ∈
⋃i−1

j=1 Vj ∪ {u}
0, if x ∈ Vi ∪ Vi+1

− 1
n−1 , if x ∈

⋃d
j=i+2 Vj ,

if i = d− 1, then

σG′(x)− σG(x) =

{
1

n−1 , if x ∈
⋃d−2

j=1 Vj ∪ {u}
0, if x ∈ Vd−1 ∪ Vd .

Thus ρ(G′) = σG′(u) = σG(u) + 1
n−1 = ρ(G) + 1

n−1 . On the other hand, since
i ≤ d− 1 = bn−12 c <

n
2 , we have

l̄(G′)− l̄(G) =
1(
n
2

)[i− (ni+2 + ni+3 + · · ·+ nd
)]

=
2

(n− 1)n

(
ni + ni+1 + 2i− n

)
≤ 2

(n− 1)n
i

<
1

n− 1
.

The results follows.

The statement of Conjecture A is refined as follows.

Theorem 2.5. Among all connected graphs G on n ≥ 3 vertices with average distance l
and remoteness ρ, the maximum value of ρ−l is attained by the Soltés graphs with diameter
d, where {

d = n+1
2 , if n is odd

d ∈ {n2 ,
n
2 + 1} if n is even .

Proof. It is immediate from Lemmas 2.1-2.4.

In the remaining sections, we prove Conjecture B.
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3 Some preparations
Let G be a connected graph. Recall that for a vertex u ∈ V (G), let Vi(u) = {v ∈
V (G)| d(u, v) = i} and ni(u) = |Vi(u)| for each i ∈ {1, . . . , d}, where d = diam(G).

Lemma 3.1. Let G be connected graph with order n and radius r ≥ 2. If u is a center of
G, then ni(u) ≥ 2 for all i ∈ {1, . . . , r − 1}.

Proof. By contradiction, suppose that ni(u) = 1 for some 1 ≤ i ≤ r − 1 and let Vi(u) =
{w}. Let P be a shortest path connecting u and w in G, v be the neighbor of u on P . For
a vertex x ∈ V (G) \ {v},

d(v, x)

{
= d(u, x)− 1, if d(u, x) ≥ i
≤ d(u, x) + 1, if d(u, x) < i .

It follows that ecc(v) = r − 1, a contradiction.

Corollary 3.2. If G is a connected graph with order n and radius r, then r ≤ n
2 .

Proof. Let u be a center of G. By Lemma 3.1, ni(u) ≥ 2 for all i ∈ {1, . . . , r − 1}. So,
n ≥ 1 +

∑r
i=1 ni(u) ≥ 2r, the result then follows.

For a graphG, p(G) denotes the maximum cardinality of a subset of vertices that induce
a path in G.

Theorem 3.3. (Erdős, Saks, Sós [18]) For any connected graph G, p(G) ≥ 2rad(G)− 1.

Corollary 3.4. Let G be a connected graph of order n ≥ 3. For an even n, rad(G) = n
2

if and only if G ∼= Pn or G ∼= Cn.

Proof. The sufficiency is obvious. Next we prove its necessity. By Theorem 3.3, p(G) ≥
n−1. LetP = v1 . . . vn−1 be an induced path ofG, and let vn be the remaining vertex ofG.
We consider the vertex vn

2
. Since d(vn

2
, vi) <

n
2 for each i 6= n

2 , and rad(G) = n
2 , we have

d(vn
2
, vn) = n

2 . So, vnvi /∈ E(G) for each 2 ≤ i ≤ n− 2, and thus N(vn) ⊆ {v1, vn}. It
implies that G ∈ {Pn, Cn}.

For an odd integer n ≥ 5, we define some special graphs of order n with rad(G) =
n−1
2 : Cn−1(1) is the graph obtained from Cn−1 by adding a new vertex which joins two

adjacent vertices of Cn−1; Cn−1(2) is the graph obtained from Cn−1 by adding a new
vertex which joins two vertices with distance two on Cn−1; Cn−1(3) is the graph obtained
from Cn−1 by adding a new vertex which joins three consecutive vertices of Cn−1. One
can see that p(Cn) = p(Cn−1(1)) = n− 1 and p(Cn−1)(2)) = p(Cn−1(3)) = n− 2.

