
Marjan Divjak

Ustvarjanje
znanosti

Drugi del

www.diameter.si





Marjan Divjak

Ustvarjanje
znanosti
Genetični uvod v matematiko,
fiziko in tehniko

Drugi del

www.diameter.si



Avtor

Naslov

Podnaslov

Oblikovanje

Prelom

Naslovnica

Založba

Izdaja

Cena

Marjan Divjak

Ustvarjanje znanosti II

Genetični uvod v matematiko, fiziko in tehniko

Avtor

Avtor

Mornarski astrolab iz 1602. Replika. National Museum of American History.

Samozaložba

Prva izdaja, Ljubljana, 2019

http://www.diameter.si/sciquest/SCIQUEST2.pdf

© Marjan Divjak, CC BY-NC-ND. Dovoljeno je kopiranje, razpošiljanje in
objavljanje posameznih poglavij ali celote, če se pri tem navede avtorja, če ne
gre za komercialno uporabo in če se ne spreminja vsebine in oblike.

Brezplačna

Kataložni zapis o publikaciji (CIP) pripravili v
Narodni in univerzitetni knjižnici, Ljubljana
COBISS.SI-ID=299144448
ISBN 978-961-290-117-2 (pdf)



Visoka šola

Vsebina

5Predgovor
7Vodila
9Učna pot

II. del

1128 Kompleksna števila
2129 Vektorji in matrike
3330 Večkratne funkcije
4331 Krivulje in ploskve
6132 Prostorska polja
7333 Statistika
9334 Dinamika

11735 Relativnost
13736 Termokinetika
16137 Statična E & M polja
18738 Elektromagnetni valovi
21139 Elektroni in ioni
23140 Elektronika
26141 Kvantni delci
28942 Valovna mehanika
31343 Kvantna statistika
33144 Atomska jedra
35745 Zvezde in vesolje

383Pot naprej

397Glavni viri
399Viri slik
403Kazalo

3





Predgovor
Dragi bralec, pred teboj je postopni vhod v matematiko, fiziko in
tehniko kot soodvisne dosežke človeškega rodu od davnine do
danes.

Knjigo sem napisal za svoje lastne potrebe in v svoje lastno
zadovoljstvo. Hotel sem si ustvariti gladko pot iz ravnine
naravoslovnega neznanja najprej na griče, odtod na hribe, in
končno na gore spoznanja. Pri tem sem želel na vsakem koraku
čutiti, kot da si pot utiram sam, in sicer zgolj na podlagi dotlej
pridobljenega znanja in orodij. Na takšni poti ne bi smelo biti
neutemeljenih definicij in postulatov, vzetih iz zraka, še zlasti pa
ne nedokazanih trditev in sklicevanj na prihodnost. Do vsega sem
želel priti razvidno in "sam".

Za voditeljico sem izbral zgodovino: kakor se je učil človeški rod,
tako se naj uči človeški posameznik. Znanje, ki ga je do sedaj
pridobilo človeštvo, namreč ni bilo brez razloga doseženo po poti,
kakor jo kaže zgodovina. Razvoj znanja je mogoč le na podlagi
obstoječega znanja in le v družbenem okolju, ki tovrsten razvoj
podpira in po njem povprašuje. Takšna pot se mi zato zdi najbolj
naraven, zanimiv in učinkovit vhod v znanost. Seveda pa je pri
tem smotrno izpustiti številne zgodovinske zablode in stranpoti.

Količino znanja sem strogo omejil. Vključil sem le
najpomembnejše. Znanje sem oblikoval v zaokrožena poglavja,
navznoter čimbolj homogena in med seboj šibko sklopljena.
Poglavja sem razvrstil po višinskih stopnjah: najprej griče, nato
hribe in končno gore. Vsaka naslednja stopnja je zgodovinsko
mlajša in gradi na prejšnji. Višja poglavja vsebujejo nižja kot
posebne primere. Na poti skozi poglavja se noben korak ne
sklicuje na prihodnje korake. Definicije, postulati in domneve so
uvedeni: razvidno je, kaj nas navaja oziroma sili do njih. Izreki so
izpeljani. Meritve so opisane. Če na dani stopnji ni možno
dokazati izrekov in izvesti meritev, na to stopnjo ne spadajo.
Vsako novo spoznanje je čimprej uporabljeno.

Razvoj znanja z zgodovino kot voditeljico nikakor ni brez težav.
Stari avtorji so uporabljali drugačno besedišče in drugačno
matematično pisavo kot danes. Zlasti velja to za simbolično
stenografijo, ki se je pojavila šele dokaj pozno. Posamična odkritja
praviloma tudi niso bila plod dela enega samega raziskovalca,
marveč je bilo pri njih udeleženih več avtorjev. Težko je ugotoviti
in pravično oceniti, kakšen delež pripada komu. In pot do odkritij
je bila dostikrat hudo zavita.

Navedene težave sem poskušal odpraviti takole. Od vsega
začetka sta uporabljena sodobno besedišče in sodobna
matematična pisava. Da zgodovina ne bi zasenčila vsebine, sem v
besedilu omenil le najvažnejše raziskovalce. Kolikor le mogoče
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sem se izognil poimenovanju pojavov, poskusov, konstant,
zakonov in izrekov po osebah; namesto tega sem uporabil čim
bolj nevtralno poimenovanje. Končno sem si vzel še pravico, da
do nekaterih spoznanj pristopim drugače in v drugem vrstnem
redu, kot so se zares zgodila. Bralce prosim, da to sprejmejo z
razumevanjem.

V knjigi (prvem in drugem delu) je domala 500 slik. Kakšnih 30 %
je mojih. Okrog 20 % jih je v javni lasti, ker so bile objavljene
pred letom 1923 oziroma je minilo več kot 70 let od smrti
njihovih avtorjev. Približno 40 % je takih, ki posebnega dovoljenja
za objavo ne potrebujejo, ker so tako odločili njihovi avtorji ali
ker prvi avtorji niso znani. Za preostalih 10 % slik pa ocenjujem,
da njihova objava zadošča zahtevam "fair use" – med drugim je
nekomercialna in izobraževalna ter ne škoduje tržnim aktivnostim
lastnikov licenc – in je zato dovoljena. Lastnikom licenc se
vnaprej zahvaljujem za razumevanje in dobrohotnost.

Ko izročam knjigo javnosti, imam v mislih naslednjo ciljno
skupino bralcev: to so odrasli ljubiteljski in poklicni naravoslovci,
ki jih zanimajo osnove, razvoj in poučevanje znanosti ter si želijo
potešiti prav tisto, kar je navedlo mene do pisanja. Še posebej si
želim, da bi knjiga našla pot do študentov pedagoške fizike in do
učiteljev fizike na vseh šolskih stopnjah. Prvi še plezajo na svoje
vrhove znanja, drugi pa so jih večinoma že osvojili, a so morda v
dvomih, katera znanja naj posredujejo in po kateri poti naj vodijo,
da bo izid najboljši. Zadovoljen bom, če jim bo knjiga pri tem
pomagala.

— MARJAN DIVJAK
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Merjenje

Teorija in poskus

Teorije in resničnost

Pomen matematike

Poučevanje znanosti

Genetična pot

Vodila
Če lahko to, o čemer govorite, izmerite in izrazite s števili, potem
nekaj veste o tem; če pa ne znate tega meriti, če ne znate tega
izraziti s števili, je vaše znanje borne in nezadostne vrste.
— W. THOMSON

Znanost hodi po dveh nogah, teoriji in poskusu. Zdaj postavi
naprej eno nogo, zdaj drugo. Nenehen napredek je mogoč samo z
uporabo obeh – s teoretičnim razmišljanjem in potem s
preizkušanjem, ali z odkrivanjem novih zvez pri poskusih in
potem s tem, da pristavimo teoretično nogo in jo porinemo naprej
in tako dalje izmenoma. — R. MILLIKAN

Pri naporih, da bi dojeli resničnost, ravnamo kot človek, ki
poskuša doumeti mehanizem zaprte žepne ure. Vidi številčnico in
pomikanje kazalcev ter sliši celo tiktakanje, vendar nikakor ne
more odpreti ohišja. Če je bister, si zamisli mehanizem, ki mu
more pripisovati vse to, kar vidi in sliši. Vendar se nikakor ne
more zanesti na to, da je edino njegova zamisel taka, da se
morejo z njo pojasniti opazovanja. Svojih zamisli ne more nikdar
preizkusiti ob resničnem mehanizmu. — A. EINSTEIN

Matematika je jezik za količinsko opisovanje sveta …
Napredovala je, kadar je bilo za matematike kaj resničnega dela,
in je zastajala, kadarkoli je postala igrača v rokah skupine ljudi,
odtujene od vsakdanjega življenja človeštva … Sedaj je postalo
modno reči, da je matematika samo igra. Seveda nam to ne pove
prav ničesar o njej. Nekaj nam pove le o kulturnih omejitvah
nekaterih matematikov. Ko človek reče, da je matematika igra, se
osebno izjavlja. Nekaj nam pove o sebi, o svojem lastnem odnosu
do nje. Nič nam ne pove o javnem pomenu matematičnega jezika.
— L. HOGBEN

Dvignil sem učbenik fizike, ki so ga uporabljali … Začel sem brati:
"Triboluminiscenca. Triboluminiscenca je svetloba, ki jo oddajajo
kristali pri drobljenju …" Rekel sem: "Torej, je to znanost? Ne!
Povedali ste samo, kaj neka beseda pomeni z drugimi besedami.
Ničesar niste povedali o naravi – kateri kristali sevajo svetlobo pri
drobljenju, zakaj sevajo … Če pa bi namesto tega zapisali 'Ko
vzameš kocko sladkorja in jo zdrobiš s kleščami v temi, zagledaš
modrikast blisk. Tudi nekateri drugi kristali se tako obnašajo.
Nihče ne ve, zakaj. Pojav imenujemo triboluminiscenca,' potem je
to izkušnja narave." — R. FEYNMAN

V svoji predstavitvi bom praviloma sledil genetični metodi.
Bistvena zamisel te metode je, da je vrstni red, v katerem je
človeštvo pridobilo znanje, tudi dober vrstni red za njegovo
pridobivanje pri posamezniku … Vendar to ne pomeni, da
moramo pri poučevanju znanosti ponoviti tisoč in eno napako iz
preteklosti. — G. POLYA
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Predšola

Nižja osnovna šola

Višja osnovna šola

Srednja šola

Učna pot
Kakor se je učil človeški rod, tako se naj uči človeški posameznik.
To je genetično načelo učenja znanosti. Po njem želimo vstopiti v
svet matematike, fizike in tehnike.

Učenje znanosti po genetičnem načelu zahteva, da definiramo
ustrezne šolske stopnje in jih povežemo z zgodovinskim dobami.
Storimo to! Predšola naj pokrije prazgodovino (pred 5000 let
pr. n. št. ), osnovna šola stari in srednji vek (do 1500 let n. št.),
srednja šola novi vek (do 1900 let n. št.) in visoka šola sodobnost.
Seveda bomo meje po potrebi tudi prestopali. Napredovati torej
hočemo po naslednjih šolskih / družbenih razvojnih stopnjah.

Nabiralništvo in lov. Kakšnih 100 000 let pr. n. št. se v Afriki
pojavi sodobni človek in se do 10 000 let pr. n. št. razširi po vseh
kontinentih. Je nabiralec in lovec. Pozna kamnito orodje, ogenj in
obleko iz kož. Takratno podnebje je hladno in spremenljivo.

Poljedelstvo in živinoreja. Okrog 10 000 let pr. n. št. se podnebje
nenadoma otopli in umiri. Ljudje takoj izkoristijo nove pogoje. V
evrazijskih stepah se pojavi nomadska živinoreja. V rodovitnih
predelih Bližnjega vzhoda, Jangcekjanga, Mezoamerike in Andov
pa se razvije poljedelstvo ter se razširi v okolico. Ljudje se ustale
v vaseh. Poznajo lončarstvo, tkalstvo in kovine.

Kmetijske države in gradbeništvo. Poljedelsko prebivalstvo se
počasi namnoži in se organizira v države. Razvijejo se
mezopotamska (3500 let pr. n. št.), egipčanska (3000 let
pr. n. št.), kitajska (2000 let pr. n. št.), majevska (300 let n. št.),
azteška (1200 let n. št.) in inkovska (1200 let n. št.) civilizacija.
Ljudje orjejo, namakajo in zidajo stavbe ter templje. Ponekod
prevažajo tovore z vozmi in veslačami. Uvedejo pisavo, številke,
koledar, kataster in zakonik.

Urbanizacija in rokodelstvo. Ob Sredozemskem morju, na robu
Mezopotamije in Egipta, se okrog leta 1000 pr. n. št. razvijejo
primorske mestne državice, najprej feničanske in grške. Trgujejo
in kujejo denar. Rimska država okrog leta 0 n. št. imperializira
Sredozemlje in prinese državnost v njegove province. Z velikostjo
pa rastejo tudi težave na mejah. Pastirski nomadi iz srednje
Evrazije okrog leta 500 n. št. razrušijo zahodni del imperija. Na
njegovem ozemlju se pojavijo nove države. Nato si nomadi iz
Arabije do leta 1000 n. št. podvržejo južni in vzhodni del. Znanja
iz vzhodne Evrazije prinesejo na njen zahod.

Pomorstvo in trgovina. Prebujene zahodnoevropske države okrog
leta 1500 n. št. razvijejo tisk, smodniško orožje in oceanske
jadrnice. Kolonizirajo Afriko, Ameriko, Avstralijo in Oceanijo.
Trgovina močno poraste.
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Visoka šola

Industrija in elektrifikacija. Svetovni trg zahteva svoje. Razvije se
tovarniška proizvodnja snovi in izdelkov, ki jo okrog leta 1800
n. št. začno poganjati parni stroji. Sledi odkritje
elektromagnetizma, kar spremeni svet. Države se elektrificirajo:
gradijo elektrarne ter preko daljnovodov napajajo elektromotorje,
grelce in razsvetljavo v industriji, mestih in gospodinjstvih.
Namnožijo se motorni avtomobili, vlaki, ladje, podmornice in
letala.

Komunikacije in informatika. Človeštvo po letu 1900 n. št. iznajde
brezžične električne komunikacije, digitalno zajemanje in zapis
informacij, računalnike in jedrski reaktor. V vesolje pošlje
satelite, sonde in ljudi. Na obzorju se pokaže nesluten razvoj
robotike in medicine.

V vsaki izmed naštetih dob so se rojevali posamezniki, znani in
neznani, ki so doprinašali k razvoju takratne znanosti. Seveda so
njihovi doprinosi vplivali nazaj na družbeno okolje in ga po svoje
preoblikovali. Privzemimo vlogo teh posameznikov in se podajmo
na čudovito pot spoznavanja in mojstritve narave od pradavnine
do današnjih dni!
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28

Zasuk nihala

Kompleksna števila ali
fazorji

(28.1)

Kompleksna števila
Skalarji in fazorji – Računske operacije – Imaginarna enota –
Potenca in eksponencial – Kompleksne funkcije – Harmonične
vrste – Primer spektralne analize – Kompleksne harmonične vrste –
Harmonični integrali

28.1 Skalarji in fazorji
Na vrvici obešena kroglica – težno nihalo – lahko niha sem in tja v
navpični ravnini. Trenutni odmik kroglice iz njene ravnovesne
lege opišemo z ustreznim relativnim številom, skalarjem: odmik v
desno, na primer, je pozitiven in odmik v levo je negativen. Odmik
nihala je torej količina, ki ima poleg velikosti še predznak.

Kroglica pa lahko tudi kroži v vodoravni ravnini; pri tem se njena
projekcija na poljubni premer kroga spreminja. Trenutni zasuk
nihala opišemo potem na dva načina: z dvema projekcijama –
odmikoma u1 in u2 – na dva medsebojno pravokotna premera ali z
velikostjo u in fazo φ. Zasuk nihala je torej količina, ki ima poleg
velikosti še fazo. Odmik nihala je poseben primer zasuka za fazo
0 ali 180°.

Slika 28.1 Zasuk kot kompleksno število
oziroma fazor.

Na odmika u1 in u2, ki opisujeta zasuk, pogledamo kot na celoto
in proglasimo: vsakršna dvojica relativnih števil (u1, u2) je
kompleksno število û z realno komponento u1 in imaginarno
komponento u2. Obenem definiramo še absolutno vrednost |û| in
fazo Arg (û):

û = (u1, u2) = (u cos φ, u sin φ)
Re (û) = u1
Im (û) = u2
|û|2 = u2 = u1

2 + u2
2

Arg (û) = φ = atan
u2

u1
.

Ker ima kompleksno število poleg velikosti še fazo, mu bomo rekli
tudi fazor. Poljuben fazor bomo označili s črkami û, v̂ in ŵ.

11

pict3a/complex.gif
pict3a/complex.gif


Množenje fazorja s
skalarjem

(28.2)
Seštevanje in

odštevanje fazorjev

(28.3)

Množenje in deljenje
fazorjev

(28.4)

28.2 Računske operacije
Kompleksna števila (fazorji) so razširitev relativnih števil
(skalarjev). Slednja vključujejo kot pare, katerih imaginarna
komponenta je enaka nič. Računanje s fazorji hočemo zato
definirati tako, da bo pomen računskih operacij nad skalarji
ohranjen. Razviti hočemo kompleksni račun (BOMBELLI, EULER,
GAUSS).

Naj ima fazor imaginarno komponento enako nič. Tedaj je
"enakopraven" navadnemu realnemu odmiku. Množenje takega
odmika s pozitivnim ulomkom pomeni njegov razteg ali skrčitev, z
negativnim pa hkrati še obrat njegove usmeritve. Zato definiramo
tako tudi za kompleksni zasuk:

cû = (cu1, cu2) .

Seštevanje dveh realnih odmikov pomeni, da na konec prvega
nataknemo začetek drugega in oba nadomestimo s premikom, ki
sega od začetka prvega do konca drugega. Zato definiramo tako
tudi za kompleksne zasuke:

û + v̂= (u1 + v1, u2 + v2) .

Slika 28.2 Seštevanje fazorjev po
paralelogramskem pravilu.

To je že znano paralelogramsko pravilo za seštevanje premikov
(9.7). Odštevanje je obratna operacija k seštevanju in ga tako tudi
definiramo: znake za seštevanje (+) nadomestimo z znaki za
odštevanje (−).

Fazor u (cos φ, sin φ) opisuje razteg realnega enotnega premika za
faktor u in zasuk za kot φ. To nas sili, da množenje fazorja
û = u (cos α, sin α) s fazorjem v̂= v (cos β, sin β) definiramo kot
zasuk prvega za argument drugega in hkratni ustrezni razteg:

û v̂= uv (cos (α + β), sin (α + β)) .

Slika 28.3 Množenje fazorjev po sučnem pravilu.
Prvi fazor zasučemo za fazo drugega fazorja in ga
pomnožimo z njegovo velikostjo.
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(28.5)

(28.6)

Enotni fazorji

(28.7)

(28.8)

Imaginarna enota kot
navidezni skalar

(28.9)

Konjugirana
kompleksna števila

Deljenje je obratna operacija od množenja, zato smo prisiljeni
definirati

û/v̂= (u/v) (cos (α − β), sin (α − β)) .

Množenje in deljenje smo definirali z absolutnimi velikostmi in
argumenti operandov. Ugodno bi bilo vedeti, kako se to zapiše s
komponentami. Neposredni račun pokaže:

ûv̂= (u1v1 − u2v2, u1v2 + u2v1)
û/v̂= (u1v1 + u2v2, u2v1 − u1v2) .

Z vpeljanimi definicijami ostanejo v veljavi vsa računska pravila,
ki veljajo za skalarje (in še prej za naravna števila) (2.1): vsota in
produkt dveh fazorjev sta komutativna in asociativna, produkt pa
je distributiven glede na vsoto.

28.3 Imaginarna enota
Definiciji za vsoto in produkt omogočata, da poljuben fazor
zapišemo v obliki

û = u1 · (1, 0) + u2 · (0, 1) .

Številska para (1, 0) in (0, 1) poimenujemo realna enota in
imaginarna enota. Njuni velikosti sta, sledeč definiciji, enaki 1.
Krajše zapišemo

û = u1 + iu2
i = (0, 1) .

Realno enoto (1, 0) torej zapišemo kar kot skalar 1, imaginarno
enoto (0, 1) pa kot "skalar" i. Ta zapis ima izjemno praktično
vrednost. Če se delamo, da je imaginarna enota i kar navaden
skalar, lahko vsako kompleksno število obravnavamo kot skalarni
binom. Te pa igraje seštevamo, odštevamo, množimo in delimo!
Če med računom pridelamo kvadrat ali kakšno višjo potenco
imaginarne enote, upoštevamo, da velja, sledeč definiciji
množenja, i · i = (0, 1)(0, 1) = (−1, 0), torej

i2 = −1 .

Rezultat, ki ga dobimo, je prav tak, kot če bi mukoma računali s
pari števil po osnovnih definicijah. Zgled pove to najbolje.
Namesto takole: (3, 5) · (2, 4) = (3 · 2 − 5 · 4, 3 · 4 + 5 · 2) = (−14, 22)
računamo raje takole: (3 + 5i)(2 + 4i) = 2 · 3 + 2 · 5i + 4i · 3 + 4i · 5i =
6 + 22i + 20i2 = −14 + 22i. Razlika je očitna.

Množenje skalarja z imaginarno enoto nazorno pomeni, da skalar
zavrtimo za kot 90° v nasprotni smeri urinega kazalca. Dvakratno
množenje z imaginarno enoto torej zavrti skalar za 180°, to je,
spremeni mu predznak. To velja tudi za množenje kateregakoli
fazorja z imaginarno enoto.

Velikost kompleksnega števila û je podana, kot vemo, takole:
|û|2 = u1

2 + u2
2. To je enako produktu (u1 + iu2)(u1 − iu2). Drugi
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(28.10)

Fazor kot baza
potence

(28.11)

(28.12)

(28.13)

Fazor kot eksponent
potence

(28.14)

faktor je očitno enak prvemu, le predznak imaginarne enote ima
nasproten. Rečemo, da je prvemu konjugiran, in zapišemo

û* = u1 − iu2
|û|2 = ûû* .

Konjugirano vrednost fazorja si nazorno predstavljamo kot
njegovo preslikavo preko realne osi.

28.4 Potenca in eksponencial
Naravno potenco fazorja definiramo enako kot naravno potenco
skalarja:

ûn = û · û … û .

To zaradi (28.4) ne pomeni nič drugega kot

ûn = un (cos nφ +i sin nφ) .

Namesto naravnega eksponenta n si v zapisanem obrazcu
mislimo recipročni naravni eksponent (koren) 1/n, ulomni
eksponent p = n/m ali relativni eksponent ±p. Ali obrazec za
takšne skalarne eksponente še vedno velja, je nesmiselno
vprašati, saj potenciranja fazorja z "nenaravnim" eksponentom s
še nismo definirali. Pa proglasimo prav ta obrazec za definicijo!
Torej:

ûs = us (cos sφ + i sin sφ) .

Paziti moramo le na naslednje. Ker sta sinus in kosinus periodični
funkciji, je treba namesto izraza φ/n računati izraze (φ + k2π)/n,
k = 0, 1, 2 … n−1. "Nenaravne" potence fazorja so torej večlične.

Kvadratni koren iz negativnih skalarjev doslej ni bil določen, to
je, ne obstajajo skalarji – ne pozitivni ne negativni –, katerih
kvadrat bi bil negativni skalar. Če pa na skalar −p pogledamo kot
na ekvivalentni fazor (−p, 0), potem je kvadratni koren iz njega
prav lahko najti: (−p, 0)1/2 = p1/2 (cos π/2 + i sin π/2) = ip1/2.
Kvadratni koreni negativnih skalarjev so (imaginarna)
kompleksna števila.

Kako pa bi razširili eksponencial (potenco z bazo e) od skalarnega
argumenta na kompleksnega? Stisnimo zobe in razvijmo funkcijo
eiφ – za katero ne vemo, kaj pomeni! – v potenčno vrsto, kakor da
bi bil argument iφ skalar! Pri tem upoštevajmo pravilo i2 = −1, s
čimer v vrsti ostanejo samo gole vrednosti i. Naredimo še en greh
in zberimo skupaj vse tiste člene, ki ne vsebujejo i, ter skupaj
one, ki i vsebujejo. Iz slednjih izpostavimo i in dobimo vsoto dveh
vrst. Vzhičeno ugotovimo, da sta to potenčni vrsti za kosinus in
sinus, torej

eiφ = cos φ + i sin φ .

Če naj si eksponentna funkcija zasluži svoje ime, bi moralo veljati
še
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(28.15)

Najlepša enačba

Kompleksni zapis
kotnih funkcij

(28.16)

(28.17)

Kotne funkije
kompleksnega

argumenta
(28.18)

eû = eu1+iu2 = eu1 eiu2 = eu1 (cos u2 + i sin u2) .

Pri u2 = 0 se pridelani kompleksni eksponencial zares reducira v
skalarnega. No, pa proglasimo ta rezultat, do katerega smo prišli
s stisnjenimi zobmi, za definicijo kompleksnega eksponenciala! To
gotovo lahko naredimo, kajti s tem nič ne vplivamo na dosedanja
dejstva o skalarnem eksponencialu. Pravo vprašanje pa je seveda
tole: ali iz sprejete definicije sledijo takšna pravila za računanje s
kompleksnimi eksponenciali, ki so enaka računskim pravilom za
skalarne eksponenciale? Kratki računi res pokažejo, da veljajo
osnovna pravila exp û · exp v̂= exp (û + v)̂; exp û/exp v̂= exp (û − v)̂;
in exp ûv̂ = exp (û · v)̂. Sprejeta definicija je torej dobra.

Če za argument v eksponencialu izberemo iπ, dobimo
presenetljivo enačbo eiπ + 1 = 0. V njej je medsebojno povezanih
pet najpomembnejših števil: 0, 1, π, e in i, povezujejo jih pa tri
osnovne operacije: seštevanje, množenje in potenciranje. Za
povrh je vključen še znak enakosti. Mnogi imajo to enačbo za
najlepšo od vseh v matematiki.

28.5 Kompleksne funkcije
Enačba exp iφ = cos φ + i sin φ kaže, kako je eksponentna funkcija
(imaginarnega argumenta) izražena s kotnimi funkcijami. Ali je
možno tudi obratno, torej izraziti kakšno kotno funkcijo z
eksponentnimi funkcijami? Za φ → −φ se enačba glasi
exp (−iφ) = cos φ − i sin φ. Obe enačbi seštejemo in dobimo

cos φ =
eiφ + e−iφ

2
.

Če enačbi odštejemo, pa pridelamo

sin φ =
eiφ − e−iφ

2i
.

Uspeli smo. Za izračunavanje numeričnih vrednosti kotnih
funkcij, recimo za izračun cos 3 ali sin 3, izpeljani enačbi sicer
nista uporabni, saj se reducirata v identiteto. Na primer:
cos 3 = [exp i3 + exp (−i3)]/2 = [(cos 3 + i sin 3) +
(cos 3 − i sin 3)]/2 = cos 3. Sta pa zelo uporabni pri dokazovanju
trigonometričnih identitet, recimo znamenite identitete
(sin φ)2 + (cos φ)2 = 1. Računanje z eksponentnimi funkcijami je
namreč mnogo lažje od računanja s kotnimi funkcijami.

Nič nam ne brani, da razširimo definicijo kotnih funkcij tudi na
kompleksne argumente:

cos û =
eiû + e−iû

2

sin û =
eiû − e−iû

2i
.
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Kompleksne funkcije
skalarja

(28.19)

(28.20)

(28.21)

Kompleksne funkcije
fazorja

Superpozicija
harmonikov

S tem postaneta funkciji sinus in kosinus kompleksni, to je, njuna
zaloga vrednosti so kompleksna števila. Na primer: cos (4i + 3) =
[exp (−4 +3i) + exp (4 − 3i)]/2 = [exp (−4) exp 3i]/2 +
[exp 4 exp (−3i)]/2 = [exp (−4)/2](cos 3 + i sin 3) +
[exp (+4)/2](cos 3 − i sin 3) = [exp (−4) + exp 4)] cos 3 / 2 +
i [exp (−4) − exp 4] sin 3 / 2, kar je kompleksno število.

Na izraz û = u (cos φ + i sin φ) lahko pogledamo kot na kompleksno
funkcijo û skalarnega argumenta φ: vsaki vrednosti φ pripada
natanko določena vrednost û. Splošno funkcijo te vrste lahko
definiramo kot

û(t) = u1(t) + iu2(t) ,

recimo û = at + ibt2. Pojavi se vprašanje, ali in kako lahko takšne
funkcije odvajamo in integriramo. Pravzaprav ni kaj dosti
premišljevati. Odvod definiramo kot

dû
dt

=
du1

dt
+ i

du2

dt

in integral kot

∫u ̂ dt =∫u1 dt + i∫u2 dt .

Ko členoma odvajamo (d/dφ) (cos φ + i sin φ), dobimo
−sin φ + i cos φ, kar je enako i (cos φ + i sin φ). Zapisano z
eksponencialom to pomeni (d/dφ) eiφ = ieiφ. Vidimo, da kompleksni
eksponencial odvajamo natanko tako kot skalarnega, pri čemer
obravnavamo enoto i kot navaden skalar. Podobno velja za
integriranje.

Na izraze ŵ = cû, ŵ = û2, ŵ = eû, ŵ = cos û ali ŵ = sin û lahko
pogledamo kot na kompleksne funkcije fazorskega argumenta.
Vsaki vrednosti û pripada natanko določena vrednost ŵ. Splošno
funkcijo te vrste zapišemo kot ŵ = f(û). Očitno je, da je to
preslikava točk (in s tem krivulj) iz ene ravnine v drugo ravnino.
Podrobnejše obravnavanje takih funkcij, vključno z njihovim
odvajanjem, integriranjem in razvojem v potenčne vrste, pa
prepustimo drugim, ki to potrebujejo ali jih zanima.

28.6 Harmonične vrste
Struna lahko niha harmonično s (krožnimi) frekvencami ω, 2ω,
3ω itd. Osnovno nihanje se ponavlja po vsaki periodi T = 2π/ω,
naslednje po periodi T2 = 2π/2ω, pa tudi po periodi T = 2T2, itd.
Aktualno periodično nihanje strune je sestavljeno iz vsote
izbranih harmoničnih nihanj. S primerno izbiro harmoničnih
komponent je možno pridelati zelo različne periodične funkcije.
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(28.22)

Razvoj funkcije v
harmonično vrsto

(28.23)

(28.24)

(28.25)

Slika 28.4 Vsota dveh sinusoid. Modra je
sin x, zelena je (1/3) cos 3x, rdeča je vsota.
Prikazan je interval med 0 in 4π. Če sta
frekvenci v celoštevilčnem razmerju, je
rezultat periodična funkcija.

To nas navaja na misel, da se da vsaka (ne preveč divja)
periodična funkcija s periodo T zapisati v obliki harmonične vrste
(FOURIER)

f(t) = a0 +
∞

∑
n=1

(an cos nωt + bn sin nωt) .

Pri tem je ω = 2π/T. Za nekatere funkcije je morda dovolj le nekaj
členov, za druge pa je potrebnih neskončno mnogo.

Če poznamo amplitude an in bn, lahko funkcijo f(t) zlahka
izračunamo. Kaj pa obratno? Če poznamo funkcijo, ali lahko
izračunamo amplitude?

Razmišljamo takole. Preko periode T ima vsak sinus enako mnogo
hribov kot dolin; njegov integral je zato nič. Podobno velja za
kosinuse. Integral vseh členov, razen konstantnega, je zato nič, in
integral funkcije mora zato biti enak integralu konstantnega
člena:

a0 =
1
T

T

∫
0

f(t) dt.

Če pomnožimo harmonično vrsto (28.22) na levi in desni strani s
členom cos kωt, pridelamo na desni strani vsoto "istoimenskih"
produktov cos nωt · cos kωt in "raznoimenskih" produktov
sin nωt · cos kωt. Potem integriramo vsako stran preko periode T.
"Raznoimenski" integrali so vsi enaki nič. "Istoimenski" integrali
pa so tudi enaki nič, če n ≠ k; le v enem samem primeru, ko n = k,
znaša integral T/2. Velja torej

an =
2
T

T

∫
0

f(t) cos nωt dt, n = 1, 2, 3 …

Na podoben način ugotovimo še

bn =
2
T

T

∫
0

f(t) sin nωt dt, n = 1, 2, 3 …

Integriranje poteka preko periode T. Ta je seveda lahko poljubno
zamaknjena. Namesto spodnje meje 0 lahko zato izberemo
poljubno mejo t0 in integriramo med t0 in t0 + T.
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Vsota amplitud

(28.26)

Škatlasta funkcija

(28.27)

Energija harmoničnega nihanja nihala je sorazmerna s kvadratom
amplitude (21.19). To nas navede na izračun integrala f2 preko
periode T. Morda bomo odkrili kaj zanimivega? Trigonometrično
vsoto kvadriramo in pridelamo množico mešanih produktov med
sinusi in kosinusi. Vsi produkti razen kvadratov sinusov in
kosinusov so enaki nič in velja:

1
T

T

∫
0

f(t)2 dt = a0
2 +

1
2

∞

∑
n=1

(an
2 + bn

2) .

Povprečna vrednost kvadrata funkcije je torej enaka vsoti
kvadratov posamičnih amplitud.

28.7 Primer spektralne analize
Za zgled razvijmo v harmonično vrsto, to je spektralno
analizirajmo, "škatlasto" periodično funkcijo, ki je na prvi polovici
periode enaka f(t) = 1 in na drugi polovici enaka f(t) = −1. Upamo,
da funkcija zaradi nezveznih skokov ni predivja za legitimni
razvoj.

Slika 28.5 Škatlasta funkcija in njeni
harmoniki. Prvi harmonik je moder, vsota
prvih dveh je zelena in vsota prvih treh je
rdeča.

Integrale f(t) cos nωt in f(t) sin nωt preko cele periode razdelimo
na dva dela: preko prve polovice in preko druge polovice, jih
zlahka integriramo in dobimo f(t) = (4/π) [(1/1) sin ωt +
(1/3) sin 3ωt + (1/5) sin 5ωt + …]. Funkcija je liha in je zato
sestavljena iz samih sinusov.

Pri t = T/4 znaša f(t) = 1 in ωt = (2π/T)(T/4) = π/2, zato se vrsta
zapiše kot π/4 = 1 − 1/3 + 1/5 − 1/7 ± … To je že znana vrsta
(17.10). Povprečje kvadrata funkcije je 1 in je enako vsoti
kvadratov spektralnih koeficientov, iz česar sledi

π2

8
= 1 +

1
32 +

1
52 + …

Obe številski vrsti lahko izračunamo in ugotovimo, da res držita.
To je pokazatelj (če že ne dokaz), preko posledic, da je spektralna
analiza "skokovitih" funkcij veljavna. Na podoben način lahko
pridelamo mnoge zanimive številske vrste.
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Kompleksna vrsta

(28.28)

(28.29)

(28.30)

Zvezni spekter

(28.31)

Izračun spektra

28.8 Kompleksne harmonične vrste
Če trigonometrične funkcije zapišemo v obliki cos ωt =
(eiωt + e−iωt)/2 in sin ωt = (eiωt − e−iωt)/2i, se razvoj v harmonično
vrsto zapiše prav na kratko:

f(t) = Re
∞

∑
n=−∞

Ân einωt

Â0 = a0

Ân =
1
2

(an − ibn)

Â−n =
1
2

(an + ibn)

iz česar sledi tudi

Ân =
1
T

T

∫
0

f(t) e−inωt dt, n = 0, ± 1, ±2 …

in še

1
T

T

∫
0

f(t)2 dt =
∞

∑
n=−∞

|Ân|2 .

To je kompleksni zapis harmonične vrste. Tak zapis je ugoden
zato, ker je integriranje eksponentnih funkcij, čeravno
kompleksnih, praviloma lažje od integriranja trigonometričnih
funkcij.

28.9 Harmonični integrali
Kaj pa, če funkcija ni periodična, to je, če je njena perioda
neskončna? Naj bo perioda T zelo dolga: pomislimo na enkraten
brenk na struno, ki se ponovi le vsako uro. Tedaj je osnovna
frekvenca ω0 = 2π/T zelo majhna. Posamezne frekvence ω = nω0
so zato razporejene zelo na gosto. Pričakujemo, da se amplitude
Ân potem z naraščanjem n le počasi spreminjajo. Število
spektralnih črt dn na intervalu dω znaša dn = dω/ω0. Vsota
amplitud na tem intervalu je Ân dn = (Ân/ω0) dω . Definiramo
gostoto spektra kot Ân /ω0 = Â(ω), pa lahko vsoto zapišemo z
integralom:

f(t) = Re
∞

∫
−∞

Â(ω) eiωt dω .

Gostoto zveznega spektra razberemo iz enačbe za diskretne
spektralne koeficiente. Periodo T zapišemo kot 2π/ω0, delimo obe
strani z ω0 in pridelamo
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(28.32)

(28.33)

Simetrična
transformacija

(28.34)

(28.35)

Â(ω) =
1

2π

∞

∫
−∞

f(t) e−iωt dt .

Podobno dobimo še povezavo

1
2π

∞

∫
−∞

f(t)2 dt =
∞

∫
−∞

|Â(ω)|2 dω .

Realna funkcija f(t) in kompleksna funkcija Â(ω) sta torej
medsebojno povezani. Rečemo, da je ena harmonična
transformacija druge. Tistim, ki radi posplošujejo in imajo radi
simetrijo, se ob tem porodi naslednja misel: zakaj ne bi bili obe
funkciji kompleksni in zakaj ne bi bil predintegralski faktor pri
obeh transformacijskih enačbah isti, najbolje kar enak ena? Če
stisnemo zobe in proglasimo f(t) za kompleksno funkcijo f(̂t); če
namesto ω pišemo 2πν, torej dω = 2πdν; in če zapišemo še
2πA(ω) = B(ν), s tem pridelamo par

f(̂t) =
∞

∫
−∞

B̂(ν) ei2πνt dν

B̂(ν) =
∞

∫
−∞

f(̂t) e−i2πνt dt

ter povezavo

∞

∫
−∞

|f(̂t)|2 dt =
∞

∫
−∞

|B̂(ν)|2 dν .

To je iskana transformacija v "unitarni" obliki. Zapisano gotovo
velja, če f(̂t) = (f(t), 0). Da pa velja širše, nas prepričuje simetrija.
Pustimo se ji prepričati. □
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29

Premik kot puščica

Komponente premika

(29.1)
Dolžina in

usmerjenost premika

(29.2)

Vektorji in matrike
Premiki – Vektorji – Razteg in vsota – Enotni vektorji – Skalarni
produkt – Vektorski produkt – Dvojni produkti – Matrike – Posebne
matrike – Računske operacije – Sistem linearnih enačb – Inverzna
matrika – Lastni vektorji – Diagonalizacija

29.1 Premiki
Človek se iz kraja A lahko premakne v različne sosednje kraje B,
C, D itd. Vsak tak premik si predstavljamo kot ravno puščico iz
začetne točke v končno točko. Zamišljena puščica ima dolžino in
smer. Puščico iz točke A v točko B, na primer, bomo označili z rAB.

Kako bi premik rAB opisali kvantitativno? V začetni točki A si
zamislimo primeren koordinatni križ, recimo takega z vzhodno
(x), severno (y) in navpično (z) osjo, in pogledamo, kakšne so
projekcije premika na te osi.

Slika 29.1 Premik in njegove
komponente.

Projekcije premika na koordinatne osi znašajo x, y in z. Rečemo,
da so to komponente premika v postavljenem koordinatnem
sistemu. Z njimi sta popolnoma določeni dolžina in smer premika.
Za trojico komponent zato rečemo, da reprezentirajo premik v
izbranem koordinatnem sistemu in zapišemo na kratko (če
izpustimo oznako začetne in končne točke)

r= (x, y, z) .

Dolžino premika označimo z r. Hipotenuzni izrek (8.4) in
definicije kotnih funkcij (15.13) povedo, da veljajo naslednje
povezave med komponentami ter velikostjo in usmeritvijo
premika:

r2 = x2 + y2 + z2

ρ2 = x2 + y2

x = ρ cos φ
y = ρ sin φ
z = r cos θ .

Poljubna točka prostora je torej enolično določena s kartezičnimi
koordinatami x, y, z; s cilindričnimi koordinatami φ, ρ, z; ali s
sferičnimi koordinatami φ, θ, r.
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Zasuk koordinatnega
sistema

(29.3)

Invarianca dolžine

(29.4)
Vektorji

29.2 Vektorji
Koordinatni sistem smo usmerili po straneh neba. Kaj če sistem
zasučemo, recimo okrog navpične osi za kot φ v nasprotni smeri
urinega kazalca?

Slika 29.2 Zasuk koordinatnega sistema.
Prikazan je zasuk okrog osi z. V
zavrtenem sistemu so komponente
vektorja spremenjene, vektor sam, kot
premik v prostoru, pa ostaja
nespremenjen.

V zasukanem koordinatnem sistemu ima premik r komponente x',
y' in z'. Iz risbe razberemo, da velja med obojimi komponentami
naslednja povezava:

x' = +x cos φ + y sin φ
y' = −x sin φ + y cos φ
z' = z .

Sistem lahko zasučemo tudi okrog kake druge osi – vzhodne,
severne ali poljubno nagnjene. Povezave med starimi in novimi
projekcijami so tedaj drugačne.

Čeprav so komponente preučevanega premika v različnih
sistemih lahko različne, pa vendarle opisujejo isti premik.
Izhodiščna in ciljna točka ležita namreč relativno glede na ves
snovni svet enako, ne glede na to, na kateri del sveta ju
relativiziramo.

Dolžina premika mora biti v vseh koordinatnih sistemih enaka.
Pri zasukanem sistemu (recimo tistem okrog navpične osi) se v to
prepričamo s kvadriranjem in seštevanjem leve in desne polovice
transformacij (29.3). Dobiti moramo in tudi dobimo

x'2 + y'2 + z'2 = x2 + y2 + z2 .

Velikosti in smeri v prostoru nimajo samo premiki, ampak tudi
druge preko njih definirane količine, na primer hitrost ali
pospešek ali sila. Rekli bomo, da so to vektorji. Vektorji so torej
količine, ki imajo poleg velikosti še smer v prostoru. Premik je
njihov prototipni predstavnik. Vektorje bomo označevali s
poudarjenimi črkami, na primer u, v, w. V komponentni obliki pa
bomo namesto oznak x, y, z raje pisali oznake 1, 2 in 3, na primer
u= (u1, u2, u3). Takšne splošne vektorje si bomo predstavljali kar
kot premike. Z njimi hočemo tudi računati, to je, razviti hočemo
vektorski račun (GIBBS).
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Razteg vektorja

(29.5)

Vsota vektorjev

(29.6)

Linearna kombinacija
vektorjev

Enotni vektorji

(29.7)

29.3 Razteg in vsota
Sani, ki drsijo po ledu premo in enakomerno, opravijo v enotnem
času, recimo v 1 sekundi, nek premik. V daljšem času pa
opravljeni premik "podaljšajo". To nas navede, da definiramo
"razteg" vektorja kot množenje vektorja s skalarjem:

λu= (λu1, λu2, λu3) .

Kadar je skalar negativen, se smer nastalega vektorja obrne.
Očitno velja λu=uλ in λ(μu) = μ(λu) = (λμ)u.

Ladja na morju opravi premik iz točke A v točko B in nato še
premik iz točke B v točko C. S tem definira rezultantni premik iz
A v C. To nas navede, da definiramo vsoto dveh vektorjev takole:
na konec prvega vektorja nataknemo začetek drugega, sestavljeni
vektor pa sega od začetka prvega do konca drugega vektorja.
Alternativno lahko začetek drugega vektorja premaknemo v
izhodišče prvega vektorja, sestavljeni vektor pa je enak diagonali
ustvarjenega paralelograma. To je že znano paralelogramsko
pravilo (9.7)

Slika 29.3 Vsota dveh vektorjev. Prototip
je seštevanje dveh premikov ali dveh sil
po paralelogramskem pravilu.

Risba pokaže:

u+v= (u1 + v1, u2 + v2, u3 + v3) .

Vsota je očitno komutativna in asociativna. Glede na produkt s
skalarjem pa je distributivna.

Množenje vektorja s skalarjem in seštevanje vektorjev lahko
združimo v izraz λu+ μv+ νw. To je linearna kombinacija treh
vektorjev. Njen rezultat je seveda vektor. Če trije vektorji med
seboj niso paroma vzporedni, lahko s primerno izbiro treh
skalarjev poustvarimo kakršenkoli vektor.

29.4 Enotni vektorji
Pa opremimo izhodišče koordinatnega sistema s tremi vektorji, ki
rastejo vzdolž vsake osi! Naj imajo ti vektorji dolžine 1. To so
enotni vektorji

e1 = (1, 0, 0)
e2 = (0, 1, 0)
e3 = (0, 0, 1) .
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Z njimi lahko poustvarimo kakršenkoli vektor. Potrebni skalarni
koeficienti so kar enaki komponentam vektorja:

u= u1e1 + u2e2 + u3e3 = ∑ uiei .

Slika 29.4 Enotni vektorji.

Z uporabo enotnih vektorjev zapišemo razteg vektorja kot
λu= λ ∑ uiei = ∑ λuiei in vsoto dveh vektorjev kot
u+v= ∑ uiei + ∑ viei = ∑ (ui + vi)ei. Dosedanje računanje z vektorji
lahko torej formalno prevedemo na računanje z relativnimi števili
in tremi enotnimi vektorji, pri čemer se delamo, kot da so ti
navadni skalarji.

29.5 Skalarni produkt
Sila F, ki deluje na telo pod kotom φ glede na njegov premik s,
opravlja delo Fs cos φ. To nas navede, da definiramo skalarni
produkt dveh vektorjev:

u ·v= uv cos φ .

Specialno za enotne vektorje velja, na primer e1 ·e1 = 1, e1 ·e2 = 0
itd. Produkt dveh enakih enotnih vektorjev (med katerima je kot
0°) je enak 1. Produkt dveh različnih enotnih vektorjev (med
katerima je kot 90°) pa je enak 0.

Kako bi skalarni produkt zapisali s komponentami? Vsak vektor
zapišemo z enotnimi vektorji in navzkrižno pomnožimo vse člene.
Potem upoštevamo, kaj pomenijo nastali produkti enotnih
vektorjev (nič ali ena), in dobimo v komponentnem zapisu

u ·v= u1v1 + u2v2 + u3v3 .

Poseben primer nastane, če množimo vektor s samim seboj.
Potem dobimo

u ·u= u1
2 + u2

2 + u3
2 = u2.

Skalarni produkt dveh vektorjev je skalar. Skalar je enak v
vsakem koordinatnem sistemu. To pomeni, da je skalarni produkt
invarianten glede na spremembo koordinatnega sistema.

Z računi se prepričamo, da je skalarni produkt komutativen, ni
acociativen in je distributiven nad vsoto.
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29.6 Vektorski produkt
Sila F, ki deluje na drog pri razdalji r od njegove vrtilne točke, in
sicer pod kotom φ, izvaja navor Fr sin φ. To nas navede, da
definiramo vektorski produkt dveh vektorjev:

u×v= uv sin φ ·n ,

pri čemer je n enotni vektor, pravokoten na ravnino obeh
vektorjev in usmerjen v smeri gibanja desnega vijaka, ko prvi
vektor zavrtimo proti drugemu.

Slika 29.5 Vektorski produkt. Prototip je
navor, ki ga ustvarjata sila in ročica.

Specialno za enotne vektorje velja, na primer e1 ×e1 = 0,
e1 ×e2 =e3 ipd. Produkt dveh enakih enotnih vektorjev (med
katerima je kot 0°) je enak 0. Produkt dveh različnih enotnih
vektorjev (med katerima je kot 90°) pa je enak tretjemu vektorju
s pozitivnim ali negativnim predznakom, kakor pač že pove
pravilo vijaka.

Tudi vektorski produkt hočemo zapisati s komponentami.
Ravnamo tako kot pri skalarnem produktu in dobimo

u×v= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) .

Vektorski produkt dveh vektorjev je vektor. Z računi se
prepričamo, da je antikomutativen u×v= −v×u, ni asociativen
in je distributiven nad vsoto.

29.7 Dvojni produkti
Ker je vektorski produkt vektor, se pojavi vprašanje, kaj se zgodi,
če ga pomnožimo še z enim vektorjem, bodisi skalarno ali
vektorsko.

Produkt w · (u×v) poimenujemo skalarno vektorski produkt. Je
skalar. Izraz v oklepaju je številsko enak ploščini paralelograma s
stranicama u in v in ima smer njegove normale. Skalarno
pomnožen s prvim faktorjem pa postane enak prostornini
paralelepipeda s stranicami u, v in w. Prostornina je neodvisna od
tega, kateri dve stranici določata bazo in katera določa višino.
Zato lahko pišemo tudi

w · (u×v) = (w×u) ·v .

Znaka za skalarni in vektorski produkt lahko torej zamenjamo, če
le obdržimo vrstni red faktorjev.
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Produkt w× (u×v) poimenujemo vektorsko vektorski produkt. Je
vektor. Pravokoten je na smer tako prvega kot drugega
(oklepajnega) faktorja. To pomeni, da je koplanaren z vektorjema
v oklepaju. Račun s koordinatami pokaže:

w× (u×v) =u · (w ·v) −v · (w ·u) .

Rezultat je razlika koplanarnih vektorjev, pri čemer je vsak
skalarno pomnožen s skalarnim produktom preostalih dveh
vektorjev.

29.8 Matrike
Ko pomnožimo vektor x s skalarjem λ, ga raztegnemo v vektor u.
Vsaka komponenta vektorja se pri tem raztegne enako: ui = λxi.
Kaj pa, če vsako komponento pomnožimo z drugačnim skalarjem:
ui = λixi? Potem je nastali vektor ne samo raztegnjen, ampak tudi
zavrten. Z izbiro trojice λi je popolnoma določeno, kakšen vektor
nastane iz poljubnega vhodnega vektorja: komponente novega
vektorja so sorazmerne istoležnim komponentam vhodnega
vektorja. Najsplošnejšo sorazmernost pa zapišamo kot

u1 = A11x1 + A12x2 + A13x3
u2 = A21x1 + A22x2 + A23x3
u3 = A31x1 + A32x2 + A33x3 .

S koeficienti Aij je preslikava vhodnih vektorjev v izhodne
popolnoma določena.

Zapisani sistem enačb ima na levi strani izhodni vektor in na
desni strani tablico koeficientov, "pomešano" z vhodnim
vektorjem. Morda lahko to zmešnjavo nekako razcepimo na dva
ločena dela? S srečno roko zapišemo takole

u1
u2
u3

=
A11
A21
A31

A12
A22
A32

A13
A23
A33

·
x1
x2
x3

in deklariramo, da sta oba zapisa ekvivalentna. S tem smo na
mah vpeljali: zapis vektorja kot stolpca; kvadratno tablico števil,
matriko; in množenje matrike z vektorjem. Komponento i
izhodnega vektorja dobimo, ko skalarno pomnožimo i-to vrstico
matrike z vhodnim stolpcem:

ui = ∑j Aijxj .

Na kratko bomo vse skupaj zapisali kar

u=A ·x .

Matrika je torej operator, ki preslika en vektor v drugega; kakšna
natančno je preslikava, je pa seveda odvisno od konkretnih
elementov matrike. Poljubne matrike bomo označili s črkami A,
B, C in podobno. Z njimi hočemo tudi računati, to je, razviti
hočemo matrični račun (CAYLEY).
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29.9 Posebne matrike
Kakšna je matrika, ki katerikoli vhodni vektor preslika v enak
izhodni vektor?

I=
1
0
0

0
1
0

0
0
1

.

Pa tista, ki katerikoli vhodni vektor raztegne vzdolž treh osi za
faktorje λ1, λ2 in λ3?

D=
λ1
0
0

0
λ2
0

0
0

λ3

.

Seveda so lahko vsi trije faktorji med seboj enaki. Tedaj se vektor
zgolj raztegne in nič ne zavrti.

Kaj pa matrika, ki katerikoli vhodni vektor zavrti okrog osi 3 za
kot φ v nasprotni smeri urinega kazalca? Očitno je taka matrika
opisana z zasukom koordinatnega sistema okrog osi 3 v smeri
urinega kazalca:

R3 =
cos φ
sin φ

0

−sin φ
cos φ

0

0
0
1

.

Matriki, ki vrtita vektorje okrog drugih dveh osi, sta podobni.
Rotacijska matrika Ri ima Rii = 1, vse ostale elemente v i-ti vrstici
in i-tem stolpcu enake 0, štirje preostali elementi pa vsebujejo že
zapisano četverico sinusov in kosinusov s primernimi predznaki.

29.10 Računske operacije
Produkt matrike s skalarjem definiramo tako, da raztegne
(seveda tudi skrči ali obrne) siceršnje izhodne vektorje:
(λA) ·x= λ(A ·x). Da to drži, moramo vpeljati predpis

λA=B⟺ Bij = λAij .

Vsoto dveh matrik definiramo tako, da proizvede vsoto siceršnjih
posamičnih izhodnih vektorjev: (A+B) ·x=A ·x+B ·x. To je res,
če vpeljemo pravilo

A+B=C⟺ Cij = Aij + Bij .

Produkt dveh matrik pa definiramo z zaporednim delovanjem
posamičnih matrik: (A ·B) ·x=A · (B ·x). Da bi bilo to res, moramo
vpeljati določilo

A ·B=C⟺ Cij = ∑k AikBkj .

V produktni matriki je ij-ti element enak skalarnemu produktu
i-te vrstice prvega faktorja in j-tega stolpca drugega faktorja.

Pri računanju veljajo – z eno izjemo – enaki zakoni kot med
skalarji. Vsota je komutativna in asociativna. Produkt ni
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komutativen, a je asociativen. Produkt je distributiven nad vsoto.
Množenje s skalarjem je distributivno nad vsoto in asociativno s
katerimkoli faktorjem produkta.

29.11 Sistem linearnih enačb
Če imamo podano sorazmernost A ·x=u, lahko za vsak vhodni
vektor x izračunamo izhodni vektor u. Kaj pa, če je podan izhodni
vektor, kako potem izračunamo vhodnega? Očitno moramo rešiti
sistem treh linearnih enačb s tremi neznankami.

Sistem enačb se ne spremeni, če zamenjamo dve vrstici; če
množimo vsak člen v vrstici z istim skalarjem; ali če k vrstici
prištejemo ali odštejemo drugo vrstico. Da bo manj pisanja,
zapišemo sistem kar s koeficienti:

A11
A21
A31

A12
A22
A32

A13
A23
A33

u1
u2
u3

.

To je "razširjena" matrika, zlepek "prave" matrike in izhodnega
vektorja. Z naštetimi manipulacijami nad celotnimi vrsticami
poskušamo pravo matriko preoblikovati v enotno matriko, pri
čemer se desni stolpec preoblikuje v iskano rešitev:

[A |u] → [I |x] .

Preoblikovanje organiziramo takole

1. Na vrh postavimo vrstico, ki ima (absolutno) največji prvi
koeficient.

2. Vsako naslednjo vrstico delimo z njenim prvim členom (da
dobimo vodilno 1) ter pomnožimo z vodilnim členom prve vrstice,
nakar od nje odštejemo prvo vrstico. Tako dobimo vodilno 0.

3. Pokrijemo prvo vrstico in prvi stolpec in nadaljujemo, dokler ne
pridelamo matrike, ki ima pod diagonalo same 0.

4. Postopek ponovimo od spodaj navzgor, da dobimo diagonalno
matriko.

Vsako vrstico delimo z diagonalnim členom, da nastane enotna
matrika.

Ker na vrh prenašamo vrstice z največjim vodilnimi členi, se
izogibamo deljenju z majhnimi števili in s tem minimiziramo
zaokrožitvene napake.

29.12 Inverzna matrika
Matrična enačba A ·x=u je po obliki enaka kot skalarna enačba
Ax = u. Kako pa rešimo slednjo? Tako, da jo na obeh straneh
množimo z 1/A, to je s takim številom, da postane koeficient pred
neznanko enak ena. Pa storimo tako tudi z matrično enačbo!
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Sistem A ·x=u pomnožimo na obeh straneh s tako, še neznano
matriko A−1, da velja

A−1 ·A ·x= I ·x=A−1 ·u .

S tem je sistem formalno rešen. Kako pa bi določili to inverzno
matriko? Ker velja A ·A−1 = I, zapišimo razširjeno matriko

A11
A21
A31

A12
A22
A32

A13
A23
A33

1
0
0

0
1
0

0
0
1

.

Na enak način kot pri reševanju sistema enačb pretvorimo levo
matriko v enotno matriko, pri čemer na desni nastane inverzna
matrika

[A | I] → [I |A−1] .

Ko z njo pomnožimo izhodni vektor, dobimo iskano rešitev.

Sistem enačb lahko torej rešimo neposredno ali po ovinku, z
inverzno matriko. Hitrejša je prva pot. Kadar pa je treba rešiti
več sistemov enačb, ki se med seboj ločijo le po izhodnem
stolpcu, je hitrejša druga pot.

Za posebne matrike dobimo naslednje inverzne matrike. Enotna
matrika se invertira v enotno matriko. Diagonalna matrika se
invertira v diagonalno matriko, katere elementi so enaki
recipročnim vrednostim originalnih elementov. Katerakoli
rotacijska matrika pa se invertira v takšno matriko, katere stolpci
so enaki originalnim vrsticam; rečemo, da je to transponirana
matrika R−1 =RT.

29.13 Lastni vektorji
Matrika je operator, ki požira vhodne vektorje in iz njih izdeluje
izhodne vektorje. Slednji so v splošnem zavrteni in raztegnjeni.
Pojavi se vprašanje, ali kateri od njih morda niso zavrteni, ampak
samo raztegnjeni. Take vektorje bomo poimenovali lastne
vektorje matrike. Faktorje, za katere so ti vektorji raztegnjeni, pa
bomo imenovali lastne vrednosti matrike.

Identična matrika I spremeni vhodni vektor (u1, u2, u3) v izhodni
vektor (u1, u2, u3). Vektor ni ne zasukan ne raztegnjen, ampak
popolnoma enak vhodnemu. Matrika ima torej neskončno mnogo
lastnih vektorjev. Vse pripadajoče lastne vrednosti so enake 1.

Diagonalna matrika D spremeni vhodni vektor (u1, u2, u3) v
izhodnega (λ1u1, λ2u2, λ3u3). Izhodni vektor je torej raztegnjen in
zasukan. Vektor (u1, 0, 0) se spremeni v (λ1u1, 0, 0); ta vektor je
zgolj raztegnjen in ni nič zasukan. Podobno velja za vektorja
(0, u2, 0) in (0, 0, u3). Vektor (u1, 0, 0) ima lahko poljubno vrednost
komponente u1, pa je še zmeraj lastni vektor. Da se izognemo
takšni mnogoličnosti, ga normiramo, da znaša njegova dolžina 1,
torej: (1, 0, 0). (To naredimo tako, da vsako komponento delimo z
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absolutno vrednostjo vektorja.) Podobno naredimo z ostalima
dvema lastnima vektorjema. Normiranje vektorjev ne spremeni
njihovih lastnih vrednosti, ki znašajo λ1, λ2 in λ3.

Rotacijska matrika R3 zavrti vsak vektor razen tistega, ki kaže
vzdolž osi 3. To je – v normirani obliki – vektor (0, 0, 1). Njegova
lastna vrednost je 1. Podobno velja tudi za drugi dve rotacijski
matriki.

Povezava med dvema vektorjema v naravi poteka dostikrat v kosu
snovi. Dober primer je atom v kristalu, ki je na okolišnje atome
privezan s tremi "vzmetmi" v treh pravokotnih smereh. Če deluje
na atom zunanja sila F vzdolž kakšne vzmeti, se atom premakne v
smeri sile za premik x. Za majhne sile velja F= kx. Če pa deluje
sila poševno in vzmeti niso enako močne, nastali premik ni več
vzporeden s silo. Za majhne sile velja F=k ·x. Vektor sile torej
ustvarja na atomu vektor premika. Lahko tudi rečemo, da atom
preslikuje vhodni vektor (silo) v izhodni vektor (premik). V
nekaterih snoveh je izhodni vektor zmeraj vzporeden z vhodnim
vektorjem, ne glede na to, kako je slednji usmerjen. V drugih
snoveh pa je bolj ali manj poševen. Le vzdolž nekaterih smeri je
usmerjen kolinearno. Atom in njegove vezi s sosedi v snovi torej
določajo, kje potekajo te osi. To so glavne osi preslikave. Če kos
snovi obračamo, se z njim obračajo tudi glavne osi.

Slika 29.6 Sorazmernost vektorjev. Prototip
je premik atoma (x), vezanega v kristalu, ki
ga povzroči sila (F) nanj. Osi so usmerjene
vzdolž atomskih vezi z okolico.

Kosu snovi je prav vseeno, v kakšnem opazovalnem sistemu
opisujemo njegovo aktivnost, torej lokalno preslikovanje
vektorjev. Če je opazovalni sistem tak, da njegove osi sovpadajo z
glavnimi osmi, je preslikava vektorjev opisana posebno
preprosto – z diagonalno matriko. Lastni vektorji pa imajo po eno
samo neničelno komponento. Kadar pa je opazovalni sistem
zasukan kako drugače, se v njem tako vektorji kot matrika
zapišejo v "zasukani" obliki. Diagonalna matrika dobi
nediagonalne elemente, lastni vektorji pa dobijo več neničelnih
komponent.

Kako zapišemo enačbo u=D ·x v koordinatnem sistemu,
zasukanem okrog ene izmed glavnih osi? Na enačbo delujmo z
ustrezno rotacijsko matriko R ·u=R ·D ·x=R ·D · I ·x. Enotno
matriko zapišemo kot I=R−1 ·R=RT ·R, pa dobimo
(R ·u) = (R ·D ·RT) · (R ·x). Sorazmernostna matrika R ·D ·RT =A je
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simetrična, to je, Aij = Aji. Lastni vektorji "zasukane" simetrične
matrike so očitno enaki "zasukanim" lastnim vektorjem prvotne
diagonalne matrike. Lastne vrednosti obeh so pa enake.

29.14 Diagonalizacija
Iz povedanega sklepamo, da lahko vsako simetrično matriko
preoblikujemo nazaj v diagonalno matriko in s tem najdemo njene
lastne vektorje in lastne vrednosti. Matriko je treba "le" obdelati
s primernimi rotacijskimi matrikami.

Rotacijsko matriko, ki ima diagonalna elementa Rpp = Rqq =
cos φ = c ter izvendiagonalna elementa Rpq = −Rqp = sin φ = s,
označimo kot Rpq. Transformacija Rpq ·A ·RT

pq izdela matriko A',
ki je enaka izvorni matriki s spremenjenima vrsticama p in q ter
stolpcema p in q. Izbrati želimo takšno rotacijsko matriko, torej
takšni vrednosti c in s, da bo element Apq postavljen na nič.

Slika 29.7 Diagonalizacija matrike s primernim
vrtenjem.

Transformacijski izraz množimo po komponentah in upoštevamo
simetrijo, pa dobimo eksplicitne enačbe za A'pp, A'qq, A'rp (r ≠ p),
A'rq (r ≠ q) in A'pq, vse kot funkcije brezčrtastih elementov in (še
neznanih) vrednosti c in s. Postavimo A'pq = 0, iz česar sledi
tan 2φ = 2Apq/(Aqq − App). S tem sta torej določeni obe vrednosti c
in s, z njima rotacijska matrika Rpq in z njo transformirana
matrika A', ki ima element A'pq postavljen na nič.

Diagonalizacija poteka takole. V izvorni matriki A poiščemo
največji element Apq nad diagonalo, z njim določimo rotacijsko
matriko Rpq ter z njeno pomočjo izračunamo novo matriko A', ki
ima ustrezen element postavljen na nič. Pri tem se nekateri
preostali elementi spremenijo. Postopek ponavljamo na novi
matriki, dokler ta ne postane diagonalna. Tako dobimo lastne
vrednosti. Lastne vektorje pa potem določimo iz definicijske
enačbe A ·x= λx, ki jo zapišemo v obliki (A− λI) ·x= 0. Sistem
rešimo za vsak λ na že znani način.

Tako. Uspeli smo diagonalizirati simetrično matriko, ki opisuje
linearno odvisnost dveh vektorjev v naravi. Diagonalizacijo
drugih tipov matrik in probleme, povezane s tem, pa prepustimo
drugim. □
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30

(30.1)
Hodograf vektorja

Odvod in diferencial

(30.2)

Večkratne funkcije
Vektorske funkcije skalarja – Vektorski diferencial in integral –
Skalarne funkcije več spremenljivk – Parcialni odvodi – Totalni
diferencial – Verižno odvajanje – Razvoj v potenčno vrsto –
Maksimum in minimum – Vezani ekstremi – Ploščinski integrali –
Prostorninski integrali – Večkratni integrali

30.1 Vektorske funkcije skalarja
Vektorji so stalni ali se s časom spreminjajo. Takšen je, na primer,
vektor iz središča Zemlje do izbrane točke na njenem površju:
vrti se glede na zvezde. V koordinatnem sistemu, ki ima os z
usmerjeno vzdolž zemeljske vrtilne osi in os x usmerjeno proti
točki Gama na nebesnem ekvatorju, velja
r= (R sin θ cos ωt, R sin θ sin ωt, R sin θ). S tem smo dobili prototip
za splošno vektorsko funkcijo skalarnega argumenta:

u(t) = [u1(t), u2(t), u3(t)] .

Vektorsko funkcijo si nazorno predstavimo kot krivuljo, ki jo
zariše konica vektorja, ko se s "časom" obrača in razteguje
oziroma krči. Seveda morajo biti na krivuljo nanesene ustrezne
časovne oznake. Tako sliko imenujemo hodograf vektorja.

Slika 30.1 Hodograf vektorja.

Pojavi se vprašanje, ali lahko vektorsko funkcijo odvajamo in
integriramo, oziroma kakšen pomen, če sploh, imata ti dve
operaciji za vektorje.

30.2 Vektorski diferencial in integral
Odvod in diferencial definiramo po vzoru skalarnih funkcij kot

u' = lim
dt→0

u(t + dt) −u(t)
dt

du=u' · dt .

Diferencial du je tangentni prirastek na hodografu vektorja. Pri
majhni spremembi argumenta je približno enak pravi spremembi
vektorja. Tako definiran odvod je tudi vektorska funkcija in jo
lahko nadalje odvajamo. Drugi odvod označimo d2u/dt2 =u".
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(30.3)

Razvoj v potenčno
vrsto

(30.4)

(30.5)

Integral

(30.6)

Slika 30.2 Sprememba in diferencial
(tangentna sprememba) vektorja.

Iz definicij trivialno sledijo zapisi v komponentah:

u' = (u1', u2', u3')
du= (du1, du2, du3) .

Za vektorske funkcije veljajo ista pravila odvajanja kot za
skalarno funkcijo. Tako odvajamo vsoto, vse vrste produktov (s
skalarno konstanto, s skalarno funkcijo, skalarni produkt in
vektorski produkt) ter posredno skalarno funkcijo.

Razvoj v potenčno vrsto izvedemo tako kot pri skalarni funkciji.
Velja:

u(t) =u(0) +
u'(0)

1!
t +

u"(0)
2!

t2 + …

oziroma

u(t0 + h) =u(t0) +
u'(t0)

1!
h +

u"(t0)
2!

h2 + …

Oba razvoja seveda lahko zapišemo tudi v koordinatah. Vsaka
vektorska enačba pri tem razpade na tri skalarne enačbe.

Celotna sprememba vektorja je enaka limitni vsoti njegovih
diferencialnih sprememb; vektor iz konice začetnega vektorja v
konico končnega vektorja znaša

u=∫u' dt = (∫u1' dt,∫u2' dt ,∫u3' dt) .

Če je končni vektor enak začetnemu, je očitno integral enak nič.
Ker so pravila odvajanja "standardna", so takšna tudi pravila za
integriranje.

30.3 Skalarne funkcije več spremenljivk
Skalarne funkcije so lahko odvisne od več spremenljivk, ne le od
ene. Zgled je recimo prostornina valja, ki je odvisna od njegovega
radija in višine: V = πr2h. Ali pa prostornina zraka v valju z batom,
ki je pod pritiskom in potopljen v toplotno kopel: V = RT/p. In,
seveda, najbolj nazorna odvisnost od vseh: višina kakšne ploskve
nad ravnino, na primer polkrožne kupole nad tlemi:
h2 = R2 − (x2 + y2).
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Ploskovni graf

(30.7)

Delne spremembe

(30.8)

Računanje odvodov

Celotne spremembe

Vse tovrstne funkcijo dveh argumentov zapišemo v skupni obliki
u = f(x, y) ali kar

u = u(x, y) .

Njihov graf si lahko nazorno predstavljamo kot ploskev nad
ravnino. Funkcije treh in več spremenljivk zapišemo podobno, ne
moremo pa si jih več predstavljati kot ploskve.

Slika 30.3 Ploskovni graf.

30.4 Parcialni odvodi
Poglejmo funkcijo u v izbrani točki (x, y)! Tam ima funkcija neko
vrednost, namreč u = u(x, y). Če se sedaj premaknemo v kakšno
sosednjo točko, se vrednost funkcije spremeni. Posebej sta
odlikovana dva premika: pri prvem se premaknemo v točko
(x + dx, y) in pri drugem v točko (x, y + dy). Kakšna je sprememba
funkcije pri prvem "vzdolžnem" premiku, povemo s parcialnim
odvodom

ux = lim
dx→0

u(x + dx, y) − u(x, y)
dx

.

Ravnamo torej natanko tako, kot pri funkciji enega samega
argumenta, ko smo definirali njen navadni odvod. Za razliko od
prej pa ne označimo odvoda kot u', marveč kot ux. Ker ima
funkcija dva argumenta, je pač treba nekako povedati, za
katerega velja odvajanje. Ustrezni odvod po drugem argumentu
pa zapišemo kot uy.

Parcialne odvode izračunavamo prav tako kot navadne. Saj je
funkcija več spremenljivk, ki jo odvajamo po eni sami
spremenljivki, pri čemer držimo vse druge konstantne, v tem
pogledu nerazločljiva od funkcije ene same spremenljivke. Veljajo
vsa pravila odvajanja. Izračunani odvod je spet funkcija in jo
lahko znova odvajamo, bodisi po prvem, bodisi po drugem
argumentu. Tako pridelamo odvode uxx, uyy, uxy in uyx. Zadnja dva
sta med seboj enaka.

30.5 Totalni diferencial
Parcialni odvodi povedo, koliko se funkcija spremeni, če
spremenimo kakega od njenih argumentov, pri čemer druge
držimo konstantne. Koliko pa se funkcija spremeni, če
spremenimo vse argumente?
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(30.9)

(30.10)

Diferencialni količniki

Verižno pravilo

(30.11)

(30.12)

Slika 30.4 Totalni diferencial funkcije.
Višinski prirastek tangentne ravnine je
enak vsoti robnih prirastkov. Funkcija je
zelena, tangentna ravnina modra in
diferenciali rdeči.

Risba pokaže, da velja

du = (du)x + (du)y = ux dx + uy dy .

Rečemo, da je du totalni diferencial funkcije. Z njim zapišemo
parcialne odvode na naslednji način:

(du)x

dx
=

∂u
∂x

= ux .

Oznaki ∂x in ∂y torej pomenita isto kot dx in dy, namreč
diferencial neodvisne spremenljivke. Oznaka ∂u pa pomeni
diferencial funkcije, kadar se spreminja zgolj ena izmed
neodvisnih spremenljivk. Oznaka ne pove, katera spremenljivka
je to. Velja dogovor, da je to tista, nad katere diferencialom je
zapisan. Pri rokovanju z diferenciali bomo morali na to paziti. V
izrazu du = (∂u/∂x)dx + (∂u/∂y)dy, na primer, ne smemo krajšati
diferencialov ∂x in dx ter ∂y in dy, ker s tem pridelamo izraz
du = ∂u + ∂u, v katerem je izgubljena informacija o merodajnih
spremenljivkah. Zato oba diferenciala ∂u nista med seboj enaka
(čeravno sta enako zapisana) in ju ne smemo sešteti v 2∂u.

30.6 Verižno odvajanje
V funkciji u = u(x, y) je vsaka neodvisna spremenljivka lahko
funkcija tretje spremenljivke t, torej x = x(t) in y = y(t). Zgled je
plin pod zunanjim tlakom in temperaturo, ki se spreminjata s
časom. Pojavi se vprašanje, kako izračunati odvod du/dt.
Diferencial du delimo z dt in dobimo:

du
dt

=
∂u
∂x

dx
dt

+
∂u
∂y

dy
dt

.

To je verižno pravilo odvajanja.

Kaj pa, če je vsaka neodvisna spremenljivka funkcija dveh, ne
ene, spremenljivke: x = x(t, s) in y = y(t, s)? Ravnamo tako kot prej:

∂u
∂t

=
∂u
∂x

∂x
∂t

+
∂u
∂y

∂y
∂t

in podobno za ∂u/∂s. Sedaj vidimo, kakšna moč se skriva v
pametni notaciji!
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Implicitno odvajanje

(30.13)

Posredni razvoj

(30.14)

Operatorski zapis

(30.15)

Prvi odvod

Drugi odvod

Funkcija dveh spremenljivk je lahko podana tudi v implicitni
obliki F(x, y, u(x, y)) = 0. Če gre, iz nje izrazimo u = u(x, y) in
izračunamo njene parcialne odvode. Lahko pa ravnamo drugače.
Izraz F razumemo kot funkcijo treh spremenljivk, od katerih sta
dve med seboj neodvisni, tretja pa je odvisna od njiju. Enačbo na
obeh straneh odvajamo po verižnem pravilu na x, pri čemer
upoštevamo ∂x/∂x = 1 in ∂y/∂x = 0:

F(x,y,u) = 0 ⟹ Fx + Fu
∂u
∂x

= 0 .

Sledi ∂u/∂x = − Fx/Fu. Podobno izračunamo tudi odvod ∂u/∂y.

30.7 Razvoj v potenčno vrsto
Tudi funkcijo dveh spremenljivk hočemo razviti v potenčno vrsto
okrog točke (0, 0). Funkcijo zapišemo kot
u(x, y) = u(x(t), y(t)) = u(t) in postavimo x(t) = αt in y(t) = βt. Seveda
velja razvoj v vrsto u(t) = u(0) + u't + 1/2 · u"t2 + … Nato
izračunamo odvod u' = du/dt po verižnem pravilu, pri čemer
upoštevamo dx/dt = α in dy/dt = β. Podobno izračunamo drugi
odvod u" = d2u/dt2. Dobljena odvoda vstavimo v vrsto in
pridelamo

u(x, y) = u(0, 0) +

xux + yuy +
1
2

(x2uxx + 2xyuxy + y2uyy) + …

Odvodi so vsi računani v točki (0, 0). Seveda lahko funkcijo
razvijemo tudi okrog kake druge točke (a, b). Tedaj velja, v
polepšanem zapisu,

u(a+x,b+y) = u(a,b) +
1
1!

(x
∂
∂x

+ y
∂
∂y

)u +
1
2!

(x
∂
∂x

+ y
∂
∂y

)2u + …

Koeficienti so odvisni le od vrednosti funkcije in njenih parcialnih
odvodov v točki (a, b). Višje parcialne odvode smo zapisali na
kratko kot "potence". Izraz (∂/∂x)2, na primer, pomeni ∂2/∂x2, to je
drugi odvod.

30.8 Maksimum in minimum
Hribi imajo svoje vrhove in globeli. To so njihovi lokalni ekstremi.
Ekstremi so lahko samo v točkah, kjer sta oba parcialna odvoda
ux in uy enaka nič. Ugotoviti je treba še, ali gre v takih
stacionarnih točkah za maksimum ali minimum ali morda za
sedlo.

Naj bo stacionarna točka (a, b). Navpični presek u(x, b) skoznjo je
funkcija zgolj ene spremenljivke. Kot vemo, ima taka funkcija
maksimum, ako je njen drugi odvod negativen, in minimum, ako
je drugi odvod pozitiven. Podobno velja za funkcijo u(a, y). Tako
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Kriterij za ekstrem

(30.16)
(30.17)

Presek ploskve

(30.18)

Sovpad tangent

lahko že rečemo: v maksimumu morata biti oba odvoda uxx in uyy
negativna in v minimumu pozitivna. Toda to še ni dovolj. Drugi
odvod v katerikoli smeri, ne zgolj v smeri koordinatnih osi, mora
biti negativen (v maksimu) oziroma pozitiven (v minimumu).

Okrog stacionarne točke razvijemo funkcijo v potenčno vrsto do
kvadratnih členov, pri čemer postavimo oba prva odvoda na nič.
Dobimo, da je u(a + h, b + k) enako
u(a, b) + 1/2 · (uxx h2 + 2uxy hk + uyy k2). Da bo v točki maksimum,
mora biti drugi člen negativen za vsak h in k. Za minimum pa
mora biti ta člen pozitiven. Da bo to res, mora četverica drugih
odvodov zadoščati določenemu kriteriju. Kakšen je ta kriterij?

Drugi člen (brez faktorja 1/2) zapišemo v taki obliki, da se
znebimo člena z mešanim faktorjem hk:
Q = A[(h + Bk/A)2 + (CA − B2)k2/A2]. Pri tem smo druge odvode
zaradi kratkosti označili s črkami A, B in C. Pri pozitivnem A je
količina Q za vsak h in k pozitivna, če je le CA − B2 > 0. Pri
negativnem A pa je količina Q vseskozi negativna pri istem
pogoju. Iskani pogoj za ekstrem je torej

u = max ⟺ uxx < 0, uyy < 0 in uxxuyy − uxy
2 > 0

u = min ⟺ uxx > 0, uyy > 0 in uxxuyy − uxy
2 > 0 .

Rečemo, da je to diskriminanta drugih odvodov.

30.9 Vezani ekstremi
Hribovje v mislih prerežemo z navpično ravnino v smeri sever-jug
pri koordinati x = a, ali pa v smeri vzhod-zahod pri koordinati
y = b. Nastaneta ravninski krivulji u = u(a, y) ali u = u(x, b). Kje
ima taka krivulja ekstreme, že znamo določiti. Kaj pa, če se po
hribih vije cesta, katere talne koordinate so opisane z enačbo,
bodisi eksplicitno ali implicitno? Kje na cesti so njeni ekstremi?
Za splošno funkcijo u = u(x, y) želimo torej najti ekstreme, ki
zadoščajo dodatnemu pogoju

φ(x, y) = 0 .

Rečemo, da so to vezani ekstremi.

Slika 30.5 Vezani ekstrem. Ploskev je
podana z izohipsami. V ekstremni
točki je tangenta na krivuljo tudi
tangenta na lokalno izohipso.

Slika kaže naslednje. Ko se premikamo po krivulji φ = 0,
doživljamo različne vrednosti u. Tam, kjer naletimo na ekstrem,
sta tangenti na φ in u enaki: ux/uy = φx/φy. Drugače povedano:
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(30.19)

Ploskovna gostota

(30.20)

Razcep integrala

(30.21)

Polarni razcep

ux + λφx = 0
uy + λφy = 0 ,

pri čemer je λ (še neznani) sorazmernostni faktor med odvodi.
Zapisani enačbi in pogoj φ = 0 tvorijo sistem treh enačb s tremi
neznankami x, y in λ. Njegova rešitev nam da stacionarne točke.
Ali so to maksimumi ali minimumi, pa pove diskriminanta drugih
odvodov na že znani način.

30.10 Ploščinski integrali
Funkcija u = u(x, y) lahko opisuje tudi porazdelitev mase ali
električnega naboja po ravnini: u = dm/dS ali u = de/dS. Masa (ali
naboj), ki je naložena na dveh ločenih ploskovnih elementih dS,
se sešteva. Rečemo, da je ekstenzivna količina. Za temperaturo,
na primer, pa to ne velja. Pravimo, da je intenzivna količina. Naj
bo torej U ekstenzivna količina in u = dU/dS njena ploskovna
gostota. Nad izbranim ravninskim območjem je potem
nakopičena tolikšna limitna vsota:

U =∫u dS .

Kako naj izračunamo zapisani integral? Naj bo ravninsko
področje pravokotnik [a, b] × [c, d]. Vzdolžno in prečno ga
razrežemo v ozke trakove. Tako dobimo ploščinske elemente
dS = dx dy.

Slika 30.6 Ploščinski elementi v kartezičnih
koordinatah. Integracija poteka najprej po
vrsticah in nato po stolpcih oziroma obratno.

Potem integriramo po vsakem pasu vzdolž smeri x, pri čemer
obravnavamo y kot parameter; dobimo delne vsote
ΔU(y) = ∫ u(x, y) dx. Nato integriramo dobljene vsote vzdolž smeri
y: U = ∫ ΔU(y) dy. Seveda lahko integriramo tudi obrnjeno: najprej
vzdolž osi y in nato vzdolž osi x. Velja torej

U =∫∫u dx dy =
d

∫
c

dy
b

∫
a

u dx =
b

∫
a

dx
d

∫
c

u dy .

Kadar definicijsko območje funkcije ni pravokotnik, ampak je
krivočrtni lik, računamo z ustreznim spremenljivim intervalom
[a(y), b(y)] ali [c(x), d(x)].

Posebno lep krivočrten tloris je tak, ki ima obliko kroga okoli
izhodišča. V tem primeru ga je smiselno razrezati v ploskovne
elemente z radialnimi premicami φ = const in s koncentričnimi
krogi ρ = const.
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(30.22)

Uporaba v geometriji

(30.23)

Razcep integrala

(30.24)

Cilindrični razcep

Slika 30.7 Ploščinski elementi v polarnih
koordinatah. Razcep je primeren za gostoto
u(ρ, φ).

Elementi, ki jih tako pridelamo, imajo ploščine dS = dρ · ρ dφ.
Ploskovna gostota na teh elementih mora biti podana kot u(ρ, φ).
Skupna ekstenzivna količina tedaj znaša

U =∫∫uρ dρ dφ .

Integriramo po ustreznem "pravokotnem" področju, recimo
[0, R] × [0, 2π].

Posebej odlikovana ekstenzivna količina, ki jo lahko naložimo na
ploskovni element dS, je prostornina prizme dV nad njim.
Ploskovna gostota je v tem primeru kar višina ploskve h. Integral
U = ∫ u dS potem pomeni V = ∫ h dS. Tako računamo prostornine
teles, ki jih zamejujejo krovne ploskve. Če ima "krovna" ploskev
negativno višino, torej če leži pod koordinatno ravnino, je
izračunana prostornina negativna.

30.11 Prostorninski integrali
Ekstenzivna količina je lahko porazdeljene tudi po prostoru. Tedaj
jo pač integriramo tam in sicer natanko tako, kot po ravnini:

U =∫u dV.

Če ima preučevani prostor obliko kvadra, ga razkosamo na
drobne kocke dV = dx · dy · dz in integriramo.

Slika 30.8 Prostorninski elementi v kartezičnih
koordinatah. Integracija poteka po širini, globini in
višini v tem ali kakem drugem vrstnem redu.

Integriramo po ustreznem kvadru, recimo po [0, a] × [0, b] × [0, c]:

U =∫∫∫u dx dy dz.

Cilindrični prostor je bolje razkosati na prostorninske elemente
dV = dρ · ρ dφ · dz.
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(30.25)

Krogelni razcep

(30.26)

Konfiguracijski prostor

Slika 30.9 Prostorninski elementi v
cilindričnih koordinatah. Razcep je primeren
za gostoto u(ρ, φ, z).

Integriramo po potrebnem "kvadru", recimo
[0, R] × [0, 2π] × [0, H]:

U =∫∫∫u ρ dρ dφ dz.

Krogelni prostor pa je naravno razkosati na elemente
dV = dr · r sin θ dφ · r dθ.

Slika 30.10 Prostorninski elementi v
krogelnih koordinatah. Razcep je primeren za
gostoto u(r, φ, θ).

Integriramo po "kvadru", recimo [0, R] × [0, 2π] × [0, π]:

U =∫∫∫u r2 sin θ dr dφ dθ.

30.12 Večkratni integrali
Poleg ekstenzivnih količin, ki so porazdeljene po ravnini ali
prostoru, poznamo tudi take, ki so porazdeljene po prostorskem
kotu, na primer svetilnost I = dP/dΩ. V tem primeru ne
integriramo po ravnini, ampak po kotu dΩ = dφdθ.

Nasploh velja, da lahko integriramo kakršnokoli ekstenzivno
skalarno funkcijo, ki je porazdeljena po eno-, dvo- ali
večdimenzionalnem konfiguracijskem prostoru. Če integriramo
po enodimenzionalnem prostoru, imamo opravka z navadnim
integralom, če po večdimenzionalnem, pa z večkratnim
integralom. □
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31

Koordinate

(31.1)

Enačba premice

(31.2)

Krivulje in ploskve
Krivulje in ploskve – Premica – Krožnica – Elipsa – Parabola –
Vektorski opis krivulj – Ločna dolžina – Lokalne lastnosti krivulj –
Osnovne ploskve – Vektorski opis ploskev – Krivulje na ploskvi –
Lokalne lastnosti ploskev – Zemljemerstvo na krogli – Zemljepisne
projekcije – Polarna stereografska – Ekvatorska valjna konformna –
Stožčna konformna – Druge projekcije

31.1 Krivulje in ploskve
Večkrat smo omenili, da enačba y = y(x) opisuje ravninsko
krivuljo, če sta spremenljivki x in y dolžinski koordinati. Enačba
z = z(x, y) pa na podoben način opisuje ploskev v prostoru. Čas je,
da se opisa krivulj in ploskev lotimo sistematično (DESCARTES,
GAUSS).

Osnova za opis krivulj in ploskev z enačbami je "poimenovanje"
vsake prostorske točke z njenimi koordinatami (x, y, z) v poljubno
izbranem koordinatnem sistemu, katerega osi so med seboj
pravokotne in umerjene v enakih dolžinskih enotah. Rečemo, da
so to kartezične koordinate. Razdalja med dvema točkama potem
znaša, po hipotenuznem izreku,

s2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 .

Pametno je sistem izbrati tako, da bo enačba krivulje ali ploskve v
njem čim bolj preprosta.

31.2 Premica
Najpreprostejša "krivulja" je premica. Uteleša jo, na primer,
brazda ladje, ki pluje po morju v stalni smeri φ glede na sever. Pot
ne sme biti predolga, da se ne pokaže zakrivljenost morja.
Koordinatni sistem postavimo v začetno pristanišče, ordinatno os
y usmerimo proti severu in abscisno os x proti vzhodu. Enačba
brazde-premice se potem glasi

y = kx
k = tan φ.

Slika 31.1 Premica. Najkrajša pot med dvema
točkama v prostoru.

Smerni koeficient k ima nazoren pomen: to je prirast ordinatne
razdalje na prirast abscisne razdalje. Če je koeficient pozitiven,
premica narašča, sicer upada.
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Premico, ki ne gre skozi izhodišče, ampak seka ordinatno os v y0,
opišemo kot (y − y0) = kx. Če seka abscisno os v točki x0, velja
y = k(x − x0). Ako pa gre skozi točko (x0, y0), se enačba premice
glasi (y − y0) = k(x − x0).

Pri ladji, ki pluje z enakomerno hitrostjo, sta njeni koordinati
enolično določeni s pretečenim časom t:

x = At
y = Bt .

Ladja zariše isto premico ne glede na to, kako hitro pluje oziroma
kako hitro teče čas (to je ura, ki jo imamo). Zato bomo opustili
časovne enote in uporabljali kar brezdimenzijska števila. Takšen
"čas", ki zavzema vrednosti na intervalu (−∞, +∞), bomo
poimenovali parameterski čas oziroma parameter in ga
označevali kar s t. Vsaki vrednosti parametra ustreza natanko
ena vrednost koordinat. Primerjava parametričnega in
eksplicitnega zapisa pove k = B/A.

31.3 Krožnica
Iz sive davnine je poznana krožnica: krivulja, katere vsaka točka
je enako oddaljena od izbrane točke, središča. Že stara ljudstva
so jo risala s količkom in vrvico pri gradnji kolib in obzornih
krogov. Mi bomo postavili koordinatni sistem v središče kroga.
Potem pove hipotenuzni izrek

x2 + y2 = r2 .

V translatorno zamaknjenem koordinatnem sistemu pa ima
središče kroga koordinati (x0, y0). Tedaj očitno velja
(x − x0)2 + (y − y0)2 = r2.

Slika 31.2 Krožnica. Vsaka njena točka je
enako oddaljena od izbrane točke, središča.

Tudi krožnico lahko opišemo parametrično. Spomnimo se
enakomernega kroženja nihala (18.14), pa takoj uvidimo

x = r cos t
y = r sin t ,

pri čemer leži parameter t na intervalu [0,2π].
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31.4 Elipsa
Prečno presekano bambusovo steblo ima rob v obliki krožnice. Če
ga presekamo poševno, pa je rob "raztegnjena" krožnica, elipsa.
Kako bi tako elipso narisali na tleh? Prej ali slej – morda kot
kakšen kraljevi vrtnar – odkrijemo postopek: središče kroga
"raztegnemo" v dve središči, nanju privežemo vrv, jo nategnemo z
risalnim količkom in začrtamo željeno krivuljo. Elipsa je s tem
definirana kot množica točk, pri katerih je vsota razdalj do dveh
izbranih točk, gorišč, konstantna.

Točko na polovici zveznice med obema goriščema poimenujemo
središče elipse. Skozi središče potekata dva odlikovana premera:
dolga os 2a in kratka os 2b. Razdaljo med središčem in
(katerimkoli) goriščem poimenujemo ekscentričnost e. Ko je
risalni količek v temenu velike osi, vidimo, da velja r1 + r2 = 2a. Ko
je v temenu male osi, pa hipotenuzni izrek pove b2 + e2 = a2.

Slika 31.3 Elipsa. Vsota razdalj iz dveh
izbranih točk, gorišč, je do vsake njene točke
enaka.

Koordinatni križ postavimo v središče elipse in ga zavrtimo tako,
da njegove osi sovpadajo z veliko in malo osjo. Levo gorišče ima
potem koordinato (−e, 0) in desno (+e, 0). Razdalji od gorišč do
izbrane točke na elipsi znašata r1

2 = (x + e)2 + y2 in
r2

2 = (x − e)2 + y2. Njuna vsota mora biti r1 + r2 = 2a in iz tega
pogoja sledi, z nekaj računanja, enačba

x2

a2 +
y2

b2 = 1 .

Elipso v premaknjenem koordinatnem sistemu (oziroma
premaknjeno elipso v obstoječem sistemu) pa opišemo z
zamenjavo x → x − x0 in y → y − y0.

Pri a = b preide elipsa v krog, kakor je tudi prav. Parametrični
opis zato kar uganemo:

x = a cos t
y = b sin t .

Parameter t leži na intervalu [0, 2π]. Da je to res pravi opis,
preverimo z vstavitvijo v implicitno enačbo.

31.5 Parabola
Krogelno zrcalo (katerega presek je krožni lok) zbira vzporeden
snop žarkov v goriščno točko, vendar samo tedaj, kadar je snop
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ozek. Bolj oddaljeni žarki se po odboju sekajo v gorišču, ki je bliže
temenu. Morda obstaja kakšna krivulja, ki bi vse vzporedne žarke
združevala v isti točki? Drugače povedano: tako krivuljo –
parabolo – bi morale sestavljati točke, ki so enako oddaljene od
premice in goriščne točke.

Slika 31.4 Parabola. Vsaka njena točka je
enako oddaljena od izbrane točke, gorišča, in
od vodilne premice.

Postavimo koordinatni sistem tako, da bo premica "vodilja"
vodoravna pri koordinati (0, −p/2). Gorišče je potem v točki
(0, +p/2). Razdalja poljubne točke na iskani krivulji od gorišča je
r1

2 = (y − p/2)2 + x2 in razdalja te točke od premice je r2 = |y + p/2|.
Iz pogoja r1 = r2 sledi, z nekaj računanja,

2py = x2 .

Enačba ima obliko y ∝ x2. Spomnimo se, da prav takšna enačba
opisuje tir kamna pri vodoravnem metu [18.6]. Tam narašča
vodoravna koordinata s časom in navpična s kvadratom časa, kar
nas navede na naslednji parametrično zapis parabole z navpično
simetrijsko osjo:

x = At
y = Bt2 .

Vstavitev polarnih enačb v implicitno enačbo pove 2p = A2/B.

31.6 Vektorski opis krivulj
Namesto s koordinatami lahko delamo z ustreznimi vektorji lege:
r= (x, y). Razdaljo med dvema točkama potem zapišemo kot
absolutno vrednost razlike dveh vektorjev: s = |r2 − r1|.

Parametrski zapis krivulje pove, kako se vsaka koordinata
spreminja s časom: x = x(t) in y = y(t). To zapišemo v vektorski
obliki kot

r(t) = (x(t), y(t)) .

S časom se vektor spreminja – obrača, daljša in krajša – in s svojo
konico zarisuje hodograf – krivuljo. Naraščajoči parameter t
definira pozitivno smer gibanja po krivulji.

Kako se odvod ene koordinate po drugi izraža z odvodoma
koordinat po parametru? Verižno pravilo pove
dy/dt = (dy/dx) · (dx/dt), torej
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dy
dx

=
y'
x'

.

Odvod po parametru smo označili s črtico. Drugi odvod pa
računamo takole. Posredno odvajamo (d/dx)(dy/dx) =
(d/dt)(dy/dx) · dt/dx. Ker dy/dx = y'/x' in dt/dx = 1/x', velja

d2y
dx2 =

x'y" − y'x"
x'3

.

Kako za funkcijo y = y(x) določiti parametrično obliko? Izberemo
(skoraj) poljubno funkcijo x = x(t) in nato izračunamo y = y(x(t)).
Očitno je možnosti za izbiro neskončno. Poiščemo takšno, da je
rezultat najbolj preprost. Posebno zanimiva izbira je kar x = t.
Tedaj velja r(x) = (x, y(x)). Parabolo, na primer, zapišemo kot
r(t) = (At, Bt2) ali kot r(x) = (x, x2/2p). Očitno je parametrični zapis
krivulje zelo nazoren in vsestranski.

Kako pa iz parametrične oblike x = x(t), y = y(t) določiti eksplicitno
oziroma implicitno obliko funkcije? Iz prve in druge enačbe
izrazimo t, ju izenačimo in dobimo iskano enačbo, ki jo po potrebi
še preoblikujemo v lepšo obliko.

31.7 Ločna dolžina
Prirast parametra za dt se odraža kot sprememba vektorja
dr= (dx, dy) oziroma kot kratek kos krivulje, ločni element
ds2 = dx2 + dy2.

Slika 31.5 Ločni element krivulje. Njegova
dolžina je limitno enaka spremembi vektorja
lege.

Velja ds = |dr|. Enačbo delimo na obeh straneh z dt, pa dobimo

ds = |dr| = |r'| dt = √(x'2 + y'2) dt .

Dolžina poti, ki jo zariše vektor med začetno in končno lego,
znaša

s =∫√(x'2 + y'2) dt .

Če je parameter koordinata t = x, pomeni odvajanje na parameter
kar odvajanje na koordinato: x' = dx/dx = 1 in y' = dy/dx, torej
ds = √(1 + y'2) dx.

Dolžina krivulje od izbrane začetne točke naprej in nazaj je
odličen parameter za opis krivulje. Krivulja je tedaj kot cesta, na
kateri so v enakih dolžinskih presledkih postavljeni mejniki. Vsak
tak mejnik ima svoje koordinate in krivuljo opišemo kot
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r(s) = (x(s), y(s)). Parameter je sedaj vezan zgolj na krivuljo in nič
na okolico. Pri takšni parametrizaciji seveda velja x'2 + y'2 = 1
(črtica označuje odvod po parametru s).

Kako dolžinsko parametrizirati krivuljo, ki je podana s splošnim
parametrom t? — Izračunamo dolžino vzdolž krivulje kot funkcijo
časa s(t). — Izračunamo obratno funkcijo t(s). — Vstavimo jo v
prvotno enačbo r(t(s)). Za krog, na primer, dobimo x = r cos (s/r)
in y = r sin (s/r).

31.8 Lokalne lastnosti krivulj
Smer krivulje v izbrani točki je podana z normaliziranim
premikom

τ=
dr
ds

.

Števec in imanovalec ulomka delimo z dt in dobimo enotni
tangentni vektor r'/|r'|, to je

τ=
(x', y')

√(x'2 + y'2)
.

Tangenta, na kateri leži enotni tangentni vektor, ima smerni
koeficient k = y'/x'. Če se dve krivulji sekata, je kot med njunima
tangentnima vektorja določen s skalarnim produktom
τ1 .τ2 = cos φ.

S tangentnim vektorjem je definiran normalni vektor, ki stoji nanj
pravokotno:

n=k×τ ,

pri čemer je k enotni vektor v smeri osi z. Normalni vektor
dobimo s križnim množenjem vektorskega produkta (ali z
množenjem z rotacijsko matriko za 90°):

n=
(−y',x')

√(x'2 + y'2)
.

Normala, na kateri leži normalni vektor, ima smerni koeficient
k = −x'/y'. To je negativna recipročna vrednost smernega
koeficienta tangente.

Koliko se zasuče enotni vektor preko dolžinskega elementa, je
mera za lokalno ukrivljenost krivulje

K = |
dτ
ds

| .

Izračunamo jo takole. — Vektor r(t) odvajamo po času posredno:
r' = (dr/ds) · (ds/dt) in dobimo τv. — Vektor r' odvajamo po času
posredno: r" = (d/ds)(τv) · (ds/dt), upoštevamo pravilo za odvod
produkta in dτ/ds = Kn ter dobimo Kv2n+τdv/dt. — Izračunamo
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produkt r' × r" = Kv3τ×n. — Iz slednjega izrazimo K, pri čemer
upoštevamo τ×n=k, in dobimo K = (r' × r")k/v3, torej:

K =
x'y" − y'x"

(x'2 + y'2)3/2 .

Enačbe za tangento, normalo in ukrivljenost se ustrezno
poeneostavijo, če vzamemo t = x ali t = s. Ukrivljenost se, na
primer, izrazi kot K = y" / (1 + y'2)3/2 oziroma kot K = √(x"2 + y"2) .

Ko izračunamo ukrivljenost krožnice z radijem R, dobimo v vsaki
točki vrednost

K =
1
R

.

Če je ukrivljenost krivulje K, zato rečemo, da je njen lokalni
krivinski radij R = 1/K. Krivulja je lokalno "nerazločljiva" od
takega "pritisnjenega" kroga. Pritisnjeni krog je lokalno enak
krivulji v tem smislu, da imata enak "ničti", prvi in drugi odvod.

Slika 31.6 Krivinski radij krivulje. To je radij
kroga, ki se najtesneje prilega krivulji.

Nekatere značilnosti krivulje so odvisne od njene lege v izbranem
koordinatnem sistemu. Primer so nagibi tangent ali normal glede
na abscisno ali ordinatno os. Pri vrtenju koordinatnega sistema se
takšni nagibi ne ohranjajo. Po drugi strani pa je ukrivljenost v
izbrani točki krivulje neodvisna od izbire koordinatnega sistema.
Rečemo, da je to invariantna lastnost krivulje oziroma njena
invarianta. Invariante se ne izražajo s koordinatami, marveč le z
njihovimi diferenciali.

31.9 Osnovne ploskve
Ravnina, ki gre skozi izhodišče koordinatnega sistema, zareže v
ravnini xz enotni vektor r1 = (cos θ1, 0, sin θ1). V ravnini yz zareže
vektor r2 = (0, cos θ2, sin θ2). Poljubna linearna kombinacija teh
dveh vektorjev r= Ar1 + Br2 je krajevni vektor do ustrezajoče
točke na preučevani ravnini. Zapišimo to kombinacijo v
komponentah. Iz prve enačbe x = A cos θ1 izrazimo A, iz druge
y = B cos θ2 izrazimo B in oboje vstavimo v tretjo enačbo
z = A sin θ1 + B sin θ2. Tako dobimo eksplicitno enačbo ravnine

z = k1x + k2y ,

pri čemer sta k1 in k2 smerna koeficienta, torej tangensa obeh
naklonskih kotov θ1 in θ2.
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Vodoravno krožnico x2 + y2 = r2 premikamo v navpični smeri. Pri
tem zariše plašč valja. Enačba zanj je kar enaka enačbi krožnice:

x2 + y2 = r2 .

Premico z = kx zavrtimo okrog navpične osi z. Nobeni točki se pri
tem koordinata z ne spreminja, njena koordinata x pa prehaja v
koordinate ρ = √(x2 + y2). Enačbo z = kρ kvadriramo in dobimo
enačbo stožca

z2

k2 = x2 + y2 .

Krožnico x2 + z2 = r2 zavrtimo okoli navpične osi z. Transformacija
x2 → x2 + y2 da enačbo krogle

x2 + y2 + z2 = r2 .

Elipso x2/a2 + z2/c2 = 1 zavrtimo okrog navpične osi z. Dobimo
rotacijski elipsoid

x2

a2 +
y2

a2 +
z2

c2 = 1 .

Parabolo 2pz = x2 zavrtimo okrog navpične osi z. Nastane
rotacijski paraboloid

2pz = x2 + y2 .

Vse zapisane enačbe veljajo v posebno skrbno izbranih sistemih.
Tako so tudi enačbe preproste. Seveda pa lahko koordinatni
sistem translatorno premaknemo, kar je isto, kot da premaknemo
ploskev v nasprotni smeri. Premik vzdolž osi z, na primer, je
ekvivalenten transformaciji spremenljivke z → z − z0. Enačba se
temu ustrezno "pogrša". Še hujše lepotne spremembe dosežemo z
rotacijo.

31.10 Vektorski opis ploskev
Izbrane ploskve smo zapisali implicitno ali eksplicitno. Pojavi se
vprašanje, ali (in kako) jih lahko zapišemo parametrično oziroma
vektorsko. Poskusimo z najpomembnejšo ploskvijo, kroglo.

Točka na krogli radija R je enolično določena z vektorjem lege
r= (x, y, z). Komponente vektorja izrazimo, kot že znamo, z
azimutnim kotom φ in s polarnim kotom θ (29.2):

x = R sin θ cos φ
y = R sin θ sin φ
z = R cos θ .

Vsaki dvojici kotov torej pripada ustrezna trojica koordinat. Na
podoben način se lotimo tudi drugih ploskev. Valj in stožec, na
primer, parametriziramo z azimutnim kotom in višino. Ne
predivje ploskve nasploh opišemo z dvema parametroma:

r(u, v) = (x(u,v), y(u,v), z(u,v)) .
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Parametra sta lahko karkoli. V posebnem primeru izberemo kar
dve koordinati: r= (x, y, z(x,y)). Tedaj preide parametrični opis v
eksplicitnega. Hkrati nam ponudi še naslednjo nazorno sliko: dva
splošna parametra tvorita posebno "parametrično" ravnino. Točke
te ravnine se preslikajo v točke na aktualni ploskvi.

31.11 Krivulje na ploskvi
Krivulja (u(t), v(t)) v parametrični ravnini se preslika v ustrezno
krivuljo na ploskvi. Poseben primer je preslikava, ko je eden
izmed parametrov konstanten, recimo v = const. Tedaj se na
ploskvi zariše ena izmed izo-parametričnih krivulj. Pri različnih
vrednostih konstante se nariše množica takih krivulj – krivočrtnih
koordinat na ploskvi. Tako se na krogli, na primer, zarišejo
poldnevniki φ = const in vzporedniki θ = const.

Slika 31.7 Parcialna premika na ploskvi.
To sta prirastka vektorja lege vzdolž
krivočrtnih koordinat na ploskvi.

Vektorja ru in rv ležita v lokalni tangentni ravnini vzdolž obeh
krivočrtnih koordinat. Kakšen je sekalni kot teh koordinat, α,
pove skalarni produkt:

cos α =
ru · rv

|ru∥rv|
.

Pri lepo izbranih parametrizacijah je kot v vsaki točki (morda s
kakšno izjemo) enak 90°. Tedaj so krivočrtne koordinate med
seboj pravokotne. Takšni so poldnevniki in vzporedniki na krogli.

V tangentni ravnini leži tudi totalni diferencial – "poševni" premik
dr= rudu + rvdv. S kvadratom tega premika je določena njegova
dolžina ds2 = dr · dr, torej:

ds2 = ru
2du2 + 2rurvdudv + rv

2dv2 =
g11du2 + 2g12dudv + g22dv2 .

V komponentah zapišemo

g11 = xu
2 + yu

2 + zu
2

g12 = xuxv + yuyv + zuzv
g22 = xv

2 + yv
2 + zv

2 .

Koeficienti g11, g12 in g22 so realna števila. Vsaka točka na ploskvi
ima svojo trojico teh števil. Rečemo, da so to metrični koeficienti
ploskve. Njihov pomen je, da diferenciale parametrov "povežejo"
z diferenciali dolžin. Če izberemo drugačno parametrizacijo
ploskve, se metrični koeficienti seveda spremenijo. V pravokotni
koordinatni mreži je koeficient g12 = 0. Za kroglo v standardni
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parametrizaciji izračunamo g11 = r2 sin2 θ in g22 = r2. Za valj pa
g11 = 1 in g22 = r2.

Dolžina krivulje na ploskvi je limitna vsota vseh dolžinskih
diferencialov, torej (če označimo odvod po času s črtico)

s =∫√(g11u'2 + 2g12u'v' + g22v'2)dt .

Med dvema oddaljenim točkama A in B na ploskvi poteka
neskončno mnogo krivulj. Ena od njih je najkrajša. Rečemo, da je
to geodetka. Na krogli je geodetka glavni krog, to je tak, ki ima
središče v središču Zemlje. Nazorno si geodetko predstavljamo
kot elastično nit, napeto med obema točkama: elastičnost jo skrči
na najkrajšo dolžino.

Dolžinska elementa vzdolž krivočrtnih koordinat, pravokotnih ali
ne, sta (ds)u = √g11du in (ds)v = √g22dv. Ploščina paralelograma, ki
ga zamejujeta, pa znaša

dS = (ds)u (ds)v sin α = √(g11g22 − g12
2)dudv .

Ploščina ploskve je limitna vsota ploščinskih elementov, torej
dvojni integral

S =∫∫√(g11g22 − g12
2) dudv .

Za parametra, ki sta kar koordinati, se enačba poenostvi v obliko

S =∫∫√(1 + zx
2 + zy

2) dxdy.

31.12 Lokalne lastnosti ploskev
Tangentna vektorja ležita v tangentni ravnini. Njun vektorski
produkt je pravokoten nanjo. Če ga normiramo, dobimo normalo

n=
ru × rv

|ru × rv |
=

ru × rv

√(g11g22 − g12
2)

.

Za parametra, ki sta kar koordinati, se enačba zapiše v obliki

n=
(−zx, −zy, 1)

√(1 + zx
2 + zy

2)
.

Vektor iz opazovane točke v bližnjo okolišnjo točko na ploskvi,
torej vektor r(u + du, v + dv) − r(u,v), aproksimiramo s potenčno
vrsto z linearnim členom (rudu + rvdv) in s kvadratnim členom
1/2 · (ruudu2 + 2ruvdudv + rvvdv2). Prvi člen je pomik po tangentni
ravnini. Drugi člen je pomik do pritisnjenega kroga v smeri
pravokotno na krog. Če ga pomnožimo z normalo, dobimo
pravokotno razdaljo od tangentne ravnine:

2dh = L11du2 + 2L12dudv + L22dv2

L11 = ruu ·n
L12 = ruv ·n
L22 = rvv ·n .
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Ukrivljenost

(31.40)

Dolžina geodetke

Za kroglo v standardni parametrizaciji izračunamo L11 = r sin2 θ in
L22 = r. Za valj pa velja L11 = 0 in L22 = r.

Slika 31.8 Odmik ploskve od tangentne
ravnine. Limitno je enak odmiku
pritisnjene paraboloidne ploskve.

Ukrivljenost ploskve je enaka ukrivljenosti pritisnjenega kroga:
dh = ds2/2R, torej 1/R = 2dh/ds2, zato:

K =
L11du2 + 2L12dudv + L22dv2

g11du2 + 2g12dudv + g22dv2 .

To je ukrivljenost ploskve v smeri, ki jo določata du in dv. Skozi
izbrano točko potekajoče krivulje imajo večjo ali manjšo
ukrivljenost. Izmed njih ima ena maksimalno ukrivljenost
Kmax = 1/Rmin in druga minimalno Kmin = 1/Rmax. Najdemo ju kot
ekstremalne vrednosti po vseh smereh. V to se ne bomo spuščali.
Ko takšni vrednosti najdemo, se lahko igramo z njunima
vrednostima: tvorimo, na primer, "povprečno" ukrivljenost
K = (Kmax + Kmin)/2 ali "metrično" ukrivljenost K = Kmax · Kmin ter
poskušamo najti, kako se izražata s koeficienti g11 … L22. Tudi to
zahtevno zabavo prepustimo drugim, ki jih to zanima.

Poglejmo še nekaj zgledov. Ravnina ima v vsaki točki vse
ukrivljenosti nič. Zato ji tudi rečemo ravnina. Na krogli so
poldnevniški krivinski radiji večji od vzporedniških. Vsi glavni
krogi skozi vsako točko pa imajo enak radij, ki je enak
poldnevniškemu. Najmanjši krivinski radij na valju je enak
polmeru valja in največji je neskončen. Podobno je pri stožcu.
Vidimo, da se da marsikaj dognati tudi brez računanja.

31.13 Zemljemerstvo na krogli
Na majhnih razdaljah je zemeljska površina ravna in koti,
premice in trikotniki na njej se pokoravajo že spoznanim
pravilom, recimo pravilu o vsoti notranjih kotov v trikotniku ali
hipotenuznemu pravilu o razdalji med dvema točkama. Na večjih
razdaljah pa je treba upoštevati zemljino zakrivljenost. "Ravne"
premice na njej postanejo glavni krogi. Vsota notranjih kotov
trikotnika postane večja od 180°, kar se lepo vidi na primeru
trikotnika z bazo na ekvatorju in vrhom na polu. Hipotenuzni,
kosinusni in sinusni izrek za trikotnike pa bo treba na novo
premisliti.

Za lažje preučevanje bomo vse dolžine na krogli merili z radijem
kot enoto. S tem postane radij brezdimenzijska količina z
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(31.41)

Hipotenuzni izrek

(31.42)

Kosinusni izrek

velikostjo 1, dolžinski odsek vsakega glavnega kroga pa številsko
enak središčnemu kotu, v radianih, na katerega je napet. Prvo
vprašanje, ki si ga zastavimo, je: kolikšna je dolžina glavnega
kroga med dvema točkama?

Na točki naj kažeta vektorja r1(θ1, φ1) in r2(θ2, φ2) iz središča
krogle. Njuna velikost je enaka ena. Kot med njima, torej
brezdimenzijska dolžina glavnega kroga, je določen s skalarnim
produktom r1 · r2 = cos α. Zmnožimo komponente, upoštevamo
kosinus razlike in dobimo

cos α = sin θ1 sin θ2 cos (φ2 − φ1) + cos θ1 cos θ2 .

Razdalja, v dolžinskih enotah, je potem d = R α. Poseben primer
φ1 = φ2 pove dolžino poldnevnika: α = |θ2 − θ1|, kakor tudi mora
biti.

Pravokotni trikotnik na krogli določajo trije enotni vektorji iz
njenega izhodišča do trikotnikovih oglišč. Vseeno je, kako je
koordinatni sistem postavljen. Izberemo ga tako, da kaže vektor
r1 vzdolž osi x, vektor r2 leži v ekvatorski ravnini xy pod
dolžinskim kotom a in vektor r3 leži v poldnevniški ravnini pod
širinskim kotom h. Vektorji so torej naslednji: r1 = (1, 0, 0),
r2 = (cos a, sin a, 0) in r3 = (cos a cos h, sin a sin h, sin h). Kot d med
r1 in r3 je hipotenuza trikotnika in je določen s skalarnim
produktom cos d = r1 · r2. Pomnožimo komponente in dobimo
hipotenuzni izrek

cos d = cos a cos h.

Pri kratkih stranicah aproksimiramo cos x ≈ 1 − x2/2, zanemarimo
visoke potence in izrek preide v ravninskega.

Podobno se lotimo poševnega trikotnika na krogli. Omejimo se na
"prave" trikotnike, katerih koti so manjši od π in katerih stranice
so tudi manjše od π.

Slika 31.9 Poševni trikotnik na krogli.
(Mercator, 2013)

Na tri oglišča trikotnika kažejo vektorji OA, OB in OC.
Koordinatni sistem usmerimo, kot kaže slika. V njem velja
OA = (0, 0, 1) in OB = (sin c, 0, cos c). Vektor OC se projicira v ON
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(31.43)

Sinusni izrek

(31.44)

Projekcija krogle

(31.45)

pod kotom A, torej OC = (sin b cos A, sin b sin A, cos b). Skalarni
produkt OB · OC = cos a. Zmnožimo komponente in dobimo:

cos a = cos b cos c + sin b sin c cos A .

Stranica a je podana z drugima dvema stranicama in kotom med
njima. To je iskani kosinusni izrek. Velja seveda za vsakršno
permutacijo zapisanih količin. Opazimo tudi, da je kosinusni izrek
povsem enak izrazu za dolžino geodetke (31.41). To pa ni nič
čudnega, saj je slednji le poseben primer prvega: za glavne kroge
uporablja poldnevnike in ekvator.

Pri majhnih razdaljah aproksimiramo sin x ≈ x in cos x ≈ 1 − x2/2,
zanemarimo visoke potence in izrek preide v ravninskega. V
posebnem primeru, ko A = 90°, je trikotnik pravokoten in izrek se
reducira v hipotenuzni izrek.

Ideniteta sin2 A = 1 − cos2 A nas navede na misel, da vanjo
vstavimo cos A iz kosinusnega izreka in upamo, da se bo izcimil
sinusni izrek. Res pridelamo izraz sin A/sin a = f(a, b, c). Desna
stran izraza je invariantna glede na ciklično permutacijo stranic,
kar pomeni, da mora veljati

sin A
sin a

=
sin B
sin b

=
sin C
sin c

.

To je sinusni izrek. Pri majhnih razdaljah preide v že znano
ravninsko obliko.

Hipotenuzni, kosinusni in sinusni izrek nam pomagajo pri
računanju kotov in stranic na krogli točno na tak način, kot to
počnemo v ravnini. Ko delamo s kroglo polmera R namesto 1,
moramo vse stranice trikotnika, podane v dolžinskih enotah,
deliti z R. Drugače rečeno: namesto brezdimenzijske stranice a
moramo povsod pisati a/R in podobno za druge stranice.

31.14 Zemljepisne projekcije
Točke na zemeljski površini so enolično določene s svojimi
zemljepisnimi koordinatami: širino δ (oziroma polarnim kotom
θ = π/2 − δ) in dolžino φ. Zemljo verodostojno predstavimo s
pomanjšanim krogelnim modelom. Takšen globus pa je, žal,
neprimeren za prenašanje in tudi ni dovolj velik za podroben
prikaz manjših območij. Naravno je torej pomisliti, kako bi ga
preslikali – v celoti ali deloma – na ravno ploskev, zemljevid.
Iščemo torej primerne preslikave

(x, y) ← (θ, φ).

Rečemo jim zemljepisne projekcije.
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Napake projekcij

Preslikava z žarki

Polarni izvor žarkov

(31.46)

Slika 31.10 Preslikava krogle na
ravnino s svetlobnimi žarki. Oblika
sence je zanimiva tudi za slikarje.
(Rubens, 1613)

Vsaka preslikava, ki jo vpeljemo, preslika Zemljine poldnevnike in
vzporednike v dve družini ravninskih krivulj. Dva bližnja
vzporednika in poldnevnika na Zemlji oblikujeta ploščinski
element, približni pravokotnik. Ko se takšen pravokotnik preslika,
pričakujemo naslednje nevšečnosti: kot med stičnima stranicama
se spremeni; razmerje med tema stranicama se spremeni; enaki
pravokotniki na različnih lokacijah se preslikajo neenako, bodisi
po dolžini, širini ali ploščini. Seveda hočemo najti take preslikave,
ki bodo obremenjene s čim manj nevšečnostmi. Posebej
pomembno je, da se ohranjajo lokalni koti, to je lokalna razmerja
stranic. Tedaj se oblika in orientacija drobnih likov pri preslikavi
ohranja. Drobni krogi se, na primer, preslikajo kot krogi. Takim
preslikavam rečemo konformne.

31.15 Polarna stereografska
Preslikajmo severno poloblo na tangentno ravnino na severnem
polu! Preslikujemo lahko z žarki, ki izhajajo is središča krogle, iz
njenega južnega pola ali iz južne neskončnosti. V vsakem primeru
se Zemljini poldnevniki preslikajo v radialne premice, vzporedniki
pa v koncentrične kroge. Razdalja med krogi je odvisna od izbire
žarkov. Središčni žarki "preveč" raztegnejo ekvatorske predele,
neskončni pa jih "preveč" stisnejo. Osredotočimo se torej na južni
pol kot izvor žarkov. To je polarna stereografska projekcija.

Slika 31.11 Polarna stereografska projekcija. Projekcija je primerna za prikaz
polarnih dežel, pa tudi za prikaz zvezdnega neba.