The construction of the following graphs are illustrated in Figure 1. For an i ∈ {1, . . . ,
n−1}, Pn−1(i−1, i, i+1) is the graph obtained from Pn−1 by adding a new vertex which
is adjacent to the vertices vi−1, vi, vi+1; Pn−1(i − 1, i + 1) is the graph obtained from
Pn−1 by adding a new vertex which is adjacent to the vertices vi−1, vi+1; Pn−1(i, i + 1)
is the graph obtained from Pn−1 by adding a new vertex which is adjacent to the vertices
vi, vi+1; For j ∈ {2, . . . , n − 2}, Pn−1(j) is the graph obtained from Pn−1 by adding a
new vertex which adjacent to vj , where i− 1, i+ 1 are taken modulo n− 1.
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Figure 1. Graphs with an odd order n, rad(G) = n−1
2 and p(G) = n− 1

Note thatPn−1(n−1, n, n+1) = Pn−1(n−1, 1, 2) ∼= Cn(1) andPn−1(n−1, n) ∼= Cn.
It is easy to see that p(Pn−1(i−1, i, i+1)) = p(Pn−1(i−1, i+1)) = p(Pn−1(i, i+1)) =
n− 1 for each i ∈ {1, . . . , n− 1}, and p(Pn−1(j)) = n− 1 for each j ∈ {2, . . . , n− 2}.

The result of Lemma 3.5 is straightforward. But its proof is somewhat tedious and will
be given in Section 4.

Lemma 3.5. Let G be a connected graph of order n ≥ 5. If n is odd and rad(G) = n−1
2 ,

then
(1) p(G) = n if and only if G ∼= Pn

(2) p(G) = n−1 if and only ifG ∈ {Pn−1(i−1, i, i+1), Pn−1(i−1, i+1), Pn−1(i, i+
1) : i ∈ {1, . . . , n− 1}}, or G ∼= Pn−1(j) for some j ∈ {2, . . . , n− 2}.

(3) p(G) = n− 2 if and only if G ∈ {Cn−1(2), Cn−1(3)}.

Corollary 3.6. LetG be a connected graph of order n ≥ 5. If n is odd and rad(G) = n−1
2 ,

then ρ(G) ≥ n+1
4 , with equality if and only if

G ∈ {Cn, Cn(1), Cn(2), Cn(3)}.

Proof. By Lemma 3.5, we consider the following cases. If G ∼= Pn, then

ρ(G) =
1

n− 1

n−1∑
i=1

i =
n

2
>
n+ 1

4
.

Assume that either G ∼= Pn−1(1, 2) or G ∈ {Pn−1(i − 1, i, i + 1), Pn−1(i − 1, i +
1), Pn−1(i, i+ 1), Pn−1(i) : i ∈ {2, . . . , n− 2}. Let P = v1 . . . vn−1 be the induced path
of G, and vn be the new vertex, added to P in the construction of G. Since n ≥ 5,

ρ(G) ≥ ρ(v1) >
1

n− 1

n−2∑
i=1

i =
n− 2

2
≥ n+ 1

4
.

We saw that Pn−1(n − 1, 1) ∼= Cn, Pn−1(n − 1, n, n + 1) ∼= Cn(1) ∼= Pn−1(n −
1, 1, 2). It is easy to check that ρ(G) = n+1

4 for G ∈ {Cn, Cn(1), Cn(2), Cn(3)} and
ρ(Pn−1(2, n− 1)) = ρ(Pn−1(n− 2, 1)) > n+1

4 .
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Now we are ready to prove Conjecture B.

Theorem 3.7. LetG be a connected graph on n ≥ 3 vertices with remoteness ρ and radius
r. Then

ρ− r ≥

{
n2

4n−4 −
n
2 , if n is even,

3−n
4 , if n is odd,

with equality if and only if{
G ∼= Cn, if n is even,
G ∈ {Cn, Cn−1(1), Cn−1(2), Cn−1(3)}, if n is odd .

Proof. If n = 3, then G ∼= P3 or G ∼= K3. Since ρ(P3) = 3
2 , ρ(K3) = 1, and rad(P3) =

rad(K3) = 1,
ρ− r ≥ 0,

the result holds. Next we assume that n ≥ 5, and consider r− ρ, instead of ρ− r. Let u be
a center of G, and ni = ni(u) for each i ∈ {1, . . . , r}.