Slika pokaže, da se točka P(θ) preslika v točko P'(ρ). Ker je obodni
kot enak polovici središčnega, razberemo iz pravokotnega
trikotnika SNP' povezavo

ρ = 2R tan
θ
2

.
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(31.47)

Konformnost

Morska navigacija

Za radij Zemlje izberemo primerno pomanjšano vrednost:
R = M · RE, na primer M = 1:107. Namesto polarnega kota θ lahko
uporabimo tudi zemljepisni kot δ = 90° − θ. V tangentni ravnini
vpeljemo koordinatni sistem z izhodiščem v polu; os y kaže vzdolž
poljubnega poldnevnika φ0. Potem velja

x = ρ sin (φ − φ0)
y = −ρ cos (φ − φ0) .

S tem je preslikava zaključena. Seveda ni treba projicirati celotne
hemisfere, ampak le kakšen njen del. Tedaj na tangentni ravnini
vpeljemo lokalni koordinatni sistem, ki je glede na polarnega
ustrezno translatorno zamaknjen.

Je projekcija morda konformna? Ploščinski element na krogli je
približno pravokotnik z vzporedniško stranico R sin θ dφ in s
poldnevniško stranico R dθ. Ustrezajoči ploščinski element v
tangentni ravnini je tudi približno pravokotnik s stranicama ρdφ
in dρ. Z razmerjem istoležnih stranic sta podana raztezna faktorja
H = ρdφ / R sin θ dφ in K = dρ / R dθ. Če je preslikava konformna,
mora veljati H = K. Izračunamo odvod dρ/dθ in ga vstavimo v
enačbo. Pokaže se, da je kvocient razteznih faktorjev enak 1.
Preslikava je povsod konformna.

Polarna stereografska projekcija je primerna za prikaz dežel v
visokih zemljepisnih širinah, pa tudi za prikaz zvezdnega neba.

31.16 Ekvatorska valjna konformna
Ko mora ladja pluti iz kraja A v oddaljeni kraj B, ima na voljo
neomejeno mnogo poti. Če odmislimo tokove, vetrove in neurja,
je najboljša pot tista, ki je najkrajša, torej geodetka, to je glavni
krog na krogli. Takšna geodetka je na polarni stereografski
projekciji v splošnem krivulja, ki seka poldnevnike pod različnimi
koti. Določiti in zarisati jo brez obsežnega računanja ni možno. Pa
tudi sledenje taki črti bi zahtevalo, da krmar stalno spreminja
magnetni kurz ladje.

Druga možnost je krivulja, ki seka vse poldnevnike pod istim
kotom – loksodroma. Je sicer daljša od geodetke, vendar je za
krmarjenje mnogo bolj primerna. Seveda je tudi loksodroma kriva
črta na polarni stereografski projekciji (razen če pluje ladja po
poldnevniku). Kaj ne bi bilo čudovito, če bi imel navigator na mizi
zemljepisno projekcijo, na kateri bi bila loksodroma povsod ravna
črta? Med krajema A in B bi potegnil ravno črto in s tem določil
kurz ladje. Bolj preprosto ne gre. Poizkusimo, kot navigatorji,
najti tako projekcijo!
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Valjna projekcija

(31.48)
Vpeljava konformnosti

(31.49)

Slika 31.12 Ekvatorska valjna konformna projekcija. Projekcija je primerna za
prikaz ekvatorskih dežel in za pomorsko navigacijo.

Da bo loksodroma ravna, morajo očitno biti poldnevniki
ekvidistantne premice, vzporedniki pa nanje pravokotne premice
v takšnih medsebojnih razmakih, da je mreža povsod lokalno
konformna. To pomeni, da moramo projicirati kroglo na valj, ovit
okoli njenega ekvatorja. Valj se seveda da razviti v ravnino. Na
valju postavimo koordinatni sistem z osjo x vzdolž ekvatorja in y
vzdolž poljubnega poldnevnika φ0. Točke s poldnevnika φ se vse
preslikajo v

x = R (φ − φ0) .

Pri tem se točke iz različnih širin θ preslikajo v ustrezne y, kakor
določa zahteva po konformnosti. Ravnamo tako kot pri polarni
stereografski projekciji. Izenačimo raztezna faktorja
H = dx/R sin θ dφ in K = dy/R dθ. V dobljeni enačbi sta vsebovana
dva odvoda. Prvega dx/dφ zlahka izračunamo in s tem je določen
drugi: dy/dθ = R / cos θ. Ločitev spremenljivk in integracija pove

y = R ln tan
θ
2

.

Razmiki med vzporedniki torej naraščajo z oddaljenostjo od
ekvatorja. To je tudi pričakovati, saj projekcija na silo širi in
paralelizira krogelne poldnevnike. Seveda ni treba projicirati
celotne krogle, ampak le kakšen njen del. Tam postavimo lokalni
koordinatni sistem, ki je ustrezno translatorno premaknjen.

Ekvatorska valjna konformna projekcija je odlična za pomorsko
navigacijo in primerna za prikaz dežel v nizkih zemljepisnih
širinah.

31.17 Stožčna konformna
Razrast industrializacije, širjenje železniškega in cestnega
omrežja ter nenehna vojskovanja zahtevajo natančne zemljevide
velikih držav. Pokaže se potreba po ustrezni projekciji za srednje
zemljepisne širine. Smer raziskave je hitro pri roki: zemeljsko
kroglo je treba projicirati na plašč stožca, ki se je dotika v
izbranem vzporedniku. Poldnevniki so tedaj radialne premice,
vzporednike – koncentrične kroge – pa želimo razmestiti tako, da
bo projekcija konformna. Tako kot valj lahko tudi stožec nato
razvijemo v ravnino.
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Razvoj stožca v
ravnino

Vpeljava konformnosti

(31.50)

(31.51)

Slika 31.13 Stožčna konformna projekcija. Projekcija je primerna za prikaz
dežel v zmernem pasu.

Naj se stožec dotika vzporednika δ0 = π/2 − θ0, ki je za ρ0 oddaljen
od vrha stožca. Vrhnji polkot stožca je potem tudi enak δ0. Obseg
stožca po tem vzporedniku znaša L1 = 2π ρ0 sin δ0. Ko plašč stožca
razvijemo v ravnino, nastane izsekan krog, katerega celotni
obseg je L2 = 2π ρ0. Razmerje teh dveh obsegov L1 / L2 = k = sin δ0.
(Spomnimo se na stožčaste šotore, tipije, prerijskih
severnoameriških domorodcev! Plašč tipija je točno polovica
kroga: k = 1/2. To pomeni, da ima vrhnji polkot δ0 = 30°.)

V izsekani krog vpeljimo ravninski koordinatni sistem z vrhom v
presečišču tangentnega vzporednika in poljubnega poldnevnika
φ0. Os x je usmerjena vzdolž vzporednika in os y vzdolž
poldnevnika. Krogelni poldnevnik φ postane na razvitem plašču
stolpca poldnevnik kφ.

Ploskovni element na razvitem plašču stožca ima vzporedniško
stranico ρ kdφ in poldnevniško stranico dρ, s čimer sta določena
raztezna faktorja glede na ploskovni element na krogli. Izenačitev
razteznih faktorjev vodi do enačbe dρ/ρ = kdθ/sin θ. Integriranje
obeh strani da rešitev

ρ = C tank θ
2

k = sin (π/2 − θ0).

Konstanto C določimo iz razteznega pogoja: ρ(θ0) = R tan θ0. S tem
sta določeni tudi koordinati

x = ρ cos k(φ − φ0)
y = ρ0 − ρ sin k(φ − φ0) .

Vzdolž tangentnega vzporednika so razdalje točne. Če za
tangentni vzporednik izberemo pol, preide stožec v tangentno
ravnino in projekcija v polarno stereografsko. Če za tangentni
vzporednik izberemo ekvator, pa preide stožec v valj in projekcija
v ekvatorsko valjno konformno.

Stožčna konformna projekcija je dobra za prikaz dežel na
srednjih zemljepisnih širinah.
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Različice projekcij

Zemlja kot rotacijski
elipsoid

Globalne projekcije

31.18 Druge projekcije
Vsaka izmed obravnavanih tipov projekcij – ravninska, valjna in
stožčna – ima več različic. Če, na primer, razvrstimo vzporednike
na enake medsebojne razdalje, dobimo ekvidistantne projekcije.
Razdalje vzdolž poldnevnikov so tedaj pravilne. Spet drugače
izbrana razvrstitev poldnevnikov pa zagotovi, da so pravilne
ploščine. To so ekvivalentne projekcije. Jasno je, da spremenjene
projekcije niso več konformne.

Zemlja je krogla le v prvem, čeravno zelo dobrem približku. Tisti,
ki želijo večjo natančnost, jo aproksimirajo z rotacijskim
elipsoidom s kratko polosjo med poloma. Projekcijske enačbe se
močno zapletejo in vprašanje je, kdaj jih je sploh smiselno
uporabljati. Sploščenost Zemlje je namreč zelo majhna:
(a − b) / a ≈ 1 / 300.

Nobena izmed naštetih projekcij ni primerna za prikaz celotne
zemeljske oble. Obliko velikih in "oddaljenih" kontinentov namreč
močno popačijo. So pa ljudje iznašli mnogo kar sprejemljivih
globalnih projekcij. Žal to, da je teh projekcij mnogo, pove, da
nobena ni povsem zadovoljujoča. Ena izmed boljših je eliptična
projekcija z naslednjimi značilnostmi. Slika sveta je elipsa z
razmerjem polosi 1:2. Ekvator in vzporedniki so vzporedne daljice
z enakomernim presledkom. Centralni poldnevnik je daljica. Vsi
drugi so polelipse, simetrične glede na ekvator in na centralni
poldnevnik. Polelipsi skozi ±90° tvorita krog. Projekcijski obrazci
so ustrezno zamotani in jih ne bomo izpeljevali. □
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32

Primeri polj

(32.1)

(32.2)

Gradient polja

Prostorska polja
Skalarna in vektorska polja – Gradient in smerni odvod – Pretok in
divergenca – Cirkulacija in rotor – Operacije drugega reda –
Krivočrtne koordinate – Cilindrične koordinate – Krogelne
koordinate

32.1 Skalarna in vektorska polja
Količine, ki so "porazdeljene" po točkah prostora in so torej
odvisne od treh prostorskih koordinat, imenujemo prostorska
polja. Dobri primeri so naslednji: temperatura, pritisk in hitrosti v
ozračju ter gravitacijske, električne in magnetne sile v prostoru.
Našteta polja so bodisi skalarna ali vektorska. Ker primerov za
kompleksna polja (še ) nimamo, se z njimi ne bomo ukvarjali.

Slika 32.1 Prizemno polje zračnega pritiska in vetrov nad Atlantikom. Izmerile
so ga ladje, ki so prikazane s krožci. Pritisk je podan z izobarami (v palcih
živega srebra) in veter z zastavicami. Veter piha približno vzporedno z
izobarami. (US Weather Bureau)

Splošno skalarno polje, neodvisno od časa, bomo označili kot

U = U(x, y, z)

in splošno vektorsko polje kot

v= (vx(x, y, z), vy(x, y, z), vz(x, y, z)).

Raziščimo, kaj lahko povemo o njih!

32.2 Gradient in smerni odvod
Začnimo s skalarnim poljem. Ko se premaknemo iz izbrane točke
polja v kako sosednjo točko, se polje v splošnem spremeni.
Sprememba na enoto dolžine dU/ds je odvisna od tega, v katero
smer se premaknemo. Izmed vseh smeri je ena – označimo jo z
enotnim vektorjem n – posebej odlikovana: to je tista, vzdolž
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(32.3)

Koordinatni zapis

(32.4)

Operator nabla

(32.5)

Smerni diferencial

katere je sprememba polja največja. Velikost in smer te
spremembe opišemo z vektorjem, gradientom polja:

grad U =n ·
dU
ds

.

Gradient skalarnega polja je torej vektorsko polje. Njegovi
vektorji kažejo, v kateri smeri se skalarno polje najbolj spreminja
in kako velike so te spremembe. Definicija gradienta ni odvisna
od izbire koordinatnega sistema. Je invarianta polja.

Kako bi gradient izrazili s koordinatami? Vpeljimo poljuben
koordinatni sistem. Gradientni premik ds ima v smeri osi x
komponento dx = ds/cos α, pri čemer je α kot med gradientno in
abscisno smerjo. To pomeni, da dU/dx = (dU/ds) cos α. Podobno
velja za preostali dve komponenti. Vse tri enačbe združimo v
vektorsko obliko. V desni strani prepoznamo (dU/ds)n, torej velja

grad U = (
∂U
∂x

,
∂U
∂y

,
∂U
∂z

) .

Velikost gradienta je seveda |grad U| in njegova smer je
n= grad U / |grad U|.

Slika 32.2 Gradient skalarnega polja.
Definiran je kot odvod v smeri največjega
naraščanja polja.

Tudi na komponentni izraz za gradient lahko pogledamo kot na
produkt: (∂U/∂x, ∂U/∂y, ∂U/∂z) = (∂/∂x, ∂/∂y, ∂/∂z) U. S tem vpeljemo
vektorski operator nabla in velja

grad U =∇U

∇= (
∂
∂x

,
∂
∂y

,
∂
∂z

) .

Nabla je diferencialni operator in simbolični vektor. Ima lastnosti
tako odvoda kot vektorja. Pričakujemo, da bodo zanj veljala
podobna pravila odvajanja kot za navaden odvod. Kratki računi (v
komponentah in z enotnimi vektorji i, j in k) res pokažejo, da
veljajo standardna pravila ∇(cU) = c∇U, ∇(U + V) =∇U +∇V in
∇(UV) = U∇V + V∇U.

Kako pa se skalarno polje iz točke r spreminja v izbrano smer
dr= (dx, dy, dz)? To povemo s smernim diferencialom
dU = Uxdx + Uy dy + Uz dz. (Indeksi ne pomenijo komponent, saj jih
skalar pač nima, ampak parcialna odvajanja.) Desno stran
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(32.6)

(32.7)

Pretok

(32.8)

(32.9)

Divergenca

zapišemo kot skalarni produkt dveh vektorjev, gradienta in
premika, ter dobimo

dU =∇U · dr= (dr ·∇)U .

Kar je zapisano v oklepaju, razumemo kot operator smernega
diferenciranja. Skalarni produkt gradienta in nanj pravokotnega
premika je enak nič, torej je diferencial v tej smeri enak nič,
kakor tudi mora biti.

Zaporedne smerne diferenciale lahko seštejemo in dobimo
spremembo polja med dvema oddaljenima točkama, izraženo
preko gradienta tega polja

U2 − U1 =∫∇U ds .

Vrednost polja v točki 2, relativna na vrednost v točki 1, je
neodvisna od tega, po kateri poti jo določamo. To je izrek o
integralu gradienta. Pravzaprav ni nič drugega kot posplošitev
osnovnega izreka integralnega računa (17.2), namreč da je
"navadni" integral funkcije ene spremenljivke enak limitni vsoti
njenih diferencialov. V posebnem primeru, ko je pot sklenjena,
torej zanka, je krivuljni integral gradienta enak nič.

32.3 Pretok in divergenca
Poglejmo sedaj vektorska polja. Kakor teče reka po strugi, tako
"teče" splošno vektorsko polje skozi prostor; nazorno si ga
predstavljamo kar s tokovnicami. Pretok reke skozi izbrani presek
struge nam da zamisel, da prav tako definiramo pretok
vektorskega polja skozi izbrano ploskev:

Φ =∫v ·ndS ,

Ploskev je lahko ravna ali zvita. K pretoku skozi vsak njen
ploskovni element prispeva le pravokotna komponenta polja, to je
projekcija poljskega vektorja na smer ploskovne normale. V
komponentah zapišemo n · dS = (dy dz, dz dx, dx dy), torej

∫v ·ndS =∫∫ vx dy dz +∫∫ vy dz dx +∫∫ vz dx dy .

Vsak presek struge ima svoj pretok. Če med dvema zaporednima
presekoma ni izvorov in ponorov, sta oba pretoka enaka. To nas
napelje na misel, da uvedemo pretok skozi sklenjeno ploskev,
sestoječo iz dveh zaporednih presekov in iz zamejitvenih sten
struge. Ali še bolje: skozi sklenjeno ploskev kakršnekoli oblike,
potopljeno v reko, to je v vektorsko polje. Kadar je pretok polja
skozi sklenjeno ploskev različen od nič, bomo rekli, da so znotraj
ploskve neto izvori polja: pozitivni ali negativni. Kadar pa je
pretok nič, v notranjosti bodisi ni izvorov/ponorov ali pa se
medsebojno izničujejo.

Za podrobnejšo raziskavo notranjih izvorov (ponore bomo
zanaprej obravnavali kot negativne izvore), naredimo sklenjene

63

ch17.htm#eq2


(32.10)

(32.11)

Prostorninski integral
divergence

(32.12)

ploskve znotraj vektorskega polja poljubno majhne. S tem
definiramo prostorninsko gostoto izvorov kot

divv= lim
V→0

1
V
∮v ·ndS .

Rečemo, da je to divergenca polja. Divergenca vektorskega polja
je skalarno polje. Definirana je neodvisno od izbire koordinatnega
sistema in je zato invarianta polja.

Slika 32.3 Divergenca vektorskega
polja. Definirana je kot neto pretok
vektorskega polja skozi majhno zaprto
ploskev.

Kako naj divergenco izrazimo s koordinatami? Vpeljemo poljuben
koordinatni sistem. Sklenjeni ploskvi damo obliko kvadra. Slika
pokaže naslednje. Neto pretok v smeri z znaša (dvz/dz)dz · dx dy.
Podobno velja za neto pretoka v smeri x in z. Vse tri pretoke
seštejemo, delimo s prostornino dx dy dx in dobimo

divv=
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
=∇ ·v .

Prostornino znotraj poljubne sklenjene ploskve si mislimo
zapolnjeno s samimi drobnimi kvadri. Pretok skozi kvader znaša
∮v ·ndS =∇ ·vdV. Seštejemo pretoke po vseh kvadrih. Prispevki
po stičnih ploskvah se medsebojno izničijo in preostane pretok
skozi oklepajočo ploskev:

∮v ·ndS =∫∇ ·vdV .

Pretok polja skozi sklenjeno ploskev je torej enak integralu
divergence tega polja po zaobjeti prostornini. Ta skoraj
samoumevni divergenčni izrek omogoča, da namesto integriranja
po površini (kar je ponavadi težko) raje integriramo po
prostornini.

Divergenca je skalarni diferencialni operator. Z malo računanja v
komponentah in z enotnimi vektorji ugotovimo, da veljajo
standardna pravila odvajanja: ∇ · (cv) = c∇ ·v,
∇ · (u+v) =∇ ·u+∇ ·v in ∇ · (Uv) = U∇ ·v+v∇ · U.
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Cirkulacija

(32.13)

(32.14)

Rotor

(32.15)

Komponentni zapis

32.4 Cirkulacija in rotor
Reka teče ponekod gladko, drugod se vrtinči. Na zamišljeni
krožni poti po obrobju takega vrtinca so vsi hitrostni vektorji bolj
ali manj usmerjeni vzdolž poti. Na podobni poti kje drugje, izven
vrtincev, pa so hitrostni vektorji na kakšnem odseku usmerjeni
vzdolž poti, na preostalem odseku pa v nasprotno smer. Kaže
torej, da je integral vektorskega polja po sklenjeni poti, to je
zanki, pomemebna količina. Zato definiramo cirkulacijo
splošnega vektorskega polja po poljubni zanki kot

Γ =∮vds .

V komponentah se integral glasi

∮vds=∮vx dx +∮vy dy +∮vz dz .

Kadar je cirkulacija po zanki različna od nič, rečemo, da so na
(vsaj eni) ploskvi, napeti na zanko, prisotni neto vrtinci polja. Če
je preučevana cirkulacija enaka nič, pa bodisi vmes ni vrtincev
oziroma se ti medsebojno izničujejo.

Za bolj natančno obravnavanje notranjih vrtincev naredimo zanke
v vektorskem polju ravninske, poljubno majhne in jih tudi
orientiramo v različne smeri. Zanka definira komponento rotorja
polja v smeri svoje normale. Primerno zasukana zanka pokaže, v
kateri smeri n je komponenta rotorja največja in s tem enaka
celotnemu rotorju:

rotv=n · lim
S→0

1
S
∮vds .

Rotor vektorskega polja je tudi vektorsko polje. Njegovi vektorji
kažejo, kje so vrtinci polja, kako so močni in kako so usmerjeni.
Definicija rotorja je neodvisna od izbire koordinatnega sistema in
je zato invarianta polja.

Slika 32.4 Rotor vektorskega polja.
Definiran je kot cirkulacija
vektorskega polja vzdolž majhne
zanke.

Kakšen je rotor v koordinatnem zapisu? Določiti moramo njegove
tri pravokotne komponente, to je, preučiti tri ustrezno usmerjene
zanke. Slika pove naslednje.

Produkt vds znaša na odseku OA: vx dx; na odseku AD:
(vy + (∂vy / ∂x) dx) dy; na odseku DB: −(vx + (∂vx / ∂y) dy) dx; in na
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(32.16)

Komponente in
projekcije

Ploskovni integral
rotorja

(32.17)

odseku BO: −vy dy. Vse seštejemo, delimo s ploščino dx dy in
dobimo izraz za komponento rotorja vzdolž osi z. Podobno
napravimo še za drugi dve osi in dobimo vse tri komponente
rotorja

rotv= (
∂vz

∂y
−

∂vy

∂z
,
∂vx

∂z
−

∂vz

∂x
,
∂vy

∂x
−

∂vx

∂y
) =∇×v .

Tako kot gradient in divergenca se tudi rotor lepo izraža z
operatorjem nabla.

Slika 32.5 Rotor in njegove komponente.

Prepričali bi se še radi, da se tri pravokotne komponente rotorja,
izračunane iz treh kvadratnih zank, res sestavljajo v vektor. Slika
pove naslednje. Naj trikotnik ABC določa ravnino, katere normala
n kaže v smer rotorja. Normala oklepa s koordinatnimi osmi kote
α, β in γ. Ploščina trikotnika je Sn in cirkulacija Γn poteka vzdolž
stranic AB, BC in CA. Ta cirkulacija je enaka vsoti treh cirkulacij
Γx, Γy in Γz po treh stranskih trikotnikih OBC, OCA in OAB, saj se
prispevki vzdolž skupnih stranic izničijo. Ploščina stranskega
trikotnika Sx = Sn cos α in podobno za druga dva. Naštete
cirkulacije zapišemo kot produkte ustreznih rotorjev in ploščin
ter dobimo (po deljenju z Sn) rotnv= cos α rotxv+ cos β rotyv+
cos γ rotzv. Iz tega razberemo rotnv=n · (rotxv, rotyv, rotzv). To je
dokaz, da se rotor res projicira v pravilne komponente oziroma da
komponente res opisujejo pravi vektor.

Majhna okrogla ploščica z narisano puščico, ki plava po gladini
vode in se pri tem vrti, kaže, kakšen je lokalni rotor v navpični
smeri. Integral obodne hitrosti po obsegu ploščice znaša 2πrv,
ploščina je π r2, njun količnik pa pove rotzv= 2v/r = 2ω. Rotor je
torej enak dvakratni kotni hitrosti vrtenja. V notranjosti tekočine
pa si moramo misliti prozorno kroglico s tremi vrisanimi
puščicami.

Ploščino poljubne ploskve, napete na veliko zanko, si mislimo
razkosano na drobne kvadrate. Cirkulacija po kvadratu znaša
∮vds= (∇×v) ·ndS. Seštejemo cirkulacije po vseh kvadratih.
Prispevki po stičnih robovih se medsebojno izničijo in preostane
cirkulacija po zunanji oklepajoči zanki:

∮vds=∫ (∇×v) ·ndS .
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Divergenca in rotor
gradienta

(32.18)

Divergenca in rotor
rotorja

(32.19)

Cirkulacija polja po sklenjeni zanki je torej enaka integralu
rotorja tega polja po katerikoli zaobjeti ploskvi. Ta rotorski izrek
omogoča, da namesto integriranja po zanki raje integriramo po
ploskvi in obratno, kakor je pač računsko lažje.

Rotor je vektorski diferencialni operator. Z nekaj računanja v
komponentah in z enotnimi vektorji ugotovimo, da veljajo
naslednja pravila odvajanja: ∇× (cv) = c∇×v,
∇× (u+v) =∇×u+∇×v in ∇× (Uv) = U (∇×v) −v× (∇U).

32.5 Operacije drugega reda
Gradient skalarja je vektor. Nad tem vektorjem lahko izvršimo
operacijo divergence ali rotorja. Kaj dobimo? Računanje s
komponentami pokaže:

∇ · (∇U) =∇2U =
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

∇× (∇U) = 0 .

Simbolično lahko torej računamo tako, kot da bi bil nabla pravi
vektor in skalarno polje navaden skalar: a · (a c) = (a ·a) c =a2 c. In
a× (a c) = (a×a) c = 0.

Kakšen pomen ima izraz ∇2U? Okrog preučevane točke si
zamislimo kocko z robovi dl. V središčni točki aproksimirajmo
∂2U/∂x2 ≈ [(Ui+1−Ui)/dl − (Ui−Ui−1)/dl]/dl in podobno za druga dva
odvoda. Dobimo ∇2U = (Ū − U0)/S, pri čemer je U0 polje v
preučevani točki (v sredini kocke), Ū povprečna vrednost polja na
šestih ploskvah kocke in S površina kocke. Če je torej izraz ∇2U v
preučevani točki enak nič, je vrednost polja v tej točki enaka
povprečni vrednosti na "ekvidistantni" ploskvi okrog nje. Če ni
nič, pa meri odmik od tega povprečja. V pomanjkanju boljšega
imena mu bomo rekli delta polja in ga označili ΔU. Delta polja
torej pove, koliko se polje v izbrani točki razlikuje od povprečja v
neposredni okolici.

Zanimiva je tudi ugotovitev, da gradient poljubnega skalarnega
polja nima vrtincev. To je pričakovano, saj je le z drugimi
besedami povedano, da je integral gradienta po sklenjeni zanki
enak nič.

Rotor vektorja je vektor. Tudi nad njim lahko legitimno izvršimo
operacijo divergence ali rotorja. Računanje v komponentah, v
zadnjem primeru precej dolgovezno, pove:

∇ · (∇×v) = 0
∇× (∇×v) =∇(∇ ·v) −∇2v .

Spet smemo računati kot s pravimi vektorji. V produktu a · (a×b)
je faktor v oklepaju vektor, pravokoten na a in b, torej je njegov
skalarni produkt z a enak nič. Druga enačba pa je tudi taka, kot
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Konservativna polja

Skalirni faktorji

(32.20)

pravi dvojni vektorski produkt. Spet dobimo zanimiv rezultat,
namreč da rotor poljubnega vektorskega polja nima izvorov.

Preostala operacija drugega reda – gradient divergence – je že
zaobjeta v identiteti za rotor rotorja.

Naj bo vektorsko polje tako, da je njegova cirkulacija (oziroma
rotor) povsod enaka nič: ∇×G= 0. Rečemo, da je takšno polje
konservativno. Dober primer je homogeno gravitacijsko polje v
bližini Zemlje. Ker vemo, da je rotor enak nič tudi za gradient
poljubnega skalarnega polja, sledi, da se da konservativno
vektorsko polje izraziti kot gradient ustreznega skalarnega polja:
G= −∇ϕ. To skalarno polje poimenujemo potencial. Negativni
predznak vključimo zato, ker želimo, da se potencial veča vzdolž
smeri polja.

Slika 32.6 Potencial konservativnega
polja. Prikazano je homogeno
gravitacijsko polje G. Vrednost potenciala
ϕ v izbrani točki je določena z integralom
polja vzdolž poljubne krivulje iz referentne
točke.

Kako izračunamo potencial? Izberemo referentno točko v polju in
ji dodelimo poljubno vrednost potenciala. Potem izračunamo
krivuljni integral vzdolž poljubne poti do vsake točke polja in s
tem določimo tamkajšnji potencial: ϕ − ϕ0 = ∫Gds. Pot izberemo
tako, da je računanje najlažje. Očitno je tovrstna izbira potenciala
nedoločena za izhodiščno konstanto. Drugače rečeno: če je ϕ
potencial konservativnega polja, potem je tak tudi ϕ + const. Za
gravitacijsko polje G= (0, 0, −g) tako izračunamo ϕ = gz0 + gz.

32.6 Krivočrtne koordinate
Kadar ima polje cilindrično ali krogelno simetrijo, ga je priročno
obravnavati v temu prilagojenih koordinatah. Cilindrične
koordinate so, kot vemo: ρ, φ in z, krogelne pa: r, θ in φ. Poljubne
pravokotne krivočrtne koordinate označimo s q1, q2 in q3. Prostor
je prepleten z njihovimi koordinatnimi krivuljami. Skozi vsako
točko gredo tri med seboj pravokotne krivulje. Vzdolž krivulje 1 je
usmerjen dolžinski element

ds1 = h1 dq1

in podobno vzdolž drugih dveh. Trije skalirni faktorji hi so
pravzaprav koreni že spoznanih metričnih koeficientov: hi = √gii
(31.31). Za cilindrične koordinate znašajo, kot znano: 1, ρ in 1 ter
za krogelne: 1, r in r sin θ.

Ploščinski element z normalo vzdolž krivulje 1 je
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(32.21)

(32.22)
Gradient, divergenca

in rotor

(32.23)

Delta

(32.24)

(32.25)

Osnosimetrična polja

dS1 = h2 h3 dq2 dq3

in podobno za ostali dve. Prostorninski element pa znaša

dV = h1 h2 h3 dq1 dq2 dq3 .

Zapisani elementi omogočajo, da izračunamo gradient,
divergenco in rotor v krivočrtnih koordinatah, izhajajoč iz
brezkoordinatnih definicij teh količin. Ravnamo prav tako kot pri
kartezičnih koordinatah, le računanja je več:

grad U = (
1
h1

∂U
∂q1

,
1
h2

∂U
∂q2

,
1
h3

∂U
∂q3

)

divv=
1

h1h2h3
[

∂v1h2h3

∂q1
+

∂v2h3h1

∂q2
+

∂v3h1h2

∂q3
]

rot1v=
1

h2h3
(

∂v3h3

∂q2
−

∂v2h2

∂q3
)

rot2v=
1

h3h1
(

∂v1h1

∂q3
−

∂v3h3

∂q1
)

rot3v=
1

h1h2
(

∂v2h2

∂q1
−

∂v1h1

∂q2
) .

Iz enačb za gradient in divergenco sledi enačba za divergenco
gradienta, torej za delto polja v krivočrtnih koordinatah:

ΔU =
1

h1h2h3
[

∂
∂q1

(
h2h3

h1

∂U
∂q1

) +

∂
∂q2

(
h3h1

h2

∂U
∂q2

) +
∂

∂q3
(

h1h2

h3

∂U
∂q3

)] .

32.7 Cilindrične koordinate
Vstavitev cilindričnih skalirnih faktorjev v dobljene enačbe pove:

grad U = (
∂U
∂ρ

,
1
ρ

∂U
∂φ

,
∂U
∂z

)

divv=
1
ρ

∂ρ vρ

∂ρ
+

1
ρ

∂vφ

∂φ
+

∂vz

∂z

rotρv=
1
ρ

(
∂vz

∂φ
−

∂ρvφ

∂z
)

rotφv= (
∂vz

∂ρ
−

∂vρ

∂z
)

rotzv=
1
ρ

(
∂ρvφ

∂ρ
−

∂vρ

∂φ
)

ΔU =
1
ρ

∂
∂ρ

(ρ
∂U
∂ρ

) +
1
ρ2

∂2U
∂φ2 +

∂2U
∂z2 .

Enačbe so videti kar zamotane, vendar se močno poenostavijo, če
ima polje osno simetrijo. Temperatura v steni cevi, po kateri teče
vroča voda, ima na primer osno simetrični profil T = T(ρ). Njegova
gradient in delta zato znašata
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(32.26)

(32.27)

(32.28)

Radialno simetrična
polja

(32.29)

(32.30)

gradρ T =
dT
dρ

.

ΔT =
1
ρ

d
dρ

(ρ
dT
dρ

) .

Lep vodni vrtinec ima profil hitrosti vφ = vφ(ρ). Njegova
divergenca in rotor zato znašata

divv= 0

rotzv=
1
ρ

dρvφ

dρ
.

Togo vrtenje, ko vφ = ωρ, zadevo še bolj poenostavi v rotzv= 2ω,
kakor tudi mora biti. Če pa se voda v vrtincu giblje tako, da
vφρ = const, je rotor povsod enak nič. "Vrtinec" je zato
brezvrtinčen!

32.8 Krogelne koordinate
Ko v splošne enačbe vstavimo krogelne skalirne faktorje, pa
dobimo:

grad U = (
∂U
∂r

,
1
r

∂U
∂θ

,
1

r sin θ
∂U
∂φ

)

divv=
1
r2

∂r2 vr

∂r
+

1
r sin θ

∂sin θ vθ

∂θ
+

1
r sin θ

∂vφ

∂φ

rotrv=
1

r2 sin θ
(

∂r sin θ vφ

∂θ
−

∂rvθ

∂φ
)

rotθv=
1

r sin θ
(

∂r sin θ vφ

∂r
−

∂vr

∂φ
)

rotφv=
1
r

(
∂r vθ

∂r
−

∂vr

∂θ
)

ΔU =
1
r2

∂
∂r

(r2 ∂U
∂r

) +
1

r2 sin θ
∂
∂θ

(sin θ
∂U
∂θ

) +
1

r2 sin2 θ
∂2U
∂φ2 .

Te enačbe so še bolj zapletene kot cilindrične. Se pa lepo
poenostavijo za polja, ki imajo radialno simetrijo. Primer je
temperaturni profil v notranjosti Zemlje, T = T(r). Njegova
gradient in delta znašata

gradr T =
dT
dr

.

ΔT =
1
r2

d
dr

(r2 dT
dr

) .

Tudi težno polje v Zemlji in izven nje ima radialno simetričen
profil gr = gr(r). Njegova divergenca in rotor znašata

divg=
1
r2

dr2 gr

dr
rotg= 0 .

70



Zunaj Zemlje, kjer gr = g0 r0
2 / r2, postane tudi divergenca enaka

nič. Tako tudi mora biti, saj tam ni izvorov polja. □
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33

Izbiranja

Permutacije

(33.1)

Variacije

(33.2)

Kombinacije

Statistika
Preštevanje – Poskusi in izidi – Verjetnosti izidov – Verjetnost
sestavljenih izidov – Binomska porazdelitev – Vsota slučajnih
izidov – Normalna porazdelitev – Povprečje in varianca –
Večdimenzijske porazdelitve – Soodvisnost spremenljivk –
Vzorčenje in statistika – Merjenje in merske napake – Intervalno
ocenjevanje – Preizkušanje domnev – Regresijska analiza –
Statistično zavajanje

33.1 Preštevanje
Nekatere stvari v življenju lahko naredimo na več načinov. Dober
primer je kosilo v restavraciji. Na jedilniku je zapisano: 2
predjedi, 3 glavne jedi in 2 poobedka. Izberemo lahko po eno jed
iz vsake skupine. Koliko različnih kosil si lahko privoščimo?
Očitno N = 2 · 3 · 2. Nasploh velja: če lahko najprej naredimo N1
izbir; nato – neodvisno od tega, kaj smo izbrali – novih N2 izbir; in
tako naprej, je različnih izbirnih nizov N = N1 · N2 … Nn. Kaže, da
sta izbiranje in preštevanje izbir pomembni opravili. Poskusimo
torej raziskati kaj več o tem.

Imejmo niz petih različnih črk (a, b, c, d, e). Ta niz lahko
premešamo; ena izmed premešav je, na primer, (b, a, c, e, d).
Rečemo, da je to permutacija osnovnega niza. Koliko pa je takih
različnih permutacij? Na prvo mesto permutacije lahko postavimo
eno izmed 5 črk. Ostanejo še štiri. Na drugo mesto postavimo eno
izmed preostalih 4 črk. Tako nadaljujemo in dobimo
N = 5 · 4 · 3 · 2 · 1 = 5! različnih nizov črk. Na splošno lahko torej iz
n-terice različnih elementov naredimo Pn njenih permutacij:

Pn = n! .

Če vseh n elementov ni različnih, ampak je med njimi r enakih, je
različnih permutacij r!-krat manj: Pn

r = n!/r!.

Iz niza petih črk (a, b, c, d, e) potegnimo poljubne tri črke. Trojke
iz istih črk, a z različnim vrstnim redom, obravnavamo kot
različne: (a, b, c) je torej različna od (b, a, c). Rečemo, da so to
variacije dolžine 3 iz osnovnega niza. Koliko različnih variacij pa
lahko naredimo? Na prvo mesto v trojki lahko postavimo eno
izmed 5 črk. Preostanejo štiri. Na drugo mesto postavimo eno
izmed preostalih 4 črk. Tako nadaljujemo in dobimo
N = 5 · 4 · 3 = 5!/(5 − 3)! različnih trojk. Na splošno iz n-terice
različnih elementov lahko naredimo Vn

r različnih variacij dolžine
r:

Vn
r =

n!
(n − r)!

.

Koliko je pa različnih trojk, pri čemer obravnavamo trojke iz istih
črk, a z različnim vrstnim redom, kot enake: (a, b, c) je enaka
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(33.3)

Igralna kocka

Poskus in izid

Pogostost izida

(b, a, c)? Rečemo, da so to kombinacije dolžine 3 iz osnovnega
niza. Očitno je število kombinacij manjše kot število variacij in
sicer za tolikokrat, kolikor je permutacij niza z dolžino 3, torej
N = 5!/(5 − 3)!3!. Na splošno lahko torej iz n-terice različnih
elementov naredimo Cn

r različnih kombinacij dolžine r:

Cn
r =

n!
r! (n − r)!

.

33.2 Poskusi in izidi
Ljudje, ki nimajo kaj boljšega početi, radi mečejo kocke. Takšna
igralna kocka ima na svojih ploskvah narisane pike. Vsaka
ploskev ima svoje število pik: od ena do šest. Ko kocko vržemo na
mizo, se zakotali, ustavi in njena zgornja ploskev pokaže določeno
število pik. Vnaprej nikoli ne vemo, koliko jih bo padlo. Ljudje
stavijo denar, kaj se bo pri metu zgodilo, in tisti, ki ugane, pobere
stave. Te so lahko raznovrstne: padla bo trojka; ne bo padla
trojka; padlo bo sodo število; v dveh zaporednih metih bo padla
vsaj ena šestica; pri hkratnem metu dveh kock bo padlo skupaj
deset pik; in še mnogo drugega.

Slika 33.1 Igralni kocki. Izid meta ene ali več
kock je slučajna spremenljivka. (Anon)

Na met kocke lahko pogledamo kot na poskus, ki ima šest možnih
elementarnih izidov: število pik od ena do šest. Vnaprej ne vemo,
kakšen bo izid predstoječega poskusa, zato rečemo, da je tak izid
slučajna spremenljivka, ki lahko zavzame celoštevilčne vrednosti
med ena in šest. Pričakujemo pa, da se bo v velikem številu
poskusov (torej metov), pojavil vsak izmed šestih izidov v
približno enakem deležu in sicer v eni šestini primerov, če je le
kocka "poštena". Pravzaprav je res obratno: če se vsak izid
pojavlja enako pogosto, rečemo, da je kocka poštena.

33.3 Verjetnosti izidov
Pa izmerimo, kako pogosto se pojavljajo posamični izidi za
dotično kocko! Kar naprej jo mečimo in beležimo vsakokratne
izide, to je vrednosti slučajne spremenljivke x. Ta spremenljivka
lahko zavzame vrednosti x1 = 1, x2 = 2 … x6 = 6. Ko vržemo kocko
10-krat, se izid x3, na primer, pojavi 2-krat, torej v 2/10 poskusov.
Pri N poskusih se nasploh izid xk pojavi Nk-krat. Razmerje Nk/N
se z vsakim nadaljnjim metom spremeni. V začetku se od meta do
meta močno spreminja, kasneje pa se čedalje bolj zgošča okrog
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(33.4)

(33.5)

Verjetnost izida

Unija izidov

(33.6)

neke limitne vrednosti. Vsak izid se zgošča okrog svoje limite. S
tem je definirana njegova relativna frekvenca oziroma pogostost

Pk = lim
N→∞

Nk

N
.

Pri pošteni kocki, na primer, izmerimo v 1000 metih
P3 = 0,17 ≈ 1/6 in enako za ostale izide. Pogostosti elementarnih
izidov prikažemo s tabelo ali grafom – frekvenčno porazdelitvijo
izidov.

Slika 33.2 Frekvenčna porazdelitev izidov pri
metu poštene kocke. Vsak izid n se pojavlja z
enako pogostostjo: porazdelitev je
enakomerna.

Iz definicije je jasno, da mora za vsakršno frekvenčno
porazdelitev veljati

∑Pk = 1 .

Rečemo, da so porazdelitve normirane.

Čim večja je pogostost kakega izida v množici poskusov, tem bolj
"verjetno" se nam zdi, da bo predstoječi posamični poskus
pokazal ravno ta izid. Povedano izkoristimo za kvantitativno
definicijo verjetnosti: verjetnost kakega izida pri posamičnem
poskusu, to naj bo njegova relativna frekvenca v množici
poskusov pri enakih "delovnih" pogojih. Pogostost se torej nanaša
na množico poskusov, verjetnost pa na posamičen poskus. Izraz
"verjetnost", kakor smo ga definirali in kakor ga hočemo
uporabljati, ni nič drugega kot sinonim za izraz "pogostost".
Verjetnosti so decimalna števila med 0 in 1.

33.4 Verjetnost sestavljenih izidov
Kakšna je verjetnost, da pri metu kocke pade x3 ali x5? Da bomo
bolj splošni, recimo: kakšna je verjetnost, da se v enem poskusu
pokaže elementarni izid A ali elementarni izid B, torej vsaj eden
izmed obeh? To je seveda tudi svojevrsten izid poskusa.
Poimenujemo ga unija dveh elementarnih izidov ter ga označimo
kot izid (A ∪ B). Iz definicije verjetnosti neposredno sledi

P(A ∪ B) = P(A) + P(B) .

Verjetnost, da se pri enem poskusu pokaže eden ali drugi od
možnih elementarnih izidov, je enaka vsoti verjetnosti obeh
posamičnih izidov. Da poštena kocka pokaže x3 ali x5, se zato
zgodi z verjetnostjo 1/6 + 1/6 = 2/6.
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Presek izidov

(33.7)

Število uspehov v
vrsti poskusov

Pravilo o seštevanju verjetnosti ne velja le za dva elementarna
izida, ampak tudi za več njih. Prav tako ne velja le za
elementarne izide, temveč za kakršnekoli izide, ki se medsebojno
izključujejo, to je, če se pokaže eden, se ne more hkrati pokazati
še drugi. Dva takšna izključujoča se izida pri metu kocke sta, na
primer: pade sodo število pik (x2 ali x4 ali x6) in pade trojka (x3).
Verjetnost prvega izida je 1/2, verjetnost drugega je 1/6, in
verjetnost njune unije, torej enega ali drugega, je 1/2 + 1/6 = 4/6.

Kakšna je verjetnost, da pri metu kocke pade x3 in pri naslednjem
metu x5? Da bomo bolj splošni, recimo: kakšna je verjetnost, da
se v prvem poskusu pokaže elementarni izid A in pri drugem
poskusu elementarni izid B? To je tudi svojevrsten izid (dvojnega)
poskusa. Poimenujemo ga presek obeh izidov ter ga označimo kot
izid (A ∩ B). Iz definicije verjetnosti neposredno sledi

P(A ∩ B) = P(A) · P(B) .

Verjetnost, da se pri prvem poskusu pokaže izid A in pri drugem
izid B, je enaka produktu verjetnosti obeh posamičnih izidov.
Seveda velja vse povedano tudi za več poskusov in za izide, ki
niso elementarni. V vsakem primeru pa morajo biti poskusi
medsebojno neodvisni, to je, izid drugega poskusa ne sme biti
odvisen od izida prvega poskusa. Da poštena kocka pokaže prvič
x3 in druga x5, se zato zgodi z verjetnostjo 1/6 · 1/6 = 1/36.

33.5 Binomska porazdelitev
Verjetnost, da pri metu kocke pade šestica, torej x6, naj bo 1/6.
Verjetnost, da ne pade šestica, pa je zato 1 − 1/6 = 5/6. Zanima
nas, kolikšne so verjetnosti, da v 5 metih pade šestica natanko
0-krat, 1-krat … 5-krat. Poskusi so sedaj petorke metov,
opazovani izid pa število šestic, n, v vsaki petorki. Mečemo
petorke v nedogled. Sproti štejemo, kolikokrat vsebujejo 0 šestic,
1 šestico in tako naprej. S tem so čedalje natančneje določene
relativne frekvence Pn. Hočemo jih izračunati.

Bolj splošno lahko nalogo postavimo takole. Delamo take
poskuse, ki imajo le dva izida, "uspeh" T in "neuspeh" F.
Verjetnost za uspeh naj bo p in za neuspeh 1 − p = q. Kakšna je
verjetnost, da je v N poskusih natanko n uspešnih?

En način, na katerega se lahko pojavi n = 2 uspehov v N = 5
poskusih, je TTFFF. Verjetnost tega izida znaša
p · p · q · q · q = pn qN−n. Vendar obstajajo še drugi načini, na primer
FFFTT in TFFFT in še mnogi. Vsak izmed njih je enako verjeten,
ker so zaporedni poskusi med seboj neodvisni. Verjetnosti vseh
moramo sešteti. Koliko različnih N-teric pa pravzaprav lahko
sestavimo iz n črk T in iz (N − n) črk F? Toliko, kolikor je
permutacij N elementov, od katerih je n enakih in (N − n) tudi
enakih: N!/n!(N − n)!. Iskana verjetnost je torej:
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Slepo reševanje
testov

P(n) =
N!

n!(N − n)!
pn (1 − p)N−n = BN,p(n) .

To je binomska porazdelitev (J. BERNOULLI). Pove nam, kakšna je
verjetnost, da v N poskusih zadenemo natanko n uspešnih izidov,
če je verjetnost takega izida pri posamičnem poskusu enaka p. Da
v petih metih kocke pade natanko ena šestica, se torej zgodi z
verjetnostjo 0,16.

Slika 33.3 Binomska porazdelitev. Prikazana
je verjetnost, da v deseterici metov
poštenega kovanca pade glava
0, 1, 2 … 10-krat.

Vsota verjetnosti vseh možnih izidov pri enem poskusu (N-terici
metov) mora biti enaka ena, to je, porazdelitev verjetnosti mora
biti normirana. Malo nas skrbi, ali to za izpeljano binomsko
porazdelitev res drži. Eksplicitno zapisana vsota ∑ BN,p(n) znaša
CN

0 qn + CN
1 pqn−1 + … CN

N pn. To pa ni nič drugega kot razviti
binom (q + p)n, torej ((1 − p) + p)n, torej 1n = 1. Skrb je odveč,
porazdelitev je normirana.

Lep primer "uspešnega" poskusa je slepo reševanje šolskih testov.
Učenec dobi 5 vprašanj. Ob vsakem so navedeni 3 odgovori in
samo eden izmed njih je pravilen. Vsi odgovori se zdijo učencu
enako verjetni, zato na slepo izbere enega. Verjetnost, da je prav
uganil, je zato 1/3. Število uspehov, ki jih tako doseže, znaša od 0
do 5. Verjetnost, da doseže 4 ali 5 uspehov, je
B5,1/3(4) + B5,1/3(5) ≈ 0,045. Kaj takega se torej zgodi enkrat v
1/0,045 ≈ 20 testih.

Namesto da en učenec slepo opravi neskončno testov, si lahko
mislimo neskončno učencev, ki na slepo opravijo en test.
Frekvenčni porazdelitvi po rezultatih sta v obeh primerih enaki.
Če je torej potrebnih ∼ 20 testov, da en učenec slučajno doseže
štiri ali pet točk, to slučajno uspe enemu izmed množice ∼ 20
učencev.

Še beseda o slepem izbiranju. Izbira enega izmed množice
elementov, recimo enega izmed treh odgovorov, je slepa, če ima
vsak element enako verjetnost, da je izbran. Dober način za to je
naslednji: vse elemente oštevilčimo, številke zapišemo na listke in
jih zapremo v čim bolj enake kroglice, vržemo kroglice v vrteč se
boben ter čez nekaj časa z zavezanimi očmi potegnemo iz njega
eno kroglico. Za prvo silo, če je elementov malo, zadostujejo kar
prepognjeni listki in navaden klobuk. Da opisana načina res
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Ožebljena deska

Porazdelitev odmikov

(33.9)

zagotavljata enako verjetnost izbire, pa se na koncu koncev ne
moremo prepričati nič drugače, kot da ju dejansko preizkusimo s
štetjem izidov.

33.6 Vsota slučajnih izidov
Na met in kotaljenje kocke učinkuje okolje z množico vplivov, ki
jih ne poznamo in na katere je izid silno občutljiv. Majhna
sprememba v začetnih in vmesnih pogojih, pa je rezultat že čisto
drugačen. To nas navede na misel, da bi vpliv okolja na gibanje
telesa lahko preučevali tudi tako, da bi po klancu spuščali
kroglico, nanjo vplivali z gozdom zabitih žebljičkov, in gledali, kje
na dnu bo pristala. Najpreprostejša je deska z N vrsticami
žebljičkov, ki so med sabo razmaknjeni za premer kroglice, pri
čemer je vsaka druga vrsta zamaknjena vstran za polovčno
razdaljo med žebljički. To je ožebljena deska.

Slika 33.4 Ožebljena deska. Ilustracija
deske, ki jo je uporabljal F. Galton.
Spuščene kroglice se razvrstijo po
binomski porazdelitvi. (Eterea Estudios)

Kroglico spustimo z vrha. Na prvi vrstici se odbije levo ali desno,
na drugi prav tako in s cikcakanjem nadaljuje vse do dna.
Verjetnost za odboj v desno naj bo vsakokrat p in za odboj v levo
q = 1 − p. Ti dve verjetnosti sta ponavadi enaki. V N trkih opravi
kroglica n korakov v desno in N−n korakov v levo. Gibanje
kroglice lahko torej opišemo kot N-kratni met kocke in štetje
"ugodnih" izidov. Ugodni izid pri spuščanju kroglice je pač korak
v (recimo) desno. Kolikokrat se bo kroglica premaknila v desno v
N trkih, je torej opisano z binomsko porazdelitvijo BN,p(n).

Neto premik v desno, m, je enak razliki premikov v desno in levo:
m = n − (N − n). Izrazimo n z m in ga vstavimo v binomsko
porazdelitev, pri čemer izberemo še p = q = 1/2, pa dobimo:

BN,1/2(m) =
N!

[(N + m)/2]! [(N − m)/2]!
(

1
2

)N.

To je verjetnostna porazdelitev leg, ki jih doseže kroglica na dnu,
oziroma delež kroglic, ki pristanejo v teh legah. Kadar izraza
N + m ali N − m nista soda, bi morali računati faktorielo
ulomnega števila. Kaj to pomeni, ne vemo in bo morda treba še
primerno definirati. Zaenkrat bomo pri konkretnem računanju
aproksimirali (n + 0,5)! ∼ n!(n + 1)/2.
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Če je ožebljena deska dolga, postane porazdelitev simetrično
zvonasta. Kakšna je ta porazdelitev, ko raste N čez vse meje, pri
čemer se omejimo še na področje m≪N?

Faktoriele velikih števil so neznansko velike, zato porazdelitev
najprej logaritmiramo. Nastane vsota logaritmov. Vsak člen oblike
ln n! aproksimiramo z integralom: ln n! = ln 1 + ln 2 + … ln n ≈
∫1

n ln x dx. Tak integral znaša (x ln x − x) |1n, torej – ko zanemarimo
še 1 v primeri z n – ln n! ≈ n ln n − n. Nato pridobljene izraze
ln (1 + m/N) aproksimiramo s kratko potenčno vrsto:
m/n − m2/2N2. Dobimo ln B ≈ −m2/2N, torej

BN,1/2(m) ≈ A · e−m2/2N.

Konstanto A smo pritaknili, ker sumimo, da smo zaradi številnih
aproksimacij zapravili normiranost izhodiščne porazdelitve. To
pomeni, da moramo to konstanto zdaj naknadno določiti iz pogoja
normiranosti, torej A = 1 / ∫ exp(−m2/2N) dm. S tem bo normalna
aproksimacija k binomski porazdelitvi popolnoma določena.

Kako izračunati normalni integral I = ∫ exp(−x2) dx med −∞ in
+∞? Takole: I2 = ∫ exp (−x2) dx · ∫ exp (−y2) dy =
∫∫ exp −(x2 + y2) dxdy. To je ploskovni integral v kartezičnih
koordinatah. Zapišemo ga v polarnih koordinatah x2 + y2 = r2 in
dxdy = rdrdφ, preoblikujemo rdr = 1/2 d(r2) in dobimo integral z
navadno eksponentno funkcijo I2 = 1/2 ∫∫ exp (−t) dtdφ. Za meji
med 0 in ∞ ter med 0 in 2π ga zlahka izračunamo in znaša π.
Koren iz tega je torej iskani normalni integral:

+∞

∫
−∞

e−x2 dx = √π .

S tem je normalizacijska konstanta določena: A = 1/√(2πN).

33.7 Normalna porazdelitev
Ko z astrolabom določamo višino zvezde ob kulminaciji, se
izmerki med seboj bolj ali manj razlikujejo. Če odmislimo
sistematične napake – ko uporabimo nenatančen kotomer ali ko
narobe odčitamo številko z njega ali ko celo merimo napačno
zvezdo – preostane še množica slučajnih napak – zaradi nihanje
astrolaba, migotanja ozračja in še kaj. Podobno se dogaja pri
merjenju drugih količin. Izmerke takšne zvezne količine x
razvrstimo v primerno široke razrede x ± dx/2 in preštejemo,
koliko izmerkov dN(x ± dx/2) pade v vsakega. S tem je določena
njihova frekvenčna porazdelitev

dP
dx

= lim
N→∞

dN(x ± dx/2)
N

= p(x) ,

ki je seveda normirana:

∫dP =∫p(x) dx = 1 .
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Normalna
porazdelitev

(33.14)

Standardna
porazdelitev

(33.15)

(33.16)

(33.17)

Pogledano z drugimi očmi: izmerek količine je slučajna
spremenljivka in (limitna) frekvenčna porazdelitev izmerkov je
njena gostota verjetnosti.

Ko narišemo gostoto verjetnosti za izmerjene kulminacije ali kako
drugo tovrstno količino, opazimo, da ima lepo zvonasto obliko, ki
je na moč podobna normalni binomski aproksimaciji, le da je
zvezna (33.10). Zato definiramo normalno porazdelitev kot
(GAUSS)

dP
dx

=
1

σ√2π
· e−(x−μ)2/2σ2 = Gμ,σ(x) .

Parameter μ pove, kje leži vrh porazdelitve in parameter σ določa
širino vrha. Kot kvadrat ga pišemo zato, da ima enake dimenzije
kot slučajna spremenljivka. Sorazmernostna konstanta poskrbi za
normiranost.

Slika 33.5 Normalna porazdelitev. Prikazana
je porazdelitev s povprečjem 0 in deviacijo 1.

Dejstvo, da so kakšni izmerki porazdeljeni normalno, nam
sporoča, da nanje vpliva – kakor na gibanje kroglice po žebljasti
deski – množica med seboj neodvisnih in nasprotujočih si drobnih
vplivov. Pravzaprav je normalna porazdelitev celo neke vrste
zagotovilo, da izmerki niso obremenjeni s sistematičnimi, ampak
zgolj s slučajnimi napakami.

S porazdelitvijo verjetnosti po spremenljivki x je določena tudi
porazdelitev po vsaki drugi, z njo povezani spremenljivki z(x):

dP
dz

=
dP
dx

dx
dz

.

Če so izmerki x porazdeljeni kot dP/dx = Gμ,σ(x), potem so
ustrezajoči normalizirani izmerki

z =
x − μ

σ

porazdeljeni kot dP/dz = (dG/dx)(dx/dz), torej takole:

dP
dz

=
1

√(2π)
· e−z2/2 = G0,1(z).

To je normalna porazdelitev z vrhom pri μ = 0 in s širino σ = 1.
Poimenujemo jo standardna porazdelitev. Verjetnost, da bo
slučajni izmerek x ležal na intervalu med x1 in x2, je zato enaka
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(33.18)

(33.19)

z G0,1(z) erf(z)
0.0 0,40 0,00
0.5 0,35 0,19
1.0 0,24 0,34
1.5 0,13 0,43
2.0 0,05 0,48
2.5 0,02 0,49
3.0 0,00 0,50

Povprečje

(33.20)

Varianca in deviacija

verjetnosti, da bo normalizirani izmerek z ležal na intervalu med
z1 = (x1 − μ)/σ in z2 = (x2 − μ)/σ. Ta verjetnost je enaka integralu
G0,1(z) med navedenima mejama. Za konkretno računanje
potrebujemo še tabelirane vrednosti G0,1(z) in njenega integrala

z

∫
0

G0,1(z) dz = erf(z) .

Slednjega izračunamo z razvojem podintegralske funkcije exp t,
t = −z2/2 v potenčno vrsto 1 + t + t2/2! + … in jo členoma
integriramo:

erf(z) =
1

√π

∞

∑
n=0

(−1)nz2n+1

n!(2n + 1)
.

Tako pridelamo tabelo

Tabela 33.1. Standardna porazdelitev in ploščina pod njo.

Verjetnost, da leži izmerek x znotraj intervala μ ± σ, je torej
2 · 0,34 = 0,68. Na intervalu ± 2σ leži z verjetnostjo 2 · 0,48 = 0,95.
In na intervalu ± 3 σ ga najdemo (skoraj) z gotovostjo 2 · 0,50 = 1.

33.8 Povprečje in varianca
Ko zaporedno zložimo N palic z dolžinami l1, l2 … lN, dobimo palico
dolžine L. Enako dolgo sestavljeno palico dobimo tudi z N
enakimi palicami dolžine l,̄ torej N · l ̄= ∑ ln. S tem je definirana
povprečna dolžina uporabljenih N palic: l ̄= (1/N) ∑ ln. Če je palic
veliko in so nekatere med seboj enake, raje računamo takole:
l ̄= (1/N) ∑ Nk lk = ∑ (Nk/N) lk = ∑ fk lk. Keficienti fk so relativne
frekvence palic enake dolžine. Kar velja za palice in njihove
dolžine, posplošimo za poljubno slučajno spremenljivko x: njeno
povprečno vrednost v limitni množici poskusov, ko fk → Pk,
definiramo kot ⟨x⟩ = ∑ xk Pk = Ave(x). Če je spremenljivka zvezna,
pa velja

⟨x⟩ =∫ x p(x) dx.

Vsota uteženih odmikov od povprečja je enaka nič: ∫ (x − ⟨x⟩) dP =
∫ x dP − ⟨x⟩ ∫ dP = ⟨x⟩ − ⟨x⟩ = 0.

Palice, iz katerih določamo povprečje, se med seboj bolj ali manj
razlikujejo. Kolikšno je to razlikovanje, povemo s povprečnim
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(33.22)
Izračun povprečij in

varianc

kvadratnim odmikom od povprečja: sl
2 = (1/N)∑ (ln − l)̄2 oziroma

sl
2 = ∑ fk (lk − l)̄2. Kar velja za dolžino palic, posplošimo na

poljubno slučajno spremenljivko: njeno varianco definiramo kot
σx

2 = ∑ (xk − ⟨x⟩)2 Pk = Var(x). Koren iz variance, σx, pa
poimenujemo deviacija. Za zvezno spremenljivko velja:

σx
2 =∫ (x − ⟨x⟩)2 p(x) dx .

Integral lahko preoblikujemo: kvadriramo podintegralski binom,
integriramo dobljene člene in pridelamo izraz

σx
2 = ∫ x2 p(x) dx − (∫ x p(x) dx)2 = ⟨x2⟩ − ⟨x⟩2 .

Če so porazdelitve podane s tabelo, računamo njihova povprečja
in variance s konkretnimi številskimi vrednostmi. Če so podane z
enačbo, pa lahko računamo s simboli. Izračunajmo povprečja in
variance tistih porazdelitev, ki smo jih že spoznali!

Za enakomerno diskretno porazdelitev (pošteno kocko) velja
⟨x⟩ = ∑ n · (1/6) = 3,5 in σx

2 = ∑ n2 · (1/6) − (3,5)2 = (1,7)2. Na interval
⟨x⟩ ± σx padejo vrednosti 2, 3, 4 in 5, to je, 2/3 vseh vrednosti.

Za binomsko porazdelitev že poznamo njeno vsoto:
∑ CN

n pn qN−n = (p + q)N. Če bi bil vsak člen vsote pomnožen s
faktorjem n, bi nastala vsota opisovala povprečje. Kako pridelati
faktorje n? Levo in desno stran odvajamo na p in nato množimo s
p. Na levi nastane povprečje ⟨x⟩ = ∑ n CN

n pn qN−n in na desni izraz
np (p + q)N−1. Ko v njem upoševamo q = 1 − p, najdemo ⟨x⟩ = Np.
Podobno izračunamo varianco – izhodiščno enačbo dvakrat
odvajamo na p in nato pomnožimo s p2. Tako dobimo σx

2 = Npq.

Pri računanju povprečja in variance normalne porazdelitve
moramo izračunati integrala oblike ∫ x exp(−x2) dx in
∫ x2 exp(−x2) dx. Prvega izračunamo tako, da spravimo x pod
diferencial, s čimer prevedemo integral v lahko rešljivo obliko
∫ exp(−t) dt. Drugega pa se lotimo po delih: u = x,
dv = x exp(−x2) dx in ga s tem prevedemo ne integral za
povprečje. Dobimo ⟨x⟩ = μ in σx

2 = σ2.

Katerokoli porazdelitev, ki ima povprečje ⟨x⟩ in varianco σx
2,

lahko aproksimiramo z normalno porazdelitvijo, ki ima isto
povprečje in varianco. Ujemanje je bolj ali manj dobro. Normalna
aproksimacija enakomerne porazdelitve je prav slaba, binomske
pa naravnost odlična, če je le njen parameter N dovolj velik.
Nekaj konkretnih grafov pokaže, da je ujemanje precej dobro že
pri N = 10.

33.9 Večdimenzijske porazdelitve
Pri nadaljnji raziskavi bo očitno nerodno uporabljati dve različni
pisavi, eno za diskretne primere in drugo za zvezna primere.
Odločimo se, da bomo uporabljali le pisavo za zvezno
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Dve spremenljivki

(33.23)

Robne verjetnosti

(33.24)

Pogojne verjetnosti

(33.25)

(33.26)

spremenljivko, ki pa jo v bomo primeru diskretnosti razumeli
takole: p(x)dx → Pk in ∫ p(x)dx → ∑ Pk.

Pri streljanju s puško v tarčo je lega zadetka slučajna
spremenljivka.

Slika 33.6 Tarča. Lega zadetka je slučajna
spremenljivka. (Anon)

Vsak zadetek ima svoj vodoravni odmik x in navpični odmik y od
središča tarče. Gostoto verjetnosti za zadetek okrog točke (x,y),
to je na intervalu (x ± dx/2, y ± dy/2), definiramo s številom strelov
dN v ta interval, deljenim s številom vseh strelov N:

d2P
dx dy

= lim
N→∞

dN(x ± dx/2, y ± dy/2)
N

= p(x, y).

Predstavljamo si jo kot ploskev oziroma kot hrib, ki je ponekod
bolj, drugod manj visok. Višina hriba na nekem mestu pove,
kakšna je tamkajšnja pogostost oziroma verjetnost zadetkov.

Verjetnost za vodoravni izid okrog x, neodvisno od tega, kakšen je
navpični izid, je vsota

dP
dx

=∫p(x, y) dy = u(x) .

Predstavljamo si, da smo ves hrib stlačili na vodoravno os, vzdolž
katere se je naredil kumulativni profil u(x). Podobno velja tudi za
tlačenje hriba na navpično os, ko nastane kumulativni profil v(y).

Kolikšna pa je verjetnost za vodoravni izid okrog x pri pogoju, da
je navpični izid okrog y? Vzdolž ozkega vodoravnega pasu okrog
y = const definiramo verjetnost

dP
dx

|y = lim
N→∞

dN(x ± dx/2)
N(y ± dy/2)

= p(x | y).

Rekli bomo, da je to pogojna verjetnost za izid okrog x glede na
izid okrog y. Predstavljamo si jo kot profil hriba vzdolž
vodoravnega prereza. Seveda velja podobno tudi za pogojne
verjetnosti vzdolž navpičnih pasov, p(y | x). Iz definicij verjetnosti,
robne verjetnosti in pogojne verjetnosti sledi

p(x, y) = u(x) v(y|x) .

Res. Verjetnost za strel okrog (x, y) je enaka robni verjetnosti za
strel okrog x, pomnoženi z ustrezno pogojno verjetnostjo za strel
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(33.27)

Povprečje in varianca

(33.28)

Kovarianca in
korelacija

(33.29)

(33.30)

Populacija in vzorci

okrog y. Kadar je slučajna spremenljivka y neodvisna od x, je
njena pogojna verjetnost v(y|x) kar enaka "nepogojni" verjetnosti
v(y) in velja že znano produktno pravilo (33.7)

p(x, y) = u(x) v(y) .

Dober primer je streljanje v tarčo, če nastane gostota exp(−r2), to
je exp(−x2 − y2), torej exp(−x2) · exp(−y2). Strelca zanaša v levo in
desno enako, neodvisno od tega, kako ga zanaša gor in dol, in
obratno.

33.10 Soodvisnost spremenljivk
Za vsako spremenljivko posebej lahko definiramo njeno povprečje
in varianco. Za spremenljivko x tako velja:

⟨x⟩ =∫∫ x p(x, y) dx dy
σx

2 =∫∫ (x − ⟨x⟩)2 p(x, y) dx dy .

Očitno sta to povprečje in varianca robne verjetnosti:
⟨x⟩ = ∫ x u(x) dx in σx

2 = ∫ (x − ⟨x⟩)2 u(x) dx. Podobno velja za
spremenljivko y.

Sama se ponuja še mešana količina

σxy =∫∫ (x − ⟨x⟩)(y − ⟨y⟩) p(x,y) dx dy .

Poimenujemo jo kovarianca. Pričakujemo, da na nek način pove,
kako močno sta spremenljivki med seboj odvisni. Preverimo to
domnevo! Če sta spremenljivki neodvisni, torej če p(x) = u(x)v(y),
se kovariantni integral zapiše kot produkt dveh integralov, od
katerih je vsak enak nič, torej je tudi kovarianca enaka nič. Če sta
spremenljivki natanko sorazmerni, torej y = kx, so odmiki od
povprečij maksimalni in koviariantni integral se reducira v kσx

2

oziroma v (1/k)σy
2. Domneva je torej potrjena. Zato je smiselno

definirati

r =
σxy

σxσy
,

to je korelacijski koeficient dveh spremenljivk. Koeficient očitno
leži med vrednostima −1 in 1. Čim večja je njegova absolutna
vrednost, tem tesnejša je medsebojna odvisnost spremenljivk.

33.11 Vzorčenje in statistika
Povprečje in varianco smo definirali za neskončno veliko množico
poskusov oziroma opazovanj oziroma meritev, to je na neskončni
(ali zelo veliki) populaciji. Rekli bomo, da sta to populacijska
parametra. Določimo ju pa seveda lahko le iz končnega vzorca;
tedaj jima bomo rekli vzorčni statistiki.

Vzorčne statistike so seveda le približek k ustreznim
populacijskim parametrom. Če je vzorec velik in slepo izbran,
pričakujemo, da je ujemanje dobro. Pojavi se vprašanje, kako
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Povprečje povprečij

(33.31)

Varianca povprečij

(33.32)

Porazdelitev povprečij

(33.33)

točne so takšne ocene, to je, kolikšne napake pri tem zagrešimo.
Poskusimo to narediti za povprečje!

Ko opravimo N poskusov in zabeležimo njihove izide, s tem iz
neskončne populacije poskusov izberemo končni vzorec. Za ta
vzorec izračunamo povprečje x.̄ Pri kakem drugem vzorcu bi
dobili drugačno povprečje. Mislimo si, da vzorčenje kar naprej
ponavljamo. Dobimo neskončno populacijo povprečij. Kakšna je
njihova povprečna vrednost ⟨x⟩̄? In kakšna je njihova varianca
σx̄

2?

Na izmerjene vzorčne vrednosti x1 … xN lahko pogledamo kot na
uresničitev N slučajnih, med seboj neodvisnih spremenljivk
X1 … XN iz osnovne populacije. Vse so porazdeljene tako, kot
osnovna spremenljivka X. Spremenljivka X1 je pri vzorčenju pač
pokazala vrednost x1, pri drugem vzorcu bi pa pokazala kaj
drugega. Podobno velja za druge spremenljivke. Izmerjeno
povprečje x̄ pa je potem uresničitev slučajne spremenljivke
X̄ = (1/N) ∑ Xn.

Kakšno je torej povprečje vzorčnih povprečij
⟨X̄⟩ = Ave(X1 + … XN)/N)? Izpostavimo faktor 1/N izven povprečja;
povprečje vsote je vsota povprečij; povprečje Xn je povprečje X; in
dobimo:

⟨X̄⟩ = ⟨X⟩ .

Povprečje vzorčnih povprečij je torej enako populacijskemu
povprečju. To je dobro.

In kakšna je varianca vzorčnih povprečij σX̄
2 = Var((X1 + … XN)/N)?

Izpostavimo faktor 1/N izven variance, pri čemer postane (1/N)2;
varianca vsote je vsota varianc; varianca Xn je varianca X; in
dobimo:

σX̄
2 =

σX
2

N
.

Vzorčna povprečja se torej stiskajo okrog populacijskega
povprečja z N-krat manjšo varianco, kot je varianca posamičnih
spremenljivk. Tudi to je dobro.

Vzorčno povprečje je (normirana) vsota N neodvisnih slučajnih
spremenljivk z isto porazdelitvijo. To močno spominja na pot
kroglice po ožlebljeni deski: ena pot, ki jo kroglica ubere, je en
vzorec z N spremenljivkami, njihova vsota pa je končni odmik
kroglice na dnu. Spremenljivke so "binomske", imajo samo dva
izida. Vsote velikega števila binomskih spremenljivk se torej
porazdelijo normalno. Morda velja to tudi za vsote velikega
števila "nebinomskih" spremenljivk? Domnevamo torej

dP
dX̄

∝ exp [−
1
2

(
X̄ − ⟨X̄⟩

σX̄
)2] .
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Natančnost meritev

(33.34)

Izboljšanje
natančnosti

Širjenje napak

Ni videti lahke poti, da bi z doslej pridobljenim znanjem domnevo
dokazali. Pa nič hudega: saj jo lahko utrdimo eksperimentalno.
Mečemo pošteno kocko. Na stranice v mislih napišemo 1, 2, 3, 3,
4, 5. Verjetnostna porazdelitev izidov je zato P(1) = 1/6, P(2) = 1/6,
P(3) = 1/3, P(4) = 1/6 in P(5) = 1/6, torej ima ⟨x⟩ = 3,0 in σx = 1,7.
Kocko vržemo 10-krat in dobimo prvi vzorec ter njegovo
povprečje (nekje med 1,0 in 5,0). To ponovimo stokrat. Dobljenih
sto povprečij porazdelimo po primerno širokih razredih.
Porazdelitev se kar dobro prilega pričakovani normalni z μ = 3,0
in σ = 1,7/√10 = 0,5. Daljši vzorci in številčnejše ponovitve
pokažejo še boljše prileganje. Seveda lahko kockine stranice
kakorkoli oštevilčimo. Bolj kot je osnovna porazdelitev različna od
normalne, daljše vzorce potrebujemo, da je njihova povprečna
vrednost zadovoljivo normalno porazdeljena.

33.12 Merjenje in merske napake
Povedano uporabimo za oceno merskih napak. Večkratna meritev
kakšne količine, recimo dolžine mize, je namreč slučajno
vzorčenje. Merjena dolžina je slučajna spremenljivka. Izmerjeno
povprečje in varianca pa sta dve statistiki, iz katerih sklepamo na
"pravo" dolžino mize. Ocenimo x̄≈ ⟨x⟩ ± σx / √N. Neznano
populacijsko deviacijo σx aproksimiramo kar z znano vzorčno
deviacijo sx, pa z nekaj drznosti zapišemo

⟨x⟩ ≈ x̄±
sx

√N
.

Kadar je izmerkov malo, se ni treba mučiti z izračunom sx. Kar na
oko ocenimo, kakšen je interval okrog povprečja, v katerega pade
2/3 izmerkov, in zapišemo ⟨x⟩ ≈ x̄± dx = x(̄1 ± dx/x)̄. Količino dx
poimenujemo absolutna napaka in dx/x̄ relativna napaka.

Čim več je meritev, tem manjša odstopanja njihovega povprečja
od prave vrednosti pričakujemo. Večkratno merjenje je torej
dober način, da izboljšamo natančnost izmerka. Žal pa se z
naraščanjem N povečuje √N le počasi. Če hočemo natančnost
povečati za faktor 10, moramo povečati število meritev za faktor
100. Pri tem pa niti ne zmanjšujemo sistematičnih napak.

Če je kakšna količina obremenjena z napako, in to je zmeraj, so
tudi njene funkcije obremenjene z napakami. Rečemo, da se
napake podedujejo oziroma se širijo. Kako to gre?

Na napako funkcije lahko pogledamo kot na njen diferencial. Pri
funkciji ene spremenljivke je to navadni diferencial in pri funkciji
več spremenljivk imamo opravka s totalnim diferencialom.
Seveda pa moramo upoštevati, da so takšni diferenciali lahko
pozitivni ali negativni. Tako z diferenciranjem dobimo naslednja
pravila.
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(33.35)

Verjetnostni interval

(33.36)

Ocena intervala

u = cx ⟹ du = |c| dx
u = x ± y ⟹ du = dx + dy

u = xy ⟹
du
|u|

=
dx
|x|

+
dy
|y|

u =
x
y

⟹
du
|u|

=
dx
|x|

+
dy
|y|

u = xn ⟹
du
|u|

= |n|
dx
|x|

u = u(x) ⟹ du = |u'| dx
u = u(x, y) ⟹ du2 = (ux dx)2 + (uy dy)2 .

Napaka vsote ali razlike je vsota napak posameznih členov.
Relativna napaka produkta ali kvocienta pa je vsota relativnih
napak posameznih faktorjev. Zlasti je nevarno takrat, kadar
naletimo na razliko dveh približno enakih členov. Tedaj je
relativna napaka lahko ogromna. Računanje odvodov je včasih
zoprno. V takem primeru lahko ocenimo kar du ≈ u(x + dx) − u(x)
oziroma du ≈ u(x + dx, y + dy) − u(x, y) za primerno izbrane
neodvisne diferenciale.

33.13 Intervalno ocenjevanje
Ko rečemo x̄= μ ± σ/√N, pravzaprav pravimo, da leži μ nekje na
intervalu [x̄− σ/√N, x̄+ σ/√N] z verjetnostjo 0,68 in izven tega
intervala z verjetnostjo 0,32. Oceno za μ pa lahko podamo bolj na
splošno takole: leži na intervalu [x̄− xα, x̄+ xα] z verjetnostjo α, na
primer 0.95. Kakšna je povezava med xα in α?

Vemo tole. Če je X̄ porazdeljen normalno kot Gμ,σ/√N, potem je
Z = (X̄ − μ)/(σ/√N) porazdeljena normalno kot G0,1. To pomeni, da
je

P(−zα ≤ Z ≤ +zα ) = P(X̄ −xα ≤ μ ≤ X̄ +xα ) = 2 erf(zα) = α
xα = zασ/√N .

Za vsako izbrano verjetnost α lahko izračunamo pripadajočo
vrednost xα. Verjetnosti 0,68, na primer, odgovarja zα = 1, torej
xα = σ/√N, kakor tudi mora biti. Verjetnosti 0,95 pa odgovarja
2-krat tolikšen interval. Če hočemo v več primerih uloviti srednjo
vrednost μ, moramo pač razširiti lovilno past.

Za izračun xα moramo poznati deviacijo populacije. Te ponavadi
ne poznamo, zato jo aproksimiramo kar z deviacijo vzorca. Širino
intervala, ki pri 95 % vzorcev vsebuje neznano povprečje μ, torej
določimo takole. Potegnemo vzorec dolžine N, iz njega
izračunamo x̄ in sx ter izračunamo x0.95 = 2sx/√N. S tem je interval
izračunan. Če ga hočemo prepoloviti, potrebujemo štirikrat večji
vzorec.

Verjetnost, da ocenjeni interval zaupanja dejansko pokrije
neznano pravo povprečje, znaša α. Rečemo, da je to stopnja
zaupanja. Seveda pa tvegamo, da povprečje leži izven intervala.

87



Domneva o povprečju

Dve vrsti napak

Druge domneve

Verjetnost, da se to zgodi, znaša 1 − α. Rečemo, da je to stopnja
tveganja.

33.14 Preizkušanje domnev
Vojaški zdravnik trdi, da je povprečna višina v populaciji vojakov
⟨x⟩ = a. To domnevo hočemo preveriti. Če domneva drži, vemo, da
je vzorčna statistika Z = (X̄ − a)/(σx/√N) porazdeljena standardno
kot G0,1(Z). Ker ne poznamo populacijske deviacije, jo
aproksimiramo z vzorčno deviacijo in dobimo statistiko
T = (X̄ − a)/(Sx/√N). Pričakujemo, da je tudi ona porazdeljena
približno kot G0,1(T). To pomeni, da je na intervalu [−tα, +tα] =
[−2, +2] pričakovati α = 95 % uresničitev te statistike. Da pade
uresničitev izven intervala, pa pričakujemo le v 5 % vzorcev. Iz
populacije torej na slepo potegnemo vzorec N vojakov in
izračunamo x,̄ sx ter iz obojega t. Če pade t znotraj postavljenega
intervala, nimamo kaj reči. Če pa pade t izven tega intervala,
lahko to razlagamo na dva načina: — domneva je sicer pravilna, a
smo imeli tako nesrečno roko, da smo naleteli na enega izmed
tistih 5 % vzorcev; — domneva je vsekekor nepravilna. Katero
izmed obeh razlag izbrati? Odločimo se, da je bolj verjetna druga
razlaga in domnevo zavrnemo.

S preizkušanjem domnev torej ne sprejemamo, ampak jih zgolj –
bolj ali manj utemeljeno – zavračamo. Očitno lahko pri tem
naredimo dve vrsti napak: domneve ne zavrnemo, čeravno je
nepravilna, ali pa domnevo zavrnemo, čeravno je pravilna. Kadar
ima zavračanje domneve hude posledice, hočemo biti nadvse
gotovi, da jo zavračamo utemeljeno. Takrat gledamo interval
[−3, +3] in ustrezno verjetnost 99,8 %.

Ko zavračamo domnevo, moramo vsekekor povedati, pri kakšni
stopnji tveganja 1 − α to počnemo. Tako rečemo, da smo domnevo
zavrnili pri stopnji tveganja 5 %, oziroma da se vzorčni podatki
statistično značilno razlikujejo od domneve pri tej stopnji
tveganja. Stopnja tveganja pove, kolikšna je verjetnost, da smo
domnevo zavrnili, čeravno je pravilna.

Domnevamo, da lahko na podoben način zavračamo
najrazličnejše domneve o populacijah, na primer: varianca
porazdelitve je enaka neki vrednosti; povprečji dveh porazdelitev
sta enaki; varianci dveh porazdelitev sta enaki; porazdelitvi sta
enaki; in še kaj. Postopek je vedno enak: postaviti moramo
ustrezno cenilko in zanjo določiti porazdelitev. Potem pogledamo,
kako verjetna je dejanska uresničitev cenilke in se glede na to
odločamo. Vse to je seveda lažje reči kot narediti. Podrobnejšo
obravnavo zato prepustimo tistim, ki to potrebujejo (FISCHER).
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Določitev koeficientov

(33.37)

(33.38)

Ocena napak

(33.39)

33.15 Regresijska analiza
Soodvisnost dveh spremenljivk, tabeliranih v N parih (xn, yn)
lahko aproksimiramo s premico, ki se jima "najbolj prilega".
Najboljše prileganje definiramo takole: vsota kvadratov odmikov
ene spremenljivke od premice naj bo minimalna. Minimiziramo
lahko odmike yn ali xn; v splošnem se dobljeni premici razlikujeta.
Najbolje je minimizirati odmike tiste spremenljivke, ki ima večjo
deviacijo. Naj bo to spremenljivka y. Zaradi preprostosti še
privzamemo, da so deviacije spremenljivke x enake nič.

Slika 33.7 Povezava med kajenjem in rakom. Za 44 ameriških držav je bilo
določeno, koliko cigaret na prebivalca je bilo prodanih v letu 1960 in koliko
smrti na 100 tisoč prebivalcev zaradi raka na mehurju je bilo zabeleženih v
istem letu. (Fraumeni, 1968)

Iščemo torej funkcijo

y* = A + Bx

tako, da bo ∑ (y*n − yn)2 = ∑ (A + Bxn − yn)2 = Q(A, B) minimalen.
Postavimo ∂Q/∂A = 0 in ∂Q/∂B = 0, s čimer pridelamo dve linearni
enačbi z dvema neznankama A in B: AN + B∑ xn = ∑ yn in
A ∑ xn + B ∑ xn

2 = ∑ xnyn. Iz enačb izračunamo obe neznanki in s
tem je regresijska premica določena (GAUSS):

A =
(∑ xn

2)(∑ yn) − (∑ xn)(∑ xnyn)
Δ

B =
N(∑ xnyn) − (∑ xn) (∑ yn)

Δ
Δ = N(∑ xn

2) − (∑ xn)2.

Vzorčne vrednosti yn imamo lahko za uresničitev slučajnih
spremenljivk Yn. Predpostavimo, da je vsaka izmed teh
spremenljivk porazdeljena normalno okrog svoje srednje
vrednosti A + Bxn z isto "lokalno" deviacijo σ. Zato so vse
spremenljivke Yn − A − Bxn porazdeljene normalno kot G0,σ. Iz
tega sklepamo, da je dobra ocena za lokalne deviacije kar enaka
"globalni" deviaciji

sy
2 =

1
N

∑ (yn − A − Bxn)2 .
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(33.40)

Majhen vzorec

Neslučajen vzorec

Golo povprečje

Korelacija kot vzrok

Parametra A in B sta čisti funkciji izmerkov y1 … yN. Zato sta njuni
deviaciji oz. napaki sA in sB določeni kar z deviacijami oz.
napakami sy slednjih. V obrazec za širjenje napak
sA

2 = ∑ (∂A/∂yn · sy)2 vstavimo ∂A/∂yn = [(∑ xn
2) − xn(∑ xn)]/Δ in

dobimo, po nekaj računanja,

sA
2 = sy

2 ∑ xn
2 / Δ

sB
2 = sy

2 N / Δ .

Podobno obravnavamo tudi linearno regresijo več spremenljivk.
Kogar to veseli, pa se lahko loti celo nelinearne regresije.

33.16 Statistično zavajanje
Pravijo, da obstajajo tri vrste laži: navadna laž, huda laž in
statistika. Nedvomno je res, da je statistika močno orodje za
raziskavo množice podatkov, če jo seveda prav uporabljamo. Je pa
tudi res, da se jo da zlorabiti na najrazličnejše načine. Pogosto to
počno politiki in prodajalci. Kakšni so njihovi glavni načini
zavajanja?

Osnova statistike je vzorčenje. Vzorec mora biti dovolj velik, da iz
njega lahko karkoli sklepamo. Beremo recimo, da se 33,3 %
študentk na univerzi N. N. poroči s svojimi profesorji. Natančne
številke in decimalna mesta nas prepričujejo, da raziskovalec ve,
o čem govori. Surove številke pa govorijo drugače: v obdobju
raziskave so bile na univerzi vpisane tri študentke, od katerih se
je ena poročila s profesorjem.

Vzorec mora biti tudi slučajen. Ko anketiramo ljudi, mora imeti
vsak človek enako verjetnost, da ga izberemo. Beremo recimo, da
73 % Slovencev nasprotuje smrtni kazni. Vprašamo se: katerih
Slovencev? Pokaže se, da je raziskavo naredil levičarski časopis
N. N. preko vprašalnikov, ki jih je kar priložil časopisu. Ta časopis
kupujejo pretežno levičarji in ti imajo bolj odklonilen odnos do
smrtne kazni kot desničarji. Sklepanje na celotno populacijo je
povsem neutemeljeno.

Povprečje nič ne pove o razpršenosti izmerkov okrog njega.
Podjetje N. N. na primer objavi, da znaša povprečna mesečna
plača njihovega delavca solidnih 3000 dolarjev. Lepo in prav,
dokler ne odkrijemo, da je v podjetju zaposlenih 9 delavcev in en
direktor. Direktor ima 21.000 dolarjev plače in delavci po
mizernih 1000 dolarjev. Skoraj vsakdo je pod navedenim
povprečjem!

Korelacija ne pomeni vzročne odvisnosti. Študentje, ki kadijo,
imajo nižje ocene. To je verodostojno statistično dokazano. Torej
kajenje povzroča slabe ocene? Morda celo otopi možgane? Nič od
tega: če gresta kajenje in slabe ocene skupaj, to še ne pomeni, da
kajenje povzroča slabe ocene. Morda je ravno obratno: slabe
ocene silijo študente h kajenju. Ali pa nobeno ne povzroča
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Obrezani grafi

Obramba

drugega, marveč je oboje posledica kakega tretjega vzroka. Je
morda tako, da družabni ljudje, ki ne jemljejo preveč resno knjig,
hkrati tudi kadijo več?

Kako cene rastejo, najlepše pokažemo z grafom. Recimo, da
kakšna cena v desetih letih naraste od 100 na 110 dolarjev. Na
grafu z višino 5 cm, ki ima navpično os oštevilčeno od 0 do 120, je
rast cene zelo položna krivulja. Morda nam to ni všeč? Odrežimo
spodnji in zgornji del grafa (z izgovorom, da sta itak prazna) ter
prikažimo zgolj navpični interval med 100 in 110 dolarji, seveda
raztegnjen na isto višino. Mnogo bolje! Graf je sedaj zelo strma
krivulja, ki kar kriči, kakšen hud porast cen se je zgodil. Nič ni
bilo ponarejenega – razen vtisa, ki ga graf zapusti. Podobno lahko
polepšamo tudi druge vrste grafov.

Kako si pomagamo, da nas takšne "statistike" in sklepi iz njih ne
zavedejo? Tako, da odgovorimo na nekaj vprašanj. Kdo to pravi?
Kako to ve? Kaj vse manjka (velikost vzorca, način vzorčenja,
povprečje brez deviacije, testiranje domnev brez stopnje
tveganja, korelacijski parametri brez ocenjenih napak, grafi brez
meril)? Ali je vse skupaj smiselno? Nikoli pa tudi ne smemo
pozabiti, da je statistika vredna zgolj toliko, kot so verodostojni
podatki, na katerih sloni. □
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34

Opis gibanja

(34.1)

(34.2)

(34.3)

(34.4)

(34.5)

Dinamika
Delci – Sistemi delcev – Gibalna količina – Vrtilna količina –
Kinetična energija – Gibanje togega telesa – Vrtenje okoli stalne
osi – Premikanje osi vrtenja – Nihanje togih teles – Splošno nihanje
teles – Gravitacijska konstanta – Gravitacijsko polje – Gibanje
planetov

34.1 Delci
Premiki teles v prostoru so bili izhodišče za vpeljavo vektorjev in
vodilo pri razvoju računanja z njimi. Zdaj, ko je vektorski račun
zgrajen, postane močno orodje za opisovanje vsakršnega gibanja.
Kar smo o gibanju že dognali in zapisali, hočemo zato povzeti v
vektorski obliki. Študirali pa smo točkasta telesa, to je taka, ki so
majhna v primerjavi z opravljenimi premiki.

Gibanje točkastega telesa – delca – v vsakem trenutku opišemo z
vektorjem lege glede na poljuben koordinatni sistem:

r= (x, y, z) .

Ko se delec giblje, mu vektor lege vestno sledi. Je torej funkcija
časa. Sprememba vektorja lege v kratki časovni enoti opisuje
kratek premik:

dr= ds= (dx, dy, dz) .

Z vektorjem premika sta določena vektor hitrosti v in vektor
pospeška a:

v=
ds
dt

= (vx, vy, vz)

a=
dv
dt

= (ax, ay, az) .

Premik ds je iz izbranega izhodišča (iz katerega raste enotni
kazalec er) viden kot zasuk za kot

dφ=er ×
ds
r

.

Z vektorjem zasuka sta določena vektor kotne hitrosti ω in vektor
kotnega pospeška α:

ω=
dφ
dt

α=
dω
dt

.

Dolžinske in kotne vektorske količine so med sabo povezane.
Kratki računi pokažejo:
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(34.6)

Sile in gibanje

(34.7)

(34.8)

Met palice

v=ω× r
at =α× r
ar = −ω2r
a2 =at

2 +ar
2 .

Če okolica ne vpliva na delec, se ta giblje premo in enakomerno.
Vpliv okolice – silo F – postuliramo, kot znano (19.5), preko mase
in pospeška delca :

m
dv
dt

= m
d2r
dt2 =F .

Gibalni zakon množimo na obeh straneh s premikom ds,
upoštevamo dv/dt · ds= dv · ds/dt = dv ·v, integriramo in dobimo,
kot znano (19.13), izrek o kinetični energiji:

∫F · ds=
mv2

2

2
−

mv1
2

2
= Δ K.

Delo sile je enako spremembi kinetične energije. S tem smo
povzeli vsa glavna dosedanja spoznanja o gibanju točkastih teles.

34.2 Sistemi delcev
Telesa okrog nas, gledana od blizu, pa niso točkasta, ampak so
razsežna. Takšno razsežno telo si lahko predstavljamo kot sistem
delcev, medsebojno povezanih s poljubnimi silami. Kamen,
človeško telo, Zemlja in Osončje, vse to so sistemi delcev. Vsak
delec v sistemu čuti sile od drugih notranjih delcev (notranje
sile), pa tudi iz okolice (zunanje sile). Postuliramo, da sta sili med
dvema delcema v sistemu nasprotno enaki in ležita na njuni
zveznici. Tak sistem se pod vplivom zunanjih in notranjih sil ter
pod vplivom zunanjih in notranjih navorov nekako giblje. Kaj
lahko povemo o tem gibanju?

Ko vržemo palico v zrak, se sicer prekopicuje, vendar na nek
način vendarle zarisuje parabolo, kakor to dela točkast kamen.
Kaže, da se po paraboli giblje neka odlikovana točka palice, ki
leži blizu njenega središča. Takoj pomislimo, da bi to lahko bilo
težišče. Zaradi previdnosti pa tej točki recimo raje masno
središče. Domnevamo, da mora za gibanje masnega središča
palice veljati ista gibalna enačba, kot če bi bila vsa masa palice
stisnjena vanj.

Slika 34.1 Skok z motornim kolesom.
Odlikovana točka vozila in voznika – njuno
masno središče – se giblje po paraboli. (Anon)
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Masno središče

(34.9)

(34.10)

(34.11)

Težišče

Gibalna količina

(34.12)

(34.13)

Namesto palice si mislimo poljuben sistem delcev. Ni treba, da je
tog. Na i-ti delec sistema deluje sila Fi = d2 (miri) / dt2. Povzročajo
jo notranji delci in okolica. Vsota sil na vse delce je
F= ∑Fi = ∑ d2 (miri) / dt2 = d2 (∑ miri) / dt2. Ker se notranje sile med
seboj paroma izničujejo, je to pravzaprav vsota vseh zunanjih sil.
Enačbo lahko preoblikujemo v obliko

F= m
d2r*
dt2 ,

pri čemer je m = ∑ mi celotna masa sistema in r* lega masnega
središča, ako vpeljemo

r* =
1
m

∑mi ri .

To je torej lega masnega središča. Popolnoma in enolično je
določena z legami in masami vseh delcev sistema. Masno
središče lahko leži "znotraj" ali "zunaj" sistema. Giblje se s
hitrostjo

v* =
dr*
dt

,

kakor pač velevajo zunanje sile. Kadar je vsota zunanjih sil enaka
nič, se masno središče sistema giblje premo in enakomerno.

Ali masno središče res sovpada s težiščem? Telo, podprto v
težišču, se ne vrti, ker je vsota navorov teže enaka nič. Za eno
koordinato torej velja 0 = ∑ mig · xi = g ∑ mixi, pri čemer so xi
odmiki od težišča. Zato mora biti ∑ mixi = 0, torej mx* = 0, torej
x* = 0. Masno središče je res tam, kjer je težišče. Če pa telo ni v
homogenem težnem polju, tega ne moremo trditi. Zaradi
kratkosti bomo v nadaljevanju govorili kar o težišču.

34.3 Gibalna količina
Kadar je vsota zunanjih sil enaka nič, velja v* = const. Torej je
tudi mv* = const oziroma ∑ mivi = const. Posamični delci se sicer
gibljejo na različne načine, vendar se njihovo gibanje pokorava
zapisani omejitvi. Kaže, da je produkt med maso in hitrostjo
pomembna količina. Poimenujemo jo gibalna količina in
definiramo

G= mv* =∑mivi .

Iz F= d2(∑ miri)/dt2 = d(∑ mivi)/dt očitno sledi

∫Fdt = ΔG .

To je izrek o gibalni količini (EULER). Če je sistem izoliran, torej
če ni zunanjih sil, se njegova gibalna količina ohranja, sicer pa je
njena sprememba enaka sunku zunanjih sil. Poglejmo nekaj
primerov.
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Trk dveh teles

(34.14)

Balistično nihalo

Potisna sila curka

(34.15)

Dva avtomobila vozita drug proti drugemu in se čelno zaletita ter
sprimeta. Kako se giblje sprijeta zverižena pločevina?

Slika 34.2 Trk dveh avtomobilov. Pri tem se
ohranja gibalna količina. (Guardian)

Dvojica avtomobilov je sistem, na katerega ne delujejo zunanje
sile (teža nima vpliva na vodoravno gibanje). Gibalna količina
sistema se ohranja; po trku je enaka kot pred njim:

m1v1 + m2v2 = (m1 + m2)v .

Če sta avtomobila enako težka in se gibljeta z enakima
hitrostima, po trčenju lepo obmirujeta. Sicer pa težje in/ali
hitrejše vozilo potisne drugega nazaj. Dvakrat lažje vozilo mora
imeti dvakrat večjo hitrost, da zaustavi nasprotnika.

Trk teles z znanimi masami ponuja dober način za merjenje
njunih hitrosti. Puškino ali revolversko kroglo mase m1 in
neznane hitrosti v1 izstrelimo v mirujočo težko klado mase m2, ki
je obešena kot točkasto nihalo. Krogla obtiči v kladi. Gibalna
količina se ohranja: m1v1 = (m1 + m2)v. Klada se odmakne in
zaniha. Njena hitrost skozi ravnovesje je, kot vemo [18.7],
odvisna od amplitude nihanja: v = x0√(g/l). Izmerimo odmik x0 in s
tem je hitrost krogle enolično določena. Za tipične revolverje
znaša okrog 300 m/s.

Z vodnim curkom iz gumijaste cevi zalivamo trato. Ko zadene
curek na kakšno oviro, recimo na kamen, ga premakne. Očitno
nanj deluje z neko silo. S kakšno silo deluje vodni curek na ravno
oviro pri pravokotnem vpadu? V času dt vpade na oviro masa
dm = ρSvdt = Φmdt vode. To je naš sistem. Temu sistemu se
spremeni hitrost od v na nič, torej gibalna količina za dG = −vdm.
Sprememba gibalne količine na enoto časa pa je sila, s katero
deluje ovira na curek, torej tudi sila, s katero deluje curek na
oviro:

F = Φmv .

Silo vodnega curka, kot inženirji, izkoristimo za pogon vodnih
turbin, ki ženejo električne generatorje. Iz visoko ležečih jezer
vodimo vodo po cevi v dolino. Lopatice turbine oblikujemo v
obliki čaše, tako da vpadajoča voda ne spolzi na tla, ampak se
odbije nazaj. Tako je sprememba gibalne količine dvakrat večja
kot sicer in toliko je večja tudi sila na lopatice. Namesto vodnih
curkov lahko uporabimo tudi curke vodne pare, ki jo pripravljamo
v visokotlačnih kotlih. To so parne turbine.
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Odriv dveh teles

Reakcijska sila curka

Raketna enačba

(34.16)

Ko iz puške izstrelimo kroglo, udari puška nazaj. Krogla in puška
sta sistem dveh teles, ki pa sedaj ne trčita skupaj, ampak se
odrineta narazen. Pri tem se ohranja gibalna količina.
Ohranitvena enačba je prav takšna kot pri trku dveh avtomobilov:
(m1 + m2) · 0 = m1v1 + m2v2. Kolikorkrat je puška težja od krogle,
tolikokrat počasneje sune nazaj. Tipična krogla ima maso 10 g in
odleti s hitrostjo 300 m/s. Tipična puška ima maso 3 kg, zato sune
nazaj s hitrostjo 1 m/s. Očitno puška ne sme biti prelahka, sicer bi
postala nevarna za strelca samega.

Namesto da streljamo kroglo iz puške, izpuščamo curek
stisnjenega zraka iz napihnjenega balona skozi njegovo ustje.
Balon odleti v nasprotno stran kot curek. Kakšno silo čuti balon?
Drugače rečeno: kakšna je reakcijska sila curka? Očitno je to
nasprotni pojav kot pri vpadu curka na oviro, zato je tudi
razmislek enak in celo rezultat je isti: F = Φmv.

Slika 34.3 Izstrelitev rakete. Prikazana je ena izmed
raket, razvitih med drugo svetovno vojno. Končna
hitrost rakete je odvisna od deleža pokurjenega
goriva in hitrosti izpuha. (NASA History Office)

Ne da bi poznali reakcijsko silo curka, smo jo kot ribiči in
mornarji že od nekdaj izkoriščali za pogon čolnov: z vesli smo
odrivali vodo nazaj in reakcija je potiskala čoln naprej. Kot
inženirji pa namesto vesel raje uporabimo vijake. Ladijski vijaki
zajemajo iz okolice vodo in jo potiskajo nazaj. Isto počno letalski
vijaki z zrakom. Oboji jemljejo potisno snov iz okolice. Lahko pa
vozilo takšno snov tudi vozi s seboj: v rezervoarjih ima spravljen
tekoči kisik in tekoči vodik ali kaj podobnega. Sproti ju sežiga in
nastale vroče pline izpušča skozi zadnje šobe. To je raketa. Z
raketami sežemo v zunanje plasti ozračja in merimo tamkajšnje
pojave. Izmerke s padalom vrnemo na tla. Nobene tehnične ovire
ni – razen krmiljenja –, da prej ali slej poletimo okoli Zemlje, na
Luno in na Mars!

Kako pa se giblje raketa, če ni zunanjih sil? V izbranem trenutku
ima raketa skupaj z gorivom maso m in hitrost v. Ko izvrže maso
dm goriva z relativno hitrostju u, se ji poveča hitrost za dv.
Gibalna količina se ohranja: m dv + u dm = 0. Izrazimo dv in
integriramo, pa dobimo

v − v0 = u ln
m0

m
.
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Vrtilna količina

(34.17)

Vrtilna količina težišča

(34.18)

To je raketna enačba (CIOLKOVSKI). Hitrost, ki jo raketa doseže, je
odvisna le od masnega deleža pokurjenega goriva in od hitrosti
izpuha. Če si mislimo, da drsi raketa po gladki Zemljini površini
brez trenja in zračnega upora ter da ima hitrost izpuha 4 km/s, bi
za doseg orbitalne hitrosti 8 km/s potrošila preko 85 % svoje
začetne mase. Seveda pa moramo raketo izstreliti poševno
navzgor, pri čemer jo zaustavljata gravitacija in upor zraka. Oboje
se izraža kot izguba dosežene hitrosti za gt cos θ; ta izraz moramo
odšteti na desni strani raketne enačbe. Ocenimo, kolikšen delež
mase je potreben, da raketo spravimo do orbite! Naj se raketa
dviguje s pospeškom a = 10 m/s2. Do višine h = 300 km se povzpne
v času t = √(2h/a) ~ 250 s. V tem času izgubi gt ~ 2,5 km/s
pridobljene hitrosti. Raketa mora torej pokuriti toliko mase, da bi
brez gravitacijskega zaviranja dosegla hitrost 10,5 km/s. Za to pa
porabi okrog 95 % mase. Spraviti tono težek satelit v orbito
zahteva dvajsettonsko raketo. Da pokurimo čim manj dodatne
mase, mora raketa doseči orbito čim prej, to je, dvigovati se mora
s čim večjim pospeškom. Žal pa ljudje, ki jih morda raketa nosi,
prevelikih pospeškov ne prenesejo.

34.4 Vrtilna količina
Ko na i-ti delec deluje sila Fi, deluje nanj hkrati tudi navor glede
na poljubno izhodišče: Mi = ri ×Fi = ri × d(mivi)/dt. Desno stran
lahko zapišemo kot d(ri × mivi)/dt. Ta izraz, ko ga diferenciramo,
je namreč vi × mivi + ri × d(mivi)/dt, pri čemer je prvi člen enak
nič. Seštejemo navore na vse delce, pri čemer se notranji navori
medsebojno izničijo, in dobimo

L= ∑ ri × mivi

∫Mdt = ΔL .

Vpeljali smo vrtilno količino L. Če je sistem izoliran, se vrtilna
količina ohranja, sicer pa je njena sprememba enaka sunku
zunanjih navorov. To je izrek o vrtilni količini glede na poljubno
središče (EULER). Seveda velja tudi za težišče.

Vrtilna količina glede na poljubno izhodišče in vrtilna količina
glede na težišče sta številčno različni. Pojavi se vprašanje, ali sta
med seboj kako povezani. Če s črtico označimo vektorje v
težiščnem sistemu, velja ri = r* + ri' in vi =v* +vi'. Oboje vstavimo
v definicijsko enačbo za vrtilno količino, križema pomnožimo in
dobimo štiri člene: r* × mv*, r* × ∑ mivi' (∑ miri') ×v* in
∑ (ri' × mivi'). Vsoti v drugem in tretjem členu sta enaki nič, zato
preostane:

L= r* × mv* +L* .

Prvi člen je vrtilna količina težišča glede na aktualno izhodišče,
drugi pa vrtilna količina glede na težišče.
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Kroženje planeta

Pirueta drsalke

Zvezdna pirueta

Kinetična energija

(34.19)

Poglejmo nekaj primerov. Sonce in Zemlja tvorita sistem, ki je od
zunaj le malo moten. Privzemimo, da je popolnoma izoliran. Ker
je Sonce mnogo težje od Zemlje, privzemimo še, da je težišče
sistema kar v središču Sonca. Sistemu se ohranja vrtilna količina
glede na težišče; k temu prispeva zgolj Zemlja: r× mv= const,
torej r×v= const. Kadar je Zemlja na svoji poti bliže Soncu, se
zato giblje hitreje, in kadar je dalje proč, se giblje počasneje.

Drsalka na ledu se zavrti okrog podporne noge s široko
razprostrtima rokama in iztegnjeno nogo. Nato pritegne roki in
nogo tesno k sebi in hitrost vrtenja se ji močno poveča. Med
vrtenjem je drsalka približno izoliran sistem, ki se mu ohranja
vrtilna količina. Ko pritegne zunanje dele telesa k sebi, zmanjša
njihove razdalje ri od vrtilne osi, zato se ustrezno povečajo
njihove obodne hitrosti vi, torej tudi kotna hitrost. Pritegnjeni
zunanji deli nato povlečejo za sabo še osrednje dele telesa. To pa
zato, ker čutijo – poleg centrifugalne sile – še odklonsko silo, ki
jih pospešuje v tangentni smeri vrtenja.

Slika 34.4 Drsalka na ledu izvaja pirueto. Kako hitro se
vrti, kažejo njeni lasje in krilo. Pri tem se ohranja vrtilna
količina. (Anon)

Vrtenje drsalke na ledu je namig, kako si lahko razlagamo vrtenje
Sonca okoli svoje osi in vrtenje planetov okoli Sonca (ter svojih
osi). Predstavljamo si, da se je Sončni sistem rodil iz ogromnega,
zelo počasi se vrtečega oblaka plinov. Notranja gravitacija je
oblak čedalje bolj sežemala in začetno vrtenje se je zato
povečevalo. Lokalne zgoščine snovi, ki so ponekod nastale, so se
nadalje stiskale in povečevale vrtenje. Končno so se zgostile v
stanje, kakršno je danes.

34.5 Kinetična energija
Ko na i-ti delec vzolž premika dsi deluje sila Fi, je opravljeno delo
dAi =Fi dsi enako spremembi kinetične energije 1/2 mivi

2.
Seštejemo delo sil na vse delce in dobimo

K =∑ 1
2

mivi
2

Aext + Aint = ΔK .

Vsota dela vseh sil – zunanjih in notranjih – je enaka spremembi
kinetične energije sistema. To je izrek o kinetični energiji.
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Kinetična energija
težišča

(34.20)

Spreminjanje energije

Določevanje težišča

Kinetična energija se ohranja le, kadar ni ne notranjega ne
zunanjega dela. Notranjega dela ni tam, kjer ni notranjega trenja
(kot pri nestisljivi in neviskozni tekočini) ali kjer ni notranjih
relativnih premikov (kot pri togem telesu).

Po zgledu vrtilne količine poskusimo razcepiti tudi kinetično
energijo na dva dela: na kinetično energijo težišča in na kinetično
energijo okrog težišča. Tako zapišemo vi =v* +vi' in vstavimo v
definicijsko enačbo za kinetično energijo. Kvadriramo in
pridelamo tri člene: 1/2 mv*2, 1/2 ∑ mivi'2 in v* ∑ mivi'. Zadnji člen je
enak nič, zato velja

K =
1
2

mv*2 + K* .

Prvi člen je kinetična energija težišča, drugi pa kinetična energija
glede na težišče. Rečemo jima tudi translacijska in rotacijska
energija.

V izoliranem sistemu se gibalna količina in vrtilna količina vedno
ohranjata, kinetična energija pa le, če ni notranjega dela. — Pri
trku dveh avomobilove začetna kinetična energija "izgine".
Porabila se je pač za notranje delo, torej za deformacijo in
segrevanje nesrečne pločevine. — Pri strelu iz puške se kinetična
energija "ustvari". Seveda je nastala na račun notranje energije
smodnika. — Pri pirueti pa je zadeva naslednja. Začetno in
končno vrtenje drsalke je togo in poteka okrog navpične osi. To
pomeni, da za vsako točko velja vi = ri ω. Vrtilno količino zato
zapišemo kot L = ω ∑ miri

2 in kinetično energijo kot
K = 1/2 ω2 ∑ miri

2. To pomeni, da K = Lω/2. Vrtilna količina se pri
tvorjenju piruete ohrani, kinetična energija pa naraste! Od kod je
prišla? Od notranjega dela, to je od drsalkinih mišic, ki so
potegnile roki in nogo navznoter in pri tem premagovale
centrifugalno ter odklonsko silo.

34.6 Gibanje togega telesa
Posebno preprost sistem delcev je tak, ki ohranja obliko; rečemo,
da je tog. Kamen, na primer, je tog sistem. V takem sistemu se
razdalja med poljubnima točkama ne spreminja. Ker so togi
sistemi poseben primer "splošnih" sistemov, velja zanje vse že
povedano. Zaradi njihove posebnosti pa pričakujemo, da bomo
lahko povedali še kaj dodatnega. Pri obravnavanju bomo privzeli,
da so togi sistemi zvezni.

Težišče togega telesa je, očitno, vedno na istem mestu glede na
masne točke, ki ga sestavljajo. Določamo ga po definicijski enačbi
(34.10), ki jo za zvezna telesa zapišemo kot mr* = ∫ rdm = ∫ rρ dV.
Homogena simetrična telesa imajo težišča v svojih prostorskih
središčih; to velja za kvader, valj in kroglo. Kratki računi
pokažejo, da je težišče stožca na 1/4 njegove višine in težišče
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Translacija in rotacija

Otroški vrtiljak

polkrogle na 3/8 njenega radija. Težišča drugih teles bomo
računali takrat, ko/če bo potrebno. "Nepravilnim" telesom
določamo težišča – kot že vemo [9.7] – tako, da jih obešamo na
vrvice.

Če je telo sestavljeno iz dveh teles A in B, ki jima poznamo
težišči, ju lahko nadomestimo s točkastima masama v njunih
težiščih. Za eno koordinato velja namreč M · x* = ∑A,B mi xi =
∑A mi xi + ∑B mixi = MA xA* + MB xB*. Težišče teh dveh točkastih mas
pa leži na njuni zveznici in je zlahka določljivo.

Posebej zvito je računanje težišča homogenega telesa, recimo
ravnila, v katerega je na enem koncu izvrtana luknja. V mislih jo
zapolnimo s primernim čepom in izračunamo težišče polnega
ravnila. Potem pa na nasprotno stran tega težišča prilepimo prav
tak čep, določimo njegovo težišče in iz obeh težišč določimo
skupno težišče.

Togo telo se lahko giblje na dva odlikovana načina: vse njegove
točke se gibljejo vzporedno ali vse točke krožijo okoli poljubne
osi. Prvo gibanje imenujemo translacija, drugo rotacija. Iz teh
dveh osnovnih gibanj lahko sestavimo poljubno gibanje. To je
zaporedje kratkih translacij težišča in majhnih rotacij okoli
trenutnih osi iz težišča. Oboje določajo okolišnje sile in njihovi
navori. Gibanje težišča opisuje izrek o gibalni količini in gibanje
okoli njega opisuje izrek o vrtilni količini. Velja še izrek o
kinetični energiji, pri čemer je notranje delo enako nič. V vseh
izrekih so hitrosti delcev izražene kot vi =ω× ri. Gibanje težišča
je takšno kot gibanje točkastega telesa in z njim ne bomo
izgubljali časa. Posvetimo se raznim oblikam vrtenja.

34.7 Vrtenje okoli stalne osi
Osnovni primer vrtenja predstavlja otroški vrtiljak z navpično
osjo. Pri praznem vrtiljaku gre ponavadi os skozi težišče, če pa
nanj naložimo kakšen zaboj, se težišče premakne in os ne gre več
skozenj. Privzeli bomo, da je os poljubna, to je, da gre bodisi
skozi težišče ali izven njega.

Slika 34.5 Vrtiljak. Vsi deli vrtiljaka se vrtijo okoli
stalne navpične osi z enako kotno hitrostjo.
Hitrost vrtenja je določena z zunanjimi navori, ki
jih izvajajo igrajoče se deklice. (Warnock, T.)

Podnožje osi vzamemo za izhodišče koordinatnega sistema. Delec
i vrtiljaka je oddaljen od izhodišča za li in od navpične osi za ri ter
se giblje s tangentno hitrostjo vi. Njegova vrtilna količina zato
znaša Li = mi li vi. Za navpično komponento velja Lz,i / Li = ri / li,
torej Lz,i = mi ri vi = mi ri

2 ω. Seštejemo po vseh delcih in dobimo za
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(34.21)

Vztrajnostni moment

(34.22)

Določanje momentov

Kinetična energija

(34.23)

Kroženje težišča

vrtilno količino v navpični smeri (indeks z bomo odslej kar
izpuščali):

L = Jω
J =∑mi ri

2 .

Količino J poimenujemo vztrajnostni moment vrtiljaka glede na
aktualno navpično os. Odvisen je od mase in njene razporeditve
okoli osi. Opazimo, da je prav vseeno, kje na tej osi izberemo
izhodišče. Vsakokratna vrtilna količina in vztrajnostni moment
okrog navpične osi sta zmeraj enako velika.

Sprememba vrtilne količine je seveda enaka vsoti zunanjih
navorov, kar pa v primeru togega telesa zdaj zapišemo v
preprostejši obliki:

M =
dJω
dt

= J
dω
dt

.

Enačba ima popolnoma enako obliko kot gibalni zakon za premo
gibanje. Zato takoj uvidimo: če navorov ni, je vrtenje
enakomerno. Stalni navor pa povzroči enakomerno pospešeno
vrtenje.

V zvezni obliki zapišemo vztrajnostni moment (34.21) kot
J = ∫ r2 dm = ∫ r2 ρ dV. Kratki računi pokažejo naslednje. Tanek
cilinder polmera r ima vztrajnostni moment (okoli simetrijske osi)
mr2. Enako težek valj z enakim polmerom ima 1/2 tega, krogla
2/5 tega in drog zgolj 1/3 tega. Vztrajnostni moment
sestavljenega telesa, recimo tankega cilindra in na njem
položenega prečnega trama, se seštevajo. Posebej zvito je spet
računanje, kadar ima osnovno telo kakšno luknjo. Velja namreč
Jfull = Jdrilled + Jplug.

Podobno kot vrtilno količino poenostavimo tudi izraz za kinetično
energijo. V njeni definicijski enačbi (34.19) nadomestimo
tangentne hitrosti vi z riω in dobimo

K =
1
2

J ω2 .

Mimogrede še opazimo, da velja K = Lω/2. Sprememba kinetične
energije je seveda enaka delu zunanjih sil, saj je delo notranjih sil
enako nič. K delu prispevajo le tangentne komponente sil, torej
A = Ft r dφ = M dφ.

Vrtenje vrtiljakove ploščadi okrog aktualne navpične osi, ki ne
gre skozi težišče, je sestavljeno iz kroženja težišča okrog te osi in
iz hkratne rotacije okrog (vzporedne) težiščne osi. Kroženje in
rotacija imata isto kotno hitrost. Domnevamo, da se sestavljeno
gibanje izraža kot vsota obeh delnih gibanj, torej
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(34.24)

Kotaljenje po klancu

Precesija vrtavke

J = J* + mr*2

L = L* + mr*2ω

K = K* +
1
2

mr*2ω2 .

Zadnja dva izreka sta pravzaprav le specializacija izrekov o vrtilni
količini in o kinetični energiji težišča v splošnem (netogem)
sistemu, ki smo ju že spoznali. Prvi izrek pa takoj sledi iz
drugega, če slednjega zapišemo kot Jω = J*ω + mr*2ω in delimo z
ω.

34.8 Premikanje osi vrtenja
Pri vrtiljaku je os vrtenja stalna. Pri kolesu, ki ga zakotalimo po
klancu, pa se os vrtenja premika, in sicer vzporedno sama s
seboj.

Slika 34.6 Kotaljenje kolesa po klancu. Čim
večji je vztrajnostni moment kolesa, tem
manjši je pospešek njegovega težišča.

Na kolo delujeta dve sili: v težišču prijemlje in nizdol klanca vleče
komponenta teže F1 = mg sin φ. V dotikališču pa prijemlje in
navzgor po klancu deluje sila podlage F2. Zadnja sila tudi izvaja
navor F2 r glede na os kolesa. Velja F1 − F2 = ma* in F2 r = J* α. Ker
rω = vt = v*, je α = a* / r. Iz vsega skupaj sledi
a* = g sin φ / (1 + J*/mr2). Kolo se torej pospešuje manj kot drseče
sani. Večji kot je vztrajnostni moment, manjši je pospešek. Pri
krogli znaša le 5/7 drsnega pospeška in pri valju zgolj 2/3. V
vsakem trenutku je kinetična energija kolesa enaka vsoti
translacijske in rotacijske. Vsota kinetične in potencialne energije
se pa ohranja.

Otroci se od nekdaj radi igrajo z vrtavkami. Takšno vrtavko
postavimo s spodnjim koncem osi na mizo, usmerimo os navpično
navzgor in jo s prsti zavrtimo z veliko hitrostjo. Vrtavka se vrti in
njena os ostaja lepo navpična.

Slika 34.7 Vrtavka. Če jo zavrtimo z nagnjeno
osjo, se začne ta vrteti okoli navpične osi in pri
tem zarisuje plašč stožca.
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(34.25)

Zemlja kot vrtavka

Če vrtavko zavrtimo s poševno nagnjeno osjo, se zgodi nekaj
presenetljivega: vrtavka ne pade, ampak začne njena os krožiti
okrog navpičnice. Pri tem zarisuje plašč stožca. Pojavu rečemo
precesija. Kaj lahko povemo o njem?

Vrtilna količina vrtavke L je usmerjena vzdolž njene osi. V časovni
enoti dt se os zavrti za kot dθ okrog navpičnice. Velikost vrtilne
količine se pri tem ne spremeni po velikosti, ampak le po smeri.
Velja dL = L0 sin φ dθ . Sprememba vrtilne količine na časovno
enoto znaša dL/dt = L sin φ Ω. Povzročiti jo je moral nek navor.
Tega izvaja teža, ki prijemlje v težišču vrtavke, glede na
dotikališče osi s tlemi. Navor M = mg sin φ je vodoraven. Ko
upoštevamo smeri vseh vektorjev, dobimo:

M=Ω×L .

Vrtavkina os precedira s kotno hitrostjo Ω okoli navpičnice.
Precesija je tem hitrejša, čim večji je navor, to je, čim bolj je
vrtavka nagnjena. Pri danem nagibu pa je precesija tem
počasnejša, čim hitreje se vrtavka vrti. Ko se zaradi trenja
vrtavka počasi ustavlja, se njena hitrost precesije veča.

Tudi Zemlja je vrtavka. Vrti se okoli polarne osi, ki je nagnjena
glede na normalo ekliptike. Na Zemljo deluje Sonce s silo, ki pada
z razdaljo (19.17). Masno središče in težišče krogle sta zato rahlo
razmaknjena. Če bi bila Zemlja popolnoma okrogla, bi ležalo
njeno težišče na zveznici med masnima središčema Sonca in
Zemlje in slednja ne bi čutila nobenega navora. Ker pa je
sploščena, ima okrog ekvatorja dodatni masni obroč. Sonce
privlači bližnji del obroča močneje kot oddaljenega in s tem izvaja
navor na Zemljo. Če se ta ne bi vrtela, bi jo sčasoma Sonce
zasukalo tako, da bi bila njena polarna os pravokotna na
ekliptiko. Ker pa se vrti, reagira kot vrtavka: vrtilna os precedira.
Sončev navor je najmočnejši ob solsticijih in enak nič ob
ekvinokcijih. Vendar deluje vedno istosučno. Enako kot Sonce
deluje na Zemljo tudi Mesec. Oba navora se seštevata. Tako smo
našli kvalitativno razlago za že dolgo znano precesijo točke gama
po nebesnem ekvatorju [7.8].

Slika 34.8 Zemlja kot vrtavka.
Polarna os zarisuje med zvezdami
krog. Trenutno kaže v smer
zvezde Severnice, ki je zato tudi
dobila svoje ime.

Ocenimo velikost precesije Ω = M / L sin φ! — Vrtilno količino
Zemlje zapišemo kot L = ω · (2/5)mR2. — Maksimalni navor na
ekvatorski obroč ocenimo z M = 2 · ΔF R sin φ. — Silo na masni
polobroč dm/2 ocenimo z gradientom gravitacijske sile,
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Težno nihalo

(34.26)

Torzijsko nihalo

dF/dr = 2 κ (dm/2) (MS/rS
3 + MM/rM

3), pri čemer vzamemo
dr = R cos φ. — Masni obroč določimo iz razlike prostornin
elipsoida z veliko polosjo a in krogle: dV = (4π/3)aR2 − (4π/3)R3,
torej po množenju z gostoto dm = m(a/R − 1). — Vse skupaj
vtaknemo v izhodiščno enačbo. Časovno spremenljivost navora
upoštevamo tako, da vzamemo kar 1/2 maksimalnega. Dobimo
rezultat Ω = (5/2) κ (MS/rS

3 + MM/rM
3) cos φ (a/R − 1) / ω. Vse

količine na desni strani poznamo in izračunamo obhodni čas
precesije ∼ 16 tisoč let. To je dobra velikostna ocena za dejansko
vrednost 26 tisoč let. Zanimivo je, da je vpliv Sonca na precesijo
manjši kot vpiv Meseca; razmerje njunih vplivov znaša okrog 1:2.

34.9 Nihanje togih teles
Na steni obešena slika zaniha, ko jo odmaknemo iz ravnovesne
lege in spustimo. Nasploh vsako togo telo, ki je vrtljivo okoli
vodoravne izventežiščne osi, niha okrog ravnovesne lege.
Rečemo, da je to težno nihalo.

Slika 34.9 Nihanje togega telesa. Teža prijemlje v
težišču in suče telo okrog ravnovesne lege zdaj sem,
zdaj tja.

Na obešeno telo deluje teža mg. Prijemlje v težišču. Ko je telo
odmaknjeno za majhen kot φ, ima teža komponento
F = −mg sin φ ≈ −mgφ proti ravnovesni legi. Ta komponenta izvaja
navor M = lF glede na obesišče. Velja M = J φ". Ker J = J* + ml2,
sledi φ" + ω0

2 φ = 0. To je znana enačba nihanja s frekvenco

ω0
2 =

g/l
1 + J*/ml2

.

Če je vse telo stisnjeno v težišče, je J* = 0 in frekvenca nihanja
postane √(g/l), kakor tudi mora biti.

Pri obešenem telesu povzroča sučno nihanje navor teže. Lahko pa
telo prebodemo skozi težišče in sučni navor povzročamo s
spiralno vzmetjo: M = −kφ. Namesto spiralne vzmeti lahko telo
obesimo kar na žico. Tako dobimo torzijsko nihalo.
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(34.27)

Prosto nihanje

(34.28)

(34.29)

Slika 34.10 Na žici obešena krožna plošča sučno niha
okoli ravnovesne lege. To je torzijsko nihalo. Čim tanjša je
žica, tem počasnejše je nihanje. (Kenyon College)

Enak premislek kot prej vodi do enake enačbe gibanja s
konstanto

ω0
2 =

k
J*

.

Torzijsko nihalo je nadvse primerno za merjenje vztrajnostnih
momentov teles. Najprej za znani vztrajnostni moment, recimo za
krožno ploščo, izmerimo frekvenco nihanja ter tako določimo
konstanto vzmeti. Potem pa iz znane konstante vzmeti in iz
izmerjene frekvence določimo nezanani vztrajnostni moment,
recimo za (togega) človeka okrog treh težiščnih osi.

34.10 Splošno nihanje teles
Skupne poteze obravnavanih nihanj lahko zajamemo z isto
enačbo oblike

u" + ω0
2 u = 0 .

Rešitev enačbe je, kot vemo, harmonično nihanje s frekvenco ω0.
Količina u, ki niha, je lahko razdalja, kot ali kaj drugega. Velja
torej

u = c1 cos ω0t + c2 sin ω0t .

Konstanti c1 in c2 sta določeni z začetnimi pogoji. Če začnemo
šteti čas v maksimalni amplitudi, na primer, postavimo c2 = 0.

Zdaj, ko že poznamo kompleksna števila, pa opazimo še
naslednje. Zapisana nihajna enačba je pravzaprav realni (ali
imaginarni) del kompleksne enačbe s povsem enako obliko, le da
je v njej količina û = (x + iy) kompleksna: (x + iy)" + ω0

2 (x + iy) = 0
pomeni (x" + ω0

2 x) + i(y" + ω0
2 y) = 0, to je par "navadnih" enačb.

Zato jo rešujemo kar s kompleksnim nastavkom
û = (u0 exp iδ) exp iωt. Ko ga vstavimo v nihajno enačbo, dobimo
(iω)2 + ω0

2 = 0, torej ω = ω0. Tako realni kot imaginarni del
kompleksnega nastavka sta iskani rešitvi: u = u0 cos (ω0t + δ) ali
u = u0 sin (ω0t + δ). Konstanti u0 in δ določimo iz začetnih pogojev.
Če upoštevamo še obrazec za sinus ali kosinus vsote (15.15), pa
dobimo rešitev v obliki u = c1 cos ω0t + c2 sin ω0t. Novi konstanti se
izražata s starima: u0

2 = c1
2 + c2

2 in tan δ = −c2/c1.
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Vzbujeno nihanje

(34.30)

(34.31)

Vzbujano nihanje z
dušenjem

(34.32)

(34.33)

Kako se giblje nihalo, če nanj deluje dodatni zunanji harmonični
vpliv s svojo frekvenco? Veter z zaporednimi sunki, na primer,
poganja gugalnico. Nihajno enačbo zapišemo kot

u" + ω0
2 u = A cos (ωt + δ) .

Zapisano enačbo razširimo v kompleksno obliko û" + ω0
2 û =

Â exp iωt, pri čemer Â = A exp iδ. Za rešitev pričakujemo nihanje z
isto frekvenco kot zunanji vpliv, zato izberemo nastavek
û = û0 exp iωt, pri čemer û0 = u0 exp iθ, in ga vtaknemo v nihajno
enačbo. Dobimo (iω)2û0 + ω0

2û0 = Â, torej û0 = Â/(ω0
2 − ω2).

Količini û0 in Â sta povezani z realnim sorazmernostnim
faktorjem, zato sta njuni fazi enaki in velja

u = u0 cos (ωt + δ)

u0 =
A

√(ω0
2 − ω2)

.

Nihalo niha harmonično z isto frekvenco ω kot vzbujevalec. Čim
manjša je razlika med frekvenco vzbujevalca in lastno frekvenco
ω0 nihala, tem večja je amplituda u0 nihanja. Ko sta frekvenci
enaki, je amplituda neskončna. Rečemo, da je nihalo v resonanci
z vzbujevalcem. Seveda nastopa v naravi trenje, ki ga nismo
upoštevali, in so zato vzbujene amplitude končne.

Slika 34.11 Vzbujeno nihanje mostu v
Tacomi. Šibek spremenljiv veter ravno
pravšnje frekvence je most spravil v
resonantno nihanje in ga povsem porušil.
(New York Times)

Pa raziščimo vzbujeno nihanje z dušenjem! Predpostavimo, da
velja linearni zakon upora, in zapišimo nihajno enačbo

u" + γu' + ω0u = A cos (ωt + δ) .

Postopamo enako kot pri nedušenem vzbujanju in pridelamo
enačbo û0 = Â/ (ω0 − ω + iγω) = R̂Â. To enačbo zapišemo v obliki
û0 = R exp iθ · A exp iδ = RA exp i(θ + δ). Realni del leve strani je
enak realnemu delu desne strani, zato

u = RA cos (ωt + δ + θ) .

Nihanje je harmonično s frekvenco vzbujevalca, vendar je
časovno zamaknjeno. Amplituda je določena z R in faza s θ.
Določimo ju!

Definicijski izraz za R̂ kvadriramo, to je, pomnožimo ga s
konjugirano vrednostjo, in dobimo:
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(34.34)

(34.35)

Dušeno nihanje

(34.36)

(34.37)

Torzijska tehtnica

R =
1

√[(ω2 − ω0
2)2 + γ2 ω2]

.

Recipročni izraz za R̂ preoblikujemo takole: 1/R̂ = 1/R exp iθ =
(1/R) exp (−iθ) = (ω0

2 − ω2 + iγω). Realni del dobljenega izraza je
cos θ in imaginarni del je −sin θ. Njuno razmerje pove

tan θ =
−γω

ω0
2 − ω2 .

Pri nizkih vzbujevalnih frekvencah nihalo kar sledi vzbujevalcu.
Pri visokih stoji pri miru, saj nima časa, da bi mu sledilo. Trenje
poskrbi, da je resonantno ojačanje končno. Nihanje vedno kasni
za vzbujevanjem. Kasnenje narašča s frekvenco. V resonanci
kasni natanko za četrt nihaja.

Preostane še dušeno nihanje. Spet predpostavimo, da velja
linearni zakon upora in zapišimo

u" + γu' + ω0
2u = 0 .

Na enačbo pogledamo, kot da je kompleksna. Pričakujemo
nihanje z zmanjševanjem amplitude s časom in zato poskusimo z
nastavkom û = exp irt̂ s kompleksnim r.̂ Kompleksni eksponent
namreč vsebuje realni in imaginarni del, ki poskrbita za oboje.
Dobimo (−r2̂ + iγr ̂+ ω0

2) exp irt̂ = 0. Prvi faktor mora biti enak nič,
to pa je pri r ̂= iγ/2 ± √(ω0

2 − γ2/4) oziroma okrajšano r ̂= iγ/2 ± ω.
Privzemimo, da je dušenje tako majhno, da je podkorenski izraz
pozitiven. Tedaj je frekvenca ω realna. Potem dobimo rešitev
û = exp (−γt/2) [c1 exp (iωt) + c2 exp (−iωt)]. Da bomo kompleksno
rešitev reducirali na realno, moramo postaviti c2 = c1* oziroma
obratno in dobimo

u = u0 e−γt/2 cos (ωt + δ)
ω = √(ω0

2 − γ2), γ < ω0 .

Nihanje je harmonično z manjšo frekvenco kot pri prostem
nihanju, amplitude pa so eksponentno dušene. Če je dušenje
premočno, si zlahka predstavljamo, da do nihanja sploh ne pride,
ampak preostane le eksponentno pojemanje. Računsko pa se tega
ne bomo lotili.

34.11 Gravitacijska konstanta
S sučnim nihalom na tanko žico smo dobili v roke zelo občutljiv
merilnik sil. Vzbudi nam upanje, da bi lahko z njim izmerili
gravitacijski privlak med dvema kroglama z znano maso in na
znani razdalji ter tako določili gravitacijsko konstanto in preko
nje maso Zemlje. Z veliko truda nam – kot zelo spretnemu
eksperimentatorju – to tudi uspe (CAVENDISH).

Na tanko žičko obesimo lahek vodoraven vzvod dolžine 2r z
dvema svinčenima kroglama mase m na koncih. Celotni drog ima
vztrajnostni moment J = 2mr2. Ko ga zasučemo in spustimo,
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(34.38)

Tehtanje Zemlje

izmerimo še nihajni čas T in iz tega izračunamo sučno konstanto
k = J(2π/T)2. Uporabimo tanko in dolgo nitko, da je konstanta čim
manjša, to je, nihajni čas mora biti čim večji. Sedaj je vse
pripravljeno. Umirimo vzvod in v neposredno bližino obeh malih
krogel primaknemo dve veliki krogli z masama po M. Razdaljo
med središčema male in velike krogle, l, izmerimo predhodno.
Počakamo da se vzvod zasuče. Da meritve ne motimo, jo delamo v
zaprti sobi in gledamo na sučno skalo z daljnogledom. Iz
izmerjenega zasuka izračunamo navor, iz tega privlak med
kroglama in končno še gravitacijsko konstanto. Dobimo

κ = 6,7 · 10−11 Nm2/kg2 .

Naša dosedanja ocena [19.9] torej ni bila prav nič slaba. Za
uspešno meritev smo uporabili: dolžino droga 2 m, maso male
krogle 0,5 kg, maso velike krogle 150 kg, razdaljo med
središčema krogel 250 mm in nihajni čas ∼ 20 minut (!). Pri vsem
tem izmerimo zasuk konca droga komaj za ∼ 5 mm.

Slika 34.12 Merjenje težne konstante. Privlačna sila med veliko in majhno
kroglo zasuče nihalo. Velikost zasuka pove silo med znanima masama pri znani
oddaljenosti in s tem težno konstanto. (Cavendish, 1798)

Pri merjenju smo predpostavljali, da se krogli privlačita tako, kot
da bi bila vsa njuna masa zgoščena v njunih središčih.

Ko je gravitacijska konstanta izmerjena, jo uporabimo za
določitev mase Zemlje iz težnega pospeška na njeni površini:
g = κ M/r2. Za maso dobimo 6,0 · 1024 kg. To pomeni, da znaša
povprečna gostota 5,5 kg/dm3. Ker je iz neposrednih meritev
znano, da je gostota kamnin na površju Zemlje okrog 2,5 kg/dm3,
mora biti Zemlja v središču ustrezno gostejša. Naša dosedanja
ocena gostote – kot sredine med maso apnenca in maso železa –
je bila torej kar dobra.
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Jakost polja

(34.39)

(34.40)

(34.41)

Polje krogle

34.12 Gravitacijsko polje
Tudi to, kar smo doslej že dognali o gravitacijskih poljih, hočemo
sedaj povzeti v jeziku vektorskih polj. Pri tem pričakujemo, da
bomo odkrili tudi kaj novega.

Jakost gravitacijskega polja g v izbrani točki lahko določimo
(19.1) z gravitacijsko silo Fg na tamkajšnji testni delec z maso m:

Fg = mg .

Gravitacijsko polje točkastega telesa z maso M pojema, kot znano
(19.18), z oddaljenostjo r od njega. Polje v točki P, povzročeno od
masnega izvora v točki Q, znaša

gP = −κ
mQ

rQP
2 nQP .

Enotni vektor nQP kaže od točke Q proti točki P. Sistem delcev pa
ustvarja v točki P skupno polje

gP = − ∑
Q

κ
mQ

rQP
2 nQP .

Polje krogle določimo tako, da najprej izračunamo polje
krogelnega obroča, nato krogelne lupine in slednjič celotne
krogle.

Slika 34.13 Polje krogelnega obroča.

Masa obroča znaša dm = 2πRσdx, pri čemer je σ ploskovna masna
gostota. V točki P povzroča ta obroč polje dg = dmκ cos θ/s2.
Določiti moramo še odvisnost θ(s) in x(s). — Ker
R2 = r2 + s2 − 2rs cos θ, velja cos θ = (r2 − a2 + s2)/2rs. — Ker
dx/ds = s/r, velja dx = sds/r. Oboje vstavimo v polje obroča in
dobimo dg = (πRκσ/r2)(1 + (r2−R2)/s2)ds. Če je točka P zunaj
lupine, integriramo med r−R in r+R ter dobimo g = κm/r2. To je
točno toliko, kot da bi bila vsa masa lupine stisnjena v središče.
Če je P znotraj lupine, pa integriramo med R−r in R+r ter dobimo
g = 0. Seveda je polje znotraj lupine enako nič le tedaj, če ni
drugih mas zunaj lupine. Če obstajajo zunanje mase (kar seveda
zmeraj), nas krogelna lupina ne ščiti pred njihovim poljem.

Polna krogla je sestavljena iz koncentričnih lupin. Vsaka lupina
proizvaja takšno polje, kot da bi bila stisnjena v središču. Zunanje
točke čutijo torej takšno polje, kot da bi bila vsa masa krogle
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Potencial polja

(34.42)

(34.43)

(34.44)

(34.45)

združena v njenem središču. Notranje točke pa čutijo takšno
polje, kot da bi zunanje plasti ne bilo in bi bila vsa masa iz
notranjih plasti združena v središču. Povedano velja za slojevito
kroglo, to je tako, katere masa se spreminja z radijem. Če je
krogla homogena, pa je notranja masa mr sorazmerna z r3, torej
mr/m = r3/R3 in polje zato znaša g = κmr/R3. Polje linearno narašča
od 0 v središču do κm/R2 na površini.

Če bi skozi homogeno Zemljo izvrtali navpični jašek od pola do
pola in vanj spustili kroglo, bi ta čutila silo Fg ∝ −r, to je
Fg/m = −g0r/R, in bi nihala sem in tja. Nihajni čas bi znašal
T = 2π √(R/g0), torej 1,4 ure. To je natanko toliko, kot potrebuje
izstrelek za obhod okoli Zemlje [18.9].

Ko se testni delec premakne iz ene točke v drugo, opravi
gravitacijsko polje na njem delo A = ∫ mg · ds. Če deluje sila v
smeri premika, je delo pozitivno in delcu se poveča kinetična
energija. In obratno. Delo je neodvisno od ubrane poti med
obema točkama, saj bi sicer z gibanjem po zaključeni zanki dobili
stroj za pridobivanje kinetične energije iz nič. Po definiciji je
dovedeno delo enako spremembi potencialne energije. Hočemo,
da pozitivno delo odgovarja zmanjšanju potencialne energije, zato
definiramo:

W − W0 = −∫mg · ds .

Referentno točko 0 izberemo kjerkoli in tamkajšnjo potencialno
energijo postavimo na poljubno vrednost, najbolje na nič. Delo
gravitacije na masno enoto poimenujemo gravitacijski potencial:

ϕ − ϕ0 = −∫g · ds .

Očitno velja W = mϕ. Iz definicije potenciala tudi neposredno
sledi ϕAB = −ϕBA ter ϕAB = ϕ0A − ϕ0B = ϕA − ϕB. Za točkast delec
pokaže integriranje, pri čemer postavimo potencial v
neskončnosti na nič,

ϕP = − κ
mQ

rQP
.

Potencial sistema delcev je očitno vsota potencialov posameznih
delcev:

ϕP = − ∑
Q

κ
mQ

rQP
.

Gravitacijsko polje sistema torej lahko izračunamo na dva načina:
z vektorskim seštevanjem jakosti ali s skalarnim seštevanjem
potencialov. Slednje je lažje. Iz potenciala pa, kot znano (32.7),
sledi jakost polja takole: g= −∇ϕ .
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Lahek planet

(34.46)

(34.47)

(34.48)

(34.49)

Stožernice

34.13 Gibanje planetov
Sonce in njegov planet, recimo Zemlja, sta približno izoliran
sistem dveh teles. Če je planet lahek v primerjavi s Soncem, je
težišče sistema kar v središču Sonca in relativno se giblje zgolj
planet. Ohranja se vrtilna količina sistema, h kateri prispeva le
planet, in se v polarnih koordinatah zapiše kot

L = mr2φ' .

Zaradi te ohranitve je gibanje ravninsko. Ohranja se tudi vsota
kinetične in potencialne energije:

E =
m
2

(r'2 + r2φ'2) −
α
r

.

Črtice označujejo odvode po času. Zaradi kratkosti smo zapisali
α = κmM.

Izračunati hočemo tir, po katerem se giblje planet. Doslej smo
bolj ali manj upravičeno privzemali, da je to krog, sedaj pa
poskusimo tir izpeljati kot posledico gravitacijskega zakona. V
energijski enačbi nadomestimo dr/dt z dr/dφ · φ' in nato v njej
nadomestimo vse φ' s tistim iz vrtilne enačbe. Izrazimo dφ in
integriramo, pa dobimo:

φ =∫ Ldr/r2

√[2m(E + α/r) − L2/r2]
.

To je enačba tira r = r(φ) v inverzni obliki. Preoblikujemo faktor
dr/r2 v d(1/r) in s tem, po nekaj truda, prevedemo integral v
standardno obliko φ ∝ ∫ du/√(1 − u2), katere rešitev je arkus
kosinus. Rezultat na koncu, spet z nekaj truda, polepšamo v
obliko

r =
p

1 + ε cos φ

p =
L2

mα

ε2 = 1 +
2EL2

mα2 .

Oblika krivulje, po kateri se giblje planet okoli Sonca, je odvisna
od parametrov p in ε. Kakšne krivulje so to? Če ε = 0, je to očitno
krožnica z radijem p. Ko φ = 90°, imajo vse krivulje enako
oddaljenost od gorišča, namreč p. Pa narišimo te krivulje za isto
vrednost p in za različne vrednosti ε! Slika pokaže, da so to: krog
(ε = 0); elipsa (ε < 1 oziroma E < 0); parabola (ε = 1 oziroma
E = 0); in – nova krivulja! – hiperbola (ε > 1 oziroma E > 0). Vse te
krivulje so očitno sorodne, to je, spadajo v isto skupino; recimo
jim stožernice. Planet se torej lahko giblje okrog Sonca ne samo
po krogu, ampak po katerikoli stožernici.
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Obhodni čas

(34.50)

Naj bo planet v začetnem trenutku v legi r0 in naj ima hitrost v0.
Njegova energija znaša E = mv0/2 − α/r0. Z energijo je oblika tira –
krožnica, elipsa, parabola ali hiperbola – popolnoma določena.
Presenetljivo je odvisna zgolj od velikosti hitrosti in nič od njene
smeri.

Slika 34.14 Stožernice. Planet se giblje okrog
Sonca po krožnici, elipsi, paraboli ali hiperboli,
odvisno od njegove začetne lege in hitrosti.
(Scott, A.)

Kako se že spoznani parametri stožernic izražajo s parametroma
p in ε? Nekaj računanja in risb pove naslednje.

Polosi elipse sta a = p/(1 − ε2) = α/2|E| in
b = p/√(1 − ε2) = L/√(2m|E|). Velika polos je odvisna zgolj od
energije, nič od vrtilne količine. Najmanjši in največji radij
znašata rmin = p/(1+ε) = a(1−ε) in rmax = p/(1−ε) = a(1+ε). Za
parabolo velja rmin = p/2. Tako se giblje planet, če v neskončnosti
začne s hitrostjo nič. Za hiperbolo pa dobimo rmin = p/(e+1) =
a(ε−1).

Kakšen je obhodni čas po elipsi? Vrtilno enačbo zapišemo v obliki
L = mr2φ' = 2mS', kjer je S ploščina, ki jo zarisuje radij vektor.
Integriramo po času od 0 do T, ko je zarisana vsa ploščina:
LT = 2mS. Ploščina elipse znaša S = πab (kar uganemo po
primerjavi s krogom kot posebnim primerom ali izračunamo
integral S = 4 0∫a y dx = (4b/a) 0∫a √(a2 − x2) dx), zato

T2

a3 =
4π2

κM
.

To je razširitev že spoznanega orbitalnega zakona za gibanje po
krogu (19.19) na gibanje po elipsi. Obhodni čas je odvisen zgolj
od velike osi. Vse elipse z enako veliko glavno osjo in s Soncem v
gorišču imajo enak obhodni čas (in energijo), ne glede na to, kako
so stisnjene. Namesto po krožnici premera 2R s Soncem v
središču bi se Zemlja lahko gibala po neskončno stisnjeni elipsi z
glavno osjo 2a = 2R in s Soncem v gorišču, torej na skrajnem
koncu elipse. Obhodni čas bi bil obakrat enak. Če bi se torej
Zemlja nenadoma zaustavila, bi se začela gibati okoli Sonca po
neskončno ozki elipsi z osjo 2a = R. Obhodni čas bi bil zato
(1/2)3/2 = 0,35-krat "daljši" kot sedanji in do Sonca bi potrebovala
1/2 tega časa, torej 65 dni. Mesec pa bi padel na Zemljo v 5 dneh.
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Težek planet

(34.51)

(34.52)

Masa zvezd

Če je planet težek, postavimo izhodišče koordinatnega sistema v
masno središče Sonca in planeta. Iz tega izhodišča raste vektor r1
do Sonca in vektor r2 do planeta. Vektorja ležita na zveznici obeh
teles. Velja seveda m1r1 + m2r2 = 0. Vektor r= r2 − r1 kaže smer in
razdaljo od telesa 1 (Sonca) do telesa 2 (planeta). Iz obeh enačb
sledi

r1 = −
m2

m1 + m2
r

r2 =
m1

m1 + m2
r .

Vrtilna enačba sedaj vsebuje vsoto dveh členov in gibalna prav
tako. Člene, ki vsebujejo r1 in r2 izrazimo z r in dobimo enačbi
L = μr2φ' ter E = (μ/2)(r'2 + r2φ') −α/r, pri čemer je
μ = m1m2/(m1 + m2). To sta popolnoma enaki enačbi, kot smo ju že
spoznali, le da zdaj opisujeta gibanje fiktivne točke z reducirano
maso μ okrog masnega središča. Seveda so tudi vse rešitve teh
enačb enake kot prej. Izračunani vektor r(φ) torej kaže lego
fiktivne mase glede na masni center. S tem sta določena tudi
aktualna vektorja r1 in r2, eden v smeri r in drugi v nasprotni
smeri. Obhodni čas po elipsi z velikim polmerom a = a1 + a2 tako
znaša

T2

(a1 + a2)3 =
4π2

κ(m1 + m2)
.

Pri mnogih zvezdah opazimo, da se gibljejo druga okrog druge in
se preko daljšega časovnega obdobja, recimo stoletja, vrnejo v
začetno lego. To so dvojne zvezde. Če merimo in rišemo relativno
lego "druge" (temnejše) zvezde glede na "prvo" (svetlejšo),
dobimo elipso, njen veliki kotni premer in njen obhodni čas.

Slika 34.15 Relativno gibanje
dvozvezdja. Prikazana je lega temne
zvezde Sirij B glede na svetlo zvezdo
Sirij A. Hodograf je elipsa. Svetla
zvezda ni v gorišču elipse, kar je
znak, da je ta nagnjena. (Sol
Company)

Če predpostavimo, da leži ravnina elipse pravokotno na našo
smer gledanja, postopamo takole. — S paralakso ali kako drugače
izmerimo oddaljenost dvozvezdja in iz kotnega premera elipse
izračunamo njen dolžinski premer. — Iz znanega obhodnega časa
in velikega polmera izračunamo m1 + m2. — V elipsi določimo
lego gorišča in s tem razmerje polmerov a1/a2, ki je enako
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m2/m1. — Iz znane vsote in razmerja mas izračunamo posamezni
masi. Tako merimo maso zvezd.

Kako vemo, da je elipsa res pravokotna? Tako, da je primarna
zvezda v njenem gorišču in da velja zakon o enakih ploščinah. Če
to ne drži, je elipsa nagnjena. Vidimo samo njeno projekcijo na
zvezdno ozadje. Domnevamo, da se da pravo elipso rekonstruirati
iz njene projekcije, vendar pričakujemo težko delo in se ga ne
bomo lotili. □
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35

Gibanje svetlobe po
etru

Gibanje opazovalca
po etru

Križni interferometer

Relativnost
Svetloba in eter – Merjenje etrskega vetra – Postulati relativnosti –
Inercialni opazovalni sistemi – Transformacija časa in prostora –
Relativnost časa in prostora – Transformacija hitrosti – Frekvenčni
zamik svetlobe – Merjenje hitrosti zvezd – Gibalna količina – Sile in
gibanje – Polna in lastna energija – Transformacija G in E – Gibalna
količina svetlobe – Merjenje svetlobnega tlaka – Je vse to res?

35.1 Svetloba in eter
Gibanje teles opazujemo z očmi, to je, informacijo o njih nam
prinaša svetloba.

Svetloba je valovanje, zato predpostavimo, da potuje po nečem,
po etru. Hitrost svetlobe smo že izmerili z zobatim kolesom in z
odbojnim zrcalom [27.1] in znaša c = 3,00 · 105 km/s. Meritve ob
različnih časih, krajih in smereh dajo enak rezultat v okviru
merske natančnosti na nekaj odstotkov.

Domnevamo, da je gibanje svetlobe po etru podobno gibanju
zvoka po zraku. Zvočni valovi se gibljejo s hitrostjo c = 330 m/s
glede na zrak, neodvisno od hitrosti izvora glede na zrak.
Opazovalec, ki glede na zrak miruje, takšno hitrost tudi izmeri.
Če pa se opazovalec giblje glede na zrak s hitrostjo u, izmeri
hitrost zvoka glede nase c ± u, odvisno od tega, ali se giblje proč
(−) ali proti (+) valovanju. Isti odnos velja, če izvor in sprejemnik
zvoka medsebojno mirujeta, a zrak se – kot veter – giblje med
njima s hitrostjo u.

Predstavljamo si, da vesoljski eter "miruje", po njem križarijo
svetlobni valovi in skozenj plujejo nebesna telesa z različnimi
hitrostmi glede nanj. Eter mora biti tako fin, da telesa ne čutijo
nobenega upora. Svetloba se glede na eter giblje vedno z enako
hitrostjo. Opazovalec na Zemlji, ki se giblje skozi eter, pa bi moral
zaznati povečano ali zmanjšano hitrost svetlobe, kakor se pač
giblje. Pričakujemo spremembe, ki so vsekakor manjše od nekaj
odstotkov. Zemlja se giblje glede na eter s hitrostjo vsaj 30 km/s
(takšna je njena obhodna hitrost okrog Sonca). Pričakovane
spremembe v hitrosti svetlobe so zato vsaj
± 30 / 3 · 105 = ± 0,01 %. Hočemo jih izmeriti. To pomeni, da
moramo meriti z natančnostjo vsaj 0,001 %!

35.2 Merjenje etrskega vetra
Osnovna zamisel meritve je naslednja. Iz žarnice sevamo
enobarven curek svetlobe in ga s polprepustnim zrcalom
razcepimo na dva delna curka, ki sta medsebojno pravokotna. Ta
dva curka spustimo preko dveh krakov in ju z zrcali spet
združimo v smeri, kjer ju opazujemo z daljnogledom. To je križni
interferometer. Število svetlobnih valov vzdolž obeh razdalj v
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splošnem ni enako in je odvisno od razlike dolžin krakov ter od
razlike hitrosti svetlobe v njih. Če bi bil izhodni curek popolnoma
vzporeden, bi bilo vidno polje enakomerno osvetljeno ter bolj ali
manj svetlo. Toda curek vsebuje tudi valovanje z nekoliko
drugačnimi nagibi, zato se pojavijo v sredini vidnega polja
interferenčni kolobarji.

Pri premikanju enega izmed zrcal opazimo, da v središču vidnega
polja nastajajo ali izginevajo kolobarji, odvisno v katero smer
premikamo. Nov kolobar nastane ali izgine, če premaknemo
zrcalo za razdaljo d = λ/2, ker se pri tem spremeni število valov za
1. Nastanek novega kolobarja spremlja premik vsakega starega
kolobarja za medkolobarsko razdaljo. Saj se izhodni curek pri
skrajšanju oziroma podaljšanju delnega curka za eno valovno
dolžino nič ne spremeni in zato se tudi interferenčna slika ne
sme. Premik δr kolobarja kot deleža medkolobarske razdalje Δr je
torej enak zamiku δλ delnih valov kot deležu valovne dolžine λ:
δr/Δr = δλ/λ.

Slika 35.1 Interferometer z dvema
krakoma. Pot žarkov je podaljšana z
večkratnimi odbojnimi zrcali.
Interferometer služi za merjenje razlike
med hitrostjo svetlobe vzdolž in prečno na
smer gibanja Zemlje okoli Sonca.
(Michelson, 1927)

V interferometru postavimo oba kraka na enako dolžino L.
Privzemimo, da se en krak (vzdolžni) giblje čelno proti etru, drugi
(prečni) pa pravokotno nanj, oba s hitrostjo u relativno na eter.
Preletni čas t1 svetlobe po vzdolžnem kraku, tja in nazaj, znaša
t1 = L/(c + u) + L/(c − u) = (2L/c)/(1 − u2/c2). V preletnem času t2 po
prečnem kraku pa se premakne polprepustno zrcalo za bazo ut2,
zato prepotuje svetloba dve stranici enakokrakega trikotnika nad
to bazo; višina trikotnika je L in dolžina stranice ct2. S pomočjo
hipotenuznega izreka izračunamo t2 = (2L/c)/(√(1 − u2/c2)).
Preletna časa nista enaka. Vzdolžni je daljši. Njuna razlika znaša
δt = (L/c)(u2/c2). Pri računu smo aproksimirali koren z binomskim
razvojem.

Razliko preletnih časov delimo z nihajnim časom, pri čemer
upoštevamo ct0 = c/ν = λ, pa dobimo δt/t0 = L λ u2/c2. Časovni
zamik vala je sorazmeren z dolžinskim zamikom vala δt/t0 = δλ/λ,
ki pa je, kot smo že ugotovili, sorazmeren s premikom
interferenčnih kolobarjev: δλ/λ = δr/Δr. S premikom δr je torej
enolično določena hitrost u.
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Veliko truda za "nič"

Stalnost svetlobne
hitrosti

(35.1)

Žal ne vemo, v katero smer moramo usmeriti interferometer, da
bo en krak kazal čelno proti etrskemu vetru. (Domnevamo, da
proti vzhodu, če merimo opoldne.) Lahko ga pa vrtimo. Pri tem se
razlika preletnih časov spreminja in z njo se spreminja zamik
izbranega kolobarja glede na njegovo izhodiščno lego. Maksimum
in minimum zamika kažeta smer hitrosti etra. Polovična razlika
med njima, δr, pa določa velikost hitrosti. Morebitna razlika v
dolžini krakov se pri vrtenju izniči.

Da bo meritev dovolj natančna, je potrebno še nekaj domiselnih
prijemov. — Eno izmed zrcal nekoliko zasukamo, da se namesto
kolobarjev v daljnogledu pojavijo interferenčne proge. Njim je
laže meriti premike kot kolobarjem. — Dolžino svetlobne poti
povečamo z več odbojnimi zrcali. — Tresenje okolice omilimo
tako, da interferometer postavimo na težek kamen, ki plava na
živem srebru. — Namesto da vrtimo interferometer, raje to delo
prepustimo kar rotaciji Zemlje. — Seveda se lahko zgodi, da v
trenutku merjenja Zemlja res miruje glede na eter, s čimer
rotacija interferometra ne bi nič pokazala. Temu odpomoremo
tako, da meritev ponovimo čez pol leta. Dober interferometer in
skrbne meritve bi morale tako zaznati 0,001 % spremembe v
hitrosti svetlobe oziroma hitrosti etrskega vetra nad nekaj
kilometri na sekundo.

Slika 35.2 Pričakovane (prekinjena črta)
in izmerjene (polna črta) spremembe
hitrosti. Na navpični osi so premiki črt. Na
vodoravni osi so dnevi meritev: opoldne
(zgoraj) in zvečer (spodaj). Pričakovane
vrednosti so narisane 8-krat pomanjšano.
(Michelson, 1927)

Rezultati poskusa, tako skrbno zamišljenega in izvedenega
(MICHELSON), nas osupnejo. Etrskega vetra, torej tudi etra,
nikakor ne moremo zaznati!

35.3 Postulati relativnosti
Zakaj ni etrskega vetra? Razlaga, da morda Zemlja vleče eter s
seboj, se zdi precej za lase privlečena in izumljena zgolj zato, da
bi odpravila nepričakovano težavo. Razliko v preletnih časih bi
lahko tudi izničili, tako da bi rekli, da se vzdolžni krak ustrezno
skrajša pri gibanju skozi eter. Tudi ta razlaga je dvomljiva. Kako
naj bi eter to dosegel, ko pa plujejo telesa skozenj brez upora, si
je težko zamisliti.

Ponuja pa se naslednja nadvse presenetljiva možnost: etra pač ni.
Svetloba potuje kar po praznem prostoru. Njena hitrost je
neodvisna od gibanja izvora in opazovalca:

c' = c.
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Enakopravnost
inercialnih sistemov

Merjenje časa

Kakor hitro že tečemo v smeri svetlobe, vedno se odmika z enako
hitrostjo glede na nas. Kakor hitro že tečemo proti svetlobi,
vedno se primika z enako hitrostjo glede na nas. Svetlobi iz
približujoče se zvezde izmerimo enako hitrost kot svetlobi iz
oddaljujoče se zvezde. To se upira celotni (dosedanji) človeški
izkušnji, ampak naravi za to ni mar. Povzdignimo torej možnost o
stalnosti svetlobne hitrosti v postulat in se namenimo ugotoviti
posledice! Na pol za šalo lahko rečemo, da smo se problema
znebili tako, da smo ga spremenili v postulat.

Kje začeti? Stalnost svetlobne hitrosti se nikakor ne pokorava
pravilu o sestavljanju hitrosti, ki v vsakdanjem življenju tako na
široko velja. Omenjeno pravilo sledi iz znanih transformacijskih
enačb za lego teles in za čas dogodkov v dveh inercialnih
sistemih (19.7–8): x' = x − ut in t' = t. To pomeni, da te
transformacije niso pravilne, ko imamo opravka z velikimi
hitrostmi. Treba jim bo razširiti območje veljave. Za to pa bo
potreben vnovičen premislek o merjenju časa in razdalj ter o
sedlanju iz enega opazovalnega sistema v drugega. Kakšen je
svet pri velikih hitrostih, bomo morali razbrati iz pridelanih
enačb, saj neposrednih izkušenj s tem (še) nimamo.

Pri postavljanju transformacijskih enačb se bomo naslonili na
inercialne sisteme, to je take, v katerih telesa ne doživljajo
pospeškov, ki ne izhajajo iz okolišnjih teles. Dober primer je vlak
na ravnem tiru. Dokler vozi "enakomerno", v njem ni pospeškov
razen težnega, seveda. Ko pa zavija v ovinek ali se ustavlja na
postaji, vozi "pospešeno". Vsak pospešek dobro čutimo. Telesa v
inercialnem sistemu se torej gibljejo – glede na sistem – premo in
enakomerno, razen če nanje delujejo dejanske sile. Če je en
sistem inercialen, je inercialen tudi vsak drug sistem, ki se glede
na prvega premo in enakomerno giblje. V vsakem inercialnem
sistemu potekajo gibalni pojavi enako. V vlaku z zaprtimi okni
nikakor ne moremo z metanjem kroglic reči, ali vlak miruje glede
na tir ali se "enakomerno" giblje. To posplošimo v postulat: v vseh
inercialnih sistemih imajo zakoni narave enako obliko.

35.4 Inercialni opazovalni sistemi
Sedim na železniški postaji in mimo pripelje vlak. Pogledam na
stensko uro: urni kazalec vidim, recimo, na 7 h. Rečem, da je vlak
pripeljal na postajo ob času 7 h po stenski uri. Prihod vlaka na
postajo in prihod kazalca na številko 7 h sem videl istočasno.
Zgodila pa sta se na istem mestu, namreč na železniški postaji.
Rekel bom, da sta ta dva dogodka čutno sočasna.

Skozi daljnogled opazujem Jupiter. Nenadoma se na njem pojavi,
recimo, nekakšna eksplozija. Pogledam na stensko uro: kazalec
vidim, na primer, na 7 h. Rečem, da je eksplozija nastala ob 7 h po
stenski uri. (Oddaljeno) eksplozijo in (lokalni) pomik kazalca na
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številko 7 h sem videl istočasno. Zgodila sta se pa na različnih
mestih. Tudi za ta dva dogodka bom rekel, da sta čutno sočasna.

Vem, da svetloba potuje od Jupitra do Zemlje slabo uro. Zato
rečem, da se je eksplozija zgodila ob času 7 h − 1 h = 6 h po
stenski uri, čeravno je takrat na Jupitru seveda nisem videl.

Če bi bila na Jupitru ura in če bi na njej – z namišljenim super-
daljnogledom – videl 6 h ob eksploziji, bi lahko takoj rekel, da se
je eksplozija zgodila ob 6 h po Jupitrovi uri. Ne bi mi bilo treba
upoštevati niti stenske ure niti preletnega časa svetlobe. Seveda
bi takrat, ko bi na oddaljenem Jupitru videl 6 h (in eksplozijo), na
lokalni stenski uri videl 7 h.

Povedano lahko posplošimo. Na svet pogledamo kot na množico
dogodkov. Vsak dogodek, recimo eksplozija na Jupitru, ima svojo
lego in svoj čas. Oboje je določeno z ozirom na izbrani opazovalni
sistem. Opazovalni sistem, to je namišljena toga kockasta rešetka
iz palic. Razdalje med sosednjimi oglišči so enake in izmerjene s
polaganjem metrske palice. V vsakem oglišču je tabla s tremi
številkami, ki pomenijo razdalje od izbranega izhodiščnega
oglišča. V vsakem oglišču je tudi ura, ki je sinhronizirana z
izhodiščno uro na način, kakor smo ga opisali za Zemljo in
Jupiter.

Sinhronizacijo ur lahko izvedemo na več načinov. — Najbolj
preprosto je, da v izhodišču zberemo in sinhroniziramo množico
ur, nakar jih počasi razvozimo v vsa oglišča sistema. — Lahko tudi
iz izhodišča pošljemo blisk svetlobe ob lokalnem času t0 v točko
A. Tam se odbije ob lokalnem času tA (ki ga moramo še določiti) in
se vrne v izhodišče ob lokalnem času t1. Definiramo tA = (t1 − t0)/2.
Ko se torej odbiti blisk vrne v izhodišče ob času t1, "nosi s seboj"
sliko oddaljene ure, ki kaže tA. Če je, na primer, t0 = 0 h, t1 = 2 h,
potem tA = 1 h. — Ali pa v vsako oglišče namestimo uro in njen
kazalec postavimo na vrednost t0 + r/c, pri čemer je t0 poljubna
vrednost, recimo 0 h, in r razdalja od izhodišča. Ure ne sprožimo.
Ko razmestimo vse ure, se vrnemo v izhodišče, postavimo
izhodiščno uro na t0, jo sprožimo in istočasno pošljemo svetlobni
signal v vse smeri. Ko signal doseže kako uro, jo sproži, recimo
preko fotocelice.

Kakorkoli že, s tem so vse ure sinhronizirane. Opazovalec, ki sedi
v kateremkoli oglišču rešetke, vidi okoli sebe množico ur. Čim
bolj so oddaljene od njega, tem manjši čas vidi na njih. Ura, kjer
opazovalec vidi za 1 h manjši čas kot na lokalni uri, je od njega
oddaljena za r = c · 1 h. Nasploh je na uri, ki je oddaljena za r,
viden čas t = t0 − r/c, ko je na lokalni uri viden čas t0.
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sistema

Slika 35.3 Pogled vzdolž (enodimenzionalnega)
opazovalnega sistema. V enakomernih razdaljah so
nameščene dolžinske table in sinhronizirane ure.
Dogodek se zgodi ob neki tabli in uri. Z njima sta
določeni časovna in prostorska koordinata dogodka.

Seveda opazovalnega sistema ne moremo zares postaviti v del
sveta, ki ga preučujemo. Vendar pa hočemo, da bo naše nadaljnje
razmišljanje o času in prostoru konsistentno s tem, da bi sistem v
principu lahko bil prisoten.

Čas dogodka, to je številka na njemu lokalni uri. Vsak opazovalec,
v katerikoli točki opazovalnega sistema že sedi, vidi enak čas
tega dogodka. Saj pride do njega svetloba od dogodka in od
tamkajšnje ure vštric po isti poti.

Lega dogodka, to so tri številke na njemu lokalni tabli. Vsak
opazovalec, v katerikoli točki opazovalnega sistema že sedi, vidi
enako lego tega dogodka.

Lego in čas dogodka poimenujemo njegove svetovne koordinate.
Tri od njih so krajevne in ena časovna.

V neki točki opazim eksplozijo A ob (tamkajšnjem) času tA. Nekaj
kasneje opazim v drugi točki še eno eksplozijo B, in sicer ob
(tamkajšnjem) času tB = tA. Očitno se je druga eksplozija zgodila
pri večji oddaljenosti. Oba dogodka, ki sta ločena v prostoru, a
"razpošiljata" enak čas, poimenujem sočasna dogodka. Saj bi ju
mirujoč opazovalec na sredi med njima videl kot čutno sočasna.

V neki točki na osi x nenadoma zagledamo vesoljsko ladjo. To je
dogodek A. Na lokalni tabli in uri vidimo njegovo lego xA in čas tA.
Nekaj kasneje vidimo ladjo v drugi točki na osi x. To je dogodek
B. Na lokalni tabli vidimo njegovo lego xB in čas tB. Kakšna je
hitrost ladje? Definiramo:

v =
xB − xA

tB − tA
.

Vsak opazovalec, v katerikoli točki opazovalnega sistema že sedi,
bi videl enake začetne in enake končne svetovne koordinate, zato
bi izračunal enako hitrost ladje.

35.5 Transformacija časa in prostora
V "mirujočem" opazovalnem sistemu S se naj giblje "premični"
opazovalni sistem S'. Koordinatne osi obeh sistemov naj bodo
istosmerne in gibanje izhodišča S' naj poteka vzdolž osi x s
hitrostjo u. Vsak sistem sestoji iz toge mreže in ur. Ko se izhodišči
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obeh sistemov srečata, tamkajšnja opazovalca nastavita osrednji
uri na 0 in nato sinhronizirata vsak svoje ure na že opisani način.
Nenadoma se nekje v svetu pojavi eksplozija. Opazovalec v S jo
vidi pri svojih koordinatah (t, x, y, z) in opazovalec v S' pri svojih
koordinatah (t', x', y', z'). Kako so te koordinate med seboj
povezane? Kakšna je torej transformacija koordinat?

Predpostavimo, da ima iskana transformacija za koordinato x
linearno obliko x' = γ(x − ut) z neznanim faktorjem γ. Izhodišče
premičnega sistema ima koordinato x' = 0, kar pomeni, da se
giblje kot x = ut, kakor tudi mora biti. Ker sta sistema
enakopravna, mora imeti obratna transformacija enako obliko z
nasprotnim predznakom hitrosti: x = γ(x' + ut'). Preostali dve
koordinati sta na gibanje pravokotni, zato postavimo y' = y in
z = z. Ko sta opazovalca vštric, eden izmed njiju izseva svetlobni
signal v vse smeri. V vsakem sistemu ima signal obliko krogle:
x = ct in x' = ct'. Vstavimo x v prvo transformacijsko enačbo in x' v
drugo, pomnožimo leve in desne strani ter izvlečemo

γ =
1

√(1 − u2/c2)
.

Nato izrazimo x' iz prve transformacijske enačbe, ga vstavimo v
drugo ter iz nje izrazimo t'. Tako dobimo relativistično
transformacijo (EINSTEIN)

t' = γ(t − ux / c2)
x' = γ(x − ut)
y' = y
z' = z .

Obratne transformacijske enačbe dobimo, ko zamenjamo
predznak pri u ter črtice pri koordinatah. Vpeljani faktor γ je
odvisen od hitrosti. Pri majhnih hitrostih v primerjavi s svetlobo
je enak 1, nato pa narašča. Pri majhnih hitrostih preidejo nove,
relativistične transformacije v stare, klasične, kakor tudi mora
biti.

Slika 35.4 Odvisnost faktorja γ od hitrosti. Pri
vsakdanjih hitrostih je faktor nerazločljiv od 1.

Dva dogodka A in B v sistemu S se v splošnem razlikujeta v času
in kraju; njuno razlikovanje opišemo kot

Δ t = tB − tA
Δ x = xB − xA .
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Transformacijske enačbe takoj povedo, kakšne so razlike v
sistemu S':

Δt' = γ(Δt − uΔx/c2)
Δx' = γ(Δx − uΔt) .

Očitno so časovne in prostorske razlike istih dveh dogodkov,
kakor ju vidita opazovalca v S in S', različne. Kaj torej zapisane
relativistične transformacije pravzaprav pomenijo? Kakšen je
svet, ki ga opisujejo? Poglejmo nekaj posebnih primerov.

35.6 Relativnost časa in prostora
Recimo, da se v sistemu S zgodita dva dogodka istočasno, torej
da imata enaki časovni koordinati tB = tA, to je, njuna razlika
znaša Δt = 0. V sistemu S' zato velja Δt' = −γuΔx/c2, kar v
splošnem ni nič. To pomeni, da dogodki, ki so sočasni v enem
sistemu, niso nujno sočasni v drugem! To je relativnost
sočasnosti.

V sistemu S' naj se v točki x'0 nekaj dogaja, recimo prižge, gori in
ugasne ogenj. Dogajanje se začne ob t1' in konča ob t2', traja torej
Δt' = t2' − t1'. Ker Δx' = 0, velja Δt' = γΔt. Označimo "mirujoče"
trajanje z Δt0 in "gibajoče" trajanje z Δt, pa velja:

Δt = γΔt0 .

Gibajoče trajanje je daljše kot mirujoče! Namesto ognja si
mislimo tiktakanje ure. Vsak tik-tak je podaljšan. Gibajoča se ura
torej tiktaka počasneje od mirujoče ure. To je podaljšanje časa
(EINSTEIN). Ker sta sistema enakovredna, vsak opazovalec vidi pri
sosedu počasnejše ure kot pri sebi. Svoje ure pa vidi normalno.

Slika 35.5 Podaljšanje časa. Gibajoča se
ura teče počasneje.

V sistemu S' naj miruje palica. Njen zadnji konec je pri xB' in
sprednji pri xA'. Njena dolžina je očitno Δx' = xA' − xB'. Opazovalec
v S zazna dva dogodka. (1) Zadnji konec palice doseže točko xB'
ob času t. Sprednji konec palice je tedaj ob uri, ki kaže manj kot
t. (2) Nekaj kasneje doseže prvi konec palice uro, ki kaže t; ta ura
leži pri xA. Ker Δt = 0, velja Δx' = γ Δx. Označimo "mirujočo" palico
z Δl0 in "gibajočo" z Δl, pa velja

Δl = Δl0 / γ .

Gibajoča palica je krajša kot mirujoča! Namesto palice si mislimo
kar razmik v koordinatni rešetki. Vsak razmik je skrajšan.
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Gibajoči se sistem je torej stisnjen v smeri gibanja. To je
skrajšanje dolžin (EINSTEIN). Ker sta sistema enakovredna, vsak
opazovalec vidi pri sosedu bolj stisnjene rešetke kot pri sebi.
Svoje rešetke pa vidi normalno.

Slika 35.6 Skrajšanje dolžin. Gibajoča se
telesa so skrajšana v smeri gibanja.

Je skrčenje palice "zaresno" ali "navidezno"? Skrčenje ni zaresno
v smislu, da ga s palico vred gibajoči se opazovalec ne zazna. Je
pa zaresno v smislu, da ga (v principu) zazna vsak drug
opazovalec.

35.7 Transformacija hitrosti
Kakšne so hitrosti teles, opazovane iz različnih opazovalnih
sistemov?

Omejimo se najprej na dogodke vzdolž osi x. Delec naj se giblje
med dvema dogodkoma. S krajevnim in časovnim intervalom v
vsakem sistemu je podana tamkajšnja hitrost gibanja. Premik
Δx' = γ(u)(Δx − uΔt) delimo s trajanjem Δt' = γ(u)(Δt − uΔx/c2),
pokrajšamo γ, števec in imenovalec delimo z Δt ter upoštevamo
Δx/Δt = vx in Δx'/Δt' = v'x. Tako dobimo

vx' =
vx − u

1 − vxu / c2 .

V treh razsežnostih, ko dogodki niso omejeni na os x, dobimo na
podoben način še

vy' =
1
γ

vy

1 − vxu/c2

vz' =
1
γ

vz

1 − vxu/c2 .

To je transformacija hitrosti (EINSTEIN). Obratno transformacijo
dobimo na že znani način – s spremembo predznaka hitrosti u ter
s premeščanjem črtic. Pri majhnih hitrostih u≪ c preidejo enačbe
v znano klasično obliko. Če postavimo vx = c, dobimo vx' = c, kakor
tudi mora biti. Hitrost svetlobe je v vsakem sistemu stalna. Ni
večje hitrosti od svetlobne.
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35.8 Frekvenčni zamik svetlobe
V izhodišču S naj miruje svetilka, ki oddaja bliske s frekvenco ν,
recimo enega na uro. Kakšno frekvenco ν' zaznava opazovalec v
izhodišču S' po svoji lokalni uri?

Ko izhodišči obeh sistemov sovpadata, izseva svetilka prvi blisk.
Tega vidita oba izhodiščna opazovalca, vsak na svoji lokalni uri,
ob 0. Drugi blisk izseva svetilka, za opazovalca v izhodišču S po
njegovi izhodiščni uri, ob t. Opazovalec v S' vidi ta blisk na uri, ki
je sosednja izhodišču S, ob t' = γt. Istočasno vidi na svoji lokalni
uri t' + ut'/c. Za opazovalca v S je torej minil med dvema bliskoma
čas t = 1/ν, za opazovalca v S' pa t' + ut'/c = 1/ν'. Velja torej:
1/ν' = γt(1 + u/c). Upoštevajoč γ = 1/√((1−u/c)(1+u/c)) dobimo
(EINSTEIN)

ν'
ν

=
√(1 − u/c)
√(1 + u/c)

.

Frekvenca bliskov, ki jo zazna oddaljujoči se opazovalec, je torej
manjša. Če se opazovalec približuje, torej u → −u, se pa frekvenca
poveča. Vseeno je, ali se giblje izvor ali opazovalec, šteje le njuna
medsebojna relativna hitrost. Kadar gibanje ne poteka po
zveznici izvora in opazovalca, velja zapisano le za vzdolžno
komponento hitrosti. Namesto bliskov svetlobe si mislimo kar
svetlobo samo s svojimi hribi in dolinami. Potem velja zapisana
enačba tudi za frekvenco svetlobe.

Če upoštevamo c = λν, velja tudi

λ'
λ

=
√(1 + u/c)
√(1 − u/c)

.

Za majhne hitrosti velja približek √(1 ± u/c) ≈ 1 ± u/2c. Števec in
imenovalec pomnožimo s števcem, zanemarimo kvadratne člene
in dobimo λ'/λ = 1 + u/c oziroma

Δλ
λ

=
u
c

.

Valovno dolžino svetlobe, recimo diskretni spekter natrijeve pare,
merimo s spektrometrom na mrežico. Črte gibajočega se izvora
so premaknjene glede na črte mirujočega izvora. Govorimo o
rdečem premiku ali modrem premiku črt. Ločljivost dobrega
laboratorijskega spektrometra je okrog R = λ/Δλ ≈ 6000, torej
okrog 1 Å pri vidni svetlobi. Tolikšen premik črte ustreza hitrosti
izvora 50 km/s. Tako hitrih svetil v laboratoriju ne zmoremo
ustvariti.

35.9 Merjenje hitrosti zvezd
Pa saj se giblje Zemlja okrog Sonca z orbitalno hitrostjo
vE = 30 km/s! Spektri zvezd morajo biti zato ustrezno
premaknjeni. Največji zamik pričakujemo od zvezd, ki ležijo na
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ekliptiki v smeri ali v nasprotni smeri Zemljinega gibanja. Če
zvezda miruje glede na Sonce, pričakujemo dvakrat letno njen
spektralni zamik, ki ustreza Zemljini orbitalni hitrosti: enkrat
rdečega in enkrat modrega. Če se zvezda giblje glede na Sonce,
pa bo vsaj eden od odmikov še večji.

Slika 35.7 Hitrost zvezde. Ko se
Zemlja približuje zvezdi, zaznamo
modri premik njenih spektralnih črt.
Ko se odmika, zaznamo rdeči premik.
Z obema premikoma sta določeni
hitrost zvezde in hitrost Zemlje glede
na Sonce.

Slika pove naslednje. V točkah A in B, pol leta narazen, znaša
hitrost Zemlje vA = vstar + vE in vB = vstar − vE. Enačbi medsebojno
enkrat seštejemo in enkrat odštejemo, pa dobimo vE = (vA − vB)/2
in vstar = (vA + vB)/2. Hitrosti vA in vB sta določeni z izmerjenima
frekvenčnima premikoma. S tem sta določeni tudi orbitalna
hitrost vE in (radialna) hitrost zvezde vstar.

Primerna zvezda za opazovanje je svetli Arktur, ki je po spektru
zelo podoben Soncu. Arktur sicer ne leži točno na ekliptiki,
vendar nam gre le za oceno in nagib zanemarimo. Opazovanje
spektra okrog valovnih dolžin 4300 Å z natančnostjo okrog 0,1 Å
pokaže spektralna zamika, ki ustrezata vA = 40 km/s in
vB = −30 km/s, kar pomeni vE = 35 km/s in vstar = 5 km/s. S
spektroskopskim merjenjem smo torej določili orbitalno hitrost
Zemlje na 20 % natančno. To nam daje zaupanje, da je tudi
izmerjena (radialna) hitrost Arkturja pravilna v okviru navedene
natančnosti. Meritve drugih svetlih zvezd v paralaktični
oddaljenosti do nekaj deset svetlobnih let pokažejo podobne
hitrosti. Največje hitrosti dosegajo 100 km/s.

35.10 Gibalna količina
Gibalno količino delca smo definirali kot G= mv. Kadar ni
zunanjih sil, se gibalna količina sistema delcev ohranja. Ker so se
pa spremenile transformacijske enačbe za hitrost, se pojavi
vprašanje, kaj je z ohranitvijo gibalne količine, opazovane v
različnih sistemih.

Preučimo elastični trk dveh enakih delcev. Opazovalni sistem S
postavimo tako, da se delca približujeta eden proti drugemu z
nasprotno enakima hitrostima v. To je težiščni sistem. Delec 1
ima v njem pred trkom hitrost (−vx,−vy) in po trku (−vx, +vy),
delec 2 pa pred trkom (vx,vy) in po njem (vx,−vy). Sprememba
gibalne količine v vsaki koordinatni smeri je torej enaka nič.
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Slika 35.8 Trk delcev, opazovan
v "mirujočem" težiščnem
sistemu. (Berkeley Physics
Course, hrvaški prevod)

Kako pa je videti trk v sistemu S', ki se glede na S giblje s
hitrostjo u = vx? V tem sistemu ima delec 1 pred trkom hitrost
(−v1x', −v1y') in po njem (−v1x', +v1y'), delec 2 pa (0,v2y') in
(0,−v2y'). Transformacijske enačbe za hitrosti povedo:
−v1x' = −2vx/(1 + vx

2/c2); v1y' = vy/(1 + vx
2/c2)γ(vx); v2x' = 0; in

v2y' = vy γ(vx).

Slika 35.9 Trk delcev, opazovan v v gibajočem se sistemu. Z njim sta
definirana gibalna količina in gibalni zakon za hitra telesa. (Berkeley Physics
Course, hrvaški prevod)

Očitno je, da y-komponente hitrosti v S' niso enake, čeravno so
enake v S. To pa zato, ker v S niso enake x-komponente hitrosti,
ampak imajo nasprotne predznake. Vidimo torej, da klasična
definicija gibalne količine ne zagotavlja njene ohranitve v vseh
opazovalnih sistemih. Ohranitev gibalne količine pa je preveč
pomembna, da bi se ji zlahka odrekli. Zato poskusimo spremeniti
njeno definicijo tako, da bo pri nizkih hitrostih prešla v staro, in
da bo pri vseh hitrostih ostal ohranitveni zakon v veljavi.

Nova definicija mora biti taka, da y-komponenta gibalne količine
ni odvisna od x-komponente hitrosti opazovalnega sistema, v
katerem opazujemo trk. Vemo, da se pri sedlanju iz enega
sistema v drugega ne spreminja razmik Δy. Vendar pa je čas Δt,
potreben za prelet Δy, odvisen od sistema, in zato je taka tudi
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Kako jo spoznamo

komponenta vy = Δy/Δt. Namesto na laboratorijsko uro, ki meri
Δt, pogledamo na uro, ki jo nosi delec sam. Ta ura meri lastni čas
delca Δτ. Vsi opazovalci se strinjajo o vrednosti tega časa, pa je
zato Δy/Δτ enak v vseh sistemih. Ker Δτ = Δt/γ, velja Δy/Δτ =
Δy/Δt · Δt/Δτ = (Δy/Δt)γ. Torej bo y-komponenta od γv enaka v
vseh sistemih. Zato definiramo

G= mγ(v)v.

To je razširjena definicija dosedanje gibalne količine (EINSTEIN).
Če so hitrosti majhne, preide v staro definicijo.

35.11 Sile in gibanje
Gibalni zakon za masni delec smo do sedaj pisali kot F= mdv/dt.
Ker je masa konstantna, velja tudi zapis F= d(mv)/dt. Nanj lahko
pogledamo kot na definicijo sile preko spremembe (stare) gibalne
količine. Slednja se, kot smo videli, ne ohranja. Zato ne
premišljamo kaj dosti in raje definiramo silo, torej vpliv okolice
na delec, preko spremembe nove gibalne količine:

dG
dt

=F.

To je relativistični gibalni zakon (EINSTEIN). Pri majhnih hitrostih
preide v klasičnega.

Če na delec ne deluje nobena sila (ali je vsota sil nanj enaka nič),
se mu ohranja gibalna količina, to je, delec se giblje premo in
enakomerno. Kako pa se delec giblje pod vplivom stalne sile?
Gibalni zakon zapišemo v obliki γ(v)v = Ft/m in izvlečemo hitrost:

v =
Ft/m

√(1 + (Ft/mc)2)
.

Spočetka narašča hitrost sorazmerno s časom: v = (F/m)t, kakor
tudi mora biti. Kasneje pa hitrost narašča čedalje počasneje in se
bliža hitrosti svetlobe. Snovna telesa zato ne morejo doseči
svetlobne hitrosti. Pot, ki jo opravi telo, dobimo iz integrala
s = ∫ vdt:

s =
c2

F/m
(√(1 + (Ft/mc)2) − 1).

Razvoj v binomsko vrsto pove, da za začetne čase velja
s = (F/m)t2/2, kar je tudi prav.

Kako pa vemo, da je kakšna sila konstantna? Tako, da se telo pod
njenim vplivom giblje na pravkar izračunani način! In katera sila
v naravi naj bi bila takšna? Gravitacija v bližini Zemlje ali Sonca
je sicer homogena, a mnogo prešibka. Morda električna sila na
lahko nabito telo v zaporedno zvezanih kondenzatorjih? Ali pa
namišljena vesoljska ladja, katere izpuh je prilagojen tako, da
med izgubljanjem mase velja F/m = const? Kot vidimo, se da
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Kinetična energija

(35.18)

Polna in lastna
energija

(35.18)

Ekvivalenca mase in
energije

računsko zatrditi marsikaj, česar v naravi morda sploh ni mogoče
najti.

35.12 Polna in lastna energija
Sila F naj pospešuje delec vzdolž osi x od začetne hitrosti u = 0 do
končne hitrosti u = v. Hočemo, da je dovedeno delo enako
spremembi kinetične energije: K = ∫ F · dx. Silo izrazimo kot
spremembo (relativistične) gibalne količine v času:
∫ F · dx = ∫ dG/dt · dx = ∫0

v u dG. Integral najprej preoblikujemo po
delih v obliko G · u − ∫ G du, vstavimo izraz za gibalno količino
G = γ(u)mu in rešimo preostali integral s spremembo diferenciala
u · du → d(1 − u2/c2). Ta integral znamo izračunati in dobimo

K = (γ(v) − 1)mc2 .

Če razvijemo γ po binomskem izreku, vidimo K = 1/2 mv2 + … Pri
majhnih hitrostih je torej relativistična kinetična energija enaka
klasični, sicer pa je večja. Lepo je videti, kako vse dobljene
enačbe prehajajo v klasične.

Izraz za kinetično energijo lahko zapišemo takole:
γ(v)mc2 = K + mc2. Prvi člen poimenujemo polna energija in je
vsota kinetične energije in mirovne energije (EINSTEIN):

E = K + mc2

E = γ(v) mc2

Če ni zunanjih sil, recimo pri izoliranem trku dveh teles, se (poleg
gibalne količine) ohranja polna energija, to je vsota obeh
omenjenih energij. Ni treba, da se ohranjata kinetična energija in
mirovna energija vsaka zase.

Slika 35.10 Odkritje slavne enačbe o
ekvivalenci mase in energije. (Harris, S.)

Naj telo miruje v opazovalnem sistemu. Potem nima kinetične
energije in velja E = mc2. Če telo seva in s tem izgubi energijo ΔE,
se mu masa zmanjša za Δm = ΔE/c2. Pri tem ni bistveno, da
odvzeta energija postane energija sevanja. Iz tega sklepamo, da
masa telesa meri energijo, ki jo telo vsebuje. Drugemu telesu, ki
svetlobo absorbira, pa se poveča energija in s tem masa. Svetloba
takorekoč prenaša maso iz sevalcev na absorbente.

Kolikšna energija se skriva v 1 g snovi? Strahotnih 105 GJ; toliko v
enem dnevu proizvede največja hidroelektrarna, kar smo jih
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Energijska invarianta

(35.20)

Transformacija
gibalne količine in

energije

(35.21)

(35.22)

(35.23)

Prepletenost gibalne
količine in energije

doslej zgradili. — Koliko mase izgublja Sonce s sevanjem?
Nepredstavljivih 1014 ton v enem letu, kar je približno masa
kamnite kocke s stranico 200 km. Vendar je to zgolj nezaznavnih
10−14 celotne mase. — Koliko mase pa pridobi kos železa, če ga
segrejemo od 300 K na 500 K? Nezaznavnih 10−12 začetne mase.

Definicijsko enačbi za polno energijo in definicijsko enačbo za
gibalno količino kvadriramo in drugo odštejemo od prve, pazeč
na enote. Ugotovimo (EINSTEIN)

E2 − (cG)2 = (mc2)2 .

Desna stran ni odvisna od izbire koordinatnega sistema, saj sta c
in m konstanti. To pomeni, da je leva stran enačbe enaka v
vsakem opazovalnem sistemu, da je energijska invarianta.

35.13 Transformacija G in E
Definicijo gibalne količine G= mγv lahko zapišemo v obliki
G= mdr/dτ. To pomeni, da se gibalna količina transformira tako
kot krajevni vektor, saj sta masa in lastni čas invarianti.
Transformacijo x' = γ(x − ut) pomnožimo z maso in odvajamo na
lastni čas, upoštevajoč mdt/dτ = mγ = E/c2, pa dobimo

Gx' = γ(Gx − uE/c2).

Preostali dve transformaciji sta Gy' = Gy in Gz' = Gz. Podobno
obdelamo transformacijo t' = γ(t − ux/c2). Množimo jo z m,
odvajamo na τ ter pridelamo

E' = γ(E − uGx).

To so transformacije gibalne količine (EINSTEIN).
Transformacijske enačbe smo izpeljali za posamičen delec, veljajo
pa seveda tudi za celetno gibalno količino in energijo sistema
delcev. Enake transformacijske enačbe kot za G in E veljajo tudi
za spremebe ΔG in ΔE:

ΔGx' = γ(ΔGx − uΔE/c2)
ΔE' = γ(ΔE − uΔGx).

Izolirani sistem delcev v S ima ΔG = 0. Da bo tudi v S' veljalo
ΔG' = 0, mora veljati še ΔE = 0. To je: ohranitev gibalne količine
velja v obeh sistemih le v primeru, ko v prvem sistemu velja še
ohranitev energije. Podobno je z ohranitvijo energije: če ΔE = 0,
potem bo ΔE' = 0 le v primeru, ko ΔG = 0. Ohranitev energije velja
v obeh sistemih le, če v prvem sistemu velja še ohranitev gibalne
količine.

To je nekaj novega. Gibalna količina in energija sta medsebojno
povezani količini. Ohranitvena zakona za gibalno količino in
energijo torej nista več neodvisna, ampak imamo opravka z enim
samim zakonom – ohranitvijo G in E. Saj se obe količini pri
sedlanju iz enega inercialnega sistema v drugega "pretvarjata"
druga v drugo.
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Neelastični trk in
masni presežek

Gibalna količina bliska

(35.24)

Gostota gibalne
količine

(35.25)

(35.26)

Svetlobni tlak

Dober zgled je neelastični trk. Naj se dva enaka delca bližata
drug drugemu z enakima hitrostima, trčita in obtičita skupaj. Pri
tem naj v okolico ne oddata nič energije, recimo s svetlobo.
Ohranitev gibalne količine pove mγ(v)v − mγ(v)v = Mγ(V)V. Iz
tega sklepamo, da V = 0. Ohranitev energije pa pravi
mc2γ(v) + mc2γ(v) = Mc2γ(V) = Mc2. Tako ugotovimo M = 2mγ(v).
Masa skupka je večja od vsote izvornih mas. Izgubljena kinetična
energija se pojavi kot mirovna energija (masa). Masa skupka
torej zajema notranjo kinetično in potencialno energijo sestavin.
Za mase teles pa ohranitveni zakon ne velja več.

35.14 Gibalna količina svetlobe
Če sta energija in gibalna količina delcev med seboj povezani
količini, mar ne velja to tudi za svetlobo? Svetloba vendarle nosi s
seboj energijo; ali morda nosi tudi gibalno količino?

Predstavljajmo si zaprt vagon na kolesih. Njegova dolžina je L in
masa M. Iz leve stene naj svetilka izseva blisk svetlobe proti
desni steni, kjer se absorbira. Najprej je bilo nekaj energije E na
levi steni, potem pa na desni. Energija se je premaknila za
dolžino vagona. Vendar: energija ima maso E/c2. Če bi bil pri
premiku energije vagon pri miru, bi se premaknilo njegovo
težišče. Ni nam všeč, da bi se težišče vagona premaknilo zgolj
zaradi dogajanja v njegovi notranjosti. Zato zahtevamo, da težišče
ostane pri miru, to je, da se vagon premakne za x v levo. Veljati
mora torej (1) Mx = (E/c2)L.

Kaj je premaknilo voz v levo? Ob izsevu svetlobe je moral nanj
delovati odriv z gibalno količino G. Vagon je pri tem dobil odrivno
hitrost (2) v = G/M. S to hitrostjo se je gibal kratek čas (3) t = L/c,
dokler svetloba ni dosegla druge stene, nakar se je ustavil. Velja
x = vt. Vstavimo v iz (2) in t iz (3) ter dobljeno vrednost x
vstavimo v (1). Tako dobimo (EINSTEIN)

G =
E
c

.

To je gibalna količina bliska svetlobe z energijo E. Gostota
gibalne količine

g =
G
V

je G/V = G/Sct = (E/St)/c2, torej

g =
j

c2 .

V snopu svetlobe s presekom S in dolžino ct je G = g · Sct gibalne
količine. Če se ta svetloba v celoti absorbira na izhodnem
preseku, tam odda G/St = gc gibalne količine na časovno in
ploskovno enoto, to je, izvaja tlak
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(35.27)

(35.28)

Svetlobni mlin

Torzijski svetlomer

p = gc .

Če se svetloba ne absorbira, ampak se odbije, je sprememba
njene gibalne količine dvakrat tolikšna, to je, tlak je dvakrat večji.
Nasploh je tlak odvisen od tega, kolikšen delež R svetlobe se
odbije:

p = (1 + R) gc .

Sončna svetloba z gostoto toka 1 kW/m2 izvaja pritisk 0,3
miliponda na m2 črne površine. Celotna Zemlja čuti potisno silo,
ki je ∼ 1013-krat manjša od gravitacijskega privlaka Sonca. Ni se
nam treba bati, da nas bo odpihnilo v vesolje.

35.15 Merjenje svetlobnega tlaka
Morda lahko svetlobni tlak dokažemo? Naredimo drobno in lahko
lopatičasto kolo, ki je vrtljivo okoli navpične osi, in ga pokrijemo s
steklenim zvonom, iz katerega izsesamo večino zraka. Eno stran
lopatic potemnimo, drugo pozrcalimo. Svetloba deluje z večjim
tlakom na zrcalno površino, zato bi se moralo kolesce zavrteti s
temno stranjo lopatic naprej. Čaka nas presenečenje: kolesce se
res zavrti, a s svetlo stranjo lopatic naprej.

Slika 35.11 Svetlobni mlin. Lopatičasto kolo je
vrtljivo okrog navpične osi v izsesani posodi.
Lopatice so na eni strani črne, na drugi zrcalne. Ko
na kolo sije svetloba, se vrti. (Anon)

Kako je to mogoče? Sklepamo, da je kriv zrak pod zvonom. Temna
stran lopatice se močneje segreje in od nje se segreje tudi
dotična plast zraka. Segreti zrak povzroči okrog lopatic
konvekcijske tokove in z njimi povezane tlačne podpritiske, ki
delujejo na lopatice. Da se znebimo teh vplivov, moramo
poskrbeti za za čimboljši vakuum.

Svetlobni tlak nam z mnogo truda uspe izmeriti (LEBEDEV), in
sicer z lopatičasto prečko, obešeno na tanki nitki v stekleni
posodi z visokim vakuumom. Poskus spominja na onega za
določevanje gravitacijske konstante. Vir svetlobe je električna
obločnica, ki ji s spremenljivim uporom lahko spreminjamo moč
sevanja. Svetlobo iz obločnice vodimo z zrcali in lečami skozi
izstopno diafragmo na eno lopatico znanega preseka in ročice.
Pred izhodno diafragmo odcepimo del svetlobnega toka in ga
vodimo na termočlen z galvanometrom. Odklon galvanometra
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Eksperiment kot
sodnik

služi kot indikator, kako močno seva obločnica. Ko vključimo
obločnico, vpade njena svetloba na lopatico in prečka se zasuče.
Obenem se odkloni tudi galvanometer in pokaže moč obločnice.
Zasuk prečke je sorazmeren z navorom nanjo; in navor je
sorazmeren z gostoto vpadajočega energijskega toka.

Slika 35.12 Merjenje svetlobnega tlaka.
B = obločnica, W = vodni filter za
blokado infrardeče svetlobe, T =
termočlen, R = prostor za vrtljivo prečko,
G = steklena posoda, S1-S4 = krmilna
zrcala za usmerjanje svetlobe na eno ali
drugo stran prečke. (Lebedev, 1901)

Pred meritvijo je treba celotno pripravo kalibrirati. Sučni
koeficient nitke določimo iz nihajnega časa umerilne prečke z
znanim vztrajnostnim momentom. Energijski tok svetlobe, ki
izstopa skozi diafragmo, pa določimo z majhnim kalorimetrom, in
sicer pri različnih močeh obločnice. S tem kalibriramo tudi
galvanometrsko skalo. Ko je priprava kalibrirana, prižgemo
obločnico in ji nastavimo primerno jakost. Galvanometer pove,
kakšen je svetlobni tok in odklon prečke pove, kakšen je svetlobni
tlak. Rezultati potrdijo njuno pričakovano soodvisnost na 10–20 %
natančno, tako za črno kot za zrcalno lopatico.

35.16 Je vse to res?
Končali smo z razvojem teorije relativnosti. Pod "teorijo"
razumemo zaokrožen sistem postulatov in izrekov, ki iz njih
sledijo, morda z nekaterimi dodatnimi privzetki. Izreki morajo
biti, vsaj v principu, eksperimentalno preverljivi.

Žal so presenetljivi pojavi, ki jih teorija relativnosti napoveduje,
večinoma znatni šele pri dovolj hitrih telesih. Takih teles zaenkrat
v laboratoriju ne najdemo oziroma jih ne zmoremo ustvariti.
Krogle iz pušk so prepočasne in tehtnice premalo natančne.
Vendar pa smo le uspeli potrditi, s poskusom, dve napovedi
teorije: frekvenčni zamik svetlobe (ki vodi do pravilne ocene
Zemljine orbitalne hitrosti) in gibalno količino svetlobe (ki vodi do
pravilne ocene za svetlobni tlak). Upamo, da bomo v nadaljevanju
raziskav našli še več poti, kako teorijo eksperimentalno preveriti.

134

pict3b/lebedev.gif
pict3b/lebedev.gif
picref.htm


Po drugi strani je pa tudi res, da temelji teorija relativnosti na
eksperimentalno dobro preverjenih postulatih in da so izreki iz
njih, tako vsaj kaže, računsko pravilni. To nam daje pravico, da jih
privzamemo za pravilne, dokler jih, morda, verodostojni
eksperimenti ne ovržejo. □
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36

Model plina

(36.1)

Plinska enačba

Termokinetika
Idealni plin – Tlak in temperatura – Porazdelitev po legi –
Porazdelitev po hitrosti – Makrostanja in mikrostanja – Porazdelitev
po energiji – Fazni prostor stanj – Ekviparticija energije – Specifične
toplote – Ravnovesni pojavi – Transportni pojavi – Difuzija primesi –
Prevajanje toplote – Termično gibanje

36.1 Idealni plin
Toplotni pojavi in toplotne lastnosti teles (pritisk plina,
temperatura snovi, notranja energija, specifična toplota, toplotna
prevodnost itd.) so bili do zdaj obravnavani fenomenološko.
Nismo se preveč vpraševali, zakaj so takšni, kot so. Ker pa je snov
sestavljena iz delcev – atomov in molekul, bi se morale
makroskopske lastnosti teles izraziti preko mikroskopskih
lastnosti teh delcev, to je z njihovimi masami, legami, hitrostmi in
medsebojnimi silami. Te naloge se hočemo zdaj lotiti.

Najpreprostejša telesa so čisti plini. Tak plin si predstavljamo kot
roj enakih molekul, ki se kaotično gibljejo v vse strani in pri tem
trkajo med seboj in s stenami posode. Same molekule so lahko
sestavljene iz enega ali iz več atomov. Kot vemo iz poskusa z
oljnim madežem [23.6], imajo atomi velikost ∼ 0,1 nm. Do
nadaljnjega privzamemo, da so molekule majhne v primerjavi s
potjo med dvema zaporednima trkoma in da so trki popolnoma
elastični, to je, da se pri njih ohranja kinetična energija. Razen ob
trkih naj molekule ne vplivajo druga na drugo. Rečemo, da je to
idealni plin oziroma njegov kinetični model (BERNOULLI, D.).

Slika 36.1 Kinetični model plina. To je roj
istovrstnih molekul, ki se nenehno gibljejo in
elastično trkajo. (Bernoulli, D., 1738)

Maso posamične molekule označimo z m1 in hitrost njenega
težišča z v. Število molekul N na prostorninsko enoto V
poimenujmo številska gostota:

n =
N
V

.

V znani plinski enačbi pV = (m/M)R*T zapišimo maso plina kot
m = m1N in molarno maso kot M = m1NA. Tako dobi enačba obliko
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(36.2)

Kinetični tlak

(36.3)

Translacijska energija

p = nkT

k =
R*
NA

.

Sorazmernostni koeficient k poimenujemo termična konstanta. Ta
je popolnoma določena s plinsko konstanto in s kilomolom. Žal za
slednjega poznamo (zaenkrat) le red velikosti, namreč NA ~ 1027,
kar vodi na oceno k ∼ 10−23 J/K. Iz enačbe razberemo, da je tlak
plina odvisen le od temperature plina in od številske gostote
molekul. Očitno je, da imata dva plina, recimo kisik in vodik,
zaprta vsak v svojo posodo z batom in izpostavljena enaki zunanji
temperaturi in pritisku, enako število molekul na prostorninsko
enoto. In koliko jih je? Pri p = 1 atm in T = 300 K izračunamo
ogromnih n = p/kT ∼ 1026/m3.

S številsko gostoto molekul je določena tudi njihova povprečna
medsebojna razdalja: l3 = V/N = 1/n. V zraku pri standardnih
pogojih znaša l ∼ 1 nm, torej desetkrat toliko, kot so molekule
velike.

36.2 Tlak in temperatura
Ko plinska molekula s komponento hitrosti vx zadene ob steno, se
od nje odbije z nasprotno enako hitrostjo. Sprememba gibalne
količine pri tem znaša 2m1vx. V času t trčijo ob steno vse
molekule, ki so oddaljene od nje za največ vxt. Na ploskovno
enoto S torej zadene nvxtS molekul, kar pomeni spremembo
gibalne količine za nvxtS · 2m1vx. Ta sprememba, deljena s časom
in ploskvijo, je tlak na steno: p = 2nm1vx

2.

Upoštevati moramo še dvoje. Prvič, nimajo vse molekule enake
hitrosti: vx

2 so različni. Zato moramo vzeti povprečje kvadratov
hitrosti vzdolž smeri x. Ker pa pri tem povprečujemo kvadrate
tako pozitivnih kot negativnih hitrosti, moramo od tega povprečja
vzeti le polovico: p = nm1⟨vx

2⟩. Drugič, molekule se ne gibljejo le v
smeri x, ampak tudi v smereh y in z. Povprečja kvadratov hitrosti
v teh smereh so enaka. Zato velja ⟨v2⟩ = 3 ⟨vx

2⟩. Tako dobimo

p =
1
3

nm1⟨v2⟩ =
2
3

n⟨m1v2/2⟩ .

Pritisk plina je torej sorazmeren s številsko gostoto molekul in z
njihovo povprečno translacijsko energijo. Enačbo lahko zapišemo
tudi v obliki p = 1/3 ρ⟨v2⟩. Iz nje določimo standardno hitrost
vrms = √⟨v2⟩ molekul pri znanem tlaku in gostoti. Kisik v posodi z
batom pri standardnih pogojih ima gostoto ρ = 1,3 kg/m3, zato
imajo molekule vrms ≈ 500 m/s. Vodikove molekule so 16-krat lažje
od kisikovih, zato je njihova hitrost √16 = 4-krat večja, torej okrog
2000 m/s. Mimogrede opazimo, da je izračunana hitrost molekul
nekoliko večja od hitrosti zvoka v zraku. To je razumljivo, saj
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Njeno izenačevanje

(36.4)

Temperatura snovi

(36.5)

Notranja energija
molekul

Zemeljsko ozračje

razredčine in zgoščine ne morejo potovati hitreje, kot se v
povprečju gibljejo molekule.

Kaj pa, če je plin mešanica iz dveh vrst molekul z maso m1 in m2?
Tedaj se zdi očitno, in do morebitnega preklica privzamemo kot
resnično, da medsebojni trki poskrbijo, da je povprečna
translacijska energija vsake vrste molekul enaka:

⟨
1
2

m1v1
2⟩ = ⟨

1
2

m2v2
2⟩ .

Seveda velja to tudi za več vrst molekul. In ne samo za molekule
v plinu, med katerimi ni sil (razen ob trkih), ampak tudi za tiste,
med katerimi vladajo sile, na primer v gosti tekočini ali trdnini.
Prenos in izenačevanje kinetične energije med elastičnimi
molekulami pač nista odvisna od sil, ki vladajo med njimi, ampak
zgolj od njihovih mas in relativnih hitrosti. Po analogiji velja
povedano tudi za atome v molekuli in za atome v kristalu. Vsak
delec – atom ali molekula ali zrno snovi – ne glede na svojo maso
in sestavo ima enako povprečno translacijsko energijo. Težji delci
se gibljejo počasneje in lažji hitreje.

Primerjava plinske enačbe p = nkT in enačbe za kinetični pritisk
plina p = (2/3)n⟨m1v2/2⟩ pove

⟨
1
2

m1v2⟩ =
3
2

kT .

Povprečna translacijska energija molekul (take ali drugačne
vrste) v plinu je torej sorazmerna z njegovo temperaturo, kakor
smo jo definirali s plinskim termometrom. Drugače rečeno: tisto,
kar imenujemo temperatura, je (preimenovana) povprečna
translacijska energija molekul.

Na zapisano povezavo med temperaturo in translacijsko energijo
lahko pogledamo tudi kot na definicijo temperature preko
termičnega gibanja. Potem iz nje in iz enačbe za kinetični pritisk
takoj sledi plinski zakon: pV ∝ T. S tem je ta eksperimentalno
ugotovljeni zakon povzdignjen v izrek, ki sledi iz izreka o gibalni
količini, ta pa seveda iz osnovne enačbe gibanja.

Translacijska energija molekule ni njena celotna kinetična
energija. Slednja je, po definiciji, enaka vsoti kinetičnih energij
vseh njenih atomov. To vsoto lahko vedno zapišemo kot vsoto
translacijske energije težišča molekule ter kinetične energije
relativnih gibanj atomov glede na težišče. Zadnjo pa lahko v
posebnih primerih zapišemo kot vsoto rotacijske in nihajne
energije molekule.

36.3 Porazdelitev po legi
Če na plin v posodi ne vpliva nobena zunanja sila ali je ta šibka in
posoda majhna, so molekule porazdeljene po prostoru
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(36.6)

(36.7)

(36.8)

Umetne molekule

enakomerno, to je, njihova številska gostota je povsod enaka.
Tako je, na primer, z zrakom v sobi. Na molekule sicer deluje
teža, vendar je termično gibanje dovolj močno, da preprečuje
molekulam kopičenje pri tleh. Drugače je v zemeljskem ozračju.
Privzemimo, da je ozračje izotermno, čeravno to ne drži povsem.
Potem vemo (22.5), da pada pritisk z višino takole:
p = p0 exp −Mgz/R*T. Pritisk izrazimo kot p = nkT in kilomolsko
maso kot M = m1NA, pa dobimo

n = n0e−m1gz /kT .

Številska gostota molekul se torej z višino zmanjšuje. Računali
smo le za molekule ene vrste in za njihov delni tlak oziroma delno
gostoto. Seveda velja enačba za katerokoli vrsto molekul v zračni
mešanici. Lažje molekule (dušik) bi morale zato počasneje
pojemati z višino kot težje (kisik). Zaradi konvektivnega mešanja
zraka pa česa takega ne opazimo.

Slika 36.2 Porazdelitev molekul kisika v
težnem polju Zemlje. Izračunane so vrednosti
za dve temperaturi.

Nad izbrano talno ploskvijo S ima ozračje obliko stolpca, v
katerem je N molekul. V plasti dz je delež dN/N = dP molekul. Ker
n = NdP/Sdz ∝ dP/dz, lahko porazdelitev molekul po višini
zapišemo tudi kot

dP
dz

= Ae−m1gz /kT .

Normirna konstanta A je določena s pogojem ∫ (dP/dz)dz = 1, torej

A =
m1g
kT

.

Pri nizkih temperaturah ali močni težnosti je normirna konstanta
velika: tedaj so prevladujoče zasedene spodnje plasti ozračja. Pri
visokih temperaturah ali šibki težnosti pa postane konstanta
majhna: tedaj je zasedenost približno enaka po vseh višinah.

Zapisana porazdelitev ne velja zgolj za molekule v ozračju,
temveč tudi za drobne prašne delce v mirni sobi in za drobne
kalne delce v stoječi vodi. Saj so ti delci nečistoč pravzaprav
orjaške molekule in imajo enako povprečno translacijsko energijo
kot okoliške prave molekule zraka ali vode.

140

ch22.htm#eq5
pict3b/boltzman.gif
pict3b/boltzman.gif


(36.9)

(36.10)

To nas navede na naslednjo zamisel. Naredimo drobne kroglaste
"molekule" znane velikosti in mase ter jih vrzimo v vodo. Potem
preštejmo, z mikroskopom, njihovo številsko gostoto na dveh
višinah. Iz razmerja teh dveh gostot nato izračunajmo termično
konstanto, saj so vse ostale količine poznane oziroma merljive!

Slika 36.3 Porazdelitev gumijastih kroglic v vodi po višini.
Kroglice imajo premer 0,6 μm. Navpični razmiki so zarisani na
10 μm. Prikazana je risba na podlagi fotografskih slik. (Perrin, 1913
/ predelava Pohl, 1969)

Zamisel je odlična, izvedba pa, kot ponavadi, težka. Kot
spretnemu eksperimentatorju nam vendarle uspe (PERRIN). Iz
gumijeve smole z znano gostoto izdelamo kroglice premera
0,6 μm. (Gumo raztopimo v alkoholu. Raztopini primešamo vodo,
da izpadejo drobne kroglice. Te so različnih velikosti. Ločimo jih s
centrifugiranjem.) Z velikostjo kroglic je natančno določena tudi
njihova masa (reda velikosti 10−10 mg). Kroglice spustimo v vodo
znane temperature, kjer se jim teža ustrezno zmanjša zaradi
vzgona. Mikroskop naravnamo na različne globine, fotografiramo
vidna polja in na fotografijah preštejemo ostro vidne delce.
Številska gostota kroglic se prepolovi približno preko razdalje
10 μm. Tako uspemo določiti

k = 1,4 · 10−23 J/K .

S tem so mnogo natančneje kot do sedaj določeni tudi kilomol
NA = R*/k, atomska masna enota u = 1 kg/NA in celo osnovni naboj
e0 = F/NA:

NA = 6,0 · 1026

u = 1,7 · 10−27 kg
e0 = 1,6 · 10−19 As .

Tudi velikost plinskih molekul lahko na novo ocenimo iz njihove
gostote v tekoči fazi: ρliq = m1/(2r)3. Za vodno molekulo, ki ima
maso m1 = 18 u, izračunamo premer 0,3 nm.

36.4 Porazdelitev po hitrosti
Molekule v plinu se torej nenehno gibljejo. Kakšna pa je
pravzaprav njihova porazdelitev po hitrosti? Opazujmo
prostornino, v kateri je številska gostota molekul povsod enaka,
recimo sobo ob morju. Delež molekul dP, ki imajo hitrost na
intervalu vx ± dvx/2, označimo z f(vx)dvx. Hitrosti v treh smereh so
med seboj neodvisne, zato je delež molekul na hitrostnem
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Velikost hitrosti

(36.11)

Meritve hitrosti

intervalu vx ± dvx/2, vy ± dvy/2, vz ± dvz/2 enak produktu
f(vx)f(vy)f(vz)dvxdvydvz.

Ker so vse smeri enakovredne, mora biti porazdelitev odvisna
zgolj od celotne hitrosti molekule, nič od njenih komponent:
f(vx)f(vy)f(vz) = F(vx

2 + vy
2 + vz

2). Temu pogoju zadošča funkcija
f(vx) = A exp (−Bvx)2 in podobno za preostali dve komponenti.
Konstanti A in B bo treba še določiti. Predznak minus smo
pritaknili zato, ker mora biti pri čedalje večjih hitrostih čedalje
manj molekul. Delež molekul na majhnem hitrostnem intervalu je
torej enak A3 exp −B(vx

2 + vy
2 + vz

2) dvxdvydvz =
A3exp (−Bv2) dvxdvydvz. Upoštevamo dvxdvydvz = v2 sinθ dv dθ dφ
in integriramo po obeh kotih, pa dobimo
f(v)dv = A3 exp −(Bv2) 4πv2 dv.

Konstanti A in B določimo iz dveh pogojev: normiranosti
∫f(vx)dvx = 1 in povprečne kinetične energije ∫ 1/2 m1vx

2 f(vx)dvx =
kT/2. Izračun integralov pove B = m1/2kT in A = √(B/π), torej
(MAXWELL)

dP
dvx

= A e−m1vx
2/2kT

dP
dv

= A3 4π v2e−m1v2/2kT

A = (
m1

2πkT
)1/2 .

Porazdelitev plinskih molekul po hitrosti težišča ni nič odvisna od
njihove številske gostote, ampak le od temperature. V sobi na
vrhu izotermnega ozračja je zato prav taka kot v sobi na njenem
dnu.

Slika 36.4 Porazdelitev kisikovih molekul po
hitrosti. Izračunane vrednosti za dve
temperaturi.

Iz pogoja df/dv = 0 določimo hitrost v maksimumu porazdelitve, to
je, najverjetnejšo oziroma modalno hitrost: vmod = √(2/3)vrms. Iz
porazdelitvene funkcije izračunamo povprečno hitrost
vave = ∫ vfdv = √(8/3π)vrms. Modalna in povprečna hitrost sta obe
manjši od standardne, prva za 20 % in druga za 10 %. Pri takšni
natančnosti je vseeno, katero izmed treh proglasimo za
"povprečno" in jo označimo z v.̄

Napovedane hitrosti molekul hočemo preveriti s poskusom.
Platinasto žico, prevlečeno s srebrom, segrevamo s tokom. Iz nje
izletajo atomi srebra. Žico namestimo v os navpičnega valja z
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Pobeg plinov

navpično režo v plašču. Iztekajoče srebrove atome ujamemo na
zaslon. Ko valj miruje, se naredi na zaslonu tanka srebrna črta.
Valj zavrtimo in črta na zaslonu se razširi. Debelina plasti srebra
na izbranem mestu črte pove relativno število atomov, ki so tja
prileteli. Z mikroskopom najdemo lego maksimalne debeline. Tja
je priletelo največ atomov. Iz razsežnosti valja in hitrosti vrtenja
(okrog 2000 obratov na minuto) določimo, kakšne so bile hitrosti
teh atomov. S tem smo določili najverjetnejšo hitrost. Dobro se
ujema z napovedano hitrostjo pri temperaturi žice.

Slika 36.5 Meritev hitrosti molekul. Iz vroče žice
izletavajo atomi srebra skozi režo vrtečega se valja in
padajo na zaslon. Debelina srebra na zaslonu v
odvisnosti od zasuka kaže hitrostno porazdelitev.
(Stern, 1920)

Poskus lahko še izboljšamo. Nitko vzamemo iz valja in njene
iztekajoče atome z zaporednimi zasloni z luknjicami oblikujemo v
snop. Valj se vrti kot prej in srebro se nabira na njegovi notranji
strani nasproti reže. Relativno debelino srebrnega sloja določimo
z njegovo svetlobno prepustnostjo.

Dovolj hitre molekule na vrhu ozračja lahko pobegnejo v vesolje.
Za to morajo imeti ubežno hitrost preko 11 km/s [19.11]. Pri
težnosti in temperaturah, kakršne vladajo na Zemlji, je delež
takih molekul neznaten. Zemlja ne izgublja ozračja. Drugače je z
Mesecem. Opazovanja zvezd ob njegovem robu kažejo, da nima
ozračja. Morda ga je nekoč imel, vendar je njegova težnost
premajhna, da bi ga bil obdržal. Okrog majhnih lun v Osončju
nasploh ne pričakujemo ozračij, zlasti ne iz lahkih plinov.

36.5 Makrostanja in mikrostanja
Porazdelitev molekul ozračja po višini opisuje funkcija
exp (−m1gz/kT), porazdelitev po hitrosti pa, na primer, funkcija
exp (−m1vx

2/2kT). Obe porazdelitvi imata obliko
exp (−energija/kT). To nas navaja na misel, da se molekule plina
pravzaprav razporejajo po njim dostopnih energijah, potencialnih
in kinetičnih, na določen način, namreč eksponentno.
Porazdelitev po legi in hitrosti pa je zgolj drugotna posledica. Kaj
neki bi bil temu vzrok?
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Energijska stanja

Makrostanja

Mikrostanja

Zamislimo si plin delcev (atomov ali molekul). Predpostavimo, da
so vsakemu delcu na razpolago energijska stanja Ei. Zaradi
lažjega razmišljanja naj bodo ta stanja diskretna. Predstavljajmo
si jih kot navpično lestev s klini. Vsak klin označuje eno
energijsko stanje. Delci se lahko porazdelijo po klinih na različne
načine. Nekaj jih gre na prvega, nekaj na drugega itd. Odkriti
hočemo vzrok, zakaj jih najdemo na vsakem klinu ravno toliko,
kot je treba, in ne več ali manj.

Recimo, da imamo štiri delce A, B, C in D ter lestev s klini 0, 1, 2,
3 … energijskih enot. Delce hočemo razporediti po klinih tako, da
bo njihova skupna energija 3 energijske enote. To lahko naredimo
takole: (1) 1 delec gre na klin 3, 3 delci na klin 0; ali (2) 1 na 2, 1
na 1 in 2 na 0; ali (3) 3 na 1 in 1 na 0. Rečemo, da so to tri
makrostanja za predpisano energijo 3 enote.

Tabela 36.1. Porazdelitev štirih delcev A, B, C, D po energijskih nivojih 0, 1,
2 … enot tako, da je energija vsake porazdelitve enaka 3 enote. Možna so tri
makrostanja (1), (2) in (3) s pripadajočimi mikrostanji. Največ mikrostanj ima
makrostanje (2), zato je najbolj verjetno. Z malo domišljije v njem že vidimo
eksponentno ozračje.

(1) ——————————————————————————————————————————————————————————
3   *       A   B   C   D
2   −       −   −   −   −
1   −       −   −   −   −
0   ***     BCD ACD ABD ABC

(2) ——————————————————————————————————————————————————————————
3   −       −   −   −   −   −   −   −   −   −   −   −   −
2   *       A   A   A   B   B   B   C   C   C   D   D   D
1   *       B   C   D   A   C   D   A   B   D   A   B   C
0   **      CD  BD  BC  CD  AD  AC  BD  AD  AB  BC  AC  AB

(3) ——————————————————————————————————————————————————————————
3   −       −   −   −   −
2   −       −   −   −   −
1   ***     BCD ACD ABD ABC
0   *       A   B   C   D
——————————————————————————————————————————————————————————

Makrostanje (1) je lahko doseženo tako, da gre na klin 3 bodisi
delec A, B, C ali D, trije preostali pa na klin 0. Očitno so to 4
načini za tvorjenje tega makrostanja. Rečemo, da je makrostanje
doseženo preko 4 mikrostanj.

Makrostanje (2) dosežemo takole: na 2 gre bodisi A, B, C ali D;
vsakič gre na 1 eden izmed preostalih treh; in vsakič gresta
preostala dva na 0. Očitno je to makrostanje doseženo preko
4 · 3 = 12 mikrostanj.

Makrostanje (3) pa dosežemo takole: na 1 gredo trije izmed A, B,
C, D, preostali osamelec pa na 0. To so 4 mikrostanja.
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Verjetnost mikrostanj
in makrostanj

Število mikrostanj v
makrostanju

(36.12)

Makrostanje z največ
mikrostanji

Postulirajmo, da so vsa mikrostanja enako verjetna. To je, izbrani
delec se v dovolj dolgem času enako mnogokrat znajde v vsakem
od njih. Ne vidimo namreč razloga, da bi se v kakem mikrostanju
znašel bolj pogosto kot v drugem. To pa pomeni, da se sistem
delcev znajde v makrostanju (2) večkrat kot v drugih dveh
makrostanjih. Naravno je postulirati: verjetnost, da se sistem
znajde v nekem makrostanju, je enaka njegovemu deležu
mikrostanj. Torej: verjetnost za makrostanje (1) je
4/(4+12+4) = 4/20 = 0,2; za makrostanje (2) je 12/20 = 0,6; in za
makrostanje (3) je 0,2.

Kakor stvari stojijo, bo v večini primerov, ko sistem pogledamo, ta
v makrostanju (2), redkeje pa v preostalih dveh makrostanjih.
Eno makrostanje, namreč (2), takorekoč štrli iz vseh makrostanj.
Če je delcev več, je to štrlenje še mnogo bolj izrazito. Skoraj
vedno potem najdemo sistem v tem makrostanju.

36.6 Porazdelitev po energiji
Kar smo povedali za sistem štirih delcev, posplošimo na množico
N enakih delcev, zaprtih v prostornini V. Vsakemu delcu so na
voljo energije E0, E1, E2 … Koliko je načinov, da na teh energijskih
nivojih E0, E1, E2, … čepi N0, N1, N2 … delcev, pri čemer ∑ Ni = N
in ∑ Ni Ei = E? Drugače rečeno: dano je makrostanje
(N0, N1, N2 …); preko koliko mikrostanj je lahko doseženo?
Razmišljanje v primeru štirih delcih nas pouči:

B =
N!

N0! N1! N2! …
.

V omenjenem primeru res velja B(3,0,0,1) = 4!/3!0!0!1! = 4,
B(2,1,1) = (4!/2!1!1! = 12 in B(1,3) = 4!/1!3! = 4. Izmed njih je
največji B(2,1,1).

Izmed vseh možnih makrostanj hočemo zdaj najti tistega, ki ima
največ mikrostanj, to je, najti hočemo takšen nabor (N0, N1, N2 …),
da bo B (N0, N1, N2 …) maksimalen, pri čemer smo omejeni z
zahtevama ∑Ni = N in ∑EiNi = E.

Ker je N zelo velik, uporabimo znano aproksimacijo iz [33.6],
namreč lnN! = NlnN − N, in sicer tako za N! kot za posamične Ni!,
pa dobimo lnB = NlnN − ∑(NilnNi − Ni).

Ker je lnB naraščajoča funkcija B, je maksimiranje prve enako
maksimiranju druge. V maksimumu mora veljati dlnB = 0, torej
(ker je N konstanten) ∑ lnNi dNi = 0. Pri variiranju dNi mora za
oba pogoja veljati dN = ∑ dNi = 0 in dE = ∑ EidNi = 0.

Vsem trem enačbam hkrati zadostimo, kakor vemo iz vezanih
ekstremov [30.9], če postavimo ∑ (lnNi + α + βNi)dNi = 0 z
neznanima parametroma α in β. Spremembe dNi so zdaj poljubne.
Da bo zapisana enačba veljala za vse dNi, mora biti
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(36.13)

Zvezna energijska
stanja

(36.14)

Povprečna energija

(36.15)

Fazne koordinate

lnNi + α + βEi = 0 za vsak i. Torej je najbolj verjetna porazdelitev,
tista z največ mikrostanji, naslednja: Ni = exp (−α) exp (−βEi).

Da bo porazdelitev v skladu z že znanima porazdelitvama molekul
po legi in hitrosti, moramo postaviti β = 1/kT. Drugo konstanto
dobimo iz normirnega pogoja. Ker
∑ Ni = ∑ exp (−α) exp (−Ei/kT) = N, imamo
exp (−α) = N / ∑ exp (−Ei/kT), torej ob upoštevanju Ni/N = Pi:

Pi =
1
Z

e−Ei/kT

Z = ∑ e−Ei/kT .

Sorazmernostno konstanto smo zapisali kot 1/Z. To je iskana
najverjetnejša porazdelitev plinskih delcev (atomov, molekul) po
svojih (privzeto) diskretnih nivojih energije. Porazdelitev pove,
kolikšen procent delcev Pi ima energijo Ei. Poimenujemo jo
kanonična porazdelitev (BOLTZMANN).

Za zvezna energijska stanja – in taka smo doslej spoznali pri težni
in kinetični energiji – si predstavljamo, da so nivoji zelo gosti.
Tedaj preide diskretna porazdelitev v zvezno in normalizacijska
vsota v integral:

dP =
1
Z

e−E/kT dE

Z =∫e−E/kTdE .

Zasedenost delčnih energijskih stanj, diskretnih ali zveznih,
pojema eksponentno z naraščajočo energijo. Ali drugače rečeno:
procent delcev, ki zasedajo kakšno svoje energijsko stanje,
pojema z naraščajočo energijo.

Povprečna energija znaša ⟨E⟩ = ∫ EdP = (1/Z)∫ E exp (−βE) dE.
Opazimo E exp (−βE) = −d/dβ exp (−βE). Odvod izpostavimo iz
integrala in dobimo ⟨E⟩ = −(1/Z) d/dβ ∫ exp (−βE) dE, torej

⟨E⟩ = −
1
Z

dZ
dβ

.

To je povprečna energija enega delca. Notranja energija pa je
vsota povprečnih energij vseh delcev, torej E = N⟨E⟩. Zapisna
relacija velja seveda tudi za diskretna stanja.

36.7 Fazni prostor stanj
Energija vsakega delca – atoma ali molekule – je odvisna od
njegove lege in gibanja težišča; če je delec sestavljen, pa še
dodatno od relativne lege in relativnega gibanja njegovih
sestavnih delov glede na težišče. V posebnih primerih je to
gibanje možno opisati kot vrtenje ali nihanje.

Poglejmo najpreprostejši primer, ko je stanje posamičnega delca
opisano le z lego r in s hitrostjo v njegovega težišča. Šesterico
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(36.16)

Atomarni sistemi

(r,v) poimenujemo fazne koordinate delca. Stanje izbranega
delca v nekem trenutku si potem predstavljamo kot točko v
faznem prostoru s šestimi medsebojno "pravokotnimi"
koordinatnimi osmi.

Slika 36.6 Pot delca v dvodimenzionalnem
faznem prostoru. Lega (abscisa) in hitrost
(ordinata) sta izračunani za dušeno nihanje.
(Gilchrist, A.)

Ko se delec giblje, njegova točka zarisuje krivuljo. V dolgem času
obišče krivulja vse razpoložljive kotičke faznega prostora. Tudi
drugi delci imajo svoje točke, ki se gibljejo. Vse točke skupaj
tvorijo nekakšen oblak. Gostota oblaka na mestu (r,v) pove,
kakšen delež točk, torej delcev, je v faznem intervalu
dx dy dz dvx dvy dvz = d3rd3v. V ravnovesnem stanju se gostota
oblaka nikjer ne spreminja. Kolikor točk priteče v fazni element v
povprečju, toliko jih tudi odteče. Majhne fluktuacije nas zaenkrat
ne zanimajo. Primerjava sedimentne porazdelitve (36.7) in
hitrostne porazdelitve (36.11) s kanonično porazdelitvijo (36.14)
pove, da dE ∝ d3rd3v oziroma

dP =
1
Z

e−E(r,v)/kT d3rd3v

Z =∫e−E(r,v)/kT d3rd3v .

To je zvezna porazdelitev delcev po energiji v obravnavanem
šestdimenzionalnem faznem prostoru. Z njo opišemo atomarne
pline, recimo helij ali živosrebrno paro, pa tudi atomarne kristale,
recimo baker ali oglje.

V atomarnem plinu ima vsak atom zgolj kinetično energijo
E = 1/2 m1v2 = 1/2 m1vx

2 + 1/2 m1vy
2 + 1/2 m1vz

2. Ustrezajoča
porazdelitev po faznem prostoru je že znana hitrostna
porazdelitev, preračunana na prostorninsko enoto:
dP/dV ∝ exp (−m1v2/2kT) d3v.

V atomarnem kristalu niha vsak atom okoli svoje ravnovesne
lege. Odmike v treh smereh označimo x, y in z. Pri majhnih
odmikih je sila sorazmerna z odmikom Fx = −αx in enako za ostali
dve smeri. Kristal naj bo torej izotropen. To pomeni, da ima atom
v kristalu kinetično in potencialno energijo K + W = 1/2 m1vx

2 +
1/2 m1vy

2 + 1/2 m1vz
2 + 1/2 α x2 + 1/2 α y2 + 1/2 α z2. Porazdelitev

atomov po legi in hitrosti razpade na dva faktorja:
dP ∝ exp (−m1v2/2kT) d3v× exp (−αr2/2kT) d3r. Prvi faktor opisuje
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Razčlenitev energije

(36.17)

(36.18)

(36.19)

hitrostno porazdelitev in je prav tak kot pri plinu. To pomeni, da
je hitrostna porazdelitev atomov neodvisna od tega, kakšne sile
jih vežejo na okolico. Enaka je v plinu, tekočini in kristalu. Drugi
faktor opisuje prostorsko porazdelitev. Ta je identična
porazdelitvi po hitrosti, če preimenujemo r→v in α → m1. To
pomeni, da so identični tudi izrazi za standardni, modalni in
povprečni odmik od ravnovesne lege, na primer ⟨r2⟩ = 3kT/α.

Niso vsi plini atomarni; večina jih je sestavljena iz molekul, to je
iz skupkov atomov. Za opis stanja take molekule ni dovolj šest
koordinat za lego in hitrost težišča. Potrebne so dodatne
koordinate: za usmeritev glavnih osi; za vrtenje okoli njih; za
medsebojne razdalje atomov; in za spremembe teh razdalj. Čim
bolj zapletena je molekula, tem več dodatnih koordinat je
potrebnih. Podobno je s kristali. Njihovi gradniki niso vedno
atomi. Vodni led, na primer, je sestavljen iz molekul. Tudi stanje
molekule v kristalu je zato treba opisati z dodatnimi
koordinatami. Obravnava molekularnih sistemov je očitno mnogo
bolj zapletena kot obravnava atomarnih sistemov.

36.8 Ekviparticija energije
Energijo enoatomne molekule v plinu brez zunanjega polja
zapišemo kot vsoto E = 1/2mvx

2 + 1/2mvy
2 + 1/2mvz

2. Vprašamo se:
koliko energije pripada, v povprečju, vsakemu členu? Povprečna
energija

⟨E⟩ =
∫ E exp (−E/kT) d3v
∫ exp (−E/kT) d3v

razpade v vsoto treh enakih integralov, od katerih se prvi – po
krajšanju podintegralov dvy in dvz – glasi

⟨Ex⟩ =
∫ 1/2 mvx

2 exp (−1/2mvx
2/kT) dvx

∫ exp (−1/2mvx
2/kT) dvx

.

S prilagoditvijo diferenciala predelamo enačbo v obliko ⟨Ex⟩ =
kT ∫ t2 exp (−t2) dt / ∫ exp (−t2) dt. Spodnji integral že poznamo: to
je normalni integral in znaša √π. Zgornji integral izračunamo
takole: ∫ t2 exp (−λt2) dt = ∫ −∂/∂λ exp (−λt2) dt =
−∂/∂λ ∫ exp (−λt2) dt. Prilagodimo diferencial v obliko d(t√λ)/√λ in
dobimo normalni integral ter po odvajanju 1/2 λ−3/2 √π. Za λ = 1 je
torej iskani integral enak 1/2 √π. Tako ugotovimo

⟨Ex⟩ =
1
2

kT .

Podobno velja za ⟨Ey⟩ in ⟨Ez⟩. Na vsak kvadratni člen v kinetični
energiji translacije torej pride 1/2 kT energije.

Enak rezultat velja tudi za energijo rotacije, ki vsebuje tri
kvadratne člene oblike 1/2Jiωi

2, pri čemer integriramo po faznih
intervalih d3ω. In prav tako za energijo nihanja, ki vsebuje tri
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člene za kinetično energijo 1/2mvi
2 ter tri člene za potencialno

energijo 1/2αri
2, pri čemer integriramo po faznih intervalih d3vd3r.

Morebitno zunanje polje na rezultat nič ne vpliva. Na vsak
kvadratni člen v izrazu za energijo torej pride 1/2 kT energije. To
je ekviparticijski izrek.

Težišče vsakršne plinske molekule se lahko giblje v treh smereh.
Rečemo, da ima tri prostostne stopnje. Translacijska energija za
vsako prostostno stopnjo je podana s kvadratom ustrezne
komponente hitrosti. Na vsako prostostno stopnjo torej pride
1/2 kT energije, skupaj 3/2 kT, kakor tudi mora biti. Za enoatomno
molekulo je to tudi celotna energija, ki jo nosi.

Toga dvoatomna molekula se dodatno vrti okrog dveh
pravokotnih osi. Ima še dve prostostni stopnji. Rotacijske energija
za vsako os je opisana s kvadratom ustrezne kotne hitrosti.
Molekula ima torej skupaj 5/2 kT energije.

Če dvoatomna molekula ni toga, ampak niha, ima še eno
prostostno stopnjo več za kinetično energijo nihanja (sorazmerno
s kvadratom hitrosti) in eno stopnjo za potencialno energijo
nihanja (sorazmerno s kvadratom odmika). Skupaj torej nosi
7/2 kT energije.

Nelinearna triatomna molekula ima poleg treh translacijskih
prostostnih stopenj še tri prostostne stopnje za vrtenje, tri za
kinetično energijo nihanja in tri za potencialno energijo nihanja,
torej skupaj 9/2 kT. Če je molekula linearna, pa odpadejo na
translacijo tri, na rotacijo dve in na nihanje štiri stopnje, skupaj
tudi 9/2 kT.

Slika 36.7 Nihanje molekule CO2 na
štiri različne načine. (American
Chemical Society)

Nasploh ima molekula iz r atomov največ 3r prostostnih stopenj
(vsak atom tri) za kinetično energijo; od tega odpade na
translacijo 3/2 kT in na notranje gibanje največ 3/2 (r − 1) kT
kinetične energije. Poleg tega ima še primerno število prostostnih
stopenj za potencialne energije nihanj.

Atom v kristalu ima šest prostostnih stopenj: po tri za kinetično in
potencialno energijo nihanja, skupaj torej 6/2 kT.

Vse te trditve o prostostnih stopnjah in o porazdelitvi energije po
njih bi bilo seveda zanimivo preveriti z meritvami. Za to
potrebujemo povezavo do ustreznih makroskopskih količin –
notranje energije in specifičnih toplot.
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Notranja energija

(36.20)

Toplotna kapaciteta

(36.21)

Specifične toplote

(36.22)

(36.23)

(36.24)

Kristalna snov

(36.25)

Težave na obzorju

36.9 Specifične toplote
Notranja energija plina je enaka vsoti energij posamičnih
molekul: translacijskih, rotacijskih in nihajnih. Če imajo torej
molekule f prostostnih stopenj, znaša notranja energija plina

U = N
f
2

kT .

Toplotna kapaciteta plina pri stalni prostornini je sprememba
njegove notranje energije na enoto temperature: CV = (dU/dT)V,
zato

CV = N
f
2

k .

Specifična toplota plina pri stalni prostornini je toplotna
kapaciteta na masno enoto: cV = CV/Nm1, to je

cV =
f
2

k
m1

=
f
2

R*
M

.

Specifična toplota plina pri konstantnem tlaku je cp = cV + R*/M,
torej

cp = (
f
2

+ 1)
R*
M

.

In slednjič – razmerje specifičnih toplot

κ =
cp

cV
= 1 +

2
f

opisuje, kakšna je adiabatna stisljivost plina: TVκ−1 = const.

Notranja energija kristala je enaka vsoti nihajnih energij (treh
kinetičnih in treh potencialnih) posamičnih atomov. Notranja
energija kristala in njegova specifična toplota sta zato

U = 3NkT
cV = 3R*/M .

To je že znana, eksperimentalno ugotovljena povezava med
specifično toploto in molarno maso kristalnih snovi (23.5).
Zanimivo je, da notranja energija ni odvisna niti od mase atomov
niti od jakosti medatomnih sil. Kristal je zato lahko sestavljen iz
več vrst atomov in elastične sile med njimi so lahko v različnih
smereh različne.

Razmerje specifičnih toplot plina znamo izmeriti (22.19). Za
enoatomni helij, ki ima 3 prostostne stopnje za gibanje, bi moralo
veljati κ = 5/3 = 1,67. Ujemanje s poskusom je odlično pri vseh
temperaturah.

Dvoatomni vodik ima 7 prostostnih stopenj. Zanj bi moralo veljati
κ = 9/7 = 1,28. Poskus pa pokaže pri sobnih temperaturah
1,40 = 7/5. Zdi se torej, kot da bi imele molekule le 5 prostostnih
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stopenj, to je, da bi ne nihale. To si lahko razlagamo takole.
Molekula niha le pri dovolj visokih temperaturah; pri sobni
temperaturi molekula ne niha, ampak se le togo vrti okoli dveh
osi; pri še nižjih temperaturah pa "zamrzne" tudi vrtenje in
preostaja le translacija.

Triatomna vodna para ima pri sobni temperaturi razmerje toplot
1,33 = 8/6, kar si razlagamo tako, da ima 6 prostostnih stopenj
(tri za translacijo in tri za rotacijo). Iz tega sklepamo, da je
molekula toga in ni linearna, saj bi takrat imela le 5 prostostnih
stopenj oziroma razmerje toplot 1,40.

Druge dvoatomne in večatomne molekule se vedejo podobno. Vse
prostostne stopnje pokažejo le pri visokih temperaturah. Z
nižanjem temperature pa začnejo prostostne stopnje "izginjati",
najprej nihajne in nato še vrtilne. Kaj bi bilo temu vzrok, zaenkrat
niti ne slutimo.

Slika 36.8 Odvisnost razmerja specifičnih
toplot κ = cp/cV od temperature za
dvoatomne molekule vodika in kisika.
(Feynman, 1963)

Podobno je s specifično toploto kristalnih snovi. Ujemanje med
napovedjo in meritvami je večinoma zelo dobro. Le pri nizkih
temperaturah se začne toplotna kapaciteta nepričakovano
manjšati. Zakaj, nam tudi ni jasno. Morda se vrtenja in nihanja v
atomskem svetu le ne dogajajo tako preprosto, kakor pri velikih
telesih.

36.10 Ravnovesni pojavi
Verjetnost, da najdemo delec v prostorninski enoti na različnih
mestih, je določena s potencialno energijo delca na teh mestih.
Ponuja se precej primerov.

V zaprti posodi je voda in nad njo para. Povsod vlada ista
temperatura. Molekule v pari so daleč narazen, tiste v vodi pa
blizu skupaj. Koliko je molekul na prostorninsko enoto v pari v
primerjavi s tistimi v vodi? Drugače rečeno: kako gosta je para
pri dani temperaturi in kako je ta gostota odvisna od
temperature?