Define a function f(r) = r − 1
n−1 (n − 2r + r2). By Corollary 3.2, since r ≤ n

2 ,
f ′(r) = 1 − 1

n−1 (2r − 2) > 0. Thus f(r) is a strictly increasing function on the interval

[1, n2 ], and achieves its maximum value n
2 −

n2

4n−4 at r = n
2 .

Case 1. n is even

By Lemma 3.1, ni ≥ 2 for each i ∈ {1, . . . , r − 1}. Therefore,

r − ρ ≤ r − 1

n− 1

r∑
i=1

ini

≤ r − 1

n− 1

(
(n− 2r + 2) +

r−1∑
i=2

2i+ r
)

= r − 1

n− 1
(n− 2r + r2)

≤ n

2
− n2

4n− 4
.

By Corollary 3.4, it is easy to check that r − ρ = n
2 −

n2

4n−4 if and only if G ∼= Cn.

Case 2. n is odd

By the similar argument as in Case 1, we have

r − ρ ≤ r − 1

n− 1
(n− 2r + r2) = f(r).

Since f(r) is a strictly increasing function on the interval [1, n−12 ], if r ≤ n−1
2 − 1, then
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for n ≥ 5,

f(
n− 1

2
− 1) = (

n− 1

2
− 1)− 1

n− 1
(3 + (

n− 1

2
− 1)2)

=
n− 1

4
− 2n− 6

n− 1

<
n− 3

4
.

So, it remains to consider the case when r = n−1
2 . By Corollary 3.6, since ρ(G) ≥

n+1
4 ,

r − ρ ≤ n− 1

2
− n+ 1

4
≤ n− 3

4
,

with equality if and only if G ∈ {Cn, Cn(1), Cn(2), Cn(3)}.

4 Proof of Lemma 3.5
(1) is trivial.

The sufficiency of (2) is obvious by the construction of those graphs. To show the
necessity of (2), let P = v1 . . . vn−1 be an induced path of G and vn be the remaining
vertex of G.

Claim 1. If vn has two neighbors vi, vj ∈ N(vn) with i, j ∈ {1, . . . , n−1}, then |i−j| ≤ 2
or |i− j| ≥ n− 3 = (n− 1)− 2.

Proof of Claim 1. If n = 5, the cliam holds trivially. Next we show the claim by
contradiction for n ≥ 7. Suppose that there exist two vertices vi, vj ∈ N(vn) with
i, j ∈ {1, . . . , n − 1} such that 3 ≤ |i − j| ≤ n − 4 = (n − 1) − 3. Without loss of
generality, let i < j.

Case 1. i ≥ n−1
2 or j ≤ n+1

2

By the symmetry, we just consider the case when i ≥ n−1
2 . Note that

dP (vn−1
2
, vk) <

n− 1

2

for each k ∈ {1, . . . , n− 2}, dP (vn−1
2
, vn−1) = n−1

2 , and

dG(vn−1
2
, vn) ≤ dG(vn−1

2
, vi) + 1.

Since 3 ≤ |i − j| ≤ n − 4 = (n − 1) − 3, we have dG(vn−1
2
, vi) ≤ n−1

2 − 3, and
dG(vn−1

2
, vn) ≤ n−1

2 − 2. Furthermore

dG(vn−1
2
, vn−1) ≤ dP (vn−1

2
, vi) + 2 + dP (vj , vn−1) <

n− 1

2
.

This proves that ecc(vn−1
2

) < n−1
2 , which contradicts rad(G) = n−1

2 .

Case 2. i < n−1
2 < n+1

2 < j
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We show that ecc(vn) < n−1
2 . Let C be the cycle obtained from the segment of P

between vj and vj adding the vertex vn and joining it to vi and vj . It is clear that the
length of C is at most n − 2. So, for any vertex v on C, d(vn, v) ≤ |C|2 < n−1

2 . To prove
d(vn, w) < n−1

2 , it suffices to show that max{d(vn, v1), d(vn, vn−1)} < n−1
2 . This holds,

because

dG(vn, v1) ≤ dP (vn−1
2
, v1) <

n− 1

2
, dG(vn, vn−1) ≤ dP (vn−1

2
, vn−1) <

n− 1

2
.