Prostornina pare je V2 in vode V1, ustrezni številski gostoti
molekul pa n2 = N2/V2 in n1 = N1/V1. Med molekulami v vodi vlada
privlačna sila; drugače ne bi bile kondenzirane. Da molekula
izleti iz vode, mora prejeti določeno delo. Molekula v pari ima
zato za W večjo energijo od tiste v vodi. Razmerje številskih

151

pict3b/equipart.gif
pict3b/equipart.gif
picref.htm


(36.26)

Ionizacija plina

(36.27)

Kemične reakcije

(36.28)

gostot molekul v obeh fazah je (N2/V2)/(N1/V1) = exp (−W/kT). Ena
molekula vode v prostornini V1 tekoče faze zavzema prostornino
V0 = V1/N1 = 1/n1, zato (če pišemo nv namesto n2)

nv =
1
V0

e−W /kT .

To je že znana enačba za parni tlak (22.23), ki smo jo svoj čas
našli eksperimentalno. Sedaj smo jo dvignili na raven izreka.
Sorazmernostni faktor ni povsem konstanten: voda se, na primer,
praviloma razteza pri segrevanju. Prav tako je izstopno delo W
rahlo odvisno od temperature, saj so privlačne sile med
molekulami odvisne od prostornin, ki jih zasedajo. Vendar pa k
temperaturni odvisnosti prevladujoče prispeva faktor 1/T v
eksponentu in spremembe preostalih faktorjev lahko ignoriramo.

V zaprti posodi prostornine V je plin atomov, recimo živosrebrna
para. Pri medsebojnih trkih nekateri atomi izgubijo elektron in
postanejo ioni. Nekateri izbiti elektroni pa se spet združijo z
razpoložljivimi ioni nazaj v nevtralne atome. Označimo številske
gostote vseh treh vrst delcev na, ni in ne. Vprašanje je: kakšno je
ravnovesno razmerje med temi gostotami pri različnih
temperaturah?

Ker se atomi spreminjajo v ione in ti nazaj v atome, mora veljati
na + ni = n. Ker se ohranja naboj, pa mora veljati še ne = ni
(večkratne ionizacije ne upoštevamo). Privzamemo, da elektron
potrebuje energijo W, da zapusti atom. Razmerje med prostimi
elektroni (na prostorninsko enoto) "v pari" in vezanimi elektroni
(na prostorninsko enoto) "v tekočini" podaja količnik
(Ne/V)/(Na/Vavail) = exp (−W/kT). Oznaka Vavail pomeni skupno
prostornino, ki je na razpolago elektronom za vezanje. Elektroni
se lahko vežejo na Ni ionov s prostorninami V0, torej Vavail = NiV0.
Količnik delimo v števcu in imenovalcu z V in dobimo

neni

na
=

1
V0

e−W /kT .

S potrebnimi spremembami velja enačba tudi za višje stopnje
ionizacije. Za ionizacijo iz stopnje i v stopnjo i+1 zapišemo
količnik ne ni+1/ni, ionizacijsko energijo Wi+1 − Wi in ionsko
prostornino Vi.

Termično ločevanje atomov na ione in elektrone ter njihova
ponovna rekombinacija je natanko takšen proces kot ločevanje
molekul na atome in njihovo ponovno združevanje. Ko se dva
atoma A in B združita v molekulo AB, je A "elektron", B "ion" in
AB "atom". Ravnovesno stanje zato kar prepišemo

nAnB

nAB
= K0 e−W /kT = K.
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Sorazmernostna konstanta K0 je odvisna od tega, koliko
prostornine je na voljo za združevanje atomov in od drugih
podrobnosti. S tem smo razložili konstanto kemične reakcije K iz
[23.12] in izpeljali njeno odvisnost od temperature.

36.11 Transportni pojavi
Ko se molekula giblje v plinu, ji ostale molekule s svojimi preseki
postavljajo zapore. Naj bodo molekule enoatomne, torej okrogle.
Taka molekula trči ob drugo, če sta njuni središči bliže, kot znaša
premer 2r posamične molekule. Med dvema zaporednima trkoma
preleti molekula določeno pot l. Te poti so enkrat krajše in drugič
daljše. Povprečna prosta pot l ̄ je določena s prostornino valja
π(2r)2l,̄ na katero odpade v povprečju ena molekula, torej

l ̄=
1

π(2r)2n
.

Čim večja je gostota molekul in čim večje so, tem krajša je
njihova povprečna prosta pot. Če privzamemo 2r ∼ 0,1 nm in
n ∼ 1026 /m3, znaša l ̄∼ 10 nm, torej stokrat toliko, kot premer
molekule. Povprečna pot ni enaka povprečni razdalji med
molekulami, saj je prva odvisna od velikosti molekul, slednja pač
ne.

Če molekule niso okrogle, še vedno predstavljajo ovire. Namesto
geometričnega preseka π(2r)2 vpeljemo trkalni presek dveh
molekul σ kar z definicijo

l ̄=
1

σn
.

S trkalnim presekom je potem definiran efektivni premer
molekul: σ = π(2r)̄2.

Vzdolž koordinatne osi x si mislimo kvadratno cev. Skozi njen
presek S pri legi x letijo molekule z leve proti desni in z desne
proti levi. Na vsaki strani tega preseka, pri x−l ̄ in pri x+l,̄ si
mislimo še dva preseka. Pri teh presekih so doživele molekule
svoje zadnje trke. S tem sta določeni gostoti n in povprečni
hitrosti v̄ v obeh prostorskih odsekih. V času dt prileti skozi
osrednji presek z leve strani dN+ = S dt (1/6) (nv)̄x−l ̄ molekul in z
desne dN− = S dt (1/6) (nv)̄x+l ̄ molekul. Faktor 1/6 upošteva, da se
molekule gibljejo enakopravno v šest smeri. Neto tok molekul
torej znaša dN/dt = (S/6) [(nv)̄x−l ̄ (nv)̄x+l]̄ = −(S/6) d(nv)̄/dx] · 2l,̄ kar
zapišemo v lepši obliki

dN
dt

= −S
l ̄

3
d(nv)̄

dx
.

Neto toka ni, če je gradient produkta nv̄ enak nič. Če je na eni
strani večja gostota molekul ali če imajo tam večje hitrosti (zaradi
višje temperature), pa njihov tok prevlada.
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Viskoznost

(36.33)

Toplotna prevodnost

(36.34)

Transportni koeficienti

(36.35)

Naj bo na obeh straneh preseka enaka temperatura, kar pomeni,
da je enaka tudi povprečna hitrost. Premaknemo jo ven iz
diferenciala. Upoštevamo m1 dN = dm in m1 dn = dρ, pa dobimo
gostoto masnega toka

jm = −D
dρ
dx

D = −
1
3

vl̄ ̄.

To je difuzijski zakon – enačba za difuzijo molekul snovi v smeri
padajočega gradienta gostote.

Prečno na smer toka imajo molekule hitrostno komponento v⊥̄ in
zato komponento gibalne količine Ḡ⊥. Za tok prečne gibalne
količine velja dG⊥/dt = −S (l/̄3)d(nvm̄1v⊥̄)/dx. Izpod diferenciala
potegnemo m1, n in v,̄ to je, izključimo neto difuzijo molekul.
Upoštevamo dG/dt = F in preimenujemo ū⊥ = u, pa dobimo

F
S

= −η
du
dx

η =
1
3

vl̄n̄m1 .

To je znana enačba za viskozno trenje tekočin (20.9). Dodatno
vidimo, od česa je odvisna viskoznost η. Ker l ̄∝ 1/n, je viskoznost
neodvisna od gostote plina. Faktor v ̄ pa pravi, da je viskoznost
sorazmerna s korenom iz temperature.

Vsaka molekula z f prostostnimi stopnjami prenaša v toku
energijo fkT/2. Za energijski tok velja dQ/dt = −S(l/3)d(nfkT/2)/dx.
Izpod diferenciala potegnemo n, f, k in 1/2 ter dobimo

jQ = −λ
dT
dx

λ =
1
6

vl̄n̄fk .

To je znana enačba za prevajanje toplote (22.30). Dodatno vidimo,
od česa je odvisna toplotna prevodnost λ pri plinih. Ker l ̄∝ 1/n, je
tudi toplotna prevodnost neodvisna od gostote plina. Pri enaki
temperaturi prenese majhno število molekul ravno toliko energije
kot veliko število. Svojo maloštevilčnost pač kompenzirjajo z
daljšo prosto potjo. Je pa prevodnost, prav kot viskoznost,
sorazmerna s korenom iz temperature.

Transportni koeficienti D, η in λ so očitno med seboj povezani. Ob
upoštevanju ρ = nm1 in cV = fk/2m1 dobimo

η = ρD
η = λ/cV .
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Difuzijska enačba

(36.36)

(36.37)

(36.38)

(36.39)

Normalna rešitev v
neomejenem prostoru

Če torej izmerimo gostoto in specifično toploto plina ter enega
izmed transportnih koeficientov, zlahka izračunamo preostala
dva.

Koeficienti so odvisni od "mikroskopskih" količin m1, f, n, v̄ in l.̄
Za dani plin pri danih pogojih znamo vse te količine izračunati in
iz njih nato določiti koeficiente. Za kisik (ali zrak) pri standardnih
pogojih tako dobimo D ∼ 10 mm2/s, η ∼ 1 · 10−6 kp s/m2 in
λ ∼ 10 · 10−3 W/Km. To se v okvirju faktorja 3 ujema z
neposrednimi meritvami.

36.12 Difuzija primesi
Difuzijo oblaka primesi, recimo molekul vode v zraku, opišemo z
masno gostoto oblaka ρ(r,t). Zanjo vemo dvoje. Prvič, gradient
gostote povzroča tok:

j= −D∇ρ .

Drugič, masa se pri pretakanju ohranja. Sprememba mase znotraj
zaprte ploskve je zato enaka neto toku skozi to ploskev: dm/dt = I
oziroma d/dt ∫ ρ dV = −∮ j ·ndS. Na levi strani zamenjamo vrstni
red odvajanja in integriranja, na desni strani pa izrazimo
ploskovni integral s prostorninskim: ∫ ∂ρ/∂t · dV = − ∫∇ · jdV. To
mora veljati za vsako prostornino, zato

∂ρ
∂t

= −∇ · j .

Lokalna sprememba gostote je torej enaka divergenci masnega
toka. Tok iz prve enačbe vstavimo v drugo enačbo in dobimo

∂ρ
∂t

= D∇2ρ .

Privzeli smo, da je difuzivnost D povsod po prostoru enaka. To je
difuzijska enačba, konkreten primer parcialne diferencialne
enačbe. Opisuje, kako se zaradi difuzije spreminja gostota oblaka
na vsakem mestu v prostoru. V eni dimenziji se enačba glasi

∂ρ
∂t

= D
∂2ρ
∂x2 .

Naj bo prostor za difuzijo neomejen. Najpreprostejši začetni
profil gostote je oster vrh pri x = 0. Gibanje delca primesi po
ozadju molekul spominja na kotaljenje kroglice po ožlebljeni
deski [33.6]. Porazdelitev kroglic po odmiku od središčne lege je
normalna. Domnevamo, da je tako tudi pri difuziji delcev primesi:
okrog začetne lege se bodo razpršili normalno in ta razpršitev se
bo sčasoma širila in nižala. Zato izberemo nastavek
ρ = 1/√(2πa) · exp (−x2/2a), pri čemer je a neznana funkcija časa.
Vstavimo ga v difuzijsko enačbo in ugotovimo, da ji zadošča, ako
a = 2Dt. To torej pomeni, da je rešitev
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(36.40)

Rešitve v omejenem
prostoru

Difuzijska enačba

(36.41)

(36.42)

ρ(x,t) =
1

σx√(2π)
exp

−x2

2σx
2

σx
2 = 2Dt .

O pravilnosti se prepričamo tako, da rešitev vstavimo v difuzijsko
enačbo.

Normalna rešitev v dveh dimenzijah je produkt normalnih rešitev
v posamičnih dimenzijah. Dobimo jo, če nadomestimo x2 → r2 (žal
ne moremo pisati ρ, ker to oznako že uporabljamo za gostoto!) in
σx

2 → σr
2 = 4Dt. Podobno velja za tri dimenzije: x2 → r2 in

σx
2 → σr

2 = 6Dt.

Slika 36.9 Difuzija točkastega izvora.
Prikazana je enodimenzionalna difuzija za
D = 1 in ob časovnih enotah 0.01 (modra) ter
1 (rdeča).

Kaj pa, če začetni profil v neomejenem prostoru ni točkast,
ampak je razmazan v oblak ρ(r,0)? Potem je gotovo težko – če
sploh – najti analitično rešitev ρ(r,t). S tem se ne bomo ukvarjali.

Prostor, v katerem poteka difuzija, je lahko tudi omejen s stenami
take ali drugačne vrste. Poleg začetnega profila po vsem prostoru
so potem merodajni tudi robni pogoji, ob vseh časih, na teh
stenah. V eni dimenziji na intervalu [0,l], na primer, sta lahko
podana pogoja ρ(0,t) = A in ∂/∂x ρ(l,t) = 0. V takih primerih je
gotovo še težje karkoli izračunati, posebej še, če ima zamejeni
prostor "čudno" obliko. Reševanje tovrstnih problemov zato raje
prepustimo drugim.

36.13 Prevajanje toplote
Prevajanje toplote v snovi opišemo s temperaturnim poljem T(r,t).
Vemo tole. Prvič, gradient temperature povzroča toplotni tok:

j= −λ∇T .

Drugič, energija se pri pretakanju ohranja, to je, lokalna
sprememba notranje energije na prostorninsko enoto je enaka
divergenci toplotnega toka:

∂q
∂t

= cpρ
∂T
∂t

= −∇ · j .

Tok iz prve enačbe vstavimo v drugo enačbo in dobimo
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(36.43)

(36.44)

Stacionarne rešitve v
omejenem prostoru

Pijana hoja

∂T
∂t

= D*∇2T

D* =
λ

cpρ
.

Privzeli smo, da je prevodnost λ povsod po prostoru enaka in da
se gostota lokalno ne spreminja. Dobljena enačba ima enako
obliko kot že spoznana difuzijska enačba in jo bomo zato tako tudi
imenovali. Opisuje, kako se zaradi prevajanja toplote spreminja
temperatura na vsakem mestu v snovi. V eni dimenziji se enačba
glasi

∂T
∂t

= D* ∂2T
∂x2 .

Ker imajo enake enačbe enake rešitve, velja vse, kar smo
tozadevnega povedali za difuzijo snovi, tudi za prevajanje toplote.
Formalno moramo samo upoštevati T → ρ in D* → D. Ker pa ima
prevajanje toplote velik praktičen pomen, poskusimo najti še
kakšno dodatno družino rešitev. Ponuja se sama: to so
stacionarna stanja, ko se polje temperature v zamejenem
prostoru ne spreminja več. Tedaj ∂T/∂t = 0 in rešiti moramo
enačbo ∇2T = 0.

Najpreprostejši je zid [0, l] s konstantnima temperaturama T1 in
T2 na vsaki stani. Difuzijska enačba se v tem primeru glasi
d2T/dx2 = 0. Ker je drugi odvod nič, mora biti prvi odvod
konstanten: dT/dx = C. Ločimo spremenljivki, integriramo
T1∫T dT = C 0∫x dx in dobimo T − T1 = Cx. Konstanto C določimo iz
pogoja T(x = l) = T2, torej C = (T2 − T1)/l.

Stacionarni profil temperature v votlem valju [ρ1, ρ2] pri notranji
in zunanji temperaturi T1 in T2 opisuje enačba
(1/ρ)d/d(ρdT/dρ) = 0. Faktorja 1/ρ se znebimo z množenjem z ρ.
Ker je preostali odvod enak nič, mora biti ρ dT/dρ = C. Ločimo
spremenljivki in integriramo: T1∫T dT = C ρ1∫ρ dρ / ρ. Dobimo
T − T1 = C ln (ρ/ρ1). Konstanto C določimo iz pogoja T(ρ = ρ2) = T2,
torej C = (T2 − T1)/ln (ρ2/ρ1).

Podobno je z votlo kroglo. Merodajna difuzijska enačba se glasi
(1/r2)d/d(r2dT/dr) = 0. Na povsem enak način kot pri valju dobimo
T − T1 = −C (1/r − 1/r1) in konstanto C = − (T2 − T1)/(1/r2 − 1/r1).

36.14 Termično gibanje
Namesto da gledamo difuzijo oblaka delcev, lahko pogledamo
gibanje posameznega delca. Najbolj osupljivo tovrstno gibanje
kažejo drobna rastlinska semena v vodi. Opazujemo jih pod
mikroskopom.
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(36.45)

Prisilna hitrost

(36.46)

Gibljivost in
difuzivnost

(36.47)

Kroglice v vodi

Slika 36.10 Kaotično gibanje drobnih
delcev v vodi. Gibanje povzročajo trki
molekul. Delci so kroglice s premerom
1 mikrometra. Prikazane so lege treh
delcev vsakih 30 sekund. Mrežni
razmik znaša 3 mikrometre.
(Perrin, 1909)

Ob času t = 0 naj bo delec v neki točki, ki jo proglasimo za
začetno. Nato cikcaka v vse smeri. Verjetnost, da se bo po času t
znašel na mestu r± d3r od začetne lokacije, je sorazmerna s
tamkajšnjo gostoto "prirejenega" oblaka, ki se začne širiti iz iste
začetne točke. Vemo, da je ta gostota normalna in ima (v treh
dimenzijah) disperzijo σ2 = 6Dt. Disperzija pa ni nič drugega kot
povprečni kvadrat odmika od začetne točke. To pomeni, da tudi
za delec velja

⟨r2⟩ = 6Dt .

Tavajoči delec se torej v povprečju odmika od začetne lege
sorazmerno s √t.

Če na tavajoči delec deluje kakšna dodatna sila razen vplivov
okolišnjih molekul, recimo teža, opazimo, da se na njegovo slepo
gibanje doda prisilna hitrost v smeri sile. Kakšna je v povprečju
ta hitrost? Je kar pospešek F/m1 krat povprečni čas τ̄ med dvema
trkoma:

vdrift =
τ̄

m1
F = μF .

Prisilna hitrost je sorazmerna sili. Sorazmernostni koeficient μ
poimenujemo gibljivost delca. Gibljivost je tem večja, čim večji je
čas med dvema trkoma (tedaj je manj trkov, ki pospeševanje
ustavljajo) in čim lažji je delec (tedaj med dvema trkoma nabere
več hitrosti).

Prisilno gibanje in difuzija delca morata biti povezana, saj sta obe
vrsti gibanj posledica termičnega gibanja ozadnih molekul. V
enačbo D = lv̄/̄3 vstavimo l ̄= vτ̄̄ in τ̄ = μm1, upoštevamo
ekviparticijo m1v2̄/2 = 3kT/2 in dobimo

D = μkT .

Hitrejša kot je difuzija delca (ali oblaka), večja bo tudi njegova
prisilna hitrost, ko ga podvržemo zunanji sili. Enačba omogoča
izračun enega koeficienta, če poznamo drugega.

Kakšna je mobilnost drobne kroglice v vodi? Zunanja sila je teža,
zmanjšana za vzgon. Ko kroglica enakomerno pada, je ta sila
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(36.48)

nasprotno enaka sili upora F = 6πηrvdrift. S tem je določena
najprej mobilnost in preko nje difuzivnost:

D =
kT

6πηr
.

Difuzivnost D kroglic v vodi lahko določimo z merjenjem
povprečnega kvadrata odmika v odvisnosti od časa. Za delce reda
velikosti 1 μm, plavajoče v vodi, znaša ta odmik ∼ 10 μm v minuti.
Enačba omogoča (vnovičen) izračun termične konstante, saj so
vse ostale količine v njej znane. Meritve dajo podobne rezultate
kot tiste s sedimentno porazdelitvijo kroglic. □
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37

Jakost polja

(37.1)

Polje točkastega
naboja

(37.2)

Sila med dvema
nabojema

Statična E & M polja
Električno polje – Pretok in cirkulacija – Električni potencial –
Električni dipol – Polarizacija snovi – Magnetno polje – Pretok in
cirkulacija – Magnetni potencial – Magnetni dipol – Magnetizacija
snovi – Relativnost polj – Transformacija polj – Gibanje skozi polja

37.1 Električno polje
Poleg gravitacijskega polja, ki ga okrog sebe ustvarjajo vsa
telesa, smo doslej spoznali še dve polji: električno, ki ga
ustvarjajo nabiti delci (elektroni in ioni), in magnetno, ki ga
ustvarjajo tokovi teh delcev. Kar smo spoznali, hočemo sedaj
povzeti in razširiti v vektorski obliki.

Jakost električnega polja E v izbrani točki, recimo v bližini nabite
krogle ali v notranjosti ploščatega kondenzatorja, smo definirali
(25.1) preko električne sile Fe na tamkajšnji testni delec z
nabojem e:

Fe = eE .

Smer polja je po dogovoru enaka smeri sile na pozitivni testni
naboj. Poljsko jakost znamo izmeriti z vrtljivim influenčnim
kondenzatorjem, priključenim na balistični galvanometer [25.3].
Lepo bi bilo, ko bi jo znali tudi izračunati, in sicer za vsakršno
porazdelitev nabojev. Sledimo tej želji!

Najpreprostejše električno polje je tisto, ki ga okrog sebe
ustvarja točkast naboj. Ne moremo si kaj, da ne bi pomislili na
gravitacijsko polje, ki ga ustvarja masni delec (34.40). Morda je
električno polje podobno, to je sorazmerno z nabojem in obratno
sorazmerno s kvadratom oddaljenosti od njega? Torej:

EP = κe
eQ

rQP
2 nQP .

Oznaka EP pomeni poljsko jakost v točki P. Ustvarja jo naboj eQ,
ki je v točki Q. Enotni vektor nQP kaže iz točke Q v točko P.
Razdalja med obema točkama znaša rQP. Konstante κe zaenkrat
ne moremo določiti.

Ali je domneva pravilna? Na srečo imamo že orodje, s katerim jo
lahko preverimo: torzijsko tehtnico, ki se je tako dobro obnesla
pri merjenju gravitacijskih sil. Z njo hočemo izmeriti silo na
točkast delec v polju drugega točkastega delca, to je,
privlak/odboj med dvema točkastima nabojema.

Poskus poteka takole (COULOMB). Na svileno nit obesimo prečko
iz izolatorja. Na koncu prečke je pritrjena prevodna kroglica.
Dotaknemo se jo z enako, a naelektreno kroglico. Naboj se
porazdeli polovično na obe kroglici, ki se odbijeta. Izmerimo
zasuk prečke in s tem silo pri različnih razdaljah med obema
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Superpozicija polj

(37.3)

(37.4)

Pretok polja

kroglicama (sila je sorazmerna z zasukom). Tako potrdimo
odvisnost F∝ 1/r2. Potem se naelektrene kroglice na prečki
dotaknemo z enako veliko, a nevtralno, in tako razpolovimo naboj
na prvi. Ponovimo meritev sile in potrdimo odvisnost F ∝ e.
Domneva glede sile in s tem poljske jakosti je torej potrjena.

Slika 37.1 Merjenje električne sile med dvema
točkastima nabojema. Privlak ali odboj med dvema
naelektrenima kroglicama zasuka prečko, obešeno
na niti. Zasuk je sorazmeren s silo. Pokaže se, da je
sila sorazmerna z nabojema in obratno sorazmerna
z oddaljenostjo med njima. (Coulomb, 1785)

Električne sile – torej tudi polja – točkastih izvorov se vektorsko
seštevajo:

EP = κe ∑
Q

eQ

rQP
2 nQP .

Če so naboji po prostoru porazdeljeni zvezno, jih opišemo z
gostoto naboja ρ = de/dV in vsota preide v integral

EP = κe ∫
ρQ dVQ

rQP
2 nQP .

Iz znane porazdelitve nabojev lahko torej vedno določimo, kakšno
je polje. Izračunati moramo le ustrezno vsoto oziroma integral.
Seveda moramo poznati konstanto κe; to delo nas še čaka. Če je
porazdelitev količkaj zamotana, pa hitro naletimo na računske
težave.

37.2 Pretok in cirkulacija
V vsakem vektorskem polju lahko računamo pretoke skozi
poljubne zamišljene ploskve. Kakšni so pretoki v električnem
polju, to je električni pretoki?

Slika 37.2 Pretok električnega polja skozi
sklenjeno ploskev je sorazmeren zaobjetemu
neto naboju.

Zamislimo si ozek stožec z vrhom v točkastem naboju. Skozi
izbrani pravokotni presek dSn na razdalji r od vrha stožca znaša
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(37.5)

Pretok v
kondenzatorju

(37.6)

(37.7)

pretok polja dΦ = E dSn. Ker E ∝ 1/r2 in dSn ∝ r2, je pretok polja
enak skozi vsak presek stožca, ne glede na to, kako je oddaljen od
vrha. Pretok skozi zaključeno ploskev, sestavljeno iz obeh
pravokotnih presekov in iz vmesnega plašča stožca, je torej enak
nič. — Pretok skozi poševni presek je enak pretoku skozi
pravokotni presek, saj E dSn = En dS. — Poljubno sklenjeno
ploskev lahko prebodemo z množico sovršnih stožcev. Pretok
skozi vsak stožec je enak nič. Torej je tudi pretok skozi vsako
zaključeno ploskev, ki ne vsebuje nobenih izvorov, enak nič. Kaj
pa, če ploskev vsebuje izvore? Izvor zapremo v kroglo poljubno
majhnega radija. Pretok skozi zunanjo ploskev je potem enak
pretoku skozi notranjo kroglo: Φ = E 4πr2. Ker E = κee/r2, velja

∮E · dS= 4π κee .

Kaj pa, če sta prisotna dva izvora? Tedaj je pretok
∮ (E1n + E2n) dS = ∮E1n dS +∮E2n dS. Če je delec zunaj, nič ne
prispeva k pretoku. Če je delec znotraj, pa ustrezno prispeva.
Tako lahko izjavimo: pretok električnega polja skozi zaključeno
ploskev je sorazmeren zaobjetemu neto naboju. To je zakon o
električnem pretoku (GAUSS). Pravzaprav ni nič drugega kakor
posplošeno zapisan zakon o električni sili (37.2). Velja zato, ker
električna sila pojema natanko s kvadratom razdalje.

Pa zaprimo eno ploščo ploščatega kondenzatorja v namišljen valj!
Polje se pretaka pravokotno skozi notranjo ploskev S valja. Skozi
zunanjo ploskev je pretok enak nič, ker je tam polje enako nič.
Skozi plašč pa je pretok tudi nič, ker je tam polje vzporedno s
ploskvijo. Zato dobimo E = 4πκee/S.

Slika 37.3 Pretok skozi zaprt valj, ki objema
eno ploščo v ploščatem kondenzatorju. K
celotnemu pretoku prispeva le pretok skozi
spodnjo ploskev valja.

Vemo pa, da za kondenzator velja e/S = ε0E, zato

κe =
1

4πε0
.

S tem je konstanta κe določena preko električne konstante ε0 in
znaša 9,00 · 109 Vs/Am. Pretok polja lahko zato zapišemo v lepši
obliki, ki ne vsebuje več motečega faktorja 4π. Seveda pa pride ta
faktor potem v nekatere druge enačbe. Velja torej

∮E · dS=
e
ε0

.

Z besedami: pretok električnega polja skozi poljubno zaprto
ploskev je sorazmeren z neto nabojem v njeni notranjosti. Slednji
je lahko pozitiven ali negativen. V diferencialni obliki pa seveda
zapišemo
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(37.8)

Simetrična polja

Cirkulacija polja

(37.9)

(37.10)

Potencial polja

(37.11)

(37.12)

∇ ·E=
ρ
ε0

.

Zakon o električnem pretoku dobro služi za določanje električnih
polj, kadar so ta lepo simetrična. — Enakomerno nabito
neskončno ploščo zaobjamemo z valjem; polje teče pravokotno
skozi obe osnovni ploskvi: E = e/2Sε0 ∝ (e/S). — Enakomerno
nabito neskončno žico objamemo z valjem; polje teče pravokotno
skozi plašč: E = e/2πrlε0 ∝ (e/l)/r. — Enakomerno nabito kroglo pa
zaobjamemo s koncentrično kroglo; E = e/4πr2 ε0 ∝ e/r2, kakor tudi
mora biti. Vse te rezultate bi sicer lahko dobili z neposrednim
superpozicijskim seštevanjem, vendar z mnogo več truda.

Druga lastnost električnega polja, njegova cirkulacija, je enaka
nič, saj nabiti delec, ki se giblje po sklenjeni kruvulji, pri enem
obhodu ne pridobi nobene energije. Če bi jo, bi bil to stroj za
ustvarjanje energije iz nič. Torej:

∮E · ds= 0 .

Z besedami: cirkulacija po zaključeni zanki je enaka nič. To je
zakon o električni cirkulaciji. V diferencialni obliki ga zapišemo

∇×E= 0 .

Polje je torej brezvrtinčno. Enačbi za pretok (oziroma divergenco)
polja in za cirkulacijo (oziroma rotor) polja sta osnova za študij
statičnih električnih polj.

37.3 Električni potencial
Ker je polje E brezvrtinčno, ga lahko opišemo z gradientom
potenciala/napetosti U (32.18):

E= −∇U .

Negativni predznak pritaknemo, ker hočemo, da potencial pada v
smeri sile na pozitivni naboj. V integralni obliki pa pišemo

UB − UA = −
B

∫
A
E · ds .

Potencial polja med točkama A in B je torej delo na enoto
pozitivnega naboja, ki ga opravimo, ko – nasprotujoč sili polja –
počasi prenesemo ta naboj po katerikoli poti od A v B. Delo je
pozitivno, ko potiskamo naboj proti polju, in negativno, ko ga
moramo zadrževati nazaj. Očitno je potencial nedoločen do
aditivne konstante, to je ∇U =∇(U + const). Drugače rečeno:
vrednost potenciala v izhodiščni točki A lahko poljubno izberemo.

Ko smo šele odkrivali električne pojave, smo najprej kvantitativno
vpeljali napetost in preko nje določali jakost polja. Sedaj, ko vemo
več, pa smo postavili jakost polja na prvo mesto in z njo definirali
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Potencial nabojev

(37.13)

(37.14)

Potencialna enačba

(37.15)

napetost. Seveda smo to naredili tako, da se novi postopek ujame
s starim.

Kakšen je potencial točkastega naboja, ki čepi v točki Q?
Integriramo njegovo električno poljsko jakost (37.2) od
neskončnosti do izbrane točke P in dobimo

UP =
1

4πε0

eQ

rQP
.

Potencial v neskončnosti postavimo na nič. To seveda lahko
naredimo, saj s tem gradienta potenciala, ki določa električno
polje, nič ne spremenimo. Ko se bližamo pozitivnemu naboju,
narašča potencial proti +∞. Ko se bližamo negativnemu naboju,
pa potencial pada proti −∞.

Slika 37.4 Potencial (pozitivnega) točkastega
naboja. Ekvipotencialne ploskve so rdeče,
nanje pravokotne silnice so črne. Potencial v
neskončnosti je nič, nato narašča z bližanjem
proti pozitivnemu naboju oziroma upada z
bližanjem proti negativnemu naboju.
(HyperPhysics)

Potencial več nabojev je kar vsota potencialov posamičnih
nabojev:

UP =
1

4πε0
∑
Q

eQ

rQP

UP =
1

4πε0
∫ ρQ dVQ

rQP
.

Če moramo izračunati jakost polja iz dane porazdelitve nabojev,
najprej izračunamo njihov potencial in nato, preko gradienta tega
potenciala, iskano jakost polja. To je ponavadi lažje kot
neposredna pot, saj moramo izračunati skalarni integral namesto
vektorskega.

Statično električno polje je povsem opisano z enačbama za
divergenco in rotor polja. Lahko ga pa opišemo tudi preko
potenciala. Jakost polja iz definicijske enačbe za potencial (37.11)
vstavimo v divergenčno enačbo (37.8) in dobimo

∇2U = −
ρ
ε0

.

To je potencialna enačba. Njene rešitve, če je podana
porazdelitev nabojev po vsem prostoru, že poznamo; to so
UP = κe ∫ ρQ dVQ/rQP. Kadar v preučevanem delu prostora ni
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(37.16)

Potencial v
prevodniku

Električni dipol

nabojev, ampak so zgolj na njegovih robovih oziroma zunaj ter jih
ne poznamo, pa moramo rešiti homogeno potencialno enačbo

∇2U = 0 .

Rešiti zapisano enačbo v omejenem prostoru pomeni najti takšno
polje U, ki bo zadoščalo enačbi in hkrati robnim vrednostim
potenciala. Takoj vidimo, da imamo opravka s povsem enako
enačbo, kot je enačba za prevajanje toplote v stacionarnih
razmerah [36.13], ∇2 T = 0. Za ploščati, valjasti in krogelni
kondenzator, ki imajo na "notranji" plošči potencial U1 in med
ploščama potencialno razliko ΔU, zato rešitve kar prepišemo:
U − U1 ∝ x, U − U1 ∝ ln (ρ/ρ1) in U − U1 ∝ (1/r − 1/r1).
Sorazmernostne konstante smo izpustili. Gradienti potencialov
povedo, kakšne so jakosti polj: Ex = dU/dx = const,
Eρ = dU/dρ ∝ 1/ρ in Er = ∂U/dr ∝ 1/r2, kakor tudi mora biti.

Poseben primer predstavlja naelektren prevodnik. Vsi naboji so
nakopičeni na njegovi površini, ker se pač medsebojno odbijajo.
Potencial na površini je konstanten, saj bi sicer povzročal tokove.
Ker v notranjosti ni nabojev, mora v katerikoli točki veljati
∇2U = 0. Rešitev ne more imeti lokalnih ekstremov. Edina rešitev,
ki ima stalno vrednost na robu in nima lokalnih ekstremov, je
konstanta. Gradient konstantnega potenciala pa je nič. V
notranjosti torej ni električnega polja.

37.4 Električni dipol
Atome si predstavljamo kot drobne kroglice, ki vsebujejo
negativne in pozitivne naboje. Kakorkoli so ti že porazdeljeni,
navzven je atom nevtralen. Ko pa atom zaide v zunanje električno
polje, deluje na njegove pozitivne naboje sila v smeri polja, na
negativne pa v nasprotni smeri. Težišči nabojev se zato
razmakneta. Atom postane električni dipol. Podobno velja za
molekule. Za nekatere izmed njih, recimo "nesimetrični" CO,
moramo celo dopustiti, da so dipoli že brez vpliva zunanjega
polja.

Slika 37.5 Električni dipol. Sestavljata ga dva
razmaknjena, nasprotno enaka naboja.

Preden se lotimo atomskih in molekulskih dipolov, moramo
preučiti idealizirani dipol: dvojico nasprotno enakih točkastih
nabojev e na medsebojni razdalji d.
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(37.18)

Dipolni približek

(37.19)

Dipol v električnem
polju

Dipol naj bo usmerjen vzdolž osi z in naboja naj bosta oddaljena
od izhodišča za d/2. Potencial dipola je potem U = U1 + U2,
U1 = κe e / √[(z − d/2)2 + x2 + y2], U2 = κe (−e) / √[(z + d/2)2 + x2 + y2].
Glejmo polje daleč proč. Potem lahko aproksimiramo
(z ± d/2)2 ≈ z2 ± zd. Upoštevamo še x2 + y2 + z2 = r2 in z/r = cos θ,
pa dobimo po krajšem računu

U =
1

4πε0

ed cos θ
r2 .

Količina ed je očitno pomemebna in zato jo poimenujemo
električni moment dipola pe = ed. Če definiramo d kot usmerjeno
razdaljo d od −e do +e, velja

pe = ed .

U =
1

4πε0

pe ·er

r2 .

Vektorska oblika je veljavna za kakršnokoli lego in orientacijo
dipola, če pod r razumemo oddaljenost od njega.

Slika 37.6 Polje električnega dipola.
Ekvipotencialne ploskve so črtane in (nanje
pravokotne) silnice so polne. (Anon)

Namesto dveh nasprotnoimenskih nabojev preučimo sedaj oblak
nabojev, pozitivnih in negativnih, nakopičenih okrog
koordinatnega izhodišča. Oblak naj vsebuje enako mnogo
pozitivnih in negativnih nabojev. Zanima nas potencial v točki R
iz izhodišča; proti tej točki naj kaže enotni vektor eR. Označimo
lokacijo i-tega naboja z di in oddaljenost od njega do opazovane
točke z ri. Potem velja U = κe ∑ ei / ri. Naj bo opazovana točka
daleč proč. Potem velja ri = R −di ·eR. Ob upoštevanju di ≪R sledi
1/ri = (1/R) · (1 +di ·eR / R), to je,

U =
1

4πε0

pe ·eR

R2

pe = ∑ eidi.

Vpeljali smo dipolni moment nevtralnega oblaka. Daleč proč od
oblaka je polje (približno) dipolno.

Če zaide dipol v električno polje, deluje na vsakega izmed
njegovih dveh nabojev električna sila. V homogenem polju sta sili
na posamičen naboj nasprotno enaki in celotna sila je zato nič.
Vendar pa sili izvajata tudi navor in ta ni enak nič.
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Slika 37.7 Na dipol v homogenem
električnem polju deluje navor, ki ga poskuša
usmeriti vzdolž silnic.

Naj bo dipol postavljen pravokotno na električne silnice. Potem
čuti navor M = 2 eE d/2 = pe E. Če je dipol glede na silnice
odklonjen za kot θ, pa čuti navor M = pe E sin θ. V vektorski obliki
zapišemo

M=pe ×E .

Neto sila na dipol se pojavi le, če je polje nehomogeno. Tedaj sili
na naboja nista nasprotno enaki. Naj ima polje navpični gradient
∂E/∂z in naj se dipol v njem usmeri navpično. Na zgornji naboj
potem deluje sila eEtop navzgor in na spodnji naboj sila eEbot
navzdol. Razlika obeh sil znaša F = e(Etop − Ebot). Velja še
Etop = Ebot + (∂E/∂z)d, zato F = pe ∂E/∂z. Sila deluje v smeri
naraščanja polja.

Slika 37.8 Na dipol v nehomogenem
električnem polju deluje sila, ki ga poskuša
povleči v smeri močnejšega polja.

Če je dipol nagnjen glede na polje, pa moramo upoštevati
ustrezne projekcije. Naj bo pri negativnem naboju jakost polja E
in pri pozitivnem E+ dE. Sila na dipol je potem
F= e(E+ dE) − eE= edE. Spomnimo se obrazca za smerni
diferencial skalarnega polja dU =∇U · dr= (dr ·∇)U in ga
uporabimo za smerni diferencial vektorskega polja: dE= (dr ·∇)E.
Pomnožimo z e in dobimo

F= (pe ·∇)E .

To je sila, s katero naelektren glavnik privlači k sebi koščke
papirja, v katerih je induciral električne dipole.

V stabilni ravnovesni legi je dipol orientiran v smeri električnih
silnic. Ko ga zasukamo za kot φ, znaša velikost navora
M = peE sin φ. Pri tem opravimo delo A = ∫ M dφ =
−peE cos φ + peE. To delo lahko dipol vrne, zato z njim definiramo
potencialno energijo dipola ΔW = A takole:

W = −pe ·E .
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Homogena
polarizacija

(37.23)

(37.24)

S to definicijo narašča energija od −peE v stabilni legi do +peE
pri zasuku 180°.

37.5 Polarizacija snovi
Vemo, da se kapaciteta ploščatega kondenzatorja poveča, če vanj
vstavimo dielektrično snov, na primer steklo (25.4). Faktor
povečanja smo poimenovali dielektričnost snovi, ε. Povečanje
kapacitete seveda pomeni, da se zmanjša napetost med ploščama.
Ker je napetost krivuljni integral električne poljske jakosti, pa
sklepamo, da se ta v dielektriku zmanjša, čeprav ostajajo naboji
na ploščah nespremenjeni. Kako je to mogoče?

Slika 37.9 Polarizacija dielektrika v kondenzatorju. Homogeno električno polje
influencira v snovi električne dipole. Zato se na zgornji in spodnji plošči pojavita
nasprotno enaka vezana naboja. Polje v snovi je manjše kot polje v praznem
kondenzatorju.

Zamislimo si zaprto škatlo, ki objema mejo med ploščo in
dielektrikom. Ker je električno polje v slednjem zmanjšano,
sklepamo, da je neto naboj znotraj ploskve manjši, kot bi bil brez
dielektrika. Sklep je samo eden: na površini dielektrika se je
moralo pojaviti nekaj nasprotnih nabojev k tistim, ki so na plošči.
Od kod so prišli? Iz atomov dielektrika. V teh atomih namreč
razmakne zunanje električno polje težišči pozitivnega in
negativnega naboja v smeri polja. Inducirani naboji se v
notranjosti dielektrika izravnajo (zaradi homogenosti polja), na
površini pa ne in tam se pojavi vezan površinski naboj. Ta
razredči obstoječi naboj na ploščah.

Naj dobi atom ali molekula električni moment pe = ed. Vsoto
momentov v prostorninski enoti poimenujemo polarizacija snovi:

P=
dpe

dV
= ned.

Zaradi polarizacije se na površini S nabere epol = Sned naboja
oziroma njegova ploskovna gostota σpol = P. Pretok skozi
obravnavano škatlo torej zapišemo E = (σfree − σpol)/ε0 oziroma
E = (σfree − P)/ε0.

Če polje ni premočno, predpostavimo sorazmernost

P= χe ε0E ,

Sorazmernostni faktor χe poimenujemo električna
susceptibilnost. Potem znaša v dielektriku E = σfree/ε0(1 + χe). S
tem je določena tudi napetost med ploščama kondenaztorja
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(37.28)

(37.29)

Merjenje
susceptibilnosti

U = El in njegova kapaciteta C = σfreeS/U = (1 + χe) ε0S/l. To
pomeni, da

ε = 1 + χe .

Kaj pa, če polarizacija ni homogena? Naboj, ki se premakne skozi
namišljeno majhno ploskev v dielektriku, je potem enak njeni
ploščini krat normalni komponenti polarizacije, torej σpol =P ·n.
Skozi zaprto ploskev vstopajo in izstopajo polarizacijski naboji.
Znotraj ploskve se zato spremeni količina naboja za
Δe = −∫P ·ndS. Spremembo naboja izrazimo kot Δe = ∫ ρpol dV.
Izenačitev obeh izrazov pove ∫ ρpol dV = −∫P ·ndS. Ploščinski
integral polarizacije izrazimo z prostorninskim integralom njene
divergence, pa dobimo

ρpol = −∇ ·P .

Tolikšna gostota polariziranega naboja se torej nabere v vsaki
točki, kjer je divergenca polarizacije različna od nič. To so pravi
naboji; polarizacijski naboji jim rečemo samo zato, da pojasnimo,
kako so se tam znašli.

Slika 37.10 Vezani neto naboji. a) Homogeno
polariziran valj. Na zgornji in spodnji ploskvi
ima vezan naboj. b) Dva različno polarizirana
valja drug vrh drugega. Na vmesni ploskvi
obstaja vezani neto naboj.

Osnovni enačbi elektrostatike sta divergenčna in rotorska. V
divergenčni enačbi ∇ ·E= ρ/ε0 pomeni ρ gostoto vseh nabojev,
prostih in polarizacijskih. Zapišimo ρ = ρfree + ρpol in ρpol = −∇ ·P,
pa dobimo

∇ · (E+
P
ε0

) =
ρfree

ε0
.

Upoštevajoč P= (ε − 1)ε0E se dobljena enačba poenostavi v

∇ · (εE) =
ρfree

ε0
.

To je torej divergenčna enačba, ki velja v dielektrikih. Druga
enačba, rotorska, pa seveda ostaja nespremenjena: ∇×E= 0. Na
povsem enak način kot v praznem prostoru iz obeh enačb sledi

∇ · (ε∇U) =
ρfree

ε0
.

Dielektričnost pustimo pod znakom odvajanja ter s tem
upoštevamo, da se lahko v prostoru spreminja.

Kako pa merimo susceptibilnost oziroma permeabilnost
dielektrikov in kakšne so številčne vrednosti? Permeabilnost
merimo po definiciji: izmerimo kapaciteto ploščatega
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Polje tokovodnika

kondenzatorja brez in z dielektrikom med ploščama. Razmerje
kapacitet je enako permeabilnosti. S tem je določena tudi
susceptibilnost. Zelo majhne spremembe kapacitete merimo z
uporovnim mostičkom [24.10] (z dvema kondenzatorjema in
dvema uporoma) in izmeničnim virom napetosti. Pokaže se
naslednje.

Dielektriki so treh tipov. — V prvih je dielektričnost neodvisna od
jakosti polja in specifična susceptibilnost χe/ρ se ne spreminja s
temperaturo. Takšna sta, na primer, zrak (ε = 1,0005) in tekoči
kisik (1,5). Predstavljamo si, da so njihovi atomi/molekule
nepolarni, to je, da nimajo stalnih električnih momentov. Zunanje
polje momente šele ustvari. — Druga skupina ima tudi
dielektričnost neodvisno od jakosti polja, njihova specifična
susceptibilnost pa pada z naraščajočo temperaturo. Takšni so, na
primer, vodna para pri 100 °C in 1 atm (ε = 1,006), tekoča voda
pri 20 °C (80) in led pri −20 °C (16). Predstavljamo si, da so te
molekule polarne, to je, da imajo stalne električne dipole.
Zunanje polje jih obrača v svojo smer. Čim višja je temperatura,
tem težje jih polje "počeše". — Nazadnje obstaja še nekaj spojin,
katerih permeabilnost je zelo visoka in niti približno konstantna.
Z njimi se ne bomo ukvarjali.

V snovi, postavljeni v zunanje električno polje, se preko influence
dipolov vzpostavi notranje polje. Če je snov plinasta ali tekoča, je
to polje neposredno dostopno meritvam. Če pa je snov trdna,
moramo v njej izvrtati votlino, kjer želimo meriti. Vendar pa
električna poljska jakost v tej votlini ni enaka tisti v snovi, in je
celo odvisna od oblike votline. Posebno zanimiva sta dva mejna
primera za votlino: prečna reža in vzdolžni rov. Pretočna enačba
za eno ploskev reže pove, da je polje v reži večje od polja v snovi,
in sicer je takšno, kot v kondenzatorju brez dielektrika:
Eslot = εE = E0. Cirkulacijska enačba za rob rova pa pove, da je
polje v rovu enako polju v snovi Etunnel = E.

37.6 Magnetno polje
Jakost magnetnega polja B v izbrani točki prostora, recimo
znotraj dolge tuljave s tokom, smo definirali (25.5) preko
magnetne sile Fm na tamkajšnji testni tokovodnik Il. Vektorsko
ponovimo:

Fm = Il×B .

Magnetno poljsko jakost že znamo izmeriti z vrtljivo indukcijsko
tuljavo in priključenim balističnim galvanometrom [25.6]. Lepo bi
bilo, ko bi jo znali tudi izračunati, in sicer za vsakršno
porazdelitev tokov po prostoru.

K jakosti polja v izbrani točki prispevajo vsi tokovni elementi v
prostoru. Žal pa poskusov s posamičnimi tokovnimi elementi ne
moremo delati. Tako tudi ne moremo neposredno izmeriti, kakšno
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Sila med vodnikoma

Polje tokov

(37.32)

je njihovo polje. Vse, kar lahko storimo, je tole: predpostavimo,
da je polje tokovnega elementa takšno ali drugačno ter da se
posamična polja vektorsko seštevajo; izračunamo, kakšno bi
moralo biti potem polje nekaterih preprosto oblikovanih
tokovodnikov, recimo dolge ravne žice ali krožne zanke; in
preverimo s poskusom, ali je res tako.

Prva misel, ki nas obide, je tale: če pojema električno polje s
kvadratom oddaljenosti od točkastega izvora, pojema morda tudi
magnetno polje tokovnega elementa na tak način; hkrati pa
morda v izbrani smeri šteje zgolj pravokotna projekcija tokovnega
elementa in ne celotni element. Poskusimo torej s predpostavko
(BIOT/SAVART)

BP = κm∮
I dsQ ×nQP

r2
QP

.

Oznaka BP pomeni poljsko jakost v točki P. Iz tokovnega elementa
IdsQ, ki je v točki Q, je proti P usmerjen enotni vektor nQP.
Razdalje med obema točkama je rQP. Konstante κm zaenkrat ne
moremo določiti.

Ali je domneva pravilna? Izračunajmo, kakšno bi moralo biti polje
dolgega ravnega vodnika! Iz izbrane točke na oddaljenosti R od
vodnika vidimo tokovne elemente pod raznimi koti φ in na raznih
oddaljenostih r. Vidna dolžina (pravokotna projekcija) takega
elementa znaša ds = r dφ in R = r cos φ, zato ∫ ds/r2 = 1/R, torej
B = 2κm I/r. Polje pojema obratno sorazmerno z oddaljnostjo od
vodnika. Če torej drug ob drugega obesimo dva dolga vodoravna
vodnika, bo eden drugega privlačeval s silo na dolžinsko enoto
F/l ∝ I1I2/r. To pa zlahka preverimo eksperimentalno in ugotovimo,
da res drži (AMPERE).

Slika 37.11 Sila med dvema vodnikoma
AB in CD. Prikazana je replika priprave, s
katero je bil poskus prvič izveden.
(Oldenburg Universität)

Začetna domneva o polju tokovnega elementa je zato
podkrepljena in jo bomo do morebitnega preklica imeli za
pravilno.

Če tokovi niso tanki, marveč razmazani po prostoru, jih opišemo z
gostoto tokov j= dI/dS. Magnetno polje, ki ga ustvarjajo, pa se
zato zapiše v obliki

BP = κm∮
jQ ×nQP

rQP
2 dVQ .

172

pict3b/ampere.gif
pict3b/ampere.gif
picref.htm


Pretok

(37.33)

(37.34)
Cirkulacija

(37.35)

Cirkulacija v tuljavi

Kot vidimo, so enačbe za magnetno polje tokov presenetljivo
podobne enačbam za električno polje nabojev.

37.7 Pretok in cirkulacija
Slike magnetnih polj z opilki kažejo, da so magnetne silnice okrog
tokov vedno sklenjene: nimajo ne izvorov ne ponorov. To nas
navede na domnevo, da je pretok magnetnega polja skozi vsako
zaprto ploskev enak nič. Postulirajmo torej zakon o magnetnem
pretoku

∮B · dS= 0

oziroma

∇ ·B= 0 .

Kaj pa cirkulacija polja? Lotimo se je po zgledu za pretok
električnega polja!

Slika 37.12 Cirkulacija magnetnega polja
vzdolž sklenjene zanke je sorazmerna z
objetim tokom.

Objemimo polje ravnega vodnika s krožno zanko polmera r!
Zanka naj leži pravokotno na vodnik. Cirkulacija po tej zanki
znaša ∮B · ds= B · 2πr = 2κm I · 2π. Ker B ∝ 1/r, je prav takšna tudi
cirkulacija po katerikoli drugi zanki, ki tok objema. Če je znotraj
zanke več tokov, pa šteje njihova neto vsota. Navedene ugotovitve
posplošimo v zakon o magnetni cirkulaciji (AMPERE):

∮B · ds= 4πκmI .

Z besedami: cirkulacija magnetnega polja po zaključeni zanki je
sorazmerna z neto tokom skoznjo. Ni treba, da je zanka
ravninska, lahko je poljubno skrivenčena.

Pa v dolgi tuljavi objemimo N navojev na dolžini l s pravokotno
zanko!

Slika 37.13 Cirkulacija po zanki, ki objema
navoje v dolgi tuljavi. K celotni cirkulaciji
prispeva le notranja stranica.
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Polje B znotraj tuljave je homogeno, zunaj pa enako nič, zato
znaša cirkulacija po zanki B · l = 4πκm NI. Vemo pa, da za tuljavo
velja B = μ0 NI/l, iz česar sledi

κm =
μ0

4π
.

S tem smo določili doslej nepoznano konstanto κm. Znaša
1,00 · 10−7 Am/Vs. Zakon o magnetni cirkulaciji lahko zato
zapišemo v lepši obliki

∮B · ds= μ0I

oziroma

∇×B= μ0j.
Zakon o magnetni cirkulaciji ima pri računanju magnetnih polj
podobno vlogo kot zakon o električnem pretoku pri računanju
električnih polj.

37.8 Magnetni potencial
Divergenca rotorja poljubnega polja je enaka nič (32.19). To
pomeni, da lahko jakost danega magnetnega polja B zapišemo
kot rotor ustrezno izbranega magnetnega potenciala A:

B=∇×A .

Ker dobimo jakost polja z odvajanjem potenciala, je ta nedoločen
do poljubne aditivne konstante. Vprašamo se lahko celo: če A
določa B (preko svojega rotorja), ali še kakšen drugačen A'
določa isti B? Torej: kdaj velja B=∇×A' =∇×A? Tedaj, ko
∇×A' −∇×A=∇× (A' −A) = 0. Toda: če je rotor kakšnega
vektorja enak nič, mora biti ta vektor gradient nekega skalarja:
A' −A=∇ψ. To pa pomeni, da je A nedoločen celo do aditivnega
člena ∇ψ.

Jakost polja B je določena s tokovi, zato je tako tudi s
potencialom. Kako je potencial potem odvisen od tokov? V
rotorsko enačbo ∇×B= μ0j vstavimo B= ∇ ×A in dobimo
∇× (∇×A) = μ0j. Dvojni vektorski produkt znamo zapisati kot
∇(∇ ·A) − ∇2A. Postavimo še pogoj ∇ ·A= 0. S tem ne vplivamo na
B. (Ker ∇ ·A' =∇ ·A+ ∇2ψ, lahko s primerno izbiro ψ napravimo
kakršenkoli ∇ ·A'.) Tako dobimo

∇2A= −μ0j .
To je vektorska potencialna enačba, torej tri skalarne potencialne
enačbe za tri komponente tokov. Vsaka od njih je formalno
identična s potencialno enačbo za naboje. Torej poznamo tudi
njeno rešitev:

AP =
μ0

4π
∫ jQ dVQ

rQP
.
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Vzorčni potenciali

Kadar v polju ni tokov, ampak so podane zgolj robne vrednosti
potenciala, rešujemo enačbo ∇2A= 0 na podoben način kot njeno
skalarno vzornico.

Zanimivo bi bilo videti, kakšni so potenciali nekaterih znanih
magnetnih polj.

Slika 37.14 Magnetni potencial tuljave.
Silnice polja so modre, tokovnice
potenciala so rdeče. Obe polji sta osno
simetrični.

Magnetna poljska jakost znotraj dolge tuljave premera R je
konstantna in usmerjena vzdolž tuljave: Bz = μ0NI/l. Rotor
iskanega potenciala A ima torej le komponento rotzA= Bz.
Tokovnice potenciala so zato koncentrični krogi. Komponento
rotorja zapišemo v polarnih koordinatah kot
(1/r)(∂rAφ / ∂r − ∂Ar / ∂φ) = Bz. Drugi člen je nič. Kakšen mora biti
Aφ(r), da je enačba izpolnjena? Očitno Aφ = Kr, kar vodi na 2K = Bz
oziroma K = μ0NI/2l. Velikost potenciala torej narašča linearno od
osi proti ovojem.

Zunaj ovojev mora biti rotor v vsaki točki enak nič:
(1/r)(∂rAφ / ∂r) = 0. To je res, če Aφ = K'/r. Zaradi zveznosti mora
veljati K'/R = K/R. Velikost potenciala torej pada obratno
sorazmerno z oddaljenostjo od ovojev.

Slika 37.15 Magnetni potencial ravnega
vodnika. Silnice polja so modre, tokovnice
potenciala so rdeče. Obe polji sta osno
simetrični.

Magnetno polje okrog dolgega ravnega vodnika ima koncentrične
tokovnice: Bφ = μ0I/2πr. To pomeni, da ima rotor potenciala le
tangentno komponento rotφA= Bφ(r). Tokovnice potenciala so
ravne črte, vzporedne z vodnikom. Komponento rotorja zapišemo
∂Ar/∂z − ∂Az/∂r = Bφ(r). Prvi člen je enak nič. Da bo enačba
izpolnjena, mora veljati Az = −K ln r, iz česar sledi K = μ0I/2π.
Velikost potenciala pada sorazmerno z logaritmom oddaljenosti.

Magnetno polje opišemo bodisi z njegovo jakostjo B ali s
potencialom A. Kateri opis je "pravi"? Odgovor je odvisen od
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tega, kaj razumemo pod "pravi", in se zato z njim ne bomo
ubadali.

37.9 Magnetni dipol
V atomih ujeti elektroni se – tako si predstavljamo – bolj ali manj
gibljejo. Atomi torej niso zgolj skupki nabojev, ampak tudi drobni
tokokrogi. Nekateri atomi, morda vsi, se zato vedejo kot drobceni
magnetki s severnim in južnim polom. Rečemo, da so magnetni
dipoli. Zaradi termičnega gibanja so dipoli usmerjeni v vse
mogoče smeri. Če pa zaidejo v zunanje magnetno polje, se bolj ali
manj usmerijo vzdolž njega. Dopustiti moramo, da velja podobno
tudi za molekule.

Preden se podrobneja lotimo atomarnih dipolov, moramo preučiti
idealiziran magnetni dipol: pravokotno zanko s stranicama a in b,
po kateri teče tok I. Zanko orientirajmo, kakor kaže slika.

Slika 37.16 Magnetni dipol. Uteleša ga pravokotna zanka, po kateri teče tok.

V smeri z ni tokov, zato Az = 0. V smeri x sta dva toka jx vzdolž
dveh stranic a. Potencial Ax teh tokov je formalno enak kot
potencial U dveh nabitih palic z nabojema ρ. Palici imata
nasprotno enak naboj. Pri velikih oddaljenostih zato ustvarjata
dipolni potencial U =pe ·er / 4πε0r2. Dipolni moment je naboj na
eni palici krat razmik med njima, torej pe = λab. Z λ smo označili
naboj na dolžinsko enoto, to je linearno gostoto naboja. Kosinus
kota med r in er znaša −y/r. Tako zapišemo
U = −(λab/4πε0r2)(y/r). Ko nadomestimo λ z Iμ0ε0, preide U v Ax:

Ax = −
μ0

4π
Iab
r2

y
r

.

Na enak način dobimo

Ay =
μ0

4π
Iab
r2

x
r

.

Tokovnice vektorskega potenciala (pri velikih razdaljah) torej
potekajo v krogih okrog osi z v isti smeri kot tok po zanki.

176

pict3b/magdip.gif
pict3b/magdip.gif


Magnetni moment

(37.44)

Dipol v magnetnem
polju

(37.45)

Slika 37.17 Magnetni potencial dipola. Silnice polja so modre, tokovnice
potenciala so rdeče. Obe polji sta osno simetrični.

Velikost potenciala je sorazmerna z Iab, to je, z magnetnim
momentom pm = Iab = IS. Če proglasimo magnetni moment za
vektor, ki je normalen na zanko, pa lahko zapišemo magnetni
potencial v vektorski obliki:

pm = IS

A=
μ0

4π
pm ×er

r2 .

Zapisana enačba velja za zanko poljubne oblike, saj si jo lahko
mislimo sestavljeno iz samih pravokotnih zank.

Ko je magnetni dipol postavljen v magnetno polje, čuti navor in če
je polje nehomogeno, še silo. V homogenem polju so razmere
naslednje.

Slika 37.18 Navor na magnetni dipol v homogenem polju. Magnetno polje
poskuša zvrteti dipol v smer silnic.

Na vsako stranico b deluje magnetna sila F = IbB z ročico
(a/2) sin θ. Navor obeh sil torej znaša M = 2 · IbB(a/2) sin θ =
pmB sin θ. Vektorsko zapišemo

M=pm ×B .

V nehomogenem polju pa so razmere takšne.
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Slika 37.19 Sila na magnetni dipol v
nehomogenem polju. Magnetno polje poskuša
potegniti dipol v smeri gradienta silnic.

Magnetni moment naj bo usmerjen vzdolž osi z. Da bomo splošni
kljub posebni orientaciji dipola, naj bo magnetno polje usmerjeno
poljubno. — Vzdolž osi z deluje neto sila Fzy1 − Fzy2 = Idx(−ΔB) =
−I dxdy ∂By/∂y = − IS ∂By/∂y. — Podobno velja za neto silo
preostalih dveh stranic: Fzx1 − Fzx2 = −IS∂Bx/∂x. — Obe neto sili
seštejemo in dobimo Fz = −pm(∂By/dy + ∂Bx/∂x). Ker je divergenca
polja enaka nič, mora biti izraz v oklepaju enak −∂Bz/∂z, torej
Fz = pm∂Bz/∂z. — Podobno velja za neto sili vzdolž preostalih dveh
komponent: Fx = pm∂Bx/∂x in Fy = pm∂By/∂y. — Vse tri komponente
zapišemo v obliki F= pm ·∇B=∇ (pmB). Ta enačba seveda velja za
izbrani koordinatni sistem, ko je moment usmerjen vzdolž osi z.
Kar zares šteje, je kot med magnetnim momentom in gradientom
polja. V poljubno zasukanem koordinatnem sistemi zato zapišemo

F=∇ (pm ·B) = (pm ·∇)B .

V stabilni ravnovesni legi je dipol orientiran v smeri magnetnih
silnic. Ko ga zasukamo za kot φ, je velikost navora M = pmB sin φ.
Pri tem opravimo delo A = ∫ M dφ = −pmB cos φ − pmB. To delo
lahko dipol vrne, zato z njim definiramo potencialno energijo
dipola

W = −pm ·B .

S to definicijo narašča energija od −pmB v stabilni legi do +pmB
pri zasuku za 180°.

37.10 Magnetizacija snovi
Vemo, da se magnetno polje tuljave močno okrepi, če vanjo
vstavimo železen valj [25.7]. Sklepamo, da so se na površini valja
pojavili dodatni tokovi, ki tečejo okrog valja prav tako kot prosti
tokovi po ovojih. Od kod so prišli? Kaže, da so atomi železa
majhni tokokrogi, ki imajo svoje magnetne momente. Ti so
usmerjeni v različne smeri. Ko pride železo v magnetno polje, pa
se dipoli bolj ali manj usmerijo vzdolž njega. V notranjosti železa
se drobni krožni tokovi med seboj izravnajo, na površini pa ne in
tam se pojavijo vezani površinski tokovi. Ti okrepijo že obstoječe
proste tokove in s tem magnetno polje v notranjosti tuljave.
Domnevamo, da se tudi v drugih snoveh pojavljajo magnetni
dipoli, čeravno mnogo šibkejši.
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Slika 37.20 Magnetizacija snovi v tuljavi. Homogeno
magnetno polje (polne silnice) inducira v snovi
atomarne tokovne zanke – magnetne dipole. Zato se na
površini snovi pojavijo vezani tokovi in se obdajo z
dodatnim magnetnim poljem (črtane silnice). Polje v
snovi je zato večje kot v prazni tuljavi.

Vsoto atomarnih magnetnih momentov pm = IS na prostorninske
enoto poimenujemo magnetizacija snovi:

M=
dpm

dV
= nIS.

Zaradi magnetizacije se po plašču valja pojavi tok Imag = nVI = Ml,
torej njegova linearna gostota Imag/l = M.

Slika 37.21 Vezani neto tokovi. a)
Homogeno magnetiziran kvader. Po
plašču tečejo vezani tokovi. b) Dva
različno magnetizirana kvadra drug
ob drugem. Po vmesni ploskvi teče
vezani neto tok.

Če magnetizacija ni homogena, pa razdelimo snov na majhne
kocke. Tokovi po njihovih stičnih ploskvah se ne izravnavajo več.
Poglejmo navpično vmesno ploskev dveh kock! — Iz slike
razberemo neto vmesni tok I = I1 − I2 = Mzb − (Mz + ΔMz)b =
−ΔMzb = −(∂Mz/∂x)ab. To pomeni, da jy = I/ab = −∂Mz/∂x. —
Obstaja pa še en prispevek k jx, namreč sprememba Mx vzdolž z.
Pogledamo vodoravno vmesno ploskev med dvema kockama in
zanjo na podoben način ugotovimo jx = ∂Mx/∂z. — Oboje skupaj
torej da jx = ∂Mz/∂x − ∂Mx/∂z. To pa je komponenta rotorja
magnetizacije v smeri osi x, zato zapišemo vektorsko:

jmag =∇×M .

Tolikšni tokovi se pojavijo v snovi, kjer je rotor magnetizacije
različen od nič. To so pravi tokovi; magnetni jim rečemo samo
zato, da pojasnimo, kako so nastali.

V rotorski enačbi ∇×B= μ0j pomeni j vse tokove, tako proste kot
magnetizacijske. Upoštevajmo j= jfree + jmag in jmag = ∇ ×M, pa
dobimo

∇× (B− μ0M) = μ0jfree .

Postavimo, da je magnetizacija sorazmerna z magnetnim poljem,
in raziščimo posledice:
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M=
χm

μ0
B .

Sorazmernostni koeficient poimenujemo magnetna
susceptibilnost. Potem se rotorska enačba zapiše v obliki
∇× [(1−χm)B] = μ0jfree. Integralna oblika te enačbe, uporabljena
na dolgi tuljavi, pove (1 − χm)Bl = μ0NI, torej B = μ0NI/l(1 − χm).
Vemo pa že, da za snov v tuljavi velja B = μμ0NI/l. Primerjava
obeh enačb izda

1
μ

= 1 − χm .

Za susceptibilnosti, ki so po velikosti mnogo manjše od 1, velja
μ = 1 + χm. Rotorska enačba v (predpostavljeni linearni) snovi se
zapiše kot

∇×
B
μ

= μ0jfree .

Kakšne pa so, s številkami, susceptibilnosti oziroma
permeabilnosti raznih snovi in ali so magnetizacije res
sorazmerne s polji? To ugotavljamo z merjenjem sile na vzorec
snovi v znanem nehomogenem magnetnem polju. Pripravimo si
močno tuljavo in izmerimo, na standarden način (z indukcijsko
tuljavico), jakost in gradient polja ob ustju. Oboje lahko tudi
izračunamo. Primerna je tuljava z dolžino 1 čevelj, zunanjim
premerom 1 čevelj, notranjim premerom 1/3 čevlja, napajana z
močjo nekaj sto kilowattov in hlajena s sto litri vode na minuto.
To je že kar resna naprava. Takšna tuljava ima ob ustju jakost
polja ∼ 1 Vs/m2 in gradient ∼ 10 Vs/m2m. Potem tja obesimo
vzorec snovi na občutljivi tehtnici ter izmerimo silo nanj:
F = pm∂B/∂z. Tipična sila na gramski vzorec snovi znaša nekaj
milipondov. Iz sile in gradienta polja izračunamo magnetni
moment pm, ga delimo s prostornino vzorca V in dobimo
magnetizacijo M. Iz enačbe M = (χm/μ0)B nato izračunamo
susceptibilnost in s tem tudi permeabilnost.

Pokaže se naslednje. Z izjemo železa, niklja in še nekaterih
feromagnetnih snovi je magnetna permeabilnost vseh snovi zelo
blizu 1. Od nje se razlikuje tipično za ±10−5. Nekatere snovi
imajo permeabilnost večjo od 1, to je, imajo pozitivno
susceptibilnost; takšen je, na primer aluminij. Poimenujemo jih
paramagnetne. Druge snovi pa imajo permeabilnost manjšo od 1,
to je, imajo negativno susceptibilnost; primer je baker.
Poimenujemo jih diamagnetne. Da je susceptibilnost snovi lahko
negativna, je posebej presenetljivo: v takšni snovi se magnetni
dipoli postavljajo proti smeri magnetnega polja. Zakaj je vse tako,
kot je, ne moremo vedeti, ne da bi prej podrobneje raziskali
gibanje nabojev v atomih. To nas še čaka.
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Nekaj posebnega je železo in njegovi podobniki. Opisana merilna
tuljava deluje na gramski vzorec železa s silo nekaj sto pondov!
Zaradi tako močnih učinkov se lahko meritev magnetnih lastnosti
feromagnetikov lotimo na bolj udoben način. Primeren je torus iz
preučevane snovi. Na nasprotnih straneh sta naviti dve tuljavi;
ena je preko ampermetra priključena na vir toka, druga pa na
balistični voltmeter. Po korakih povečujemo tok in vsakokrat iz
induciranega sunka napetosti izračunamo zvečanje magnetnega
polja. Tako dobimo tabelo B proti I. Cirkulacija po zanki naokrog
po torusu pove (B − Mμ0) = μ0NI/l. Če narišemo graf B proti NI/l,
lahko za vsako točko grafa izračunamo tamkajšnjo magnetizacijo
M in iz nje susceptibilnost ter permeabilnost.

Slika 37.22 Histereza mehkega železa in
kaljenega jekla. Prikazana je odvisnost
notranjega polja B v odvisnosti od zunanjega
toka NI/l ≡ H. (Koškin, 1988)

V narisanem grafu opazimo naslednje. Z naraščanjem zunanjega
magnetilnega toka H = NI/l narašča tudi notranje magnetno polje
B. Naraščanje je nelinearno in se približuje konstantni nasičeni
vrednosti Bmax. Ko nato zmanjšujemo tok H nazaj proti nič, se
polje B tudi zmanjšuje, vendar pri H = 0 preostane še nekaj polja.
To je "remanentno" polje Brem. Da polje zbijemo na nič, je
potreben obraten "koercitivni" tok Hcoerc. Z naraščanjem in nato z
manjšanjem obratnega toka se ustrezno jača in slabi obratno
magnetno polje in zgodba se ponovi. Jakost polja torej ni enolična
funkcija zunanjih tokov, marveč je odvisna tudi od zgodovine
polja. Rečemo, da ima polje histerezo. Za mehko železo izmerimo
Brem = 1,2 Vs/m2 in Hcoerc = 500 A/m. Remanentno polje v železu
ostane, ko izključimo magnetilni tok. Jeklo ima približno takšno
remanenco kot mehko železo in tisočkrat večjo koercitivnost.
Namagneteno jeklo je torej mnogo teže razmagnetiti in je zato
primerno za stalne magnete.

V snovi, postavljeni v zunanje magnetno polje, se preko indukcije
dipolov vzpostavi notranje polje. Če je snov plinasta ali tekoča, je
to polje neposredno dostopno meritvam. Če pa je snov trdna,
moramo v njej izvrtati votlino, kjer želimo meriti. Vendar pa
magnetna poljska jakost v tej votlini ni enaka tisti v snovi, in je
celo odvisna od oblike votline. Posebno zanimiva sta dva mejna
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primera za votlino: prečna reža in vzdolžni rov. Pretočna enačba
za eno ploskev reže pove, da je polje v reži enako polju v snovi:
Bslot = B. Cirkulacijska enačba za rob rova pa pove, da je polje v
rovu manjše od polja v snovi in sicer je takšno, kot je v prazni
tuljavi: Btunnel = μB = B0.

37.11 Relativnost polj
Ko smo rekli, da je magnetna sila na naboj sorazmerna z njegovo
hitrostjo, smo molče privzeli, da to hitrost merimo relativno na
tokovodnike, ki magnetno polje ustvarjajo. Kaj pa, če hitrost
merimo glede na kakšen drug referentni sistem?

Poglejmo dolgo ravno žico, ki miruje v laboratorijskem sistemu S.
Po žici naj tečejo v desno elektroni z linearno gostoto naboja λ in
s hitrostjo v glede na S. Ozadje toku tvorijo pozitivni ioni, tudi z
linearno gostoto λ; žica je navzven nevtralna. Tok v žici znaša
I = λv. Zunaj žice, na razdalji r od nje, je pozitiven testni naboj e,
ki se giblje v isto smer in z natanko isto hitrostjo, kot elektroni v
žici. Kakšno silo čuti ta naboj?

Žica je nevtralna, zato naboj ne čuti električne sile. Ker pa se
giblje, čuti magnetno silo Fm = evB proč od žice. Ker B = μ0I/2πr,
znaša ta sila Fm = eμ0λv2/2πr. Testni naboj se zato pospeši proč od
žice.

Pa poglejmo na isto žico iz koordinatnega sistema S', v katerem
elektroni (in testni naboj na začetku) mirujejo. V tem sistemu se
ionsko ozadje giblje s hitrostjo v proti levi. Ker je testni naboj v S'
pri miru, ne more čutiti nobene magnetne sile. Zdi se tudi, da ne
more čutiti nobene električne sile, saj imajo negativni in pozitivni
naboji v žici (v sistemu S) enako gostoto. Torej se testni naboj
sploh ne bi smel pospešiti od žice, kar je seveda skregano z
realnostjo. Kje smo zašli?

V sistemu S sta gostoti pozitivnega in negativnega naboja res
popolnoma enaki, sicer bi se pojavilo električno polje, ki pa ga bi
mobilni elektroni hitro nevtralizirali. V sistemu S' pa se ioni
gibljejo s hitrostjo v in relativistično skrajšanje dolžin jim poveča
gostoto na λ/√(1 − v2/c2) ≈ λ + λv2/2c2. Elektroni pa so pri miru,
zato je njihova gostota manjša kot v S za λv2/2c2. To pomeni, da
ima žica, opazovana iz S', neto gostoto naboja λv2/c2. Okrog sebe
zato ustvarja električno polje E = (λv2/c2)/2πε0r. Testni naboj čuti
silo Fe = eE, ki je (ko vstavimo E) natanko enaka sili Fm.

Čisto magnetna sila v S je enaka čisto električni sili v S', vsaj za
neprevelike hitrosti! Opazovalca v obeh sistemih torej vidita enak
pospešek testnega naboja, le da ga eden pripiše magnetni, drugi
pa električni sili. Električne in magnetne sile – ter zato tudi
električna in magnetna polja – niso nekaj absolutnega, ampak so
odvisne od tega, iz katerega opazovalnega sistema opazujemo.
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Kakšna pa je transformacija nabojev in tokov, ko sedlamo iz
enega opazovalnega sistema v drugega? Videli smo, da če je
gostota nabojev v njihovem lastnem sistemu (kjer mirujejo) enaka
ρ0, potem je v sistemu, ki se giblje s hitrostjo v, gostota povečana:
ρ = ρ0 / √(1 − v2/c2)). V tem sistemu je gostota toka
j = ρv = ρ0v/√(1 − v2/c2). Spomnimo pa se tudi, da sta energija E in
gibalna količina G delca, ki se giblje s hitrostjo v, naslednja:
E = mc2 / √(1 − v2/c2) in G= mv / √(1 − v2/c2). Količini ρ in j sta torej
odvisni od hitrosti v natanko tako, kot količini E in G. Iz tega
sklepamo, da se četverica količin ρ in j transformira prav tako kot
četverica E in G, to je, prav tako kot četverica t in r (EINSTEIN):

j'x = γ(jx − uρ)
j'y = jy
j'z = jz
ρ' = γ(ρ − ujx/c2) .

V kateremkoli opazovalnem sistemu že opazujemo naboje in
tokove, vedno veljajo zanje iste osnovne enačbe elektrodinamike.
Gibanje delcev, ki ga z njimi izračunamo, bo vedno enako.

37.12 Transformacija polj
Zamislimo si, da sedimo na ravni cesti in gledamo vzdolž nje (os
x). Ob straneh sta dva navpična zidova, ki polzita vzdolž ceste s
hitrostjo v0. Zidova sta nasprotno enako naelektrena: desni
pozitivno in levi negativno. V lastnem opazovalnem sistemu
nabojev, torej v sistemu, povezanem z zidom, je ploskovna gostota
nabojev σ0. Ker nas obdajajo naboji in tokovi, čutimo električno in
magnetno polje. Cesta je opazovalni sistem S.

Slika 37.23 Transformacija polj. Nasprotno nabiti
navpični plošči se gibljeta vzdolž osi x. Mirujoč
opazovalec zaznava električno in magnetno polje
Ey in Bz. Gibajoč se opazovalec pa zaznava
drugačni polji E'y in B'z.

V S je zaradi relativističnega skrčenja gostota nabojev večja:
σ = σ0 / √(1 − v0

2/c2). Električno polje je homogeno in poteka od
desne proti levi. Po zakonu o električnem pretoku velja Ey = σ/ε0
(1). Magnetno polje je homogeno in poteka navpično navzgor. Po
zakonu o magnetni cirkulaciji velja Bz = μ0 σv0 (2).

Po cesti pripelje tovornjak s hitrostjo v glede na cesto. Tovornjak
je opazovalni sistem S'. Glede na tovornjak se zidova gibljeta s
hitrostjo v'0 = (v0 − v)/(1 + v0v/c2) (3). Gostota nabojev na stenah je
σ' = σ0 / √ (1 − v'02/c2), torej σ' = σ √ (1 − v0

2/c2) / √ (1 −v'02/c2).

183

pict3b/transform.gif
pict3b/transform.gif


(37.55)

(37.56)

Gibanje vzdolž polja

(37.57)

(37.58)

Polja in izvori

Vstavimo v'0 iz (3) in dobimo σ' = σ (1 − v0v/c2) / √(1 − v2/c2 ) (4). S
tem pa tudi lahko izračunamo E'y = σ'/ε0 in B'z = μ0σ'v0 ter ob
upoštevanju (1) in (2) dobimo

E'y = γ(Ey − uBz)
B'z = γ(Bz − uEy/c2) .

Namesto dveh navpičnih sten si zamislimo vodoravna tla in strop,
torej namesto ploskev v ravnini xz ploskvi v ravnini xy.
Razmišljanje je enako in rezultat naslednji:

E'z = γ(Ez + uBy)
B'y = γ(By + uEz/c2) .

Do zdaj se je tovornjak – gibajoči se opazovalec – premikal
pravokotno na električno in magnetno polje. Ostane še
premikanje vzporedno z njima. Za električno polje si zamislimo
dve steni, pravokotni na cesto. Opazovalcu na tovornjaku, ki vozi
od ene stene proti drugi, se njuna ploščina nič ne spremeni,
razdalja med obema pa se skrajša. Ker je jakost električnega
polja med stenama odvisna le od ploskovne gostote naboja in nič
od vmesne razdalje, velja

E'x = Ex .

Pogled na zapisane enačbe kar kliče po tem, da bi moralo veljati
še

B'x = Bx .

Domnevo upravičimo takole. Zamislimo si, da poteka cesta po osi
dolge tuljave s tokom. Vozniku se zdi tuljava krajša:
l' = l√(1 − v2/c2), to je, število ovojev na dolžinsko enoto, N/l', je
zanj večje. Magnetno polje bi moralo zato biti večje. Vendar pa je
tok, ki ga voznik izmeri v ovojih, manjši od toka, ki ga izmeri
cestar. Slednji namreč s stališča voznika uporablja uro, ki teče
počasneje, zato isti pretočeni naboj preračunava na manj
časovnih enot, torej meri večji tok. Velja I' = de/dt' =
(dt/dt')de/dt = (dt/dt')I = I/√(1 − v2/c2). V produktu NI'/l', s katerim
je magnetno polje določeno, se obe spremembi izravnata.

Spremembe polj (37.55-58) (EINSTEIN) so lokalne. To pomeni, da
so z vrednostmi E in B, ki ju opazimo v neki prostorsko časovni
točki, enolično določene vrednosti E in B v kateremkoli drugem
opazovalnem sistemu. Zato so transformacijske enačbe za polja,
ki smo jih postavili s pomočjo posebno preprostih izvorov –
ploščatega kondenzatorja in dolge tuljave, veljavne splošno. Tako
se namreč transformirajo polja; izvori, ki ta polja povzročajo, so
pri vsem skupaj nepomembni.

37.13 Gibanje skozi polja
Transformacijske enačbe za polja omogočajo, da izračunamo,
kakšna polja vidimo, ko se gibljemo mimo poljubnih stalnih
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Prečenje električnega
polja

Prečenje magnetnega
polja

nabojev in tokov. Dober primer je letalo, ki leti skozi zemeljsko
električno in magnetno polje. Njegova hitrost naj bo zavidljivih
v = 300 m/s. Vendar je to je mnogo manj od svetlobne hitrosti,
zato lahko v transformacijskih enačbah uporabimo približek
γ = 1/√(1 − v2/c2) ≈ 1 + v2/2c2, ki znese za letalo 1 + 5 · 10−13.
Tipično električno polje je navpično, usmerjeno je proti tlom in
ima jakost ∼ 100 V/m. Magnetno polje nad severnim polom je
navpično, usmerjeno je proti nebu in ima jakost ∼ 10−5 Vs/m2.

Privzemimo, da leti letalo le skozi navpično električno polje Ez.
Leti naj vodoravno v poljubno smer (os x). Transformacijske
enačbe povedo, da vidi pilot močnejše električno polje E'z = γ · Ez
in novonastalo magnetno polje B'y = γ · vEz/c2. Sprememba
električnega polja za 5 · 10−11 V/m je nezaznavna. Nastalo
magnetno polje pa znaša 3 · 10−13 Vs/m2, kar je tudi nezaznavno.

Naj leti letalo le skozi navpično magnetno polje Bz. Leti naj
vodoravno v poljubno smer (os x). Transformacijske enačbe
povedo, da vidi pilot močnejše magnetno polje B'z = γ Bz in
novonastalo električno polje E'y = γ vBz. Sprememba magnetnega
polja za 5 · 10−13 Vs/m2 je nezaznavna. Nastalo električno polje pa
znaša 3 · 10−3 V/m in je na prvi pogled zlahka merljivo: z
voltmetrom moramo le izmeriti potencialno razliko med koncema
kril. V praksi tega žal ni mogoče narediti, ker se tudi voltmeter s
priključki giblje skozi polje. Seveda pa to lahko naredimo (in smo
že naredili) v laboratoriju s premikanjem prečke po tirnicah.

Nastanek prečnega električnega polja pri gibanju opazovalca
skozi magnetno polje ni nič drugega kot relativistični opis za
indukcijo napetosti pri gibanju vodnika: E'y = γ v Bz → Ui = Bvl. To
kaže, da je magnetizem pravzaprav relativistični pojav.
Dinamična indukcija pa je močna potrditev, da je teorija
relativnosti pravilna. □
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38

Ohranitev nabojev

(38.1)

Ohranitev pretokov

(38.2)

Indukcija električnega
polja

(38.3)

Indukcija magnetnega
polja

Elektromagnetni valovi
Elektromagnetno polje – Elektromagnetni valovi – Ravno
valovanje – Stojno valovanje – Energija valovanja – Valovni
potenciali – Dipolno sevanje – Radijski valovi – Valovanje v snovi –
Valovanje v dielektriku – Valovanje v prevodniku – Vpad na
dielektrik – Vpad na prevodnik – Uklon na ovirah

38.1 Elektromagnetno polje
Mirujoči naboji so obdani s statičnim električnim poljem in
stacionarni tokovi so obdani s statičnim magnetnim poljem.
Elektrostatično in magnetostatično polje sta med seboj povsem
neodvisna. Vemo pa, da se lahko naboji gibljejo in tokovi
spreminjajo. Pridružena polja potem niso več statična, ampak se
spreminjajo s časom. To so polja, ki jih hočemo sedaj raziskati.

Kakorkoli se naboji in tokovi že spreminjajo, vedno velja zakon o
ohranitvi naboja. Po zgledu za ohranitev mase (36.37) zapišemo
kontinuitetno enačbo

∇ · j= −
∂ρ
∂t

.

Naboji so izvori in ponori električnih pretokov. Upravičeno se zdi
predpostaviti, da se tudi pretoki ohranjajo, to je, da zakon o
električnem pretoku (37.8) velja celo za naboje, ki se gibljejo.
Podobno predpostavimo tudi za zakon o magnetnem pretoku
(37.34). Postuliramo torej

∇ ·E=
ρ
ε0

∇ ·B= 0 .

V spremenljivem magnetnem polju se, kot vemo, pojavlja
električno polje, kakor ga zaznamo z indukcijsko tuljavo in
priključenim balističnim galvanometrom. Zakon o dinamični
indukciji (25.8) pove ∫ U dt = −S ΔB. Za majhno zanko ploščine S
in obsega s v homogenem polju zapišemo odvisnost električnega
polja od lokalne spremembe magnetnega polja kot Es/S = −ΔB/Δt
oziroma v vektorski obliki

∇×E= −
∂B
∂t

.

Vsako magnetno polje je, kakor vemo, povezano z lokalnim
tokom: ∇×B= μ0j. Če izračunamo divergenco te enačbe, vidimo,
da je divergenca toka enaka divergenci rotorja polja; ta pa je za
vsako polje enaka nič: ∇ · j= 0. Torej bi moral biti tok I skozi
vsako zaprto ploskev enak nič. To pa gotovo ne more biti res, saj
vemo, da lahko naboje kopičimo, na primer na eni plošči
kondenzatorja. Enačba za rotor magnetnega polja zato ne more
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(38.4)

Osnovne enačbe polja

Osnovne enačbe v
vakuumu

biti popolna; manjka ji člen, ki bi zagotovil, da se bo divergenca
enačbe reducirala v kontinuitetno enačbo, torej
∇×B= μ0j+ [missing].

Kaj naj bi bil manjkajoči člen? Vsekakor mora zanj veljati
∇ · [missing] = μ0 ∂ρ/∂t. Gostoto naboja izrazimo iz električne
divergenčne enačbe: ρ = ε0∇ ·E, zato ∂ρ/∂t = ∂/∂t (ε0∇ ·E) =
∇ · (ε0 ∂E/∂t). Iskani člen je potemtakem [missing] = μ0ε0 ∂E/∂t,
torej (MAXWELL)

∇×B= μ0j+ μ0ε0
∂E
∂t

.

Slika 38.1 Praznjenje kondenzatorja skozi
upor. Magnetna cirkulacija po zanki ∂S je
enaka ne glede na to, ali jo računamo iz
toka I, ki prebada ploskev S1, ali iz
"premikalnega toka" ε0∂E/∂t, ki prebada
ploskev S2. (Anon)

S tem je zaključen nabor štirih osnovnih enačb elektrodinamike,
ki popolnoma opisujejo električno in magnetno polje: njuno
povezanost z izvori ter njuno medsebojno odvisnost. Te enačbe
so: dve divergenčni (38.2) in dve rotorski (38.3) (38.4). V
stacionarnih razmerah se enačbe reducirajo na dva medsebojno
neodvisna para: za elektrostatiko in za magnetostatiko.
Kontinuitetna enačba ni neodvisna, ampak sledi iz četverice
osnovnih enačb.

Kaj pravzaprav pravijo osnovne enačbe? Tole: v prostoru
obstajajo električna in magnetna polja. Izvor električnih polj so
naboji in spremenljiva magnetna polja. Izvor magnetnih polj so
tokovi in spremenljiva električna polja. Električno in magnetno
polje sta dva obraza istega, elektromagnetnega polja.

Osnovne enačbe elektrodinamike so posplošitve naših dosedanjih
spoznanj o električnih in magnetnih poljih. Ne moremo jih
izpeljati iz kakšnih drugih enačb; če bi jih lahko, ne bi bile več
osnovne. Ali so pravilne ali ne, pa bomo sklepali na podlagi
posledic, ki iz njih sledijo.

38.2 Elektromagnetni valovi
Za preučevanje elektromagnetnega polja so najpreprostejše
razmere v vakuumu, kjer ni nabojev in tokov. Tam se osnovne
enačbe glasijo:
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(38.5)

Valovne enačbe

(38.6)

(38.7)

(38.8)

Njihove rešitve

(38.9)

∇ ·E= 0
∇ ·B= 0

∇×E= −
∂B
∂t

∇×B= ε0μ0
∂E
∂t

.

Na tretjo enačbo delujemo z rotorjem ∇×. Na levi strani dobimo
rotor rotorja, kar zapišemo kot ∇× (∇×E) = ∇ · (∇ ·E) −∇2E
(32.19), pri čemer je člen z divergenco enak nič. Na desni strani
zamenjamo vrstni red odvajanja ∇× ∂B/∂t = ∂/∂t (∇×B) in
upoštevamo ∇×B= ε0μ0 ∂E/∂t. Tako dobimo enačbo

∇2E− ε0μ0
∂2E
∂t2 = 0 .

Podobno obdelamo četrto enačbo in dobimo

∇2B− ε0μ0
∂2B
∂t2 = 0 .

Obe enačbi imata enako obliko. Opisujeta, kako se
elektromagnetna motnja v vakuumu spreminja s časom. Očitno
igra pri tem pomemebno vlogo produkt električne in magnetne
konstante. Da so enote v prostorskem in časovnem členu enake,
mora imeti recipročna vrednost tega produkta enoto hitrosti na
kvadrat, kar tudi drži. Zato definiramo novo konstanto

c2 =
1

ε0μ0
.

Vstavimo številske vrednosti in dobimo c = 3,00 · 108 m/s. Izjemno
presenečenje! Saj to je vendar hitrost svetlobe, kakor smo jo svoj
čas izmerili (27.1)! To ne more biti naključje. Sklepamo, da je
svetloba elektromagnetno valovanje takšnih valovnih dolžin, ki jih
vidimo, in da zapisani enačbi opisujeta elektromagnetne valove
različnih vrst. Zato ju poimenujemo valovni enačbi.

V eni dimenziji se vsaka posamična komponenta valovnih enačb –
označimo jo z u – zapiše v obliki

∂2u
∂x2 =

1
c2

∂2u
∂t2 .

Če takšna enačba res opisuje valovanje, mora veljati tudi za
ravne valove u = u0 exp ik(x − ct), k = 2π/λ. Argument lahko
zapišemo v priročnejši obliki k(x − ct) = kx − ωt, kjer ω = ck.
Vstavitev v valovno enačbo potrdi domnevo. Pa ne samo to:
rešitev valovne enačbe je tudi vsota dveh ali več ravnih valov
različnih valovnih dolžin, ki se vsi gibljejo z isto hitrostjo. Iz
množice takih valov lahko sestavimo poljubno funkcijo u1(x − ct).
To je hrib poljubne začetne oblike u1(x, 0), ki drsi, ne da bi
spreminjal svojo obliko, vzdolž koordinatne osi s hitrostjo c.
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(38.10)

(38.11)

Pravokotnost E in B

Povezava E in B

(38.12)

(38.13)

Slika 38.2 Gibanje valovne motnje.

Druga taka funkcija je u2(x + ct), torej hrib drugačne oblike, ki se
giblje v nasprotni smeri. Splošna rešitev valovne enačbe je vsota
obeh:

u = u1(x − ct) + u2(x + ct) .

38.3 Ravno valovanje
Ravno valovanje hočemo sedaj podrobneje preučiti. Naj potuje
valovanje v smeri enotnega vektorja n; potem zapišemo

E=E0 ei(k ·r−ωt)

B=B0 ei(k ·r−ωt) ,

pri čemer k= kn. Kaj o teh dveh nastavkih povedo divergenčne in
rotorske enačbe?

Nastavek za E vstavimo v divergenčno enačbo ∇ ·E= 0, računamo
po komponentah in dobimo iE0 ·k= 0, to je E ·n= 0. Vektor
električne poljske jakosti je torej pravokoten na smer gibanja
valovanja. Podobno ugotovimo za magnetno poljsko jakost:
B ·n= 0. Tudi vektor magnetne poljske jakosti je pravokoten na
smer gibanja valovanja.

Nastavka za E in B vstavimo še v rotorsko enačbo ∇×B=
−(1/c2)∂E/∂t, računamo po komponentah in dobimo ik×B=
−iE0ω / c2. Ker ω = kc, dobimo

E= cB×n .

Vektorja E in B sta torej med seboj pravokotna. Ker |n| = 1 in
B⊥E, velja |E| = |cB|, to je

E = cB .

V ravnem valovanju torej nihata električna in magnetna poljska
jakost sočasno: kjer je vozel prve, je tudi vozel druge, in kjer ima
maksimum prva, ga ima tudi druga. Električni poljski jakosti
1 V/m je pri tem pridružena magnetna poljska jakost 10−9 Vs/m2.

Slika 38.3 Ravni elektromagnetni
val. (Anon)
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Amplitudna enačba

(38.14)

(38.15)

Mejni pogoji

Kvadratni resonator

(38.16)

(38.17)

38.4 Stojno valovanje
Ravni valovi so rešitev valovne enačbe v neomejenem prostoru.
Kakšne pa so njene rešitve v omejenem prostoru, recimo v zaprti
kovinski škatli? Omejimo se le na take rešitve, pri katerih
električno polje v vseh točkah niha sinhrono, torej

E=E0(r) e−iωt .

Valovna enačba se v tem primeru poenostavi v amplitudno
enačbo

∇2E0 = −k2E0
k2 = ω2/c2 .

Amplitude E0 stojnih valovanj so seveda odvisne od oblike
resonantne škatle. Podobna amplitudna enačba velja tudi za
magnetno polje.

Električno in magnetno polje na meji s prevodnikom ne moreta
biti poljubna. V prevodniku se namreč naboji hipno
prerazporejajo tako, da v njem ni električnega in magnetnega
polja. — Mejo objamemo s tanko pravokotno zanko. Cirkulacija E
po zanki je enaka spremembi pretoka B skoznjo. Ker lahko
naredimo zanko zelo ozko, je sprememba pretoka skoznjo nič,
torej E∥(1)l − E(2)l = 0. V prevodniku je E(2) = 0, zato na meji velja
robni pogoj E∥ = 0. — Mejo objamemo še s plitvo pravokotno
škatlo. Divergenca B skoznjo mora biti enaka nič, torej
B⊥(1)S − B⊥(2) = 0. V prevodniku je B(2) = 0, zato na meji velja
robni pogoj B⊥ = 0.

Najpreprostejši resonator je kvadratna škatla x ∈ [0, a], y ∈ [0, b],
z ∈ [0, h]. Poglejmo, če obstajajo taki valovi, pri katerih je E0
usmerjena vzdolž osi z in neodvisna od z, torej E0 = (0, 0, Ez (x, y)).
Zaradi kratkosti bomo namesto Ez zanaprej pisali kar E.
Amplitudno enačbo zapišemo v kartezičnih koordinatah

∂2E
∂x2 +

∂2E
dy2 + k2E = 0 .

Rešitev iščemo z nastavkom E(x, y) = X(x)Y(y). Dobimo
X"/X + Y"/Y = −k2. To je možno le, če je vsak izmed obeh členov
enak konstanti: X"/X = −kx

2 in Y"/Y = −ky
2, pri čemer kx

2 + ky
2 = k2.

Rešitvi teh dveh enačb sta sinus ali kosinus. Da zadostimo pogoju
na mejah x = 0 in y = 0, izberemo sin kxx in sin kyy. Da zadostimo
še pogoju na mejah x = a in y = b, pa postavimo kx = mπ/a in
ky = nπ/b, m, n = 1, 2, 3 … Iskane rešitve so torej

Emn = sin
mπx

a
sin

nπy
b

,

Katerakoli izmed teh rešitev, recimo E11, je dobra, prav tako pa
katerakoli njihova linearna kombinacija, recimo A · E11 + B · E12.
Frekvenca nihanja znaša
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(38.18)

Cilindrični resonator

(38.19)

(38.20)

(38.21)

(38.22)

ω2

c2 = (
mπ
a

)2 + (
nπ
b

)2 .

Ustrezno magnetno polje dobimo iz rotorske enačbe ∇2E0 = iωB0.
Neposredni račun pove Bx = (iky/ω) sin kxx cos kyy in
By = −(ikx/ω) cos kxx sin kyy. Imaginarni faktor i pove, da magnetno
nihanje kasni za električnim za π/2. Polji E in B sta med seboj
pravokotni, kar potrdimo z izračunom E ·B= 0.

Slika 38.4 Stojno elektromagnetno valovanje E11
v kvadratnem resonatorju. Električne silnice so
navpične, magnetne so krožne. (The Great Soviet
Encyclopedia)

Kaj pa cilindrična votlina ρ ∈ [0, a], φ ∈ [0, 2π], z ∈ [0,h]? Spet
iščimo polje, v katerem je E0 usmerjena vzdolž osi z in neodvisna
od z, torej Ez (ρ, φ) ali krajše kar E. Amplitudno enačbo potem
zapišemo v cilindričnih koordinatah, upoštevajoč (32.25), kot

1
ρ

∂
∂ρ

(ρ
∂E
∂ρ

) +
1
ρ2

∂2E
∂φ2 + k2E = 0 .

Izberemo nastavek E = R(ρ)Φ(φ) ter ga vstavimo vanjo. Če
dobljeno enačbo pomnožimo še z ρ2, postane njen drugi člen
(1/Φ)d2Φ/dφ2, torej neodvisen od ρ, zato mora biti enak konstanti,
ki jo zapišemo kot −n2. Tako dobimo dve ločeni enačbi:

ρ
d
dρ

(ρ
dR
dρ

) + [(kρ)2 − n2]R = 0

d2Φ
dφ2 + n2Φ = 0 .

Rešitev druge enačbe je sinus ali kosinus argumenta nφ. Zanj
moramo upoštevati periodični mejni pogoj Φ(φ) = Φ(φ + 2π), kar
pomeni, da mora biti n celo število 0, 1, 2, 3 … in

Φ(φ) = cos nφ .

Prvo enačbo polepšamo z vpeljavo spremenljivke kρ = t v obliko
t2R" + tR' + [t2 − n2] = 0. Rešitev iščemo z nastavkom v obliki
potenčne vrste R(t) = tn ∑ cjtj. Vstavimo ga v enačbo in dobimo
∑ (n + j)2 cj tn+ j + [t2 − n2] ∑ cj tn+ j = 0. Koeficiente cj moramo zdaj
tako izbrati, da bo enačba veljala. S precej truda najdemo

R(kρ) =
∞

∑
j

(−1)j

j!(n + j)!
(

kρ
2

)2j+n = Jn(kρ) .

Funkcije J0, J1 … poimenujemo cilindrične funkcije.

192

pict3b/E110.gif
pict3b/E110.gif
picref.htm
picref.htm


(38.23)

Ohranitev energije

Slika 38.5 Cilindrične
funkcije kot rešitve
amplitudne enačbe v
cilindričnih koordinatah.
(Anon)

Na robu mora biti vsaka cilindrična funkcija enaka nič. Za
funkcijo Jn moramo zato izbrati takšne vrednosti knm,
m = 1, 2, 3 …, da Jn(knma) = 0. Funkcija J0, na primer, ima prvo
ničlo pri 2,4, zato mora biti k01 = 2,4/a. Iskana stojna valovanja v
cilindrični votlini so torej

Enm = Jn(knmρ) cos nφ .

Seveda je rešitev tudi katerakoli njihova linearna kombinacija.
Frekvence nihanja pa so ω2 / c2 = knm

2. Ustrezno magnetno polje
dobimo iz rotorske enačbe ∇2E0 = iωB0. Neposredni račun pove
Bρ = (in/ωρ) Jn(knmρ) sin nφ in Bφ = (−i/ω) (dJn/dρ) cosnφ. Magnetno
polje je spet pravokotno na električnega in kasni za π/2.

Slika 38.6 Stojno elektomagnetno valovanje E01
v cilindričnem resonatorju. Električne silnice so
navpične, magnetne so krožne. (The Great Soviet
Encyclopedia)

38.5 Energija valovanja
Elektromagnetno polje deluje na naboje in jih premika. Če se
naboj pospešuje, prejema od polja delo. Če naboj zavira, pa delo
oddaja. Delo toka na časovno in prostorninsko enoto znaša
P/V = UI/Sl = jE.

Iz osnovnih enačb hočemo izluščiti, kako je j ·E povezan s polji.
Gostota toka nastopa v magnetni rotorski enačbi. Skalarno jo
pomnožimo z E/μ0, da dobimo j ·E= ε0EE' − (1/μ0)E ·∇×B= 0.
Električno rotorsko enačbo pomnožimo z B/μ0, da dobimo
BB'/μ0 + (1/μ0)B ·∇×E= 0. Obe enačbi seštejemo in dobimo
j ·E+ ε0EE' +BB'/μ0 + (1/μ0)(B ·∇×E−E ·∇×B) = 0. Prvi člen je
iskano delo. Drugi in tretji člen, ki vsebujeta časovne odvode polj,
zapišemo skupaj kot ∂/∂t (ε0E2/2 +B2/2μ0). Izraz v oklepaju je
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(38.24)

Energija pri ravnem
valovanju

(38.25)

(38.26)

Razklopitev osnovnih
enačb

(38.27)

gostota energije polja w. Zadnji člen, ki vsebuje rotorje polj,
zapišemo kot ∇ · (1/μ0)(E×B). Izraz v oklepaju je gostota
energijskega toka jem. Dobili smo torej energijski zakon

∂w
∂t

= −∇ · jem − j ·E

w =
ε0

2
E2 +

1
2μ0

B2

jem =
1
μ0

E×B .

Energija polja se torej po prostoru raznaša z valovi. Lokalna
sprememba gostote energije gre na račun energijskega
pritoka/odtoka zaradi valov in na račun kinetične energije
nabojev. Če se nosilci nabojev gibljejo v snovi z uporom, pridobi
snov notranjo energijo.

Pri ravnem valovanju je gostota energije
w = (ε0/2)E2 + (1/2μ0)B2 = ε0E2, ker B = E/c. V vsaki točki prostora
ta gostota niha. Kakšna je njene povprečna vrednost? Ker ⟨E2⟩ =
(2/π)∫0

π/2E0
2 cos2 ωt dωt = E0/2, velja

⟨w⟩ =
ε0

2
E0

2 =
1

2μ0
B0

2 .

Gostota energijskega toka znaša jem = (1/μ0)EB = ε0cE2, torej

⟨jem⟩ = c⟨w⟩ .

Sončna svetloba, ki vpada na Zemljo, nosi gostoto energijskega
toka ⟨jem⟩ ∼ 1 kW/m2. To pomeni, da je v njej gostota energije
⟨w⟩ ∼ 10−6 J/m3 in amplitudi elektromagnetnega polja E0 ∼ 103 V/m
ter B0 ∼ 10−6 Vs/m2.

38.6 Valovni potenciali
Statično električno in statično magnetno polje smo opisali z
električnim in magnetnim potencialom. Poskusimo s tema
potencialoma opisati še spremenljivo elektromagnetno polje. Kot
izhodišče služijo popolne osnovne enačbe elektrodinamike, ki
vključujejo naboje in tokove.

Najpreprostejše izmed osnovnih enačb je magnetna divergenčna
enačba ∇ ·B= 0. Ker je divergenca vsakega rotorja enaka nič,
lahko zapišemo:

B=∇×A .

Polje B nastopa tudi v električni rotorski enačbi ∇×E+ ∂B/∂t = 0.
Nadomestimo ga z (38.27), zamenjamo vrstni red odvajanja po
času in prostoru ter dobimo ∇× (E+ ∂A/∂t) = 0. Ker je rotor
vsakega gradienta enak nič, lahko izraz v oklepaju zapišemo kot
−∇U in dobimo:
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(38.28)

(38.29)

(38.30)

Zakasnjeni potenciali

E= −∇U −
∂A
∂t

.

V električni divergenčni enačbi ∇ ·E= ρ/ε0 nadomestimo E z
(38.28) in dobimo ∇2U − ∂/∂t∇ ·A= ρ/ε0 (1).

Preostane še magnetna rotorska enačba ∇×B= μ0j+ (1/c2)∂E/∂t.
Nadomestimo B z (38.27) in E z (38.28), upoštevamo obrazec za
dvojni vektorski produkt in dobimo −∇2A+ ∇ · (∇ ·A) +
(1/c2)∂/∂t∇U + (1/c2)∂2A/∂t2 = μ0j (2).

V enačbi (2) lahko izberemo poljuben ∇ ·A. Vemo namreč, da je
rotor nedoločen do aditivnega gradienta: ∇× (A+∇φ) =
∇×A+∇×∇φ =∇×A. Pri tem je φ poljubno skalarno polje, torej
tudi φ =∇ ·A. Izberemo ∇ ·A= −(1/c2)∂U/∂t, se tako iznebimo
dveh členov in dobimo

∇2A−
1
c2

∂2A
∂t2 = −μ0j .

Ista izbira za ∇ ·A, postavljena v (1), pa pove

∇2U −
1
c2

∂2U
∂t2 = −

ρ
ε0

.

Dobili smo dve valovni enačbi za električni in magnetni potencial.
Vse spremenljivke so lepo ločene. Če so razmere stacionarne,
odpadeta oba člena s časovnima odvodoma in enačbe preidejo v
že znane potencialne enačbe, kakor tudi mora biti.

Pri statičnih poljih je njihova jakost v opazovani točki popolnoma
določena z naboji in tokovi po vsem prostoru. Domnevamo, da je
pri spremenljivih poljih podobno, le da na vrednost polja v izbrani
točki ob času t vplivajo naboji in tokovi z razdalj r ob ustrezno
zakasnjenih časih t − r/c. Saj se elektromagnetni vplivi širijo s
končno hitrostjo. To je drzna, a plavzibilna domneva. Poskusimo
jo dvigniti na raven izreka, to je, izpeljati jo iz znanih enačb.

V izhodišču koordinatnega sistema si mislimo točkast naboj de(t),
ki spreminja jakost, a se ne giblje. V izhodišču velja valovna
enačba ∇2U − (1/c2)∂2U/∂t2 = −(de/dV)/ε0. Zunaj izhodišča je desna
stran enaka nič.

Pričakujemo krogelno simetrično rešitev, zato krajevni člen
zapišemo v krogelnih koordinatah: ∇2U = (1/r2)∂/∂r (r2 ∂U/∂r).
Vpeljemo substitucijo U = u(r)/r in – s postopnim odvajanjem od
znotraj navzven – izračunamo ∇2U = (1/r)∂2u/∂r2. Namesto u
zapišemo nazaj Ur in tako pridelamo valovno enačbo v obliki
∂2Ur/∂r2 − (1/c2)∂2Ur/∂t2 = 0.

Dobljena enačba ni nič drugega kot enodimenzionalna valovna
enačba za spremenljivko Ur, katere splošno rešitev že poznamo.
Tako lahko zapišemo U(r,t) = f(t−r/c)/r + g(t + r/c)/r. To sta dva
krogelna vala, od katerih se prvi giblje navzven in drugi
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(38.31)

(38.32)

Spremenljivi dipol

(38.33)

navznoter. Slednjega iz rešitve izpustimo, ker nas zanima, kako
naboj dela valove in ne, kako od zunaj prihajajoči valovi vplivajo
na naboj.

V bližini izhodišča je časovna zakasnitev zanemarljiva:
U(t) = f(t − r/c)/r ≈ f(t)/r. Polje se spreminja sinhrono z nabojem.
Za takšno polje velja "statična" rešitev U(t) = f(t)/r = de(t)/4πε0r.
Nebližnje polje točkastega naboja, ki ima bližnje polje za limito, je
zato U(t) = de(t−r/c)/4πε0r. Poljubno porazdeljeni naboji pa tvorijo
v opazovani točki P superpozicijo

UP(t) =
1

4πε0
∫ ρQ(t−rQP / c) dVQ

rQP
.

Podobno ugotovimo še

AP(t) =
μ0

4π
∫ jQ(t−rQP / c) dVQ

rQP
.

Domneva je bila pravilna: polje je res opisano z zakasnjenimi
potenciali.

38.7 Dipolno sevanje
Mirujoč električni dipolni oblak je obdan s statičnim električnim
poljem. Če se električni moment oblaka spremeni, se spremeni
tudi okolišnje električno polje, spremenljivo polje ustvari
magnetno polje in tako naprej. Spremenljivi dipol torej okrog
sebe ustvarja elektromagnetno polje. Kakšno je?

Naj bo dipolni oblak v izhodišču koordinatnega sistema. Zanima
nas polje v točki R iz izhodišča; proti tej točki naj kaže enotni
vektor n. Označimo lokacijo vsakega nabojnega elementa z d in
oddaljenost od njega do opazovane točke z r. Naj bo opazovana
točka daleč proč. Potem velja r ≈ R −n ·d.

Zakasnjeni potencial U(t) v opazovani točki je sorazmeren s
prostorskim integralom ρ(t−R/c+n ·d/c)/r. Aproksimiramo r ≈ R
in ga izvlečemo iz integrala, zanemarimo n ·d v primerjavi z R in
dobimo prostorski integral ρ(t−R/c). Ker je oblak nevtralen, je ta
integral enak nič. Torej je U(t) = 0 (1).

Podobno obravnavamo zakasnjeni potencial A(t) in pridelamo
prostorski integral j(t−R/c). Upoštevamo ∫ jdV = ∑ ev= d/dt ∑ ed=
pe', pa dobimo A(t) =pe'/4πε0c2R (2).

Iz (1) in (2) sledi, ob uporabi E=∇U − ∂A/dt, za magnetno polje
okoli spreminjajočega se dipola

B=
pe" ×n
4πε0c3R

.

Drugi odvod električnega momenta je treba seveda upoštevati ob
času t − R/c. Električno polje je povezano z magnetnim kakor pri
ravnem valovanju.
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(38.35)

(38.36)

Nihajoči dipol

(38.37)

(38.38)

(38.39)

Modro nebo

Slika 38.7 Dipolno sevanje. Prikazano je polje E
in B ob času t in vzročna sprememba dipola p"
ob prejšnjem času t − R/c.

Če usmerimo os z koordinatnega sistema vzdolž vektorja pe",
velja:

B =
pe" sin θ
4πε0c3R

.

Gostota energijskega toka jem = ε0c2EB znaša

jem =
(pe" sin θ)2

16π2ε0c3 R2

in izsevana moč P =∮ jem dS skozi obdajajočo kroglo

P =
pe"2

6πε0c3 .

Svetloba je elektromagnetno valovanje in sevajo jo atomi.
Sklepamo, da so sevajoči atomi pravzaprav električni dipoli, ki
nihajo z različnimi frekvencami. Za nihajoč dipol pe = p0 cos ωt
izračunamo moč sevanja

P =
p0

2ω4 cos2 ωt
6πε0c3

in povprečno moč (povprečje kvadrata kosinusa preko enega
nihaja je 1/2)

⟨P⟩ =
p0

2ω4

12πε0c3 .

Sevanje ni izotropno, ampak je svetilnost I = dP/dΩ = jemR2

odvisna od polarnega kota:

⟨I⟩ =
3
2

⟨P⟩
4π

sin2 θ .

Bela sončna svetloba je mešanica elektromagnetnih valov z
različnimi frekvencami/barvami. Ko valovi vpadajo v ozračje, se v
plinskih molekulah (večinoma dušika in kisika) influencirajo
električni dipoli in zanihajo. S tem začno sami sevati na vse
strani; rečemo, da se je vpadna svetloba sipala na molekulah.
Dipoli nihajo vsiljeno z isto frekvenco kot vpadajoča svetloba. Čim
krajša je valovna dolžina svetlobe, tem močnejše je sipanje.
Modra svetloba se sipa močneje kot rdeča: zato je nebo modro.
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Odprt nihajni krog

Zvečer, ko je Sonce nizko nad obzorjem in je zato pot žarkov skozi
ozračje dolga in sipanje veliko, pa je zahodno nebo bolj ali manj
rdeče. Iz bele sončne svetlobe so se izsipale modre sestavine in
preostal je višek rdečih. Če Zemlja ne bi imela ozračja, bi bilo
nebo črno in podnevi bi videli zvezde. Tako mora biti na Mesecu.

Zakaj pa so potem oblaki beli? Saj se svetloba vendar sipa tudi na
kapljicah! In zakaj sploh vidimo kapljice, ko pa vodne pare, iz
katere kapljice nastanejo, ne vidimo? Valovna dolžina vidne
svetlobe je nekaj tisočkrat večja, kot je premer atomov. Zato
molekula vode čuti homogeno nihajoče električno polje. Če se
združi N molekul, nihajo sinhrono. Amplituda nihanja se poveča
za N-krat, gostota sevanja pa za N2-krat. Kapljica postane vidna.
Vendar pa kvadratno naraščanje ne traja v nedogled. Ko postane
premer kapljice primerljiv z valovno dolžino svetlobe, nihajo
molekule z medsebojnim faznim zamikom in začno interferirati
destruktivno. Za modro svetlobo je ta meja dosežena že pri
majhnih, za rdečo pa pri večjih kapljicah. Rdeče sipanje je zato
močnejše od modrega in ga preglasi. Modra barva izgine in oblak
postane bel.

38.8 Radijski valovi
Če nihajoči električni dipoli res širijo okrog sebe
elektromagnetne valove, potem bi jih morale sevati tudi žice
oziroma naprave, po katerih tečejo izmenični (torej spremenljivi)
tokovi. Omrežna nihanja s frekvenco 50/s bi povzročila valove z
valovno dolžino 6000 km. Takih valovnih dolžin v laboratoriju ne
moremo meriti. Za valovno dolžino reda velikosti 1 m, primerne
za poskuse, pa so potrebna nihanja tokov z ogromno frekvenco
3 · 108/s. V kakšnih napravah bi lahko takšna nihanja nastajala?

Spomnimo se na električni nihajni krog, sestavljen iz
kondenzatorja in tuljave. Ko naelektrimo kondenzator in
sklenemo stikalo, začne po krogu nihati tok sem in tja. Naboj se
pretaka iz ena plošče kondenzatorja na drugo z visoko frekvenco
(25.24); "čeveljski" kondenzator in "čeveljska" tuljava proizvajata
nihanje s frekvenco 106/s. Če raztegnemo nihajni krog, dobimo
linearno "ogrodje", po katerem niha tok. Nihanje je tem hitrejše,
čim manjši sta plošči in čim manj ovojev ima tuljava. V mejnem
primeru se tuljava reducira v ravno žico. Odprti nihajni krog se
preoblikuje v navadno žico s prevodnima ploščicama na obeh
koncih. Dobili smo torej hitro nihajoč dipol, ki utegne res doseči
željeno frekvenco. Če ga nabijemo in sklenemo stikalo, začne
nihati.
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Iskriščni oddajnik

Iskriščni sprejemnik

Slika 38.8 Zaprt in odprt nihajni krog. Plošči
sta nasprotno enako nabiti. Ko sklenemo
stikalo, zaniha naboj gor in dol. Nihajoč naboj
je električni dipol, ki seva elektromagnetne
valove.

Žal je nihanje odprtega nihajnega kroga dušeno in rešiti moramo
vprašanje, kako ga znova in znova nabijati ter prožiti. K sreči se
spomnimo na indukcijsko tuljavo s prekinjevalcem, ki med
svojima izhodnima priključkoma ustvarja električne iskre, to je,
priključka periodično nabija, da se potem medsebojno praznita
[26.8]. Pa povežimo stikalna priključka dipola z izhodoma iz
tuljave, ki jo opremimo s samodejnim prekinjevalcem
(elektromagnetnim stikalom). Kaj lahko pričakujemo?

Tok prihaja iz tuljave v kratkih sunkih. Tak sunek pride ob času,
ko prekinitveno stikalo (del indukcijske tuljave) prekine primarni
tokokrog. To se zgodi morda 50-krat na sekundo. Tokovni sunek
najprej nabije obe plošči nihajnega dipola, eno pozitivno in drugo
negativno. Ko sta tako močno nasprotno naelektreni, kot je le
mogoče, preskoči med kroglicama iskra. Zrak med kroglicama je
sicer dober izolator, a ko preskoči iskra, se ionizira in postane kar
dober prevodnik. Kakor hitro torej preskoči prva iskra, postaneta
plošči povezani skoraj tako, kot z žico. In tako nastane prevodni
nihajni krog. Zato začne po ioniziranem kanalu med kroglicama
teči tok sem in tja z zelo visoko frekvenco. Zaradi upornosti pa
izzveni mnogo prej kot v petdesetinki sekunde, ko pride nov
sunek iz indukcijske tuljave. Medtem zrak postane spet izolator in
igra se ponovi.

Vsak sunek iz indukcijske tuljave torej povzroči kratko dušeno
nihanje toka z visoko frekvenco med obema ploščama. Nastal je
nihajoči dipol, ki seva elektromagnetne valove v prostor. Pripravo
poimenujemo iskriščni oscilator.

Slika 38.9 Iskriščni oscilator – oddajnik
elektromagnetnih valov: (a) kovinske plošče,
(b) baterija, (c) indukcijska tuljava, (d)
iskrišče. (Corbin, 1917)

Kako bi zaznali izsevane valove? Z indukcijo toka v sklenjeni žični
zanki. Ko valovi potujejo skozi zanko, v njej inducirajo električno
napetost in poženejo tok. Če je zanka preščipnjena in opremljena
z zaključnima kroglicama, pa preko reže – upajmo – skačejo
drobne iskrice. To je iskriščni sprejemnik. Namesto preščipnjene
krožne zanke lahko uporabimo kar preščipnjeno ravno žico.
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Poskusi z valovi

Vse barve teme

Osnovne enačbe v
snovi

Slika 38.10 Iskriščni sprejemnik elektromagnetnih
valov. (Corbin, 1917)

Tako. Sestavili smo oddajnik in sprejemnik (HERTZ); lotimo se zdaj
poskusov. Oddajni dipol postavimo v gorišče paraboličnega
kovinskega zrcala. S tem pričakujemo usmerjen curek valov.
Otipavamo ga s sprejemnim dipolom, ki je prav tako postavljen v
gorišče svojega paraboličnega zrcala, da se mu s tem poveča
občutljivost.

Vključimo oddajnik. V nekaj metrov oddaljenem sprejemniku se
pokažejo iskrice; tako drobne so, da jih opazimo le v popolni temi
in pod povečevalno lupo. Elektromagnetni valovi torej res
obstajajo! — V bližino oddajnika postavimo raven cinkov zaslon in
s sprejemnikom otipamo polje pred njim. Najdemo maksimume in
minimume, torej vozle stojnega valovanja. Iz razdalje med njimi
določimo valovno dolžino ustvarjenih valov. Odvisna je od
frekvence uporabljenega oddajnika, ta pa od njegove velikosti,
oblike, razdalje iskrišča in še česa. Z majhnimi oddajnimi dipoli
dosežemo valovne dolžine okrog 1 metra. — Curek valov ne
prodira skozi kovinski zaslon, prodira pa skozi leseno steno. —
Curek valov, vpadajoč na asfaltno prizmo, se lomi. — V curek
valov postavimo rešetko iz vzporednih bakrenih žic in z njenim
sukanjem ugotovimo, da so valovi polarizirani. Vsi ti poskusi
potrjujejo: poleg vidne svetlobe obstajajo še drugi, metrski
elektromagnetni valovi. Prav kakor vidni valovi se ti valovi
transverzalni, se odbijajo in lomijo. Poimenovali jih bomo radijski
valovi.

Obstoj metrskih radijskih valov nas navaja na misel, da obstajajo
elektromagnetni valovi vseh valovnih dolžin, od najkrajših do
najdaljših. Bolj ali manj samovoljno jih razdelimo na naslednje
razrede: ultravijolična svetloba, vidna svetloba (0,4–0,8 μm),
infrardeča svetloba, mikrovalovi (nad 1 mm) in radijski valovi
(nad 1 m). Zaradi kratkosti si bomo vzeli še pravico, da besedo
"svetloba", kadar ne bo škode, uporabljamo v dveh pomenih: za
vidno svetlobo in za poljubno elektromagnetno valovanje.

38.9 Valovanje v snovi
Čas je, da pogledamo, kakšen je medsebojni vpliv
elektromagnetnega valovanja in snovi. Vemo že, da statično
električno polje snov polarizira, pri čemer se v njej pojavijo
vezani naboji. Statično magnetno polje pa snov magnetizira, pri
čemer se pojavijo vezani tokovi. Pri spremenljivih poljih vse to
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obvelja. Upoštevati pa moramo, da spremenljiva polarizacija
doprinaša še dodaten tok (37.26). Tako zapišemo celoten naboj
ρ = ρfree −∇ ·P in celoten tok j= jfree +∇×M+P'. Ta naboj in tok
vstavimo v osnovne enačbe elektrodinamike in zlahka dobimo

∇ · (E+
P
ε0

) =
ρfree

ε0
∇ ·B= 0

∇×E= −
∂B
∂t

∇× (B− μ0M) = μ0jfree +
1
c2

∂
∂t

(E+
P
ε0

) .

Z znanima aproksimacijama za linearno snov E+P/ε0 = εE in
B− μ0M=B/μ pa dobimo

∇ · εE=
ρfree

ε0
∇ ·B= 0

∇×E= −
∂B
∂t

∇×
B
μ

= μ0jfree +
1
c2

∂εE
∂t

.

Pričakujemo, da sta dielektričnost ε in permeabilnost μ odvisna
od frekvence valovanja. V prevodnikih moramo upoštevati še
dodatno povezavo j= σE.

Zapisane enačbe veljajo tako za homogeno kot za heterogeno
snov, to je, dielektričnost in permeabilnost sta lahko funkciji
kraja. Na zunanjih mejah obravnavanega telesa ali na notranjih
mejah med dvema telesoma pričakujemo ustrezne robne pogoje.
Poskusimo jih določiti.

Mejo med snovjo (1) in (2), na kateri ni prostih nabojev in tokov,
zapremo v nizko škatlo. Pretočni enačbi ∮B · dS= 0 in ∮ εE · dS= 0
povesta

B⊥ (1) = B⊥ (2)
ε1E⊥ (1) = ε2E⊥ (2) .

Mejo zaprimo še v ozko zanko. Ker je zanka ozka, velja
∫B' · dS→ 0 in ∫E' · dS→ 0. Cirkulacijski enačbi ∮E · ds= 0 in
∮B/μ · ds= 0 potem povesta

E∥ (1) = E∥ (2)
B∥ (1)/μ1 = B∥ (2)/μ2 .

Pri prehodu iz ene snovi v drugo se torej ne spremenita normalna
magnetna komponenta in tangentna električna komponenta polja.
Ostali dve komponenti doživita skokovito spremembo.
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38.10 Valovanje v dielektriku
Pomemeben primer valovanja v snovi je valovanje v neomejenem
homogenem izolatorju, kjer ni prostih nabojev in tokov, recimo v
vodi. V osnovnih enačbah zato postavimo ustrezne člene na nič.
Ker sta dielektričnost in permeabilnost konstanti, ju izpostavimo
pred operatorje odvajanja po prostoru in času. Tako dobimo
nabor štirih enačb: ∇ ·E= 0 , ∇ ·B= 0 , ∇×E= −∂B/∂t in
∇×B= (εμ/c2)∂E/∂t. Ta nabor je formalno identičen tistemu za
prazen prostor, če označimo εμ/c2 = 1/v2. To pomeni, da je rešitev
enačb ravno valovanje, ki se širi s hitrostjo

v =
c

√εμ
.

S hitrostjo valovanja je definiran lomni količnik snovi n = c/v, torej

n = √εμ .

Permeabilnost izolatorjev se ne razlikuje znatno od 1, zato n ≈ √ε.
Tako smo odkrili še eno povezavo med elektromagnetizmom in
svetlobo.

Lomni količnik in dielektričnost znamo meriti neoodvisno. Prva
količina bi moral biti enaka korenu iz druge. Meritve pokažejo za
zrak pri standardnih pogojih obakrat 1,0003, torej odlično
ujemanje. Zelo dobro je nasploh ujemanje pri žlahtnih plinih (npr.
He), simetričnih dvoatomnih plinih (H2, O2, N2) in kovinskih
parah. So pa tudi izjeme. Lomni količnik tekoče vode znaša 1,33,
koren iz njene (statične) dielektričnosti pa kar 9. Razlaga je hitro
pri roki. Molekula vode ima permanentni električni moment. Polje
tako hitro niha, da mu molekularni dipoli ne uspejo slediti.
Preden se povsem usmerijo v trenutno smer polja, se to že obrne
v nasprotno smer.

38.11 Valovanje v prevodniku
Kaj pa valovanje v neomejenem homogenem prevodniku, to je v
kovini s prostimi elektroni? Tam se lahko kopičijo prosti neto
naboji in tečejo prosti tokovi. Privzamemo, da se morebitni neto
naboji takoj razpršijo (zaradi odbijanja), to je, postavimo člen
ρ/ε0 = 0. S tokovi pa ni tako. Člena μ0j ne smemo izničiti, ampak
upoštevamo j= σE in dobimo naslednje štiri enačbe: ∇ ·E= 0 ,
∇ ·B= 0 , ∇×E= −∂B/∂t in ∇×B= (εμ/c2)∂E/∂t + (σμ/ε0c2)E. Na
električno rotorsko enačbo delujemo z rotorjem ∇×, na levi strani
uporabimo obrazec za dvojni vektorski produkt in črtamo člen z
električno divergenco, na desni strani zamenjamo vrstni red
časovnega in prostorskega odvoda ter substituiramo ∇×B iz
magnetne rotorske enačbe. Tako dobimo ∇2E− (εμ/c2)∂2E/∂t2 −
(σμ/ε0c2)∂E/∂t = 0 (1). To je valovna enačba z dodatnim členom.

Enačbo (1) poskušamo rešiti v eni dimenziji s kompleksnim
nastavkom Ê = E0 exp (ikx − iωt). Vstavitev v reševano enačbo da

202



(38.46)

(38.47)

(38.48)

Ekstinkcijski
koeficient

(38.49)

Odbojni zakon

povezavo k̂ = (ω/c)√(εμ + iσμ/ε0ω). Upoštevamo, da so
permeabilnosti enake 1 (razen pri feromagnetikih) in dobimo

k̂ =
ω
c

√ε̂

ε ̂ = ε +
σ

ε0ω
i .

Pridelali smo kompleksni valovni vektor in, z definicijo,
kompleksno dielektričnost. To, da je račun izvrgel kompleksni
valovni vektor, čeravno smo (potiho) predpostavili, da je realen,
nas ne bi smelo motiti. Saj so vsi računski postopki potekali tako,
da so bili skupni realnim in kompleksnim količinam.

Po zgledu realnih količin definiramo še kompleksni lomni količnik

n ̂ = √ε̂ .

Iz enačb ε̂ = ε' + ε" i in n̂2 = (n' + n" i)2 = (n'2 − n"2) + 2n'n" i
razberemo ε' = n'2 − n"2 in ε" = 2n'n". K tema dvema enačbama
obratni enačbi sta

n' =√(
|ε̂| + ε'

2
)

n" =√(
|ε̂| − ε'

2
) ,

kjer |ε̂| = √(ε'2 + ε"2). Kakšen pa je pomen realnega in
imaginarnega dela lomnega količnika? Ker k̂ = (ω/c)n̂ =
k0(n' + in"), je ob izbranem trenutku E ∝ exp (ikx) =
exp (ik0n'x) · exp (−k0n"x). To je (zamrznjen) dušeni val s
prostorsko frekvenco k0n' in eksponentno pojemajočo amplitudo.
Energijski tok j ∝ |E|2 = exp (−2k0n"x) = exp (−βx) pojema
eksponentno z razdaljo. Pri vpadu valovanja na prevodnik torej
realni del lomnega količnika določa prostorsko frekvenco, to je,
igra vlogo "navadnega" lomnega količnika. Imaginarni del pa
določa koeficient dušenja. Zato zapišemo

n ̂ = n +
βc
2ω

i = n + κi.

Imaginarni del lomnega količnik poimenujemo ekstinkcijski
koeficient in ga označimo s κ. Kovine so za vidno svetlobo
neprosojne, zato v njih ne moremo meriti niti loma niti dušenja.
Kompleksni lomni količnik kovin zato ostaja do nadaljnjega
nemerljiva količina.

38.12 Vpad na dielektrik
Ravno valovanje naj vpada z leve proti desni na navpično mejo
med dvema dielektrikoma. Namesto snovi je veljaven tudi
vakuum. Meja naj leži pravokotno na os x koordinatnega sistema
pri x = 0. Vpadno valovanje je u1 = A1 exp i(k1 · r− ω1t) in odbito
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valovanje u2 = A2 exp i(k2 · r− ω2t). Zahtevamo zveznost faze na
mejni ploskvi v vsakem trenutku: k1 · r− ω1t = k2 · r− ω2t. Iz tega
najprej sledi ω1 = ω2. Frekvenca odbitega valovanja je enaka kot
frekvenca vpadnega valovanja, kakor tudi mora biti.

Za vsak vektor r, ki kaže na mejo, zahteva zveznost faze tudi
k1 · r=k2 · r, torej (k1 −k2) · r= 0. To pomeni, da je k1 −k2
pravokoten na mejo oziroma (k1 −k2) ×n= 0. Sledi
k1 ×n−k2 ×n= 0 oziroma k1 sin α1 = k2 sin α2. Ker potujeta
vpadno in odbito valovanje po isti snovi, je k1 = k2, zato

α1 = α2 .

To je znani odbojni zakon (12.1). Odbiti kot je enak vpadnemu,
kakor tudi mora biti. Ker c2 = ω2/k2 = ω1/k1, je seveda enaka tudi
hitrost: c2 = c1.

Namesto odbitega valovanja glejmo sedaj prepuščeno valovanje.
Označimo ga z indeksom 2. Razmišljanje je enako. Zveznost faze
zahteva najprej ω1 = ω2. Prepuščeno valovanje ima isto frekvenco
kot vpadno. Tako tudi mora biti. Druga zahteva, namreč
k1 · r=k2 · r, pa vodi do k1 sin α1 = k2 sin α2. Upoštevamo k1 = ω1/c1
in k2 = ω2/c2 = ω1/c2, pa dobimo

sin α1

c1
=

sin α2

c2
.

To je znani lomni zakon (12.3). Enačbo pomnožino s c in dobimo

n1 sin α1 = n2 sin α2 .

Prepuščeno valovanje je zlomljeno, kakor tudi mora biti. Kolikšen
je lom, določata hitrosti valovanja v prvi in drugi snovi. Hitrost v
snovi je zmanjšana za faktor n glede na hitrost v vakuumu. Za isti
faktor je zmanjšana tudi valovna dolžina, saj ostaja frekvenca
nespremenjena.

Kolikšen delež energije pa se odbije oziroma prepusti skozi mejo?
Naj bo električna poljska jakost vpadajoče svetlobe pravokotna
na vpadno ravnino. Iz slike razberemo naslednje.

Slika 38.11 Vpad svetlobe na dielektrik. Del
svetlobe se odbije in del nadaljuje pot.
Prikazan je ravni val, v katerem je električna
poljska jakost pravokotna na vpadno ravnino.

Za vpadno svetlobo: Ey = A exp ik1s, Bx = (n1/c) A cos α exp ik1s,
Bz = (n1/c) A sin α exp ik1s. Za odbito svetlobo: Ey = B exp ik1s1,
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Bx = −(n1/c) B cos α exp ik1s1, Bz = (n1/c) B sin α exp ik1s1. In za
prepuščeno svetlobo: Ey = C exp ik2s2, Bx = (n2/c) C cos α2 exp ik2s2,
Bz = (n2/c) C sin α2 exp ik2s2. — Komponenta Ey mora biti zvezna:
A exp ik1s + B exp ik1s1 = C exp ik2s2, zato mora pri s1 = 0, s2 = 0 in
s = 0 veljati A + B = C (1). — Komponenta Bx mora tudi biti zvezna:
(n1/c) A cos α − (n1/c) B cos α = (n2/c) C cos s2, torej n1(A − B) cos α =
n2 C cos α2 (2). — Iz enačbe (1) izrazimo C in ga vstavimo v
enačbo (2). Iz tako dobljene enačbe izrazimo količnik B/A, to je,
razmerje odbojne in vpadne amplitude, ter ga kvadriramo
R = |B/C|2, da dobimo razmerje odbitega in vpadnega toka
oziroma odbojnost (FRESNEL)

R⊥ = |
n1 cos α − n2 cos α2)
n1 cos α + n2 cos α2

|2 .

Enačbo lahko polepšamo. Vanjo substituiramo n2 = n1 sin α/sin α2
ter z uporabo sinusa vsote oziroma razlike kotov dobimo

R⊥ = |
sin (α − α2)
sin (α + α2)

|2 .

Podobno računamo za vpadajočo svetlobo, pri kateri je električna
poljska jakost vzporedna z vpadno ravnino. Dobimo (FRESNEL)

R∥ = |
n2 cos α − n1 cos α2)
n2 cos α + n1 cos α2

|2

in

R∥ = |
tan (α − α2)
tan (α + α2)

|2 .

Vsota odbitega in prepuščenega toka je enaka vpadlemu toku,
zato je z odbojnim količnikom podan tudi prepustni količnik
oziroma prepustnost: R∥ + T∥ = 1 in R⊥ + T⊥ = 1.

Slika 38.12 Izračunani odbojni količnik za
steklo (n = 1,5).

Sončna svetloba ni polarizirana, ampak je enakomerna mešanica
raznosmerno polariziranih valov. Zanjo velja R = (R⊥ + R∥)/2 ter
R + T = 1.

Pri pravokotnem vpadu, ko α = 0 in zato tudi α2 = 0, ni razlike
med pravokotno in vzporedno usmerjenostjo električne jakosti, in
odbojni količnik znaša

205

pict3b/fresnel1.gif
pict3b/fresnel1.gif


(38.57)

Polarizacijski kot

(38.58)

Odboj in lom

(38.59)

(38.60)
Odbojnost in
prepustnost

R = |
n1 − n2

n1 + n2
|2 .

Od vode se torej odbije le 2 % vpadle energije in od stekla 4 %. Na
okenski šipi se odbija svetloba od obeh ploskev, torej skupaj
okrog 8 %, če zanemerimo višje odboje.

Kadar α + α2 = 90° je tangens neskončen in R∥ = 0. Pri katerem
vpadnem kotu αB se to zgodi? Pri n1 sin αB = n2 sin (90° − αB) =
n2 cos αB, torej pri

αB = atan
n2

n1
.

To je že poznani polarizacijski kot [27.5]. Za vodo znaša 53° in za
steklo 56°. Vzporedno polarizirana svetloba, vpadajoča pod tem
kotom, se nič ne odbije, ampak se le lomi. Če je vpadajoča
svetloba poljubno polarizirana, se njena vzporedna komponenta
nič ne odbije, preostane le pravokotna komponenta. Odbita
svetloba je zato polarizirana v smeri pravokotno na vpadno
ravnino. Slika Sonca na vodni gladini, ki je vidimo pod kotom
90° − 53° = 37° pod očesno vodoravnico, je popolnoma vodoravno
polarizirana.

38.13 Vpad na prevodnik
Kaj pa vpad svetlobe iz dielektrika na prevodnik, recimo iz zraka
na zglajeno srebrno ploščo? Pri vpadu svetlobe na dielektrik smo
upoštevali le, da je dielektričnost na obeh straneh meje različna.
Nič nismo zahtevali, da je realna, čeravno smo samoumevno tako
računali. Zato vse izpeljane enačbe valjajo v nespremenjeni
obliki, če v njih nadomestiomo realne lomne količnike s
kompleksnimi. Takšne pa imajo, kot vemo, prevodniki. Ugotovimo
naslednje.

Odbojni zakon ostane nespremenjen.

Lomni zakon se v kompleksni podobi glasi:

n̂2 sin α̂2 = n1 sin α1 .

Da je leva stran enačbe kompleksna in desna realna, ni razlog za
skrb. Saj so realna števila pravzaprav kompleksna števila z
ničelno imaginarno komponento. S tem postane sinus lomnega
kota kompleksna funkcija kompleksnega argumenta sin ẑ=
(exp iẑ− exp (−iz)̂)/2i. Podobno velja za kosinus: cos ẑ=
(exp iẑ+ exp (−iz)̂)/2. Med seboj sta obe funkciji povezani
sin2 ẑ+ cos2 ẑ= 1. S to povezavo izluščimo iz lomnega zakona, da
znaša kosinus lomnega kota

n̂2 cos α̂2 = √(n̂2
2 − n1

2 sin2 α1) .

Enačbe za odbojne in prepustne količnike ostajajo
nespremenjene, le da so v njih faktorji n̂2 in cos α̂2 kompleksni.
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Številske vrednosti R∥(α) in R⊥(α) za dani snovi n1 in n̂2 zato
izračunamo brez težav, pač po pravilih kompleksne aritmetike.

Slika 38.13 Izračunani odbojni količnik za
vpad svetlobe iz zraka (n = 1,0) na hipotetični
prevodnik (n = 1,5 + 2,5 i).

Grafi kažejo, da prevodniki – zaradi velikega ekstinkcijskega
koeficienta – močno odbijajo svetlobo pri vseh vpadnih kotih. Ne
obstaja pa kot, pri katerem bi se odbojnost zmanjšala na nič.
Namesto tega obstaja glavni kot, pri katerem ima odbojnost rahel
minimum. Odboji od prevodnikov pri tem kotu zato niso znatno
polarizirani. Vse to potrjujejo tudi eksperimenti z zglajenimi
kovinami, recimo s srebrom ali z aluminijem.

Tudi enačba za odboj pri pravokotnem vpadu ostaja
nespremenjena. Zaradi preproste oblike pa jo lahko zapišemo
tudi eksplicitno z obema komponentama lomnega količnika:

R =
(n2 − n1)2 + κ2

2

(n2 + n1)2 + κ2
2 .

Enačba omogoča izračun ene izmed treh količin R, n2 in κ2, če sta
drugi dve poznani. Če torej uspemo izmeriti ekstinkcijski
koeficient merjenca, je z meritvijo odbojnosti določen tudi njegov
lomni količnik.

38.14 Uklon na ovirah
Valovanje, ki vpada na raven zaslon z odprtino, se za njim
uklanja. Valovanje v izbrani točki za zaslonom je vsota krogelnih
elementarnih valov iz vsake točke odprtine. Posebej preprost je
uklon, pri katerem vpada ravno valovanje pravokotno na zaslon.
Izvorna valovanja imajo tedaj povsod po odprtini enako amplitudo
in enako fazo. Tedaj velja za "zamrznjeno" valovanje v točki P za
oviro superpozicija uP ∝ ∫ dS exp (iks)/s, pri čemer je s razdalja od
točkovnega izvora do opazovane točke. Če opazujemo uklonsko
sliko daleč za zaslonom, je s približno konstanten in ga lahko
izvlečemo izpod integrala. Tedaj velja

uP ∝∫exp (iks) dS .

Izračunajmo uklonjene energijske tokove za mrežico iz tankih
rež, za široko režo in za okroglo odprtino!

Slika kaže, da moramo izračunati vsoto uP ∝ exp iks1 +
exp ik(s1 + Δ) + exp ik(s1 + 2Δ) + … = exp iks1 · [1 + exp ikΔ +
exp ik2Δ + … exp ik(N−1)Δ], pri čemer je Δ = a sin α.
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Slika 38.14 Uklon na mrežici tankih rež na
medsebojni razdalji a. Ravno valovanje vpada na
mrežico pod pravim kotom. Opazujemo uklonjeno
valovanje daleč proč pod različnimi koti α.

Računamo takole. V oklepaju je geometrična vsota, ki znaša
(exp ikNΔ − 1) / (exp ikΔ − 1). Izračunamo uP uP*, upoštevamo
identiteti exp iη + exp (−iη) = 2 cos η ter 1 − cos η = 2 sin2 η in
dobimo w ∝ (sin 1/2NkΔ)2 / (sin 1/2kΔ)2. Limita sin Nη / sin η, ko η → 0,
znaša N, zato lahko zapišemo

j(α) = j0 [
sin (1/2Nka sin α)
N sin (1/2ka sin α)

]2 .

S tem smo uklonjeni tok v smeri α normirali glede na uklonjeni
tok pri α = 0. Maksimumi ležijo tam, kjer 1/2ka sin α = πa sin α / λ =
0, π , 2π …, torej kjer a sin α = n · λ, n = 0, 1, 2 … , kar že vemo.

Slika 38.15 Uklon valovanja za mrežico iz
dveh rež (modro) in iz petih rež (rdeče).
Prikazana je relativna gostota toka v
odvisnosti od parametra D = π (a/λ) sin α.

Če so reže zelo ozke, so vsi maksimumi enako močni. Lega
maksimumov je neodvisna od števila rež N. So pa maksimumi tem
ožji, čim več je rež. Med dvema sosednjima maksimumoma leži
N−2 majhnih sekundarnih maksimumov.

Široko režo si mislimo sestavljeno iz samih ozkih rež, ki se med
seboj stikajo. Izračunati moramo uP ∝ ∫ dy exp (ik(s + Δs (y))), pri
čemer Δs = y sin α.

Slika 38.16 Uklon na široki reži z debelino a.
Okoliščine so enake kot pri mrežici.

Računamo takole. Ker exp (iks) ni odvisen od y, ga izpustimo in
preostane ∫ dy exp (iky sin α) v mejah ∓a/2. Diferencial zapišemo v
obliki (1/k sin α) d(ky sin α), s čimer preide integral v obliko
(1/k sin α) ∫ exp (−iη) dη v mejah ∓(a/2)k sin α. Izračunamo
∫ exp (−iη) dη = i exp (−iη), vstavimo meje, upoštevamo
(exp (iη) − exp (−iη))/2i = sin η in dobimo uP ∝ sin (k sin α) / k sin α.
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(38.68)

Okrogla odprtina

(38.69)

(38.70)

Kvadriramo in upoštevamo, da sin η / η → 1, ko η → 0, pa lahko
zapišemo

j(α) = j0[
sin (ka sin α)

ka sin α
]2 .

Sorazmernostna konstanta j0 je gostota toka na zaslonu pri
uklonskem kotu α = 0. Prvi minimum je pri (2π / λ) a sin α = π, torej
pri sin α ≈ α = 0,5 · λ/a. Za rdečo svetlobo in 1/4 mm široko režo
znaša α = 0,1°. Med obema prvima minimumoma je torej kot 0,2°.
Na meter oddaljenem zaslonu to znaša okrog 3 mm.

Slika 38.17 Uklon za široko režo.
Prikazana je relativna gostota toka v
odvisnosti od parametra D = 2π (a/λ) sin α.

Okroglo odprtino si mislimo razrezano v vodoravne in navpične
trakove. Izračunati moramo uP ∝ ∫ exp (iks) dS =
∫ exp (ik(s + Δs)) dS ∝ ∫ exp (ikΔs) dS. Z upoštevanjem Δs = −x sin θ
je torej pred nami dvojni integral

uP ∝
+a

∫
−a

dy
+h(y)

∫
−h(y)

dx e−ikxsinθ .

Slika 38.18 Uklon za okroglo odprtino. Razmere so take, kot pri uklonu na
široki reži.

Desni integral je enakega tipa kot pri reži in ga tako tudi
izračunamo ter dobimo uP ∝ (1/sin θ) ∫−a

+a dy · sin (k sin θ · h(y)).
Upoštevamo y = a sin φ, h = a cos φ in dy = a cos φ dφ, s čimer
dobimo

uP ∝
1

sin θ

π/2

∫
−π/2

sin (ka sin θ · cos φ) cos φ dφ .
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(38.71)

(38.72)

(38.73)

Na prvi pogled integrala ne znamo izračunati. Lahko pa nanj
pogledamo kot na funkcijo parametra η = ka sin θ. Definirajmo
torej funkcijo J kot

J(η) =
1
π

π/2

∫
−π/2

sin (η · cos φ) cos φ dφ .

V definicijo smo zaradi lepšega vključili "normalizacijski" faktor
1/π. — Ali lahko funkcijo J izračunamo? Podintegralsko funkcijo
sin t, t = η cos φ razvijemo v potenčno vrsto t − t3/3! + t5/5! − …
Tako pridelamo vsoto integralov oblike cos2n φ, ki jih znamo
integrirati. Dobimo vrsto

J(η) =
∞

∑
n=0

(−1)n

n!(n + 1)!
(

η
2

)2n+1 .

To pa ni nič drugega kot že spoznana cilindrična funkcija J1
(38.22)! S funkcijo J1 zapišemo iskano amplitudo kot
uP ∝ J1(ka sin θ)/sin θ, jo kvadriramo, upoštevamo J1(η)/η → 1/2, ko
η → 0 (kar ugotovimo iz vrste), in končno pridelamo:

j(θ) = j0 [
2J1 (ka sin θ)

ka sin θ
]2 .

Sorazmernostna konstanta j0 je gostota toka na zaslonu pri θ = 0.
Prvi minimum je pri (2π / λ) a sin θ = 3,8, torej pri sin α ≈ α =
0,61λ/a = 1,22 λ / 2a. Za rdečo svetlobo in 1/4 mm široko luknjo
znaša θ = 0,2°. Prvi minimalni obroč je torej napet na kot 0,4°. Na
meter oddaljenem zaslonu to znaša okrog 6 mm. To je nekaj več
kot pri enako široki reži.

Slika 38.19 Uklon za okroglo odprtino.
Prikazana je relativna gostota toka v
odvisnosti od parametra D = 2π (a/λ) sin θ.

Ko z daljnogledom opazujemo zvezdo, se njena svetloba uklanja
na okroglem objektivu premera 2a. V goriščni ravnini se tvori
uklonska slika. Zvezda ni ostra, ampak razmazana v majhen disk.
Če sta dve zvezdi blizu skupaj, se diska prekrivata in ju ne
moremo razločevati. Najmanjša razdalja, ko ju še ločimo, je
nekako tedaj, ko pade maksimum ene zvezde v prvi minimum
druge. Kotna ločljivost daljnogleda je zato 1,22 λ / 2a ≈ λ / 2a,
kakor smo svoj čas že ugotovili eksperimentalno. □
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39

Piezoelektrični pojav

Termoelektrični pojav

Elektroni in ioni
Piezo- in termoelektrika – Termični elektroni – Curki elektronov –
Odklon curka v poljih – Relativistični odklon – Masni spektrometer
ionov – Naboji na kapljicah – Elektroni v snovi – Dielektričnost –
Permeabilnost – Prevodniki – Svetloba in elektroni

39.1 Piezo- in termoelektrika
Če privzamemo, da so nosilci električnega naboja res elektroni in
ioni, v kar ne dvomimo preveč, dobimo s tem novo, upajmo da
plodovito izhodišče za usmerjanje nadaljnjih raziskav.
Razmišljamo takole.

Kristal izolatorja, recimo kvarca, je rešetka iz ionov, ki so med
seboj povezani z elektronskimi pari kot vezmi. S to rešetko je
določena tudi porazdelitev električnih dipolov po kristalu.
Porazdelitev je taka, da se sosedni dipolni momenti med seboj
izničujejo. Kaj pa, če bi kristal deformirali, recimo stisnili?
Rešetka bi se potem spremenila in morda bi se električni dipoli
več ne izničevali. Na nasprotnih ploskvah kristala bi se zato
pojavili vezani pozitivni in negativni naboji in med njimi bi
zavladala napetost.

Naredimo poskus! Kristal kvarca vtaknemo med dve kovinski
ploščici, povezani z balističnim voltmetrom. Ko ploščici stisnemo,
se voltmeter res za hip odkloni. Očitno je zaznal napetostni
sunek, to je izenačevanje nabojev med obema ploščicama.
Izmerimo, da sta pretočeni naboj in s tem napetost kar
sorazmerna s pritiskom: U ∝ p. Sorazmernostni koeficient je
odvisen od vrste, oblike in razsežnosti kristala. Tipično znaša 10 V
na kp/cm2, kar je presenetljivo veliko. Odkrili smo piezolektrični
pojav pri nekaterih kristalih (CURIE, P.).

V kovini elektroni niso vezani na ionsko rešetko, marveč se lahko
prosto gibljejo skoznjo. Če staknemo dve kovini, se morda nekaj
elektronov preseli iz kovine, kjer so šibkeje vezani, v kovino, kjer
so vezani močneje. Z ene strani meje na drugo se preseli toliko
elektronov, da ustvarijo dovolj veliko potencialno zaporno plast in
preseljevanje se ustavi. Če naredimo krožno zanko iz dveh žic, sta
na obeh stičiščih enako veliki in nasprotno usmerjeni potencialni
plasti. Gonilna napetost po zanki je zato enaka nič. Če pa stičišči
podvržemo različnima temperaturama (enega potopimo v vrelo in
drugega v ledeno vodo, na primer), se morda potencialni plasti
razlikujeta, pojavi se gonilna napetost in po zanki steče tok. To je
termočlen.

Naredimo poskus! Meritve z voltmetrom res pokažejo, da obstaja
gonilna napetost med stičiščema; je kar sorazmerna s
temperaturno razliko: U ∝ ΔT. Sorazmernostni koeficient je
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Dioda

Diodni tok

Katodna cev

odvisen od vrste snovi in znaša tipično 10 μV/K. Odkrili smo
termoelektrični pojav (SEEBECK).

Termoelektrični pojav lahko izkoristimo kot generator napetosti
iz temperaturnih razlik v okolju. Da dobimo dovolj visoke
napetosti, moramo le zaporedno povezati več kovinskih parov. Ali
pa merimo temperaturne razlike v okolju preko merjenja
napetosti.

39.2 Termični elektroni
Ali lahko prevodniške elektrone spravimo ven iz kovine, morda s
segrevanjem? Kakor iz tekoče vode pri segrevanju izhlapevajo
molekule, tako morda iz kovin izhlapevajo tudi elektroni!

Ravnamo takole. V zaprto stekleno cev na vsakem koncu vtalimo
kovinsko elektrodo in izsesamo zrak na okrog 10−3 mm Hg. Tedaj
imajo molekule zraka povprečno prosto pot (36.29) (ki je
obratnosorazmerna z številsko gostoto) okrog 10 cm. S tem
hočemo omogočiti elektronom nemoteno izhlapevanje in gibanje
v prostoru. Eno elektrodo segrevamo z električnim grelcem do
žarenja. Elektrodi priključimo na izvor enosmerne napetosti –
baterijo nekaj 10 V: vročo elektrodo na negativni priključek
(katoda) in hladno na pozitivnega (anoda). Priključeni
ampermeter pokaže, da skozi cev teče tok. Očitno iz vroče
elektrode res izstopajo elektroni, ki jih nato električno polje med
elektrodama poganja proti hladni elektrodi. Ko priključka
zamenjamo, pa tok ne teče. Iz hladne elektrode namreč elektroni
ne morejo izstopati. Opisani cevi rečemo dioda (EDISON).

Slika 39.1 Prva dioda – navadna žarnica na ogleno
nitko, ki ima vtaljeno dodatno kovinsko elektrodo.
Sestavil jo je T. Edison. Ko med elektrodo in žarilno nitko
priključimo baterijo (elektrodo na pozitivni pol), steče
skozi diodo tok. (National Museum of American History)

Kolikšen tok teče skozi diodo, je odvisno od oblike, lege in
velikosti elektrod, od temperature katode ter še česa. V vsakem
primeru pa je tok odvisen od napetosti: najprej hitro narašča,
potem pa se ustali. Tedaj anoda sproti poskrka vse izhlapele
elektrone iz katode. Tipični nasičeni tokovi znašajo 10–100 mA in
tipične napetosti pri nasičenju 10–100 V.

Da bomo tok elektronov skozi prostor lažje preučevali, diodo
ustrezno preoblikujemo. Razpotegnemo jo v hruškasto cev.
Katodo in anodo namestimo v njen vrat ter v anodo izvrtamo
luknjico. Tako upamo, da bodo nekateri elektroni zleteli skoznjo
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(39.1)

in nadaljevali svojo pot v razširjeni prostor kot katodni žarki. Obe
elektrodi priključimo na baterijo do 1000 V ali na indukcijsko
tuljavo, ki je vir utripajoče enosmerne napetosti do 10 kV. Izdelali
smo katodno cev (THOMSON).

Slika 39.2 Katodna cev. Prikazana je katodna cev, ki jo je uporabljal J. Thomson
za meritve elektronov. V sredini sta vtaljeni elektrodi kondenzatorja. (University
of Cambridge).

Za uspešno delovanje katodne cevi je potrebno, kakor zmeraj,
urediti kup podrobnosti. — Najprej moramo curek sploh videti. V
cev zato dodamo majhno količino tega ali onega plina in
poskušamo, ali njegove molekule, ko jih elektroni zadenejo, kaj
sevajo. S poskušanjem ugotovimo, da sta primerna anodna
napetost 100–300 V in helij oziroma vodik pri tlaku okrog
10−2 mm Hg. Curek elektronov, ki teče skozi helij, zariše lepo
modro črto. — Pri višjih anodnih napetostih opazimo na steklu,
kamor vpada curek, svetlo piko. Heliju kot označevalcu žarka se
zato lahko odrečemo. Poskušamo pa najti premaz, ki bi svetil čim
močneje. Za primerno kombinacijo se pokažeta anodna napetost
okrog 1 kV in premaz iz cinkovega sulfida. — Hkrati poskušamo
tudi povečati izhlapevanje elektronov iz katode in iščemo premaz
s čim nižjim izstopnim delom. Za primernega se pokaže barijev
oksid. — Končno še izboljšamo kolimacijo snopa z dodatkom ene
ali več zaslonk.

S katodno cevjo smo dobili v roke prvovrstno orodje za
ustvarjanje in raziskavo elektronskih curkov v vakuumu.

39.3 Curki elektronov
Ko elektron preleti potencialno razliko UA med katodo in anodo,
je na njem opravljeno delo eUA in to je enako pridobljeni kinetični
energiji mv2/2, če je hitrost majhna v primerjavi s svetlobno.
Elektron v curku ima zato hitrost

v = √
2eUA

m
.

Kakšna je ta hitrost, vnaprej ne moremo vedeti, ker še ne
poznamo mase elektronov. Njihov naboj pa že poznamo (36.10);
izračunali smo ga iz elektrolizne in kilomolske konstante.
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Elektronvolt

Hitrostna homogenost

Hitrostna
nehomogenost

(39.2)
Električni odklon

Za elektron, ki preteče napetost 1 V, bomo rekli, da ima energijo
1 elektronvolt oziroma 1 eV. Ker že poznamo osnovni naboj, velja
1 eV = e · 1 V = 1,6 · 10−19 J.

Merjenje energije elektronov v joulih je očitno nerodno, zato jo
bomo raje merili v elektronvoltih. To velja tudi za energije atomov
in molekul. Povprečna termična translacijska energija atoma ali
molekule, na primer, znaša K = (3/2)kT. Takšno energijo bi imel
elektron, ki bi pretekel tolikšno napetost U, da e U = (3/2) kT. Pri
1000 kelvinih znaša U = 0,1 V, kar pomeni K = 0,1 eV. Očitno so
kinetične energije delcev zaradi termičnega gibanja mnogo
manjše kot energije, ki jih imajo elektroni v katodnih ceveh.

Ali se elektroni v izhodnem curku kaj razlikujejo po hitrosti? To bi
se zgodilo, če bi se elektroni razlikovali po masi, po začetni
energiji ob izstopu iz katode in po trkih ob anodo pri preletu
skoznjo. Pričakujemo, da so mase vseh elektronov enake. Vpliv
anodne luknje zanemarimo. Izhlapeli elektroni pa imajo le največ
tolikšno začetno energijo, kot znaša termična energija delcev v
katodi, torej okrog 0,1 eV. To pa je zanemarljivo v primerjavi z
energijami preko aktualnih pospeševalnih napetosti nekaj sto ali
tisoč voltov. Pričakujemo torej, da je elektronski curek hitrostno
homogen.

Kaj pa, če pospeševalna napetost ni konstantna, ampak se s
časom hitro spreminja? To se dogaja pri indukcijskih tuljavah. V
tem primeru so nekateri elektroni pospešeni z večjo in drugi z
manjšo napetostjo. V curku zato najdemo elektrone z
najrazličnejšimi hitrostmi. Taki curki so hitrostno nehomogeni.

39.4 Odklon curka v poljih
Elektronski curki nosijo naboj in ti naboji se gibljejo, torej
predstavljajo električni tok. Zato nanje gotovo delujeta električna
sila Fe = eE (37.1) in magnetna sila Fm = Il×B (37.30), ki se za
posamičen elektron zapišeta kot

F= e(E+v×B) .

Raziščimo vpliv teh sil! V vodoravno katodno cev namestimo
kondenzator iz dveh podolgovatih ploščic dolžine l na medsebojni
razdalji d. Skozi ta kondenzator naj teče elektronski curek; z njim
je definirana os x. Napetost U med lističema ustvari v
kondenzatorju homogeno polje E = U/d, ki je usmerjeno
(postavimo) navpično navzdol.

Slika 39.3 Električni odklon. Curek
elektronov se odkloni v električnem polju
kondenzatorja.
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(39.3)

Magnetni odklon

(39.4)

Hitrost elektronov

V kondenzatorju preživi elektron t = l/v časa. Medtem mu
električna sila podeljuje pospešek a = Fe/m = eE/m in mu podeli
hitrostno komponento navzgor vz = at = eEl/mv. Po prehodu
kondenzatorja je zato elektron odklonjen od prvotne smeri za kot
vz/v = tan θ, pri majhnih odklonih torej za

θ =
eEl
mv2 .

Vidimo, da θ ∝ 1/mv2. Vsi elektroni z enako kinetično energijo se
enako odklonijo. Rečemo, da je električno polje selektor curka po
kinetični energiji. Kvalitativen poskus pokaže, da se elektronski
curek res odkloni. Če je curek hitrostno nehomogen (na primer
pridobljen z indukcijsko tuljavo), se pri tem raztegne v navpično
pahljačo. Hitrejši elektroni pač preživijo v kondenzatorju manj
časa in se manj odklonijo, počasnejši pa bolj.

Postavimo na vsako stran katodne cevi enako obročasto tuljavo.
Razmaknjeni naj bosta za polovico svojega premera: polje med
takima tuljavama je namreč dobro homogeno. Odvisno je od toka,
ki teče skoznju, in ga lahko izmerimo na primeren način. Polje naj
bo pravokotno na cev in usmerjeno (postavimo) v desni bok
gibajočih se elektronov.

Slika 39.4 Magnetni odklon. Curek
elektronov se odkloni v magnetnem polju
tuljave.

Curek čuti silo evB pravokotno na svojo smer, kar ga zvija
navzdol v krožni lok z radijem r. Magnetna sila je centrifugalna,
zato evB = mv2/r, torej 1/r = eB/mv. Po prehodu magnetnega polja
po loku s so elektroni odklonjeni za kot ϕ = s/r, to je

ϕ =
eBs
mv

.

Vidimo, da ϕ ∝ 1/mv. Vsi elektroni z enako gibalno količino se
enako odklonijo. Rečemo, da je magnetno polje selektor curka
elektronov po gibalni količini. Kvalitativni poskus pokaže, da se
elektronski curek res odkloni. Če je curek hitrostno nehomogen,
se pri tem raztegne v navpično pahljačo. Hitrejši elektroni se
manj odklonijo.

Kaj pa, če hkrati uporabimo navpično električno polje, ki odklanja
curek navzdol, in vodoravno magnetno polje, ki odklanja curek
navzgor? Premer tuljave v tem primeru naj bo enak dolžini
kondenzatorja. Elektron, ki prileti s hitrostjo v v prekrižani polji,
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(39.5)

Masa elektrona

(39.6)

Električni odklon

čuti neto silo obeh polj in se ustrezno odkloni, navzgor ali
navzdol. S prilagajanjem jakosti enega ali drugega polja (preko
drsnih upornikov) lahko dosežemo, da se elektron ne odkloni
nikamor, ampak potuje naprej v ravni črti. Tedaj velja eE = evB,
torej

v =
E
B

.

Za elektrone, ki so preleteli napetost 300 voltov, tako izmerimo
strahotne hitrosti okrog 10 · 103 km/s. V eni sekundi prepotuje tak
elektron celotni premer Zemlje! Seveda pa je to še vedno zgolj
3 % svetlobne hitrosti. Če na prekrižani polji vpadajo elektroni
različnih hitrosti, se prepustijo v vodoravni smeri zgolj tisti s
hitrostjo E/B, drugi pa zavijejo vstran. Polji zato delujeta kot
hitrostni selektor elektronov.

Z izmerjeno hitrostjo v pri znani napetosti UA je enolično
določeno razmerje e/m = v2/2UA. Natančne meritve povejo
e/m = 1,7 · 1011 C/kg. Ker poznamo e = e0, je s tem ugotovljena
tudi masa elektronov:

me = 9,1 · 10−31 kg .

Elektron je torej 1800-krat lažji od atomske masne enote, ali kar
je praktično isto, od vodikovega atoma.

Kaj pa, če ne poznamo napetosti UA? Tedaj uporabimo enačbi
(39.3) in (39.4), ki opisujeta odklone in ne vsebujeta napetosti UA.
To je dvojica enačb z dvema spremenljivkama v in e/m. Njuna
rešitev pove v = ϕE/θB in e/m = Eϕ2/B2θl. Za primer θ = ϕ in l = s
velja v = E/B in e/m = Eθ/B2l. To pa je že iskana enačba. Govori
nam, kako meriti: nastavite primeren E in izmerite odklon θ.
Vključite tuljavo in nastavite B tako, da se žarek vrne v izhodišče.
Nato iz izmerkov izračunajte v in e/m.

39.5 Relativistični odklon
Sedaj, ko poznamo maso elektronov, lahko tudi izračunamo, s
kakšno napetostjo jih moramo pospešiti, da se gibljejo
relativistično. Velja eU = (γ(v) − 1)mc2, iz česar sledi za v/c = 0,9
vrednost U = 6,5 · 106 V, torej nekaj milijonov voltov. Tako visokih
napetosti z obstoječimi usmerniki ne zmoremo ustvariti. Kljub
temu pa izračunajmo, kako bi se takšni relativistični elektroni
odklanjali v električnem in magnetnem polju.

Opazovalni sistem S privežemo na kondenzator in opazovalni
sistem S' na vpadajoči elektron. Za opazovalca v S torej
kondenzator miruje in elektron se giblje v desno s hitrostjo v. Za
opazovalca v S' pa elektron miruje in kondenzator se giblje v levo
s hitrostjo −v. Čas v S, ki ga potrebuje elektron za prelet
kondenzatorja, je t = l/v. Opazovalec S' vidi kondenzatorjevo polje
E' = γE. Opazovalec S' vidi skrajšan kondenzator l' = l/γ. V S' zato
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Magnetni odklon

(39.8)

Prekrižani polji

Kanalski žarki

Parabolični
spektrometer

potrebuje elektron preletni čas t' = l'/v. Vmes deluje nanj sila
F' = eE'. Ta sila mu da pospešek (neralitivistični, ker so hitrosti vz
majhne) a' = F'/m. V času t' zato pridobi hitrost vz' = a't'. Ta hitrost
v S znaša vz = vz'/γ. V dobljeno enačbo za vz vstavimo, po vrsti,
vse predhodne enačbe, delimo z v in dobimo

θ =
eEl

γmv2 .

To je prav takšna enačba kot za počasne elektrone, če za njihovo
maso vzamemo vrednost γm. Hitri elektroni se torej po teoriji
relativnosti odklonijo manj, kot bi se po klasični teoriji.

Gibalna enačba za elektron v magnetnem polju je
d(γmv)/dt = ev×B. Ker je E= 0, je |v| = const. Zato je tudi
γ = const in lahko zapišemo γm dv/dt = ev×B. To pomeni, da se
hitri elektron odklanja ravno tako kot počasni, če le za njegovo
maso vzamemo vrednost γm. Torej velja

ϕ =
eBs
γmv

.

Odklonska pot elektrona ima obliko krožnega loka z radijem r.
Ker ϕ = s/r, znaša ta radij r = γmv/eB. Če je magnetno polje
razsežno, lahko elektron v njem zariše cel krog.

Enačbi za električni in magnetni odklon vsebujeta dve
spremenljivki: v in e/m. Za primer θ = ϕ in l = s sledi iz izenačitve
desnih strani enačb v = E/B. Vstavitev te hitrosti v prvo enačbo pa
da e/γm = Eθ/B2l. Hitrim elektronom torej izmerimo hitrost in
razmerje e/m podobno kot počasnim. Po relativistični teoriji
določeno razmerje je večje kot po klasični.

39.6 Masni spektrometer ionov
Električno in magnetno polje odklanajata seveda tudi ione,
pozitivne in negativne. S tem se ponuja način, kako meriti njihove
mase. V prostor med katodo in anodo zapremo nekaj plina.
Namesto da preluknjamo hladno anodo, preluknjajmo vročo
katodo. Elektroni na svoji poti od katode na anodo ionizirajo plin
in nastali pozitivni ioni potujejo proti katodi ter skozi njeno
luknjico. Tako dobimo curek pozitivnih ionov oziroma kanalske
žarke. Za razliko od curka elektronov pa niso niti masno niti
hitrostno homogeni: saj lahko nastane ionizacija kjerkoli,
pospeševalne razdalje se zato razlikujejo in s tem tudi pridobljene
hitrosti.

Ionski žarek je po odklonu v kondenzatorju navpično raztegnjen:
v izbranem odklonu se znajdejo enako hitri, a masno različni ioni.
Kako naj jih ločimo? S takim odklonom v vodoravni smeri, ki
različno odklanja lahke kot težke delce. Takšno pa je magnetno
polje, ki je vzporedno z električnim.
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Slika 39.5 Masni spektrometer ionov. K = katoda, F = kanal, AA =
kondenzator, NS = magnet, S = zaslon, P = ščitnik. V posodi na desni je plin.
Priključena indukcijska tuljava ga ionizira. Pozitivni ioni tečejo skozi kanal.
Kondenzator jih odklanja navzdol in magnet vstran. Na zaslonu se rišejo deli
parabol. (Thomson, J., 1897)

Izbrani ion se torej odklanja v navpični smeri za θ ∝ z ∝ eE/mv2 in
v vodoravni za φ ∝ y ∝ eB/mv. Sorazmernostna koeficienta
vsebujeta geometrične konstante. Z izločitvijo hitrosti iz obeh
enačb dobimo

y2

z
∝

e
m

B2

E
.

Ioni z istim e/m in različnimi hitrostmi torej zarišejo na zaslonu
navpično parabolo, pravzaprav le njeno polovico. Različne točke
na paraboli odgovarjajo istemu e/m in različni hitrosti. Če so
prisotni različni ioni, vsak s svojim e/m, se zariše več parabol.
Predpostavljamo, da nosijo ioni po en osnovni naboj. Če nosi ion
dva naboja, se zariše kot ion z enim nabojem in polovično maso.

Masama m1 in m2 ustrezata pri višini z odmika y1 in y2. Njuno
razmerje znaša m1/m2 = (y2/y1)2 in je neodvisno od velikosti in
oblike priprave ter polj. Če poznamo maso ene parabole, z
meritvijo odmikov y pri istem z določimo tudi maso vseh ostalih
parabol. To delamo na fotografskem posnetku zaslona. Na
posnetku ni vidna navpična os, zato naredimo dve polovični
osvetlitvi in vmes zamenjamo smer magnetnega polja. Tako
pridelamo obe polovici parabol. Za umeritveno parabolo so
primerni katerikoli ioni z znano maso, na primer kisikovi.

Slika 39.6 Masni spekter. Ioni z istim razmerjem
e/m padajo na isto parabolo. Hitrejši ioni bliže vrhu,
počasnejši bolj proč. Opazna sta dva izotopa neona.
(Thomson, J., 1913)

Z opisanim masnim spektrometrom odkrijemo, da so elementi z
necelim masnim številom pravzaprav mešanica elementov z
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Polkrožni
spektrometer

različnimi celimi masnimi števili. Neon, na primer, ima masno
število 20,2, spektrometer pa pokaže dve vrsti ionov: 20 in 22,
prvih več in drugih manj. Rečemo, da so to izotopi neona. S tem
oživimo domnevo, da so atomi pravzaprav sestavljeni iz celega
števila enako težkih delcev.

Ločljivost paraboličnega spektrometra znaša Δm/m ≈ 1/10.
Preučevanje izotopov pa zahteva večjo natančnost. Kot
raziskovalci, ki nas zanima prav to področje, iščemo in izumimo
mnoge izboljšave. Ena izmed njih je polkrožni spektrometer, ki
dosega natančnost 1/103.

Slika 39.7 Polkrožni
spektrometer. Hitrostno homogeni
curek ionov se v magnetnem
polju razcepi v delne curke z
različnim razmerjem e/m.
Prikazana je shema spektrometra,
ki ga je sestavil K. Bainbridge.
(SchoolPhysics, UK)

Spektroskop je sestavljen iz ionske komore, selektorja hitrosti in
masnega analizatorja. V ionski komori poseben elektronski curek
bombardira atome in jih ionizira v pozitivne ione. Polje med
anodo in preluknjano katodo pospeši nastale ione ven iz komore.
Na izhodu imajo ioni različne hitrosti. Sledi prehod skozi
prekrižani E in B polji, ki prepustita le ione z ostro določeno
hitrostjo v = E/B. Teh izstopnih elektronov je seveda mnogo manj,
kot je vstopnih. Ionski curek nato vpade v homogeno magnetno
polje, ki ga razcepi in ukrivi v delne curke z različnimi radiji. Ioni
z enakimi masami m se uvrstijo v curek z radijem r = mv/eB. Ko
se curki odklonijo za 180°, zadenejo ob ravno fotografsko ploščo.
Curek z radijem r zadene ploščo na oddaljenosti 2r od vstopne
točke. Masa ionov je torej kar sorazmerna z oddaljenostjo.

Zakaj prestrežemo curke pri 180° in ne kje drugje? Poskus (in
tudi risba in račun) pokaže, da se curek, ki je pri vhodu v
magnetno polje zmeraj rahlo divergenten, po preletu za 180° spet
lepo fokusira.

Slika 39.8 Masni spekter neona z izotopoma
20 in 22 ter klora z izotopoma 35 in 37, kakor
ju je s svojim spektrometrom izmeril F. Aston.
(University of Cambridge)

Večina spektrometrov deluje na pozitivne ione. Takšni so tudi
ioni, ki bi drugače od njih pričakovali, da bodo negativni, recimo
klorovi. Atomi v ionizacijski komori pri obstreljevanju z elektroni
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Meritev nabojev

pač prej izgubijo kak elektron kot pa da kakšnega ujamejo. Če pa
kakšen negativni ion le nastane, ne zmore poti do katode.

39.7 Naboji na kapljicah
Malo nas skrbi, če imajo elektroni in ioni res zmeraj enako velik
naboj oziroma celoštevilski mnogokratnik tega naboja. Morda pa
bi lahko drobne naboje neposredno merili in sicer na drobnih
nosilcih?

Med vodoravni plošči kondenzatorja, ki je priključen z drsnim
delilcem napetosti na baterijo 1000 V, razpršimo oljne kapljice. Te
se zaradi drgnjenja skozi šobo naelektrijo. Opazujemo jih z
daljnogledom, pri čemer jih osvetljujemo z žarnico. Dokler na
ploščah ni napetosti, padajo kapljice enakomerno. Njihova teža je
enaka linearnemu zračnemu uporu: ρ4πr3/3 = 6πηrv. Vzgon
zanemarimo. Z merjenjem hitrosti med dvema vodoravnima
črtama določimo radij izbrane kapljice in iz njega maso. Potem
vključimo napetost. Nekatere kapljice se pospešijo navzdol, druge
navzgor, kakor so pač naelektrene. Napetost prilagodimo tako, da
izbrana kapljica miruje. Tedaj je njena teža enaka električni sili:
mg = eU/l, iz česar izračunamo naboj. Premerimo mnogo kapljic
in ugotovimo, da so njihovi naboji res majhni mnogokratniki
osnovnega naboja, za katerega dobimo 1,6 · 10−19 As. Manjših
nabojev ne opazimo. S tem smo potrdili dosedanjo domnevo.

Slika 39.9 Merjenje osnovnega naboja na
kapljicah v električnem polju ploščatega
kondenzatorja. Prikazana je priprava, ki jo je
zgradil in uporabil A. Millikan. (University of
Chicago)

Pri meritvah včasih opazimo, kako mirujoča kapljica nenadoma
začne padati ali se dvigati. Očitno je zajela kakšen ion iz okolice.
Opazimo pa tudi, da se vse mirujoče kapljice sčasoma, v kakšni
minuti, začno dvigati. Očitno izhlapevajo in električna sila
prevlada nad težo.

39.8 Elektroni v snovi
Snov je polna elektronov. V dielektrikih – trdnih, tekočih in
plinastih – so elektroni vezani v atomih. V trdnih kovinah se
prosto gibljejo skozi rešetko iz "mirujočih" pozitivnih ionov. In v
prevodnih raztopinah potujejo, kakor kavboji na konjih, na
gibljivih negativnih in pozitivnih ionih. Nekateri pa tudi
samostojno, kakor kavboji brez konj.
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Število elektronov

Hitrost elektronov v
kovinah

Hitrost ionov v
raztopinah

Koliko je pravzaprav elektronov v atomih raznih vrst? Tega
zaenkrat ne vemo. Privlačna je misel, da je v najlažjem atomu
vodika en elektron, v vseh naslednjih po teži pa ustrezno več.

Koliko pa je presežnih elektronov na nabitih telesih? Preučimo
ploščati kondenzator, ki ima bakreni plošči z debelino d = 0,1 mm
in ploščino po S = 1 dm2 na medsebojni razdalji l = 1 cm. Vsaka
elektroda ima maso m = ρSl = 8,9 g. V kilomolski masi bakra
M = 64 kg je NA atomov. Vsak atom prispeva, tako predpostavimo,
1 prevodni elektron. V kilomolski masi je zato NA prevodnih
elektronov. Skupni naboj teh elektronov je NA e0 = 96 · 106 As. V
eni elektrodi pa je m/M tega naboja, to je 13 400 As. Kondenzator
ima kapaciteto C = ε0 S/l = 8,9 pF. Z napetostjo 30 kV (ki jo dobimo
iz tornega stroja in izmerimo s statičnim voltmetrom) spravimo
na eno elektrodo naboj e = CU = 2,7 · 10−7 As. Večja napetost
povzroči preboj. Vendar pa je ta naboj 13 400 / 2,7 · 10−7 =
50 · 109-krat manjši kot skupni naboj vseh prevodnih elektronov.
To pomeni: na vsakih 50 milijard prostih elektronov pride en
elektron viška. Kar se kaže kot velika naelektrenost teles, je
pravzaprav hudo neznaten višek ali primanjkljaj elektronov na
njih.

Električni tok po žicah, to je gibanje elektronov vzdolž njih. Kako
hitro se gibljejo elektroni? To pove gostota toka: j = nev, pri
čemer n = N/V = NAρ/M. Maksimalni tok, ki lahko teče po bakreni
žici, ne da bi se ta preveč grela, znaša j = 10 A/mm2. To pomeni,
da se tedaj gibljejo elektroni s "strašno" hitrostjo 0,7 mm/s! To se
na prvi pogled zdi malo, vendar tak elektron v eni sekundi preleti
mimo milijona ionov. Seveda je to gibanje naloženo na obstoječe
termično gibanje, ki je neprimerno hitrejše.

Kako si ob tej majhni hitrosti razlagamo dejstvo, da se električna
luč v stanovanju prižge takoj, ko pritisnemo na stikalo? Elektroni
vzdolž žice se res premikajo počasi, njihov vpliv na naslednika v
vrsti pa je bliskovit. Stvar je podobna, kot če z batom potisnemo
vodo v cevi. Delci vode se premaknejo malo, njihov udarni val pa
napreduje s hitrostjo zvoka.

V vodni raztopini kislin, baz ali soli so nosilci električnega toka
pozitivni in negativni ioni. Vsaka vrsta ionov se pri tem giblje s
svojo hitrostjo in prispeva svoj delež k skupnemu toku:
j = n+e+v+ + n−e−v−. Pozitivni ioni se gibljejo v smeri polja,
negativni pa v nasprotni smeri, vendar imajo nasproten predznak,
zato imata prispevka obojih enak znak. Obravnavajmo vodno
raztopine morske soli NaCl. Ima naj koncentracijo 1 M/m3, to je
58 kg/m3. Če so vse molekule disociirane, je v raztopini natanko
NA ionov Na+ in prav toliko ionov Cl−. Ker nosita obe vrsti ionov
enak naboj in sta približno enako težki, privzamemo, da se tudi
gibljeta enako hitro. Potem velja j = 2NAv. Pri toku 1 A/cm2 tako

221



Lastnosti snovi

Nepolarne molekule

(39.10)

(39.11)

Polarne molekule

dobimo v ∼ 0,1 mm/s. Seveda je tudi to gibanje naloženo na
obstoječe termično gibanje.

Elektroni in ioni v snovi so vzrok za njihove električne in
magnetne lastnosti. Te so opisane z dielektričnostjo ε,
permeabilnostjo μ in prevodnostjo σ ter z raznimi iz njih
izpeljanimi količinami, na primer z lomnim količnikom n. Vse to
so fenomenološke količine. Doslej se nismo kaj dosti spraševali,
od česa so odvisne. Zadoščale so nam kvalitativne razlage. Zdaj,
ko poznamo maso in naboj elektronov, pa se vprašamo, kako bi te
makroskopske količine kvantitativno povezali z mikroskopskimi.

39.9 Dielektričnost
Začnimo z dielektričnostjo. Omejimo se na dielektrike v plinastem
stanju. To pa zato, da bomo lahko zanemarili medsebojni vpliv
molekul. Privzemimo najprej, da molekule nimajo stalnih dipolnih
momentov. Za električno polje E v dielektriku velja, kakor vemo,
povezava εE=E+P/ε0 (1), pri čemer je polarizacija P enaka vsoti
molekularnih dipolov pe na prostorninsko enoto P= (N/V)pe (2).
Za ne premočna polja privzamemo, da je influencirani
molekularni dipol sorazmeren z lokalnim poljem na mestu
molekule:

pe = αε0Elocal .

Sorazmernostni koeficient α poimenujemo polarizabilnost.
Lokalno polje je vsota zunanjega polja in polja okolišnjih molekul.
Ker so molekule daleč narazen, njihov vpliv zanemarimo in velja
Elocal =E. Vstavimo (39.10) in (2) v (1), pa dobimo ε = 1 + (N/V)α.
Ker N/V = Nm1/Vm1 = (Nm1/V)/(M/NA) = ρNA/M, sledi

M
ρ

(ε − 1) = NAα .

Dielektričnost nepolarnega plina je torej sorazmerna z njegovo
gostoto. Meritve pokažejo, da je tak plin, na primer, vodik. Za
vodik pri standardnih pogojih izmerimo ε − 1 = 0,26 × 10−3, iz
česar izračunamo najprej α = 10 Å3 in nato iz tega
pe / E = 0,5 · 10−6 eÅ / (kV/cm). Po zgledu eV smo vpeljali eÅ kot
e · Å. Polje 1 kV/cm torej influencira v vodikovi molekuli električni
moment, ki ustreza razmiku dveh elementarnih nabojev za
0,5 · 10−6 Å. Razmik N nabojev je seveda N-krat manjši. Težišči
pozitivnega in negativnega naboja v vodikovi molekuli se torej
razmakneta manj kot za milijoninko njeneg premera.

Če imajo plinske molekule stalne električne momente, se ti bolj
ali manj obračajo v smeri polja. Porazdelitev dipolov po
odklonskem kotu θ glede na smer polja je odvisna od njihove
energije pri tem odklonu: dn/ndΩ = A exp (peE cos θ/kT) ≈
A (1 + peE cos θ/kT). — V smeri θ = 0 je delež A(1 + peE/kT)
dipolov, v smeri θ = π pa A(1 − peE/kT) dipolov. Več dipolov je torej
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(39.12)

(39.13)

v smeri polja kot v nasprotni smeri. To se kaže kot polarizacija. —
Normirno konstanto določimo iz pogoja ∫ (dn/n dΩ) · dΩ = 1.
Integriramo po dΩ = 2π sin θ dθ in dobimo A = 1/4π.

Povprečni moment v smeri polja znaša
⟨pe⟩ = ∫ (dn/ndΩ)pe cos θ dΩ. Integriramo podobno kot prej in
dobimo

⟨pe⟩ =
p0

2

3kT
E .

K dielektričnosti polarnih molekul prispevajo tako inducirani kot
orientirani molekularni dipoli (DEBYE):

M
ρ

(ε − 1) = NA(α +
p0

2/ε0

3kT
) .

Konstanti α in p0 sta značilni za posamezne snovi. Enačba ima
obliko y = a + b/T. Z merjenjem dielektričnosti pri različnih
gostotah in temperaturah lahko narišemo odvisnost y od 1/T ter
dobimo premico. Iz nje določimo konstanti b in a in iz njiju
električni moment p0 ter polarizabilnost α.

Slika 39.10 Odvisnost susceptibilnosti (ε − 1) vodne
pare od temperature (1/T). Prikazani so merski
podatki pri konstantni gostoti, to je v zaprti togi
posodi. (Feynamn, 1963)

Meritve pokažejo, da je tak plin, na primer, voda. Za vodo
izmerimo p0 = 0,4 eÅ in α = 1,5 Å3. To sta tudi tipična reda
velikosti za druge polarne molekule. Povprečni moment molekule
pri sobni temperaturi, zasukan v smeri polja z jakostjo 1 kV/cm,
znaša ⟨pe⟩ = 20 · 10−6 eÅ. Influencirani moment pa znaša
0,5 · 10−6 eÅ, kar je za red velikosti manj.

Na osnovi izmerjenih električnih momentov lahko marsikaj
sklepamo o molekulah. Vodna molekula H2O, na primer, ima
stalni električni moment. Zato ne more biti linearna H−O−H,
ampak mora biti prepognjena. Molekula CO2 pa stalnega
momenta nima, zato tudi ne more biti prepognjena, ampak je
linearna O=C=O. Oboje seveda že vemo iz prostostnih stopenj in
razmerja specifičnih toplot [36.9].

Konstanti α in p0 sta odvisni od tega, kako so pozitivni in
negativni električni naboji porazdeljeni po molekuli, to je, kako je
molekula zgrajena. Tega zaenkrat ne vemo podrobno. Upamo pa,
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Nemagnetne
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(39.14)

(39.15)

Magnetne molekule

(39.16)

(39.17)

Težavne meritve

da bomo v nadaljevanju raziskav to dognali. Tedaj bomo obe
konstanti lahko kar izračunali.

39.10 Permeabilnost
Kakor smo določevali električne momente plinskih molekul, tako
določujemo tudi njihove magnetne momente. Preučimo najprej
pline, katerih molekule nimajo stalnih magnetnih momentov.
Poimenujmo jih nemagnetne molekule. Privzamemo, da se pri
majhnih jakostih magnetnega polja v njih inducirajo magnetni
momenti, ki so sorazmerni z jakostjo polja:

pm = βB/μ0 .

Sorazmernostni koeficient poimenujemo magnetna
polarizabilnost. Upoštevajoč M= (N/V)pm in B/μ =B− μ0M
dobimo 1/μ − 1 = − (N/V)β = − (ρNA/M)β. Za μ, ki je blizu 1, velja
1/μ − 1 ≈ 1 − μ, zato

M
ρ

(μ − 1) = NAβ .

(Zašli smo v težave z oznakami: M pomeni kilomolsko maso in M
magnetizacijo.) Permeabilnost plina iz nemagnetnih molekul je
torej sorazmerna z njegovo gostoto.

Stalne magnetne momente obravnavamo prav tako kot stalne
električne momente, zato lahko rezultat kar prepišemo

⟨pm⟩ =
p0

2

3kT
B .

M
ρ

(μ − 1) = NA (β +
p0

2μ0

3kT
) .

(Spet smo v težavah z oznakami: p0 pomeni velikost magnetnega,
ne električnega momenta molekule.) Specifična susceptibilnost
plina iz magnetnih molekul je torej obratno sorazmerna z njegovo
temperaturo.

Ker imajo plini okrog 1000-krat manjšo gostoto kot snov v
tekočem ali trdnem stanju, pričakujemo, da bo tudi njihova
susceptibilnost ustrezno manjša, to je reda velikosti ± 10−9 pri
standardnih pogojih. To se, žal, pokaže za resnično.

Z mnogo truda ugotovimo, da ima vodik nemagnetne molekule in
susceptibilnost −2,1 · 10−9. Temu ustreza inducirani moment
pm/B = −3,0 · 10−10 AÅ2 / T. Predstavljajmo si, da kroži elektron v
atomu s frekvenco ν okrog ploščine S. Tedaj ustvarja moment
pm = IS = (e/t) · S = eνS. Momentu pm torej ustreza frekvenca
ν = pm/eS. Za vodikov moment to znese 1,9 · 109 Hz. To se morda
zdi na prvi pogled veliko, vendar je neznatno v primerjavi s
frekvenco 1015 Hz, s katero nihajo elektroni, ko izsevajo vidno
svetlobo.
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Prevodnost

(39.18)

(39.19)

Posebnost med plini je kisik, ki ima magnetne molekule in
nenavadno veliko susceptibilnost +1,9 · 10−6. Iz temperaturne
odvisnosti izluščimo β ≈ 0 in p0 = 2,7 · 10−3 AÅ2. Pri sobni
temperaturi potem velja ⟨pm⟩/B = 6,2 · 10−6 AÅ2/T. Pri jakosti polja
1 T se torej vzdolž polja usmeri le tisočina razpoložljivega
momenta.

Zanimivo je, da se kot plini z nemagnetnimi molekulami pokažejo
le diamagnetni plini. Paramagnetni plini se pa vedno pokažejo kot
plini z magnetnimi molekulami. To nas navaja na misel, da se
sicer inducirajo momenti v vseh molekulah – nemagnetnih in
magnetnih, vendar jih v slednjih zmeraj preglasijo orientirani
momenti. Vse konstante β so negativne.

Slika 39.11 Odvisnost specifične magnetne
susceptibilnosti (μ − 1)/ρ od magnetnega polja
in temperature. Prikazane so kvalitativne
odvisnosti za diamagnetno (modro) in
paramagnetno (rdeče) snov.

Konstanti β in p0 sta odvisni od tega, kako se pozitivni in
negativni električni naboji gibljejo po molekuli, to je, kako je
molekula zgrajena. Tega zaenkrat ne vemo podrobno. Upamo pa,
da bomo v nadaljevanju raziskav to dognali. Tedaj bomo obe
konstanti lahko kar izračunali.

39.11 Prevodniki
Elektroni v kovinski žici se prosto gibljejo in pri tem trkajo z ioni.
Vedejo se kot plin. Če je v žici stalno električno polje, čutijo
elektroni silo F= eE in se gibljejo, kakor vemo iz kinetičnega
opisa plinov, s prisilno hitrostjo (36.46)

vdrift =
eEτ
m

.

Količina τ je povprečni čas med dvema trkoma (oznako za
povprečje bomo kar izpustili). Ustrezna gostota toka znaša

j= nevdrift = σE

σ =
ne2τ

m
.

Količino σ poimenujemo specifično prevodnost kovine. Če
upoštevamo j = I/S in E = U/l, dobimo I = (σS/l)U, v čemer takoj
prepoznamo zakon upornosti U = RI, kjer R = l/σS = ξl/S. Lepo je
videti, da smo našli zanj mikroskopsko razlago in smo ga
spremenili v izrek!

225

pict3b/permeab.gif
pict3b/permeab.gif


Kompleksna
prevodnost

(39.20)

(39.21)

Prečna napetost

Enačba za specifično prevodnost omogoča, da izračunamo
povprečni čas med trki. Za baker, na primer, poznamo
σ = 5,9 · 107 / Ω m in n = N/V = ρNA/M = 8,3 · 1028 / m3 ter
izračunamo τ = 2,5 · 10−14 s. S tem je določena tudi prisilna hitrost
vdrift/E = 4 (mm/s)/(V/m). Pri gostoti toka j = 10 A/mm2 vlada v žici
polje E = j/σ = 0,17 V/m, tako da je vdrift = 0,7 mm/s, povsem v
skladu s predhodnimi izračuni.

Kaj pa, če je kovina v spremenljivem električnem polju? To je
tedaj, ko je žica priključena na izmenično napetost. Ko se
elektron giblje skozi kovino, ima ob vsakem trenutku t gibalno
količino G(t). Dve stvari se lahko zgodita v kratkem prihodnjem
času dt. — Prvič, elektron doživi trk z verjetnostjo dt/τ, izgubi vso
dotedanjo gibalno količino in izide iz trka s slučajno gibalno
količino eEdt. Prispevek elektrona k svoji novi gibalni količini
znaša G1(t + dt) = dt/τ · eEdt. — In drugič, elektron ne doživi trka
z verjetnostjo 1 − dt/τ. Po času dt ima potem gibalno količino
G(t) + eEdt. Prispevek k svoji novi gibalni količini znaša
G2(t + dt) = (1 − dt/τ)(G(t) + eEdt. Oba prispevka seštejemo,
zanemarimo višje potence dt in dobimo

dG
dt

= −
G
τ

+ eE .

To je gibalna enačba s pospeševalno silo eE in z zaviralno silo
G/τ. Pri enakomernem gibanju je leva stran enaka nič in enačba
preide v znano obliko (39.18).

Za polje E=E0 exp (−iωt) poiščemo rešitev enačbe z nastavkom
G=G0 exp (−iωt). Tako pridelamo enačbo G0 = eE0τ/(1 − iωτ).
Množimo obe strani z ne/m in dobimo

j= σ̂E

σ̂ =
σ

1 − iωτ
.

Prideleli smo kompleksno prevodnost, ki je odvisna od frekvence
polja. To pomeni, da gostota toka ni več v fazi z jakostjo polja. Z
naraščajočo frekvenco se prevodnost manjša. To je razumljivo:
preden uspe polje dovolj pospešiti elektrone, se že obrne in jih
začne pospeševati nazaj. Vpliv pa je znaten šele pri visokih
frekvencah, ko postane 1/ω primerljiv s τ. To pa so že frekvence
vidne svetlobe. Za ω = 0 se enačba skrči na že znano stacionarno
obliko, kakor tudi mora biti.

Elektronski curek se v magnetnem polju odklanja. To bi moralo
veljati tudi za električni tok po prevodniku. Če po prevodniku v
obliki traku teče tok in je nanj pravokotno usmerjeno magnetno
polje, bi se morali elektroni nakopičiti ob enem robu. Tako bi se
morala pojaviti napetost med obema robovoma traku.
Izračunajmo to prečno napetost.
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(39.22)

Svetloba v plazmi

(39.23)

Slika 39.12 Prečna napetost. Ko teče
električni tok skozi prevodnik v magnetnem
polju, se prečno nanj pojavi električna
napetost.

Kovinski trak naj bo širok b in debel d. Vzdolž njega naj teče tok
I = nev · bd. Elektron v toku čuti magnetno silo Fm = evB. Iz prve
enačbe izrazimo hitrost v in jo vstavimo v drugo enačbo ter
dobimo Fm = IB/nbd. To magnetno silo uravnoveša električna sila
Fe = eU/b. Z izenačitvijo sil dobimo (HALL)

U =
1
ne

IB
d

.

Prečna napetost je torej sorazmerna s tokom in z magnetnim
poljem. Sorazmernostni koeficient je odvisen od gostote
prevodniških elektronov. Za baker, recimo, smo že predpostavljali
n = 8,3 · 1028 /m3, zato je sorazmernosta konstanta zanj enaka
7,5 · 10−11 m3/As. Za trak debeline 0,1 mm, tok 1 A in polje 1 T
dobimo, po računu, U = 75 μV. Merjenje prečne napetosti pri
znanem toku in polju pokaže, da je sorazmernostna konstanta
bakra 5 · 10−11 m3/As. To pomeni, da je prevodniških elektronov
več, kot smo domnevali, in vsak atom bakra odda v povprečju 1,5
elektrona v skupno elektronsko morje.

Magnetni trak s tokom je priročen merilnik za magnetno polje, a
žal le za velike jakosti. Rekli mu bomo kar magnetna sonda. Prav
tako lahko z njim merimo gostoto prevodniških elektronov v
različnih kovinah.

39.12 Svetloba in elektroni
Za elektromagnetni val v prevodniku velja ε̂ = 1 + iσ/ε0ω. V enačbi
namesto prevodnosti σ upoštevamo kompleksno prevodnost σ̂,
torej ε̂ = 1 + iσ̂/ε0ω. Vstavimo σ̂, pri visokih frekvencah v faktorju
(1 − iωτ) zanemarimo 1 in dobimo

ε ≈ 1 −
ωp

2

ω2

ωp
2 =

ne2

mε0
.

Plazemska frekvenca ωp določa, kako se valovanje vede. Če
ω < ωp, je ε realen in negativen, zato je k imaginaren: val se po
vpadu hitro zaduši. Če ω > ωp, pa je ε realen in pozitiven, zato je
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Atomski oscilatorji

(39.24)

Mejni primeri

k realen: valovanje potuje skozi prevodnik brez dušenja. Za
kovine je ωp ∼ 1015 Hz. To pomeni, da so za vidno svetlobo
nepropustne, kar razumno odgovarja resnici.

Poglejmo še svetlobo v dielektričnem plinu. Predpostavimo, da
lahko elektroni v atomih prosto nihajo. Izbrani elektron lahko
niha z lastno frekvenco ω0, recimo v smeri z. To pomeni, da je v
atomu vezan z elastično silo mω0

2z. Opravka imamo z atomskim
oscilatorjem.

Ko svetloba potuje čez atom, se elektron znajde v spremenljivem
elektromagnetnem polju. Nanj delujeta električna in magnetna
sila. Razmerje teh sil je Fm/Fe ≤ evB/eE, pri čemer je v hitrost
elektrona. Ker B = E/c, velja Fm/Fe ≤ v/c. Če v≪ c, kar
predpostavimo, je magnetna sila zanemarljiva.

Elektron v nihajočem električnem polju vsiljeno niha. Zanj velja
gibalna enačba mz" = −mω0

2z − eE0sin ωt. Enačbo smo že srečali
in rešili (34.31), zato rezultat kar prepišemo: z = z0 sin ωt in
z0 = eE0/m(ω0

2 − ω2). Upoštevamo po vrsti pe = ez, P = (N/V)pe,
P = ε0(ε − 1)E, ε − 1 = n2 − 1 = (n − 1)(n + 1) ≈ 2(n − 1), pa dobimo
disperzijsko enačbo

n − 1 =
e2/m

2ε0(ω0
2 − ω2)

N
V

.

Za dolge valove lahko zanemarimo ω v primerjavi z ω0. Tedaj je
lomni količnik neodvisen od valovne dolžine in je opisan s
konstantama ω0 in N/V. Zrak je prozoren za vidno svetlobo.
Svetlobo absorbira šele v ultravijoličnem delu spektra, pri valovni
dolžini λ = 1860 Å. To odgovarja frekvenci ν = 1,6 · 1015 Hz.
Elektron absorbira najmočneje svetlobo tiste frekvence, ki jo sam
seva, zato je navedena frekvenca tudi lastna frekvenca
elektronovega nihanja. Konstanta N/V = NAρ/M je popolnoma
določena z gostoto 1,3 kg/m3 in povprečno kilomolsko maso
28,8 kg zraka, zato izračunamo n − 1 = 4 · 10−4. To se dobro ujema
z izmerjeno vrednostjo 3 · 10−4 pri standardnih pogojih.

Disperzijska enačba pove, kako je lomni količnik odvisen od
frekvence svetlobe. Za vidno področje je imenovalec pozitiven,
zato lomni količnik narašča s frekvenco. To je v skladu z
opazovanji: vijolična svetloba se lomi močneje kot rdeča.

Ko je frekvenca svetlobe enaka lastni frekvenci elektrona, bi
moral biti lomni količnik neskončen. To je seveda posledica
uporabljenih aproksimacij: nismo upoštevali, da je nihanje
elektrona dušeno, ker pač seva energijo.

Ko postane frekvenca svetlobe mnogo višja od lastne frekvence
elektrona, lahko zanemarimo ω0 v primerjavi z ω. Lomni količnik
postane manjši od ena. To na prvi pogled pomeni, da se giblje
zelo kratkovalovna svetloba v snovi hitreje kot v vakuumu. Težavo
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Večkratni oscilatorji

(39.25)

odpravimo z naslednjo domnevo. V nekem smislu je res: hitrost
čistega harmoničnega valovanja – njegova fazna hitrost – je lahko
večja od c. Ovojnica dveh ali več čistih valov, ki se gibljejo z
različno fazno hitrostjo, pa kaže modulacijske "hribe" in "doline",
in njihova hitrost – grupna hitrost – ni nikoli večja od c. Za prenos
sporočil je vedno potrebno modulirano valovanje in s tem je
rešena teorija relativnosti. V raziskavo te razlage se ne bomo
spuščali.

Pri izpeljavi disperzijske enačbe smo obravnavali atom kot
harmonični oscilator z eno samo frekvenco. To gotovo ni res: kot
vemo, sevajo atomi mnogo različnih frekvenc. Zato moramo
disperzijski model ustrezno izpopolniti. Njegova naravna
posplošitev je

n − 1 =
N
V

∑ fk
e2/m

2ε0(ωk
2 − ω2)

.

Frekvence ωk so določene z lego črt v spektru plina, koeficienti fk
pa z njihovo relativno jakostjo. Dokler ne poznamo zgradbe
atomov, obojih ne moremo izračunati, ampak se moramo opreti
na izmerke. □
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40

Dioda

Karakteristika diode

Elektronika
Dioda in usmernik – Fotodioda in fotopomnoževalka – Trioda in
ojačevalec – Osciloskop – Oscilator – Radijska povezava –
Brezžična telefonija – Razvoj radia – Televizija – Magnetni zapis –
Radiosonde – Mikrovalovi – Radar – Sonar – Družbeni vpliv

40.1 Dioda in usmernik
Vakuumska cev z žarilno nitko – dioda – je nov, zanimiv element,
skozi katerega teče električni tok. Odvisnost tega toka od
napetosti med obema priključkoma diode – njeno karakteristiko –
določimo z drsnim baterijskim virom, voltmetrom in
ampermetrom.

Slika 40.1 Dioda. Dioda je vakuumska cev z dvema
elektrodama: vročo katodo (žarilno nitko) in hladno
anodo. Prikazana je prva uporabna dioda, ki jo je
sestavil J. Fleming. (Science Museum, London).

Karakteristika diode je povsem drugačna, kot smo jo navajeni pri
drugih električnih elementih – uporniku, tuljavi in kondenzatorju.
Njena glavna značilnost je, da teče tok skozi diodo le v eni smeri:
tedaj, ko je hladna elektroda, anoda, pozitivna glede na vročo
elektrodo, katodo. Druga značilnost pa je, da tok ne narašča
linearno z napetostjo, ampak se pri določeni napetosti ustali,
postane nasičen.

Slika 40.2 Karakteristika diode. Prikazan je tok skozi tipično diodo v odvisnosti
od anodne napetosti glede na katodo pri različnih temperaturah žarilne nitke.
Pri višjih temperaturah je nasičeni tok večji. Neposredno segrevana (polna) in
posredno segrevana (črtasta) nitka. (Meadows, 1978)
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Delovna točka diode

Polovični usmernik

Karakteristika pove, kakšen je tok I skozi diodo, ko med njenima
priključkoma vlada napetost UD, torej f(UD) (1). Če z baterijo UDD
poganjamo tok skozi zaporedno zvezana upornik R in diodo, pa
napetost med priključkoma diode ni enaka napetosti med
priključkoma baterije, ker nekaj napetosti vlada tudi med
priključkoma upornika. Vsota padcev napetosti po krogotoku je
enaka gonilni napetosti UDD = IR + UD, torej UD = UDD − IR
oziroma I = (UDD − UD)/R (2). Enačbi (1) in (2) za dve neznanki UD
in I rešimo grafično. Enačba (2) je namreč delovna premica, ki
seka ordinato pri UDD/R in absciso pri UD = UDD. Njeno presečišče
z narisano f(UD) pove napetost na diodi in tok skoznjo, to je njeno
delovno točko.

Slika 40.3 Delovna točka diode. Delovna točka je dvojica (I, UD), to je tok skozi
diodo in napetost na njej. Dioda je prikazana s trikotnim simbolom. Elektroni
tečejo skozi diodo od priključka (−) do priključka (+). (Anon)

Če diodo priključimo na izmenično napetost, bo prepuščala tok le
tedaj, ko bo napetost na anodi pozitivna. Prepuščeni tok bo torej
utripajoče enosmeren: vseboval bo samo pozitivne vhodne
polvalove. Na izhodnem uporniku bo zato ustvarjal utripajočo
enosmerno napetost. Tok lahko zgladimo, če vzporedno k
izhodnemu uporniku priključimo kondenzator. Kadar bo vanj
dotekal tok, se bo polnil, ko pa bo tok presahnil, se bo praznil
skozi upornik. Praznitveni čas kondenzatorja mora biti dolg v
primerjavi z nihajnim časom izmeničenaga toka.

Slika 40.4 Polovični diodni usmernik. Gretje diode in napetost na njej
zagotavlja vhodni transformator. Izglajevalni kondenzator, vzporeden
izhodnemu uporniku RL, ni narisan. (Schure, A.)
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Polni usmernik

Fotodioda

Usmernik izboljšamo s središčnim odcepom iz transformatorja in
z dodatkom druge diode. Tok skozi izhodni upornik zato vsebuje
pozitivne polvalove in obrnjene negativne polvalove. Izglajevalni
kondenzator tok še bolj zgladi.

Slika 40.5 Polni diodni usmernik. Gretje diod ni prikazano. Izglajevalni
kondenzator, vzporeden izhodnemu uporniku, ni narisan. (NEETS)

Elektrifikacija je pripeljala izmenični tok iz elektrarn v vse hiše in
raziskovalne laboratorije. Z usmernikom smo sedaj dobili v roke
še orodje, kako iz tega izmeničnega vira dobiti enosmere vire,
tako nizke kot visoke. Zlasti slednje je nadvse pomembno: ni nam
treba več graditi 1000-voltnih baterij, ampak uporabimo kar
ustrezen transformator in usmernik. Za velike napetosti in tokove
morajo biti seveda diode primerno zgrajene. Z
visokonapetostnimi usmerniki nekaj deset kilovoltov poganjamo
katodne cevi in masne spektrometre. Z nizkonapetostnimi pa
polnimo akumulatorje.

40.2 Fotodioda in fotopomnoževalka
Morda lahko izbijamo elektrone iz katode tudi s svetlobo, ne le z
gretjem? Saj svetloba nosi s sabo energijo. Potem katode ni treba
greti, ampak jo le osvetljujemo. Poskus pokaže, da to drži, če je le
katoda iz primerne snovi, recimo iz cezijevega antimona Cs3Sb.
To je fotodioda.

Slika 40.6 Fotodioda. Svetloba vpada na katodo in iz nje izbija elektrone. Te
elektrone sproti srka anoda in s tem omogoča električni krogotok. (Anon)

Karakteristika fotodiode je podobna karakteristiki termične
diode. Pri dovolj veliki pozitivni napetosti na anodi ta posrka vse
izbite elektrone: tok je nasičen. Odlična lastnost pa je odvisnost
tega nasičenega toka od osvetlitve: pri stalni anodni napetosti (in
stalnem spektru svetlobe) je tok kar sorazmeren z osvetljenostjo.
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Fotopomnoževalka

Slika 40.7 Karakteristika fotodiode. Dodana je delovna premica za gonilno
napetost 150 V in delovni upor 10 MΩ. Tok je sorazmeren z osvetlitvijo.
Osvetlitev je podana v lumnih: 1 lm = 1/680 W za svetlobo 5500 Å. (Strojnik,
1962)

Delovno premico in delovno točko fotodiode izberemo po že
znanem postopku. Na sliki je prikazan primer, ko sta dioda in
zaporedni upornik 10 MΩ priključena na napetost 150 V. V temi ni
toka in napetost na diodi znaša 150 V. Pri osvetlitvi 0,1 lumna
steče tok 2 μA in napetost na diodi pade na 130 V. Linearna
odvisnost toka od osvetlitve velja vse do osvetlitve 0,5 lm, ko
doseže tok 10 μA in pade napetost na diodi na 50 V.

Ko vpadejo hitri elektroni na anodo, v njej poniknejo, hkrati pa –
taka misel se nam porodi – morda iz nje izbijejo sekundarne
elektrone. Čim hitrejši so vpadni elektroni, tem več sekundarnih
izbijejo. Morda pride na en vpadni elektron, v povprečju, celo več
sekundarnih. Te potem anoda spet posrka vase. Kaj pa, če bi te
elektrone posrkala kakšna dodatna, bližnja elektroda? Potem bi
na njo dotekal večji tok, kot ga daje fotokatoda. Seveda nam nič
ne brani, da zaporedoma vključimo celo več dinod, ki druga drugi
jačajo tok, in tako dobimo fotopomnoževalko. Poskus pokaže, da
je domneva pravilna.

Slika 40.8 Fotopomnoževalka. Iz katode izbiti elektroni se pospešujejo proti
zaporednim dinodam in iz njih izbijajo sekundarne elektrone. Nastane plaz
elektronov. (Florida State University)

Primerna snov za dinode je kar taka, kot je za katodo. Vsaka
naslednja dinoda je na bolj pozitivni napetosti od predhodne,
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Trioda

Karakteristika triode

Ojačanje signalov

tipično za 100 V. Uspe nam nanizati do deset zaporednih dinod in
pridelati ojačanje toka za faktor 106!

Fotodiode in fotopomnoževalke uporabljamo, na primer, za
merjenje svetlobnih spektrov.

40.3 Trioda in ojačevalec
Na tok, ki teče skozi termično diodo, lahko vplivamo z zunanjim
magnetnim ali električnim poljem. Tok takorekoč krmilimo. Pojavi
se zamisel, kako bi tok krmilili bolj nadzorovano: tako, da med
žarilno nitko in ploščo vstavimo še eno elektrodo v obliki
prepustne mrežice. Ko na mrežico pritisnemo negativno napetost
glede na žarilno nitko, tok elektronov bolj ali manj zavremo,
odvisno od velikosti pritisnjene napetosti. Izumili smo triodo.

Slika 40.9 Trioda – dioda z dodano tretjo
elektrodo, mrežico, med vročo katodo in
anodno. Prikazana je prva trioda, ki jo je
sestavil L. Forest. (Perham Collection, San
Jose)

Odvisnost anodnega toka od anodne napetosti – pri izbrani
vrednosti žarilnega toka in pri različnih vrednostih mrežične
napetosti – izmerimo z ampermetrom in voltmetrom. Pri mrežični
napetosti 0 V se trioda kaže kot dioda s pripadajočo tokovno
krivuljo. Čim bolj negativna je mrežična napetost, tem bolj
dušena je ta tokovna krivulja.

Slika 40.10 Karakteristika
triode: tok skozi triodo v
odvisnosti od anodne
napetosti pri različnih mrežnih
napetostih, obakrat glede na
katodo. (Meadows, 1978)

Poglejmo, kaj pravi narisana karakteristika triode! Naj bo anodna
napetost 160 V in mrežna napetost −5 V. Tedaj teče skozi anodo
tok 7 mA. To je delovna točka triode. Pri nespremenjeni anodni
napetosti nato spremenimo mrežno napetost na −7.5 V. Tok se
zmanjša na 3 mA. Na 3 mA pa bi se znižal tok tudi pri
nespremenjeni mrežni napetosti in zmanjšanju anodne napetosti
na 120 V. Vidimo, da na spremembo toka enako vpliva majhna
sprememba mrežne napetosti za 2,5 V ali velika sprememba
anodne napetosti za 40 V. Če je v anodnem krogu upornik, so
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baterijo
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mrežne baterije

Elektronski voltmeter

spremembe napetosti na njem sorazmerne s spremembami toka
skozenj. Mrežna sprememba za 2,5 V se zato na uporniku pokaže
kot sprememeba za 40 V – oboje glede na izbrano delovno točko
triode, seveda. Rečemo, da je trioda ojačevalec. V obravnavanem
primeru ima ojačanje 40/2,5 = 16. Tipična ojačanja znašajo med
10 in 100.

Z zadovoljstvom torej ugotovimo, da smo izumili ojačevalec
signalov.

Slika 40.11 Triodni ojačevalec. Vhodna
sprememba napetosti glede na mrežično
napetost Ug se odraža kot sprememba
anodnega toka skozi breme RL in s tem
povezana sprememba padca napetosti na
njem. Grelna baterija ni narisana. (Meadows,
1978)

Triodni ojačevalec potrebuje za svoje delovanje tri baterije:
grelno, mrežično in anodo. To ni praktično. Namesto da znižamo
mrežično napetost glede na katodo, lahko zvišamo katodno
napetost glede na mrežico. To naredimo z upornikom Rk v
katodnem priključku: anodni tok IA gre skozenj in na njem
povzroči potrebni padec napetosti RkIA. Vendar tok skozi Rk niha,
kar ni dobro, ker želimo na mrežici imeti konstantno referentno
napetost. Zato vzporedno k Rk vključimo še kondenzator Ck z
visoko kapaciteto (in zato nizko kapacitivno upornostjo), ki
nihajočo komponento toka "kratkostično" speljuje mimo upornika.
Preostali dve bateriji – anodno in grelno – pa lahko nadomestimo
z odcepi iz ustreznega usmernika.

Slika 40.12 Triodni ojačevalec brez
mrežne baterije. Negativno napetost
mrežice glede na katodo zagotavlja
padec napetosti na uporniku Rk.
Anodna baterija ni prikazana;
priključena je med +HT in
ozemljitvijo. (Lythall, H.)

Dioda kot usmernik se ponuja kot naravna vhodna enota za
voltmeter na tuljavo. Ta, kot vemo, meri le enosmerno napetost.
Hitro nihajoči napetosti namreč tuljava ne more slediti. Če pred
njim vključimo usmernik, pa postane tudi merilnik za izmenično
napetost.

Merjenje šibkih napetosti si nadalja olajšamo z vključitvijo triode
kot ojačevalca: namesto merilnika s tuljavo na tanki sučni žici
lahko potem uporabimo robusten merilnik s tuljavo na spiralni
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Delovanje

vzmeti. V praktičnem elektronskem voltmetru uporabimo oboje:
usmernik in ojačevalec.

Slika 40.13 Elektronski voltmeter za izmenično napetost. Sestavljen je iz
usmernika (s filtrom R2-C2), ojačevalca in elektrometra na vrtljivo tuljavo.
Merilna območja izbiramo s preklopnim delilcem napetosti R3-R5. Ničelno točko
elektrometra prilagajamo s potenciometrom R6. (Rider, J.)

Elektronski voltmeter kalibriramo z znanimi enosmernimi
napetostmi. Kar potem kaže, so efektivne vrednosti izmeničnih
napetosti. Uporabljamo ga prav tako kot navadnega. Paziti pa
moramo na potovanje ničelne točke na mrežici, kar je predvsem
posledica nehotenih sprememb v ogrevni napetosti. Zato moramo
pred vsako meritvijo po potrebi prilagoditi delovno točko
ojačevalca z ustreznim potenciometrom.

40.4 Osciloskop
Tudi katodna cev je voltmeter: navpični odmik žarka na zaslonu
je sorazmeren z napetostjo na odklonskem kondenzatorju (39.3).
Žarek ima vlogo kazalca. Reagira bliskovito, ne tako kot kazalec
tuljavnega elektrometra. Z njim torej lahko rišemo hitro
spreminjajoče se napetosti, na primer omrežno napetost 50 Hz.
Žal pa tega nihanja ne razločimo, saj se premika žarek vedno po
isti navpični črti. Kaj pa, če bi se žarek med navpičnim nihanjem
premikal še vodoravno? Potem bi na zaslonu narisal časovni
potek vhodne napetosti! To bi bilo možno, če bi napetost na
vodoravnem odklonskem kondenzatorju naraščala linearno med
−U0 in +U0 v nastavljivem času t0, sprožila pa bi se točno takrat,
ko bi vhodni signal presegel nastavljivo vrednost Utrig, recimo od
spodaj navzgor. V času t0 (ko žarek potuje preko zaslona), bi
morali biti onemogočeni vsi morebitni novi prožilni zahtevki. Po
preteku tega časa pa bi bilo proženje spet omogočeno.
Potrebujemo torej časovno krmilno vezje, ki bo iz katodne cevi
naredilo osciloskop. Z mnogo truda nam takšno vezje uspe
sestaviti in sicer zgolj iz že poznanih električnih elementov. Vezje
je zamotano, zato podrobnosti izpustimo.
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Meritve zvoka

Merjenje srčnih tokov

Slika 40.14 Shema osciloskopa. Ko vhodni signal doseže predpisano vrednost,
ustvari sprožilno vezje oster signal, ki aktivira vodoravno premikanje žarka. Na
zaslonu se nariše časovni graf vhodnega signala. Kasnilno vezje poskrbi, da
signal ne dospe do navpičnih plošč, preden se začne vodoravno premikanje
žarka. (CircuitsToday)

Dobri osciloskopi imajo navpično občutljivost 1 mV na cm in
dosegajo vodoravni preletni čas 1 μs na cm.

Z osciloskopom lahko gledamo vsak časovno spremenljiv pojav, če
ga le znamo spremeniti v električni signal. Tako gledamo zvok. Ni
treba drugega, kot da na navpični odklonski kondenzator vodimo
signal iz primernega mikrofona. Tako si lahko ogledamo, kako
nihajo razna zvočila, recimo struna na violini.

Slika 40.15 Nihanje strune na violini, kot ga
pokaže osciloskop. Na osnovni sinusni val so
naloženi višji harmoniki. Struna niha z osnovno
frekvenco 440 Hz. (Humboldt University)

Že od poskusov z žabjimi kraki vemo, da se mišice krčijo pod
vplivom pritisnjene električne napetosti. To nas tudi navaja na
misel, da je krčenje živih mišic posledica električnih signalov, ki
vanje prihajajo po živcih iz možganov in hrbtenjače. Posebej
očitno je nenehno krčenje srčne mišice. Morda lahko z
osciloskopom vidimo električne tokove, ki krčenje spremljajo?

Ravnamo takole. Na vsaki strani prsnega koša pritrdimo kovinsko
elektrodo v obliki kovanca in ju preko ojačevalca vežemo na
osciloskop. Upamo, da se ionski tokovi iz srca širijo od celice do
celice v okolico vse do površine kože. Tam jih upamo zaznati z
obema elektrodama. Uspe nam, vendar šele s primerno zgradbo
elektrod. Dobra elektroda je srebrn disk, ki je na prikožni strani
prevlečen s tanko plastjo srebrovega klorida. Med elektrodo in
kožo je potrebna še prevodna plast, ki vsebuje klorove ione,
recimo kar slana voda, ki jo zmešamo z vazelinom, da postane
lepljiva pasta.
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Povratna zveza

Slika 40.16 Srčni tok na zaslonu osciloskopa.
Vidna sta dva srčna utripa na medsebojni razdalji
∼ 1 sekunde. (University of Michigan)

Preletni čas osciloskopa nastavimo na nekaj sekund. Izmerjeni
srčni signali imajo stopnjo velikosti 1 mV. Iz njihove oblike
sklepamo na morebitne bolezni. Podobno merimo tudi možganske
tokove.

40.5 Oscilator
Na triodni ojačevalec lahko pogledamo kot na črno škatlo z
dvema vhodnima in dvema izhodnima priključkoma. Izmenična
napetost Us med vhodnima priključkoma se kaže kot napetost U0
med izhodnima priključkoma. Razmerje A = U0/Us poimenujemo
napetostno ojačanje. Pri triodnem ojačevalcu je izhodna napetost
fazno zamaknjena za 180° glede na vhodno, zato je ojačanje
negativno.

Kako pa se ojačevalec vede, če del njegovega izhoda speljemo
nazaj na vhod, recimo preko uporovnega delilca? Rečemo, da smo
ustvarili povratno zvezo. Vrnjeni signal se sešteva s siceršnjim
vhodnim signalom in ga ojača ali oslabi, pač odvisno od tega,
kakšen je fazni zamik vračanega signala. Rečemo, da je povratna
zveza pozitivna li negativna.

Slika 40.17 Ojačevalec s povratno vezjo. Del izhodnega signala se vodi nazaj
na vhod skozi povratno vezje, recimo skozi uporovni delilnik. Tam se zaporedno
pridruži siceršnjemu vhodnemu signalu. (Meadows, 1978)

Nova izhodna napetost je U'0. Vrača se njen del βU'0. Sestavljeni
vhod je potem Ui = Us + βU'0. To je napetost, ki jo ojačevalec vidi
na svojem vhodu in jo seveda ojača v U'0 = AUi = A(Us + βU'0), iz
česar sledi U'0 = AUs / (1 − Aβ) oziroma Af = U'0/Us = A/(1 − Aβ).
Oznaka Af pomeni ojačanje ob uporabi povratne vezi. Če pri
triodnem ojačevalecu z A = −50 vračamo, na primer, β = 0,01
izhodne napetosti preko uporovnega delilca (kar ne vpliva na

239

pict3b/ecg.jpg
pict3b/ecg.jpg
picref.htm
pict3b/amplif-back.gif
pict3b/amplif-back.gif
picref.htm
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fazo), znaša Af = −33. Ojačanje se zmanjša. Povratna zveza je
negativna.

Zakaj bi sploh uporabili negativno povratno zvezo, če pa
zmanjšuje ojačanje? Zato, ker so relativne spremembe Af dosti
manjše od relativnih sprememb A, ki jih povzročajo. Če je A zelo
velik, je namreč βA mnogo večji od 1 in Af ≈ −1/β, torej neodvisen
od sprememb A. Negativna povratna zveza zato stabilizira
ojačanje. Vezje postane manj občutljivo na spremembe v
napajalni napetosti, temperaturi, vhodni frekvenci in drugem. Če
potrebujemo večja ojačanja, pa zmeraj lahko zaporedno združimo
dve ali več ojačevalnih stopenj.

Posebno zanimiva povratna vez v ojačevalcu nastane, ko Aβ = 1.
Takrat je Af = ∞. To pomeni, da se na izhodu pojavlja znatna
napetost tudi tedaj, ko na vhod sploh ne vodimo zunanje
napetosti. Ko namreč prižgemo ojačevalec, se v njem vzpostavijo
stalni tokovi in napetosti ter ojačevalec postane sposoben
ojačevanja. Superponirane na te stalne vrednosti so majhne
fluktuacije različnih frekvenc: električni šum. Ta šum spravlja
ojačevalec v nihanja z različnimi frekvencami. Prevladajo tiste
frekvence, pri katerih je celotni fazni zamik signala od vhoda do
izhoda in nazaj skozi povratno vez enak 360°. Ojačevalec s
kritično ali pozitivno povratno vezjo postane oscilator.

Slika 40.18 Ojačevalec s pozitivno povratno vezjo kot oscilator. Nihajni krog na
izhodu določa frekvenco osciliranja. Povratna vez je izvedena z indukcijskim
sklopom dveh tuljav. (Meadows, 1978)

Da iz "razglašeno" nihajočega ojačevalca dobimo željeno
frekvenco, ga je treba opremiti z vezjem, ki to frekvenco izbira.
To je seveda nihajni krog. Nihajni krog predstavlja breme na
izhodu iz ojačevalca. Povratno vez ustvarimo z induktivno
povezavo na njegovo tuljavo. Nihajni krog, delujoč pri svoji lastni
frekvenci, tudi zagotovi dodatni fazni premik za 180°, kar je
pogoj za ojačevanje.

Praktična izvedba triodnega oscilatorja je prikazana na spodnji
sliki.
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Kristalni oscilator

Slika 40.19 Triodni oscilator – triodni ojačevalec z nihajnim krogom na izhodu
in v pozitivni povratni vezi. Za negativno napetost mrežice glede na katodo
poskrbita CG in RG. Podobno vezje je prvi sestavil E. Armstrong. (Meadows,
1978)

Negativno delovno napetost na mrežici lahko zagotovimo z
baterijo v mrežičnem krogotoku. Bolj praktično pa je, da jo
poskušamo potegniti iz obstoječih virov. To nam uspe z
elementoma RG in CG. Pri vključitvi in vzpostavljanju nihanja se
namreč zgornja plošča CG naelektri negativno glede na katodo
(podrobnosti so zapletene in jih izpustimo). Če je RGCG večji od
nihajnega časa, se CG ne izprazni bistveno med enim polnihajem
povratne napetosti in se obnovi nazaj med drugim. Kondenzator
potemtakem deluje kot enosmerna baterija.

Nihajni čas oscilatorja določimo z izbiro kondenzatorja C in
tuljave L. Lahko ga pa tudi zvezno spreminjamo z uporabo
spremenljivega kondenzatorja. Brez večjega truda so dosegljive
frekvence od 10 Hz do 10 MHz. Vsa ta nihanja lepo vidimo na
osciloskopu.

Frekvenca oscilatorja je občutljiva na razne spremembe v vezju,
predvsem na temperaturo in ogrevno napetost. Povratna zveza
nič ne pomaga, saj verno sledi frekvenci nihajnega kroga. Kako
pa bi stabilizirali ta občutljivi nihajni krog? Tako, da ga
nadomestimo z neobčutljivim. Seveda je to le leporečje: iskano
stvar moramo še najti.

Spomnimo se piezolektričnosti kremenovega kristala [39.1]: ko
ga stisnemo, se na njem pojavi napetost; in ko nanj priključimo
napetost, se stisne. Izmenična napetost zato kristal spravi v
nihanje in to tem močnejše, čim bliže je lastni frekvenci kristala.
Kristal s priključenima elektrodama je torej resonator, ki iz
skozenj tekočega toka izbira/ojačuje svojo lastno frekvenco.
Nihajni krog zato nadomestimo s primerno obrezanim kristalom
in s tem izumimo kristalni oscilator.
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Slika 40.20 Kristalni triodni oscilator. Frekvenca nihanja je določena z lastnim
nihanjem kristala. Negativno delovno napetost na mrežici zagotavljata Rk in Ck.
Prikazano je vezje, kakršnega je sestavil G. Pierce. (Lynthall, H.)

Pokaže se, da je kristalni oscilator še mnogo stabilnejši od
navadnega. V glavnem čuti le (majhen) vpliv temperaturnih
sprememb, čemur pa – če je potrebno – zlahka odpomoremo z
vzdrževanjem stalne okolišnje temperature. Kristali, ki jih režemo
iz kremena, omogočajo nihanja med 10 kHz in 100 MHz. Vidimo
jih na osciloskopu.

40.6 Radijska povezava
S triodnim oscilatorjem dobimo v roke vir nedušenega
visokofrekvenčnega nihanja, potrebnega za tvorbo radijskih valov
z dolžino nad nekaj deset metrov [38.8]. Ni treba drugega, kot da
primerno dolgo navpično žico preščipnemo in oba središčna
konca vtaknemo v izhod iz oscilatorja. Spodnjo žico ozemljimo.
Žica tako postane nihajoča dipolna antena, ki seva radijske valove
v prostor.

Kako naj zaznamo te valove? Z drugo anteno! V njej se inducira
izmenični tok s frekvenco vpadajočih valov. Sprejemno anteno v
sredini preščipnemo in vtaknemo v vhod diodnega usmernika, ki
visokofrekvenčni izmenični tok zgladi v enosmernega. Na izhodu
pa priključimo galvanometer.

Slika 40.21 Oddajnik in sprejemnik radijskih valov.

Poskrbimo še za nekaj izboljšav. Za večjo moč sevanja priključimo
na izhod oscilatorja najprej ojačevalec in šele na njegov izhod
oddajno anteno. Slednje tudi ne priključimo neposredno, ampak
preko induktivnega stika. Prav tako, preko induktivnega stika,
priključimo sprejemno anteno na usmernik. V anodni krog
oddajnega ojačevalca vgradimo stikalo. Ko stikalo pritisnemo, se
sprejemni galvanometer odkloni. Vzpostavili smo radijsko
povezavo!
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40.7 Brezžična telefonija
Radijska povezava med oddajnikom in sprejemnikom je
"nesnovna žica", ki povezuje oba kraja. Poskusimo vanjo vtisniti
govor in ga iz nje tudi izvleči! Drugače rečeno: vzpostaviti
hočemo brezžično telefonijo.

Prilagoditev oddajnika za telefonsko uporabo je preprosta: dodati
mu moramo le mikrofon in poskrbeti, da bo ustrezno vplival na
jakost izsevanih valov.

Slika 40.22 Priključitev mikrofona v anodni krog izhodnega ojačevalnika.
Mikrofonski tok je pred vključitvijo ojačan s svojim ojačevalnikom. T1 = vhod iz
oscilatorja, T3 = izhod v anteno, T2 = induktivni priključek mikrofona. (NEETS)

Najbolje je, če mikrofon vključimo v anodni krog izhodnega
ojačevalnika, in sicer zaporedno k tamkajšnjem viru visoke
napetosti. To naredimo preko induktivnega stika. Anoda potem
čuti vektorsko vsoto obeh virov – gonilnega enosmernega in
mikrofonovega spremenljivega. Temu ustrezno se spreminja
jakost anodnega toka in s tem jakost izhodnega valovanja.
Sestavili smo radijski oddajnik.

Prilagoditev sprejemnika – diodnega usmernika – je tudi
preprosta: namesto izhodnega galvanometra namestimo
primerne slušalke. Upoštevati pa moramo še naslednje. Na
anteno vpadajo radijski valovi iz različnih oddajnikov, in ti valovi
se med seboj razlikujejo po nosilni frekvenci. V anteni se seveda
inducira "mešanica" teh frekvenc. Anteno zato priključimo na
nihajni krog. Ta iz vhodnega nihanja "pobere" svojo lastno
frekvenco. Nastavimo jo s spremenljivim kondenzatorjem. Tako
izbiramo med različnimi oddajniki. Izhod iz nihajnega kroga pa
vodi potem na diodni usmernik (FLEMING).
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Triodni sprejemnik

Oddaja in sprejem

Slika 40.23 Diodni sprejemnik. Pri piezoelektričnih slušalkah (kapacitivno
breme) je upornik R1 potreben in kondenzator C2 pogrešljiv. Pri magnetnih
slušalkah je kondenzator C2 potreben in upornik R1 pogrešljiv. (Nagy, K.)

Opisani diodni sprejemnik dobro deluje, če je antena dolga in
visoko obešena in če oddajna postaja ni predaleč. Uspešno ga
uporabimo na ladjah.

Z diodnim sprejemnikom ne slišimo šibkih signalov. Saj dioda
signal le zgladi in ga nič ne ojača. Lahko pa diodo nadomestimo s
triodo in tako sestavimo triodni sprejemnik (FOREST).

Slika 40.24 Triodni sprejemnik. Mrežica nima prednapetosti, zato hkrati ojačuje
in usmerja anodni tok. S kondenzatorjem C1 nastavljamo sprejemno frekvenco.
Kondenzator C2 blokira enosmerno napetost. Upornik R1 odvaja zajete
elektrone iz mrežice. Kondenzator C3 je obvod signala mimo visokoupornih
slušalk. Reostat R2 nastavlja gretje katode. (Nagy, K.)

Vhodni signal zdaj vodimo na mrežico triode in z njim krmilimo
anodni tok. Na mrežici ni negativne prednapetosti. Tok zato
ojačano, vendar usmerjeno zaniha. Zgladimo ga na izhodnem
kondenzatorju, kjer ga tudi poslušamo s slušalkami. Triodni
sprejemnik je precej bolj občutljiv od diodnega in ga uspešno
nadomesti na ladjah.

40.8 Razvoj radia
Radijski prenos zvoka je tako obetaven izum, da se okrog njega
razvije celotna veja industrije. Ustanovijo se posebne firme za
proizvodnjo in prodajo radijskih oddajnikov in sprejemnikov ter
njihovih sestavnih delov. Firme ustanavljajo svoje raziskovalne
oddelke, ki nenehno izboljšujejo svoje izdelke. Ti postajajo zato
čedalje bolj zapleteni. Vsi pa si delijo isto funkcionalno osnovo.

Osnova radijskega prenosa zvoka je naslednja: oddajnik proizvaja
in seva nosilni radijski val, na katerega naloži avdio signal,
sprejemnik pa ga sprejema in iz njega ta avdio signal izvleče.
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Mešalna frekvenca

Modulacija

Govorimo o tvorjenju, modulaciji, izsevanju, sprejemu in
demodulaciji radijskih valov.

Slika 40.25 Oscilator proizvaja nosilno radijsko valovanje, modulator ga
modulira z avdio signalom iz mikrofona, ojačevalec ojača in antena izseva. Vir
električnega napajanja ni prikazan. (Lowe, D.)

Slika 40.26 Shema radijskega sprejemnika. Antena sprejema modulirane
radijske valove različnih frekvenc (od različnih oddajnikov), uglaševalec izbere
eno frekvenco, detektor jo demodulira, ojačevalec ojača in zvočnik spremeni v
zvočne valove. Vir električnega napajanja ni prikazan. (Lowe, D.)

Oscilator v oddajniku vsebuje bodisi nihajni krog ali kristal.
Slednji zagotavlja večjo frekvenčno stabilnost. To pomeni, da
oddajne postaje lahko delujejo na bližnjih frekvencah, saj se
nobena ne spreminja znatno in ne zaide v frekvenčno območje
sosede. Vsak oddajnik deluje na svoji frekvenci. Sprejemniki pa
se uglasijo na tistega, ki jih zanima.

Da lahko lovijo šibke signale, dobijo radijski sprejemniki več
zaporednih ojačevalnih stopenj. Pri uglaševanju na izbrano
postajo je zato treba nastaviti vsako stopnjo. Vse stopnje morajo
torej biti nastavljive. To je nepraktično. Pojavi se zamisel, da bi
različne vhodne frekvence najprej pretvorili v isto "mešalno"
frekvenco, nakar bi vse ojačevalne stopnje delale samo z njo.
Rešitev je skrita v naslednjem matematičnem izreku: produkt
dveh sinusoid s frekvencama f1 in f2 je sorazmeren z vsoto dveh
sinusoid s frekvencama f1 + f2 in f1 − f2. Potrebno je torej sestaviti
"mešalec frekvenc". Njegova vhoda sta dva: sprejemana
frekvenca RF in nastavljiva frekvenca LO, izhod pa frekvenca
IF = |RM − LO|. Kot dobrim inženirjem nam to tudi uspe, in sicer
kar iz nekaj diod, kondenzatorjev in tuljav. Ko hočemo, na primer,
s sprejemnikom IF = 30 kHz poslušati frekvenco RM = 100 kHz,
nastavimo LO = 70 kHz.

Glavna kvalitativna razlika med radijskimi sistemi je način, kako
modulirajo nosilni val. Temu lahko spreminjamo amplitudo ali
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Lastnosti radijskih
valov

frekvenco, odvisno pač od tega, kje in kako v vezje uvedemo
avdio signal.

Slika 40.27 Modulacija radijskih valov. Amplituda ali frekvenca nosilnega
visokofrekvenčnega vala je modulirana z nizkofrekvenčnim avdio signalom.
Prikazan je monofrekvenčni avdio signal. (Anon)

Vsaka vrsta modulacije seveda zahteva ustrezen način
demodulacije.

Nosilni radijski valovi imajo frekvence med 100 kHz in 100 MHz
(3 km – 3 m). Zaradi priročnosti jih razdelimo na dolge valove
(∼ 100 kHz), srednje valove (∼ 1 MHz), kratke valove (∼ 10 MHz)
in zelo kratke valove (∼ 100 MHz). Izkušnje z oddajanjem in
sprejemanjem teh valov pokažejo naslednje.

Dolgi valovi se večinoma širijo od antene kot prizemni valovi, to
je, kot valovi med dvema vzporednima vodnikoma: zemljinim
površjem in ozračjem. Električno polje v valovanju je usmerjeno
navpično in magnetno vodoravno. Morje je bolj prevodno kot
kopno in valovi se čezenj bolje širijo. Valovi se tudi močno
uklanjajo okrog ovir in zato ne delajo senc.

Zelo kratki valovi se širijo "premočrtno", tako kot vidna svetloba.
V dani smeri pada njihova energijska gostota s kvadratom
razdalje. Okrog ovir se slabo uklanjajo in delajo za njimi sence.
Radijski sprejem je zato mogoč le tedaj, če je oddajnik v vidni črti
od sprejemnika. Seveda pa pomagajo odboji od tal in okolišnjih
ovir.

Srednji in kratki valovi se širijo na vmesen način. Posebej
zanimivo je, da se odbijajo od zgornje, ionizirane plasti ozračja;
rečemo ji ionosfera. Odboj je močnejši ponoči. Očitno ima pri tem
svoje prste vmes Sonce, ki s svojimi žarki tako ali drugače
ionizira ozračje. Zaradi odboja se doseg oddajnika podaljša.

Vsi radijski valovi se močno absorbirajo na kovinskih ovirah,
nekovinske pa bolj ali manj predirajo. Temu ustrezno morajo biti
nameščene tudi sprejemne antene.
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Tehnične lastnosti

Uporabna vrednost

Zakaj sploh uporabljamo tako visoke frekvence za nosilni val?
Zato, ker njihovo hitro spremenljivo elektromagnetno polje
inducira v sprejemni anteni mnogo večje tokove, kot bi jih nizke
frekvence. Inducirana napetost v zanki je namreč sorazmerna s
spremembo magnetnega pretoka skoznjo, torej s frekvenco
nihanja. Brez visokih frekvenc bi bil uporabni doseg oddajnikov
zanemarljiv.

Moči zgrajenih radijskih oddajnikov so odvisne od tega, kako
daleč želimo z njimi poseči. Segajo od 1 W do 1 MW. Slednji imajo
več zaporednih ojačevalnih stopenj in njihove elektronke so
velike kot človek. Taka elektronka pokuri samo za gretje 10 kW,
zato jih je treba hladiti z zrakom ali celo z vodo.

Radijski sprejemniki zaznavajo in demodulirajo še moči 10−12 W.
V ugodnih pogojih z njimi slišimo dolgovalovne oddajnike z
nasprotne strani Zemlje.

Zakaj pa uporabljamo dve vrsti modulacije, amplitudno in
frekvenčno? Najprej je bila razvita amplitudna modulacija. Pri
uporabi se je potem pokazalo, da sprejemnik včasih šumi in
prasketa. Signal na vhodu v sprejemnik je namreč vedno
superponiran z motnjami iz okolice, recimo od razelektritev v
ozračju. Te motnje vplivajo v glavnem na amplitudo signala. Če
modulacijo skrijemo v frekvenco, ne v amplitudo, postanejo
motnje brezpredmetne. To je tudi glavni razlog za razvoj in
uvedbo frekvenčne modulacije tam, kjer potebujemo večjo čistost
sprejema.

Prve radije uporabimo za razpošiljanje časovnih signalov iz
astronomskih centrov. Z njimi nastavljamo čas na kronometrih
povsod po svetu, zlasti na ladjah.

Ladje sporočajo svojo lego in usklajujejo gibanje z drugimi
ladjami. Ko so v stiski, pa pokličejo na pomoč.

Vremenske opazovalnice na kopnem in na ladjah sporočajo
vremenske podatke – tlak, temperaturo, vlago, veter in
oblačnost – v meteorološke centre. Ti centri pa potem razpošiljajo
vremenska obvestila in napovedi.

Slika 40.28 Radijski sprejemnik v hiši. Prvi
sprejemniki so bili dragi in privoščili so si jih
lahko le bogati. (Anon)

Rastoča industrija poskrbi, da radijski sprejemniki prodro v hiše
in domove. Oddajne postaje pa priskrbijo vsebino: obvestila,
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Opis slike

Video kamera

poročila, predavanja, intervjuje, govorne igre, prenose športnih
tekem in – nadvse čislano – živo glasbo iz studijev in koncertnih
dvoran. Ljudem se odpre svet. Nikoli več ne bo tako, kot je bilo.