So, ecc(vn) < n−1
2 , which contradicts rad(G) = n−1

2 . �

By Claim 1 and p(G) = n − 1, one has d(vn) ≤ 3. Furthermore, if d(vn) = 3, then
N(vn) = {vi−1, vi, vi+1} for some i ∈ {1, . . . , n−1}, and thusG ∼= Pn−1(i−1, i, i+1).
Also, if d(vn) = 2, then 1 ≤ |i−j| ≤ 2, and thusG ∈ {Pn−1(i, i+1), Pn−1(i−1, i+1)}
for some i ∈ {1, . . . , n− 1}. If d(vn) = 1, then by p(G) = n− 1, G ∼= Pn−1(j) for some
j ∈ {2, . . . , n− 2}. This completes the proof of (2).

The sufficiency of (3) is trivial. Next we show its necessity. By Theorem 2.3, let
P = v1 . . . vn−2 be an induced path of G, and vn−1, vn the remaining two vertices of G.

Claim 2. Either N(vn−1) \ {vn} = {v1, vn−2} or N(vn) \ {vn−1} = {v1, vn−2}.

Proof of Claim 2. By contradiction, suppose that Claim 2 is not true. If there exist i, j ∈
{2, . . . , n − 3} such that vi ∈ N(vn−1) and vj ∈ N(vn), d(vn−1

2
, vk) ≤ n−1

2 − 1 for
k ∈ {n − 1, n}. Together this with d(vn−1

2
, vk) ≤ n−1

2 − 1 for k ∈ {1, . . . , n − 2}, we
have ecc(vn−1

2
) ≤ n−1

2 − 1, a contradiction. Hence,

either N(vn−1) \ {vn} ⊆ {v1, vn−2} or N(vn) \ {vn−1} ⊆ {v1, vn−2}.

Without loss of generality, assume that N(vn−1) \ {vn} ⊆ {v1, vn−2}. Since N(vn−1) \
{vn} 6= {v1, vn−2} and p(G) = n− 2, we have N(vn−1) \ {vn} = ∅. Moreover, since G
is connected, we conclude that

N(vn−1) = {vn} and N(vn) \ {vn−1, v1, vn−2} 6= ∅.

If there exists i ∈ {3, . . . , n− 4} such that vi ∈ N(vn) \ {vn−1, v1, vn−2}, then it follows
d(vn−1

2
, vn) ≤ n−1

2 − 2 and thereby d(vn−1
2
, vn−1) ≤ n−1

2 − 1. So, ecc(vn−1
2

) < n−1
2 ,

which contradicts rad(G) = n−1
2 . This means that

N(vn) \ {vn−1, v1, vn−2} ⊆ {v2, vn−3}.

Since N(vn) \ {vn−1, v1, vn−2} 6= ∅, let v2 ∈ N(vn), without loss of generality. If n = 5,
then by p(G) = 3, v1, v3 ∈ N(v5), and thus e(v5) = 1, a contradiction. For n ≥ 7,
since p(G) = n − 2, vn−3 ∈ N(vn) or vn−2 ∈ N(vn). In both cases, one can see that
ecc(vn) ≤ max{n−32 , 2} < n−1

2 . This proves Claim 2. �

By Claim 2, let N(vn−1) \ {vn} = {v1, vn−2}. Since P = v1 . . . vn−2 is an induced
path, G[{v1, . . . , vn−1}] ∼= Cn−1.

Claim 3. If vn has two neighbors vi, vj ∈ N(vn) with i, j ∈ {1, . . . , n−1}, then |i−j| ≤ 2
or |i− j| ≥ n− 3 = (n− 1)− 2.
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Proof of Claim 3. By contradiction, suppose that vn has two neighbors vi, vj ∈ N(vn)
with i, j ∈ {1, . . . , n − 1} and 3 ≤ |i − j| ≤ n − 4. One can see that, for any vertex vk,
d(vn, vk) ≤ max{ |i−j|+1

2 , n−1−|i−j|+1
2 } ≤ n−3

2 < n−1
2 , it means that ecc(vn) < n−1

2 , a
contradiction. �

By Claim 3 and p(G) = n − 2, one has d(vn) ≤ 3. Furthermore, if d(vn) = 3, then
N(vn) = {vi−1, vi, vi+1} for some i ∈ {1, . . . , n − 1}, and thus G ∼= Cn−1(3). Also,
if d(vn) = 2, then |i − j| = 2, and thus G ∼= Cn−1(2). This completes the proof of the
necessity of (3).
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