40.9 Televizija
Če že prenašamo zvok po radijskih valovih, zakaj ne bi prenašali
še slike? Saj je slika – recimo tista na zaslonu fotografske
kamere – pravzaprav zaporedje vrstic in vsaka vrstica je
zaporedje različno svetlih točk. Potrebujemo "le" pripravo, ki bo
otipala sliko vrstico za vrstico in zgradila ustrezajoč električni
video signal. Pa tudi pripravo, ki bo iz video signala izvlekla
zaporedne vrstice in jih narisala drugo pod drugo na primeren
zaslon. Prenos video signala od prve priprave do druge – vključno
z modulacijo in demodulacijo – pa je seveda prav tak kot prenos
avdio signala. Zahtevamo še, naj bralna priprava prebere sliko v
delčku sekunde. Tako se slika na snemalnem zaslonu lahko
spreminja in prav tako se bo spreminjala slika na prikazovalnem
zaslonu. Na ta način bomo prenašali gibajoče se slike, video.

Slika 40.29 Slika kot zaporedje vrstic. Slika je dvodimenzionalno polje različno
svetlih točk. Za prenos po linearnem kanalu (radijskem valu) jo je potrebno
razdeliti na vrstice in te vrstice pošiljati drugo za drugo. Snemalna naprava
mora zato sliko razkosati in predvajalna naprava jo mora znova sestaviti.
(SlideShare)

Mnogo truda je potrebnega, da kot inženirji zamisel udejanimo in
sestavimo uporabno video kamero. Osnova zanjo je fotografska
kamera, ki ustvarja sliko na stekleni zadnji steni. Ta je na zunanji
strani premazana najprej s prevodno (signalno) plastjo in nato še
s fotoprevodno plastjo (tarčo). Slednja je tanka plast iz
izolatorske mice, v kateri so natrosene drobne kroglice
(0,025 mm) iz fotoprevodne snovi, recimo iz antimonovega
trisulfida (SbS3) ali svinčevega monoksida (PbO). Svetloba preleti
steklo in signalno plast ter vpada na kroglice, ki pri tem izsevajo
elektrone. Močnejša svetloba izbije iz kroglice več elektronov.
Izbite elektrone privlači signalna plošča, ki je pozitivna, in se po
ozemljitvi takoj izločijo iz cevi. Na osvetljeni kroglici ostane
drobcen pozitivni naboj in kroglica tvori s signalno ploščo nabit
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Video zaslon

Televizijski oddajnik

kondenzator. V tarči je tako vtisnjena vidna slika kot ploskovna
porazdelitev pozitivnega naboja.

Slika 40.30 Snemalna cev v video kameri. Svetloba izbija elektrone iz
fotoprevodne plasti in na njej vtisne sliko iz pozitivnih nabojev. Elektronski žarek
otipa sliko vrstico za vrstico. Vsako naelektreno točko pri tem razelektri, kar se
pokaže kot ustrezno velik tokovni sunek na izhodu iz cevi. (SlideShare)

Shranjeno sliko na kroglicah otipava elektronski žarek iz
elektronskega topa. Usmerjajo ga okolišnje tuljave, podobno kot
pri osciloskopu. Žarek razelektri nabito kroglico, ki jo zadene, in
s tem povzroči ustrezen tokovni sunek iz signalne plošče. Tokovni
sunek je enak naboju, ki je bil shranjen v kroglici. Razelektrena
kroglica je pripravljena, da jo svetloba spet naelektri do
naslednjega prihoda žarka. Izhodni tok iz signalne plošče se v
pomožnih vezjih dopolni še s signali za začetek in konec vsake
vrstice ter za konec vseh vrstic slike. To je video signal.

Mnogo lažja je izdelava predvajalne naprave, ki sprejema video
signal in ga riše na zaslon. Za to je primerna kar katodna cev,
opremljena z vezjem/tuljavami za premikanje žarka na prav tak
način kot v video kameri. Vezje mora prepoznati signale za
začetek in konec vrstice ter za konec slike ter ustrezno premikati
žarek. Jakost rišočega žarka pa je krmiljena z video signalom, ki
je voden na posebno elektrodo tik ob izhodu iz elektronskega
topa. Bolj kot je ta elektroda negativna, bolj je žarek oslabljen.
Tako opremljena katodna cev je odličen video zaslon.

Video signal iz video kamere se sproti pošilja v svet preko
televizijskega oddajnika. Srce oddajnika je kristalni oscilator, ki
tvori nosilni radijski val. Nanj se naloži video signal z amplitudno
modulacijo. Hkrati se na podval, ki je glede na nosilni val
frekvenčno zamaknjen, naloži še avdio signal iz mikrofona, in
sicer s frekvenčno modulacijo. Oba vala se izsevata skupaj.
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Televizijski sprejemnik

Tehnične značilnosti

Televizija in družba

Slika 40.31 Televizijski oddajnik. Video signal iz video kamere se naloži na
nosilni radijski val. Doda se mu avdio signal iz mikrofona, nakar ga antena
izseva v prostor. (SlideShare)

Izsevane radijske valove lovijo televizijski sprejemniki. Antena
sprejemnika sprejema valovanja od vseh oddajnikov, uglaševalec
iz te mešanice izbere željeno frekvenco (skupaj z njeno
podfrekvenco), ojačevalec ju ojača, detektor razcepi na avdio in
video signal, nakar se oba ojačita in vodita na zvočnik ter video
zaslon.

Slika 40.32 Televizijski sprejemnik. Sprejemnik razcepi televizijski signal na
video in avdio signal ter prvega prikaže na slikovni cevi in drugega v zvočniku
spremeni v zvok. (SlideShare)

Tipična televizijska slika je sestavljena iz 625 vrstic s po
(4/3) · 625 "točkami". Žarek jo prebere/nariše 25-krat na sekundo.
Človeško oko ne zaznava tako hitrih skokovitih sprememb in vidi
zgolj gladko gibanje. V video signalu si torej sledi
625 · 625 · (4/3) · 25 ≈ 10 · 106 "točkovnih" jakosti na sekundo.
Najvišja frekvenčna komponenta v video signalu je zato 10 MHz.
Če jo hočemo vtisniti v nosilni val, mora imeti ta vsaj tolikšno
frekvenco. Zato tudi delujejo televizijski oddajniki na zelo kratkih
valovih okrog 100 MHz. Nosilna frekvenca za avdio signal je za
okrog 5 MHz višja od nosilne frekvence za video signal. Oddajne
moči dosegajo 100 kW.

Televizija nadgradi radio. Televizijski sprejemnik postane središče
doma in okno v svet. In ker ljudje v glavnem iščejo razvedrilo in
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Magnetofon

zabavo, se razmnožijo razne specializirane televizijske postaje, ki
ljudem dajajo, kar pač ti hočejo, torej "razvedrilne" oddaje in
igrane filme vseh vrst. Štiriindvajset ur na dan. Vse skupaj pa
obilno začinijo s plačanimi oglasi, ki jih vstavljajo v najbolj
neprimernih trenutkih.

Slika 40.33 Televizija nadgradi radio
s slikami in postane središče doma.
(Anon)

Svojo priložnost prepoznajo tudi politiki in drugi zavajalci
človeškega mišljenja: nikoli v zgodovini še niso imeli takšne
možnosti, da nagovorijo toliko ljudi naenkrat in jih poskušajo
naplahtati na ta ali oni način: ne samo z glasom, temveč tudi s
stasom. Podobno je z ekshibicionisti vseh vrst. "Poglej me!" je
namreč ena izmed osnovnih otroških potreb in nekateri otroci pač
nikoli ne odrastejo. Za pet minut slave, da se lahko pokažejo na
televizijskih zaslonih, so pripravljeni storiti vse. Tako televizija
poleg nespornih in sijajnih dobrobiti – vzgojnih, izobraževalnih in
razvedrilnih – prinese tudi kopico slabosti, če se ne pazimo:
neznansko izgubo časa, pasivizacijo in indoktrinacijo.

40.10 Magnetni zapis
Avdio signal iz mikrofona in video signal iz televizijske kamere se
sproti nalagata na radijske valove in razpošiljata k sprejemnikom.
Kakor hitro nastajata, tako hitro tudi izginjata. Kaj ne bi bilo
krasno, ko bi ju znali kam shraniti? Potem bi ju lahko v
prihodnosti spet poslušali in gledali. Ali pa bi ju naknadno, in
morda celo večkrat, pošiljali sprejemnikom.

Kako shraniti časovno spremenljiv električni signal na izhodu iz
mikrofona ali kamere? Tako, da na izhod priključimo primeren
elektromagnet, ki dovajani električni tok "spreminja" v magnetno
polje, in skozi to polje enakomerno vlečemo magnetibilni trak, da
ga polje magneti. Močnejši električni tok povzroči močnejšo
namagnetenost traku. Magnetni zapis pa kasneje beremo z
obratnim postopkom: namagneteni trak vlečemo mimo
elektromagneta, v katerem se zato inducira električna napetost
med koncema tuljave. Izumili smo magnetni zapis in branje
električnega signala.

Od zamisli do dobro delujoče naprave je seveda trnova pot.
Najprej se osredotočimo na avdio signal. Kot primeren za
zapisovanje se pokaže podkvast elektromagnet iz laminiranega
mehkega železa in z ozko režo med poloma. To je magnetna
glava. Tik pod režo magnetne glave teče trak od enega na drugi
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Magnetoskop

vrteči se kolut. En kolut je vlečni; poganja ga primeren
enosmerni elektromotor. Trak je iz plastike in je premazan s
slojem, ki vsebuje drobne delce Fe2O3 ali CrO2. Za zapisovanje
zvoka do frekvence 20 kHz zadošča, da se giblje trak s hitrostjo
nekaj centimetrov na sekundo. Zapisovalna glava služi tudi kot
bralna glava. Primeren ojačevalec skrbi, da je tok v zapisovalno
glavo (iz mikrofona) ali iz bralne glave (do zvočnika) dovolj velik.
Tako smo sestavili magnetofon.

Slika 40.34 Magnetna
zapisovalna glava in trak.
Električni tok skozi
elektromagnet bolj ali manj
namagneti pod njim tekoč
trak. (What-When-How)

Trak, na katerem je posnet zvok, lahko znova uporabimo za
zapisovanje. To omogoča dodatna brisalna glava pred
bralno/zapisovalno glavo, ki trak razmagneti, to je, ga namagneti
z zvokom frekvence nad 20 kHz. Takega zvoka ne slišimo.

Za zapis videa v televizijski ločljivosti je potrebna frekvenčna
širina okrog 5 MHz. Trak bi se zato moral gibati s hitrostjo preko
deset metrov na sekundo, kar je mehansko nesprejemljivo. Zapis
videa vzdolž traku zato ni mogoč. Kaj pa zapis prečno ali poševno
na trak? Slednje omogoča zapisovalna glava na poševno
usmerjenem vrtljivem valju. Ko se valj vrti, zapisuje glava na trak
poševno sled. Vzdolž ene sledi so zapisane vse vrstice posamične
slike. Še bolj praktično je, da sta na valju dve glavi; ena zapisuje
sode in druga lihe vrstice slike.

Slika 40.35 Vrtljivi boben z dvema
magnetnima glavama. Pri enem obratu
bobna zapiše vsaka glava eno poševno
sled. Vzdolž ene sledi so zapisane vse
sode vrstice in vzdolž druge vse lihe
vrstice posamične slike. (Anon)

Tipičen valj ima premer nekaj centimetrov in se vrti s 25 obrati
na sekundo, trak pa se giblje s hitrostjo nekaj centimetrov na
sekundo. Širina video sledi na traku znaša okrog 0,05 mm in
njena dolžina nekaj centimetrov. Ob enem robu traku se
zapisujejo še sinhronizacijski imulzi in ob drugem zvok. Za oboje
poskrbita ustrezni mirujoči glavi. Branje videa in zvoka s traku
poteka podobno kot zapisovanje – preko istega vrtljivega bobna in
glav. Nabor glav zaključuje mirujoča brisalna glava, s katero je
mogoče brisati video sledi, avdio sled ali oboje skupaj.
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Vremenske sonde

40.11 Radiosonde
Seveda zvok in slika nista vse, kar lahko prenašamo po radijskih
valovih. Prenašamo lahko kakršenkoli električni signal, recimo
"elektrificirane" izmerke raznih merilnikov, na primer
termometra. Poskrbeti moramo le za pretvorbo izmerjene
količine, na primer temperature, v električni signal.

Takoj nam pade na misel, da bi na opisani način lahko udobno
merili tlak, temperaturo in vlago v ozračju. Obesimo, v mislih, na
balon škatlo z ustreznimi merilniki/pretvorniki in majhen
oddajnik na baterijo ter vse skupaj spustimo. Balon se bo dvignil
v višave in sproti meril ter oddajal podatke o navedenih treh
količinah. Na tleh pa bomo to sprejemali in beležili. Zamislili smo
si radiosondo.

Slika 40.36 Vremenska sonda. Helijev balon ponese
v višave škatlo z merilniki za tlak, temperaturo in
vlago ter z radijskim oddajnikom, ki sporoča izmerke
sprejmniku na tleh. (NOAA)

Kot raziskovalci v državnih meteoroloških službah zamisel hitro
uresničimo. Za primernega se pokaže balon iz tankega lateksa,
napolnjen s helijem do premera okrog 1,5 m. Tak balon ima dovolj
vzgona, da dvigne breme 1 kg od tal do višine preko 30
kilometrov. Ker pri tem prihaja v območje čedalje nižjega tlaka,
se razpenja in na koncu poči. Pritrjeno padalo poskrbi, da
preostanki padejo na tla brez škode.

V škatli pod balonom so že spoznani merilniki: aneroidni
barometer, bimetalni termometer in higrometer na las. Ročica,
pritrjena na barometrsko komoro, premika eno izmed plošč
pridruženega kondenzatorja in mu s tem spreminja kapaciteto.
Termometer in higrometer na podoben način premikata vsak svoj
kondenzator. Poseben urni mehanizem z vrtečo se kontaktno
ročico priključuje naštete tri kondenzatorje, enega za drugim,
vzporedno h kondenzatorju nihajnega kroga oddajnika.
Nihajnemu krogu se zato spreminja kapaciteta in s tem
frekvenca. Radijski val oddajnika je torej frekvenčno moduliran.
Amplitudna modulacija ni dobra, ker se sonda oddaljuje in se na
tleh sprejemana amplituda zato manjša. Sprejemnik na tleh
signal demodulira in ga preko elektromagneta in premičnega
peresa riše na papirni trak.
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Oscilator

Iz izmerkov narišemo navpični profil ozračja. Pove nam, med
drugim, koliko je ozračje stabilno, to je, kolikšna je verjetnost, da
se v njem razvije konvekcija. Vsakodnevno spuščanje vremenskih
sond postane rutinsko opravilo meteoroloških služb na kopnem in
na prekooceanskih ladjah.

40.12 Mikrovalovi
Dipolne radijske antene sevajo v vse smeri. Včasih pa si zaželimo,
da bi vzpostavili radijsko povezavo zgolj med dvema stalnima
točkama, recimo iz doline, kjer je "vir informacij", na vrh hriba,
od koder bi jih potem oddajali na vse strani. Za to potrebujemo
usmerjeni parabolični anteni na obeh točkah: oddajno in
sprejemno. Širina snopa θ, v katerega seva parabolična antena s
premerom D, je določena z uklonom valov na njenih robovih
[38.14]: θ ∼ λ/D. Za ozke snope so torej potrebni kratki valovi in
velike antene. Več kot desetmetrske antene so že nepraktične. Da
seva desetmetrska antena v kot ene stopinje, pa so potrebni
valovi reda velikosti ∼ 10 cm, torej mikrovalovi.

Ko poskušamo s triodnim oscilatorjem tvoriti radijske valove s
frekvenco nad ∼ 100 MHz, to je z valovno dolžino pod ∼ 3 m,
naletimo na težave; motiti začneta kapacitivnost med
elektrodama (ne moremo je dovolj zmanjšati) in preletni čas
elektronov. Izumiti moramo nov tip mikrovalovnega oscilatorja in
ojačevalca.

Spomnimo se na stojno valovanje v resonančnih votlinah. Kaj ko
bi elektronko – skozi katero teče curek elektronov – ovili s
toroidno votlino; morda bi se v njej vzbudilo stojno valovanje, ki
bi ga potem odvajali skozi majhno odprtino. To je približno tako,
kot če pihamo zrak mimo ustja steklenice, da zazveni. Številni
poskusi vodijo do refleksnega klistrona.

Slika 40.37 Refleksni klistron. Pospešeni elektronski curek teče proti negativni
anodi in se od nje odbija nazaj. Pri tem teče mimo torusne votline in v njej
vzbuja stoječe mikrovalove. Te odvzemamo skozi posebno odprtino in vodimo
po koaksialnem kablu. (AAC – All About Circuits)
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Ojačevalec

Usmernik

Izvorni curek elektronov je hitrostno homogen. Ko pa leti mimo
ustja votline, v kateri je stojno valovanje, se nekateri elektroni
dodatno pospešijo, drugi pa zavrejo, kakršno električno polje pač
že srečajo ob ustju. Currek postane zaporedje zgoščin in
razredčin. Ko se odbije od anode, te zgoščine spet priletijo do
ustja, vplivajo na polje in poniknejo skozi kolektor/ozemljitev. S
primerno dolžino elektronke in s primerno anodno napetostjo
poskrbimo, da prideta curek in polje v resonanco: vsaka zgoščina
prispe k ustju votline tedaj, ko ji polje nasprotuje, in jo zato
zaustavi. Kinetična energija elektronov se prenese v energijo
polja. Majhna zanka v resonančni votlini deluje kot sekundarni
ovoj transformatorja in odvaja del energije v koaksialni kabel –
dve žici, "ena znotraj votle druge". Moč mikrovalov, ki potujejo
skozi kabel, izmerimo s priključenim termočlenom. Tako
zgradimo refleksne klistrone z močmi med 1 mW in 1 W ter s
frekvencami med 1 in 100 GHz.

Poleg mikrovalovnega oscilatorja potrebujemo še mikrovalovni
ojačevalec. Dobimo ga tako, da k obstoječi torusni votlini dodamo
še eno ali več zaporednih enakih votlin. Mikrovalove dovajamo v
prvo votlino in jih odvzemamo iz druge (ali zadnje). Delovanje je
podobno kot pri refleksnem magnetronu, le da curka ne
odbijamo, ampak ga kar posrkamo v kolektor/ozemljitev. To je
večvotlinski klistron. Po zgledu "navadnega" radijskega
ojačevalca lahko del izhoda tudi vodimo po koaksialnem kablu na
vhod in dobimo mikrovalovni oscilator, torej alternativo
refleksnemu klistronu. Dvovotlinski klistroni dosegajo ojačanje
102, večvotlinski pa celo do 106. Izhodne povprečne moči
dosegajo 1 kW. Temu ustrezna morata biti enosmerni izvor moči
in hlajenje kolektorja.

Slika 40.38 Dvovotlinski klistron. Prva votlina poskrbi za grupiranje elektronov,
druga pa jim resonantno odvzema energijo. (AAC – All About Circuits)

Kakor vakuumska trioda ne zmore ustvarjati mikrovalov, tako jih
tudi vakuumska dioda (priključena med os in plašč koaksialnega
kabla) ne zmore izravnavati. Zato tudi ne moremo z
galvanometrom meriti jakosti visokofrekventnih tokov na izhodu
ali odcepu iz kablov. Morda pa obstaja kakšna snov, kristal, ki bi
električni tok – enosmerni, nizkofrekventni in visokofrekventni –
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(De)modulacija

Princip radarja

prevajala (vsaj deloma) anizotropno? Raziskave odkrijejo, da so
takšni, med drugim, kovinski sulfidi. Najboljše rezultate pa
pokaže silicijev kristal, ki se ga dotika tanka, priostrena kovinska
žica ali igla. To je kristalna dioda. Deluje pri vseh frekvencah,
tudi mikrovalovnih. Zakaj sploh deluje, nam zaenkrat ni jasno,
ampak za uporabo to ni potrebno.

Mikrovalove zmoremo torej ustvarjati (s klistronom), usmerjeno
izsevati (z oddajno anteno) in zaznavati (s sprejemno anteno in
kristalnim detektorjem). Za prenos zvoka in slike pa jih moramo
še modulirati in demodulirati. Tukaj nas elegantno reši
frekvenčna konverzija [40.8]. Z "navadnim" radijskim oddajnikom
ustvarimo modulirane radijske valove IF, nato pa te valove v
frekvenčnem mešalcu (s kristalnimi diodami) pomnožimo z
mikrovalovi LO iz mikrovalovnega oscilatorja (refleksnega
klistrona) ter pridobimo modulirane mikrovalove RF. Modulacija
se pri tem ohranja. Po potrebi te valove še ojačimo z
mikrovalovnim ojačevalcem (klistronom). Primer: iz IF = 30 MHz
in LO = 1,000 GHz dobimo RF = 1,030 GHz. Podobno je pri
demoduliranju. Prejete valove RF vodimo v mešalec, kjer jih
pomnožimo z LO in dobimo IF. Tega pa obdelamo z "navadnim"
radijskim sprejemnikom.

40.13 Radar
Vemo, da se radijski in svetlobni valovi odbijajo od ovir. To velja
tudi za mikrovalove, ki jih izseva mikrovalovna antena. Če tak
mikrovalovni snop zadene, na primer, ob sovražno letalo, se bo od
njega odbil v vse smeri, tudi nazaj. Kaj, ko bi poskušali zaznati
odbite valove? Če bi v izbrano smer izsevali kratek paket
mikrovalov in izmerili zakasnitev t njegovega morebitnega
odmeva, bi s tem določili tako smer kot oddaljenost r
morebitnega letala: r = ct/2. Z vrtečo se anteno pa bi določili lege
letal v vsej okolici. Izumili smo (vojaški) radar.

Slika 40.39 Princip radarja. Oddajnik tvori mikrovalove, antena jih izseva in
sprejema odmeve, sprejemnik pa jih ojačuje in prikazuje na katodnem zaslonu.
(FAS – Federation of American Scientists)
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Tehnična izvedba

Uporaba radarja

Tehnična izvedba radarja je naslednja. — Navaden kvarčni
oscilator s pomožnim vezjem nenehno ustvarja zaporedje ostrih
prožilnih impulzov. — Mikrovalovni oscilator nenehno tvori
mikrovalove in jih uvaja v mikrovalovni ojačevalec. — Enosmerni
vir visoke napetosti stalno polni verigo vzporedno vezanih
kondenzatorjev. Vzporedno k verigi je priključena s plinom
napolnjena trioda, tiratron. Njena mrežica je na zaporni negativni
napetosti in skozi triodo ni toka. Ko na mrežico dospe pozitiven
prožilni signal, postane trioda prepustna in nabrani naboj na
kondenzatorjih se začne pretakati skoznjo v visokonapetostni
transformator in naprej v ojačevalec mikrovalov. Pretakanje je
silovito in traja le kratek čas, toliko, da napetost na triodi pade
pod prevodno vrednost. Po tem postane trioda neprevodna in
začne se vnovično polnjenje kondenzatorjev. — S prejeto močjo
tvori mikrovalovni ojačevalec kratek paket mikrovalov. — Ko
tečejo mikrovalovi po valovodu mimo odcepa proti sprejemniku,
morajo slednjega "zapreti". Med sredico in plaščem odcepnega
koaksialnega kabla je priključena s plinom napolnjena dioda,
tlivka. Mimobežno valovanje jo prižge in s tem kratkostično
sklene vhod v sprejemnik. V sprejemnik zato ne prodre nič
valovanja in ga ne more sežgati. — Ko se paket popolnoma izseva,
tlivka ugasne in pot odmevom v frekvenčni mešalec je odprta.
Drugi vhod v mešalec je lokalni mikrovalovni oscilator, ki deluje
na rahlo različni frekvenci od oddajnega oscilatorja. Posebno
vezje skrbi, da je ta frekvenčni zamik konstanten. Frekvenčno
znižani izhod iz mešalca potem obdela navaden radijski
sprejemnik. — Prožilni signal, ki sproži kondenzatorsko
razelektritev, sproži tudi časovno bazo na standardnem
osciloskopu. Odmevi iz sprejemnika se vodijo na odklonske plošče
osciloskopa in se narišejo kot porazdelitev odmevov po
razdalji. — Bolj pregledno pa se radarski odmevi prikažejo na
katodnem zaslonu z radialno preletno črto. Smer preleta je
določena z usmeritvijo antene. Odmevi se rišejo vzdolž črte bolj
ali manj svetlo. Poseben premaz zadrži sliko nekaj sekund.

Slika 40.40 Slika na katodnem
zaslonu radarja. Viden je katodni
žarek in dolga veriga nevihtnih
oblakov, ki jo je zarisal pri svoji
rotaciji. (FAA – Federal Aviation
Administration)

Radarji, sprva namenjeni odkrivanju sovražnih letal, takoj najdejo
pot v civilno uporabo. Civilni radarji delujejo z valovnimi
dolžinami med nekaj centimetri in nekaj deset centimetri, z
najrazličnejšimi širinami in oblikami snopov ter z raznovrstnimi
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dolžinami impulzov, frekvencami impulzov in oddajnimi močmi.
Tipične vrednosti radarskih parametrov so naslednje: valovna
dolžina 5–10 cm; širina snopa 1–2°; frekvenca impulzov
250–1000/s; dolžina impulza 1–3 μs; vršna moč v impulzu
10–1000 kW; povprečna moč sevanja 10–1000 W; najmanjša
zaznavna moč 10−14 W (!). Ladje z radarji tipajo okoli sebe skozi
noč in meglo ter odkrivajo druge ladje, čeri in ledene gore.
Letališča opazujejo zračni prostor nad seboj in skrbijo za red pri
preletanju, pristajanju in vzletanju letal. Vremenske službe
opazujejo odmeve od dežnih kapljic in ledenih zrn v oblakih ter
določajo lego ter gibanje nevihtnih oblakov. Uspe jim celo meriti
jakosti padavin pri tleh. Prav tako sledijo dvigovanju vremenskih
sond ter določajo smer in hitrost vetrov na različnih višinah. In
astronomi uspejo izmeriti odmeve od Meseca ter bližnjih planetov
ter tako potrdijo njihove oddaljenosti.

40.14 Sonar
Pod vodo radar žal ne dela, ker je dušenje mikrovalov premočno.
Se pa skozi vodo dobro širi zvok. Kaj, ko bi naredili "radar" na
zvočne valove? Recimo mu sonar.

Slika 40.41 Shema sonarja. Od radarje se razlikuje le po tem, da namesto
elektromagnetnih valov izseva in prejema zvočne valove. (FAS – Federation of
American Scientists)

Ker so frekvence zvoka in ultrazvoka mnogo nižje od radijskih
frekvenc, lahko za oddajno in sprejemno vejo sonarja uporabimo
kar navadne radijske komponente in ni potrebe po mikrovalovnih
komponentah. Namesto antene ima sonar kupolo, v kateri so
nameščeni bati. Vsak bat je povezan s piezolektričnim kristalom v
kondenzatorju ali z magnetostrikcijskim jedrom v tuljavi.
Nihajoče polje kondenzatorja ali tuljave povzroči nihanje bata in
obratno. Kako je izsevani zvočni impulz usmerjen, je določeno s
faznimi razlikami med bati. S posebno pripravo (vrtljivo ploščo na
kontaktni podlagi) lahko opazovalec ročno nastavlja časovne
zakasnitve oz. fazne zamike batov, to je določa smer izseva.
Ploščo lahko vrti tudi elektromotor. Izmerki se rišejo na katodni
zaslon in/ali na papirnat trak.
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Elektronska revolucija

Hitrost zvočnih valov v vodi znaša 1500 m/s. Sonarji delujejo na
frekvencah med 10 in 100 kHz, kar pomeni z zvočnimi valovnimi
dolžinami med 10 in 1 cm. Tipične moči v impulzu znašajo 1 kW.
Čim krajši so zvočni valovi, tem bolj so dušeni. Uporabni doseg
sonarja je med 500 m (100 kHz) in 5000 m (10 kHz). Tipične širine
snopov pa znašajo med 10 in 45 stopinjami.

Tudi sonar je bil razvit za vojaško uporabo, predvsem kot "zvočno
oko" podmornic. Drugače pa sedaj z njim merimo globino morja
pod ladjami, da se zavarujemo pred nasedanjem. Izdelamo tudi
karto hribovitosti morskega dna. Če sonar postavimo na dno in
usmerimo navzgor, lahko merimo višino valov. Ribiči pa ga
uporabljajo za odkrivanje ribjih jat. Pri tem štejejo predvsem
odmevi od ribjih zračnih mehurjev.

Dolgo preden je človek izumil sonar, ga je narava oblikovala v
živalih. Z zvočnimi "kliki" se orientirajo in lovijo kiti, delfini in
netopirji. V marsikaterem pogledu so njihovi sonarji celo boljši od
naših. Od njih se moramo še marsičesa naučiti.

40.15 Družbeni vpliv
Kakor sta indukcijski generator in transformator sprožila
elektrifikacijo držav in s tem popolnoma spremenila življenje
ljudi, tako sta preprosta dioda in trioda omogočili razvoj
elektronike in povzročili še večje spremembe v družbi. Brez teh
dveh skromnih elementov ne bi bilo svetovne časovne službe,
brezžičnih komunikacij v kopnem, ladijskem in letalskem prometu
in, zlasti, nobenega radija in televizije po domovih v razvitih
državah. Težko si je predstavljati življenje brez vseh teh naprav.
Samo sprašujemo se lahko, kaj bo v nadaljnjem razvoju znanosti
in tehnike še pustilo podoben družbeni pečat. □
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41

Energija
fotoelektronov

(41.1)

Kvantni delci
Fotoni – Rentgenski žarki – Rentgenska spektrometrija – Valovne
lastnosti delcev – Elektronski mikroskop – Žarki alfa, beta in
gama – Notranjost in jedro atoma – Planetarni in valovni model
atoma – Vodikov atom – Eliptične tirnice – Večelektronski atomi –
Magnetni moment – Spin elektrona – Struktura črt

41.1 Fotoni
Pri elektroniki smo ugotovili, da teče skozi fotodiodo tem
močnejši nasičeni tok, čim močneje jo osvetljujemo. Močnejša
svetloba očitno izbija iz katode več elektronov na časovno enoto
kot šibkejša. Kako je pa s kinetično energijo teh izbitih
fotoelektronov? Pričakujemo, da tudi ta narašča z osvetljenostjo:
na posamičen elektron pač mora v časovni enoti pasti tem več
energije, čim večja je jakost svetlobe. Pa naredimo poskus!

Slika 41.1 Merjenje energije fotoelektronov z zaporno napetostjo. Strgalo je
potrebno zato, da očistimo izbrano katodno površino tik pred meritvijo. (Anon)

V evakuirano stekleno bučo zatalimo katodo iz natrija, kalija ali
litija in jo osvetljujemo z monokromatsko vidno svetlobo. Izbite
elektrone zaustavljamo z negativno napetostjo na anodi. S
presenečenjem ugotovimo, da je zaporna napetost U – torej tudi
kinetična energija elektronov K = eU – neodvisna od jakosti
svetlobe (LENARD)! Šibka svetloba izbija prav tako hitre elektrone
kot močna, le manj jih je. Poskus ponovimo s svetlobo različnih
valovnih dolžin. In spet presenečenje: maksimalna kinetična
energija izbitih elektronov je odvisna od frekvence svetlobe
(LENARD)! Ultravijolična in modra svetloba (četudi šibka) izbijata
hitrejše elektrone kot rumena (četudi močna). Nizkofrekvenčna
(rdeča in infrardeča) svetloba pa elektronov sploh ne izbija.
Natančnejše meritve pokažejo sorazmernost (MILLIKAN)

K = hν − W
h = 6,63 · 10−34 Js .

Sorazmernostna kvantna konstanta h je neodvisna od snovi, iz
katere je katoda, konstanta W pa je od te snovi odvisna. Slednjo
si razlagamo kot potrebno delo, da se elektron iztrga iz kovine.

261

pict3c/millikan-photoeffect.gif
pict3c/millikan-photoeffect.gif


Kvanti energije in
fotoni

(41.2)

Gibalna količina
fotona

(41.3)

Ker kinetična energija ne more biti negativna, sledi, da se se
elektroni ne izbijajo, če je frekvenca svetlobe ν ≤ W/h.

Slika 41.2 Zaporna napetost kot funkcija frekvence vpadajoče svetlobe za
natrij. Prazni kvadrat je pobrisan izračun kvantne konstante. (Millikan, 1916)

Opaženega rezultata si ne moremo razložiti drugače, kot da
elektromagnetno polje predaja svojo energijo elektronom v
paketih, kvantih energije. Elektron lahko prevzame enega ali več
kvantov energije, nikakor pa ne polovični ali kak drug ulomni
delež. Rečemo, da je energija elektromagnetnega polja
kvantizirana količina. In če je energija svetlobe kvantizirana pri
absorpciji, zakaj ne bi bila tudi pri emisiji ali celo pri širjenju? To
nas navede na misel, da mora biti svetloba – kljub svoji valovni
naravi – sestavljena iz delcev, fotonov, od katerih ima vsak
energijo (EINSTEIN)

E = hν .

Vidna svetloba z valovno dolžino 5000 Å, to je s frekvenco
0,6 · 1015 Hz, je torej sestavljena iz fotonov z energijami po 2,5 eV.
Koliko pa je fotonov v sončni svetlobi? Privzamemo, da je ta kar
monokromatska vidna. Gostota toka sončne svetlobe na Zemlji
znaša j = E/St = 1 kW/m2. Ker E = N · hν, izračunamo
N/St = j/hν ∼ 1021 / m2s. Ogromno število fotonov na sekundo in
kvadratni meter! Človeško oko zazna še tok 10−16 W na sredini
vidnega spektra. Tedaj pade v oko 250 fotonov na sekundo.

Fotoni so delci, ki se gibljejo s svetlobno hitrostjo in imajo
(mirovno) maso enako nič. Zanje zato veljajo relativistični zakoni.
Za relativističen delec velja, kot vemo, E2 − (cG)2 = (mc2)2. Ko
postavimo m = 0, dobimo

G =
E
c

=
hν
c

=
h
λ

.

To je gibalna količina fotona. Čeprav foton nima (mirovne) mase,
pa ima gibalno količino. Tudi ona je kvantizirana. Ugotovitev
seveda ni presenetljiva, saj vemo že od prej [35.14], da svetloba
poleg energije prenaša še gibalno količino. Sedaj smo temu
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Realnost in modeli

Lastnosti žarkov

Rentgenska cev

dejstvo našli le korpuskularno razlago. Vse enačbe od prej
ostanejo v veljavi, le celotno energijo svetlobe pišemo kot vsoto
posamičnih energij fotonov: E = Nhν. Tako, na primer, zapišemo
fotonski tlak na absorbirajočo steno kot p = (N/V)hν.

Pri raziskovanju svetlobe smo torej naredili poln krog: najprej
smo mislili, da je svetloba curek delcev. Potem smo ugotovili, da
je pravzaprav valovanje in nato še, da je elektromagnetno
valovanje. Zdaj pa kaže, da je kljub vsemu le sestavljena iz delcev,
čeravno so ti nekaj posebnega, saj imajo valovne lastnosti. Kaj je
torej res? Ob tem vprašanju se zavemo, da pravzaprav ne vemo in
ne moremo vedeti, kaj je svetloba (ali karkoli) v resnici. Saj
gledamo naravo vedno preko svojih čutil, nikoli neposredno. Vse,
kar nam je dosegljivo, je le izgradnja modelov realnosti. In tisti
model, ki se bolje prilega opazovanjem, proglasimo za boljšega
oziroma za bolj resničnega. Nobenega zagotovila nimamo, da bo
tak tudi ostal. Najlepša usoda, ki jo kak model lahko doživi, je ta,
da postane poseben primer bolj splošnega modela.

41.2 Rentgenski žarki
Pri poskusih s katodno cevjo v temi opazimo, da zraven stoječ
fluorescentni zaslon zasveti, ko cev vključimo. Ko jo izključimo,
pa svetlikanje izgine. Iz cevi očitno nekaj prihaja in vpada na
zaslon. Je to vidna svetloba? Prižgano cev pokrijemo s črnim
papirjem, vendar svetlikanje ne izgine. So to elektroni? Cev
pokrijemo z aluminijasto folijo, a svetlikanje ostaja. Očitno smo
na sledi nečesa novega. Lotimo se poskusov in ugotovimo
naslednje (RÖNTGEN).

Iz svetle točke, kjer elektroni zadevajo zaslon, se v vse smeri –
poleg vidne svetlobe – širijo neznani žarki. Ti brez posebnih težav
prehajajo skozi snovi, ki imajo lahke atome. Ustavljajo jih le snovi
s težkimi atomi, na primer svinec. Na fotografski plošči puščajo
odtis železnega ključa, ki je zaprt v kartonski škatli. Žarki se ne
odbijajo in ne lomijo. Na uklonski mrežici se ne uklanjajo. Ni jih
mogoče odklanjati niti z električnim in magnetnim poljem. Kaže
torej, da niso niti vidna svetloba niti curki nabitih delcev. Krstimo
jih za rentgenske žarke.

Za preučevanje rentgenskih žarkov preoblikujemo katodno cev v
primernejšo obliko. Elektronski curek spuščamo na poševno
nagnjeno anodo iz platine ali volframa; nastajajoči rentgenski
žarki so potem usmerjeni v glavnem v pravokotni smeri. Za pogon
cevi uporabimo indukcijsko tuljavo ali visokonapetostni usmernik
z napetostmi nekaj 10 kV. Ker se zaradi trkov elektronov anoda
močno segreva, jo po potrebi hladimo z vodo. Tako dobimo
rentgensko cev.
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Slikanje notranjosti
teles

Uklon na kristalu

Slika 41.3 Cev za tvorjenje
rentgenskih žarkov. (Anon)

Čeprav kot odkritelji še ne vemo, kaj pravzaprav so rentgenski
žarki, je njihova uporabna vrednost takoj očitna: z njimi lahko
slikamo notranjost človeškega telesa. Vidimo kosti, zlome, zobna
vnetja, morebitne vojne spominke – krogle in še kaj. Zdravniki
navdušeno sprejmejo novo orodje. Njegove koristi so
neprecenljive.

Slika 41.4 Slika roke z rentgenskimi žarki.
(General Electric)

Žal pa se počasi začno kazati tudi škodljive lastnosti rentgenskih
žarkov, zlasti pri ljudeh, ki so jim prekomerno izpostavljeni: začno
jim izpadati lasje, pojavi se slabokrvnost in še kaj. Zdravniško
osebje, ki vsakodnevno upravlja z močnimi rentgenskimi cevmi,
mora biti zato zaščiteno s svinčenimi zasloni.

41.3 Rentgenska spektrometrija
Ena izmed možnosti, kaj naj bi rentgenski žarki bili, je naslednja:
to so elektromagnetni valovi, vendar s tako kratko valovno
dolžino, da se ne uklanjajo na uklonskih mrežicah, ki jih zmoremo
narediti. Morda pa se uklanjajo na kristalih, ki so naravne
tridimenzionalne mrežice z "režami" na medsebojnih razdaljah
nekaj angstremov? Rentgenski žarek spustimo na velik kristal
morske soli in za njim postavimo fotografsko ploščo. Na njej
dobimo nekakšne uklonske pike (LAUE). Kaže torej, da so
rentgenski žarki res kratkovalovna svetloba.

Raziščimo uklon na kristalu bolj natančno! Kristali morske soli so
kvadri, ki so bolj ali manj obsekani z ravninami. Zamislimo si
idealni, neobsekani kristal v obliki kvadra. Postavimo ga
navpično. Tak kvader je tridimenzionalna mreža kock z robom d,
v katere vozliščih tičijo atomi Na in Cl. Predstavljamo si, da je ta
mreža navpična skladovnica vodoravnih mrežnih ravnin. Če pade
na zgornjo ravnino valovanje, se deloma odbije in deloma
prepusti ter nato odbije na naslednjih ravninah. Ako sta valovna
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(41.4)

Rentgenski
spektrometer

dolžina in vpadni kot pravšnja, imajo odboji od vseh mrežnih
ravnin enako fazo, se konstruktivno seštejejo in dobimo močan
odboj, sicer pa ne.

Slika 41.5 Uklon rentgenskih žarkov na kristalnih
ravninah. Pri izbranih kotih imajo odbiti žarki s
posameznih ravnin enako fazo in konstruktivno
interferirajo.

Slika pokaže, da znaša pogoj za odboj AB + BC = 2d sin θ torej
(BRAGG)

2d sin θ = Nλ, N = 1, 2, 3 …

Da nastane konstruktivna interferenca, mora biti valovna dolžina
vpadlega valovanja manjša od 2d.

Če vpada na zgornjo ploskev valovanje z različnimi valovnimi
dolžinami, se pri kotu θ pač odbije tista komponenta, ki ima
pravšnjo valovno dolžino. Kakšna je ta dolžina, je enolično
določeno s kotom θ in medmrežno razdaljo d. Kristal je torej
selektor, ki iz množice valovnih dolžin prepusti le izbrano.

Tako upamo izmeriti valovno dolžino rentgenskih žarkov.
Potrebujemo le medmrežno razdaljo kristala. Gostota NaCl je
2,3 kg/dm3 in kilomolska masa 58,5 kg. V tej masi je NA "molekul"
NaCl. Masa ene molekule je zato m1 = M/NA. V prostornini 2 · d3 je
ena molekula. To pomeni ρ = m1/2d3, iz česar sledi d = 2,8 Å.

Meritev poteka tako, da na glavno ploskev kristala NaCl
spuščamo ozek rentgenski žarek (ki ga dobimo iz rentgenske cevi
in kolimiramo skozi dve svinčeni zaslonki) pod čedalje večjimi
vpadnimi koti θ od navpičnice ter beležimo jakost odbitega
valovanja pod pripadajočimi odbojnimi koti. Jakost odbitega žarka
beležimo kar na fotografski plošči, ki jo nato obdelamo tako, kot
smo delali pri merjenju izseva zvezd. Bolj priročno pa je, da žarek
spustimo v cilindrično posodo, napolnjeno s primernim plinom
(etilovim bromidom). Rentgenski žarek ionizira plin in povzroči
električni tok v priključenem vezju. Tok merimo z
galvanometrom. To je ionizacijska celica. Iz praktičnih razlogov
tudi ne nagibamo vhodnega žarka, ampak raje pod stalnim
žarkom vrtimo kristal. Prav tako z zobniki povežemo vrtenje
kristala z vrtenjem merilnika: zasuk prvega za θ povzroči zasuk
drugega za 2θ. tako dobimo priročen rentgenski spektrometer.
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Spekter rentgenskih
žarkov

Slika 41.6 Prvi rentgenski
spektrometer. Q = izvor
rentgenskih žarkov, A = zaslon,
C = kristal, D = detektor
(ionizacijska celica). (Bragg, 1915)

Takoj vidimo, da je rentgenski spekter sestavljen iz dveh delov:
zveznega in črtastega. Zvezni spekter ima podobno obliko za vse
anodne snovi. Čim višja je delovna napetost, tem višji je spekter.
Pri kratkih valovnih dolžinah je ostro odrezan. Vse to lepo
razložimo z domnevo o rentgenskih fotonih. Ko elektroni vpadejo
na katodo, se namreč zaustavijo. To naredijo lahko v enem
velikem ali več drobnih korakih. Pri tem izsevajo fotone z
ustreznimi frekvencami. V najboljšem primeru se elektron
zaustavi v enem samem koraku in pri tem izseva foton s
frekvenco eU = hνmax oziroma λmin = (12,3 Å · kV)/U. Fotoni z
višjimi frekvencami (oziroma krajšimi valovnimi dolžinami) sploh
ne morejo nastati. Spekter je zato odrezan. Z merjenjem mejne
frekvence lahko zato natančno določimo kvantno konstanto h.

Slika 41.7 Shematični
spekter rentgenskih žarkov.
Spekter je sestavljen iz
zveznega in črtastega dela.
Slednji je odvisen od snovi, iz
katere je anoda. (Cullity,
1967)

Črtasti spekter pa je, nasprotno, odvisen od snovi, iz katere je
anoda. Vsaka snov ima svoj karakterističen črtni spekter. To je
njen prstni odtis, prav kakor črtni spektri v vidni svetlobi. Valovna
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Kristalometrija

Elektroni kot valovi

dolžina spektralnih črt je neodvisna od uporabljene napetosti,
njihova intenziteta pa z napetostjo raste. Črte kažejo, da pri trkih
elektronov z atomi v slednjih nastanejo resonantna nihanja z
ostrimi frekvencami.

Obstoj črtastega spektra izkoristimo za pridobivanje intenzivne
monokromatske rentgenske svetlobe. "Belo" svetlobo spustimo na
kristal in ga tako zasučemo, da odbija svetlobo izbrane črte.
Dobili smo monokromator.

V kristalu soli pa so poleg vodoravnih mrežnih ravnin še navpične
ter bolj ali manj poševne. Na vsakem takem naboru ravnin
nastanejo odboji. Če kristal vrtimo na vse možne načine pod
monokromatskim žarkom, dobimo zato ojačanja v različnih
smereh. Namesto da sipamo svetlobo na enem velikem kristalu,
ki ga vrtimo, pa jo lahko sipamo na množici drobnih kristalčkov,
ki so različno orientirani. Primerna sta kovinska folija ali kristalni
prah, posut po stekleni plošči. Uklonska slika za takšno tarčo ima
obliko koncentričnih krogov. Vsak krog pomeni uklon na ustrezni
skladovnici ravnin. Svetlost kroga sporoča številsko gostoto
atomov na teh ravninah. Radij kroga in njegova oddaljenost od
tarče izdajata sipalni kot θ in preko njega – ter poznane valovne
dolžine – razmik d ustrezajočih ravnin.

Slika 41.8 Uklon monokromatskih rentgenskih
žarkov pri prehodu skozi aluminijasto folijo. V njej so
drobni kristalčki, orientirani v vse smeri. Na
"pravilno orientiranih" kristalnih ploskvah nastane
konstruktivna interferenca. (Anon)

Če so kristalčki veliki, krogi niso sklenjeni, ampak so sestavljeni
iz posameznih točk. Če krogov sploh ni, pa je preučevana folija iz
amorfne, ne iz kristalne snovi. Tako s sipanjme monokromatske
rentgenske svetlobe na kristalnih folijah ali kristalnem prahu
raziskujemo lastnosti snovi.

Slednjič pomislimo tudi na to, da bi rentgenske žarke uporabili za
izdelavo mikroskopa. Ker imajo ti žarki zelo kratko valovno
dolžino, bi morala biti ločljivost takega mikroskopa mnogo boljša
od ločljivosti optičnega mikroskopa. Žal pa v naravi ni snovi, na
kateri bi se rentgenski žarki znatno lomili, zato tudi ne moremo
izdelati ustreznih leč. Rentgenski mikroskop je torej neuresničljiv.

41.4 Valovne lastnosti delcev
Ugotovili smo, da se svetlobni valovi kažejo v določenih
okoliščinah kot curki delcev. Pojavi se drzna misel: morda se pa
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(41.5)

Uklon elektronov na
kristalu

Masni delci kot valovi

Magnetne leče

tudi curki elektronov lahko pokažejo kot valovanje? Drugače
rečeno: fotonom, kot brezmasnim delcem, pripisujemo valovno
dolžino. Ali imajo tudi elektroni, kot masni delci, valovno dolžino
in če jo imajo, kakšna neki je? Morda pa velja tudi zanje ista
enačba kot za fotone, namreč (DE BROGLIE)

λ =
h
G

=
h

mv
.

Čim hitrejši so delci, tem krajšo valovno dolžino naj bi imeli.
Elektroni, ki preletijo napetost 100 V, bi tako imeli valovno
dolžino okrog 1 Å.

Seveda je vse to zgolj domneva. Preveriti jo moramo s poskusom.
Ponuja se kar sam: uklon elektronov na kristalu ali na foliji
kristalčkov, čisto po vzoru uklanjanja rentgenskih žarkov. Tak
poskus res naredimo. In poskus domnevo potrdi. Curek
elektronov se na kristalni tarči res uklanja kakor valovanje
(DAVISSON / GERMER)!

Slika 41.9 Uklon elektronov pri prehodu skozi
aluminijasto folijo. Elektroni s pravšnjo energijo imajo
valovno dolžino, primerljivo z medmrežno razdaljo
kristalov, in se na njih uklanjajo podobno kot
rentgenski žarki. (Anon)

Domnevo – oziroma zdaj že dejstvo – lahko še razširimo: ne samo
curki elektronov, ampak curki vsakršnih masnih delcev – ionov,
atomov ali celo gumijastih kroglic – se vedejo kot ravno
valovanje. Ker so pa ti delci mnogo težji od elektronov, je njihova
valovna dolžina ustrezno krajša. Poskus uspe z atomi srebra pri
sobni temperaturi, vendar so zaradi njihove hitrostne
nehomogenosti uklonske slike precej razmazane. Pri
makroskopskih delcih pa je valovna dolžina že tako kratka, da je
sploh ne moremo zaznati.

41.5 Elektronski mikroskop
Na elektronske curke lahko torej gledamo kot na valovanje.
Mikavna je misel, da bi z lomljenjem teh curkov izdelali
elektronski mikroskop po zgledu svetlobnega. Ločljivost takega
mikroskopa bi morala biti izjemna, saj so valovne dolžine hitrih
elektronov večtisočkrat manjše kot pri vidni svetlobi. Težava je v
tem, da moramo za to najprej izumiti primerne "leče".

Elektroni se odklanjajo v električnem in magnetnem polju. To
izkoristimo za konstukcijo magnetnih in električnih leč.
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Elektronski mikroskop

Celični organeli in
virusi

Slika 41.10 Magnetna leča. Primerno oblikovano
magnetno polje fokusira curek elektronov podobno, kot
steklena leča fokusira curek fotonov. (ETH Zürich)

Magnetna leča je tuljava iz bakrene žice, zaprta v votel železen
cilinder. Cilinder ima v notranji steni krožno režo v obliki prstana.
Skozi to režo pronica magnetno polje, ki je v sredini šibko in proti
robovom močnejše. Elektron, ki preleti polje, dobi neto sunek
proti osi in zavrtljaj okrog nje. Robni elektroni dobijo večji sunek
kot tisti ob osi. Vzporeden curek elektronov se zato fokusira v
točko.

Magnetne leče razporedimo v elektronskem mikroskopu tako kot
steklene leče v optičnem mikroskopu. Opazovani predmet
osvetljujemo s hitrimi elektroni in sliko ujamemo na fluorescentni
zaslon ali fotografsko ploščo (RUSKA). Dobri elektronski
mikroskopi dosežejo 100 000-kratno povečavo, torej stokrat več,
kot optični.

Slika 41.11 Elektronski mikroskop
z magnetnimi lečami. Za
primerjavo je prikazan tudi optični
mikroskop. (Agar, 1974)

Elektronski mikroskop nam odpre okno v svet s tipičnimi
ločljivostmi nekaj deset atomskih premerov. To je nanosvet. V
njem si ogledujemo podrobnosti v celicah ter odkrijemo nova,
presenetljiva bitja – viruse.
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Sevanje urana

Slika 41.12 Virus herpesa, kot ga vidi elektronski
mikroskop. Uporabljena je 50.000-kratna
povečava pri napetosti 200 keV. (University of
Pittsburgh)

Pri mikroskopiranju so potrebni zelo tanki vzorci. Biološke vzorce
moramo tudi kemično fiksirati in dehidrirati. Namesto
prepuščenega elektronskega curka lahko uporabimo tudi
odbitega. Takšni mikroskopi imajo skromnejše zahteve glede
vzorcev.

41.6 Žarki alfa, beta in gama
Rentgenski žarki izvirajo iz fluorescenčne pege na zaslonu
katodne cevi. Fluorescirajo pa tudi druge snovi, recimo uranova
ruda uran-kalijev sulfat K2UO2(SO4)2, in sicer potem, ko jo za
nekaj časa izpostavimo sončnemu obsevanju. Morda pri svoji
fluorescenci tudi oddaja rentgenske žarke? — Uranovo rudo
damo na sonce, da začne fluorescirati. Potem jo položimo na
fotografsko ploščo, ki je zavita v črn papir. Skozi papir svetloba
ne more. Plošča pa kljub temu počrni. Kaže, da je res nekaj
zaznala, morda rentgenske žarke. — Ko tako izvajamo poskuse,
nekaj dni ni sonca, zato neosvetljen kos rude in neuporabljen
paket fotografskih plošč spravimo v predal. Ko se sonce spet
pokaže, pa hočemo najprej preveriti, ali so shranjene plošče še
dobre. Eno razvijemo in čaka nas veliko presenečenje. Plošča je
počrnjena! Uranova ruda izseva neke žarke tudi tedaj, ko ne
fluorescira. Pravzaprav seva ruda nenehno. Rečemo, da je
radioaktivna (BECQUEREL).

Slika 41.13 Počrnitev fotografske plošče z
dvema kosoma uranove rude. Med ploščo in
enim kosom rude je postavljen kovinski križ,
ki žarke oslabi. (Becquerel, 1896)

Ker radioaktivni žarki počrnijo fotografsko ploščo, so morali
razbiti njene molekule srebrovega bromida. Morda lahko
razbijajo tudi molekule v zraku, to je, jih ionizirajo, tako kot to
delajo rentgenski žarki? Koščke rude postavimo med plošči
nabitega kondenzatorja, ki je povezan z elektroskopom.
Elektroskopova lističa počasi uplahneta. To je potrditev, ki smo jo

270

pict3c/virus.jpg
pict3c/virus.jpg
picref.htm
picref.htm
pict3c/becquerel-cross.jpg
pict3c/becquerel-cross.jpg
picref.htm


Polonij in radij

Žarki alfa, beta in
gama

iskali. Namesto elektroskopa lahko celo uporabimo občutljiv
galvanometer in z njim merimo šibek tok.

Poleg uranovih rud so radioaktivne tudi nekatere druge rude, na
primer tiste, ki vsebujejo torij. Pri tem je vseeno, v kakšnih
kemičnih spojinah sta uran ali torij zvezana. Kaže torej, da
radioaktivni delci spontano izletajo iz notranjosti nekaterih težkih
atomov.

Poskusimo izolirati tisti element oziroma elemente iz uranove
rude, ki so odgovorni za radioaktivnost! Z zapletenimi kemičnimi
postopki iz rude zapovrstjo odstranjujejmo različne primesi.
Sproti z elektroskopom preverjamo, katere snovi so radioaktivne
in katere ne. Tako pridemo – poleg urana in torija – še do dveh
novih, doslej nepoznanih in močno radioaktivnih elementov:
polonija 84Po in radija 88Ra (CURIE). Potrebno je nekaj ton rude,
da dobimo 0,1 g radija. Kot pove galvanometer, seva polonij okrog
103-krat močneje od čistega urana in radij celo 106-krat močneje.
V kalorimetru izmerimo, da – preračunano – 1 gram radija v eni
uri odda 620 J toplote. To pomeni, da 1 g radija v 1 uri segreje
1,5 g vode od ledišča do vrelišča. Zdi se tudi, da se radioaktivnost
radija s časom nič ne spreminja, dočim se radioaktivnost polonija
počasi, preko mesecev, zmanjšuje.

Radioaktivne žarke hočemo sedaj podrobneje raziskati. Za
sevalne poskuse sta primerna radijev bromid RaBr2 ali radijev
klorid RaCl2.

Ozek curek iz vzorca spustimo skozi magnetno polje in s
fotografsko ploščo pogledamo, kam se curek odkloni. Ugotovimo,
da se curek razcepi. Curki iz nekaterih virov se razcepijo v dva, iz
drugih celo v tri delne curke, od katerih gre eden zmeraj
naravnost, preostala dva pa se odklonita vsak na svojo stran.
Opravka torej imamo s tremi vrstami žarkov. Pozitivno nabite
poimenujemo žarke alfa, negativno nabite žarke beta in nevtralne
žarke gama (RUTHERFORD).

Z vstavljanjem ovir med izvor sevanja in svetleč zaslon ocenimo
še doseg sevanj: delec alfa se zaustavi že v nekaj centimetrih
zraka ali v listu papirja; beta se zaustavi v nekaj metrih zraka ali
milimetru aluminija; gama pa potrebuje za zaustavitev kar nekaj
centrimetrov svinca.

Slika 41.14 Žarki alfa, beta in gama,
izvirajoči iz uranove rude, v močnem
magnetnem polju. Prikaz je shematičen in
razdalje niso sorazmerne. (Curie, 1904)
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Spektri alfa, beta in
gama

Razmerje e/m za nabite delce izmerimo z ustrezno prilagojenimi
masnimi spektrometri. Za detekcijo delcev uporabimo fotografsko
ploščo ali svetleč zaslon, na katerem štejemo bliske kar z očmi in
mikroskopom. Delci alpha se pokažejo kot dvakrat ionizirani
helijevi atomi. Iz njihovega odklona v magnetnem polju določimo
gibalno količino ter iz nje kinetično energijo in hitrost. Dobimo
diskretne vrednosti okrog 5 MeV, kar ustreza 5 % svetlobne
hitrosti.

Slika 41.15 Spekter žarkov alfa. Izvor sevanja je kemično čist uran, sestoječ iz
štirih izotopov. (Savannah River Laboratory)

Delci beta se pokažejo kot elektroni z zveznim energijskim
spektrom do 1 MeV, to je s hitrostmi do 90 % svetlobne hitrosti.
Pri merjenju moramo zato uporabiti (že spoznane) relativistične
enačbe za odklon v električnem in magnetnem polju. Preseneti
nas zelo velika hitrost elektronov. V katodnih ceveh jim lahko z
visokonapetostnimi usmerniki podeljujemo le energije do okrog
100 keV.

Slika 41.16 Spekter žarkov beta. Izvor
sevanja je kemično čist bizmut. (Neary,
1940)

Delci gama pa se vedejo kot zelo prodorni rentgenski žarki z
diskretnim energijskim spektrom. Njihove energije merimo preko
fotoelektričnega pojava. Energijski razpon je približno takšen kot
pri žarkih alfa in beta. Valovnih dolžin visokoenergijskih delcev
gama ne moremo neposredno meriti, ker so premajhne, lahko jih
pa iz energij izračunamo.
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Sipanje delcev alfa na
atomih

Slika 41.17 Primer spektra
žarkov gama. (Anon)

Kaže torej, da radioaktivni delci spontano nastajajo v notranjosti
nekaterih težkih atomov. Kaj stoji za vsem skupaj, na tej stopnji
ne vemo. Da bomo odgovorili na to vprašanje, bomo morali pred
tem raziskati, kakšna je notranjost atomov in kakšna gibanja tam
potekajo.

41.7 Notranjost in jedro atoma
Pri raziskavi odklona žarkov alfa v magnetnem polju opazimo, da
majhna količina zraka v vakuumski merilni pripravi vpliva na
gibanje žarka: njegova slika na svetlečem zaslonu postane rahlo
motna. Očitno nekaj vpliva na gibanje delcev alfa in jih odklanja
iz začetne smeri. To so trki z atomi oziroma z njihovimi elektroni.
Da bi učinek povečali, obstreljujemo zlato folijo, ki vsebuje težje
atome z več elektroni. Na drugi strani folije pa prestrezamo delce
alfa s fluorescentnim zaslonom ter z mikroskopom gledamo in
štejemo bliske. Razdaljo med izvorom delcev in zaslonom
nastavimo tako, da je število bliskov na časovno enoto obvladljivo.
Opazujemo pod različnimi koti glede na vpadni žarek.

Slika 41.18 Obstreljevanje zlate folije z žarki alfa.
R = izvor žarkov, D = folija, S = fluorescenčni
zaslon, M = mikroskop, W = cev za zračno
črpalko. Mikroskop je vrtljiv okoli navpične osi.
(Geiger, 1913)

Število bliskov – po pričakovanju – hitro upada z naraščajočim
odklonskim kotom. Nikakor ne pričakujemo, da se bo kakšen
delec odklonil za znaten kot, recimo za 30° ali več. Saj je delec
alfa okrog 7000-krat težji od vsakega elektrona v atomu, naboj in
masa v slednjem pa naj bi bila, tako mislimo, dokaj enakomerno
razmazana. Ker pa smo že pri merjenju, pogledamo tudi velike
kote. Presenečenje! Take uklone res zaznamo: 1 delec izmed
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Gibanje delca mimo
jedra

(41.6)

8000 se odkloni celo za 180°. To je tako, kot da bi se
desetkilogramska topovska krogla odbila od lista papirja!

Kako si naj to razlagamo? Tako, da atom ni velika pozitivno nabita
krogla, v kateri plavajo elektroni, ampak je sestavljen iz drobnega
pozitivnega jedra, v katerem je zgoščena skoraj vsa masa atoma,
in elektronov, ki rojijo okoli njega. Z velikostjo roja elektronov je
določena velikost atoma. Za večino delcev alfa je zato atom
popolnoma prozoren, na neznaten delež pa vplivajo velike
odklonske sile (RUTHERFORD).

Slika 41.19 Nuklearni model atoma. (Anon)

Izračunajmo, za kakšen kot se odkloni delec alfa z maso m in
nabojem Z1e (Z1 = 2) pri vpadu na točkasto jedro z nabojem Z2e!
Zaradi lažjega računanja, zdaj in kasneje, bomo uporabili
okrajšavo

q =
e

√(4πε0)
.

Izhodišče koordinatnega sistema postavimo v jedro in os x
usmerimo vzdolž gibanja delcev. Delec naj se giblje vzporedno tej
osi na razdalji b. Ko pride blizu jedra, se odklanja in zariše
hiperbolo. Obe asimptoti hiperbole, ki sta merljivi, oklepata kot θ.
To je kot odklona.

Slika 41.20 Odklon delca alfa na
atomskem jedru. Odklonski kot je
odvisen od vpadne razdalje glede na
atomsko jedro. (Supek, 1949)

Ko je delec v točki (r, φ), je njegov pospešek v smeri y določen z
gibalno enačbo mdvy / dt = Z1Z2q2 sin φ / r2 (1). Pri gibanju se
ohranja vrtilna količina mr2φ' = −bmv (2). Iz (2) izrazimo r2 in ga
vstavimo v (1). Dobimo mdvy / dt = −(Z1Z2q2 / bv) sin φ dφ / dt (3).
Enačbo integriramo od kota π do θ, pri čemer je na začetku vy
enak nič in na koncu v sin θ. Tako pridelamo
mv sin θ = (Z1Z2q2 / bv)(1 + cos θ) (4). Uporabimo še obrazca za
sinus in kosinus dvojnega kota, pa dobimo odklonsko enačbo
(RUTHERFORD)
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(41.7)

Sipanje delcev na
jedrih

(41.8)

Naboj in velikost jeder

b =
1
2

(
Z1Z2q2

mv2/2
)

1
tan (θ/2)

.

Čim bolj je delec odklonjen, tem bliže jedru je prišel. Nazaj odbiti
delci so doživeli čelni trk z jedrom.

Ugotoviti hočemo še, koliko delcev alfa iz vpadajočega curka se
sipa v posamezne smeri. Predpostavimo naslednje: delec alfa se
sipa le enkrat; nanj deluje električna sila jedra; vpliv elektronov
zanemarimo; atomsko jedro je med sipanjem pri miru, to je, je
mnogo težje od delca alfa.

V valju s presekom S in dolžino l, torej v prostornini V = Sl, naj bo
N atomskih jeder. Okrog vsakega jedra si mislimo "črno" kroglo
polmera b. Gledano vzdolž valja ima taka krogla črno ploščino
πb2. Če valj ni predolg, se te ploščine ne prekrivajo in celotna
črna ploščina znaša Sblack = Nπb2 = (N/V)πb2Sl. V valj naj vpada I0
delcev na časovno enoto. Potem se v časovni enoti siplje
I/I0 = Sblack/S = (N/V)πb2l delcev. Na interval b ± db/2 odpade
dI/I0 = (N/V) 2πbldb sipanj. Razdalja b je podana z odklonsko
enačbo (41.7) in njen diferencial db z odvodom db/dθ odklonske
enačbe. Oboje vstavimo, vpeljemo prostorski kot dΩ = 2π sin θ dθ
in dobimo (RUTHERFORD)

dI/I0

dΩ
=

1
16

N
V

(
Z1Z2q2

mv2/2
)2 l

sin4 θ/2
.

To je sipalna enačba. Pove, kolikšen delež delcev, vpadajočih na
folijo debeline l, se sipa v prostorski kot v smeri θ.

Slika 41.21 Sipanje delcev alfa v vse
smeri. Delež sipanih delcev v ozek
prostorski kot je odvisen od smeri.
(Kyushu University)

Sipalna enačba preneha veljati za majhne kote, saj za smer θ = 0
napoveduje neskončen delež sipanj. Vendar majhnih kotov itak ne
smemo upoštevati. Po odklonski enačbi bi to pomenilo, da je
delec letel mimo jedra pri neskončni razdalji, kar je izključeno.
Zgornja meja za mimobežno razdaljo je namreč še zmeraj majhna
glede na premer atoma.

Sipalna enačba omogoča, da z merjenjem sipanja določimo
neznani jedrski naboj tarče. Za baker ugotovimo 29 e, za srebro
47 e in za platino 78 e. Te številke so pa identične z vrstnim
številom naštetih elementov v periodičnem sistemu. S tem smo
našli fizikalno razlago zanje: vrstno število elementa ni nič
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Planetarni model

Težave s tirnicami

Valovni model atoma

drugega kot število nabojev v njegovem jedru oziroma število
elektronov v njegovem atomu.

Zdaj, ko poznamo naboj kakega jedra, poskušajmo oceniti še
njegovo velikost. Delec alfa z znanim nabojem in z znano
kinetično energijo naj potuje naravnost proti jedru z znanim
nabojem ter se zaradi odbojne sile počasi zaustavlja. Zaustavi se
na razdalji, ko se je vsa njegova kinetična energija pretvorila v
potencialno energijo: mv2/2 = Z1Z2q2/rmin. Iz tega takoj sledi
razdalja rmin. Za baker, na primer, dobimo 16 · 10−5 Å. Isti red
velikosti velja za druge elemente. Atomska jedra so torej za
faktor 104 manjša od atomov.

41.8 Planetarni in valovni model atoma
Ker je atom navzven nevtralen, mora biti naboj jedra enak vsoti
nabojev na elektronih. Med jedrom in vsakim elektronom vlada
električna sila in elektron bi moral pasti v jedro, če ne bi temu
nasprotovala centrifugalna sila gibanja. Električna sila ima enako
obliko kot gravitacijska, zato mora biti gibanje elektronov v
atomu podobno gibanju planetov v osončju: krožno ali eliptično.
Kaže torej, da je atom miniaturna slika sončnega sistema (BOHR).

Slika 41.22 Planetarni model atoma. Elektroni
krožijo okoli jedra podobno kot planeti okoli
Sonca. Dovoljene so le izbrane tirnice. Število
elektronov na vsaki tirnici je omejeno. Elektron
seva le pri skoku iz višje tirnice na nižjo. (Anon)

Planetarni model atoma je na prvi pogled zelo privlačen, vendar
hitro pokaže svoje pomanjkljivosti in nedodelanost. Prvič, model
ne razloži stabilnosti atomov. Vsak krožeči elektron v atomu se
namreč giblje pospešeno in bi zato moral nenehno sevati,
izgubljati energijo ter prej ali slej pasti v jedro. Atomi
potemtakem sploh ne bi smeli obstajati. Drugič, model ne razloži,
zakaj so atomi iste vrste med seboj popolnoma enaki, to je, zakaj
so tirnice elektronov okoli istovrstnih jeder identične. Saj se
elektroni lahko gibljejo okoli jedra po poljubno velikih tirnicah,
tako kot planeti okoli Sonca. In tretjič, model ne pove, kako atomi
sploh sevajo in kako se po sevanju obnavljajo.

Ob tem se spomnimo, da elektroni pač niso navadni delci, ampak
imajo valovne lastnosti. Planetarni model atoma potem lahko
nadgradimo takole. — Gibanje elektronov v privlačnem polju
jedra se kaže kot njihovo stojno valovanje. — Možnih je več vrst
takih stojnih valovanj – atomskih stanj – in vsako izmed njih ima
svojo ostro energijo. — V osnovnem stanju z najnižjo energijo
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(41.9)

Diskretne energije
atoma

elektron ne seva. Če dobi energijo od zunaj (s trki, vpadnimi
elektroni ali fotoni), skoči v eno izmed stanj z višjo energijo. V
takem vzbujenem stanju pa elektron ne zdrži dolgo, ampak
spontano, po kratkem času, pade nazaj v kakšno nižje ali v
osnovno stanje. — Pri padcu iz energijskega stanja E2 v E1 se
izseva foton z energijo

hν = E2 − E1 .

To je valovni model atomov (BOHR, DE BROGLIE). Kvalitativno
"razloži" stabilnost, identičnost in sevanje atomov. Razlaga ima
obliko postulatov, ki so oporečni tako zakonu gibanja kot
zakonom električnega polja.

Slika 41.23 Valovni model atoma. Elektroni so
valovni delci. Dovoljene so le tirnice, vzdolž
katerih pride celo število valov. (Anon)

Da imajo atomi diskretna energijska stanja, jasno kažejo njihovi
črtasti sevalni in absorpcijski spektri. Pri absorpcijskih spektrih
atomi iz vpadne zvezne svetlobe poberejo le fotone z izbranimi
frekvencami/energijami in jih nato spet izsevajo na vse strani. Kaj
ko bi atome namesto v curek fotonov postavili v tok elektronov?
Poskus opravimo v diodi s parami živega srebra (FRANCK / HERTZ).
Počasi večamo napetost in gledamo, kaj se dogaja s tokom. Ta
sprva raste, pri napetosti 4,9 V začne močno upadati, doseže
minimum in nato začne spet rasti. Vrhovi/minimumi se nato
ponavljajo na vsakih 4,9 V. Očitno je kinetična energija 4,9 eV
elektronov natanko tolikšna, da jo atomi absorbirajo in preidejo iz
osnovnega v prvo vzbujeno stanje, elektroni pa se pri tem
zaustavijo. Z večanjem napetosti potem elektroni spet pridobijo
dovolj kinetične energije in igra se ponavlja.

Slika 41.24 Tok elektronov skozi diodo z
živosrebrno paro. Napetostna razlika med
minimumi toka ustreza energijski razliki med
osnovnim in prvim vzbujenim stanjem
atomov. (Herz, 1914)
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Kvantizacija vrtilne
količine

(41.10)

(41.11)

Kvantizacija radija
krožnic

(41.12)

(41.13)

Kvantizacija energije

(41.14)

Pri navedenih napetostnih minimumih se v spektru živosrebrne
pare pojavijo sevalne črte z dolžino 2537 Å, kar natanko ustreza
energijam elektronov. Poskus je sijajna potrditev kvantne narave
atomov.

41.9 Vodikov atom
Najpreprostejši atom je vodikov. Sestavljen je iz jedra in enega
samega elektrona, ki se giblje v njegovi okolici. Poskusimo
določiti, kakšna stojna valovanja in energijske nivoje vsebuje!

Elektron se lahko giblje okrog jedra stacionarno le po tistih
krožnicah, vzdolž katerih je razmeščeno celo število valovnih
dolžin:

2πrn = nλ, n = 1, 2, 3 …

Upoštevamo λ = h/mv in dobimo zahtevo po kvantizaciji vrtilne
količine

L = mvr = nħ, n = 1, 2, 3 …
ħ = h/2π .

Možna so torej le gibanja s takšnimi radiji in hitrostmi, da je
vrtilna količina pri tem celoštevilčni mnogokratnik kvantne
konstante.

Pri kroženju deluje električna privlačna sila kot centripetalna sila
mv2/r = q2/r2 (1). Hitrost v tej enačbi substituiramo iz (41.11) in
dobimo dovoljene radije tirov (BOHR)

r =
ħ2

mq2 · n2 = rB · n2, n = 1, 2, 3 … .

Najmanjši radij pripada osnovnemu stanju in znaša rB = 0,53 Å.
Vrednost se ujema z redom velikosti atomov (1 Å), kakor ga že
poznamo. Poznane radije vstavimo v (1) in dobimo ustrezajoče
obodne hitrosti: v2 = q2/mr. V osnovnem stanju, ko znaša radij rB,
izračunamo hitrost

α =
v
c

=
q2

ħc
= 1/137 ,

torej okrog 1 % svetlobne hitrosti. Frekvenca kroženja potem
znaša v/2πr = 6,6 · 1015 Hz, kar je istega reda velikosti kot
frekvenca vidne svetlobe.

Energija elektrona na krožnici znaša E = K + W = mv2/2 − q2/r. Iz
(1) izrazimo mv2 = q2/r, iz česar sledi E = −q2/2r, torej (BOHR)

E = −
mq4

2ħ2

1
n2 = ER ·

1
n2 .

Zapisana konstanta znaša ER = 13,6 eV. Energija vodika, ko n = ∞,
je enaka nič. Energija osnovnega nivoja, ko n = 1, je −13,6 eV.
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Ujemanje s spektrom

(41.15)

Toliko energije moramo torej dovesti atomu, da ga ioniziramo.
Rečemo, da je to ionizacijska energija atoma.

Slika 41.25 Napovedani
energijski nivoji vodika.
Energija ioniziranega atoma je
po definiciji enaka nič. (Anon)

Kako dobro se napovedani energijski nivoji ujemajo z izmerjenim
vodikovim spektrom? Za primerjavo so priročni sevalni prehodi
na nivo n = 2 iz nivojev 3, 4, 5 in 6, ki vsi ležijo v vidnem območju.
Ujemanje je odlično – popolnoma znotraj natančnosti, s katero je
določena konstanta ER iz m, q in ħ. Tudi ujemanje pri drugih
prehodih je odlično. Z modelom vodikovega atoma smo – vsaj za
zdaj – lahko zelo zadovoljni.

Slika 41.26 Izmerjene spektralne črte vodika za prehode na nivo 2 iz nivojev 3,
4, 5, 6 itd. (Max Planck Institute)

Vodikovo vidno serijo črt lahko zaradi (41.14) zapišemo z
obrazcem (RYDBERG)

ν = Ry (
1

n'2
−

1
n2 )

in iz izmerjenih frekvenc oz. valovnih dolžin neposredno določimo
konstanto Ry = 3,287 · 1015 Hz. Seveda velja ER = Ryh.

41.10 Eliptične tirnice
Planeti se ne gibljejo okoli Sonca le po krožnicah, ampak tudi po
elipsah. Dopustimo to tudi za vodikov atom (SOMMERFELD). Kot že
vemo iz gibanja planetov [34.13], je velika polos elipse odvisna
zgolj od energije, mala pa – pri dani energiji – še od vrtilne
količine. To pomeni, da ima elektron enako energijo, če se giblje
po krožnici z radijem r ali po elipsi z glavno polosjo a = r:
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(41.16)

Kvantizacija osi

(41.17)

(41.18)

(41.19)

Orbite in lupine

E = −
q2

2a
.

Ker je energija kvantizirana, mora biti tudi velika polos elipse
enako kvantizirana kot radij:

a = rB · n2

K elipsi s polosjo a pripada neskončno mnogo elips z različnimi
polosmi b. Po katerih se giblje elektron? V duhu kvantizacije
predpostavimo, da so to le tiste z ostro določenimi vrednostmi
vrtilne količine:

L = lħ, l = 1, 2, 3 … n .

Pri gibanju je vrtilna količina konstantna: L = mr2φ' = const.
Površina, ki jo v časovni enoti prebriše radij vektor, znaša
(1/2)r2φ' = L/2m. V obhodnem času T prebriše celotno ploščino
elipse πab, torej LT/2m = πab. V to enačbo vstavimo kvantizirani a
(41.17), kvantizirani L (41.18) in obhodni čas T, ki ga dobimo iz
obhodnega zakona T2/a3 = 4π2 m/q2, pa dobimo:

b = nlrB =
l
n

a .

Ko n = 1, je l = 1 in tir je krožnica. Ko n = 2, je l = 1 ali l = 2 in
možna sta dva tira: krožnica in elipsa. In tako naprej. Krožnico n
in njej pridružene elipse poimenujemo orbite, ki sestavljajo lupino
n. Vsaka orbita v lupini ima enako energijo, razlikuje pa se po
vrtilni količini. Bolj je orbita podobna krožnici, večjo vrtilno
količino ima. Stanje vodikovega atoma torej opišemo z dvema
kvantnima številoma: glavnim številom n in orbitalnim številom l.
Glavno število določa velikost orbite, orbitalno število pa njeno
eliptičnost.

Slika 41.27 Eliptične tirnice. Elektroni se ne gibljejo le po krožnih tirnicah,
ampak tudi po elipsah, ki imajo veliko polos enako radiju krožnic. Male polosi
elips so v celoštevilčnem razmerju z velikimi polosmi. (Anon)

Ker imajo vse orbite v isti lupini enako energijo, so pri sevalnih
prehodih med dvema lupinama vsi izsevani fotoni enaki, ne glede
na to, med katerimi orbitami se zgodijo. Iz sevalnega spektra
torej ne moremo ugotoviti, ali eliptični tiri res obstajajo ali ne.
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41.11 Večelektronski atomi
Kar smo ugotovili za vodikov atom, velja tudi za vsakršen ion z
enim samim elektronom, na primer za helijev ion He+ z jedrskim
nabojem 2q ali za litijev ion Li2+ z jedrskim nabojem 3q. Veljajo
vse enačbe za vodik, če v njih nadomestimo q z Zq. Osnovni in
vzbujeni radiji iona tako znašajo r = rBn2 / Z in pripadajoče
energije E = Z2ER / n2. Helijev ion v osnovnem stanju ima zato
dvakrat manjši premer od vodikovega atoma in štirikrat višje
spektralne frekvence, litijev pa je trikrat manjši in ima devetkrat
povečane frekvence. Spektri vse to potrdijo.

Kako je pa z večelektronskimi atomi? Ko golemu jedru dodamo
elektrone, se morajo ti nekako umestiti v okolico jedra.
Predpostavimo, da se vsak elektron giblje po krožnici s celim
številom valov. Obstajajo torej krožnice z 1 valom, 2 valoma itd.
Koliko elektronov zasede kakšno krožnico, pa ne vemo. Morda
gredo vsi v prvo krožnico, morda vsak na svojo ali pa morda nekaj
sem in nekaj tja. Upravičeno se tudi bojimo, da premer krožnic ni
določen zgolj z nabojem jedra, ampak tudi s številom in
razporeditvijo krožečih elektronov. Porodi se misel, da bi morda
kaj več o tem izvedeli, če bi preučili premere atomov, torej radije
najvišjih zasedenih krožnic.

Velikost atomov izbranega elementa ocenimo takole. V kilomolski
masi M tega elementa je NA atomov z masami po m1. En atom
elementa v tekoči ali trdni fazi zapolnjuje kockico s stranico 2r,
torej prostornino (2r)3. Gostota kockice je
ρ = m1/(2r)3 = (M/NA)/(2r3). To je hkrati tudi gostota snovi, zato
(2r)3 = M/NAρ. Vse količine na desni so znane oziroma izmerljive.

Slika 41.28 Ocenjeni polmeri atomov. Velikost atoma je funkcija njegovega
vrstnega števila. Izbrani atomi kažejo skokovito povečanje velikosti glede na
svojega predhodnika, kar sugerira namestitev elektrona v višjo krožnico.
(Kyushu University)

Pogled na izmerke pove naslednje. — Kaže, da elektroni okrog
jeder zapolnjujejo več krožnic. — V prvo krožnico gresta največ 2
elektrona, v drugo največ 8, v tretjo največ 8, v četrto največ 18,
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(41.20)

Notranji elektroni

(41.21)

v peto največ 18 in preostanek v višje krožnice. — Elektroni
zasedajo krožnice po vrsti: v naslednjo gredo, ko je prejšnja
popolnoma zasedena. — Radij krožnice n se manjša z
naraščanjem njenega števila elektronov, to je z večanjem
jedrskega naboja. — Vsaka naslednja krožnica je ob začetku
popolnjevanja večja od prejšnje krožnice ob začetku
popolnjevanja. Zakaj so zasedbena števila krožnic takšna,
zaenkrat ne vemo. Velikost krožnic pa lahko kvalitativno
razložimo takole. Po zgledu vodikovega atoma privzamemo, da
znašata radij n-te krožnice in pripadajoča mu energija

rn = rB
n2

Z−S

En = ER
(Z − S)2

n2 .

Pri tem je (Z − S)q efektivni naboj jedra, ki ga čuti elektron na tej
krožnici. Med jedrom in elektronom so namreč gibljejo elektroni
na nižjih krožnicah, ki jedrski naboj zasenčujejo. Koliko, je na
splošno težko reči.

Poglejmo nekaj primerov. Za zunanjo krožnico helijevega atoma
velja n = 1 in Z − S ≈ 2 − 0 = 2, zato r = rB / 2. Za zunanjo krožnico
litijevega atoma pa velja n = 2 in Z − S ≈ 3 − 2 = 1, zato r = 4rB.
Obe oceni sta še kar dobri. Očitno je ocena radija krožnice zelo
občutljiva na izbiro senčenja S in to tembolj, čim višja je krožnica.
Če nam je kaj do tovrstne zabave, lahko iz izmerjenih radijev celo
računamo, kakšna so pripadajoča senčenja.

Kaj se zgodi, če s hitrim elektronom izbijemo iz atoma elektron
na prvi krožnici, kjer sicer živita dva elektrona? Tole: kakšen
elektron iz druge krožnice vskoči v nastalo luknjo. Pri tem izseva
foton z ustrezno energijo. Na drugi krožnici je imel elektron
energijo (Z−1)2ER/22 (preostali elektron na prvi krožnici
zasenčuje jedro) in na prvi energijo Z2ER/12. Razlika obeh,
deljena s h, pove, kolikšna je frekvenca izsevanega fotona:

ν =
3
4

Ry (Z − 1)2 .

Za baker znaša Z = 29, torej λ = 1,5 Å. To so rentgenski žarki. Kot
že vemo, nastajajo ti žarki pri obstreljavanju katode s hitrimi
elektroni. Zdaj tudi vemo, kako nastanejo: z izbitjem notranjih
elektronov v atomih katodne snovi. Pogled na izmerjeni
rentgenski spekter bakra pove, da zapisana frekvenca sovpada z
najmočnejšo črto Kα spektra. Podobno velja za druge elemente.

Enačba (41.20) pravi, da bi morale biti najmočnejše rentgenske
črte Kα v spektrih atomov sorazmerne s kvadrati njihovih vrstnih
števil. Meritve to potrdijo (MOSELEY).
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Slika 41.29 Črtni spektri rentgenskih žarkov za različne elemente. Prikazane so
tri črte: K, L in M. Vsaka od njih je dvojna ali celo trojna. Velja kvadratna
odvisnost med valovno dolžino črt K (pa tudi L in M) ter vrstnim številom.
(Moseley, 1914)

Zapisani zakon omogoča, da izmerimo jedrski naboj
preučevanega elementa kar iz njegovega rentgenskega spektra.

41.12 Magnetni moment
Kroženje posamičnega elektrona okrog jedra (v kateremkoli
atomu) je pravzaprav električni tok po krožni zanki. Obhodni čas
elektrona znaša T = 2πr/v in tok I = e/T. Zanka s tokom ima potem
magnetni moment pm = IS. Magnetni moment atomskih delcev
bomo odslej označevali z μ namesto s pm. Iz zapisanih enačb in ob
upoštevanju mvr = L dobimo

μ =
e

2m
L .

Orbitalni magnetni moment krožečega elektrona je torej
sorazmeren z njegovo vrtilno količino. Usmerjen pa je v
nasprotno smer, ker ima negativen naboj. Ker je vrtilna količina
kvantizirana (41.17), mora tak biti tudi magnetni moment:

μ = l
e

2m
ħ = lμB, l = 1, 2, 3 … n

Vpeljali smo elektronski magneton μB = e/2m = 9,27 · 10−24 J/T =
5,79 · 10−5 eV/T. Vsak elektron v atomu ima zaradi svojega
kroženja ustrezen magnetni moment. Njegova velikost je odvisna
od tega, po kateri eliptični tirnici pač kroži. Usmerjen pa je
pravokotno na ravnino kroženja.

Elektron na svojem tiru okrog jedra je tudi vrtavka. Če nanj
deluje magnetno polje z navorom M, precedira okrog smeri polja
s kotno hitrostjo Ω. Kakšna je hitrost precesije, smo že spoznali
pri gibanju vrtavke: M=Ω×L. To zapišemo kot
μB sin φ = Ω 2mμ/e, iz česar sledi (LARMOR)
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(41.24)

Smerna kvantizacija

(41.25)

(41.26)

Ω =
e

2m
B .

Ne glede na to, kako je magnetni dipol nagnjen glede na smer
polja, zmeraj rotira z enako kotno hitrostjo. V atomu vodika v
polju 1 Vs/m2 znaša kotna hitrost precesije 10−11 Hz.

Slika 41.30 Precesija magnetnega dipola. Kakor
precedira vrtavka okoli smeri gravitacijskega polja,
tako precedira orbitirajoči elektron okoli smeri
magnetnega polja. (Anon)

(Rotirajoči) magnetni dipol elektrona ima v zunanjem magnetnem
polju B energijo W = −μB cos φ. Energija je odvisna od kota φ, pod
katerim je nagnjen glede na polje. Je ta smer lahko poljubna?
Privlačna in drzna je misel, da je tudi smer kvantizirana, to je, da
se magnetni dipol nagne le v točno določeno smer. Privzemimo
torej, da se krožnica elektrona v zunanjem polju tako orientira,
da sta projekcija vrtilne količine in projekcija magnetnega
momenta vzdolž polja diskretni (SOMMERFELD):

Lz = mlħ
μz = mlμB .
ml = −l, −l + 1 … −1, 0, 1 … l − 1, l .

Vpeljalo smo magnetno orbitalno število ml, ki opisuje nagib
elektronovega krožilnega magnetnega momenta od smeri polja.

Slika 41.31 Orbitalni magnetni
moment elektrona se v magnetnem
polju postavi le pod točno določenimi
koti glede na polje. (Supek, 1949)

Pričakujemo, da se vrtilne količine vseh krožečih elektronov v
stabilnem atomu sestavijo v skupno vrtilno količino. Isto velja za
skupni magnetni moment. Privzemimo, da veljata velikostna in
smerna kvantizacija tudi za ti dve količini:

L = jħ
μ = jμB
Lz = mjħ
μz = mjμB
mj = −j, −j + 1 … −1, 0, 1 … j − 1, j.
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Meritev smerne
kvantizacije

Kako poteka sestavitev, je zaenkrat odprto vprašanje. To je pač
odvisno od števila in velikosti elektronskih krožnic v atomu,
njihove zasedenosti, individualnih nagibov, medsebojne sklopitve
in morda še česa. Za opis kvantizacije smo vpeljali vrtilno število j
in magnetno vrtilno število mj.

Kako bi ugotovili, ali atomski magnetni moment ter njegova
velikostna in smerna kvantizacija res obstajajo? Vemo, da v
nehomogenem magnetnem polju deluje na magnetne dipole sila v
smeri gradienta polja: Fz = μzdB/dz. Če torej spustimo curek
atomov skozi nehomogeno polje, se bodo atomi različno odklonili
v smeri polja. Razcep curka na več curkov bi domnevo potrdil.
Razteg curka v zvezno črto pa bi jo zavrgel.

Slika 41.32 Meritev magnetnega
momenta v srebrovih atomih. V
nehomogenem magnetnem polju se
atomi z različnimi komponentami
momenta vzdolž polja različno odklonijo.
(Anon)

Poskus opravimo s curkom srebrovih atomov. Kapljico staljenega
srebra segrevamo v peči in izhlapele atome usmerimo skozi
zaslonke. Curek spustimo skozi nehomogeno magnetno polje in
opazujemo, kolikšna plast srebra se naloži na steklenem zaslonu.
Tam odkrijemo, da se je curek razcepil na dva curka. Domneva o
smerni kvantizaciji je torej potrjena! (STERN / GERLACH)

Slika 41.33 Meritev magnetnega momenta v
curku srebrovih atomov. Curek se razcepi v
dva curka. Prikazan je rezultat meritev, ki sta
ga dobila O. Stern in W. Gerlach. (Stern, 1922)

Meritev je zahtevna. Poskus je treba izvesti v vakuumu. Pri
dolžini magnetnega polja nekaj centimetrov in pri gradientu
magnetnega polja 10 T/cm znaša razdalja med obema curkoma na
priročno oddaljenem zaslonu le nekaj desetink milimetra.
Ekspozicijski čas je nekaj ur.

41.13 Spin elektrona
Kolikor že smo veseli ob izidu poskusa, pa nas ta tudi preseneti.
Pričakovali bi namreč tole. Za j = 0 bi se curek ne smel razcepiti.
Za j = 1 bi se moral razcepiti na tri curke mj = [−1, 0, +1], za j = 2
na pet curkov in tako naprej, vedno v liho število curkov. Dobili
smo pa dva curka, torej sodo število. Kako naj si to razlagamo?
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Spin elektrona

(41.27)

Spinski magnetni
moment

(41.28)

Odprta vprašanja

Recimo, da atomovo vrtilno število ne bi bilo le celo število, torej
j = 1, 2, 3 …, ampak tudi polcelo število, torej j = 1/2, 3/2, 5/2 … Za
j = 1/2, na primer, bi potem obstajali zgolj dve smerni kvantizaciji
mj = [−1/2, +1/2]. To pa sta ravno dva curka. Prvi je paralelni,
drugi antiparalelni, pravokotnega pa ni.

Slika 41.34 Smerna kvantizacija
polcelih vrtilnih števil. Poseben primer
je j = 1/2, ki ga pripisujemo elektronu.
(Supek, 1949)

Od kod pa naj pride polcelo vrtilno število? Saj ima vsaka
elektronska krožnica le celoštevilčna orbitalna števila l oziroma
celoštevilčna magnetna orbitalna števila ml. Ponuja se drzen
odgovor: od elektrona! Ta mora imeti poleg orbitalne še lastno
vrtilno količino, spin. Stvar je podobna kot pri kroženju planeta
okoli Sonca: planet ima vrtilno količino zaradi kroženja, pa še
zaradi vrtenja okoli lastne osi. Zato vpeljemo za elektron spinsko
število s in magnetno spinsko število ms. (UHLENBECK /
GOUDSMITH)

L = sħ, s = 1/2
Lz = ms ħ, ms = −s, +s .

Orbitalna (l) in spinska (s) števila elektronov v atomu se sestavijo
v vrtilno število (j) atoma. Kako poteka sestavitev pa je, kot smo
že rekli, zaenkrat odprto vprašanje.

Kako je pa s spinskim magnetnim momentom elektrona? Na prvi
pogled bi moral ta biti enak μz = (e/2m)Lz = ħ/2. Vendar razcep
srebrovega curka kaže, da odklon ustreza momentom ħ, ne ħ/2.
Zato morajo imeti elektroni dvakrat večji spinski magnetni
moment, kakor jim ga hočemo pritakniti, torej:

μz = 2 ·
e

2m
Lz = ±ħ .

Preseneča še dejstvo, da je atomsko vrtilno število srebra tako
majhno. Saj je v atomu 47 elektronov. Kje so vrtilne količine
posamičnih krožnic in kje so spini vseh elektronov? Očitno se v
atomih krožnice in spini postavijo tako, da se med seboj kolikor
se le da izničujejo. To ne velja le za srebro, ampak tudi za druge
elemente: ne razcepijo se curki 2He, 4Be, 20Ca, 30Zn, 48Cd, 50Sn,
80Hg, 82Pb; v dva curka pa se razcepijo 1H, 3Li, 11Na, 19K, 29Cu,
47Ag, 79Au. Kaže, da se sodo število elektronov med seboj izničuje
v j = 0, pri lihem pa preostane vpliv zunanje orbite in zunanjega
elektrona j = 1/2. Najdejo se pa tudi izjeme : 15P ima j = 3/2 in 16O
ima j = 2. Vse to nas navaja na misel, da v vsaki orbiti, ki je
opisana s kvantnimi števili n, l in ml, lahko krožita največ dva
elektrona, vsak s svojim spinom ± 1/2. To je izključitveno načelo
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Prosti atomi

Atomi v magnetnem
polju

Atomi v električnem
polju

(PAULI). Zdi se celo, da imajo nekatere krožnice lahko l = 0, kar je
v nasprotju z dosedanjim opisom, ko l ≥ 1. Podrobnosti so očitno
zamotane in se vanje ne bomo spuščali.

41.14 Struktura črt
Ko opazujemo sevalne spektre atomov s spektrometri visoke
ločljivosti, recimo vsaj ± 0,1 Å, opazimo, da so črte pravzaprav
sestavljene iz več ozkih črt. Komajda katera črta ostane enojna.
Povzemimo glavna opažanja o strukturi črt in kvalitativne razlage
zanje.

Ko se elektron giblje okoli jedra v električnem polju, vidi
relativistično magnetno polje. Elektronov magnetni moment se
postavi paralelno ali antiparalelno k temu polju. S tem pridobi
magnetno potencialno energijo, ki se prišteje oziroma odšteje k
siceršnji energiji (kinetični in električni potencialni). Energijski
nivo je zato razcepljen v dvojico nivojev. Ustrezno se razcepijo
tudi spektralne črte. Vidne črte v spektru vodika so, na primer,
vse razcepljene v dvojice na razdaljah 0,2 Å.

Ko sevajoče atome postavimo v zunanje magnetno polje, se jim
spektralne črte razcepijo, nekatere na tri, druge na več črt
(ZEEMAN). Razlog je podoben kot pri razcepitvi črt v notranjem
magnetnem polju. Orbitalni in spinski magnetni momenti
elektronov se usmerjajo vzdolž polja in s svojimi magnetnimi
potencialnimi energijami doprinašajo k razcepitvi energijskih
nivojev. Razcep v tri črte je simetričen in ekvidistanten. Tako se,
na primer, razcepi vodikova rdeča črta Hα. Razdalja med črtami
je sorazmerna z jakostjo polja in ima red velikosti 0,2 Å/T. Razcep
v več črt je bolj zamotan.

Slika 41.35 Razcep natrijevih črt D1 in D2 v
magnetnem polju. (Zeeman, 1897)

Trojni razcep izbrane črte spektra izkoristimo za merjenje
magnetnih polj na Soncu in zvezdah. Na Soncu tako izmerimo
največje jakosti magnetnega polja v pegah, in sicer do 0,4 T.

Tudi zunanje električno polje povzroči razcep spektralnih črt
(STARK), na primer v vodikovem spektru. Polje namreč raztegne
atom v električni dipol. Različne elipse v isti lupini raztegne
različno. Tako nimajo več vse enakih energij, ampak se energijsko
rahlo razlikujejo. Da opazimo razcep, so potrebna močna
električna polja do 105 V/cm. □
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42

Pilotski val

Gladinski hodci

Nemoteno gibanje

Valovna mehanika
Valovni delci – Makroskopski hodci – Ansambli in valovne funkcije –
Ravni valovi in valovni paketi – Razmazanost gibanja – Kvantni
gibalni zakon – Lastne funkcije energije – Sipanje na potencialni
oviri – Gibanje v potencialni jami – Harmonični oscilator –
Enoelektronski atom – Vrtilna količina – Večelektronski atomi

42.1 Valovni delci
Videli smo, da se fotoni in elektroni pri nekaterih poskusih vedejo
kot delci in pri drugih kot valovi. Kako si naj to razlagamo? So to
delci ali valovi? Ali morda oboje hkrati? In kakšni so potem opisi
in zakoni njihovega gibanja?

Privlačna je misel, da so fotoni in elektroni hkrati delci in valovi.
Morda je vsak elektron delec, obdan z nekakšnim stojnim valom.
Predstavljamo si lahko, da morda elektron niha in "trese" prostor
okoli sebe, to je svoje ozadje, in v njem ustvarja svoj pilotski val.
Ta val potem vpliva nazaj na gibanje elektrona. Elektron in njegov
pilotski val sta nerazdružljiva celota – valovni delec. Ko prileti
elektron na oviro, recimo na dve reži v zaslonu, gre pilotski val
skozi obe reži, pri tem interferira sam s seboj in nastali
interferenčni val usmeri elektron skozi eno izmed rež. Nato oba
nadaljujeta pot do zaslona. Tako se dogaja z vsemi elektroni, ki
vpadejo na oviro. Vendar se vsak ukloni drugače in na zaslonu
naredi drugo piko. Vsi elektroni skupaj pa zgradijo celotno
interferenčno sliko. Podobno velja tudi za druge delce – masne in
brezmasne.

42.2 Makroskopski hodci
Morda lahko nihajoče delce in njihove pilotske valove
poustvarimo z makroskopskimi telesi? V plitvo posodo nalijemo
silikonsko olje in posodo tresemo v navpični smeri s takšno
frekvenco, da se na gladini pojavijo prvi kapilarni valovi. Potem
frekvenco rahlo znižamo, da valovi izginejo, in na gladino
previdno spustimo milimersko kapljico olja. Kapljica začne
skakati po gladini kot človek po trampolinu: zaradi tanke plasti
zraka med kapljico in oljem pa se med seboj ne združita. Pri
primerni frekvenci pride kapljica v resonanco z gladino: tedaj se
okoli nje pojavi stojni val. Kapljica jezdi na svojem valu. Kapljica
in njen val tvorita pri tem nerazdružjivo celoto; rečemo, da je to
valovni hodec (COUDER).

Valovni hodec niha na tistem mestu v kadi, kamor smo kapljico
spustili. Ko pa ga rahlo potisnemo v izbrano smer, se giblje tja
premo in enakomerno. Delec in val, oba se gibljeta
sinhronizirano.
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Sipanje na oviri

Vezano gibanje

Slika 42.1 Gladinski hodec. To je milimetrska
kapljica olja na navpično nihajoči oljni gladini.
Okoli kapljice se izoblikuje stojni val. Kapljica in
val se združno gibljeta premo in nekomerno.
(Bush, 2015)

Postavimo na hodčevo pot oviro z dvema režama! Hodec vpade
na oviro, njegov pilotski val gre skozi obe reži, interferira sam s
sabo, potegne kapljico skozi eno režo in jo nato usmeri v
določeno smer. Hodec je s tem zarisal svoj tir.

Slika 42.2 Vpad hodca na oviro z dvema režama.
(Couder, 2006)

Zaporedni hodci, ki jih vse spustimo iz istega mesta z enako
hitrostjo, po prehodu ovire zavijejo v različne smeri. To pa zato,
ker drobne razlike v začetnih pogojih in s tem drobne razlike pri
vpadu na oviro kritično vplivajo na prehod. Poglejmo porazdelitev
velikega števila uklonjenih tirov po smeri! Potihoma pričakujemo,
da bo podobna, kot če bi na reži vpadalo ravno valovanje z
valovno dolžino pilotskega vala. Žal izrazitih maksimumov in
minimumov ne uspemo poustvariti.

Slika 42.3 Smerna porazdelitev
uklonjenih tirov za dvojno režo.
Zarisala jo je množica 301 enakih
hodcev. Interferenčnih maksimumov
in minimumov (žal) ne uspe
poustvariti. (Andersen, 2015)

Dajmo hodca v krožno ogrado in vrtimo nihajočo posodo okoli
navpične osi! Tir hodca se zdi sprva kaotičnen. Sčasoma pa začne
pilotski val interferirati s svojo brazdo in časovno povprečje tira
pokaže izrazite krožne maksimume. To je statistična porazdelitev
hodčevih lokacij po prostoru. Ima obliko osno simetričnih stojnih
valov. Razlika med statističnim stojnim "valovanjem" in pilotskim
valom hodca je očitna.
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Rušenje tirov

Delci in ansambli

Slika 42.4 Hodčev tir v krožni ogradi za
različna trajanja. Po dolgem času se
pokažejo koncentrični krogi, kjer se je
hodec največ zadrževal. To je statistični
stojni "val", ki opisuje "razpršenost"
hodčeve lege po prostoru. (Harris, 2013)

Valovni hodci nudijo nazorno sliko o tem, kako se utegnejo gibati
elektroni. Seveda slika ni popolna: hodci se gibljejo v dveh
dimenzijah in njihov pilotni val je vtisnjen v okolišnjo tekočino.
Elektroni se gibljejo v treh dimenzijah in sredstvo, v katero je
vtisnjen njihov pilotni val, je "prostor". Pri hodcih je izvor tresenja
v ozadju, pri elektronih pa v njih samih. Glavna razlika med
obojima pa je naslednja. Hodce lahko gledamo s svetlobo, ki jo
odbijajo, in jih pri tem nič ne motimo. Elektrone pa lahko
gledamo, v principu, le preko "otipavanja" s fotoni (ali drugimi
delci) in pri tem bolj ali manj močno ter nepredvidljivo
spremenimo njihovo hitrost. Tir, ki ga opazujemo, s tem
razrušimo. Kljub temu pa bomo sliko obdržali kot vodnico v
nadaljnje raziskave. Če se bo pokazala za nepravilno, jo bomo pač
spremenili ali zavrgli.

42.3 Ansambli in valovne funkcije
Kam na zaslon bo izsevani elektron po preletu kristala priletel,
tega vnaprej ne vemo. Zadetek je kritično odvisen od začetnih
pogojev elektrona in od motenj, ki jih ta doživi vzdolž svojega
tira. Vemo pa, da množica izsevanih "enakih" elektronov na
zaslonu nariše določen vzorec. Očitno je nepredvidljivo gibanje
posamičnih elektronov vendarle takšno, da se v množični
ponovitvi pokorava določenim zakonitostim.

Namesto da preučujemo enkratno gibanje posamičnega
elektrona, kar je verjetno brezupno početje, raje preučujmo
mnogokratno ponovitev tega gibanja pod istimi pogoji. Idealno bi
to pomenilo, da en in isti elektron znova in znova spravljamo v
isto začetno stanje (izhod is topa) in vsakokrat izmerimo, kam na
zaslon vpade. V praksi tega seveda ne moremo narediti. Zato
namesto enega elektrona pripravimo množico elektronov v
kolikor se da enakem stanju in delamo poskuse z njimi. Namesto
s posamičnim elektronom – v gibanju iz topa proti zaslonu – se
bomo torej ukvarjali z ansamblom takih elektronov/gibanj.
Namesto o tiru posamičnega elektrona r= r(t) pa bomo govorili o
njegovi verjetnostni porazdelitvi po prostoru
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(42.1)

Verjetnost lege
fotonov

Verjetnost lege
elektronov

(42.2)

(42.3)

Ravni valovi

(42.4)

(42.5)

ρ(r,t) =
dP
dV

.

Ko govorimo o verjetnostni porazdelitvi elektrona v prostoru, se
spomnimo na tole. V elektromagnetnem valovanju je gostota
energijskega toka sorazmerna s kvadratom električne poljske
jakosti: j ∝ |E|2. To pomeni, da je tudi pogostost/verjetnost, da v
okolici kakšne točke zaznamo foton, sorazmerna s kvadratom
električne poljske jakostji: dP/dV ∝ |E|2. Predstavljamo si lahko, da
so elektromagnetni valovi nekakšno "pomožno ogrodje", ki
opisuje gibanje ansambla fotonov: kjer je polje močnejše, se
pojavlja več fotonov, kjer je šibkejše, pa manj.

Kaj ne moremo elektronov obravnavati podobno? Postulirajmo
"pomožno ogrodje" za gibanje ansambla elektronov po prostoru –
kompleksno polje Ψ(r,t) – in zahtevajmo: verjetnost dP, da se
elektron znajde znotraj prostorninskega elementa dV, znaša
(BORN)

dP
dV

= |Ψ|2 .

Polje Ψ(r,t) poimenujemo valovna funkcija ansambla elektronov.
Zaradi kratkosti bomo večinoma rekli kar valovna funkcija
elektrona. Pri tem se bomo zmeraj zavedali, da je to zgolj
jezikovna olajšava in da se valovna funkcija nanaša na ansambel
in ne na individualni delec. Namesto valovna funkcija bomo
občasno rekli tudi amplituda stanja ali kar stanje. Verjetnostna
definicija zahteva, da je valovna funkcija normirana:

∫ |Ψ|2 dV = 1 .

Verjetnost, da elektron najdemo kjerkoli, je pač enaka ena. S tem
smo privzeli, da elektroni ne morejo nastati in izginiti.

42.4 Ravni valovi in valovni paketi
Najpreprostejše je gibanje elektronov, ki posamič izletajo iz
elektronskega topa in nemoteno vpadajo na oddaljeni zaslon.
Kdaj kakšen elektron izleti iz topa, tega ne vemo. Vemo pa, da
ima kinetično energijo K = eU. S tem sta določeni njegova gibalna
količina G = √(2mK) in hitrost v = G/m. Prelet poteka po prostoru,
kjer ni električnega polja, zato je tam potencialna energija
elektrona enaka nič in njegova mehanska energija E je kar enaka
kinetični energiji. Gibanje ansambla elektronov med topom in
zaslonom opišemo formalno z ravnim valom

Ψ(x, t) = Aei(kx−ωt) .

Z upoštevanjem znanih povezav

G = h/λ = ħk
E = hν = ħω
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(42.6)

Valovni paketi

(42.7)

(42.8)

(42.9)

(42.10)

dobimo

Ψ(x, t) = Aei(Gx−Et)/ħ .

To je torej valovna funkcija ansambla prostih elektronov z gibalno
količino G, pri čemer E = G2/2m. Verjetnostna gostota znaša
|Ψ|2 = Ψ*Ψ = A2 in je neodvisna od časa in kraja, kakor tudi mora
biti: kadarkoli in kjerkoli v curek postavimo primeren merilnik,
zmeraj zaznamo približno enako število elektronov na časovno
enoto. Ker je verjetnostna gostota konstantna vzdolž celotne osi
x, valovne funkcije ne moremo normirati. Zato opisuje zgolj
relativne verjetnosti in ne absolutnih.

Slika 42.5 Valovna funkcija ansambla prostih
delcev. To je kompleksna vijačnica. S časom
se togo pomika vzdolž svoje osi. (Anon)

Ravni val opisuje elektrone z ostro določeno gibalno količino in s
popolnoma nedoločeno lego. Vemo pa, da s superpozicijo ravnih
valov različnih valovnih dolžin lahko zgradimo najrazličnejše
funkcije [28.9]. Poljubno valovno funkcijo ob času t = 0, recimo ji
valovni paket, torej lahko zapišemo kot

Ψ(x) =
1

√(2π)
∫A(k)eikx dk .

Oblika paketa Ψ(x) je odvisna od tega, kakšne uteži A(k)
izberemo. Če želimo sestaviti točno določen paket, moramo
izbrati, kot že vemo, točno določene uteži

A(k) =
1

√(2π)
∫Ψ(x)e−ikx dx .

Kakšen pa je stvarni pomen paketa Ψ(x)? Slejkoprej pomeni
njegov kvadrat verjetnostno gostoto dP/dx = |Ψ|2: na intervalu
x ± dx/2 znotraj paketa naštejemo delež dP ansambelskih
elektronov. V paketu pa se ne skrivajo elektroni z enotno gibalno
količino k, marveč elektroni, ki imajo različne vrednosti k: eni
imajo takšno, drugi drugačno. Simetrija enačb vsiljuje zaključek

dP
dk

= |A|2 .

Tudi verjetnostna porazdelitev gibalne količine mora biti
normirana:

∫ |A|2 dk = 1 .

Valovni paket Ψ(x) in njegov spekter A(k) sta torej medsebojni
harmonični transformiranki. Kot že vemo, velja za taki dve
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paket
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funkciji povezava ∫ |Ψ|2 dx = ∫ |A|2 dk. Če upoštevamo normiranost
obeh funkcij, je to pač očitno: 1 = 1.

Če imamo torej opravka s paketom Ψ(x) in želimo vedeti, kakšne
so gibalne količine elektronov v njem, izračunamo najprej spekter
A(k) kot harmonično transformacijo Ψ(x) in ga nato kvadriramo.
Različni paketi očitno vsebujejo različne razpone gibalnih količin.
Elektroni v takem paketu torej niso "razmazani" zgolj po
prostoru, ampak so "razmazani" tudi po hitrosti. Seveda to ne
pomeni, da je kak individualni elektron ob istem času na različnih
mestih oziroma da ima ob istem času različne hitrosti, ampak
naslednje. Če v ansamblu elektronov določamo lego – bolj v
mislih kot zares –, zaznamo nekatere tu, druge drugje v paketu;
in če jim določamo hitrost – spet bolj v mislih kot zares –, se
pokaže pri enih taka, pri drugih drugačna. Kakšno lego in kakšno
hitrost elektrona bomo izmerili v posamičnem primeru, vnaprej
ne moremo napovedati. Izračunamo lahko le verjetnosti za
izmerke.

42.5 Razmazanost gibanja
Pa izberimo primeren razsip gibalnih količin A(k) in poglejmo,
kakšen je ustrezni valovni paket Ψ(x)! Priročna izbira je
standardni razsip A(k) ∝ exp −(k − k0)2/4σk

2. Njegova harmonična
transformacija je Ψ(x) ∝ exp ik0x · exp −x2σk

2. Če zapišemo
σk

2 = 1 / 4σx
2, vidimo, da smo dobili standardno moduliran ravni

val. Disperzija gibalne količine in disperzija lege sta med seboj
povezani:

σx σk = 1/2 .

Čim širši je valovni paket, tem ožji razpon hitrosti najdemo v
njem. V neskončnem ravnem valu je hitrost enovita, kakor tudi
mora biti.

Slika 42.6 Valovni paket Ψ(x) s standardnim spektrom A(k). Prikazana je le
realna komponenta paketa. (Anon)

Standardni paket vsebuje ravne valove z različnimi valovnimi
vektorji, ki pripadajo različnim hitrostim elektronov:
exp i(kx − ωt) = exp ik(x − ωt/k), ω/k = G/2m = v. Zato se ti ravni
valovi tudi različno hitro gibljejo. Standardni paket se zato giblje,
hkrati pa se mu tudi spreminja oblika. Pričakujemo, da se njegova
prostorska disperzija veča, zaradi normiranosti pa se mu vrh
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niža. Hitrejši ansambelski elektroni pač bežijo naprej, počasnejši
pa zaostajajo.

Kaj pa valovni paketi drugačnih oblik? Tudi oni imajo disperzijo
lege in gibalne količine:

Δx2 = ⟨(x − ⟨x⟩)2⟩ = ⟨x2⟩ − ⟨x⟩2

ΔG2 = ⟨(G − ⟨G⟩)2⟩ = ⟨G2⟩ − ⟨G⟩2,

pri čemer je ⟨F(x)⟩ = ∫ F(x) |Ψ(x)|2 dx in ⟨F(G)⟩ = ∫ F(G) |A(G)|2 dG.
Brez izgube splošnosti privzamemo, da sta povprečji ⟨x⟩ in ⟨G⟩
enaki nič, kar dosežemo s primernim zamikom koordinat. Tako
dobimo Δx2 =∫ x2|Ψ(x)|2dx in ΔG2 =∫G2|A(G)|2dG. — Uvedemo
okrajšavi f(x) = xΨ(x) in g(G) = GA(G). Potem velja Δx2 = ∫ |f(x)|2dx
in ΔG2 = ∫ |g(G)|2dG. — K funkciji g(G) uvedemo obratno
harmonično transformiranko h(x) =
(1/√(2πħ)) ∫ g(G) exp (iGx/ħ) dG. Integracija po delih da
h(x) = −iħd/dx Ψ(x). — Po energijskem izreku velja
∫ |g(G)|2 dG = ∫ |h(x)|2 dx, zato ΔG2 = ∫ |h(x)|2 dx. — Za poljubni
kompleksni funkciji f in h velja (kakor se prepričamo posebej)
"trikotniška neenakost" ∫ f*f dx · ∫ h*h dx ≥ |∫ f*h dx|2. Označimo
z = ∫ f*h dx in z* = ∫ h*f dx. Ker |z|2 = Re(z)2 + Im(z)2 ≥ Im(z)2 =
((z − z*)/2i)2, lahko zapišemo
|∫ f*h dx|2 ≥ ((∫ f*g dx − ∫ g*f dx)/2i)2. — Z nekaj truda izračunamo
∫ f*g dx − ∫ g*f dx = iħ. Nato zložimo skupaj vse delne rezultate in
dobimo Δx2 ΔG2 ≥ (iħ/2i)2 oziroma (HEISENBERG)

Δx ΔG ≥
ħ
2

.

Produkt razpršenosti lege in gibalne količine je za vsak paket
večji od ħ/2. Posebej je odlikovan normalni paket, pri katerem je
produkt razpršenosti najmanjši. Pri tridimenzionalnih paketih
velja zapisana relacija razpršenosti za vsako smer in ustrezno
komponento gibalne količine posebej.

Elektronski paket v vodikovem atomu ima razpršenost lege in
razpršenost gibalne količine. Privzemimo, da je radij atoma večji
od razpršenosti lege: r ≥ Δx (1) in da je gibalna količina elektrona
večja od svoje razpršenosti: G ≥ ΔG = ħ/2r (2). Energija atoma
znaša E = G2/2m −q2/r (3). Iz (2) izrazimo radij r = ħ/G (4), ga
vstavimo v (3) in dobimo E = G2/2m − q2G/ħ (5). Poiščemo
minimum te energije, torej rešitev enačbe dE/dG = 0, in dobimo
G = q2m/ħ. Vstavitev v (4) in (5) da polmer in ionizacijsko energijo
vodikovega atoma:

r =
ħ2

mq2

E = −
mq4

2ħ2
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(42.15)

(42.16)

Gibanje delca v polju
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(42.17)

(42.18)

Rezultat je točno tak kot pri planetarnem modelu atoma [41.9], to
je 0,53 Å in −13,6 eV.

42.6 Kvantni gibalni zakon
Kakor elektromagnetni valovi zadoščajo klasični valovni enačbi,
tako pričakujemo, da tudi valovne funkcije ansambla elektronov –
prostih ali v polju sil – zadoščajo neki kvantni valovni enačbi.
Poiščimo jo!

Najpreprostejše je gibanje prostega delca vzdolž osi x.
Kakršnokoli že je to gibanje, k energiji delca prispeva zgolj
njegova kinetična energija: E = G2/2m. Enačbo pomnožimo s
poljubno valovno funkcijo: E · Ψ(x,t) = G2/2m · Ψ(x,t). Če je ta
funkcija ravni val Ψ = exp i(Gx − Et)/ħ, potem vidimo
E · Ψ = iħ ∂Ψ/∂t in G2/2m · Ψ = −ħ2/2m ∂2Ψ/∂x2, torej:

iħ
∂Ψ
∂t

= −
ħ2

2m
∂2Ψ
∂x2 .

Zapisana enačba zagotovo velja za kakršenkoli ravni val. Velja pa
tudi za vsoto dveh ali več ravnih valov, na primer aΨ1 + bΨ2, v kar
se prepričamo z neposredno substitucijo. To pomeni, da velja tudi
za poljuben valovni paket, saj je ta sestavljen iz samih ravnih
valov. Zato lahko zadevo obrnemo in rečemo: tule je enačba, ki
opisuje gibanje valovnih paketov; če poznamo valovni paket ob
nekem času, enačba napoveduje njegovo prihodnost. Posplošitev
na tri dimenzije je preprosta:

iħ
∂Ψ
∂t

= −
ħ2

2m
∇2Ψ .

Gibanje prostega delca ni preveč zanimivo. Mnogo pomembnejše
je gibanje delca v polju sil, zlasti v elektrostatičnem polju znotraj
atomov. Energija delca v takem polju je vsota njegove kinetične in
potencialne energije: E = G2/2m + W. Na podoben način kot pri
prostem delcu dobimo

iħ
∂Ψ
∂t

= −
ħ2

2m
∂2Ψ
∂x2 + W(x)Ψ

oziroma v treh dimenzijah (SCHRÖDINGER)

iħ
∂Ψ
∂t

= −
ħ2

2m
∇2Ψ + W(r)Ψ .

To je iskani kvantni gibalni zakon za ansambel delcev v
potencialnem polju, recimo za elektrone v množici vodikovih
atomov. Opisuje, kako se začetni valovni paket ansambla
spreminja s časom. Zakona nismo (deduktivno) izpeljali iz kakšnih
postulatov, ampak smo ga (induktivno) postavili z bolj ali manj
upravičenim posploševanjem delnih spoznanj. Drugače tudi ne
gre: osnovnih zakonov pač ne moremo izpeljati iz ničesar; če bi
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Tok verjetnosti

(42.19)

Stacionarna stanja

(42.20)

(42.21)

(42.22)

jih lahko, bi prenehali biti osnovni zakoni. Ali je pravkar
postavljeni zakon pravilen ali ne, pa bomo sodili na podlagi
njegovih napovedi oziroma posledic.

Ko se valovni paket giblje ali deformira, se v točkah prostora
spreminja tamkajšnja verjetnostna gostota. Sprememba gostote
znaša ∂ρ/∂t = ∂/∂t (Ψ*Ψ) = Ψ*'Ψ + Ψ*Ψ'. Časovni odvod Ψ' izrazimo
iz gibalne enačbe in časovni odvod Ψ*' iz konjugirane gibalne
enačbe (zamenjamo Ψ → Ψ* ter i → −i), pa dobimo ∂ρ/∂t =
(ħ/2mi) (∇2Ψ*Ψ − Ψ*∇2Ψ). Izraz v oklepaju zapišemo kot
∇ · (Ψ*∇Ψ − Ψ∇Ψ*). Lokalna sprememba gostote je torej enaka
divergenci gostote toka

∂ρ
∂t

+∇ · j= 0

j=
ħ

2mi
(Ψ*∇Ψ − Ψ∇Ψ*) .

To je kontinuitetna enačba za verjetnost. Integracija po
prostornini pove ∫ ∂ρ/∂t dV = ∫∇ · jdV. Leva stran je enaka
d/dt ∫ ρ dV in desna ∫ jdS. Z besedami: pretok verjetnosti skozi
zaprto ploskev je enak spremembi zaobjete verjetnosti. Tako tudi
mora biti, saj elektroni ne nastajajo in ne izginjajo. Posebej za
ravni val dobimo ρ = |A2| in j = |A2|G/m, iz česar sledi j = ρv.
Verjetnostna gostota in gostota verjetnostnega toka sta povezani
na enak način kot številčna gostota in gostota številčnega toka.
To seveda ni nič čudnega, saj smo verjetnost lege posamičnega
delca pravzaprav definirali kot številčno gostoto v ansamblu
delcev.

42.7 Lastne funkcije energije
Poizkusimo poiskati pakete/stanja, v katerih je verjetnostna
gostota neodvisna od časa. Tedaj mora imeti valovna funkcija
obliko

Ψ(x,t) = ψ(x) e−iωt ,

saj je |exp (−iωt)|2 = 1. Takim stanjem rečemo stacionarna stanja.
Ker je njihova frekvenca ostro določena, je takšna tudi njihova
energija E = ħω. Zapisano valovno funkcijo vstavimo v kvantni
gibalni zakon (42.17) in dobimo

−
ħ2

2m
∂2ψ
∂x2 + [W(x) − E]ψ = 0

oziroma v treh dimenzijah (SCHRÖDINGER)

−
ħ2

2m
∇2ψ + [W(r) − E]ψ = 0 .
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Lastne funkcije
energije

(42.23)

(42.24)

(42.25)

To je stacionarna valovna enačba. V njej nastopa poleg neznane
valovne funkcije tudi neznana energija. Enačba določa, kakšne so
stacionarna stanja ansambla delcev v predpisanem potencialu.

Ni vsaka valovna funkcija, ki zadošča stacionarni valovni enačbi,
že kar sprejemljiva. Njen verjetnostni pomen zahteva, da mora
biti enolična, omejena in kvadratno integrabilna. Nadalje je prvi
odvod funkcije povezan z gibalno količino in drugi s kinetično
energijo, ki morata biti obe enolični in končni, zato mora biti
funkcija še gladka, to je, ne sme imeti skokov ali lomov.

Prosti elektroni v curku imajo lahko kakršnokoli energijo. Za
elektrone, zaprte v atomih, pa vemo, da imajo le diskretne
vrednosti energije. To nas navaja na naslednjo domnevo.
Stacionarna valovna enačba za vezani delec v danem potencialu
W(x) je podvržena tako zahtevnim robnim pogojem, da ji
zadoščajo le izbrane energije En in njim ustrezajoče izbrane
valovne funkcije ψn(x). Poimenujemo jih lastne energije in lastne
funkcije energije. Drugačnemu potencialu pa ustreza drug nabor
lastnih energij in lastnih funkcij. Vezani elektron je torej lahko v
tem ali onem čistem stanju

Ψ(x,t) = ψn(x) e−iEnt /ħ

ali pa v kakršnikoli linearni kombinaciji dveh ali več čistih stanj,
to je v mešanem stanju:

Ψ(x,t) =∑ cnψn(x) e−iEnt /ħ .

Čisto stanje si razlagamo tako, da je vsak ansambelski elektron v
istem stanju, na primer ψ1, in ima isto energijo, namreč E1. Pod
mešanim stanjem pa razumemo, da je, na primer, nekaj
ansambelskih elektronov v stanju ψ1 z energijo E1 in nekaj v
stanju ψ2 z energijo E2. Kakor torej posamičen elektron ni hkrati
na dveh mestih in nima hkrati dveh hitrosti, tako tudi nima hkrati
dveh energij. Če bi ansambel lahko sestavili iz zaporednih
meritev istega elektrona v enakem mešanem stanju, bi dobili zdaj
tako, drugič drugačno čisto stanje/energijo. Mešano stanje tudi ni
več stacionarno, saj posamezne funkcije ψn(x) ne nihajo sinhrono.
Verjetnostna gostota se zato s časom spreminja – ansambelski
paket se deformira oziroma giblje.

Izračunajmo še gostoto verjetnosti za mešano stanje. Ta znaša
Ψ*Ψ = (∑ cn* exp(iEnt/ħ)ψn*)· (∑ cm exp(−iEnt/ħ)ψm), kar uredimo v

Ψ*Ψ = ∑
n

∑
m

cn*cm e−i(Em−En)/ħ ψn*ψm .

Verjetnostna gostota paketa torej niha s frekvencami, ki so
podane z razlikami energij Em − En med čistimi stanji. Nazorno si
predstavljamo, da je z verjetnostno gostoto elektrona v atomu
opisana tudi njegova gostota naboja. Potem vidimo: kakor niha
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Ortogonalnost lastnih
funkcij

(42.26)

(42.27)

(42.28)

Razvoj po lastnih
funkcijah

gostota naboja, tako niha tudi izsevana svetloba. Črtasti sevalni
spektri naravno sledijo iz energijskih stanj paketa.

Dobro bi bilo še raziskati, kakšni so produkti lastnih funkcij
ψn*ψm. Za začetek naj bosta izbrani funkciji ψn in ψm realni.
Vemo, da zadoščata isti stacionarni valovni enačbi
−ħ2/2m∇2ψn + Wψn = Enψn in −ħ2/2m∇2ψm + Wψm = Emψm. Prvo
enačbo pomnožimo s ψm in drugo s ψn, potem drugo enačbo
odštejemo od prve in dobljeno razliko integriramo po vsem
prostoru: −ħ2/2m ∫ (ψm∇2ψn − ψn∇2ψm) dV = (En − Em) ∫ ψmψn dV.
Levi integrand spremenimo v divergenco ∇(ψm∇ψn − ψn∇ψm).
Prostorninski integral divergence lahko spremenimo v integral po
objemajoči ploskvi. Na tej ploskvi, če je zelo daleč, pa so valovne
funkcije enake nič, s tem pa postane nič tudi integral. Sledi, da je
tudi desna stran enačbe enaka nič. Ker je En različen od Em, mora
veljati ∫ ψmψn dV = 0, če n ≠ m. Rečemo, da sta funkciji
ortogonalni. Na podoben način pokažemo, da ortogonalnost velja
tudi za kompleksne funkcije, pri čemer

∫ ψm*ψn dV = 0, če n ≠ m .

Če torej zapisano gostoto Ψ*Ψ integriramo po vsem prostoru, so
integrali ψn*ψm različni od nič samo takrat, ko n = m. Zaradi
normiranosti je vsak enak ena. Tako ugotovimo

∑ |cn|2 = 1 .

Verjetnosti se seštevajo. Zato je verjetnost, da paketu izmerimo
energijo En, enaka

P(En) = |cn|2 ,

povprečje vseh različnih izmerkov pa znaša ⟨E⟩ = ∑ |cn|2En.

Sestavljanje ortogonalnih lastnih funkcij energije v mešano stanje
spominja na sestavljanje harmoničnih valov v njihovo
superpozicijo. Takoj se porodi misel, da je možno tudi obratno:
morda lahko kakršnokoli stanje Ψ(x,0) razvijemo v uteženo vsoto
ortogonalnih lastnih funkcij energije, torej Ψ(x,0) = ∑ cnψn(x), pri
čemer so koeficienti razvoja podani kot cn = ∫ ψn*Ψ dV. Če je to
res – in privzeli bomo, da je – potem lahko s primerno izbiro
koeficientov opišemo kakršnokoli razporeditev delcev v prostoru
ob začetnem času t = 0, nadaljni razvoj pa je enolično določen kot
Ψ(x,t) = ∑ cnψn(x)eiEnt/ħ. Težava je seveda v tem, da moramo
poznati lastne funkcije energije za aktualni potencial.

42.8 Sipanje na potencialni oviri
Do sedaj smo določili le valovne funkcije ansambla elektronov za
gibanje v prostoru, kjer ni bilo električnega potenciala; to so bili
ravni valovi oziroma njihove superpozicije. Ugotovitve veljajo v
nespremenjeni obliki tudi za gibanje v konstantnem potencialu.
Saj tam ne delujejo na delec nobene sile.
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Potencialna stopnica

Odboj in prepustnost

(42.29)

Tuneliranje delca

Zdaj je napočil čas, da pogledamo, kakšne so valovne funkcije pri
gibanju elektronov v prostorsko spremenljivih poljih potenciala.
Ločimo dve kvalitativno različni vrsti gibanj: v prvem primeru
prileti elektron od zunaj na potencialno spremembo, recimo pri
vpadu na "rob" atoma, v drugem pa je elektron ujet znotraj
potencialne jame, recimo v "notranjosti" atoma. Govorimo o
sipanju in o vezanem gibanju elektrona.

Za obravnavo sipanja izberemo najpreprostejši primer: vpad
elektrona na stopničast potencialni klanec: na intervalu x < 0
znaša W = 0, na intervalu x > 0 pa W = W0. Pričakujemo, da bomo
tako spoznali tipične lastnosti sipanja tudi na drugih, bolj
zapletenih potencialnih ovirah.

Slika 42.7 Vpad delcev na potencialno
stopnico. Stopnica je nižja od kinetične
energije delca. Na stopnici se nekaj delcev
odbije in nekaj se jih prepusti. (Thomas, D.)

Naj elektroni vpadajo na klanec z leve strani. Dopustimo
možnost, da se elektron na klancu odbije ali prepusti, kakor nas
uči svetloba. Za elektron – vpadni, odbiti ali prepuščeni – je
mehanska energija, to je vsota njegove kinetične in potencialne
energije, med letom vedno konstantna: G2/2m + W = E. Iz tega
sledi, kako je gibalna količina elektrona odvisna od potenciala, v
katerem se giblje: G = √(2m(E − W)). Podobno velja za valovni
vektor k = G/ħ: na levi strani znaša k1 = √(2mE/ħ2) in na desni
k2 = √(2m(E − W)/ħ2). Valovna funkcija na levi je vsota ravnega
vpadnega in ravnega odbitega vala: ψ1 = exp (ik1x) + R exp (−ik1x).
Amplitudo vpadnega vala smo postavili na 1. Valovna funkcija na
desni pa pripada ravnemu prepuščenemu valu: ψ2 = T exp (ik2x).
Na mestu potencialnega skoka pri x = 0 morata biti leva in desna
valovna funkcija enaki: ψ1 = ψ2. Prav tako morata biti enaka njuna
prva odvoda: ∂ψ1/∂x = ∂ψ2/∂x. V tadva pogoja vstavimo obe valovni
funkciji in dobimo dve enačbi za koeficienta R in T. Iz njiju
izračunamo:

R =
k1 − k2

k1 + k2

T =
2k1

k1 + k2
.

Verjetnost odboja znaša Pr = |R|2. Ker se število elektronov
ohranja, znaša verjetnost prepusta Pt = 1 − Pr.

Z računom smo pravzaprav zajeli dva primera: energija
vpadajočih elektronov je večja od potencialnega skoka ali pa je
manjša. V prvem primeru sta valovna vektorja na obeh straneh
realna, prav tako amplitudi R in T. Imamo odboj in prepustnost. V
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Neskončna
potencialna jama

(42.30)

drugem primeru pa postane k2 imaginaren. Zapišemo
k2 = √(2m(E − W)) = i√(2m(W − E)) = iκ, s čimer postane
prepuščena valovna funkcija ψ2 = T exp (−κx). Ta hitro pojema z
razdaljo. Verjetnost odboja je v tem primeru Pr = R*R = 1 in
verjetnost prepusta Pt = 0.

Slika 42.8 Vpad delcev na potencialno
stopnico. Stopnica je višja od kinetične
energije delca. Vsi delci se odbijejo, nekateri
pa predtem tunelirajo v stopnico. (Thomas,
D.)

Elektroni se torej pri vpadu na potencialni klanec vedejo čisto
drugače kot klasični delci. Klasični delci z dovolj energije se vsi
povzpnejo čez klanec in nadaljujejo pot. Če energije nimajo
dovolj, se pa vsi obrnejo nazaj še pred vrhom. Kvantni delci pa se
deloma odbijejo, tudi če imajo dovolj energije. Če energije nimajo
dovolj, se pa kljub temu deloma povzpnejo preko vrha klanca in
se šele od tam odbijejo. Rečemo, da elektroni tunelirajo v
stopnico. Če bi bila ta kratka, bi na drugi strani celo prišli ven in
nadaljevali pot.

42.9 Gibanje v potencialni jami
Najpreprostejši primer vezanega gibanja je elektron v neskončni
potencialni jami: na intervalu [0, D] znaša W = 0 in zunaj W = ∞.

Slika 42.9 Gibanje delca v neskončni potencialni jami.
Vrisane so lastne valovne funkcije energije. (Anon)

Lastne valovne funkcije energije v jami so določene s stacionarno
valovno enačbo ħ2/2m ψ" + Eψ = 0. To je dobro znana enačba
ψ" + ω2 ψ = 0 s konstanto ω2 = 2mE/ħ2. Njene rešitve so sin ωx in
cos ωx. Zahtevamo, da je ψ na robovih enaka nič. Ni namreč
mogoče, da bi delec imel kje neskončno veliko potencialno
energijo. Pogoju na levem robu ustrežemo z izbiro funkcije sinus.
Pogoju na desnem robu pa ustrežemo s pogojem sin ωD = 0, torej
ωD = n/2, n = 1, 2, 3 … To seveda pomeni, da so lastne energije
delca

En =
ħ2

2m
(

nπ
D

)2, n = 1, 2, 3 ….
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(42.31)

Čista in mešana
stanja

Razmazanost gibanja

in (nenormirane) lastne funkcije

ψn = sin
nπ
D

x , n = 1, 2, 3 …

Zdaj vidimo, kako računi vodijo do diskretnih valovnih funkcij in
do diskretnih energij: tako, da možnim valovnim rešitvam
predpišeme določene robne pogoje. Enega izmed teh smo
pravkar spoznali: v področju neskončno velike potencialne
energije mora biti valovna funkcija enaka nič.

Naj bo ansambel zaprtih delcev v kakšnem izmed čistih stanj, na
primer v osnovnem stanju n = 1 z valovno funkcijo
Ψ = sin (πx/D) exp (−iE1t/ħ). Stanje ansambla je tedaj opisana z
verjetnostno gostoto |Ψ|2 = |ψ1|2 = sin2 (πx/D) in se s časom ne
spreminja. Mislimo si, da kakemu ansambelskemu delcu
izmerimo energijo na primeren način. Meritev bi pokazala E1.
Pravzaprav je res obratno: če izmerimo E1, potem vemo, da je bil
delec v stanju ψ1.

Slika 42.10 Verjetnostna gostota za delec v
potencialni jami. Prikazani sta gostoti v dveh
čistih stanjih Ψ1 (modro) in Ψ2 (zeleno). V
čistem stanju se gostota ne spreminja s
časom.

Delci pa so seveda lahko tudi v mešanem stanju, recimo v takem
z valovno funkcijo Ψ = sin (πx/D) exp (−iE1t/ħ) +
sin (2πx/D) exp (−iE2t/ħ). To ni več lastna funkcija in verjetnostna
gostota |Ψ|2 = sin2 (πx/D) + sin2 (2πx/D) +
2sin (πx/D) sin(2πx/D) cos (E2 − E1)t/ħ se zato s časom spreminja. V
ansamblu delcev v takem stanju bi izmerili posamič E1 ali E2 in
sicer v enakih relativnih deležih

Slika 42.11 Verjetnostna gostota za delec v
potencialni jami. Prikazna je gostota v
mešanem stanju Ψ1 + Ψ2. Gostota se s časom
periodično spreminja.

Kakšna pa je gibalna količina delca v potencialni jami? Ker
E = G2/2m, sledi G = √(2mE). Vstavimo izraz za energijo in dobimo
G = ± ħ(πn/D), n = 1, 2, … V osnovnem stanju je G = ± ħ(π/D). Pol
delcev v ansamblu se giblje v desno, pol v levo. Posamičen delec
torej ne miruje, ampak se giblje. Ožja kot je jama, hitreje se v njej
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Končna potencialna
jama

Valovna enačba zanj

(42.32)

Brezdimenzijska
oblika enačbe

giblje. Gibanje je razmazano, kakor tudi mora biti: Δx ΔG ∼
Dħπ/D = πħ ≥ ħ/2. Če je ansambel delcev v višjem stanju, imajo
delci večjo gibalno količino. Če je v mešanem stanju, pa ima nekaj
delcev takšno, nekaj pa drugačno.

Če ima potencialna jama končno globino, pričakujemo, da
valovne funkcije na robovih niso nič, ampak da eksponentno
tunelirajo v steno. Saj nas to uči sipanje na visoki oviri. Pri tem se
morajo notranji sinusi rahlo deformirati, tako da se gladko
raztegnejo čez robove v eksponentne repke. Temu ustrezno se
morajo prilagoditi tudi lastne energije. Brez računanja smo torej
izdelali kvalitativno sliko valovnih funkcij v končni potencialni
jami.

Slika 42.12 Gibanje delca v končni potencialni jami.
Vrisane so lastne valovne funkcije energije. (Anon)

Spekuliramo lahko celo naprej. Vidimo namreč, da v potencialni
jami število n podaja število vozlišč valovne funkcije. Osnovno
stanje z najnižjo energijo odgovarja funkciji brez vozlišč. Vsaka
naslednja rešitev pa ima za eno večje število vozlišč. Privlačna je
misel, da to velja tudi za bolj splošne potencialne jame, take, ki
imajo poševne stene.

42.10 Harmonični oscilator
Najpreprostejše "realistično" vezano gibanje delca je tisto, ko ta
delec harmonično niha pod vplivom elastične sile F = −kx. To silo
predstavimo s potencialom F = −∂W/∂x, torej
W = 1/2kx2 = 1/2mω2x2. Pri tem je m masa delca in ω njegova
frekvenca. Tako nihajo – po klasični teoriji – atomi v molekulah in
kristalih. Koristno bi bilo, če bi o tem gibanju kaj več vedeli. Za to
moramo rešiti valovno enačbo

−ħ2

2m
d2ψ
dx2 +

1
2

mω2x2ψ = Eψ .

Preden se lotimo reševanja, preoblikujmo enačbo v
brezdimenzijsko obliko. Opazimo, da ima količina m2ω2/ħ2

dimenzijo (dolžina)−4, zato definiramo α = √(ħ/mω), ki ima
dimenzijo dolžine. Za neodvisno spremenljivko nato uvedemo
ρ = x/α. Energijo pa normiramo kot ε = 2E/ħω. S tem se valovna
enačba polepša v brezdimenzijsko obliko d2ψ/dρ2 = (ρ2 − ε)ψ (1).

303

pict3c/well2.jpg
pict3c/well2.jpg


Asimptotsko vedenje

Osrednji polinom

Lastne energije

(42.33)

Lastne funkcije

(42.34)

(42.35)

Za velike vrednosti ρ velja (ρ2 − ε) → ρ2 in enačba se poenostavi v
d2ψ/dρ2 = ρ2ψ. Poskusimo jo rešiti z eksponentnim nastavkom
ψ = exp (λρ2/2). Vstavitev v enačbo pove λ2 = 1, torej λ = ± 1, zato
ψ = A exp (ρ2/2) + B exp (−ρ2/2). Prvi člen narašča v neskončnost,
zato ni sprejemljiv in ga zavržemo. Rešitev na celotnem območju
zato iščemo z nastavkom ψ = s(ρ) exp (−ρ2/2). Ko ga vstavimo v
(1), dobimo d2s / dρ2 − 2ρds / dρ + (ε − 1) = 0 (2).

Spomnimo se, da ima n-ta vzbujena valovna funkcija v jami n
vozlišč, zato je smiselno iskati rešitev v obliki polinoma stopnje n,
torej s(ρ) = ∑ ajρj. Če ta nastavek vstavimo v (2), dobimo
∑[(j + 1)(j + 2)aj+2 − (2j + 1 − ε)aj]ρj = 0. Vsak koeficient mora biti
enak nič, kar pomeni aj+2 = [(2j + 1 −ε)/(j + 1)(j + 2)]aj. To je
rekurzijska povezava iz poljubnih začetnih a0 in a1 za vse
naslednike. Vsi sodi a-ji so nasledniki a0 in vsi lihi a-ji so
nasledniki a1.

Rekurzijska veriga – soda ali liha – se mora ustaviti pri j = n, to je,
vsi njeni nadaljnji členi morajo biti enaki nič. To dosežemo z
zahtevo 2n + 1 − ε = 0, iz česar sledi ε = 2n + 1 oziroma
(SCHRÖDINGER)

En = ħω(n +
1
2

), n = 0, 1, 2, 3 … .

Delec v harmoničnem potencialu ima torej kvantizirane energije,
kakor tudi mora biti. V osnovnem stanju ima energijo E0 = ħω/2.
Razmiki med energijskimi nivoji so enakomerni.

Določiti moramo še lastne funkcije. Iz vsega povedanega
povzamemo

ψn(x) = (
n

∑
j=0

ajρj) e−ρ2/2 = Hn(ρ) e−ρ2/2 , ρ = √(mω/ħ)x

aj+2 =
2(j − n)

(j + 1)(j + 2)
aj .

Izračunajmo prvih nekaj (nenormiranih) lastnih funkcij! Če je n
sod, postavimo a0 = 1 in vse lihe koeficiente na nič. Če je n lih,
postavimo a1 = 1 in vse sode koeficiente na nič. Tako dobimo, kot
primer

ψ0 = e−ρ2/2

ψ1 = ρ e−ρ2/2 .

Po potrebi funkcije še normiramo. Polinom Hn je stopnje n in
vsebuje samo sode ali samo lihe potence. Tem polinomom rečemo
harmonični polinomi.
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Valovna enačba zanj

(42.36)

(42.37)

Ločitev radialnega
dela

(42.38)

(42.39)

Ločitev polarnega in
azimutnega dela

Slika 42.13 Lastne funkcije v
harmoničnem oscilatorju. (Anon)

Vse, kar smo prej povedali o čistih in mešanih stanjih za delec v
pravokotni potencialni jami, velja z ustreznimi spremembami tudi
za delec v harmonični jami.

42.11 Enoelektronski atom
Poiščimo sedaj energijske nivoje in lastne funkcije energije za
vodikov atom. Potencialna energija elektrona z nabojem
q = e/√(4πε0) v elektrostatičnem polju jedra z nabojem q znaša
W(r) = −q2 / r. Valovna enačba se zato glasi

−ħ2

2m
∇2ψ −

q2

r
ψ = Eψ .

Operator ∇2 zapišemo – na že znani način – v polarnih
koordinatah in dobimo

1
r2

∂
∂r

(r2 ∂ψ
∂r

) +
1

r2 sin θ
∂
∂θ

(sin θ
∂ψ
∂θ

) +
1

r2 sin2 θ
∂2ψ
∂φ2 +

+
2m
ħ2 (E +

q
r

)ψ = 0 .

Enačba je strašljiva. Rešitev iščemo v obliki produkta dveh
funkcij, od katerih je ena odvisna zgolj od radija in druga zgolj od
smeri

ψ(r,θ,φ) = R(r)Y(θ,φ) .

Zapisani produkt vstavimo v (42.37), izvlečemo "konstantne"
faktorje izpod odvajanj, množimo z r2 in delimo z RY ter zapišemo
radialne člene na levi, krogelne pa na desni strani enačbe. Levi
del je odvisen le od r, desni le od θ in φ. Za vse točke prostora sta
lahko medsebojno enaka le, če je vsak zase enak isti konstanti A,
torej

d
dr

(r2 dR
dr

) +
2mr2

ħ2 (E +
q2

r
)R − AR = 0

1
sin θ

d
dθ

(sin θ
dY
dθ

) +
1

sin2θ
d2Y
dφ2 + AY = 0 .

Pridelali smo dve enačbi, radialno in krogelno. Slednja še vedno
vsebuje dve spremenljivki, θ in φ. Potrebna je njena nadaljnja
ločitev. Ravnamo tako kot prej. Z nastavkom
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(42.40)

(42.41)

Rešitev azimutne
enačbe

(42.42)
Rešitev polarne

enačbe

(42.43)

(42.44)

(42.45)

(42.46)

(42.47)

Y(θ,φ) = Θ(θ)Φ(φ)

razcepimo smerno enačbo v polarno in azimutno enačbo, pri
čemer vpeljemo konstanto B, in po majhni preureditvi dobimo

1
sin θ

d
dθ

(sin θ
dΘ
dθ

) + A −
B

sin2 θ
= 0

d2Φ
dφ2 + BΦ = 0 .

Rešiti moramo torej tri enačbe: radialno, polarno in azimutno.
Začnimo z zadnjo, ki je najpreprostejša. Njena rešitev je
Φ = c1 exp (imφ) + c2 exp (−imφ), pri čemer B = m2. "Greenwiški
meridian" atoma lahko postavimo kjerkoli, zato udobno izberemo
c2 = 0. Zahtevamo še, da je azimutna funkcija enolična, to je
Φ(0) = Φ(2π), zato mora biti m celo število. Torej
(nenormalizirano)

Φm(φ) = eimφ , m = 0, ±1, ±2, ±3 … .

Sledi polarna enačba. Vanjo vstavimo B = m2. Nato uvedemo novo
spremenljivko x = cos θ, s čimer prevedemo iskanje funkcije Θ (θ)
na iskanje nove funkcije P(x):

Θ(θ) = P(cos θ) = P(x) .

Diferencial d/dθ = dx/dθ · d/dx = −sin θ d/dx pridela, ob uporabi
identitete sin2 θ = 1 − cos2 θ = 1 − x2, enačbo

(1−x2)
d2P
dx2 − 2x

dP
dx

+ (A −
m2

1−x2 )P = 0 .

Žal koeficienti niso konstante, zato ne vidimo, kako bi enačbo
rešili. Na srečo pa je rešitev že poznana (iz študija stojnega
valovanja na krogelni opni, s katerim se mi nismo ukvarjali); to je
modificirana potenčna vrsta

P(x) = (1 − x2)m/2 [
∞

∑
j=0

a2jx2j +
∞

∑
j=0

a2j+1x2j+1]

aj+2 =
(j + m)(j + m + 1) − A

(j + 1)(j + 2)
aj .

Pri neugodni vrednosti A lahko postane vrsta na definicijskem
intervalu x ∈ [−1, 1] neomejena. Da se to ne zgodi, mora kakšen
koeficient pri rekurziji postati nič; potem postanejo tudi vsi
naslednji koeficienti enaki nič, vrsta postane polinom in
nevarnost je odpravljena. Vidimo, da koeficient aj+2 postane nič,
če (j + m)(j + m + 1) − A = 0. To pa se zgodi, če za j + m = l velja
A = l(l + 1). Dovoljene vrednosti so torej

A = l(l + 1) , l = 0, 1, 2 … in |m| ≤ l .
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(42.48)

Rešitev radialne
enačbe

(42.49)

(42.50)

(42.51)

(42.52)

(42.53)

(42.54)

(42.55)

Za izbrani l in m se torej vrsta P(x) okrajša v polarni polinom
Plm(x). Prvih nekaj polinomov, izračunanih z rekurzijo iz a0 = 1 in
a1 = 1 se glasi (nenormalizirano)

P00(cos θ) = 1
P10(cos θ) = cos θ
P11(cos θ) = −sin θ .

Preostane še radialna enačba, v katero vstavimo A = l(l + 1).
Najprej jo poskušamo poenostaviti. Vpeljemo novo odvisno in
novo neodvisno spremenljivko

u = rR
ρ = κr, κ = √(−2mE/ħ2) .

Ker je energija vezanega elektrona negativna, je podkorenski
izraz pozitiven. Na ta način se radialna enačba poenostavi v
obliko

d2u
dρ2 = [1 −

λ
ρ

+
l(l + 1)

ρ2 ]u = 0 ,

pri čemer λ = 2mq2/ħ2κ. Nato pogledamo, kako se enačba vede
pri velikih in malih vrednostih ρ. Ko ρ → ∞, odpadeta člena 1/ρ in
1/ρ2 ter preostane u" = u. Rešitvi sta exp(ρ) in exp(−ρ). Prva gre v
neskončnost, zato obdržimo le drugo. Ko ρ → 0, prevlada člen 1/ρ2

ter preostane u" = [l(l+1)/ρ2]u. To enačbo rešujemo s potenčnim
nastavkom u = ρs, kar pokaže s(s − 1) = l(l + 1), torej s = −l in
s = l+1. Rešitev ρ−l gre v neskončnost, zato obdržimo drugo, ρl+1.
Sedaj, ko poznamo obe limitni rešitvi, ju faktoriziramo ven iz
splošne rešitve, to je, postavimo

u = ρl+1 e−ρ v(ρ) .

Vstavitev v radialno enačbo pokaže

ρ
d2v
dρ2 + 2(l + 1 − ρ)

dv
dρ

+ (λ − 2(l + 1))v = 0 .

Zapisano enačbo rešujemo z nastavkom

v(ρ) =∑ajρj ,

kar privede – z nekaj računanja – do koeficientne vsote, ki je
enaka nič. Zato mora biti vsak koeficientni člen enak nič, iz česar
sledi rekurzija

aj+1 =
2(j + l + 1) − λ

(j + 1)(j + 2(l + 1))
aj .

Vrsto spet odrežemo v polinom z zahtevo 2(j + l + 1) − λ = 0. To
pove, da mora veljati

λ = 2n, n = 1, 2, 3 … in l < n .

Upoštevajoč definicijo λ neposredno sledi kvantizacija energije,
kakor tudi mora biti (SCHRÖDINGER):
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(42.56)

(42.57)

Združitev delnih
rešitev

(42.58)

En =
mq4

ħ2n2 , n = 1, 2, 3 …

S tem izrazom za energijo zapišemo ρ = κr kot ρ = r/nrB. Izpišemo
tudi že lahko poljubno radialno funkcijo. Nekaj prvih
(nenormiranih) se glasi

R10 = exp
−r
rB

R20 = (1 −
r

2rB
) exp

−r
2rB

R21 =
r
rB

exp
−r
2rB

.

Radialne, polarne in azimutalne delne rešitve združimo v celotne
lastne funkcije vodikovega atoma: ψnlm(r,θ,φ) =
Rnl(r)Plm(cosθ)Φm(φ). Kadar je to potrebno, izračunamo še
normirno konstanto A preko pogoja 1/A = ∫ |ψ|2 dV =
∫ |ψ|2 r2 sin θ dr dφ dθ. Lastne funkcije so oštevilčene s kvantnimi
števili n, l in m. Ta števila, kot smo ugotovili, niso neodvisna.
Izbira n omejuje l in izbira l omejuje m. Ponovimo ugotovitev:

n = 1, 2, 3 …
l = 0, 1, 2 … n − 1
m = 0, ±1, ±2 … ±l .

Navedena kvantna števila močno spominjajo na kvantna števila
pri planetarnem modelu; to je tudi razlog, da smo jih enako
poimenovali. Pomembna pa je ena izjema: število l ne gre več od
1 do n, pač pa od 0 do n − 1. To nas navaja na misel, da je vrtilna
količina atoma – ki jo še nameravamo izračunati – v marsikaterem
stanju enaka nič.

Kvadrat valovne funkcije je verjetnostna gostota, da se elektron
znajde v kakšni točki v okolici jedra. Nazorno si jo predstavljamo
kot oblak, ki ga gibajoči se elektron zarisuje okoli jedra.

Slika 42.14 Atom vodika v različnih lastnih
stanjih nl: 10, 20, 21, 30, 31, 32. Ta stanja
so označena kot 1s, 2s, 2p, 3s, 3p, 3d.
Prikazana je verjetnostna porazdelitev
elektronskega oblaka. Namesto po ostrih
orbitah se giblje elektron znotraj
razmazanih orbital. (McQuarrie, 1983)

Izračunajmo še povprečni radij elektronskega oblaka v osnovnem
(normiranem) stanju R10 = (1/√(πrB

3) exp (−r/rB)! Velja
⟨r⟩ = ∫ r|R10|2 dV. Substituiramo dV = r2 dr sin θ dφ dθ in
izračunamo ⟨r⟩ = 3/2 · rB.
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Lastne enačbe količin

Lastna enačba za
vrtilno količino

(42.59)

Velikost vrtilne
količine

(42.60)

Na enak način, kot smo obravnavali vodikov atom, lahko
obravnavamo tudi vodiku podobne atome, to je enoelektronske
atome v polju jedra z nabojem Zq. Naboj jedra vstopa v
obravnavo preko potencialne energije W = −Zq2/r. Kjerkoli torej v
obravnavi naletimo na q2, ga moramo nadomestiti z Zq2. Glavno
mesto, kjer se skriva q2, pa je v definiciji atomske dolžine
rB = ħ2/mq2. Kjerkoli naletimo na rB, ga moramo zato nadomestiti
z rB/Z.

42.12 Vrtilna količina
Če ima valovna funkcija ψ obliko ravnega vala, se v njej skrivajo
elektroni z ostro določeno gibalno količino G in velja "lastna
enačba" −iħ∇ψ =Gψ. Kadarkoli merimo, zmeraj dobimo enako
vrednost. Če ima funkcija drugačno obliko, pa imajo elektroni v
njej razmazano gibalno količino – enkrat izmerimo takšno, drugič
drugačno.

Podobno velja za kinetično energijo: elektrone z ostrimi
vrednostmi K =G2/2m najdemo le v ravnih valovih in ti zadoščajo
lastni enačbi [(−iħ∇)2/2m]ψ = Kψ. Ravni valovi so torej lastne
funkcije tako gibalne količine kot kinetične energije.

In podobno velja za energijo v potencialnem polju: ostre
vrednosti E = K + W najdemo samo v takšnih valovnih funkcijah,
ki zadoščajo lastni enačbi [(iħ∇)2/2m + W]ψ = Eψ. Za delec v
neskončni potencialni jami, na primer, so to posamični
harmonični valovi.

Pri gibanju elektrona v treh dimenzijah, na primer v atomih, se
zakonu o ohranitvi energije pridruži še zakon o ohranitvi vrtilne
količine: r×G=L. Naravno je predpostaviti, da vrednosti vrtilne
količine in njim ustrezajoče valovne funkcije določa lastna enačba

−iħ(r×∇)ψ =Lψ .

Enačbo hočemo zapisati v krogelnih koordinatah, da bo primerna
za obravnavo gibanja v centralnih potencialih. — Enačbo najprej
zapišemo v komponentni obliki v kartezičnih koordinatah. Prva
komponenta se glasi Lx = −iħ(y∂/∂z − z∂/∂y) in ostali dve
podobno. — Nato zapišemo kartezične odvode s krogelnimi:
∂/∂x = ∂r/∂x · ∂/∂r + ∂θ/∂x · ∂/∂θ + ∂φ/∂x · ∂/∂φ in podobno za ostala
dva. — Sledi dejanski izračun odvodov ∂r/∂x, ∂θ/∂x, ∂φ/dx ter
podobno za ostale. — Potem vse skupaj združimo, vstavimo
"manjkajočo" valovno funkcijo in dobimo enačbe za Lx, Ly in Lz
kot funkcije krogelnih koordinat in odvodov nanje.

Velikost vrtilne količine dobimo kot L2 = Lx
2 + Ly

2 + Lz
2, kar znese

1
sin θ

d
dθ

(sin θ
dψ
dθ

) +
1

sin2θ
d2ψ
dφ2 = −

L2

ħ2 ψ.
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(42.61)

Njena navpična
komponenta

(42.62)

(42.63)

Vodikov atom in
vrtilna količina

Sistem delcev

(42.64)

(42.65)

Veliko presenečenje! Dobili smo krogelno enačbo (42.39) s
konstanto A = L2/ħ2. Kot vemo, so rešitve te enačbe – krogelne
funkcije Ylm = Pl(cos θ) exp imφ – možne le za celoštevilske
vrednosti A = l(l+1) in celoštevilske vrednosti |m| ≤ l, zato mora
biti vrtilna količina takole kvantizirana:

L2 = l(l + 1)ħ2, l = 0, 1, 2, 3, …

Ista diferencialna enačba določa tako smerno gostoto
elektronskega oblaka kot njegovo vrtilno količino zato, ker je tisti
del operatorja ∇2, ki vključuje kote, sorazmeren z −L2/r2.

Izmed treh komponent vrtilne količine je najpreprosteje zapisana
"navpična" komponenta

−iħ
∂ψ
∂φ

= Lzψ .

Takoj vidimo, da ima rešitev exp (imφ), torej tudi katerokoli Ylm.
Neposredno sledi kvantizacija

Lz = mħ, m = 0, ±1, ±2, … ±l

Pri izpeljavah se nismo naslanjali na nikakršen potencial, zato
veljajo ugotovitve povsem splošno. Uporabne so povsod tam, kjer
se vrtilna količina ohranja, to pa je zagotovo v vodikovem atomu.

Kar smo ugotovili glede vrtilne količine, se deloma razlikuje od
napovedi planetarnega vodikovega modela. Prejšnja spoznanja
moramo popraviti takole.

Minimalna vrednost l znaša 0 in ne 1. To pomeni, da je vrtilna
količina atoma v stanjih 100, 200 … enaka nič. Ta stanja so
krogelno simetrična. Krogelno simetričen atom se "ne vrti".

Maksimalna vrednost l znaša (n − 1) in ne n. To pomeni, je število
podstanj l, ki pripadajo stanju n, nespremenjeno, namreč n.

V stanju l ne velja L = lħ, ampak L = √(l(l+1))ħ.

V stanju l je maksimalna velikost Lz nekaj manjša od L. To
pomeni, da se vektor vrtilne količine nikoli ne usmeri povsem
vzdolž osi z.

42.13 Večelektronski atomi
Doslej smo razvili valovni opis le za en elektron v polju jedra
(pravzaprav za ansambel enoelektronskih atomov). Posplošitev na
atome z več elektroni je neposredna. Ansambel dvoelektronskih
atomov, na primer, opišemo z valovno funkcijo

ψ(x1,y1,z1,x2,y2,z2) = ψ(1,2) .

To je funkcija v konfiguracijskem prostoru z 2 · 3 = 6
koordinatami. Prostorninski element znaša

dV = dx1dy1dz1dx2dy2dz2

in ustrezna gostota verjetnosti
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(42.66)

Valovna enačba
sistema

(42.67)

(42.68)

Simetrične in
antisimetrične

funkcije

dP
dV

= |ψ|2 .

Valovna funkcije je normirana: ∫ |Ψ|2dV = 1. Mutatis mutandis
velja povedano tudi za atome z več kot dvema elektronoma.

Kinetična energija dvoelektronskega sistema je enaka vsoti
posamičnih kinetičnih energij in potencialna energija sistema je
odvisna od leg vseh elektronov. Celotna energija je potem
E = K1 + K2 + W(1,2). Valovna enačba se zato glasi

−[
ħ2

2m
∇1

2 +
ħ2

2m
∇2

2] ψ + W(1,2)ψ = Eψ .

Če med elektroni ni sil (pa so), je celotna potencialna energija
enaka vsoti posamičnih potencialnih energij v zunanjem polju:
W(1,2) = W(1) + W(2). Rešitev postavimo v obliki produkta
ψ(1,2) = u(1)v(2). Valovna enačba postane vsota dveh členov, ki je
enaka E. To je mogoče le, če je prvi člen enak konstanti E1 in
drugi konstanti E2. Enačba se zato razcepi v dve enačbi

−
ħ2

2m
∇1

2 u + W(1)u = E1u

−
ħ2

2m
∇2

2 v + W(2)v = E2v

E = E1 + E2 .

Ustrezna gostota verjetnosti pa je ψ*ψ = u*uv*v. Verjetnost, da en
elektron najdemo na mestu 1 in drugega na mestu 2 je enaka
produktu posamičnih verjetnosti.

Če imata elektrona vzajemno enako potencialno energijo (in
imata jo), je valovna enačba simetrična glede na zamenjavo
koordinat prvega delca s koordinatami drugega, to je, če je ψ(1,2)
rešitev valovne enačbe, je rešitev iste enačbe tudi ψ(2,1). Prav
tako je rešitev linearna kombinacija ψ = c1ψ(1,2) + c2ψ(2,1). Z
izbiro koeficientov c2 = c1 = 1 ali c2 − c1 = −1 dobimo rešitvi
ψ(1,2) + ψ(2,1) ter ψ(1,2) − ψ(2,1). Prvo rešitev imenujemo
simetrično, drugo antisimetrično. Če v prvi zamenjamo 1 z 2, se
valovna funkcija ne spremeni. Druga pa pri istem posegu
spremeni predznak. V obeh primerih se gostota verjetnosti ne
spremeni.

Elektroni so med seboj nerazločljivi. Gostota verjetnosti se ne
sme spremeniti, če kordinate enega zamenjamo s koordinatami
drugega. Računsko gledano pripadajo eni energiji vse mogoče
linearne kombinacije obeh delnih rešitev. Glede na to, kako
izberemo koeficienta c1 in c2, pripade enemu ali drugemu
elektronu drugačna vloga. Vse kar je računsko možno, pa ni tudi
uresničeno. Privlačna je misel, da v naravi obstajajo le take
rešitve, ki so simetrične ali antisimetrične. Očitno je
antisimetrična funkcija v primeru u = v enaka nič: v istem stanju
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Lupinski model
atomov

ne more biti dveh elektronov. Spomnimo se na spin in na
izključitveno načelo [41.13]. Morda pa je to načelo zgolj posledica
dejstva, da so valovne funkcije elektronov naravno
antisimetrične? In zaradi uravnoteženosti: nemara so valovne
funkcije fotonov, ki jih zaenkrat ne poznamo, simetrične? V
podrobnejšo raziskavo se ne bomo spuščali.

Izračunati natančno valovno funkcijo za ansambel atomov z več
kot enim elektronom je brezupno početje. Zlahka pa si ustvarimo
kvalitativno sliko o zgradbi takega atoma v osnovnem stanju. Za
jedro z nabojem Zq poznamo "enodelčne" valovne funkcije ψnlm in
ustrezne energije E(n), vrtilne količine L(l) ter komponente Lz(m).
No, in v ta enodelčna stanja po vrsti vstavljamo elektrone,
upoštevajoč izključitveno načelo. Pri tem privzamemo, da
vstavljeni elektroni nič ne vplivajo drug na drugega. Prvi elektron
gre torej v ψ100 s spinom gor. Naslednji gre tudi tja, vendar s
spinom dol. Sledi zasedba ψ110, ψ11+1 in ψ11−1 ter tako naprej.
Elektroni zapolnjujejo, po vrsti, lupine n = 1, 2 … Znotraj vsake
lupine zapolnjujejo, po vrsti, podlupine l = 0, 1, 2 … n − 1. In
znotraj vsake podlupine zapolnjujejo orbitale m = 0, ± 1 … ± l.
Maksimalno število elektronov v posamični lupini znaša 2n2, torej
2, 8, 18, 32, 50 itd.

Vsaki razporeditvi elektronov – torej vsakemu atomu – pripade
ustrezajoča konfiguracijska gostota, celotna energija, celotna
vrtilna količina j in komponenta celotne vrtilne količine mj. V
polni podlupini je skupna vrtilna količina (vsota vseh orbitalnih in
spinskih) enaka nič, ker na vsak elektron pride drug elektron z
nasprotno konfuguracijo. Ko atom absorbira ali izseva foton, se
mu spremenita energija in vrtilna količina. Če predpostavimo, da
ima foton spin 1, se zaradi ohranitve vrtilne količine spremeni
stanje atoma le za Δj = ± 1 in Δ mj = 0, ± 1. Rečemo, da so to
izbirna pravila sevanja.

Pri planetarnem modelu atoma smo ugotovili [41.11], da
zaporedne krožnice vsebujejo 2, 8, 8, 18, 18 … elektronov. Zdaj
pa pravimo, da so zasedbena števila lupin (ki prevzemajo vlogo
krožnic) 2, 8, 18, 32, 50 … Kaj je torej prav? Pravzaprav oboje. V
tretji energijski lupini gredo res elektroni do 8, vendar s tem
lupina še ni polna. Nekaj naslednjih elektronov gre nato v
spodnje orbitale lupine štiri, ki – tako sklepamo – so energijsko
nižje od višjih orbit v lupini tri. Potem pa dokončajo zapolnjevanje
do 18 v lupini tri. Vse to kaže, da je lupinski model atoma sicer
kvalitativno dober, mu pa še precej manjka do kvantitativne
uporabnosti. Z boljšimi modeli se ne bomo ukvarjali. □
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43

Molekulske vezi

Vrtenje molekul

(43.1)

Kvantna statistika
Molekule – Molekularni plin – Kristali – Elektronski plin – Elektroni v
kovinah – Elektroni v kristalih – Polprevodniki – Zvezdna plazma –
Fotonski plin – Fotoni v votlini

43.1 Molekule
Atomi se združujejo v molekule. Na podlagi doslej povedanega si
predstavljamo, da vezavo ustvarjajo le elektroni v zunanji lupini
atomov – valenčni elektroni. Notranje lupine atomov ostajajo pri
tem bolj ali manj nespremenjene. Možna sta dva mejna primera.
Valenčni elektroni dveh atomov se zberejo v vmesnem prostoru
med obema in s svojo privlačno silo zlepijo preostala pozitivna
iona, na primer (H+)--(H+). To je kovalentna vez. Ali pa valenčni
elektroni enega atoma preidejo k drugemu atomu in ga povsem
obkrožijo, nakar se nastala iona privlačita, na primer (H+)(Cl−).
To je ionska vez. Druge vezi so nekje vmes. Elektronski oblak
nastale molekule opisuje pripadajoča večdelčna valovna funkcija.
Da bi jo – brez približkov – izračunali iz ustrezne valovne enačbe,
je nemogoče. Ukvarjanje s približnimi rešitvami pa je težavno in
ga prepuščamo specialistom.

Molekule, sestavljene iz majhnega števila atomov, so bolj ali manj
toge. Togo telo, ki se vrti okoli izbrane težiščne osi, ima vrtilno
količino L = Jω, pri čemer je J vztrajnostni moment telesa glede
na aktualno vrtilno os. Kinetična energija vrtenja znaša E = 1/2Jω2.
Iz obeh enačb sledi E = L2/2J. Upoštevamo, da je vrtilna količina
kvantizirana (42.61) in dobimo za energije rotatorja

E =
ħ2

2J
l(l + 1), l = 0, 1, 2, 3 …

Vsako stanje z danim l je še (2l + 1)-krat degenerirano po
projekciji vrtilne količine.

Najpreprostejše molekule so dvoatomne, na primer H2 ali HCl. Če
sta atoma oddaljena za R in imata masi m1 in m2, znaša njun
vztrajnostni moment pri vrtenju okrog katerekoli pravokotne
težiščne osi J = μR2, μ = m1m2/(m1 + m2). Predpostavimo, da so
možni le taki sevalni prehodi (emisijski in absorpcijski) med
energijskimi stanji, da Δl = ±1. Pri skoku l + 1 → l se torej zmanjša
energija rotatorja za ΔE = (ħ2/J)l. Frekvence izsevanih črt zato
linearno naraščajo z l: emisijski spekter je črtast in ekvidistanten.
Enako velja za absorpcijski spekter. Sevalne prehode pričakujemo
le pri polarnih molekulah, recimo pri HCl, ne pa tudi pri
nepolarnih, recimo H2 (slednje namreč nimajo električnega
dipolnega momenta). Vrednost J ocenimo na (1 u)(1 Å)2, kar
ustreza energijskim spremembam ΔE ∼ 10−3 eV oziroma valovnim
dolžinam λ ∼ 0,1 mm. Črte vrtilnega spektra zato pričakujemo v
mikrovalovnem področju.
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Nihanje molekul

(43.2)

Vrtilno-nihajni spektri

Vezi med atomi v molekuli niso povsem toge: atomi tudi nihajo
okoli ravnovesnih leg. Najpreprostejše je nihanje dvoatomne
molekule: v prvem približku je to kar harmonično nihalo z
reducirano maso μ v kvadratnem potencialu
U(r) = U(r0) + 1/2 k (r − r0)2. Lastne vrednosti takega oscilatorja že
poznamo (42.33); to so

E = ħω0(n + 1/2) ,

pri čemer ω0
2 = k/μ. Dovoljeni so prehodi iz vseh višjih v vsa nižja

stanja in obratno. Pri prehodu med sosednjima nivojema se
izseva/absorbira foton frekvence ω0/2π. To je najnižja frekvenca.
Ostale frekvence so njeni celoštevilčni mnogokratniki. Spektralne
črte so torej ekvidistantne. Vrednost ω0

2 ocenimo na
2 · (1 eV) / (1 Å)2 (1 u), kar ustreza energijskim spremembam
ΔE ∼ 0,1 eV oziroma valovnim dolžinam λ ∼ 10 μm. Črte nihajnega
spektra torej pričakujemo v infrardečem območju.

Molekule hkrati nihajo in se vrtijo. Vsaka molekula je v nekem
stanju (n, l) in lahko skoči v višje ali nižje nihajno stanje n ± m in
hkrati v višje ali nižje vrtilno stanje l ± 1. Takemu prehodu ustreza
sprememba energije ΔE = ±m · ħ√(k/μ) ± l · ħ2/J = ± m · A ± l · B.
Posamične molekule v plinu skačejo vsaka po svoje: vrši se
množica različnih preskokov. Faktor A je mnogo večji od B, zato je
nastali spekter sestavljen iz ločenih paketov črt. Središča paketov
so med seboj energijsko oddaljene za A, črte v njih pa med seboj
za B.

Slika 43.1 Vrtilno-nihajni spekter HCl za nihajni prehod iz osnovnega v prvo
vzbujeno stanje ter s sočasnimi vrtilnimi prehodi. (HyperPhysics)

Meritve z infrardečim absorpcijskim spektrometrom potrdijo
predvidevanja. Še več: iz izmerjenega središča A prvega paketa
črt lahko izračunamo elastično konstanto. In iz izmerjenih
razmikov B med črtami v paketu lahko izračunamo vztrajnostne
momente ter iz njih dolžine dvoatomnih molekul. Za HCl tako
izmerimo A = 8,66 · 1013 Hz in B = 0,06 · 1013 Hz. Iz tega
izračunamo k = 480 N/m in reducirani radij R = 1,3 Å. Zaradi
velike razlike v masah obeh atomov je to kar dolžina molekule.

Pri večatomnih molekulah so zadeve načeloma podobne, vendar
so podrobnosti precej bolj zapletene. Kljub temu uspemo v
mnogih primerih tudi zanje določiti velikosti in oblike.
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Kanonična
porazdelitev

(43.3)

Porazdelitev molekul
po nihanju

(43.4)

(43.5)

(43.6)

43.2 Molekularni plin
Množico istovrstnih molekul v plinu opišemo statistično. Vsaka
molekula ima več energijskih stanj – zaradi lege, translacije,
vrtenja, nihanja in notranje elektronske razporeditve. Statistični
opis pomeni, da povemo, kakšna je porazdelitev molekul po
njihovih stanjih energije. Ali drugače rečeno: povemo verjetnost
Pi, da je izbrana molekula v takem ali drugačnem stanju energije
Ei. Porazdelitev že poznamo (36.13): to je kanonična porazdelitev

Pi =
1
Z

gi e−Ei /kT

Z =∑gi e−Ei/kT .

Z gi smo označli število stanj, ki imajo vsa isto energijo Ei.
Porazdelitev velja ob pogoju, da molekule med seboj le toliko
vplivajo, da se med njimi vzpostavi toplotno ravnovesje, sicer pa
je njihov medsebojna potencialna energija zanemarljiva. Zdaj pa
še dodatno zahtevajmo, da je medsebojna razdalja molekul
l ∼ (V/N)1/3 mnogo večja od njihove termične valovne dolžine
λ = ħ/mv. To je res pri normalnih pogojih, ko je razdalja okrog
10 Å in valovna dolžina okrog 0,1 Å. Na ta način se valovni paketi
molekul ne pokrivajo in ne vplivajo drug na drugega. Rekli bomo,
da so takšne molekule razločljive in da tvorijo klasični plin.

Svoj čas smo na podlagi kanonične porazdelitve izračunali
prispevke energij translacije, nihanja in vrtenja molekul k
notranji energiji in specifični toploti plina [36.9]. Vendar takrat še
nismo vedeli, da so vrtilne in nihajne energije molekul
kvantizirane, zato smo dobili rezultate, ki se niso ujemali s
poskusi. Ponovimo račun z novim znanjem!

Porazdelitev dvoatomnih molekul po energiji nihanja znaša

Pn =
1
Z

exp (−
ħω0

kT
n)

Z = ∑ exp (
−ħω0

kT
n) .

Energijo osnovnega stanja ħω0/2 smo kar izpustili, ker samo
spremeni normalizacijsko konstanto Z. Ta konstanta ima obliko
geometrijske vrste ∑ (exp x)n, kar znaša 1/(1−x), zato

Z =
1

1 − exp (−ħω0/kT)
.

Povprečna energija molekule je, kot vemo (36.15),
⟨E⟩ = −(1/Z)dZ/dβ, β = 1/kT. Odvajamo in dobimo

⟨E⟩ =
ħω0

exp (ħω0/kT) − 1
= ħω0 ⟨n⟩ .

S faktorjem ⟨n⟩ smo definirali povprečno vzbujenost molekul. Ker
je ħω0 ∼ 0,1 eV in pri sobni temperaturi kT = 0,025 eV, je

315



Porazdelitev molekul
po vrtenju

(43.7)

(43.8)

Specifična toplota
plinov

⟨n⟩ ≈ 0,02. To pomeni, da so skoraj vse molekule v osnovnem
stanju.

Notranja energija plina zaradi nihanja je U = N⟨E⟩ in doprinos k
specifični toploti je cV = dU/dTm1N. Pri visokih temperaturah
kT≫ħω0 lahko eksponentno funkcijo razvijemo do linearnega
člena in dobimo ⟨E⟩ = kT, U = NkT in cV = k/m1 = R*/M. To je prav
toliko kot po klasičnem ekviparticijskem izreku za nihanje
dvoatomne molekule, ki ima dve prostostni stopnji. Je pa res, da
pri takih temperaturah (∼ 5000 K) molekule že razpadajo.

Vrtenje dvoatomnih molekul obravnavamo podobno kot njihovo
nihanje. Porazdelitev po vrtilnih energijah znaša

Pl =
1
Z

(2l + 1) exp −
(ħ2/2J) l(l+1)

kT

Z =∑ (2l + 1) exp −
(ħ2/2J) l(l+1)

kT
.

Vrste ne znamo eksplicitno izračunati. Če pa molekule niso
prelahke in temperature ne prenizke, velja ħ2/2J≪kT. Tedaj
proglasimo l za zvezno količino in vsoto aproksimiramo z
integralom Z = ∫ (2l + 1) exp −(ħ2/2J) l(l + 1)/kT dl. Upoštevamo
d(l(l + 1)) = d(l2 + l) = (2l + 1)dl in integriramo:

Z ≈
2J
ħ2 kT .

Iz Z na znani način izračunamo povprečno vrtilno energijo
molekule ⟨E⟩ = kT, notranjo energijo plina U = NkT in prispevek k
specifični toploti cV = k/m1. To je spet v skladu z ekviparticijskim
izrekom za dve prostostni stopnji vrtenja.

Porazdelitev dvoatomnih molekul po energijah nihanja, vrtenja in
translacije razloži, zakaj in kako se spreminja specifična toplota
plinov s temperaturo. Pri nizkih temperaturah ni znatnega
nihanja in vrtenja molekul: k specifični toploti prispeva le
translacija 3/2 k/m1 na molekulo. Pri temperaturah nekaj sto
stopinj se vzbudijo vrtenja in prinesejo 2/2 k/m1. In pri nekaj tisoč
stopinjah se vzbudijo še nihanja ter prinesejo 2/2 k/m1.

Slika 43.2
Izmerjena/shematizirana
specifična toplota vodika. Vidni so
prispevki translacije, vrtenja in
nihanja. (Peter's Physics Pages)
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Kristalne vezi

Nihanje atomov v
kristalu

(43.9)

Specifična toplota
kristalov

(43.10)

43.3 Kristali
Atomi se vežejo tudi v kristale. Osnovna značilnost kristalov je
periodična razporeditev atomov. Predstavljamo si, da atomi s
sosedi tvorijo podobne vezi kot v molekulah: kovalentne, na
primer silicij, in ionske, na primer morska sol. S tem pa niso
izčrpani vsi primeri. V kovinskih kristalih, na primer bakru,
obstaja kovinska vez. Predstavljamo si jo kot skupno morje prosto
gibljivih elektronov, ki obliva rešetko pozitivnih ionov. Vodni
kristali pa nam kažejo še molekularno vez. Ta temelji na silah
med električnimi dipoli polarnih molekul.

Atome v kristalu si lahko predstavljamo kot izolirane oscilatorje,
ki nihajo neodvisno drug od drugega. Kakšna so energijska stanja
takega oscilatorja, že vemo. To pomeni, da je porazdelitev atomov
po nihajnih energijah enaka kot pri dvoatomnem plinu. Edina
razlika je v tem, da vsak atom v kristalu niha v treh smereh in je
zato enakovreden trem linearnim oscilatorjem. Notranjo energijo
kristala zato kar prepišemo:

U = 3NkT
ħω / kT

eħω /kT − 1

Notranjo energijo odvajamo po temperaturi in delimo z maso, pa
dobimo specifično toploto kristala (EINSTEIN)

cV = 3
k

m1
(

θ
T

)2 eθ /T

(eθ /T − 1)2

θ =
ħω
k

.

Vpeljali smo "kritično" temperaturo θ. To je snovna konstanta, ki
opisuje jakost medatomnih vezi. Za vsak kristal jo določimo
eksperimentalno tako, da se graf cV(θ) najbolje prilega
izmerjenim vrednostim. Za baker je to 340 K. Največjo vrednost
ima ogljik v diamantu: 1300 K.

Slika 43.3 Specifična toplota
diamanta. Ordinata:
specifična toplota,
6 kcal/K = 3R. Abscisa: Θ/T,
Θ = 1300 K. (Einstein, 1906)

Natančna merjenja pokažejo majhna sistematična odstopanja
izmerkov in napovedi. To pripisujemo dejstvu, da v kristalu ne
obstajajo le nihanja atomov okrog ravnovesnih leg, ampak tudi
nihanja kristalne mreže z različnimi lastnimi frekvencami.
Preseneča nas pa tudi, da v kovinskih kristalih, kot kaže,
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Fermionska
porazdelitev

(43.11)

(43.12)

elektronski plin nič ne prispeva k toplotni kapaciteti. Saj imajo
elektroni vendarle translacijsko energijo in bi zato morali
prispevati 3/2Nk k toplotni kapaciteti, prav kakor enoatomni plin.
Kovinski kristal iz N atomov bi torej moral imeti toplotno
kapaciteto (3+3/2)Nk, ima pa zgolj 3Nk. To bomo morali v
nadaljevanju še raziskati.

43.4 Elektronski plin
V kovinskih kristalih se "med atomi" gibljejo prosti elektroni.
Obravnavamo jih lahko kot elektronski plin. Na prvi pogled bi
zato zanje morala veljati kanonična porazdelitev po elektronovih
energijskih nivojih. Vendar pa elektroni niso med seboj neodvisni,
saj ne moreta biti dva v istem stanju. To je posledica polcelega
spina elektronov. Rekli bomo, da tvorijo elektroni fermionski plin.
Osnovne predpostavke za veljavo kanonične porazdelitve zato
niso izpolnjene. Izpeljati moramo drugo, fermionsko porazdelitev.

V elektronskem plinu naj bodo vsakemu elektronu na voljo
energijski nivoji Ei. Nivo Ei naj vsebuje Ni elektronov. To je
zasedbeno število nivoja. Nivo je razcepljen na gi razločljivih
podnivojev; vsak ima isto energijo. Rečemo, da je energijski nivo
degeneriran. V vsakem podnivoju je lahko samo en elektron. Za
nivo 1 velja: N1 nerazločljivih elektronov lahko razporedimo po g1
podnivojih na P1 = g1!/N1!(g1 − N1)! načinov. Seveda mora biti
N1 ≤ g1. Isto velja za nivo 2. Število načinov, da razporedimo
nabor vseh zasedbenih števil, pa je enako produktu načinov, da
razporedimo vsak posamezen Ni:

B = ∏
i

gi!
Ni!(gi − Ni)!

.

Nadaljujemo tako, kot pri kanonični porazdelitvi. Poiskati hočemo
tisti nabor zasedbenih števil Ni, ki maksimira (logaritem) B ob
pogojih ∑ Ni = N in ∑ NiEi = E. Iščemo torej vezani ekstrem
sestavljene funkcije F(Ni) = lnB + α(N − ∑ Ni) + β (E − ∑ NiEi) z
neznanima konstantama α in β. Uporabimo aproksimacijo
lnx! = xlnx − x, odvajamo F po Ni, postavimo odvod na nič in
rešimo po Ni, pa dobimo Ni = gi/[exp(α + β Ei) + 1]. Očitno je
β = 1/kT. Drugo konstanto zapišemo kot α = − EF/kT in dobimo
(FERMI)

fi =
Ni

gi
=

1
e(Ei−EF)/kT + 1

.

To je iskana porazdelitev. Pove, kakšna je verjetnost fi, da je
stanje Ei zasedeno. Ugotoviti moramo še pomen parametra EF. Ta
je v splošnem lahko odvisen od temperature. Pri poljubni
temperaturi za E = EF sledi f = 1/2: EF je torej energijski nivo, ki
je – pri dani temperaturi – natanko polovično zaseden z elektroni.
Pri T = 0 so vsi delci v najnižjih stanjih in sicer v vsakem po eden.
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Nebotičniška
prispodoba

(43.13)

Ko gre temperatura proti nič, gre f – za E > EF – proti nič
oziroma – za E < EF – proti ena. Torej je EF(T = 0) energija
najvišjega zasedenega stanja pri ničelni temperaturi. Rekli ji
bomo fermionska energija.

Slika 43.4 Verjetnostna porazdelitev plina
elektronov po energijskih stanjih. (Anon)

Fermionsko porazdelitev si nazorno predstavljamo takole.
Ekstravaganten arhitekt zgradi visok nebotičnik z nadstropji
neenake višine. Vsa nadstropja oštevilči od spodaj navzgor. V
vsakem nadstropju je takšno ali drugačno število stanovanj. V
nebotičnik se nato vseljujejo ljudje od spodaj navzgor. V vsako
stanovanje sta spuščeni le dve osebi – moški in ženska. Naselitev
v višje nadstropje je možna le, ko so vsa stanovanja v nižjem
nadstropju polno zasedena. Tako se nebotičnik lepo zapolni do,
recimo, sedemdesetega nadstropja. Višina tega nadstropja, to je
gladina "človeškega morja": pod njo so vsa nadstropja popolnoma
zasedena, nad njo so vsa nadstropja popolnoma prazna. Več kot je
ljudi v nebotičniku, višja je njihova gladina.

Tako je ponoči, ko je hladno in ljudje spijo. Ko se zdani in otopli,
začno med nadstropji voziti dvigala. V eno dvigalo gre lahko le en
človek. Dvigalo se lahko dvigne le za eno nadstropje in sicer le
tedaj, če je v ciljnem nadstropju kakšno prosto ali polzasedeno
stanovanje. To pomeni, da se sprva povzpnejo le ljudje iz najbolj
zgornjih zasedenih nadstropij; s tem deloma zasedejo višja
nadstropja in za sabo pustijo praznine v nižjih nadstropjih. Šele
kasneje pa se lahko povzpnejo tudi ljudje v nižjih nadstropjih.
Gladina človeškega morja postane "valovita".

Če so energijski nivoji zelo gosti, zapišemo

dn
dE

=
g(E)

exp (E − EF)/kT + 1
= g(E) f(E) .

S tem je definirana gostota energijskih stanj g(E). Delež
elektronov dn (v prostorninski enoti) na intervalu E ± dE/2 je
enak tamkajšnji gostoti stanj g(E) krat verjetnosti f(E), da bo ta
interval zaseden. V nebotičniški prispodobi: ne zanimajo nas več
števila ljudi po nadstropjih, ampak deleži vseh ljudi po
100-metrskih odsekih nebotičnika, kolikorkoli nadstropij že ti
vključujejo.
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Gostota elektronskih
stanj

(43.14)

(43.15)

Notranja energija in
tlak

(43.16)

(43.17)

43.5 Elektroni v kovinah
Pa izračunajmo gostoto stanj za prevodne elektrone v kovini!
Elektrone si predstavljajmo kot delce v tridimenzionalni
neskončno globoki potencialni jami. Naj ima jama obliko kocke z
robom a. Lastne funkcije in lastne energije iščemo kot produkt
treh rešitev za vsako dimenzijo posebej. Tako dobimo
ψ ∝ sin nxπ/a · sin nyπ/a · sin nzπ/a (1) in E = h2n2 / 8ma2 = ħ2 k2 / 2m
(2), pri čemer n2 = nx

2 + ny
2 + nz

2. Ker so nx, ny in nz neodvisne
spremenljivke, ima sfera z radijem n površino s konstantno
energijo. Z vsako spremembo radija dn zajamemo NdE stanj v
lupini s prostornino 4πn2dn. Obravnavamo le lupino v enem
kvadrantu (1/8 celotne lupine), zato N = (π/2)n2(dn/dE) (3). Iz (2)
izrazimo n(E), izračunamo dn/dE in ga vstavimo v (3). Dobljeno
enačbo delimo s prostornino a3 in dobimo

g =
4π(2m)3/2

h3 ·√E .

Zaradi izključitvenega načela smo dodali faktor 2. Gostota stanj
torej počasi narašča z energijo.

Celotna populacija prostih elektronov na prostorninsko enoto
znaša n = ∫ gfdE. Pri temperaturi 0 K je potrebno integrirati le od
0 do EF. Dobimo n(EF), kar obrnemo v

EF =
h2

2m
(

3n
8π

)2/3 .

Enačba je uporabna za izračun fermionske energije, če poznamo
gostoto prostih elektronov. Za baker, na primer, smo svoj čas že
ugotovili n = 8,5 · 1019 / mm3, kar pomeni EF = 7 eV.

Notranja energija fermionskega plina znaša W = V ∫ Eg dE v mejah
med 0 in EF, kar znese

W =
3
5

N EF .

Povprečna energija vseh zasedenih stanj je torej 3/5 · EF.

Tlak plina izračunamo iz p = −∂W/∂V, W = ∑ fEi. Pri počasnem
stiskanju ostajajo delci v istih stanjih, zato se f v vsoti ne
spreminja, torej p = − ∑ f ∂Ei/dV. Energije enodelčnih stanj so
Ei = ħ2k2/2m = ħ2π2n2/2mL2 = ħ2π2n2/2m · V−2/3. Odvajamo
∂Ei/∂V = −2/3 · Ei/V in izračunamo p = 2/3 · 1/V · ∑ fEi, kar znese

p =
2
3

W
V

=
2
5

NEF

V
.

To je enačba stanja za fermionski plin. Tlak je odvisen le od
gostote in nič od temperature: p ∝ (N/V)5/3. Celo pri T = 0 je
različen od nič. Ko stiskamo elektrone, ki ne morejo biti hkrati na
istem mestu, se jim pač povečuje kinetična energija in s tem tlak.

320



Fermionska hitrost
elektronov

(43.18)

Energijski pasovi

Tlak elektronskega plina v kovini tudi preprečuje, da bi se
zmanjšala razdalja med ioni zaradi njihovega medsebojnega
privlaka. Stisljivost elektronskega plina se torej kaže kot
stisljivost kovin.

Energija elektronov v potencialni jami je kar njihova kinetična
energija. Za gladinske elektrone velja

1
2

mvF
2 = EF .

S tem smo definirali fermionsko hitrost elektronov. Ta prevzame
vlogo standardne hitrosti vrms iz klasičnega plina. Za baker
izračunamo 1,6 · 103 km/s. Hitrosti in energije v gostem
elektronskem plinu so torej mnogo večje kot pri klasičnem plinu z
enako številčno gostoto. To je posledica izključitvenega načela, ki
elektronom ne dovoli, da bi se svobodno kopičili v stanjih z
nizkimi energijami. Je pa res, da ima tako visoke hitrosti le nekaj
elektronov tik ob gladini.

Kako pa naj visoko energijo elektronskega plina uskladimo z
njegovo neznatno toplotno kapaciteto? Ko damo kovinski kristal v
toplotno kopel, prejema s trki energijske obroke kT ∼ 0,025 eV. Te
energije kristal ujame v nihanje atomov in v translacijo
elektronov. Vendar lahko samo neznatni del elektronov sprejme
tako energijo: tisti, ki ležijo na intervalu EF ± kT. Globlji elektroni
se pač ne morejo dvigniti, ker nad sabo nimajo prostih mest.
Samo neznatni del dovedene toplote se torej porabi za segrevanje
elektronskega plina. Za veliko večino elektronov sploh nič ne
pomeni, da so prišli v stik z zunanjim vročim okoljem.

43.6 Elektroni v kristalih
Gostoto energijskih stanj elektronov v kovinah smo določili iz
predpostavke, da je kovinski kristal neskončna potencialna jama.
V resnici pa je ta "jama" rezultat skupnega vpliva vseh kristalovih
atomov. Nekovinski kristali imajo drugačne električne lastnosti
(predvsem prevodnost) od kovinskih. Zato domnevamo, da je
gostota energijskih stanj, po katerih so fermionsko porazdeljeni
elektroni, pri njih drugačna. Kakšna neki je?

Razmišljamo takole. V izoliranih atomih se elektroni gibljejo v
orbitalah. Vsaka orbitala ima ostro določeno energijo. Če se
atomi medsebojno približajo, se orbitale začno prekrivati –
zunanje bolj, notranje manj. Zaradi izključitvenega načela pa se
morajo istoenergijske orbitale pri tem razcepiti. To pomeni, da se
vsak energijski nivo atoma razcepi v gost energijski pas kristala.
V pasu je približno toliko nivojev kot je atomov v kristalu. Med
pasovi ostanejo večji ali manjši razmiki.
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Zasedenost pasov

Vpliv pasov

Slika 43.5 Nastanek
energijskih pasov. (Brophy,
1966)

Pri T = 0 so pasovi zasedeni z elektroni do gladinske višine EF.
Najvišji pas, ki je – deloma ali v celoti – zaseden, poimenujemo
valenčni pas. Pas nad njim je povsem prazen; poimenujmo ga
prevodni pas. Razmik med vrhom valenčnega pasu in dnom
prevodnega pasu poimenujmo prepovedani pas.

Slika 43.6 Prevodniki in
izolatorji. Energijski pasovi in
njihova zasedenost pri nizki
temperaturi. Razmiki med
nivoji so narisani pretirano.
(Anon)

Pri višjih/sobnih temperaturah se nekaj elektronov z vrha polno
zasedenega valenčnega pasu uspe preseliti na dno prevodnega
pasu. Čim ožji je prepovedani pas, tem več elektronov se uspe
preseliti. Pri tem izpraznijo enako število nivojev v valenčnem
pasu.

Kaj sledi iz predpostavke o energijskih pasovih? Za nizke
temperature, ko je prevodni pas prazen, sklepamo takole.

Kristali, ki imajo valenčni pas le delno zaseden, so dobri
električne prevodniki: saj imajo valenčni elektroni nad sabo
dovolj bližnjih nezasedenih energijskih nivojev, v katere jih lahko
napetost potisne, to je, elektronom zviša kinetično energijo.
Kristali s polno zasedenim valenčnim pasom so električni
izolatorji: saj nad valenčnimi elektroni ni nič bližnjih nivojev za
prisilno gibanje.

Če kristal obsevamo z vidnimi fotoni, jih lahko absorbirajo samo
tisti elektroni, ki imajo za 1,7–3,5 eV višjeležeče prosto mesto. V
prevodnikih/kovinah je takih elektronov mnogo: kristal svetlobo
močno absorbira. V izolatorjih, katerih prepovedani pas je širši od
∼ 3.5 eV, pa obsevani valenčni elektroni ne dosežejo prevodnega
pasu. Kristal je prozoren; tak je diamant. Če je prepovedani pas
ožji, pa se svetloba z višjo energijo lahko absorbira, z nižjo pač
ne. Kristal absorbira modri del spektra, prepusti pa rumenega.
Takšno je žveplo. Če kristal ni čist, ampak vsebuje redke atome
primesi, se na njihovem mestu pojavijo dodatni nivoji v
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Nosilci toka

Dopiranje s primesmi

prepovedanem pasu in absorpcija svetlobe poteka temu ustrezno.
Od tod razne barve kristalov, recimo rdečega rubina ali modrega
safirja.

Pri višjih/sobnih temperaturah se v izolatorjih nekaj elektronov
preseli iz valenčnega v prevodni pas. To pomeni, da izolatorji
začnejo zelo šibko prevajati tok in zelo šibko absorbirati svetlobo,
ki je prej niso. Višja kot je temperatura, bolj je to izrazito.

Zamisel o energijskih pasovih torej kvalitativno lepo pojasni
električne in optične lastnosti kristalov ter s tem okrepi
prepričanje o svoji pravilnosti.

43.7 Polprevodniki
Če označimo električno upornost bakra z 1, znaša izmerjena
upornost dobrih izolatorjev, recimo keramike, okrog 1018.
Obstajajo tudi snovi, katerih upornost pri sobni temperaturi leži
nekje vmes med tema mejama; poimenujemo jih polprevodnike.
Takšna sta, na primer, silicij z upornostjo 1011 in germanij z
upornostjo 107. Oba sta štirivalentna in se v kristale vežeta s
kovalentno vezjo.

Vsak elektron v prevodnem pasu polprevodnika je pustil za sabo
vrzel v valenčnem pasu. Pod vplivom napetosti se elektroni v
prevodnem pasu gibljejo. V valenčnem pasu pa se vrzeli
zapolnjujejo s sosednjimi elektroni. Videti je, kot da se vsaka
vrzel giblje in deluje kot nosilec toka z efektivnim nabojem +e in
efektivno maso mv. Tok v polprevodnikih je torej sestavljen iz
gibanja negativnih elektronov in nasprotnega gibanja pozitivnih
vrzeli. Skupna gostota toka znaša j = je + jv, pri čemer je = −ene⟨ve⟩
in jv = env⟨vv⟩.

Slika 43.7 Prevodniški elektroni in
vrzeli v siliciju. (Meadows, 1978)

Prevodnost silicija je močno odvisna od nečistoč, ki jih vsebuje.
Opazimo, da se zelo poveča, če kristalu (pri kristaliziranju iz
raztopine) dodamo nakaj fosforja P, arzena As ali antimona Sb.
Vsi so petvalentni. Isto velja za bor B, aluminij Al in galij G; ti so
pa trivalentni. Rečemo, da smo silicij dopirali. Že dodatek
0,001 % nečistoč poveča prevodnost za nekaj redov velikosti.
Kako si to razlagamo?
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Slika 43.8 Negativno dopirani silicij.
(Meadows, 1978)

Petvalentnemu atomu, ki se vgradi v kristalno mrežo
štirivalentnih atomov, postane en elektron "odveč". Ta elektron
preide v prevodni pas. Za sabo pa ne pusti vrzeli. To pomeni, da
se število negativnih nosilcev toka (elektronov) poveča, število
pozitivnih nosilcev (vrzeli) pa ostaja enako. Že majhno število
dopiranih atomov/elektronov je za mnogo redov velikosti večje od
prvotnega števila prevodniških elektronov. Izdelali smo
polprevodnik tipa n. Večinski nosilci toka v njem so elektroni.
Vrzeli so samo manjšinski nosilci. Polprevodnik je navzven
nevtralen.

Podobno je z dodajanjem trivalentnih atomov. Ena izmed štirih
vezi, s katerimi se tak atom vgradi v okolico, ima vrzel. To
pomeni, da se je število vrzeli v valenčnem pasu povečalo, število
elektronov v prevodnem pasu pa je ostalo enako. Izdelali smo
polprevodnik tipa p. Večinski nosilci toka v njem so vrzeli,
manjšinski pa elektroni. Polprevodnik je navzven nevtralen.

Slika 43.9 Pozitivno dopirani silicij.
(Meadows, 1978)

Glavna značilnost polprevodnikov ni v tem, da imajo "vmesno"
upornost, marveč v tem, da v njih hkrati prevajajo tok negativni
in pozitivni nosilci – elektroni in vrzeli. V čistih polprevodnikih je
obojih enako mnogo, v dopiranih pa močno prevladujejo eni nad
drugimi. To lastnost polprevodnikov si bomo dobro zapomnili. Ko
bo čas, bomo poskušali raziskati možnosti za njeno tehnično
uporabo.
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Degenerirana plazma

(43.19)

Slika 43.10 Tok skozi polprevodnik n (večinski nosilci so elektroni) in
polprevodnik p (večinski nosilci so vrzeli). (Meadows, 1978)

V čistem polprevodniku narašča število elektronov v prevodnem
pasu s temperaturo in tako narašča tudi prevodnost. V dopiranem
polprevodniku pa je število nečistoč – in s tem število večinskih
nosilcev toka – fiksirano, zato je prevodnost približno konstantna.
Manjšinski nosilci namreč ne prispevajo znatno k toku.

Kateri so večinski nosilci toka v danem dopiranem
polprevodniku – elektroni ali vrzeli –, ugotovimo preko
magnetoelektričnega pojava [39.11], to je, z merjenjem prečne
napetosti na njih, ko so postavljeni v magnetno polje.

43.8 Zvezdna plazma
Elektronski plin v kovinah je ujet znotraj trdne ionske mreže. Če
bi bila temperatura mnogo višja, bi mreža razpadla na plin ionov.
Tedaj bi nastala plazma iz elektronskega in ionskega plina. Taka
mora biti snov v vročih zvezdah. Poglejmo plin iz elektronov na
ozadju plina iz protonov; s potrebnimi spremembami bo vse
povedano veljalo tudi za drugačne plazme.

Elektronski plin je plin fermionov. Naj ima številsko gostoto n in
temperaturo T. Če je gostota dovolj nizka in temperatura ne
previsoka, je to kar idealni plin. Zanima nas, pri kateri gostoti in
temperaturi postane pomembno degeneriran in relativističen.
Drugače rečeno: določiti želimo območje veljavnosti za idealni
elektronski plin.

Kvantni pojavi postanejo pomembni, ko je termična valovna
dolžina elektrona primerljiva z razdaljo med elektroni:
λ = h/G = 1/n1/3. Za idealni plin velja ⟨G2/2m⟩ = 3/2 · kT in
G = √⟨G2⟩ = √(3mkT), zato

h
√(3mkT)

≪
1

n1/3 .

To je pogoj, da plin ni degeneriran. Takšen postane, če je T
prenizka ali n previsoka. Pri 106 K, na primer, mora biti za
elektrone n≪1030/m3, to je, ionizirani vodikov plin mora imeti
gostoto ρ = nmp ≪103 kg/m3.
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Relativistična plazma

(43.20)

Bozonska
porazdelitev

(43.21)

Relativistični pojavi postanejo pomemebni, ko sta kinetična in
fermionska energija elektrona primerljivi z njegovo lastno
energijo: kT = mc2 in EF = mc2. Ker vemo, da
EF = (ħ2/2m)(3n/8π)2/3, sledi

T≪
mc2

k

n≪
√8
3π2 (

mc
ħ

)3 .

To sta pogoja, da plin ni relativističen. Za elektrone velja
T≪1010 K in n≪1036/m3 oziroma ρ≪109 kg/m3.

Slika 43.11 Gostote in temperature, pri
katerih je plin klasičen ali kvanten
(degeneriran), ter meje, kjer postane
relativističen. (Anon)

Večina sveta je iz plazme. Takšne so zvezde, zgornje plasti
Zemljinega ozračja in elektroni v kovinah, iz katerih so naše
priprave. Zdaj vemo, kdaj jih lahko opisujemo z znanimi enačbami
za klasični ali kvantni plin in pri katerih temperaturah in gostotah
postaneta opisa neustrezna.

43.9 Fotonski plin
Tudi fotone v votlini, recimo v vroči peči, lahko obravnavamo kot
plin. Kakšna je njihova porazdelitev po energijskih nivojih? Fotoni
so med seboj nerazločljivi, zato zanje ne velja kanonična
porazdelitev. Tudi niso podložni izključitvenemu načelu, zato
zanje ne velja niti fermionska porazdelitev. Porazdeljeni so po
svojstveni bozonski porazdelitvi. Določimo jo!

Poglejmo nivo 1, ki ima energijo E1 in ga sestavlja g1 podnivojev.
Predstavljamo si jih kot g1 − 1 škatlic, v katere razporejamo N1
kroglic. Možnih razporeditev je (N1 + g1 − 1)!. Toda kroglice so
nerazločljive, zato je N1! razporeditev med seboj nerazločljivih.
Podobno velja za (g1 − 1)! razporeditev. Število različnih
porazdelitev torej znaša P1 = (N1 + g1 − 1)!/N1!(g1 − 1)!. Podobno
velja za nivo 2 in preostale. Število načinov, da razporedimo
zasedbena števila po vseh nivojih, pa je enako produktu načinov,
da jih razporedimo po posameznih nivojih:

B = ∏
i

(Ni + gi − 1)!
Ni!(gi − 1)!

.

Nadaljujemo tako kot pri fermionski in še prej pri kanonični
porazdelitvi, ter dobimo (BOSE)
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(43.22)

(43.23)

Energijska stanja

Gostota energijskih
stanj

(43.24)

fi =
Ni

gi
=

1
e(Ei−EF)/kT − 1

.

Na energijskem nivoju Ei je Ni fotonov. Konstanta EF je določena s
pogojem ∑ fi = 1. Porazdelitev je definirana le za E > EF. Ker se
število fotonov ne ohranja, moramo postaviti EF = 0.

Slika 43.12 Bozonska porazdelitev (rdeča). Za
primerjavo sta dodani kanonična (črna) in
fermionska (modra) porazdelitev.

Če so energijski nivoji zelo gosti, zapišemo

dN
dE

=
g(E)

exp (E /kT) − 1
= g(E) f(E) .

Število fotonov dN z energijami na intervalu E ± dE/2 je enako
tamkajšnjemu številu energijskih stanj g(E)dE krat zasedbeni
verjetnosti f(E). To velja za kakršnokoli gostoto stanj. Glavni
problem je seveda določitev g(E) v okoliščinah, ki nas zanimajo.

43.10 Fotoni v votlini
Poiščimo gostoto energijskih stanj za fotonski plin, zaprt v votlini.
Predstavljajmo si, da je votlina neskončno globoka potencialna
jama v obliki kocke s stranico L. Valovne dolžine fotonov pri
gibanju vzdolž osi x morajo biti λ = 2L/nx, nx = 1, 2, 3 … in podobno
za ostali dve osi. Ker G = h/λ, sledi G = (πħ/L)n,
n = √(nx

2 + ny
2 + nz

2). Za fotone je E = Gc, zato En = (πħc/L) n. To so
dovoljeni energijski nivoji za fotone v votlini. Poiskati moramo
gostoto teh nivojev.

Predstavljajmo si prostor z osmi nx, ny in nz. Vsaka točka v tem
prostoru označuje neko vrednost n in s tem neko vrednost En.
Število n je razdalja točke iz izhodišča. Število stanj z energijo
med E in E + dE je določeno s številom točk med n in n + dn. To je
prostornina oktanta krogelne lupine z radijem n in debelino dn,
torej 4/8πn2dn = 4/8π(L/πħc)3 E2 dE. To je skorajda g(E)dE. Ampak
vsak foton ima dvoje polarizacijskih stanj, zato

g(E) =
8πV
(hc)3 E2 .
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Gostota energije

(43.25)

(43.26)

(43.27)

Notranja energija in
tlak

(43.28)

(43.29)

Pri tem je V = L3 prostornina votline. Število fotonov z energijo
E ± dE/2 je dN/dE = g(E)f(E), gostota energije je dw = EdN/V,
torej

dw
dE

=
8π

(hc)3

E3

eE /kT − 1

Upoštevamo E = hν, pa dobimo (PLANCK)

dw
dν

=
2hν3

c2

1
ehν /kT − 1

.

To je porazdelitev gostote energije po frekvenci. Pri nizkih
frekvencah hν≪kT lahko eksponentno funkcijo razvijemo do
linearnega člena in vidimo, da spekter narašča kot ν2, pri visokih
frekvencah pa eksponentno pojema.

Ustrezno porazdelitev po valovni dolžini dobimo kot
dw/dλ = dw/dω · dω/dλ, kar znese (PLANCK)

dw
dλ

=
2hc2

λ5

1
ehc /λkT − 1

.

Slika 43.13 Energijski
spekter fotonov v votlini.
(Anon)

Fotonski tlak izračunamo podobno kot tlak elektronskega plina.
Za fotone velja p = −∑ ∂Ei/dV · n in Ei = πħcn/L = πħcn/V1/3.
Izračunamo ∂Ei/dV = −1/3 · Ei/V, tako da je

p =
1
3

W
V

.

Tlak fotonov znaša le 1/3 gostote energije in ne 2/3, kakor pri
(nerelativističnih) elektronih. Integracija (43.27) po vseh valovnih
dolžinah pokaže

p = a T4

a =
8π5k4

15c3h3 .

To je enačba stanja za fotonski plin. Tlak je odvisen le od
temperature: p ∝ T4.
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Toplotno sevanje

(43.30)

(43.31)

(43.32)

(43.33)

Na namišljeno ploščico dS v votlini vpada iz smeri njene normale
iz prostorskega kota dΩ moč dP. Vpadajoča moč je neodvisna od
orientacije ploščice. Velja B ≡ dP/dS⊥dΩ = cw, torej

dB
dλ

=
2hc3

λ5

1
ehc /λkT − 1

.

Iz vseh smeri polprostora pa na ploščico vpada, kot vemo,

dj*
dλ

= π
dB
dλ

.

Kar vpada na namišljeno ploščico, jo na drugi strani tudi zapušča.
Če torej v steno votline izvrtamo luknjico, vpada nanjo ravno
toliko energije, kot se jo na drugi strani izseva v polprostor.
Izpeljali smo izrek o toplotnem sevanju črnega telesa, ki smo ga
svoj čas našli eksperimentalno (27.9). Tedanji konstanti se
pokažeta kot c1 = 2hc2 in c2 = hc/k.

Integracija (43.31) in (43.30) po vseh valovnih dolžinah da že
znani sevalni zakon in pokaže, od česa je odvisna tedanja sevalna
konstanta:

j* = σT4

σ =
2π5k4

15c2h3

a =
4σ
3c

.

Maksimum sevanja dobimo z odvajanjem (43.30) po valovni
dolžini, z izenačitvijo odvoda z nič ter z rešitvijo te enačbe.
Enačbo moramo rešiti numerično: z grobim tabeliranjem in nato z
razpolavljanjem ničelnega intervala:

λmax =
b
T

b =
hc

4.97k

Tako smo razložili mnoge – do sedaj nerazumljive – toplotne
lastnosti plinov in kristalov; električne lastnosti prevodnikov in
izolatorjev; ter svetlobne spektre plinov in trdnin. Obenem smo
nekaj eksperimentalnih konstant izrazili z osnovnimi
konstantami. Uspeh je sijajen. Hkrati se je odprlo nepregledno
polje za nadaljnje raziskave plinaste in kondenzirane snovi. In to
je pravi trenutek, da stvar predamo v roke specialistom. □
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44

Atomska jedra

Protoni in nevtroni

Atomska jedra
O jedrih – Števci delcev – Meglična komora – Preletna dolžina –
Dinamika trkov – Trki alfa ob jedra – Odkritje nevtronov – Vezavna
energija – (Ne)stabilnost jeder – Razpadni mehanizmi – Statistika
razpadov – Trki nevtronov ob jedra – Razcep težkih jeder – Zlivanje
lahkih jeder – Kozmični žarki

44.1 O jedrih
Atomi so sestavljeni iz dveh delov: iz zunanjega elektronskega
ovoja in iz notranjega jedra. Zunanji del smo raziskali. Sedaj se
hočemo lotiti notranjega dela.

O jedrih marsikaj že vemo. Njihov premer je reda velikosti 10−4 Å,
to je 104-krat manjši od premera atomov [41.7]. Če si jedro
predstavljamo kot nogometno žogo, so elektroni muhe, ki
brenčijo okrog nje na razdaljah do 1 km. Jedra nosijo pozitivne
naboje, ki so natančni celoštevilčni mnogokratniki osnovnega
naboja: od 1 pri vodiku do 92 pri uranu [41.7] Mase jeder so
neprimerno večje od mase okolišnjih elektronov, ki znašajo po
1/1800 atomske masne enote [39.4]. Najlažje je jedro vodika, ki
ga imenujemo proton, in znaša približno eno masno enoto.
Najtežje je jedro uranovega izotopa z 238 masnimi enotami.
Relativne mase čistih izotopov so zelo blizu celim številom.
Odmik od njih je manjši od 0,1 [39.6].

Različna atomska jedra označimo tako kot ustrezne atome: ZXA.
Pri tem je Z število osnovnih nabojev (vrstno število), A je
zaokroženo število masnih enot (masno število) in X je ime jedra.
Na primer: vodikovo jedro označimo kot 1H1 in uranovo jedro kot
92U238. Masno število je zmeraj večje od vrstnega števila.
Zapisovanje vrstnega števila ni nujno potrebno, ker je že
določeno s simbolom za element.

Skoraj celoštevilčne mase jedrskih izotopov kar prosijo, da si
jedro ZXA predstavljamo kot skupek A vodikovih jeder – protonov.
Ker pa ima jedro le Z nabojev, mora biti A − Z = N protonov
nekako "nevtraliziranih". Kako je to mogoče?

Prva misel je tale: morda je v jedru vezanih toliko dodatnih
elektronov, da je naboj jedra pravi. Ker bi bili v tem primeru
elektroni omejeni na zelo majhen del prostora, bi moral biti
razsip njihovih hitrosti zelo velik. Recimo, da je premer jedra
10 fm. Valovna dolžina vezanega elektrona mora biti zato manjša
od λ = 10 fm. Ustrezna gibalna količina znaša G = h/λ in energija
E2 = (Gc)2 + (mc2)2. Ker Gc≫mc2, dobimo E ≈ Gc = 124 MeV. Tako
energični elektroni bi morali v hipu odleteti proč.

Druga misel je bolj radikalna: poleg protonov morda obstaja v
jedru še ena vrsta delcev. Ti imajo (skoraj) enako maso kot
protoni, nimajo pa naboja. Recimo jim nevtroni. Ali zares
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Močna sila

Ionizacijska cev

obstajajo ali ne, na tej stopnji ne moremo vedeti. Vsekakor je
misel privlačna in ponuja resen izziv za potrditev ali zavržbo. Kot
raziskovalci vemo: kdor bo zaznal nevtron, mu slava ne uide.
Obstoj nevtronov zato do nadaljnjega privzamemo kot obetavno
domnevo. Protone in – za sedaj domnevne – nevtrone
poimenujemo s skupnim imenom nukleone.

Slika 44.1 Atomsko jedro ogljika, kakor si ga
zamišljamo. Jedro je sestavljeno iz pozitivnih
protonov in nevtralnih nevtronov. (Morrison,
1994)

Kako hitro se nukleoni gibljejo v jedru? Tako hitro, kot razodevata
velikost jedra in načelo nedoločenosti. Načelo nedoločenosti
zapišemo kot 2r v = h/m, iz česar sledi v ∼ 104 km/s, kar je
desetkrat manj od svetlobne hitrosti. Gibanje je nerelativistično.

Protoni v jedru se med seboj odbijajo z električno silo. Da se jedro
ne razleti, mora zato med njegovimi nukleoni delovati neka
privlačna sila, ki nasprotuje električni. Poimenujmo to silo močna
sila. Očitno mora sila delovati med pari proton-proton, proton-
nevtron in nevtron-nevtron. Kot vemo, je sipanje delcev alfa na
jedrih pokazalo, da ti delci zaznavajo električno silo vse do
razdalje ∼ 10 fm od središča jedra in pri tem ne čutijo vpliva
nobene druge sile. Močna sila mora zato imeti kratek doseg,
morda okrog 1 fm. Od česa je odvisna, pa zaenkrat ne moremo
reči.

44.2 Števci delcev
Atomska jedra smo odkrili z obstreljevanjem atomov z delci alfa.
Podrobnejše raziskave jeder bomo vsekekor izvajali na podoben
način, torej z njihovim obstreljevanjem. Delce alfa, pa tudi delce
beta in gama smo do sedaj zaznavali kar s fotografsko ploščo ali s
svetlečim zaslonom in mikroskopom. To je okorno in naporno za
načrtovane raziskave. Pojavi se potreba po boljših merilnikih teh
delcev. In potreba je mati iznajdb.

Prvo zamisel za merilnik delcev dobimo iz že znanega pojava, da
se nabit ploščati kondenzator počasi razelektri, če vanj postavimo
radioaktivni izvor [41.6]. Sevani delci namreč ionizirajo zrak med
elektrodama; s tem postane prevoden. Merilnik zato zgradimo kot
zaprto kovinsko (npr. aluminijasto) cev. Po sredini ima tanko
kovinsko žico. Med žico in ohišjem je priključena napetost.
Pozitivni priključek je na žici. Električno polje med ohišjem in
žico je cilindrično in je zato ob žici zelo močno. Cev je napolnjena
s plinom (npr. zrakom ali helijem). En konec cevi ima tanko okno
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Trije načini dela

iz mice. Delci alfa in beta lahko prodrejo le skozi okno, ne pa tudi
skozi ohišje. Delci gama lahko prodrejo od povsod. To je
ionizacijska cev (GEIGER).

Slika 44.2 Ionizacijska cev. Njen
izhod je priključen na ojačevalnik
in oscilograf/osciloskop. (Anon)

Ko nabit delec alfa ali beta prileti v cev, zaporedoma trka z atomi
plina in jih ionizira, dokler pač ima dovolj kinetične energije.
Delec gama pa iz kakega atoma – predvsem v ohišju – izbije
elektron in pri tem preneha obstajati. Izbiti elektron nato ionizira
atome plina. Ustvarjeni ionski pari v električnem polju stečejo
vsak proti svoji elektrodi, lahki elektroni hitreje, težki ioni
počasneje. Elektroni vstopijo v pozitivno žico, ioni pa se ob
negativnem ohišju nevtralizirajo. Nastane kratek tokovni sunek,
ki traja vse dotlej, dokler je v cevi kaj nabitih nosilcev toka.
Tokovni sunek se na zunanjem uporniku odraža kot napetostni
sunek. Vsak vpadli delec, ki uspe tvoriti kaj ionskih parov, ustvari
svoj izhodni sunek. Zaporedje sunkov po potrebi ojačamo in ga
vodimo na oscilograf ali osciloskop.

Koliko ionskih parov ustvari vpadli delec? Toliko, kolikor znaša
njegova kinetična energija, deljena s povprečno ionizacijsko
energijo atomov plina v cevi. Delec alfa nosi ∼ 1 MeV energije,
ionizacijska energija valenčnega elektrona v atomu dušika ali
kisika znaša ∼ 10 eV, kar pomeni okrog 105 ionskih parov. Kaj se z
nastalimi elektroni in ioni zgodi, pa je odvisno od napetosti med
obema elektrodama.

Slika 44.3 Karakteristika tipične
ionizacijske cevi. Prikazano je
število na elektrodah zbranih
ionskih parov v odvisnosti od
delovne napetosti in sicer za dve
energijsko različni vrsti vpadajočih
delcev. (Iowa State University).

333

pict3c/geiger.gif
pict3c/geiger.gif
pict3c/ioncurve.gif
pict3c/ioncurve.gif
picref.htm


Scintilacijski števec

— Če je delovna napetost pod nekaj deset voltov, se nastali
elektroni in ioni večinoma rekombinirajo, preden uspejo priti vsak
na svojo elektrodo. Žica torej posrka manj elektronov, kakor jih je
bilo ustvarjenih. Večja kot je napetost, večji delež jih posrka.
Tokovni sunek od "istega" vpadlega delca zato narašča z delovno
napetostjo.

— Pri napetostih nad nekaj deset voltov žica že posrka vse
nastale elektrone, preden se uspejo rekombinirati z ioni.
Nadaljnje večanje napetosti ne vpliva na število posrkanih
elektronov. Tokovni sunek od "istega" vpadnega delca je zato
neodvisen od delovne napetosti in je kar enak ioniziranemu
naboju, ki ga je ta delec ustvaril. Rečemo, da cev deluje kot
ionizacijska komora.

— Pri napetostih nad nekaj sto voltov se nastali elektroni v bližini
žice že tako močno pospešijo, da ionizirajo druge atome; ob žici
nastane plaz sekundarnih ionskih parov. Cev torej deluje kot
pomnoževalka naboja. Žica posrka več elektronov, kakor jih je
prvotno nastalo. Čim višja je napetost, tem močnejši plaz nastane.
Tokovni sunek od "istega" vpadnega delca torej narašča z delovno
napetostjo. Ugodno pa je, da je "ojačani" naboj približno
sorazmeren s primarnim ioniziranim nabojem. Zato rečemo, da
cev deluje kot ionizacijski proporcionalni števec.

— Blizu tisoč voltov je meja, ko se sekundarni plaz elektronov
razširi od bližine žice preko celotne prostornine cevi. Nastali
tokovni sunki so vsi enaki, ne glede na to, kako energetični delci
jih sprožijo. Saj predstavlja primarna ionizacija le majhen delež v
plazu. Rečemo, da cev deluje kot ionizacijski števec.

Če je delcev malo, jih lahko sproti rišemo na oscilografu. Če jih je
veliko, pa fotografiramo osciloskopov zaslon pri enkratnem
preletnem času, recimo 0,1 sekunde, in nato na fotografiji v miru
preštejemo število sunkov. Ionizacijska cev zazna večino vpadlih
delcev alfa in beta, ker je njena velikost (in vsebnost) primerljiva
z dosegom teh delcev. Delci gama pa imajo tako velik doseg, da
jih cev zazna le malo, morda okrog 1 %.

Druga zamisel je naslednja. Vemo, da elektroni in delci alfa
povzročajo drobne bliske na zaslonu s kristalčki ZnS. Tam namreč
izbijajo elektrone iz valenčnega v prevodni pas, nakar se ti
elektroni rekombinirajo z vrzelmi in pri tem izsevajo vidne fotone.
Kaj ko bi te fotone ujeli v fotopomnoževalko [40.2]? Tako bi
drobne bliske "spremenili" v resne električne sunke. Izumili smo
scintilacijski števec: združbo "svetlečega" kristala in
fotopomnoževalke.
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Kondenzacija pare

Ionizacijske sledi

Slika 44.4 Scintilacijski števec. Priključen je na triodo ojačevalnika. (Dresser
Atlas)

Poiskati je treba še primerne kristale, ki izdatno sevajo vidne
fotone, ko jih zadenejo nabiti delci ali fotoni gama. Odkrijemo CsI
za nabite delce in NaI (z dodatkom talija) za fotone gama. Sunke
napetosti gledamo na priključenem oscilografu ali osciloskopu.
Tak sunek je oster in je sorazmeren z energijo fotona, ki vpade na
katodo fotopomnoževalke. Scintilacijski števec je torej odličen
merilnik, s katerim – po umerjanju – lahko določamo tako
energijo delcev kot njihovo pogostost.

44.3 Meglična komora
Na tretji detektor naletimo slučajno. Kot raziskovalci, ki jih
zanima nastanek oblakov, poskušamo ustvariti meglo v
laboratoriju. To nam uspe tako, da nasičeno vlažen zrak v
zaprtem cilindru z batom hitro razpnemo. Zrak s paro se ohladi
pod temperaturo rosišča in prenasičena para se kondenzira v
kapljice. V prašnem zraku nastane lepa megla. Če zrak pred tem
filtriramo, pa megla (pri enakem raztegu kot prej) ne nastane.

Ker smo že pri meritvah, poskusimo še z večjim raztegom in glej
presenečenje – kljub očiščenemu zraku se pri 1,25-kratnem
raztegu pojavijo redki kosmiči megle! Na čem pa se zdaj para
kondenzira? Mogoče so to ioni, ki jih je v zraku vedno nekaj?
Domnevo preverimo tako, da zrak presvetlimo z rentgenskimi
žarki ali z uranovim sevanjem ter s tem ustvarimo dodatne ione.
Ustvarjena megla je sedaj mnogo gostejša. Ko pa cilinder pred
raztegom postavimo v električno polje, ki ione potisne na stene,
megla ne nastane.

Takoj se pojavi naslednja misel: če tik pred ekspanzijo preleti
skozi cilinder ionizirajoč delec, recimo delec alfa, bo vzdolž svoje
poti ioniziral molekule zraka in na njih se bo kondenzirala para v
kapljice. Delec bo zarisal svojo pot! Izumili smo meglično komoro
(WILSON).
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Slika 44.5 Meglična komora.
Nabiti delci v njej zarisujejo
svoje poti kot nize iz drobnih
kapljic. (Wilson, 1912 /
priredba)

Za praktično uporabo nadomestimo nerodni bat z izsesano
posodo in pipo. Ko pipo odpremo, se zrak iz cilindra raztegne v
posodo. Komoro postavimo v električno polje, ki odstrani vse
moteče ione. Obdamo jo z dvema tuljavama, da v njej ustvarita
homogeno magnetno polje in ukrivljata poti delcev. Priključimo še
fotografsko kamero, ki ob vsaki ekspanziji samodejno posname
sliko.

Slika 44.6 Delci alfa v meglični komori. Izvor
seva delce dveh energij, kar se vidi v njihovem
različnem dosegu. (Wilson, 1920+)

Komoro preizkusimo tako, da vanjo vstavimo košček radioaktivne
snovi. Dobimo krasne slike žarkov alfa in beta. Sledi delcev alfa
so veliko bolj izrazite kot sledi delcev beta. Dolžina meglene poti
je odvisna od začetne kinetične energije delca. Večja kot je
energija, daljša je pot. Poti se proti koncu debelijo, kar kaže na
to, da počasnejši delci močneje ionizirajo atome. Očitno je to
zato, ker dalj časa letijo mimo njih.

Slika 44.7 Elektroni v meglični komori. Ozka
ravna črta pripada hitremu elektronu iz
radioaktivnega vira. Debele kratke črte so zarisali
počasni elektroni, ki so jih iz atomov zraka izbili
rentgenski žarki. (Wilson, 1920+)

Sledi fotonov gama žal ne vidimo, ampak vidimo sledi elektronov,
ki jih ti fotoni izbijejo iz atomov. Ob ionizaciji atoma namreč foton
izgine, izbiti elektron pa izleti iz atoma in na svoji poti ionizira
druge atome.

336

pict3c/wilson-chamber.gif
pict3c/wilson-chamber.gif
picref.htm
picref.htm
pict3c/alpha.jpg
pict3c/alpha.jpg
picref.htm
pict3c/beta1.gif
pict3c/beta1.gif
picref.htm


Izguba energije

(44.1)

Doseg delca

(44.2)

44.4 Preletna dolžina
Delec alfa orje skozi elektronske ovoje atomov kot topovska
krogla skozi roj muh. Pri trku z elektronom izgubi le majhen del
svoje kinetične energije in le neznatno spremeni svojo smer. Ko
potroši vso energijo, se ustavi. Kako dolgo pot prepotuje?

Da bomo bolj splošni, obravnavajmo namesto delca alfa
kakršenkoli težek delec (alfa, proton ali poljuben ion) z maso m,
nabojem Ze in hitrostjo v. Izguba energije takega delca ob enem
trku z elektronom je sorazmerna s kvadratom gibalne količine,
prenešene na elektron: ΔK ∝ G2. Ta gibalna količina je sorazmerna
s trajanjem trka: G ∝ t in trajanje je obratno sorazmerno s
hitrostjo delca: t ∝ 1/v. Zato je povprečna izguba energije ob enem
trku ΔK ∝ 1/v2. Ker je prenešena gibalna količina sorazmerna z
elektrostatično silo G ∝ Fe ∝ Z, je zato ΔK ∝ Z2. Na dolžinsko enoto
izgubljena energija pa je sorazmerna s prostorsko gostoto
elektronov: ΔK ∝ n. Tako ugotovimo dK/dl ∝ Z2n/v2.

Snov z gostoto ρ naj bo sestavljena iz enakih atomov z maso ma,
vrstnim številom Za in masnim številom A. Prostorska gostota
elektronov n se potem izraža s prostorsko gostoto atomov na
takole: n = Zana. Velja ρ = mana = Au · n/Za, torej n = (Za/A)(1/u)ρ.
Razmerje Za/A je za vse atome razen vodika približno enako veliko
(znaša 0,4–0,5), zato ga proglasimo za konstanto in velja

dK
dl

∝ −
Z2ρ
v2 ∝ −

Z2mρ
K

.

Negativni predznak pove, da se energija zmanjšuje. Izguba
energije na dolžino poti je torej odvisna od dveh značilnosti
delca – njegove hitrosti in naboja – in od dveh značilnosti
okolišnje snovi – njene gostote in povprečne ionizacijske energije
(skrite v sorazmernostni konstanti). Čim hitrejši je delec, tem
manj energije izgubi na dolžinsko enoto in tem globlje prodre v
snov. Od dveh delcev z enako energijo in nabojem pa se tisti, ki
ima večjo maso, prej ustavi.

Dolžina poti, ki jo delec z energijo K preleti, preden se ustavi,
znaša R = 0∫K dK/(dK/dl), torej

R ∝
K2

Z2ρ
.

Iz tega vidimo, da R ∝ K2. Sorazmernostna konstanta je odvisna
od vrste delca in od vrste snovi. Določimo jo eksperimentalno.
Delce alfa z znano energijo (določeno z magnetnim odklonom)
spuščamo v meglično komoro, napolnjeno z zrakom pri
standardnih pogojih (ter vodno paro), in merimo dolžino
meglenih sledi. Med obema količinama ugotovimo naslednjo
odvisnost:
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(44.3)

(44.4)

Ohranitveni zakoni

R
mm

= 3,2 (
K

MeV
)3/2 .

Eksponent 3/2 sicer ni enak pričakovanemu eksponentu 2, ampak
to nas ne sme preveč presenetiti, saj smo slednjega izračunali
zelo na grobo.

Slika 44.8 Dolžina sledi delca alfa v zraku pri standardnih pogojih. Prikazani so
izmerki in prilegajoče se krivulje za različne radioaktivne izvore z energijami
med 1 in 10 MeV. (Burcham, 1979)

Če poznamo doseg delca v plinu z gostoto ρ1, ali poznamo doseg
tudi pri gostoti ρ2? Da, enačba (44.2) pove ρR = const, torej

R2 =
ρ1

ρ2
R1 .

S precej predrznosti upamo, da velja zapisana enačba celo za dve
različni snovi, na primer za plinasti zrak in za trdni aluminij.
Poskusi to v grobem potrdijo. Iz tega sklepamo, da so povprečne
ionizacijske energije elektronov v različnih atomih približno
enake.

44.5 Dinamika trkov
Ko potuje delec alfa skozi plin in ionizira njegove atome, bo prej
ali slej trčil ob atomsko jedro – tako nas vsaj uči poskus z zlato
folijo, s katerim smo atomska jedra sploh odkrili. Če jedro ni
pretežko, ga bo delec alfa pač moral premakniti ali celo izbiti iz
elektronskega ovoja. Pričakujemo, da bo takšno golo jedro tudi
zarisalo svojo kondenzacijsko sled.

Ne glede na to, kakšne so sile med izstrelkom in jedrom,
pričakujemo, da ob njunem trku vendarle veljajo ohranitveni
zakoni gibanja: ohranitev energije, gibalne količine in vrtilne
količine. Pred trkom naj ima delec alfa gibalno količino m1v1. Po
trku se ta gibalna količina porazdeli na delec alfa m1v1' in na
jedro m2v2'. Velja m1v1 = m1v1' + m2v2'. To vektorsko enačbo
zapišimo v komponentah. Iz risbe razberemo
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(44.5)

(44.6)

Mase in odbojni koti

(44.7)

Centralni trk

(44.8)

m1v1 = m1v1' cos θ1 + m2v2' cos θ2
0 = m1v1' sin θ1 − m2v2' sin θ2 .

Od prvotne smeri je delec alfa odklonjen za kot θ1 in jedro za kot
θ2. Prva enačba pravi, da je prvotna gibalna količina delca alfa
enaka vsoti gibalnih količin obeh delcev v prvotni smeri. Druga
enačba pa pravi, da se gibalne količine obeh delcev, pravokotne
na prvotno smer, izničijo.

Slika 44.9 Trk delca z jedrom. Po trku
odletita delec in jedro vsak v svojo smer.

Pri trku se lahko ohranja tudi kinetična energija; tedaj rečemo,
da je trk elastičen. Kadar pa ni tako, pravimo, da je trk
neelastičen. Pri neelastičnem trku se nekaj začetne kinetične
energije pretvori v notranjo energijo produktov ali pa se nekaj
začetne notranje energije pretvori v kinetično energijo produktov.
Priročno je vpeljati razliko kinetičnih energij po in pred trkom:
Q = K' − K. Za elastične trke je potem Q = 0 in za neelastične
Q ≠ 0.

Privzemimo, da je trk elastičen. Potem se mora ohranjati
kinetična energija

1
2

m1v1
2 =

1
2

m1v1'2 +
1
2

m2v2'2 .

Iz enačb (44.5) in (44.6) odstranimo hitrosti ter dobimo

m2

m1
=

sin θ1

sin (θ1 + θ2)
.

Enačba omogoča, da iz izmerjenih kotov θ1 in θ2 izračunamo
maso udarjenega jedra. To je zelo prikladen način, da ugotovimo,
kakšno jedro je udarec prejelo. Če trčita dva enako težka delca, je
m1 = m2 in sledi θ1 + θ2 = π/2. Delca se torej razletita pod pravim
kotom.

Poseben primer je centralni trk. Tedaj θ1 = 0 in θ2 = 0 in iz (44.5)
ter (44.6) sledi

v2'
v1

=
2m1

m1 + m2
.

Če trčita enako težka delca, je v2' = v. To pomeni, da se izstrelek
ustavi, tarča pa prevzame vso njegovo hitrost. Lažja tarča odleti
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Delci alfa in vodik

hitreje od izstrelka in težja počasneje. Vodikovo jedro, ki ga
centralno zadene delec alfa, tako odleti s hitrostjo v2'/v1 = 1,6. To
je tudi maksimalna hitrost, ki jo vodikovo jedro lahko dobi pri
takem trku. Dušikovo jedro, ki je težje od delca alfa, pa odleti s
hitrostjo v2'/v1 = 0,4.

44.6 Trki alfa ob jedra
Pa obstreljujmo najlažja jedra – vodikova – z delci alfa! V izsesano
cilindrično posodo namestimo radioaktivni izvor. Radioaktivni
žarki prehajajo skozi odprtino v steni in vpadajo na svetleč
zaslon, kjer opazujemo bliske z mikroskopom.

Slika 44.10 Priprava za obsevanje raznih plinov z delci alfa. t = dovod
preiskovanega plina, R = radioaktivni vir, a = srebrna folija, S = scintilacijski
zaslon, M = mikroskop. (Rutherford, 1919 / priredba)

S prečnim magnetnim poljem iz curka odstranimo žarke beta.
Nato pred zaslon postavimo tanko srebrno folijo. Njeno debelino
izberemo tako, da na zaslonu ni več bliskov (od delcev alfa).
Potem v posodo spustimo vodik. Na zaslonu se pojavijo bliski.
Sklepamo, da jih povzročajo vodikova jedra, ki so jih iz atomov
vodika izbili delci alfa pri centralnih trkih (RUTHERFORD).

Trke delcev alfa z jedri vodika opazujemo tudi v meglični komori.
Pri tem moramo biti potrpežljivi. Potrebnih je mnogo opazovanj,
da uspemo takšen trk fotografirati. Seveda lahko opazujemo tudi
trke z jedri kakega drugega plina. Zlasti lepo je opazovati helij:
tedaj sta masi izstrelkov in tarč enaki in sipalni kot med njima
znaša 90 °.

Slika 44.11 Vpad delcev alfa na vodik
(levo) in helij (desno). Delec alfa je po trku z
jedrom vodika (protonom) odklonjen za 8°
in proton za 68°. Kota povesta, da je
razmerje mas obeh delcev 4 : 1. Trk delca
alfa z jedrom helija pa kaže medsebojni kot
90°, saj sta oba delca enako težka.
(Blackett, 1925 / priredba)
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Delci alfa in dušik

(44.9)

Delci alfa in berilij

Obstreljujejmo tudi druge pline in sicer natanko tako kot vodik.
Pri kisiku in ogljikovem dioksidu se za srebrno folijo (ki zaustavlja
delce alfa) na zaslonu nič ne pokaže. Pri dušiku pa opazimo na
zaslonu bliske. Odklon z magnetnim poljem pokaže, da te bliske
povzročajo hitri protoni. Od kod so se vzeli, če pa v posodi ni
vodika, ampak je dušik? Domnevamo, da sta se delec alfa in jedro
dušika zlila v novo jedro, pri čemer je proč odletel proton.
Ohranitev naboja in masnega števila pove, da mora biti nastalo
jedro kisik (RUTHERFORD):

2α4 + 7N14 → 8O17 + 1p1 .

Domnevo preverimo in potrdimo v meglični komori, ki jo
napolnimo z dušikom (in vodno paro).

Slika 44.12 Vpad delca alfa na dušik. Ta se
spremeni v kisik (debela kratka sled) in izseva
proton (dolga poševna sled). Potrebnih je več
tisoč fotografij, da ujamemo takšno pretvorbo.
(Blackett, 1925)

Tako smo prišli do presenetljive ugotovitve: atomska jedra – in s
tem atomi – se dajo spreminjati. To velja vsaj za spremembo
dušika v kisik. Pričakujemo, da podobno velja tudi za druge snovi.
Odkrili smo transmutacijo elementov.

44.7 Odkritje nevtronov
Sedaj šele dobimo veselje do obstreljevanja različnih snovi z žarki
alfa! Ko namesto plinastega vodika ali dušika obstreljujejemo
ploščo iz berilija, zaznamo z ionizacijskim števcem redke sunke –
nekaj na minuto. Magnetno polje nanje ne vpliva. Če med berilij
in števec postavimo svinčeno ploščo, se v njej skorajda ne
absorbirajo. Odkrili smo nevtralne, zelo prodorne "berilijeve"
žarke (BOTHE). So to morda iskani nevtroni?

Slika 44.13 Vpad delcev alfa na berilij. Iz berilija izhajajo nevtralni žarki, ki jih
zaznava ionizacijski števec. (Chadwick, 1932)
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(44.10)

Masa nevtronov

(44.11)

Masni primanjkljaj

Vezavne energije

(44.12)

Če so opaženi delci res nevtroni, se mora v beriliju dogajati
naslednja reakcija:

2α4 + 4Be9 → 6C12 + 0n1 .

Raziskujoč absorpcijo postavimo na pot berilijevih žarkov
namesto plošče iz svinca ploščo iz parafina. Ionizacijski števec,
meglična celica in magnetno polje na naše veliko presenečenje
pokažejo, da iz parafina izletavajo številni protoni (CHADWICK).
Parafin vsebuje – za razliko od svinca – lahke vodikove atome. To
nas utrjuje v misli, da so berilijevi žarki res nevtroni, ki trkajo z
jedri vodika, protoni.

Pri trku delca alfa z jedrom berilija se ohranja polna energija
mαc2 + mαvα

2/2 + mBec2 = mCc2 + mCvC
2/2 + mnc2 + mnvn

2/2.
Privzamemo, da je kinetična energija nastalega ogljika precej
manjša od kinetične energije nastalega nevtrona, ker je njegova
masa precej večja, in jo zanemarimo. Potem sledi mnc2 ≈
(mαvα

2/2 + mαc2 + mBec2 − mCc2)/(1 + vn
2/2c2). Na desni strani

poznamo energijo vpadajočih delcev alfa in vse mase (iz masnega
spektrometra), ne poznamo pa hitrosti nevtronov vn. Določimo jo
tako, da spustimo berilijeve nevtrone na vodik, da iz njega izbijejo
protone, potem pa z magnetnim odklonom določimo
(maksimalno) hitrost vp čelno udarjenih protonov. Ob
predpostavki, da je masa nevtronov blizu masi protonov, velja
vn = vp. Tako izmerimo mnc2 = 940 MeV oziroma (CHADWICK)

mn = 1,009 u .

Nevtron je torej od protona težji za okrog 0,2 %.

44.8 Vezavna energija
Masa helijevega jedra znaša 4,002 (to je masa helijevega atoma z
dvema odštetima elektronoma), masa njegovih sestavnih delov –
dveh protonov in dveh nevtronov – pa 2 · 1,007 + 2 · 1,009 = 4,032.
Masa skupka vezanih nukleonov je torej manjša od vsote mas
posamičnih, prostih nukleonov. Rečemo, da ima jedro masni
primanjkljaj, v primeru helija 0,030 u, kar ustreza vezavni energiji
28 MeV. Očitno je to energija, ki jo sistem nukleonov izgubi, ko se
poveže v jedro. Helijevo jedro ima za 28 MeV manj energije kot
njegovi štirje ločeni nukleoni.

Kar velja za helij, velja tudi za druga jedra. Vsa kažejo masni
primanjkljaj. Zlahka ga določimo, če le izmerimo njihove mase z
masnim spektrometrom. Vezavna energija jedra z maso m, z Z
protoni in z A − Z nevtroni znaša

Ebind = (Zmp + (A − Z)mn − m)c2 .

V takem jedru je posamičen nukleon vezan s povprečno vezavno
energijo
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(44.13)

Evidenca jeder

B =
Ebind

A
.

Vezavna energija nukleona je približno enaka v vseh jedrih in
znaša okrog 8 MeV, le pri najlažjih jedrih je nekoliko manjša. Pri
vodiku je seveda enaka nič. Odvisnost B od A ima maksimum pri
železu; njegovi nukleoni so najmočneje povezani.

Slika 44.14 Povprečna vezavna energija nukleona v različnih jedrih. Energija je
izračunana iz znanega števila protonov in nevtronov v jedru ter iz izmerjene
atomske mase v masnem spektrometru. (Anon)

Če so jedra lažja od vsote mas svojih ločenih sestavin, kaj ne velja
isto tudi za atome? Kaj ne bi moral biti atom lažji od vsote mas
svojega jedra in ločenih elektronov? Res je. Vendar je močna sila,
ki veže nukleone, mnogo močnejša od električne sile, ki veže
elektrone in jedra. Vezavne energije nukleonov v jedrih so zato
milijonkrat večje kot vezavne energije elektronov v atomih. Temu
ustrezni so tudi masni primanjkljaji. Zato jih v jedrih lahko
izmerimo, v atomih pa tega ne moremo.

Obstoj masnega primanjkljaja in vezavne energije je sijajna
potrditev sorazmernosti med maso in energijo, ki smo jo odkrili v
teoriji relativnosti. S tem smo slednjo še bolj učvrstili.

44.9 (Ne)stabilnost jeder
Zdaj, ko poznamo sestavo jeder iz protonov in nevtronov,
poskusimo povezati radioaktivnost atomov z zgradbo njihovih
jeder. Saj ne more biti dvoma, da radioaktivni delci – alfa, beta in
gama – izhajajo iz jeder. Gotovo se morajo pri tem jedra
spremeniti. Rekli bomo, da razpadajo.

Atomska jedra so enolično določena s številom protonov in
nevtronov, ki jih vsebujejo. V naravi najdemo, kot vemo, jedra z 1
do 92 protoni in vsako od njih ima lahko več različnih števil
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Dolina stabilnosti

Razpad alfa

(44.14)

nevtronov. Tako, na primer, najdemo ogljikove izotope 6C12, 6C13

in 6C14. Prva dva sta stabilna, zadnji je radioaktiven. Drugih
izotopov ogljika ne najdemo. Podobno je s preostalimi jedri.
Stabilnih je okrog 250 vrst jeder; preostanek – vsaj 60 vrst – je
radioaktiven. Vsa znana jedra poimenujemo nuklide.

Slika 44.15 Stabilna atomska jedra. Nestabilna jedra se tiščijo stabilnih in niso
prikazana. (University of Maryland)

Ugotovimo naslednje. Vsa jedra z A > 83 (bizmut) so nestabilna,
to je radioaktivna. Od lažjih pa so stabilna le taka, v katerih je
razmerje med številom nevtronov in protonov zelo natančno
zamejeno. Pri lahkih elementih je to razmerje enako 1, potem pa
se počasi veča. Jedra, ki od tega razmerja rahlo odstopajo – imajo
premalo ali preveč nevtronov glede na število protonov – so
radioaktivna. Tistih, ki bi močno odstopala, pa sploh ni.

Zanimivo je, da ima dve tretjini stabilnih jeder sodo število
protonov in hkrati sodo število nevtronov. Jeder sodo-liho ali liho-
sodo je za eno tretjino. Jeder liho-liho pa je zgolj nekaj.

44.10 Razpadni mehanizmi
Sedaj hočemo podrobneje raziskati mehanizme, ki so odgovorni
za radioaktivni razpad jeder.

Pri razpadu alfa (uran, radij) izleti iz jedra delec alfa. To pomeni,
da se zgodi naslednja jedrska reakcija:

ZXA → Z−2YA−4 + 2α4 .

Iz elementa X nastane element Y. Predstavljamo si, da so nekateri
nukleoni v jedru že povezani v delce alfa (to je energijsko bolj
ugodno, kot če bi bili ločeni). Tak delec alfa se giblje v
sestavljenem potencialnem polju močne in električne sile. To
polje je podobno krtini na travniku. V eni dimenziji se torej giblje
delec med dvema grebenoma. Višina grebena je približno
tolikšna, kot je električni potencial na robu jedra: U ≈ Ze/R. Ker je
delec alfa vezan, mora biti njegova energija E manjša od njegove
potencialne energije na vrhu grebena W = 2eU. Kako naj potem
sploh zapusti krtino? Tako, da skozi greben tunelira (GAMOW). Ker

344

pict3c/stablenuclides.jpg
pict3c/stablenuclides.jpg
picref.htm


Razpad beta

(44.15)

je jedro atoma kvantni sistem nukleonov, so energije delca alfa v
njem kvantizirane. Zato je tudi energijski spekter izsevanih
delcev alfa diskreten.

Slika 44.16 Razpad alfa kot tuneliranje delca alfa skozi potencialni greben
okrog jedra. (University of Manchester)

Vemo, da valovna funkcija kvantnega delca po vpadu na visoko
potencialno stopnico eksponentno pojema in da njen kvadrat na
razdalji D znaša P ∝ exp −2D√ (2m(W−E)/ħ2). Verjetnost, da bo
delec alfa prepuščen, je torej močno odvisno od višine in širine
stopnice. Seveda velja podobno tudi za greben krtine, ki ni
pravokoten.

Zakaj jedro lahko izvrže delec alfa, ne opazimo pa, da bi kdaj
samo od sebe izvrglo proton ali nevtron? Relativne mase
sosednjih izotopov istega elementa se ločijo med seboj za največ
1,007. To je premalo za izsevanje nevtrona, pa tudi protona. Jedro
v osnovnem stanju torej ne more izvreči posamičnega nukleona.
Drugače je z delcem alfa, katerega masa je znatno manjša od
vsote mas dveh protonov in nevtronov. Med težkimi elementi je
precej primerov, kjer je razlika med maso začetnega in končnega
jedra večja od mase delca alfa. Zato energijski zakon ne
nasprotuje razpadu.

Pri razpadu beta (6C14, 4Be10) izleti iz jedra elektron. To pomeni,
da se zgodi naslednja reakcija:

ZXA → Z+1YA + e + [še kaj?] .

Energijska bilanca za razpad jedra m1 v jedro m2 – brez [še
kaj?] – je naslednja: m1c2 = m2c2 + K2 + mec2 + Ke, torej
Ke = m1c2 − m2c2 − mec2 − K2. Odrivna kinetična energija jedra K2
je zanemarljiva v primerjavi s kinetično energijo elektrona. Tako
vidimo, da bi moral imeti izsevani elektron ostro vrednost Ke.
Pričakovali bi torej, da je energijski spekter elektronov diskreten.
Do podobnega sklepa pridemo, če pomislimo, da prihajajo
elektroni iz kvantiziranega jedra. Vendar pa meritve temu
nasprotujejo: kot že vemo, je spekter zvezen [41.6]. Izleteli
elektron ima poljubno energijo med nič in Ke. Kako naj si to
razložimo?
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Šibka sila

Razpad gama

(44.16)

Ponuja se presentljiv izhod iz zagate: morda pa se poleg vsakega
elektrona izseva še en lahek nevtralen delec, in sicer tako, da je
vsota energij obeh konstantna. Temu delcu recimo nevtrino ν
(PAULI). Njegova masa mora biti zelo majhna. Povsem možno je,
da ima maso nič in da se zato giblje s svetlobno hitrostjo. Ali tak
delec res obstaja, bomo morali seveda še ugotoviti. Ker delec ni
nabit in ima maso (blizu) nič, bo to težko, gotovo težje od
odkrivanja nevtronov.

Kako si naj razložimo izsev elektrona iz jedra, če pa v njem ni
elektronov? Ena izmed možnosti je naslednja. Ko atom izseva
foton, to ne pomeni, da je bil foton pred tem že skrit v atomu.
Foton šele nastane pri prehodu elektronskega oblaka iz višjega
vzbujenega stanja v nižje. Lahko rečemo, da se fotoni pravzaprav
rojevajo iz sprememb električnega polja, ki križema povezuje
elektrone in protone. Morda je tako tudi v jedru. Morda obstaja
med nukleoni polje sil, iz katerega se, ob spremembah, rojevajo
elektroni in nevtrini. Zaradi ohranitve naboja se morajo pri tem
spreminjati tudi nevtroni v protone.

Pretvorba nevtronov v protone se dogaja, kadar je na kupu
"preveč" nevtronov in "premalo" protonov. Blizu je misel, da
morda polje deluje tudi v obratni smeri: kadar je na kupu
"preveč" protonov in "premalo" nevtronov, se začnejo protoni
pretvarjati v nevtrone, pri čemer bi se morali zaradi ohranitve
naboja izsevati pozitivni elektroni oziroma pozitroni in nevtrini.
Na ta način kvalitativno razložimo dolino stabilnosti in napovemo
še en nov delec, ki morda obstaja.

Poleg treh dosedanjih sil – gravitacijske, električne in močne –
torej morda obstaja v naravi še četrta sila; poimenujmo jo šibka
sila. Sila mora delovati križem med nukleoni, elektroni in
nevtrini. Njen doseg mora biti kratek. Za razliko od drugih sil pa
šibka sila delcev ne pospešuje, ampak jih "ob dotikih" spreminja,
ustvarja in uničuje.

Nekatera jedra razpadajo z razpadom alfa, druga z razpadom
beta. Večinoma se pri vsakem zgodi hkrati še razpad gama, to je,
jedro izseva foton gama:

ZXA → ZXA + γ .

Razlaga je hitro pri roki. Razpad alfa ali beta praviloma pusti
jedro v vzbujenem stanju. Jedro se nato povrne v osnovno stanje
in pri tem izseva foton gama. Zaradi kvantizacije jedrskih stanj
mora biti izsevani spekter diskreten. In takšen, kot vemo, tudi je.

44.11 Statistika razpadov
Ko atomi radioaktivno razpadajo, se število še nerazpadlih
atomov manjša. Kako?
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Preostala jedra

(44.17)

(44.18)

(44.19)

Aktivnost vira

(44.20)

Predpostavimo, da je razpad slučajni dogodek in je neodvisen od
zunanjih okoliščin. Verjetnost, da izbrano jedro razpade v kratki
časovni enoti, je zato konstantna. To pomeni, da je delež jeder, ki
razpadejo v časovni enoti, neodvisen od tega, koliko je še
nerazpadlih jeder: −dN/Ndt = λ. Enačbo integriramo in dobimo

N = N0 e−λt .

Število nerazpadlih jeder se eksponentno zmanjšuje. V času

τ =
1
λ

pade na vrednost 1/e ≈ 37 %. Rečemo, da je to razpadni čas.
Namesto razpadnega časa je bolj nazorno vpeljati razpolovni čas,
to je čas, v katerem se število nerazpadlih jeder zmanjša na
polovico: N0/2 = N0 exp −λT1/2. Sledi povezava

T1/2 = τ ln 2 .

Slika 44.17 Zmanjševanje števila še nerazpadlih delcev s časom. (University of
California)

Radioaktivni viri sevajo žarke bolj ali manj izdatno. Bolj kot vir
seva, več jeder v njem razpade v časovni enoti. Število razpadov
na časovno enoto poimenujemo aktivnost vira:

A = −
dN
dt

= λN = λN0 e−λt = A0e−λt .

Aktivnost vira pojema eksponentno s časom. Če jo izmerimo (z
ionizacijskim števcem) ob nekaj različnih časih in narišemo
odvisnost ln A/A0 od časa, dobimo premico in iz nje razpadno
konstanto. Števec sicer ne zajame vseh radioaktivno izsevanih
delcev, prestreže pa stalen odstotek. Vendar je to dovolj. Seveda
lahko na ta način merimo le tiste izvore, ki se jim aktivnost
znatno zmanjšuje s časom. Takšen, na primer, je izotop 84Po210 v
poloniju, ki ga pridobimo iz uranove rude. Razpolovni čas ima
kratkih 138 dni. Izmerjena aktivnost je natančno eksponentna. S
tem potrdimo predpostavko, iz katere smo izhajali: radioaktivni
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Verižno razpadanje

(44.21)

Datiranje kamnin

razpadi so res slučajni in neodvisni od sosednjih atomov in
zunanjih okoliščin, recimo temperature ali magnetnega polja.

Radiju 88Ra226 ali uranu 92U238 se aktivnost s časom spreminja
tako počasi, da mu na opisani način ne moremo določiti
razpolovnega časa. Pomagamo si takole. Pridobiti moramo košček
čistega izotopa. V njem so vsa jedra še nerazpadla. Košček mase
m damo v ionizacijski števec in mu izmerimo aktivnost. Vemo, da
je v koščku N0 = m/m1, m1 = M/NA nerazpadlih jeder. Razpadno
konstanto izračunamo iz povezave A = λN0. S tem je določen tudi
razpolovni čas. Za radij dobimo 1600 let in za uran 4,5 · 109 let.

Radioaktivne snovi s kratkim razpolovnim časom v naravi sploh
ne bi smele obstajati, saj hitro izginevajo. Očitno morajo vedno
znova nastajati. Ponuja se misel, da kratkoživi elementi morda
nastajajo iz dolgoživih. Natančneje rečeno: izvorni radioaktivni
element razpada v produkt, ki je tudi sam radioaktiven, in tako
naprej, vse do zadnjega člena v razpadni verigi, ki je obstojen. Z
detektivskim eksperimentalnim delom uspemo v naravi res
odkriti vsaj dve takšni verigi. Prva se začne z uranom U238 in
konča s svincem Pb206. Vmes nastaja radij Ra226. Druga pa se
začne s torijem Th232 in konča s svincem Pb208.

Zamislimo si čist kos radioaktivne snovi A z zelo dolgim
razpolovnim časom. Z razpadanjem iz nje nastaja snov B. Njena
količina ne raste kar naprej, ampak razpada ter se prej ali slej
ustali pri vrednosti, ko je prav toliko razpade, kot jo nastane.
Podobno velja za snov C, ki nastaja iz B. Kolikšen je razpolovni
čas obeh snovi, pri tem ne igra vloge, le dosti krajši mora biti od
razpolovnega časa prve snovi. Velja dNA/dt = dNB/dt = dNC/dt.
Zapišemo λANA = λBNB = λCNC, vstavimo razpolovna časa in
dobimo

NA

TA
=

NB

TB
=

NC

TC
.

V ravnotežju je številčno razmerje snovi enako razmerjem
njihovih razpolovnih časov. Dolgožive snovi je več, kratkožive
manj. Relacija velja za vse člene v razpadni verigi. Iz nje lahko
izračunamo razpolovni čas ene snovi, če poznamo razpolovni čas
druge snovi in njuno ravnotežno številčno razmerje. To je zlasti
primerno za določanje dolgih razpolovnih časov.

Zemeljska skorja je nastala in še nastaja iz staljenih snovi v njeni
notranjosti. Pri ohladitvi se tvorijo različni minerali/kristali.
Nekateri so takšni, da ob strditvi vključijo vase uran, ne pa tudi
svinca. Takšen je, na primer, cirkon ZrSiO4, ki ima del
cirkonijevih atomov Zr nadomeščenih z uranovimi. Ko čas
mineva, ti razpadajo v svoje končne produkte: izotop U238 v Pb206

in izotop U235 v Pb207. Razpolovna časa poznamo: 4,5 in 0,7
milijarde let. V kristalu pojema število istovrstnih uranovih
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Tvorba izotopov

izotopov kot NU = NU0 exp −λt, hkrati se pa povečuje število
ustreznih svinčevih atomov NPb = NU0 (1 − exp −λt). Deljenje obeh
enačb pove t = (1/λ) ln (1 + NPb / NU). Z meritvijo razmerja NPb / NU
je enolično določena starost kristala. Tako določamo starost
različnih kamenin. Najstarejši kristali, ki jih najdemo, so stari 4,0
milijarde let. Meteoriti, ki iz vesolja padajo na Zemljo, pa so še
starejši, okrog 4,5 milijarde let. Sklepamo, da je približno toliko
stara tudi Zemlja.

44.12 Trki nevtronov ob jedra
Nevtronov med letom skozi snov ne ovirata niti elektronski ovoj
atomov niti električno polje jeder. Zato se z lahkoto približajo
jedrom in z njimi trkajo, se od njih odbijajo ali v njih ponikajo ter
povzročajo jedrske spremembe. To jih dela odlične izstrelke za
raziskavo jeder. Dober vir nevtronov za poskuse že poznamo –
zmes zdrobljenega radijevega bromida in berilija, zaprto v
stekleni cevki.

Naj na ploščo iz izbrane snovi v izbranem času vpade curek N
nevtronov. Verjetnost, da nevtron iz vpadajočega curka obtiči v
snovi, znaša P = Na σ / S, pri čemer je σ absorpcijski presek jedra,
Na število jeder vzdolž curka in S presek curka. Iz plošče naj izide
N' nevtronov. To pomeni, da v plošči obtiči N − N' = (Naσ/S)N
nevtronov. Število jeder Na je določeno z maso obsevanega dela
plošče in z maso posamičnega jedra: Na = ρ S l / A u. To pomeni, da
znaša presek jedra σ = (Au/ρl)(N − N')/N. Z meritvijo N in N' je
presek popolnoma določen. S tem je določen tudi absorpcijski
radij jedra: σ = πr2. Zaradi kratkega dosega močnih sil si ga lahko
predstavljamo kar kot geometrijski radij.

Dejanske meritve pokažejo, da velja povezava

r = r0 A1/3

r0 = 1,2 fm .

Jedro bakra Cu64, na primer, ima polmer 5 fm. To je trikrat manj,
kot smo svoj čas določili iz sipanja delcev alfa [41.7]. Delci alfa se
pač ne morejo približati jedrom tako močno kot nevtroni.

Ker r3 ∝ A in r3 ∝ V, je A/V = const. Gostota vseh jeder je zato
približno enaka in je reda velikosti 108 ton/cm3. To je strašna
vrednost. Sklepamo tudi, da so nukleoni v jedrih prav tesno
nagneteni. Jedra so torej precej podobna kapljicam tekočine s
tesno nagnetenimi molekulami.

Jedro, ki ujame nevtron, se spremeni v svoj "višji" izotop.
Hvalevredno bi bilo sistematično obsevati vse elemente in
pogledati, kakšne izotope lahko pridelamo. Pri tem želimo
dosegati čim večji izplen. Pričakujemo, da bodo počasnejši
nevtroni, ki v bližini jeder preživijo več časa, bolj pogosto vstopali
vanje. Takšne počasne nevtrone dobimo, če izvorne hitre
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nevtrone spustimo najprej skozi primerno snov, v kateri elastično
trkajo z jedri in izgubljajo kinetično energijo. Potrebna je snov z
majhnim absorpcijskim in velikim sipalnim presekom. Dobro se
izkažeta voda in grafit.

Rezultati so pričakovani. Pridelamo veliko število lahkih izotopov,
ki jih v naravi najdemo redko ali sploh ne. Vsi imajo "preveč"
nevtronov, da bi bili stabilni, in so beta-radioaktivni. Nekaj
primerov: 1H3, 6C14 in 15P32. Razpolovni časi znašajo tipično od
nekaj dni do nekaj tisoč let.

44.13 Razcep težkih jeder
Pri obsevanju težkega urana z nevtroni pa nas čaka presenečenje:
namesto višjih izotopov urana nastane mešanica različnih srednje
težkih elementov. Tega si ne moremo razlagati drugače, kot da se
od nevtrona zadeto uranovo jedro razcepi na dve približno enako
težki jedri in še na kakšen "odvečen" nevtron (HAHN). Nastala
jedra so radioaktivna in izsevajo elektrone ter žarke gama. Pojav
lahko celo opazimo v meglični celici: iz obsevane uranove
ploščice včasih izletita dva bleščeča žarka. Njuna ionizacijska
sled pravi, da nosita mnogo kinetične energije.

Vezavna krivulja nukleonov v jedrih pravi naslednje. V težkem
jedru je vsak nukleon vezan z energijo 7,5 MeV, v srednjetežkem
jedru pa z 8,5 MeV. Pri cepitvi težkega jedra se torej vezavna
energija nukleona poveča za 1 MeV, to je, vsak nukleon odda
okrog 1 MeV energije. V jedru urana je preko 200 nukleonov, zato
ob razcepu odda okrog 200 MeV energije. Ta energija se naloži
večinoma v kinetično energijo obeh fragmentnih jeder, deloma pa
tudi v kinetično energijo sproščenih nevtronov in izsevanih
elektronov ter fotonov gama.

Uran v naravi sestoji predvsem iz dveh izotopov 92U238 (99 %) in
92U235 (1 %). Podrobne raziskave pokažejo, da se izotop U238 ob
zajetju nevtrona redko razcepi, ampak raje postane izotop 92U239,
takoj dvakrat zaporedoma beta-razpade in postane plutonij
94Pu239. Izotop U235 pa se razcepi pogosto, posebej še s počasnimi
nevtroni. Pri tem s števci tudi opazimo, da iz obsevanega vzorca
izstopa več nevtronov, kot jih vanj vstopa: na 1 (počasni)
vstopajoči nevtron pridejo kar 2–3 (hitri) izstopajoči. To nas
navede na naslednjo misel: ako zadenejo novorojeni nevtroni spet
ob uranovo jedro, lahko sprožijo nove cepitve. Pri tem izletijo
spet novi nevtroni in tako naprej. Namesto ene same cepitve
sprožimo torej celo verigo cepitev. Rečemo, da smo sprožili
verižno reakcijo (FERMI).

Če hočemo, da verižna reakcija ne ugasne, moramo poskrbeti za
naslednje. Prvič, kepa urana mora biti dovolj velika, da nevtroni
preveč ne uhajajo. In drugič, preprečiti moramo takšne reakcije,
pri katerih se jedra ne cepijo. Predvsem moramo preprečiti vpliv
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jeder U238, ki požirajo nevtrone (razen najhitrejših), ne da bi se
cepila.

Slika 44.18 Verižna reakcija.
Vpadajoči nevtron razcepi
uranovo jedro, pri čemer se
sprostita tipično dva nevtrona in
razbijanje se nadaljuje. (Hong
Kong University)

Očitno velja naslednje. V "premajhni" kepi urana verižna reakcija
ugasne. V "preveliki" naraste preko vsake meje in kepa
eksplodira. Ravno pravšnja kepa pa vzdržuje konstantno verigo
razpadov ter zagotavlja ravnovesje med proizvedeno in oddano
energijo. Odkrili smo princip za izdelavo uranove bombe in
uranove peči.

Iz samega naravnega urana se ne da narediti bombe, tudi če ga
nakopičimo skupaj več ton. V njem je namreč izotopa U238 toliko,
da preveč pridno požira nevtrone in se verižna reakcija ne more
prav razviti. Naravni uran moramo zato obogatiti, to je, v njem
povečati delež izotopa U235. Postopek temelji na frakcionalni
difuziji in centrifugiranju uplinjenih uranovih soli (npr UF6) ter je
zapleten in drag. Privoščijo si ga lahko le tehnološko razvite in
bogate države. Ko nam uspe v taki državi pridelati dovolj
primerno obogatenega urana, ga moramo seveda shraniti v
majhnih kosih na oddaljenih mestih. Sicer bi ga bilo na kupu
toliko, da bi naključni nevtroni iz okolice v njem takoj sprožili
uničujočo verižno reakcijo. Kakor pravijo tisti, ki se na to
spoznajo, znaša kritična masa krogle iz čistega U235 komaj 15 kg.

Bombo izdelamo iz dveh podkritičnih cilindrov vsaj 80-odstotno
obogatenega urana. En cilinder je votel in drugi se vanj prilega.
Cilindra sta nameščena v cevi na medsebojni razdalji ∼ 2 metra.
Smodnikov naboj izstreli en cilinder v drugega. S tem presežeta
kritično maso in bomba eksplodira.

Slika 44.19 Eksplozija uranove
bombe nad Hirošimo. Bomba je pobila
preko 100 000 ljudi in zravnala mesto
z zemljo. (Hiroshima Memorial Peace
Museum)
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Uranov reaktor Uranov reaktor je ukročena uranova bomba, v kateri
nadzorujemo nevtronski plaz, da bomba stalno "tli", namesto da
bi eksplodirala. Jedro reaktorja sestavimo iz kosov delno
obogatenega (5 %) urana. V jedro potisnemo palice iz snovi, ki
močno absorbira nevtrone: grafita, kadmija ali bora. Bolj kot jih
potisnemo v jedro, več nevtronov absorbirajo in bolj dušijo
razpadni plaz. Tako uravnavamo hitrost razpadanja (FERMI). Skozi
jedro črpamo vodo, ki se od razpadajočega urana segreva in
spreminja v paro. Z njo gonimo parno turbino in nanjo priklopljen
električni generator. Ko para opravi svoje delo, jo ohladimo, da se
kondenzira, in jo vodimo nazaj v reaktor. Voda hkrati služi kot
sredstvo, ki upočasnuje nevtrone in s tem povečuje njihovo
razbijalno uspešnost.

Bolj kot je uran obogaten, manjše delovno jedro je potrebno.
Uporabimo lahko celo neobogateni uran, vendar moramo v tem
primeru njegove hitre nevtrone upočasnjevati s težko vodo (tako,
ki vsebuje težki vodik); navadna voda jih ne upočasni dovolj.
Namesto enega vodnega kroga lahko uporabimo tudi dva. V
prvem, ki je pod visokim pritiskom, vodo segrevamo nad 100 °C.
S tako segreto vodo pa potem uparjamo vodo v drugem, ločenem
vodnem krogu. Končno moramo reaktor obdati še s ščitom iz
primerne snovi, da nevtroni, predvsem pa žarki gama, ne uhajajo
v okolico. Primerna sta navadni beton in svinec.

Slika 44.20 Uranov reaktor. Pri nadzorovanem razcepu urana se sprošča
toplota. Ta segreva vodo v paro in slednja poganja parno turbino s priključenim
električnim generatorjem. (US Nuclear Regulatory Commission)

Kilogram U235 proizvede v reaktorju toliko energije kot sežig
3000 ton premoga! S tem dobimo v roke izjemno močan in
zgoščen vir energije. Uranove reaktorje uspešno uporabimo za
pogon velikih elektrarn. Namestimo jih na ladje in podmornice.
Za avtomobile in letala pa so pretežki. Reaktorji služijo tudi kot
izdaten vir nevtronov, s katerimi lahko opravljamo nadaljnje
raziskave.

Ko se uranovo gorivo potroši, ostanejo za njim razni stranski
produkti, ki so radioaktivni, recimo cezij Cs137, stroncij St90 in
plutonij Pu239. Da njihovo sevanje ne bi škodovalo ljudem,
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Zlivanje vodika

(44.23)

Vodikova bomba

moramo vso to žlindro zapreti v primerne zabojnike in jih
zakopati globoko pod zemljo. Potem pa čakamo, da razpade v
končne, neradioaktivne produkte.

44.14 Zlivanje lahkih jeder
Vezavna energija nukleona v zmerno težkem jedru je večja od
vezavne energije nukleona v lahkem jedru: v devteriju znaša
1 MeV, v triciju 3 MeV in v heliju 7 MeV. Če se torej uspeta zliti
dve lahki jedri, se bo pri tem sprostila energija v okolico.
Zamislimo si, da se lahko spojita devterij in tricij v helij:

H2 + H3 → He4 + n1 .

Da se razdre devterij v dva nukleona, je potrebno
2 · 1 MeV = 2 MeV energije; da se razdre tricij v tri nukleone, je
potrebno 3 · 3 MeV = 9 MeV; in ko se združijo štirje nukleoni v
helij, se sprosti 4 · 7 MeV = 28 MeV energije. Pri reakciji se torej
sprosti (28 − 9 − 2) MeV = 17 MeV energije. Ker sodeluje 5
nukleonov, se na en nukleon sprosti dobre 3 MeV energije. To je
trikrat več kot pri cepitvi uranovih jeder.

Slika 44.21 Zlivanje lahkih jeder. Prikazano je zlitje
devterija in tricija v helij (in nevtron). Sproščena energija
se porazdeli med produkte v obratnem sorazmerju z
njihovimi masami. (Anon)

Da se jedri devterija in tricija sploh lahko združita, morata
najprej premagati medsebojno električno odbojno silo.
Privzemimo, da se morata jedri približati na r = 10 fm, da ju
zagrabi močna sila. Na tej razdalji znaša njuna odbojna
potencialna energija W = q2/r = 0,14 MeV. Posamično jedro mora
torej imeti 0,07 MeV kinetične energije, da mu uspe preboj. To
ustreza temperaturi 5 · 108 kelvinov. Ker pa ima porazdelitev
jeder po hitrosti svoj rep, jedra pa ovire premagujejo tudi s
tuneliranjem, je potrebna temperatura lahko nekaj nižja, morda
okrog 107 kelvinov.

Našli smo teoretično pot za izdelavo vodikove bombe: to je zmes
devterija in tricija, ki jo hitro in močno segrejemo, da eksplodira.
Za segretje uporabimo kar uranovo bombo. Devterija je v oceanih
več kot dovolj. Tricija pa v naravi ni (je radioaktiven z razplovno
dobo 12 let). Vendar ga – na nesrečo – lahko delamo z reakcijo
Li6 + n → He4 + H3. Ker se pri eksploziji uranove bombe sproščajo
nevtroni, zaloge tricija zato ne potrebujemo, ampak uporabimo
kar litij, iz katerega tricij spotoma nastane. Žal se recept pokaže
za uspešnega in človeštvo pridobi še eno smrtonosno orožje.
Vodikova bomba je kar stokrat močnejša od uranove.
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(44.24)

Nadzorovano zlivanje jeder pa nam zaenkrat ne uspeva. Glavni
oviri sta dve: segrevanje goriva in njegova hramba. V poštev
pride predvsem hramba v magnetnem polju. Tukaj se pokaže,
kako velika je pravzaprav razlika med poznavanjem principa,
kako naj kaj naredimo, in razvojem tehnologije, ki naj ta princip
izkorišča. Brez dvoma nam bo nekoč uspelo. Tedaj bomo dobili
neomejen in čist vir jedrske energije za vse svoje potrebe.
Takorekoč bomo kurili vodo in pri tem ne bomo proizvajali
nobenih radioaktivnih ostankov.

44.15 Kozmični žarki
Ionizacijski števec kaže redke sunke – nekaj na minuto – tudi
tedaj, ko v bližini ni nobenega radioaktivnega izvora. Rečemo, da
zaznava sevanje ozadja. Od kod prihaja to sevanje? Domnevamo,
da iz radioaktivnih snovi v Zemlji in – kot primesi – v ozračju. To
pomeni, da bi z višino moralo sevanje zaradi absorpcije in
redčenja pojemati. Meritve na gorah in v balonih pa presenetljivo
pokažejo, da sevanje z višino celo narašča. Na desetih kilometrih
je ionizacija v merilnikih desetkrat večje kot na morski gladini.
Sklepamo, da prihaja dodatno sevanje iz izvorov izven Zemlje. To
sevanje poimenujemo kozmični žarki.

Kozmični žarki so sicer redki, a izredno prodorni. Balonske
meritve na višini 30 km kažejo, da so tam žarki sestavljeni
večinoma iz protonov in delcev alfa. Njihove energije imajo
tipično vrednost 1–10 GeV. To je primarno kozmično sevanje. Kje
nastaja in kaj ga tako pospeši, bo treba še raziskati. Primarno
sevanje pri preletu skozi ozračje spotoma ionizira atome in
razbija njihova jedra. Do tal tako prispe pisana mešanica
protonov, nevtronov, elektronov, fotonov gama in še česa. To je
sekundarno kozmično sevanje. Njegova intenzivnost, merjena v
talni opazovalnici, je enaka podnevi in ponoči. Neodvisna je tudi
od letnega časa. Kozmični žarki prihajajo torej izotropno iz
daljnih globin vesolja. Je pa intenzivnost sekundarnega sevanja
odvisna od zemljepisne širine opazovalnice: na polu je za 10 %
večja kot na ekvatorju. Zemlja je pač magnet in s svojim
magnetnim poljem usmerja poti nabitih delcev, predvsem lahkih
elektronov, proti poloma.

Nevtroni v sekundarnem kozmičnem sevanju trkajo ob dušikova
jedra in jih spreminjajo v radioaktivna ogljikova jedra:
7N14 + n → 7N15 → 6C14 + p. Nastali ogljik se veže s kisikom v
ogljikov dioksid. V njem beta-razpada z razpadnim časom 5700
let:

6C14 → 7N14 + e + ν .

Ob vsakem času je v ozračju precej izotopa C12 in nekaj malega
izotopa C14, oboje v molekulah ogljikovega dioksida. Rastline
"jedo" ogljikov dioksid in živali jedo rastline. Tkiva živih bitij zato
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vsebujejo oba ogljikova izotopa v prav takšnem razmerju kot v
ozračju. Vnos ogljikovega dioksida preneha, ko bitje umre in
postane fosil. Izotop C12 v fosilu ostaja, izotop C14 pa radioaktivno
razpada. Relativna koncentracija C14/C12 v fosilu se zato
eksponentno zmanjšuje s časom. Z njenim merjenjem lahko
določimo starost fosila, če seveda poznamo koncentracijo v
ozračju, ko je bil fosil še živ. V prvem približku privzamemo, da je
ta koncentracija kar enaka današnji, to je, da sta sestava ozračja
in obsevanje s kozmični žarki konstantna. Merimo z masnim
spektrometrom. Alternativno lahko merimo aktivnost C14 v fosilu
(A) in v "tedanjem" ozračju (A0). Velja A = A0 exp −λt, iz česar
sledi t = (1/λ) ln (A0 / A). Z opisanim organskim datiranjem fosilov
določimo starost lesenih izdelkov ali kosti naših prednikov do
kakih 30 tisoč let nazaj.

Pri raziskovanju absorpcije kozmičnih delcev v svinčeni plošči
znotraj meglene komore naletimo na presenečenje: zaznamo sled
delca z enako maso kot pri elektronu, vendar z nasprotno
ukrivljenim tirom, torej s pozitivnim nabojem. Kaže, da smo
odkrili pozitron, ki smo ga – ne prav prepričljivo – napovedali iz
delovanja šibke sile (ANDERSON).

Slika 44.22 Pozitron (pozitivni elektron)
pri preletu skozi svinčeno ploščo. Pred
ploščo je hitrejši (63 MeV) in za njo
počasnejši (23 MeV), kar se odraža v večji
ukrivljenosti tira. S tem je določena smer
gibanja in zato tudi predznak naboja.
(Anderson, 1933)

Nadaljnja opazovanja pokažejo, da zaznani pozitron nemudoma
naleti na kak okolišnji elektron (saj se medsebojno privlačita), pri
čemer oba izgineta, rodita pa se dva fotona gama. Rečemo, da sta
se elektron in pozitron anihilirala. Pri tem se energija ohranja.
Kinetična in masna energija obeh snovnih delcev se pretvorita v
energijo nastalih fotonov.

Morda je možen tudi obratni pojav, da se iz fotona gama rodi par
elektron-pozitron? Seveda mora imeti foton gama dovolj energije,
vsaj dvakrat več od masne energije elektrona, torej vsaj 1 MeV.
Opazovanja v meglični celici to domnevo potrdijo: energični foton
gama ob vpadu na atomsko jedro včasih res rodi elektronski
dvojček. Brez prisotnosti jedra pri tem ne gre, saj se drugače ne
moreta ohraniti gibalna količina in energija.
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Delci in antidelci

Slika 44.23 Nastanek para elektron - pozitron ob
vpadu fotona gama z energijo 5,7 MeV na svinčeno
ploščo z debelino 0,5 mm. (Anon)

Elektron in pozitron sta v vseh pogledih enaka, razlikujeta se le v
predznaku naboja. Rekli bomo, da je pozitron antidelec elektrona.
Z enako pravico lahko tudi rečemo, da je elektron antidelec
pozitrona. Seveda se takoj pojavi drzna misel: če že ima elektron
svoj antidelec, zakaj ga ne bi imel tudi proton? Ali torej v naravi
res obstajajo antiprotoni, to je protoni z negativnim nabojem? Z
obstoječimi pripomočki jih v kozmičnih žarkih ne uspemo zaznati.
Si pa dovolimo divjo spekulacijo: atomi na Zemlji in v njeni okolici
so sestavljeni iz protonov, elektronov in nevtronov. Morda pa se v
kakšnem zakotnem kotičku vesolja potikajo antiatomi, sestavljeni
iz antiprotonov, antielektronov in antinevtronov? Takšna antisnov
bi sevala enako kot običajna snov. Ob stiku pa bi se antisnov in
snov anihilirali. Morda pa kaj takega le obstaja? □

356

pict3c/pair-creation.gif
pict3c/pair-creation.gif


45

Lastnosti Sonca

(45.1)

Zvezde in vesolje
O zvezdah – Spektralni razredi – Zvezdni diagram – Rojevanje
zvezd – Zrela doba zvezd – Staranje in smrt zvezd – Galaksija in
galaksije – Širjenje vesolja – Širitveni model – Napovedi modela –
Zgodnje vesolje

45.1 O zvezdah
Pri raziskovanju čedalje manjših sestavnih delcev snovi smo
dospeli do atomskih jeder in do njihovih nukleonov. Čas je, da
raziskave usmerimo v nasprotno smer, proti čedalje večjim
zgradbam – zvezdam in njihovim združbam. Bistveno vlogo pri
tem imajo opazovalni instrumenti, daljnogledi. Za bližnja telesa
zadostujejo "navadni" daljnogledi, za oddaljena pa potrebujemo
ogromne priprave.

Slika 45.1 Daljnogled na Mt. Palomarju.
Njegovo zrcalo ima premer 5 metrov.
Daljnogled je tako velik, da lahko sedi
opazovalec kar v njem. (Palomar
Observatory)

O zvezdah marsikaj že vemo. Najbolj seveda poznamo najbližjo
zvezdo, Sonce. Izmerili smo že njegovo oddaljenost d⊙ od Zemlje
[27.2], polmer R⊙ [27.2], maso M⊙ [19.11], izsev P⊙ [27.7] in
površinsko temperaturo T⊙ [27.9]:

d⊙ = 150 · 106 km
R⊙ = 700 · 103 km
M⊙ = 2,0 · 1030 kg
P⊙ = 3,8 · 1026 W
T⊙ = 5800 K .

Z maso in polmerom je določena povprečna gostota Sonca
ρ⊙ = M⊙/(4π/3)R⊙

3 = 1,4 g/cm3. To je približno gostota tekoče vode
na Zemlji. V središču je gostota seveda večja in na površini
manjša. Z radiometričnim datiranjem meteoritov [44.11] pa je
določena še približna starost Osončja in s tem Sonca
t⊙ = 4,5 · 109 let.
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Merjenje zvezd

Klasifikacija spektrov

Slika 45.2 Sonce. Fotografija z rumenim
filtrom. Zrnata površina izdaja konvektivne
celice. Na robu so vidni plinasti izbruhi –
protuberance. (NASA)

Izmed vse množice zvezd, ki jih vidimo z daljnogledi, jih je samo
neznaten delež takih, ki so dovolj blizu, da kažejo letno paralakso.
Daljnogledi lahko izmerijo paralakse, ki so večje od 0,1″, kar
pomeni oddaljenosti do 10 pc oziroma do 30 svetlobnih let. Takih
je nekaj sto zvezd. Tudi tem zvezdam lahko izmerimo skoraj vse
lastnosti, ki smo jih izmerili Soncu. Razdaljo, kot rečeno,
določimo s paralakso [27.12]. Temperaturo določimo iz valovne
dolžine spektrovega maksimuma [27.8] ali iz razlike magnitud
skozi moder in rumen filter. Izsev določimo iz bolometrične
magnitude in oddaljenosti [27.13], radij pa iz izseva in
temperature [27.13]. Najtežje je določiti maso: zvezda mora biti
optično razločljivo dvozvezdje in izmeriti mu moramo obhodni čas
[34.13]. Starosti pa zaenkrat ne znamo ugotoviti.

Kot vneti raziskovalci se lotimo težaškega dela in z veliko
potrpežljivostjo sestavimo katalog zvezd z naštetimi izmerki.
Poleg tega za vsako obravnavano zvezdo posnamemo še njen
spekter. Vse to je nujna osnova za nadaljnje delo.

45.2 Spektralni razredi
Najprej se lotimo posnetih spektrov. Opazimo, da jih lahko
razvrstimo v takšno zaporedje, da se istoležne spektralne črte
gladko spreminjajo od spektra do spektra. Celotno zaporedje zato
razdelimo v priročno število spektralnih razredov in za vsakega
izberemo reprezentativni spekter.

Slika 45.3 Spektralni razredi zvezd od O do
M. Vsakemu razredu je dodan še podrazred
kot številka. Sonce je zvezda tipa G. (Harvard
Center for Astrophysics)

Razrede poimenujemo s črkami O, B, A, F, G, K in M. Čudni vrstni
red črk odraža dejstvo, da smo prvo zaporedje, ki smo ga uspeli
sestaviti, poimenovali po abecednem redu; potem pa smo spektre
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Temperatura in
spektri

Temperatura in izsev

bolje prerazporedili, pri čemer smo prvotne črke ohranili.
Kakorkoli že: z uvedbo poimenovanih razredov si močno olajšamo
nadaljnje delo. Zapomnimo pa si jih kot stavek "Oh, Be A Fine
Girl, Kiss Me!".

K vsakemu spektru pripišemo še njegovo temperaturo. Vidimo, da
ta praviloma narašča od M (3000 K) proti O (30 000 K). Če kje ni
tako, zaporedje spektrov ustrezno spremenimo. Dokončana
klasifikacija zvezd po spektrih je torej ekvivalentna klasifikaciji po
naraščajoči oziroma padajoči temperaturi. Od sedaj naprej bomo
zato obravnavali oznake od O do M kar kot okrajšave za ustrezne
temperature.

Tabela 45.1 Razredi in površinska temperatura zvezd.
—————————————————————————————————

Tip   TE(103 K)         barva
—————————————————————————————————

O        > 30           modra
B     10 – 30
A    7,5 – 10            bela
F     6 – 7,5
G       5 – 6          rumena
K     3,5 – 5         oranžna
M       < 3,5           rdeča

—————————————————————————————————

45.3 Zvezdni diagram
Ko pregledujemo izseve zvezd, opazimo, da imajo zvezde z višjo
temperaturo praviloma tudi višji izsev oziroma – kar je isto –
večjo absolutno magnitudo (HERTZSPRUNG). Zato narišemo
ustrezen zvezdni diagram: porazdelitev zvezd po temperaturi in
absolutni magnitudi (RUSSELL).

Slika 45.4 Zvezdni diagram bližnjih zvezd. Na
abscisi so spektralni razredi (torej temperature)
in na ordinati absolutne magnitude (torej izsevi).
Temperatura narašča od desne proti levi, izsev
narašča od spodaj navzgor. Obe skali sta
logaritemski. Zvezde na diagonali tvorijo glavno
vejo diagrama. (Russell, 1914)

Zvezdni diagram takoj pokaže, da zvezde nimajo vseh mogočih
kombinacij temperature in izseva, ampak da tvorijo veje in otoke.
Velika večina zvezd, preko 80 %, tvori glavno vejo: pri njih obstaja
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(45.2)

(45.3)

Masa kot osnova
drugih lastnosti

(45.4)

(45.5)

(45.6)

(45.7)

tesna povezava med temperaturo in izsevom. Čim višja je
temperatura zvezde, tem večji je njen izsev. Približno velja

P ∝ TE
8 .

Ker P = 4πR2 · σTE
4 ∝ R2TE

4, sledi z izenačitvijo obeh izsevov

R ∝ TE
2 .

Bolj vroče zvezde torej nimajo samo večjega izseva, ampak tudi
večji polmer. Na spodnjem delu veje so torej hladne, rdeče in
majhne zvezde z majhnim izsevom. To so rdeče pritlikavke.
Njihova temperatura znaša 1/2 Sončeve in radij (1 / 2)2 = 1/4
Sončevega. Na vrhu veje so vroče, modre in velike zvezde z
velikim izsevom. To so modre orjakinje. Njihova temperatura je
5-kratnik Sončeve in njihov radij 52 = 25-kratnik Sončevega.
Sonce je nekje na sredini. Poleg glavne veje obstajata še dva
otoka. Desno zgoraj so hladne rdeče zvezde z velikim izsevom in
velikim polmerom ∼ 100 R⊙. To so rdeče orjakinje. Levo spodaj pa
so vroče bele zvezde z majhnim izsevom in majhnim polmerom
∼ 1/100 R⊙; to so bele pritlikavke.

Izsev zvezd je torej povezan z njihovo temperaturo. Zanimivo bi
bilo pogledati, ali je morda izsev povezan tudi z maso zvezd. Za
maloštevilne izmerjene mase zato narišemo ustrezen diagram.

Slika 45.5 Odvisnost izseva L zvezde od njene mase M.
Križci označujejo meritve v optično razločljivih
dvozvezdjih. Druge oznake pomenijo spektroskopsko in
še kako drugače razločljiva dvozvezdja. (Anon)

Diagram pokaže naslednjo približno povezavo:

P ∝ M4 .

Izenačitev (45.4) in (45.2) pove

TE ∝ M1/2

in (45.5) z upoštevanjem (45.3) še

R ∝ M .

Povprečna gostota zvezde ⟨ρ⟩ = M/(4π/3)R3 ∼ M/R3 pa z
upoštevanjem (45.6) pove

⟨ρ⟩ ∝
1

M2 .

Kaže, da so izsev, temperatura, radij in gostota zvezde določeni
kar z enim samim parametrom – z maso zvezde. Glavna veja na
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Mlade, zrele in stare
zvezde

Spektroskopska
paralaksa

Prileganje glavne veje

zvezdnem diagramu je torej masna veja. Na njej živijo zvezde
različnih mas. Desno spodaj so lahke in goste, levo zgoraj težke in
redke zvezde. Mase segajo od 0,1 do 100 Sončevih mas. Zvezda z
desetkratno maso Sonca ima, v grobem, 104-kratni izsev,
101/2 = 3-kratno temperaturo površja, 10-kratni radij in
1/102 = 0,01-kratno gostoto. Takšna je, na primer, modra orjakinja
Spika.

Zvezda nenehno seva energijo in ko bo izčrpale svoj energijski
vir – kakršenkoli pač že je – bo ugasnila. Prav tako ni od nekdaj
sevala. Kar nam kaže sevalni diagram, je torej trenutni časovni
pogled na množico sevajočih zvezd različnih starosti. Kakor
pogled na ljudi pokaže otroke, odrasle in starčke, tako pogled na
zvezde pokaže mlade, zrele in stare zvezde. Kjer je v sevalnem
diagramu največ zvezd, tam preživljajo največ časa. Populacija
zvezd torej – v povprečju – preživi največ časa na glavni veji.
Spodnji del veje je gostejši: zrela doba lahkih zvezd je dolga.
Zgornji del je redek: zrela doba težkih zvezd je kratka. Kako
poteka življenje zvezde pa je vprašanje, ki se mu hočemo posvetiti
v nadaljevanju.

Zvezdni diagram omogoča, da določimo oddaljenost vseh onih
zvezd, ki so izven dosega paralaktičnih meritev. Taki zvezdi
najprej izmerimo magnitudo. Potem ji posnamemo spekter ali ji
izmerimo temperaturo; s tem jo umestimo v enega izmed
spektralnih razredov. S podrobnim pogledom na spekter je
mogoče izključiti zvezdo, ki leži izven glavne veje. Nato
predpostavimo, da leži zvezda na glavni veji in iz zvezdnega
diagrama odčitamo, kakšen je njen izsev. Iz izseva in magnitude
pa izračunamo oddaljenost. Napaka pri določitvi izseva je okrog
ΔM = ± 1, zato je oddaljenost nenatančna za faktor 10ΔM/5 ∼ 2. To
sicer ni bogve kako dobro, a je neprimerno bolje kot nič.

Slika 45.6 Krogelna kopica M13. Spektroskopska
paralaksa njenih zvezd razodeva, da je kopica od nas
oddaljena 25 tisoč svetlobnih let. (Palomar
Observatory)

S spektroskopsko paralakso ne določamo le oddaljenosti
posamičnih zvezd, ampak se lotimo tudi zvezdnih kopic. Za vsako
izbrano zvezdo v kopici izmerimo magnitudo in temperaturo.
Tako dobimo zvezdni diagram za zvezde v kopici. Ordinatna os
tega diagrama je obeležena v navideznih magnitudah. Ker pa so
vse zvezde v kopici približno enako oddaljene od nas, se
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Gravitacijsko krčenje

(45.8)

Kritična masa

navidezne magnitude razlikujejo od absolutnih zgolj za aditivno
konstanto. Zvezdni diagram kopice zato položimo na zvezdni
diagram za bližnje zvezde (z absolutnimi magnitudami po
ordinati). Premikamo ga vzdolž ordinatne osi, da se glavni veji
pokrijeta. S tem je določena aditivna konstanta med obema
skalama in z njo oddaljenost kopice. Tako, na primer, ugotovimo,
da je znamenita kopica M13 oddaljena 25 · 103 svetlobnih let.

45.4 Rojevanje zvezd
Sevajoča zvezda je vroča plinasta krogla, ki jo lastna gravitacija
stiska navznoter in jo segreva, sesedanje pa ji preprečuje
gradient pritiska navzven. Pritisk povzročajo vrveči masni delci
(molekule, atomi, ioni, gola jedra, elektroni) in fotoni. Naravna je
misel, da zvezda nastane iz redkega, ogromnega in hladnega
oblaka plina (od koderkoli se je pač vzel) pod vplivom lastne
gravitacije.

Zamislimo si velik plinast oblak iz vodikovih molekul, atomov ali
ionov in elektronov. Oblak naj bo homogen in kroglast z radijem
R, maso M in gostoto ρ. Poglejmo, kaj se dogaja z masno lupino
dm pri radiju r0, ko na začetku miruje. Ta lupina objema notranjo
maso m0 in pada s pospeškom g = κm0/r2. Notranja masa ostaja
namreč znotraj padajoče lupine, saj tudi sama pada. Kinetična
energija lupine se pri padanju veča, potencialna pa zmanjšuje.
Ohranitev energije pove 1/2 (dr/dt)2 − κ m0/r = −κ m0/r0. Čas
padanja lupine do središča znaša tfall = r0∫0 (dt/dr) dr. Odvod dt/dr
vzamemo iz ohranitve energije in po integraciji dobimo
tfall = (π2 r0

3/8κm0)1/2. Razmerje m0/r0
3 izrazimo z začetno gostoto

ter dobimo čas skrčitve

tfall = (
3π

32κρ
)1/2 .

V tem času bi se (katerakoli!) oblačna lupina popolnoma skrčila,
če se kinetična energija lupin ne bi pretvarjala v termično gibanje
njihovih delcev. To pa se seveda pri krčenju prej ali slej začne
dogajati. Tedaj se pojavi notranji pritisk, ki gravitacijsko stiskanje
upočasnjuje.

Zanimivo je, da čas skrčitve ni odvisen od velikosti oblaka in od
mase plinskih delcev, ampak samo od začetne gostote. Velik oblak
se skrči enako hitro kot majhen oblak, če le imata enako gostoto.
Brez notranjega pritiska bi se Sonce z gostoto 1 g/cm3 skrčilo v
1/2 ure! Oblak z maso Sonca in polmerom 1 svetlobno leto
(kolikor je tipična razdalja med zvezdami v bližini Sonca) pa bi se
skrčil v nekaj milijonih let.

Plinski oblak se začne krčiti le, če privlačnih gravitacijskih sil ne
prevpijejo odbojne sile zaradi notranjega pritiska. Oblak je
gravitacijsko vezan, če je njegova gravitacijska potencialna
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(45.11)

(45.12)
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Hidrostatično
ravnovesje

(45.14)

energija absolutno večja kot notranja kinetična energija delcev.
Masa oblaka znotraj radija r znaša

Mr =
r

∫
0

ρ 4πr2dr .

Potencialna energija oblaka je vsota potencialnih energij vseh
lupin dm = ρ4πr2 dr v polju notranje mase:

EG = −∫ κ Mr

r
dm ∼ −

κM2

R
.

Notranja energija je vsota kinetičnih energij vseh delcev
N = M/m̄:

ET =
3
2

M
m̄

kT.

Iz pogoja |EG| = ET sledi (JEANS)

MJ =
3kT
2κm̄

R .

Oblak radija R in temperature T se začne krčiti, če njegova masa
presega mejno vrednost MJ. Namesto te kritične mase lahko
vpeljemo kritično gostoto krčenja ρJ ∼ MJ/R3, kar vodi do pogoja

ρJ =
1

M2 (
3kT
2κm̄

)3 .

Oblak z maso M se začne krčiti, če je njegova gostota večja od
kritične ρJ. Za krčenje potrebno maso M ima lahko redek, a dovolj
velik oblak oziroma majhen, a dovolj gost oblak. Velik oblak se
začne krčiti že pri majhni gostoti. Ko se dovolj skrči, mu pa
gostota toliko naraste, da se lahko začnejo neodvisno krčiti
posamični deli oblaka. Začetni oblak se razcepi v mnogo delov –
protozvezd, ki se nato zgoščujejo naprej.

Protozvezda se praviloma krči dovolj počasi, da jo lahko v vsakem
trenutku obravnavamo, kot da je v hidrostatičnem ravnovesju. Na
razdalji r od središča protozvezde si mislimo radialni snovni
cilinder s ploščino S, višino dr in maso dm = ρSdr. Na cilinder
deluje navzdol teža κdmMr / r2. Če obstaja razlika pritiskov dp na
vrhu in dnu cilindra, deluje nanj sila Sdp. V ravnovesju sta sili
nasprotno enaki, zato dobimo

dp
dr

= −
κMrρ

r2 .

To je hidrostatična enačba za zvezdo. Negativni predznak pove,
da pritisk narašča z globino. Enačba omogoča, da ocenimo
njegovo velikost pc v središču protozvezde. Postavimo
dp/dr ∼ pc/R, Mr / r2 ∼ M/R2 in ρ ∼ M/R3 ter dobimo

363



(45.15)

Segrevanje pri
stiskanju

(45.16)

Pogoj za prižig
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Notranje razmere v
Soncu

pc ∼
κM2

R4 .

Pri krčenju se protozvezda segreva. Plinska enačba, zapisana za
središče, pove pc = (ρc/m̄)kTc. Izenačimo jo z enačbo (45.15). Radij
R izrazimo preko aproksimacije ρc ∼ ⟨ρ⟩ ∼ M/R3 in dobimo

kTc = κm̄M2/3⟨ρ⟩1/3 .

Ko se protozvezda mase M stiska, se ji gostota ⟨ρ⟩ veča in s tem
se ji viša tudi temperatura. Molekule disociirajo, atomi se
ionizirajo in nastala mešanica začne čedalje izdatneje sevati
fotone. Stiskanje se lahko konča na dva načina. Prvič:
temperatura dovolj naraste, da se začno vodikova jedra –
protoni – zlivati v težja jedra in pri tem sproščati energijo. To se
očitno zgodi tedaj, če je masa M dovolj velika. Zvezda je rojena.
In drugič: če je masa premajhna, pa se – preden temperatura
dovolj naraste – gostota že toliko poveča, da postanejo elektroni
degenerirani. Plin degeneriranih elektronov pa se, kot vemo
[43.5], pod obremenitvijo ne segreva, ampak zgolj upira s tlakom
p ∝ ρ5/3. Protozvezda tako izgubi vir toplote, se s sevanjem nadalje
ohlaja in čedalje bolj temni. Postati zvezda ji ni uspelo.

Kolikšna je kritična vžigna masa zvezde? — Elektron s kinetično
energijo K ≈ kT ima gibalno količino G ≈ (mekT)1/2 in valovno
dolžino λ = h/G ≈ h/(mekT)1/2. Elektronski plin postane
degeneriran, ko razdalja med elektroni postane primerljiva z
njihovo valovno dolžino. Kritična gostota torej znaša ⟨ρ⟩ ≈ m̄/λ3.
To gostoto vstavimo v (45.16) in po preurejanju dobimo

kTc =
κ2m̄8/3me

h2 M4/3 .

Enačba podaja temperaturo, ki jo doseže protozvezda z maso M,
če se prej ne prižgejo fuzijske reakcije. Kakor smo svoj čas
ocenili, se te prižgejo pri T ∼ 107 K [44.14]. Za to je potrebna vsaj
masa M ∼ 0,1 M⊙. Našli smo razlago, zakaj ni lažjih zvezd.

45.5 Zrela doba zvezd
Življenje zvezd, ki v središču kurijo vodik, na primer sedanjega
Sonca, tudi obravnavamo kot hidrostatično v vsakem trenutku.

Iz enačbe hidrostatike (45.15) ocenimo pritisk v sredini zvezde.
Za Sonce dobimo pc ∼ κM⊙

2/R⊙
4 ∼ 1010 bar.

Pritisk v središču zvezde je vsota pritiska masnih delcev in
fotonov: pc = pgas + prad, torej κM2/R4 = nkTc + 4σ/3c · Tc

4.
Privzemimo, da je masni plin popolnoma ioniziran vodik, to je
plazma iz protonov in elektronov. Enačba stanja za idealen
dvokomponentni plin je pgas = nkTc = ρc/m̄ · kTc, pri čemer
m̄ = (n1m1 + n2m2) / n. Za ionizirani vodik je ne = np = n / 2 in
me ≪mp, zato m̄ = mp / 2. Upoštevamo še ρc ∼ M / R3 in izračunamo
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(45.18)

(45.19)

Vezavna energija
zvezde

(45.20)

(45.21)

(45.22)

za Sonce Tc ∼ 107 K. Pri tej temperaturi znaša razmerje pritiskov
fotonov in masnih delcev prad / pgas ∼ 10−3. Pritisk fotonov je zato
zanemarljiv. Ves protiupor gravitacijskemu pritisku nudijo masni
delci. Temperaturi 107 K ustreza energija 1 keV. Elektroni
postanejo znatno relativistični šele pri 100 keV, protoni pa šele
pri 103-krat višji energiji. Plazma v Soncu je torej nerelativistična.

Ocenili smo temperaturo in pritisk v Soncu. Kakšne pa so te
vrednosti v drugih zvezdah?

Ker je pc ∝ M2/R4 = MM / R3R = M⟨ρ⟩/R in hkrati pc ∝ ⟨ρ⟩Tc,
izenačenje obeh izrazov pove

Tc ∝
M
R

.

Desetkrat težja zvezda enakega radija bi morala imeti desetkrat
večjo središčno temperaturo. Ker pa velja R ∝ M, je desetkrat
težja zvezda ponavadi tudi desetkrat večja, zato ima približno
enako središčno temperaturo.

Ostaneta še deleža plinskega im masnega pritiska. V razmerje
prad/pgas ∝ Tc

4/⟨ρ⟩Tc ∝ Tc
3/(M/R3) vstavimo (45.18), pa dobimo

prad

pgas
∝ M2 .

Čim bolj masivna je zvezda, tem pomembnejši je v njej tlak
fotonov. Pri 100-krat težji zvezdi od Sonca je tlak fotonov že
10-krat večji od tlaka masnih delcev.

Zvezda ima gravitacijsko energijo EG = − ∫ (κMr/r)ρ4πr2dr. V
izrazu κMrρ/r prepoznamo gradient hidrostatičnega pritiska
rdp/dr, zato EG = ∫ r(dp/dr) 4πr2dr. Integral preoblikujemo per
partes z uvedbo u = 4πr3 in dv = (dp/dr)dr in dobimo

EG = −12π∫pr2dr.

Gravitacijski pritisk p je uravnovešen s pritiskom masnega in
fotonskega plina, tadva pa sta povezana z gostoto energije plina.
Za masni plin znaša gostota energije w = (3/2)p in notranja
energija ET = ∫ (3/2)p 4πr2dr. Primerjava s (45.20) takoj pove

ET = −
EG

2
.

Za fotonski plin pa velja w = 3p in

ET = −EG .

Celotna energija zvezde znaša Etot = ET + EG in njena vezavna
energija je −Etot. Za masni plin je torej vezavna energija enaka
termični ET. Za fotonski plin pa je enaka 0. To pomeni, da je taka
zvezda na meji med vezano in nevezano, z drugo besedo, je
hidrostatično nestabilna. Kakršnakoli majhna sprememba v
zvezdi povzroči, da zvezda razpade. Tako smo razložili, zakaj v
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Jedrski vir energije

(45.23)

naravi ni zvezd z masami nad 100 Sončeve: zato, ker v njih
prevladuje fotonski tlak in so neobstojne.

Ko se zvezda stisne iz neskončnosti na R, pridobi toplotno
energijo ET ∼ κM2/2R. Z izsevom P se te energije znebi v času
t ∼ ET/P. Za Sonce to znese 107 let. S sedanjim konstantnim
izsevom Sonce ne bi moglo svetiti več kot toliko časa. Vemo pa,
da je Sonce staro okrog 4,5 · 109 let [44.11]. Vemo tudi, da se v
zadnji milijardi let njegov izsev ni bistveno spreminjal. To nam
povedo radioaktivno datirane kamnine s fosili alg, podobnih
današnjim, ki uspevajo le v ozkem temperaturnem območju.
Gravitacijski rezervoar energije torej ne zadošča za sevanje
zvezd. Potreben je jedrski vir energije.

Da lahko v zvezdi stečejo jedrske reakcije, mora biti njena
središčna temperatura dovolj visoka. Ocenjena temperatura 107 K
za središče Sonca je že kar pravega reda velikosti. Pri njej se
protoni že lahko zlivajo v težja jedra in sproščajo energijo ter s
tem ohranjajo zvezdo vročo in sevajočo. Veriga jedrskih reakcij se
mora začeti s protoni (ker smo privzeli, da drugih jeder ni na
voljo) in se končati vsaj z devterijevimi ali helijevimi jedri. Očitno
se mora pri tem nekaj protonov spremeniti v nevtrone.

Ustrezna se zdi naslednja veriga reakcij: — Ob trku dveh
protonov se eden zaradi šibke sile spremeni v nevtron, pozitron
in nevtrino (potrebnih je vsaj 1.8 MeV energije). Nastane jedro
devterija (sprosti se 2.2 MeV energije). Pozitron se takoj anihilira
z najbližjim elektronom. — Ob trku devterija in protona nastane
jedro helija 2He3. — Dve jedri 2He3 se zlijeta v 2He4, pri čemer
odletita proč dva protona.

Slika 45.7 Zlivanje vodika v helij. Iz štirih protonov
nastaneta dve helijevi jedri. Nastaneta tudi dva
pozitrona, ki se takoj anihilirata z dvema bližnima
elektronoma; dva nevtrina, ki pobegneta; in dva fotona
gama. (Anon)

Končni rezultat je zlitje štirih protonov v helijevo jedro, pri čemer
odletita dva pozitrona in dva nevtrina:

4p → He4 + 2e+ + 2ν

Masni primanjkljaj helijevega jedra pove, da se sprosti
4 · 7 = 28 MeV energije. Anihilacija prinese dodatna
4 · 0,5 = 2 MeV, skupaj 30 MeV. Majhen delež tega odnesejo
nevtrini. To je protonski fuzijski cikel. Privzeli bomo, da zares
poteka v sredicah zvezd, kjer je temperatura dovolj visoka.
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(45.24)

Prenos energije

Ko zagori vodik v zvezdi, postane ta fuzijski reaktor. Kaj ji
preprečuje, da ne eksplodira kot vodikova bomba? Naj se hitrost
fuzije poveča. Potem se zgodi tole: temperatura se poveča; pritisk
se poveča; sredica se razpne; gostota in temperatura se
zmanjšata; hitrost fuzije se zmanjša. Če se hitrost fuzije zmanjša,
pa velja nasprotno. Obstaja torej negativna povratna zveza, ki
skrbi za to, da ne nastane eksplozija.

Za koliko časa pa zadošča vodik kot gorivo? Energija, ki jo izseva
zvezda v življenju, je enaka vsoti energij, ki jo izsevajo vsi njeni
protoni pri zlitju v težka jedra: Pt = (M/mp) · (8 MeV). Za Sonce
sledi t = 1011 let. Goriva za dosedanje življenje Sonca (1010 let) in
za njegovo prihodnost je torej več kot dovolj. Ker Pt ∝ M in P ∝ M4

(45.3), velja

t ∝
1

M3 .

Težje zvezde živijo manj časa. Zvezda z maso 10 Sončevih živi
103-krat manj časa, to je, okoli 100 milijonov let. Odkar obstaja
Sonce, se je lahko rodilo in umrlo že mnogo generacij težjih
zvezd.

Energija, ki se proizvaja v sredici zvezde, teče navzven na dva
glavna načina. — Prvi način temelji na slučajnem termičnem
gibanju posamičnih delcev. Delci se gibljejo, trkajo in prenašajo
energijo iz vročih v hladne plasti. Če so delci fotoni, govorimo o
difuziji sevanja: sredica seva fotone gama, ki pa med potjo do
površine izgubljajo energijo in zvezdo zapustijo večinoma kot
vidni fotoni. Če so delci elektroni in ioni, pa govorimo o difuziji
toplote oziroma o prevajanju toplote. — Drugi način temelji na
kolektivnem gibanju masnih delcev: mehurji vročega plina se
dvigajo, mehurji hladnega plina pa spuščajo. Govorimo o
konvekciji toplote. Konvekcija se prične, če je temperaturni
gradient dovolj velik. Stvar je podobna kot pri prenosu toplote v
zemeljskem ozračju.

Slika 45.8 Prerez skozi Sonce. V sredini gori
vodik v helij. Nastala toplota se širi navzven z
difuzijo svetlobe in s konvekcijo. Relativne
velikosti sredice, prevodne plasti in
konvektivne plasti so ilustrativne. (Australia
Telescope National Facility)

Za stacionarno stanje pove energijski zakon tole: v lupino z
radijem r in debelino dr prihaja energijski tok P(r), iz nje pa
izhaja tok P(r + dr), povečan za energijo, ki se v časovni enoti
proizvede v lupini. Velja torej
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(45.25)

(45.26)

(45.27)

Rdeče orjakinje

dP
dr

= ερ4πr2 ,

pri čemer je ε fuzijska enegija, ki se proizvaja na masno in
časovno enoto. Kolikšna je ta energija, zlasti kako je odvisna od
temperature, gostote in sestave zvezdne snovi, to pa je vprašanje,
ki se ga ne bomo lotili.

Stacionarni energijski tok implicira stacionarni temperaturni
gradient. Difuzija svetlobe in toplote se pokorava difuzijski enačbi
j = −λdT/dr, pri čemer je λ povprečni difuzijski koeficient
elektronov, ionov in fotonov. Upoštevamo P = 4πr2 · j in dobimo

dT
dr

=
P

4πr2λ
.

To je enačba za difuzijski prenos energije. Koliko delci – elektroni,
ioni ali fotoni – prispevajo k difuziji, to je, kako je difuzijski
koeficient odvisen od temperature, gostote in sestave zvezdne
snovi, pa je prav tako vprašanje, ki se ga ne bomo lotili.

Ostane še konvekcija. Pri radiju r vladajo temperatura T, pritisk p
in gostota ρ, pri radiju r + dr pa T + ΔT, p + Δp in ρ + Δρ. Zaradi
p ∝ ρT velja Δρ = Δp/p − ΔT/T. Poglejmo mehur plina pri r. Njegova
temperatura, pritisk in gostota so enaki vrednostim v okolici. Naj
se mehur adiabatno dvigne za dr. Na novi višini dobi pritisk
p + dp = p + Δp (pritisk se namreč izenači z okolišnjim),
temperaturo T + dT in gostoto ρ + dρ. Pri adiabatni spremembi
velja p ∝ ργ, γ = cp/cV = (1 + 2/f), to je dp/p = γdρ/ρ. Če postane
dvignjeni mehur redkejši od okolice, bo začutil neto vzgon iz se
bo začel dvigati. Pogoj za konvekcijo je torej dρ < Δρ oziroma
(1/γ)dp/p < Δp/p − ΔT/T oziroma ΔT/T < (1 − 1/γ)Δp/p. Drugače
rečeno: temperaturni gradient v konvektivni plasti zvezde znaša

dT
dr

=
γ − 1

γ
T
p

dp
dr

Če se kje pojavijo večji temperaturni gradienti, jih konvekcija
učinkovito zgladi v konvektivnega.

45.6 Staranje in smrt zvezd
Zvezda na glavni veji nenehno sežiga vodik v helij. Sežiganje
poteka v središču zvezde. Prej ali slej pride čas, ko se porabi ves
tamkajšnji vodik. V zvezdi tako nastane vroča inertna sredica iz
helijevega pepela. S tem presahne centralni fuzijski vir energije,
ki vzdržuje notranji pritisk in preprečuje zvezdi gravitacijsko
sesedanje. Nastala helijeva sredica se zato začne krčiti in se pri
tem segreva.

Zaradi gravitacijskega sesedanja in segrevanja helijeve sredice se
segreje tanka okolišnja plast vodika in se prižge. Sedaj gori vodik
v tej plasti in nastajajoči helijev pepel pada na inertno helijevo
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sredico. Ta sa seveda nadalje krči in segreva. Zaradi ne povsem
jasnih vzrokov se zunanje plasti zvezde pri tem močno napihnejo.
Gravitacijski stisk helijeve sredice in gorenje vodikove plasti
povečata izsev; radialni razteg pa zmanjša površinsko
temperaturo: zvezda zapusti svoje mesto na glavni veji in postane
rdeča orjakinja z inertno, kolapsirajočo helijevo sredico in gorečo
vodikovo plastjo.

Slika 45.9 Prerez skozi rdečo orjakinjo z
inertno, kolapsirajočo helijevo sredico in
gorečo plastjo vodika. (University of Alberta)

Kolaps sredice poteka, dokler se ne zgodi eno od dvojega. — Če
je masa zvezde majhna, se sredica, preden se segreje do vžiga, že
toliko stisne, da postanejo elektroni v njej degenerirani ter
ustavijo nadaljnje krčenje in segrevanje. Goreča plast vodika pa
se počasi prežira skozi zunanji negoreči vodik in sproti odlaga
nastajajoči helijev pepel na helijevo lupino. — Če je masa zvezde
večja, pa se helijeva sredica segreje do vžiga, še preden se pojavi
degeneracija. Helij začne goreti v ogljik (tri helijeva jedra ravno
zadoščajo za tvorbo enega ogljikovega). Ko zgori ves helij v
sredici, tam nastane inertna ogljikova sredica in zgodba se
ponovi: sredica se gravitacijsko stiska in segreva, obdana z
gorečima plastema helija in vodika. Odvisno od mase postane
sredica elektronsko degenerirana ali pa se prižge.

Če je masa zvezde zelo velika, zaporedoma nastajajo in se
prižigajo vedno težja jedra. Zvezda postaja podobna čebuli s
čedalje več plastmi: v vsaki plasti gori po ena značilna zvrst jeder.
Postopek se praviloma ustavi, ko se snov v najbolj notranji sredici
tako stisne in zgosti, da postanejo njeni elektroni degenerirani.
Kdaj je to, določa masa zvezde. Najkasneje pa se postopek
zaporednega prižiganja ustavi, ko nastane železo. Kot vemo,
fuzija železovih jeder v še težja jedra ne sprošča energije, ampak
jo porablja. Zvezda je porabila vse fuzijsko gorivo.

Slika 45.10 Razpad rdeče orjakinje v belo
pritlikavko in planetarno meglico. Meglica je
krogelna in beži navzven. V njenem središču
je bela pritlikavka. (Palomar Observatory)
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Bele pritlikavke in
planetarne meglice

(45.28)

(45.29)

Nevtronske zvezde in
supernove

Vsako naslednje gorenje traja hitreje (ker je temperatura višja) in
sprošča manj energije (ker se vezavna energija nukleona čedalje
manj povečuje s težo jeder). Prižigi tudi povzročijo pritiskovne
sunke, ki razpenjajo zunanje plasti zvezde in jih (ker je pri velikih
razdaljah gravitacija manjša) odpihnejo v prostor kot planetarno
meglico. Od rdeče velikanke preostane le gosta sredica, podprta
z degeneriranim elektronskim plinom – bela pritlikavka. Odvisno
od začetne mase je bela pritlikavka sestavljena iz helija; ogljika in
kisika; ali še težjih jeder. Najtežje bele pritlikavke so iz železa.

Bela pritlikavka ima radij R, maso M, število elektronov N in
število elektronov na prostorninsko enoto n. Gravitacijska
energija na masno enoto znaša Eg ∼ κM/R, kinetična energija
elektronov na masno enoto pa Ek = (N/M)G2/2m. Elektroni so
degenerirani: za vsakega velja ΔxΔG ∼ h̄. Aproksimiramo
G ∼ ΔG ∼ h̄/Δx, Δx ∼ 1/n1/3 in n ∼ N/R3 ter vse skupaj vstavimo v
izraz za kinetično energijo. V ravnovesju sta gravitacijska in
kinetična energija (če se ne menimo za faktor dva) enaki.
Izenačimo ju in dobimo R ∼ (N/M)5/3h̄2/2mκM1/3. Razmerje N/M je
odvisno od sestave plazme; če je plazma popolnoma ioniziran
vodik, pride en degeneriran elektron na maso enega protona,
torej N/M = 1/mp. Vidimo, da velja

R ∝
1

M1/3 .

Čim bolj masivna je pritlikavka, tem manjši radij ima!
Potemtakem bi morala zelo masivna pritlikavka imeti izredno
majhen radij. Vendar: čim manjši je radij, v tem manjši prostor so
zaprti elektroni in tem hitrejši zato postajajo. Upoštevati moramo,
da prej ali slej postanejo relativistični; tedaj velja Ek = Gc. Ko
spet, kot zgoraj, izenačimo Ek in Eg, se R pokrajša in dobimo

M ∼ (
N
M

)2(
h̄c
κ

)3/2 .

Ko se hitrost elektronov bliža svetlobni hitrosti, se masa
pritlikavke približuje mejni masi M. Nobena pritlikavka torej ne
more biti masivnejša od te zgornje mase pritlikavk. Če bi bila
masivnejša, je degenerirani elektronski plin ne bi mogel več
podpirati in bi kolapsirala. Za popolnoma ioniziran vodik
izračunamo M ∼ 2M⊙. Seveda te številske vrednosti ne smemo
jemati preveč resno, ker smo računali zelo na grobo. Vendar pa
kaže, da smo res zadeli pravi red velikosti, saj v naravi ne
najdemo pritlikavk z maso nad 1,5 Sončeve.

Bele prtlikavke nastanejo iz tistih jeder rdečih orjakinj, ki so lažja
od 1,5 Sončeve mase. Kaj pa, če je takšno jedro masivnejše?
Potem se seveda tudi gravitacijsko krči, vendar ga degenerirani
elektronski plin ne more zaustaviti in se krči ter segreva naprej.
Predvidevamo, da se pod ogromnim pritiskom protoni in elektroni
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Črne luknje

v plazmi zlijejo v nevtrone. Nastali nevtronski plin tudi postane
prej ali slej degeneriran in zaustavi nadaljnje krčenje. Ker so
nevtroni 103-krat težji od elektronov, se to zgodi pri 103-krat
manjših polmerih oziroma pri 109-krat večji gostoti snovi kot v
belih pritlikavkah. Nastane nevtronska zvezda.

Slika 45.11 Leta 1054 se je na nebu
nenadoma pojavila nova svetla zvezda in bila
z golim očesom vidna nekaj mesecev. Po
∼ 900 letih je na tistem mestu vidna
meglica – ostanek eksplozije supernove.
Znotraj meglice se skriva nevtronska vezda.
(Palomar Observatory)

Jedro rdeče superorjakinje kolapsira v nevtronsko zvezdo mnogo
siloviteje kot jedro rdeče orjakinje v belo pritlikavko. Sproščena
energija v obliki sevanja in udarnega vala je ogromna: zvezda
eksplodira in zasveti kot supernova. Zunanji deli odletijo v
prostor in ga obogatijo z vsemi elementi, ki so nastali v zvezdi
med njenim življenjem in v času njene eksplozije. V eksploziji
nastanejo tudi elementi, težji od železa. Iz teh ostankov se
kasneje rojevajo nove zvezde, vključno s svojimi planeti in z
živimi bitji na njih. Upravičeno lahko rečemo, da smo ljudje
sestavljeni iz zvezdnega pepela.

Kaj pa tako masivna jedra v rdečih superorjakinjah, ki jih pri
gravitacijskem krčenju niti pritisk degeneriranih nevtronov ne
uspe zaustaviti? Ni druge: takšna jedra se nadalje krčijo in ne
vemo, kaj bi jih sploh lahko zaustavilo. Skrčijo se v točko. To
pomeni, da je ubežna hitrost z njih v2 = 2κM/R neskončna.
Svetlobna hitrost vsekakor ni dovolj za pobeg. Sklepamo, da zato
tudi svetloba ne more zapustiti take gravitacijske singularnosti.
Rečemo, da je to črna luknja.

Tako. Izdelali smo teorijo o rojstvu, življenju in smrti zvezd.
Teorija je večinoma kvalitativna, vendar lepo pojasnjuje opažene
in izmerjene lastnosti zvezd. Kot vsaka dobra teorija poskrbi tudi
za konkretne napovedi, recimo obstoj nevtronskih zvezd in črnih
lukenj. Teh napovedi z obstoječimi optičnimi daljnogledi (še) ne
moremo eksperimentalno preveriti. Raziskovalnih ciljev in dela
nam torej ne bo zmanjkalo.

Slika 45.12 Razvoj zvezd od rojstva
do smrti. Življenska pot in končna
usoda zvezde sta popolnoma določeni
z njeno maso ob rojstvu.
(Encyclopedia Britannica)
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Kefeide

Umeritev kefeid

45.7 Galaksija in galaksije
Med zvezdami na nebu so nekatere, ki se jim sij periodično
spreminja. Nihajni časi znašajo od nekaj ur do nekaj let. Vzroki so
lahko raznovrstni, na primer nihanje radija. Naj bo vzrok
kakršenkoli – spremenljive zvezde so očitno nekaj posebnega in
zato jih hočemo podrobneje raziskati.

Prva stopnja raziskave je fotografiranje izbranega dela neba v
kratkih časovnih presledkih, recimo vsak dan. Sledi pregled slik,
lociranje spremenljivih zvezd in določitev njihove temperature,
magnitude in periode. Pri tem opazimo, da precej spremenljivih
zvezd leži – kot kaže – znotraj zvezdne meglice Mali Magellanov
oblak. Te zvezde so torej od nas približno enako oddaljene. Ko
pregledujemo njihove izmerke, opazimo, da imajo svetlejše
zvezde daljšo periodo in temnejše zvezde krajšo. Narišemo
ustrezen diagram in iz njega razberemo odvisnost: logaritem
periode – med 1 in 100 dnevi – je sorazmeren z navidezno
magnitudo (LEAWITT). Vse te spremenljive zvezde imajo približno
enako temperaturo 6000 K. Kaže, da gre za zvezde "iste vrste".
Poimenujmo jih kefeide.

Slika 45.13 Perioda in izsev kefeid v Malem
Magellanovem oblaku. Na abscisi je perioda (v
logaritmu dnevov) in na ordinati izsev (v
navideznih magnitudah). Vsaka kefeida je
predstavljena z maksimumom (zgornja črta) in
minimumom (spodnja črta) izseva. Razlike
med obema znašajo približno 1 magnitudo.
(Leawitt, 1912)

Ker so vse kefeide v Magellanovem oblaku enako oddaljene od
nas, velja opažena soodvisnost pravzaprav za njihove absolutne
magnitude. Vendar so, žal, Magellanove kefeide izven dosega
paralaktičnih meritev: tako jim absolutnih magnitud ne moremo
določiti. Zato pa lahko to naredimo za kakšno dovolj bližnjo
kefeido, če jo le uspemo najti! Da gre za kefeido, odločimo kar na
podlagi njene periode in temperature, ki morata biti "ustrezni".
Žal takih kefeid ne najdemo. Odkrijemo pa nekaj kefeid v kopici
M13, ki smo ji že določili oddaljenost [45.3]. S tem smo problem
rešili: za kefeido v M13 poznamo oddaljenost, magnitudo in
periodo. Iz oddaljenosti in magnitude določimo absolutno
magnitudo. K njej pripada izmerjena perioda. S tem je kefeidni
diagram absolutno kalibriran (SHAPLEY). Prilegajoča premica za
povprečne absolutne magnitude se glasi
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(45.30)

Galaktični disk

M = −a lg
P

dan
− b

a = 2.4
b = 1.7

Kefeide so torej svetle zvezde z izsevi med 300 in 40 000 izsevi
Sonca. V zvezdnem diagramu ležijo izven glavne veje, približno
nad Soncem.

Kefeida s svojo periodo razodeva svoj absolutni izsev. S tem
postane odličen – in močan – vesoljski svetilnik. Z meritvijo
magnitude in periode je namreč njena oddaljenost popolnoma
določena. Tako, na primer, izračunamo, da je Mali Magellanov
oblak oddaljen od nas za kakšnih 150 · 103 svetlobnih let. Ne
smemo pa pozabiti, da pri merjenju magnitude nagaja absorpcija
v plinskih oblakih v medzvezdnem prostoru. Verjetno so
izmerjene premajhne magnitude in zato so oddaljenosti
precenjene.

Na nebu je polno kroglastih kopic. V večini najdemo in izmerimo
kefeide. S tem ugotovimo tudi njihovo oddaljenost. Opazimo, da
je število kopic "nad" in "pod" ravnino Mlečne ceste je približno
enako. Zato narišemo porazdelitev kopic glede na to ravnino.

Slika 45.14 Razporeditev zvezdnih kopic
okrog Sonca. Osrednji pas je določen z
ravnino Mlečne ceste. Sonce je označeno z
rdečim križcem. Kopice tvorijo kroglast "halo"
okrog sploščenega diska zvezd – Galaksije.
Razdalje so v parsekih in so dvakrat
precenjene glede na kasnejše meritve.
(Shapley, 1918)

Iz risbe razberemo, da tvorijo kopice kroglast sistem, ki je
centriran glede na neko točko v osrednji ravnini. Ta sistem
razodeva, da je Mlečna cesta pravzaprav vidni del velikega diska
zvezd – Galaksije – in da leži Sonce približno v osrednji ravnini
diska, vendar izven njegovega središča. Premer diska ocenimo na
80 kpc in oddaljenost Sonca iz središča na 20 kpc (SHAPLEY).
Izboljšane meritve pokažejo, da so te razdalje dvakrat
precenjene: premer znaša okrog 100 · 103 svetlobnih let in
debelina 1/10 tega. Mali Magellanov oblak leži torej izven
Galaksije, vendar v njeni neposredni bližini.

Koliko zvezd je v Galaksiji? Razdalja do Soncu najbližje zvezde je
nekaj čez 3 ly. Predpostavimo, da je to tudi povprečna razdalja
med zvezdami, to je, da znaša številska gostota zvezd
N/V ∼ 1/(10 ly)3. Prostornina galaktičnega diska znaša
V ∼ (105 ly)2 · 104 ly. Množenje obeh količin pove N ∼ 1011.

373

pict3c/shapley.jpg
pict3c/shapley.jpg
picref.htm


Bližnja galaksija

Množica galaksij

Krogelne kopice niso edine združbe zvezd, ki jih najdemo na
nebu. Posebej markantne so spiralne meglice, recimo največja,
znamenita M31. Z daljnogledom premera 5 metrov (!) uspemo v
njej izmeriti nekaj kefeid. Tako izmerimo oddaljenost te meglice
od nas: 2 · 106 svetlobnih let. Njen kotni premer znaša okrog 3
stopinje (!), zato ima premer okrog 100 · 103 svetlobnih let
(HUBBLE). Meglica M31 je torej približno tako velika kot naša
Galaksija in leži za kakšnih 20 svojih premerov proč. Ostale
spiralne meglice so videti manjše. Sklepamo, da ležijo bolj daleč.
Rečemo, da so vse to galaksije. Naša Galaksija je samo ena izmed
mnogih. Če bi jo lahko pogledali od zunaj, bi bila verjetno
podobna vsem ostalim.

Slika 45.15 Najbližja galaksija M31 v
ozvezdju Andromede. Od nas je
oddaljena 2 milijona svetlobnih let.
Njen premer znaša 100 tisoč
svetlobnih let. (Palomar Observatory)

Kako daleč so druge galaksije? Kefeide v galaksijah uspemo
meriti vse do razdalje kakšnih 10 milijonov svetlobnih let. Potem
postanejo za naše daljnoglede prešibke, predvsem zaradi svetlosti
ozračja. Tako izmerimo razdalje le za kakšnih 100 najbližjih
galaksij. Naprej ne gre več. Na srečo pa pri merjenjih opazimo,
da ima posebna vrsta supernov, ki občasno izbruhnejo v naši in
bližnjih galaksijah, približno enako absolutno magnitudo:
neverjetnih −19! To pomeni, da sevajo kot 10(19+4,6)/2,5 ∼ 1010

Sonc! Te supernove prepoznamo po značilnem naraščanju in
pojemanju sija. Z njimi sežemo 100-krat dalje kot s kefeidami,
torej do 1 milijarde svetlobnih let! V naši galaksiji smo zabeležili
3 supernove v 1000 letih (leta 1054, 1572 in 1604). Približno tako
pogosto – 1 supernova na galaksijo na 100 let – se pojavljajo tudi
drugod.

Slika 45.16 Gruča oddaljenih galaksij. Od
bližnjih zvezd se ločijo po eliptični in difuzni
obliki. (Palomar Observatory)

Koliko galaksij vidimo? Razdalja do prve galaksije znaša okrog
1 Mpc. Vzamemo, da je to povprečna razdalja med galaksijami.
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Beg galaksij

(45.31)

Veliki pok

Njihova številska gostota je zato N/V ∼ 1/(1 Mpc)3. Z daljnogledi
vidimo do razdalje 103 Mpc, torej prostornino V ∼ (103 Mpc)3.
Množenje obeh količin pove število vidnih galaksij N ∼ 109. To
pomeni, da se v vidnem dosegu (sedanjih) daljnogledov pojavi 109

supernov v 100 letih oziroma 1 supernova vsako sekundo!

45.8 Širjenje vesolja
Kako se galaksije gibljejo? Svoj čas smo merili radialne hitrosti
bližnjih zvezd s frekvenčnim zamikom njihovih spektralnih črt. Na
enak način [35.8] izmerimo sedaj radialne hitrosti galaksij.
Doživimo hudo presenečenje: vse galaksije – razen najbližjih – se
oddaljujejo od nas in bolj kot so oddaljene, hitreje bežijo!

Slika 45.17 Beg galaksij. Vse galaksije bežijo
proč od nas. Čim bolj so oddaljene, tem
hitreje bežijo. Prijetno je videti, da so enote za
hitrost napačne, namreč kilometri in ne
kilometri na sekundo. (Hubble, 1929)

Graf pokaže, da velja sorazmernost med hitrostjo bežanja v in
oddaljenostjo r (HUBBLE):

v = H0r .

To je širitveni zakon. Sorazmernostni koeficient H0 poimenujemo
širitveni parameter. Prve meritve galaksij kažejo
H0 ≈ 500 kms−1/Mpc; kasnejše, bolj natančne, vključujoče bolj
oddaljene galaksije, pa pravijo H0 ≈ 70 kms−1/Mpc.

Kako si naj to razlagamo? Kaj je res naša Galaksija nekaj
posebnega, da se vse ostale gibljejo proč od nje? Kaj pa bi videl
opazovalec v kakšni drugi galaksiji? Kratek razmislek pove:
natanko isto, vse galaksije bi bežale proč od njega.

Iz bega galaksij sklepamo naslednje. Ker se galaksije med seboj
oddaljujejo, so morale biti včasih bolj skupaj. Če v mislih
obrnemo tok časa, se začnejo galaksije stekati nazaj k nam.
Dvakrat bolj oddaljena galaksija se giblje z dvakrat večjo
hitrostjo, zato bi za vrnitev potrebovala enak čas. Vse galaksije,
na kakršnikoli oddaljenosti od nas so pač, bi se zato vrnile k nam
hkrati. Celotno vesolje bi se torej skrčilo v našo točko. Seveda to
velja za vsako točko: vesolje bi se skrčilo vanjo. Pravzaprav bi se
vse te opazovalne točke skrčile v skupno točko. Sklepamo torej,
da ima vesolje svoj začetek, ko je bilo majhno in zgoščeno in zato
vroče, tako kot pri gravitacijskem kolapsu plinskega oblaka v
zvezdo. Vesolje se je torej, kot kaže, začelo z eksplozijo, z velikim
pokom. Takrat je nastala snov, kakršnakoli je pač že bila, in
svetloba, ki jo je začela snov sevati. Od tedaj naprej se snov in
svetloba širita, pri čemer se oblikujejo galaksije, kakršne danes
vidimo v bližnji in daljni okolici. Hitrost širjenja snovi opisuje
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(45.32)

Raztezanje prostora

Vidno obzorje

širitveni parameter. Njegova recipročna vrednost 1/H0 ima
dimenzijo časa in karakterizira čas širjenja, to je starost vesolja
t0:

t0 ∼
1

H0
.

Vesolje je torej staro t0 ∼ 14 · 109 let. Ocenjeni številski rezultat je
ugoden, saj je precej daljši od domnevne starosti Sonca. Sonce
pač ne more biti starejše od vesolja.

Če hitrost galaksij res narašča z oddaljenostjo linearno, mora prej
ali slej preseči svetlobno hitrost in "izginiti". Toda – ali je to sploh
možno? Kaj ni res, da nobeno telo ne more potovati hitreje od
svetlobe? Zagato odpravimo z naslednjo izjemno drzno domnevo.
Res je: nobeno snovno telo ne more potovati hitreje od svetlobe v
lokalnem delu prostora; kaj pa, če se prostor širi? Meja svetlobne
hitrosti potem še vedno velja lokalno. Se pa lahko dva različna
dela prostora med seboj oddaljujeta, in to s poljubno veliko
hitrostjo. Oddaljene galaksije potem pravzaprav ne bežijo od nas,
ampak jih s sabo nosi šireči se prostor. Kar vidimo kot beg
galaksij, je torej širjenje prostora, ki nosi galaksije s seboj.

Ko pravimo, da se vesoljski prostor razteza, s tem ne mislimo, da
se večajo tudi atomi, ali naše telo, ali Zemlja, ali Sončni sistem ali
Galaksija. Vse to so telesa, ki jih držijo skupaj močne sile, in na
katere povprečna, zglajena gravitacija vesolja nima zaznavnega
vpliva. Skupna lastnost naštetih sistemov je, da predstavljajo
področja z velikim odstopanjem masne gostote od povprečja
preko več deset megaparsekov.

Od svetlobe, ki pada v naše oči, nobena ni starejša od starosti
vesolja. Tudi z najmočnejšimi daljnogledi ne moremo videti
starejše svetlobe, ker je pač ni. Doseg, do kamor vidimo, je torej
omejen. Rečemo, da je to naše vidno obzorje. Na prvi pogled se
zdi, da je vidno obzorje tako daleč, kolikor prepotuje svetloba v
času od velikega poka do danes, torej rvis = ct0 = 14 · 109 ly. Vendar
se je v tem času telo, ki je to svetlobo izsevalo, odmaknilo od nas
zaradi širjenja prostora. Vidno obzorje je zato ustrezno večje.
Ocenimo ga takole. V času t0, ki ga potrebuje svetloba od izseva
do vpada v oko, se izvor od razdalje r0 odmakne za dodatno
razdaljo s ∼ v(r0)t0 ∼ (H0r0)/H0 ∼ r0. Vidno obzorje torej znaša
rvis ∼ 2ct0. Čim starejše je vesolje, tem večje je vidno obzorje. To
velja za vsakega opazovalca: vsak ima svoje vidno obzozrje. Kaj
se skriva za njim, pa mora večno ostati nevidno.

45.9 Širitveni model
Širjenje vesolja hočemo zdaj zajeti v eno ali več enačb.
Privzamemo, da je vesolje homogeno (na skali nekaj deset
megaparsekov) in izotropno. To pomeni, da lahko za središče
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Skalirna enačba

(45.33)

(45.34)

izberemo katerokoli njegovo točko, recimo kar našo Galaksijo.
Poglejmo majhen prostorninski element – delec – z maso m na
razdalji r od tega središča. Zaradi nazornosti si bomo namesto
delca predstavljali kar razmazano galaksijo.

Na galaksijo deluje gravitacijska sila mase v zaobjeti krogli:
F = κMrm/r2 = 4πκρrm/3. Galaksija ima potencialno energijo
W = −κMrm/r in kinetično energijo K = mr'2/2 (torej ne sme biti
prehitra). Vsota obeh energij je konstantna: (1/2)mr'2 −
(4π/3)κρr2m = E. Konstanta E je v splošnem različna za različne
razdalje. Zapisana enačba opisuje spreminjanje razdalje med
dvema galaksijama: izhodiščno in obravnavano. Ker je vesolje
homogeno, velja enačba za poljubni dve galaksiji. To nam
omogoča, da vpeljemo so-bežni koordinatni sistem, ki se giblje
skupaj s prostorom. Ker je širjenje linearno, sta fizična razdalja r
in so-bežna razdalja R med dvema poljubnima galaksijama
povezani takole:

r= a(t)R .

Enačba opisuje so-bežno mrežo vektorjev R, ki se širi skupaj s
prostorom. Galaksije ostajajo, po definiciji, v fiksnih točkah te
mreže. Količino a(t) poimenujemo skalirni faktor vesolja. Odvisen
je le od časa. Pove nam, kako fizične razdalje med galaksijami
naraščajo s časom.

Slika 45.18 So-bežna koordinatna mreža na
balonu. Mreža se širi skupaj z opno balona.
"Galaksije" ostajajo v fiksnih točkah te mreže.
(Bianchi, 2010)

Enačbo (45.33) vstavimo v energijsko enačbo, upoštevamo R' = 0
in dobimo skalirno enačbo (FRIDMAN)

(
a'
a

)2 =
8πκ

3
ρ −

kc2

a2 ,

pri čemer smo vpeljali okrajšavo k = −2E/mc2R2. Faktor c2 smo
pritaknili zato, da polepšamo enote: [k] = 1/m2. Količina k mora
biti neodvisna od R, ker so taki vsi ostali členi v enačbi. Iz tega
sledi E ∝ R2. Ker je E za izbrano galaksijo konstanta in ker je R
zanjo fiksiran, je k kar navadna konstanta. Kakšen je njen pomen?
Očitno je vezana na vezavno energijo vesolja. Ničelni, pozitivni in
negativni vezavni energiji ustrezajo vrednosti konstante k = 0,
k > 0 in k < 0. Rekli bomo, da imamo opravka z gravitacijsko
uravnovešenim (ravnim), gravitacijsko nevezanim (odprtim) ali
gravitacijsko vezanim (zaprtim) vesoljem. Kakšno je naše vesolje,
bomo morali v nadaljevanju še ugotoviti.
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Gostotna enačba

(45.35)

Skalirni faktor in
širitveni parameter

(45.36)

(45.37)

Skalirni faktor in rdeči
premik

(45.38)

Sestavine vesolja

Skalirna enačba opisuje, kako se skalirni faktor a spreminja s
časom, če poznamo gostoto vesolja ρ(t). Kakšna pa je gostota
vesolja kot funkcija časa? Krogelna prostornina vesoljske
"tekočine" V = (4π/3)a3 vsebuje energijo E = mc2 = (4π/3)a3ρc2. Pri
adiabatnem raztegu te prostornine velja dE + pdV = 0. Izraza za E
in V odvajamo po času in vstavimo, pa dobimo gostotno enačbo
(FRIDMAN)

ρ' + 3
a'
a

(ρ +
p
c2 ) = 0 .

Zdaj torej vemo, kako se spreminja gostota, vendar le, če vemo
še, kakšna je enačba stanja p = p(ρ). Če to enačbo poznamo,
potem gostotna enačba in skalirna enačba enolično določata
širjenje vesolja.

Hitrost bežanja galaksij v= dr/dt zapišemo kot (|r'|/|r|)r,
upoštevamo r= aR in dejstvo, da je odvod so-bežnih koordinat
enak nič. Potem iz širitvenega zakona v = Hr sledi

H =
a'
a

,

skalirna enačba pa dobi alternativno obliko

H2 =
8πκ

3
ρ −

kc2

a2

Širitveni parameter se torej spreminja s časom. Njegovo vrednost
ob današnjem času t0 označujemo kot H0.

Dve galaksiji naj bosta oddaljeni za dr. Potem se medsebojno
razmikata z relativno hitrostjo dv = Hdr = (a'/a)dr. Svetloba, ki
odpotuje iz ene galaksije in prispe v drugo, ima spremenjeno
valovno dolžino: dλ/λ = dv/c. Potovalni čas znaša dt = dr/c. Ko
zložimo vse skupaj, dobimo dλ/λ = da/a oziroma

λ ∝ a .

Ko se prostor širi, se valovna dolžina svetlobe v njem veča.
Predstavljamo si, da prostor razteguje svetlobne valove. S tem
svetloba doživlja rdeči premik. Rdeči premik svetlobe je torej
posledica relativne hitrosti oddajnika in sprejemnika, pri čemer je
njuna relativna hitrost posledica širjenja prostora. Ugotovitev
smo izpeljali za dve bližnji točki. Privzeli bomo, da velja tudi za
velike razdalje.

45.10 Napovedi modela
Če hočemo ugotoviti, kaj napovedujeta skalirna in gostotna
enačba, moramo poznati povezavo med masno gostoto in
pritiskom sestavin vesolja. H gostoti ρ in pritisku p prispevata
tako snov kot svetloba. Današnje vesolje je "plin" iz počasnih
masnih delcev (galaksij, atomov v medgalaktičnem prostoru) in
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Ravno, masno
dominirano vesolje

(45.39)

Ravno, sevalno
dominirano vesolje

(45.40)

Odprto in zaprto
vesolje

relativističnega sevanja (fotonov in nevtrinov). Plin je redek in
hladen, zato je pritisk v njem majhen in postavimo p = 0. Zgodnje
vesolje pa je bilo gost in vroč plin iz osnovnih delcev. Kot vemo iz
sredic zvezd, v takem plinu prevladuje pritisk zaradi radiacije;
zato postavimo p = w/3 = ρc2/3. Zapisali smo dva mejna primera
za vesolje. Rekli bomo, da sta to masno dominirano in sevalno
dominirano vesolje.

Masno enačbo ρ' = 3(a'/a)ρ = 0 zapišemo v obliki
(1/a3)d/dt(ρa3) = 0 in nadalje d/dt(ρa3) = 0. To pomeni, da je ρa3

konstanta oziroma ρ ∝ 1/a3. Nismo presenečeni, saj pričakujemo,
da gostota pada obratno sorazmerno s prostornino vesolja. Če z
ρ0 označimo gostoto ob sedanjem času t0, ko a(t0) = 1, velja
ρ = ρ0/a3 . To gostoto vstavimo v skalirno enačbo (45.34),
upoštevajoč k = 0, in dobimo a'2 = (8πκρ0/3) · (1/a). Enačbo
poskušamo rešiti z nastavkom a ∝ tq. Leva stran je odvisna od
t2q−2 in desna od t−q. Obe strani se morata ujemati, kar se zgodi
za q = 2/3. Zato a ∝ t2/3 oziroma

a(t) = (
t
t0

)2/3

ρ(t) =
ρ0

a3 .

Vesolje se torej večno razteza, pri čemer se širitveni parameter s
časom zmanjšuje: H = a'/a = 2/3t. Za današnji čas velja
t0 = (2/3)(1/H0) = 9 · 109 let. Po modelu ocenjena starost vesolja je
torej nekaj manjša od prvotne ocene na podlagi nespremenljivega
širitvenega parametra. Je pa še vedno dovolj velika, da nas ne
skrbi preveč.

Z upoštevanjem p = ρc2/3 se gostotna enačba glasi
ρ' = 4(a'/a)ρ = 0. Rešujemo jo prav tako kot predhodno, pri čemer
je a3 nadomeščen z a4. Dobimo ρ ∝ 1/a4 in nadalje še

a(t) = (
t
t0

)1/2

ρ(t) =
ρ0

a4 .

Sevalno dominirano vesolje se širi počasneje kot masno
dominirano, in sicer zaradi vpliva tlaka. Torej ne smemo o tlaku
misliti kot o nečem, kar vesolje razpihuje. Saj bi bil za to
potreben pritiskov gradient, ki pa ga v vesolju ne najdemo. Je pa
res, da pri razpenjanju pritisk opravlja delo, kar se kaže v
dodatnem manjšanju gostote.

Kaj pa, če vesolje ni ravno, to je, če k ≠ 0? Privzemimo, da je
vesolje masno dominirano, kar velja za njegovo celotno dobo,
razen za začetek.
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Kritična gostota

(45.41)

Prasevanje

Če je v skalirni enačbi (45.37) k < 0, sta oba člena na desni
pozitivna in H ≡ a'/a bo vedno večji od nič: vesolje se ne bo nikoli
nehalo širiti. Z naraščanjem a pada člen kc2/a2 počasneje kot člen
z ρ ∝ 1/a3 ter prej ali slej postane dominanten. Skalirna enačba
dobi zato obliko (a'/a)2 = −kc2/a2 in po krajšanju a ∝ t. Hitrost
postane konstantna: vesolje se širi enakomerno.

Če k > 0, postane razlika obeh členov na desni strani po
določenem času enaka nič. To pomeni, da se širjenje ustavi. Ker
gravitacijska privlačnost ostaja, pa se mora vesolje začeti krčiti.
Kolaps je prav tak kot širitev, vendar v nasprotni smeri. Vesolje se
skrči v vročo točko.

Slika 45.19 Razvoj vesolja, odvisen od
masne gostote. Gostota je podana z
razmerjem Ω med aktualno in kritično
gostoto. Prazno vesolje Ω = 0; odprto vesolje
Ω < 1; ravno vesolje Ω = 1; zaprto vesolje
Ω > 1. (Anon)

Širitev vesolja je zelo podobna metu kamna v višino. Če ga
vržemo navzgor z veliko hitrostjo, ga Zemljina gravitacija ne bo
mogla ustaviti in kamen bo odletel proč z enakomerno hitrostjo.
Če ga vržemo z majhno hitrostjo, ga bo gravitacija ustavila in
vrnila na tla. Vmes pa je ubežna hitrost, s katero kamen ravno še
ubeži gravitaciji in se ustavi v neskončnosti.

V skalirni enačbi (45.37) obstaja za dano vrednost H takšna
vrednost ρ, ki "dela" vesolje ravno, torej k = 0. To je kritična
gostota

ρc =
3H2

8πκ
.

Ker se H spreminja s časom, se ustrezno spreminja tudi kritična
gostota. Za sedanjo vrednost H0 izračunamo iz (45.41)
ρc ∼ 10−26 kg/m3 ∼ 10 mp /m3. Na prvi pogled je to zelo majhna
vrednost: po en nukleon na medsebojni razdalji en čevelj.
Zapišemo pa jo lahko tudi v obliki ρc ∼ 1011 M⊙/(Mpc)3. To pa ni
več videti tako majhno: tipična galaksija na tipični medsebojni
razdalji galaksij! Kaže, da dejanska gostota vesolja ne more biti
daleč od kritične.

Kakšna je gostota vesolja (upoštevajoč zvezde, rjave pritlikavke,
medgalaktične oblake plina, fotone, nevtrine in morda še kaj), je
zaenkrat odprto vprašanje. Radi bi že videli, da bi bila enaka
kritični gostoti. Zavedati pa se moramo, da vesolju ni mar za naše
želje in upe. Na koncu vedno odločijo meritve.

45.11 Zgodnje vesolje
Raziskave vesolja dobijo novo oporo z naslednjim nepričakovanim
odkritjem. Kot radijski inženirji preučujemo širjenje mikrovalov in
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Raztezanje in
ohlajanje prasevanja

(45.42)

Nastanek snovi in
prasevanja

pri tem uporabljamo veliko sprejemno anteno ter zelo občutljiv
sprejemnik za 7-centimetrske valove. Da bi lahko zaznali šibke
energije, poskušamo odstraniti vse druge moteče vire. Med
drugim tudi hladimo sprejemnik s tekočim helijem, da zmanjšamo
njegov notranji termični šum. Kljub vsem naporom pa še vedno
zaznavamo nekakšno sevanje. To sevanje prihaja enakomerno iz
vseh delov neba in ni odvisno od dneva in noči ter od letnih časov.
Kaže, da prihaja iz globin vesolja. Poimenujemo ga sevanje ozadja
ali prasevanje (PENZIAS).

Slika 45.20 Antena, s katero je bilo odkrito
prasevanje. (NASA)

Merjenja pri različnih valovnih dolžinah razkrijejo, da ima
prasevanje spekter črnega telesa s temperaturo T ≈ 3 K. To
ustreza valovni dolžini λ ∝ 1/T ≈ 1 mm. Gostota energije znaša
w = 4σT4/3c in ustrezajoča gostota mase ρ = w/c2 = 10−30 kg/m3.
To je za štiri rede velikosti manj od kritične mase. Masa
prasevanja ne igra nobene vloge pri širjenju današnjega vesolja.

Ko se vesolje razteza, se z njim razteza tudi valovna dolžina
prasevanja: λ ∝ a. Ob upoštevanju λ ∝ 1/T sledi

T ∝
1
a

.

Pri širjenju se torej prasevanje oziroma prazen vesoljski prostor,
vsebujoč prasevanje, ohlaja kar obratno sorazmerno s svojo
velikostjo. Danes, ko je vesolje veliko a = 1, ima temperaturo
T0 = 3 K. Tisočkrat višjo temperaturo T = 3 · 103 K je imelo, ko je
bilo tisočkrat manjše: a = 10−3. To se je zgodilo ob času
t/t0 = a3/2 ∼ 10−5, torej 10−5 · t0 ∼ 105 let po velikem poku.

Ko govorimo o temperaturi vesolja, mislimo na temperaturo
praznega prostora, vsebujočega prasevanje. Vemo pa, da so
zvezde vroče in da temu ustrezno sevajo. V vesolju je torej več
sestavin – zvezde, medzvezdni plin, svetloba, nevtrini in morda še
kaj – in vsaka ima svojo temperaturo. Med seboj so v slabem
toplotnem stiku. Vesolje, kot ga vidimo danes, ni v toplotnem
ravnovesju, ko bi bila temperatura v njem povsod enaka.

Dovolj daleč nazaj v času je bila temperatura vesolja tako visoka,
da v njem niso mogli obstajati današnji atomi, pa tudi ne njihova
jedra: termično gibanje je bilo tako silovito, da so bila jedra in
atomi razdrobljeni na sestavne dele. Takratna snov je bila zato
mešanica prostih protonov, nevtronov, elektronov, nevtrinov in
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Kaj nas čaka

fotonov. Vsi so vplivali drug na drugega. Kaj je bilo pred to
mešanico, na tej stopnji spoznavanja narave ne vemo.

Ko se je zaradi raztezanja vesolja temperatura znižala, so se
začeli protoni in nevtroni združevati v jedra. To se je zgodilo
tedaj, ko je energija delcev padla znatno pod vezavno energijo
nukleonov v jedrih, recimo na okrog E ∼ 1 MeV. Tej energiji
ustreza temperatura T = E/k ∼ 1010 K. Tedanji skalirni faktor je
znašal a = (3 K)/T ∼ 10−10. Starost vesolja (predpostavimo masno
dominiranega) pa je znašala t = t0a3/2 ∼ 103 sekund. Vesolje je bilo
torej mešanica jeder (večinoma vodika, devterija in helija, morda
še kaj drugega), elektronov, nevtrinov in fotonov. V tej plazmi so
švigali fotoni sem in tja in se sipali na električno nabitih jedrih in
elektronih. Zaradi sipanja je bila prosta pot fotonov kratka:
vesolje je bilo neprozorno za svetlobo.

Ko je energija delcev padla znatno pod vezavno energijo
elektronov v današnih atomih, recimo na okrog E ∼ 1 eV, so jedra
zagrabila in si prisvojila proste elektrone in nastali so prvi atomi.
Na enak način kot zgoraj izračunamo tedanjo temperaturo
T ∼ 104 K, skalirni faktor a ∼ 10−4 in starost vesolja
(predpostavimo masno dominiranega) t ∼ 105 let. Prostih
elektronov je zmanjkalo in s tem je prenehalo sipanje fotonov na
njih. Fotonom se je odprla prosta pot za nemoteno gibanje. Snov
je postala prozorna za svetlobo. Rodilo se je prasevanje s
temperaturo ∼ 104 K, to je, z valovno dolžino ∼ 103 Å. Do danes se
je sevanje ustrezno ohladilo in raztegnilo. Snov pa se je
gravitacijsko združila v galaksije, zvezde in planete.

Vesolju je bilo torej potrebnih nekaj minut, da je naredilo prva
jedra; nekaj stotisoč let, da je naredilo prve atome in nekaj
milijard let, da je naredilo galaksije, zvezde, planete in nas same.
Kaj se je dogajalo v prvih minutah vesolja, (še) ne vemo. Kaj je
bilo "pred" tem, tudi ne. Morda ne bomo nikoli mogli ugotoviti.
Tudi daljna prihodnost nam je bolj ali manj neznana. Vesolje, kot
ga poznamo, pa se bo gotovo širilo še milijarde let. Potem bodo
zvezde počasi ugasnile in vesolje bo postalo temno in mrtvo
pokopališče snovi. Ali pa se bo morda širjenje ustavilo, obrnilo in
končalo v novem vročem velikem poku. Življenje človeškega rodu,
kaj šele življenje človeškega posameznika, se pokažeta neznatna
v primerjavi s trajanjem in razvojem vesolja. Tolaži nas lahko
zavest, da smo kljub svoji neznatnosti le uspeli spoznati zgradbo
dobršnega dela sveta in odkriti marsikatere zakone, po katerih se
ravna. Mnogo raziskovalnega dela nas pa še čaka. Imamo svoj
čas; izkoristimo ga. □
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polja – Kvantni čas-prostor – Zadnja meja

Predzadnji vrhovi
Razvoj znanosti, poustvarjen v pričujoči knjigi, je dosegel stopnjo,
ko smo – tako kaže – spoznali zgradbo in osnovne zakonitosti
sveta povsod, razen v njegovih najbolj skrajnih področjih: v
notranjosti in bližini nukleonov, v notranjosti in bližini črnih
lukenj ter v najbolj zgodnjem in najbolj oddaljenem vesolju. S tem
knjigo zaključujemo. Povzpeli smo se na vse "predzadnje" vrhove,
kar jih je do danes osvojilo človeštvo. V oblakih pa se kažejo
obrisi "zadnjih", najvišjih vrhov. Spodobi se, da za konec
omenimo, kaj je bilo pri plezanju nanje že narejenega in kakšna je
pričakovana pot navzgor.

Računalniki
Raziskave polprevodnikov prinesejo nepričakovano odkritje
polprevodniške diode in polprevodniške triode – transistorja
(SHOCKLEY). Ta dva polprevodniška elementa delujeta (skoraj)
tako, kot njuna vakuumska prednika. Sta pa mnogo manjša in
robustnejša, zato ju prav hitro in povsod zamenjata. Zamenjata
tudi dosedanjo kristalno diodo in refleksne ter (šibke)
dvovotlinske klistrone v mikrovalovnih napravah.

Majhnost polprevodniških elementov omogoči, da sestavljamo
čedalje bolj gosta in zapletena vezja za opravljanje najrazličnejših
opravil. Posebej uporabna se pokažejo vezja za obdelavo
digitalnih signalov, to je takšnih, ki so sestavljeni iz zaporedja
dveh vrst impulzov: visokih in nizkih/ničelnih. Tako sestavimo
števec impulzov s segmentnim zaslonom, digitalno uro, analogno-
digitalni pretvornik, digitalno-analogni pretvornik, ročni
kalkulator z zaslonom iz tekočih kristalov in – krono vsega –
namizni računalnik s tipkovnico, miško in matričnim zaslonom.

Računalnik je najbolj zapletena in vsestranska priprava, kar jih je
doslej naredil človek. Je stroj za obdelavo informacij: digitalno
kodiranih števil, besedil, slik, zvoka, videa in še kaj. Z njim
dobimo v roke sanjsko orodje za pisanje, risanje in računanje, za
zajem, obdelavo in prikaz merskih podatkov, za krmiljenje
merilnikov in drugih naprav ter še za mnogo drugega.
Medsebojna povezava računalnikov v svetovno omrežje pa
omogoča hipni dostop do nepreglednega morja informacij ter
hipno komuniciranje preko vseh prostorskih meja. Posebej se
razmahne komunikacija preko mikrovalov in množice mobilnih
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osebnih telefonov ter talnih postaj kratkega dosega. Po pravici
lahko rečemo, da je z računalnikom človeštvo stopilo v novo dobo.

Numerična analiza
Računsko orodje znanosti je matematika – ukvarjanje s števili,
funkcijami in enačbami. V principu lahko vse to delamo s
svinčnikom na papirju. Če je računanje preobsežno, in v
zapletenih primerih je vedno tako, pa pride praktično v poštev le
računalnik. Ta v sekundi opravi toliko osnovnih računskih
operacij, kolikor bi jih človek s svinčnikom in papirjem v milijon
letih.

Primeri za numerično uporabo računalnika so naslednji:
statistična obdelava nepreglednih množic izmerkov – izračun
porazdelitev, povprečij, standardnih deviacij, korelacijskih
koeficientov, regresijskih parametrov in drugo; izračun in
tabeliranje funkcij, podanih z vrsto ali integralom; izračun
harmoničnih spektrov funkcij; reševanje poljubnih enačb;
reševanje sistemov linearnih enačb – izračun inverzne matrike,
lastnih vrednosti in lastnih vektorjev; in reševanje navadnih ter
parcialnih diferencialnih enačb iz podanih začetnih in/ali robnih
pogojev.

Vsi glavni zakoni narave, kakor smo jih spoznali, imajo obliko
diferencialnih enačb. Njihovo reševanje je zato osnovnega
pomena. Tako, na primer, lahko izračunamo gibanje planetov
okoli Sonca, vključno z vsemi njihovimi medsebojnimi vplivi
(gibalna enačba); prevajanje toplote po snovi (difuzijska enačba);
statična električna in magnetna polja okoli nabojev in tokov
(potencialna enačba); stojne akustične in elektromagnetne valove
v notranjosti resonatorjev (amplitudna enačba); valovne funkcije
in lastne energije elektronov v različnih potencialih (kvantna
amplitudna enačba); stacionarna notranja stanja in razvoj zvezd;
in še mnogo drugega.

Analitična mehanika
Pot, ki jo pod vplivom konservativne sile ubere delec iz izbrane
začetne točke, je določena z začetno hitrostjo in z gibalno enačbo.
Sčasoma prispe delec v neko "končno" točko. Namesto da je
ubrana pot določena z začetno lego in začetno hitrostjo, je morda
določena tudi z začetno in končno lego? Med obema točkama si
namreč lahko mislimo mnogo poti. Katera od njih je prava?
Ugotovimo, da je prava tista pot, vzdolž katere je razlika med
kinetično in potencialno energijo, integrirana po času, najmanjša.
Drugače rečeno, prava pot je tista, za katero ima akcija
S = t1∫t2 (K − W) dt ekstrem (HAMILTON). Integrand poimenujemo
akcijska energija L = K − W. Kar velja za eno točko in kartezične
koordinate, velja tudi za poljuben sistem točk in za njegove
posplošene koordinate qi – razdalje med deli sistema, kote, ki
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določajo orientacijo, itd. Upoštevati moramo le celotno kinetično
in celotno potencialno energijo sistema.

Kako izračunamo ekstremalno pot? Ugotovimo, da mora akcijska
energija zadoščati naslednjim enačbam druge stopnje
(LAGRANGE): d/dt (∂L/∂qi') − ∂L/∂qi = 0. To so posplošene enačbe
gibanja. Če vanje vstavimo specifični L, ki opisuje preučevani
sistem, dobimo sistem diferencialnih enačb za qi(t), ki ga potem
rešujemo kakor vemo in znamo.

Posplošene enačbe lahko tudi zapišemo kot sistem dvakrat toliko
enačb prve stopnje za posplošene koordinate qi in posplošene
impulze pi = ∂L/∂qi'. To so kanonične enačbe gibanja (HAMILTON):
dqi/dt = ∂H/∂pi, dpi/dt = −∂H/dqi, H = K + W. V njih namesto
akcijske energije nastopa polna energija, ki je enaka vsoti
kinetične in potencialne energije sistema.

Gibanje sistema masnih točk lahko torej opišemo na več
enakopravnih načinov: z akcijskim integralom oziroma z
vektorskimi, posplošenimi ali kanoničnimi diferencialnimi
enačbami. Eno sledi iz drugega. Izberemo tisti način, ki je za dani
problem najbolj primeren.

Če je čas homogen, mora biti akcijska energija sistema neodvisna
od časa. Iz tega sledi, da se ohranja energija zaprtega sistema.
Če je prostor homogen, mora biti akcijska energija
nespremenjena za majhen premik; iz tega sledi, da se ohranja
gibalna količina zaprtega sistema. In če je prostor izotropen,
mora biti akcijska energija nespremenjena za majhen zasuk;
sledi, da se ohranja vrtilna količina zaprtega sistema. Veliki
ohranitveni zakoni se tako pokažejo kot posledica homogenosti
časa in homogenosti ter izotropnosti prostora (NOETHER).

Mehanika zvezne snovi
Gibanje kontinua opišemo tako, da za vsak njegov snovni del
povemo, kam se pomakne v času. Ali pa za vsako prostorsko
točko povemo, kakšna je tamkajšnja hitrost snovi. Spremembo
gibanja v kratkem času zato podamo na dva načina: s
substancialnimi odvodi dv/dt ali z lokalnimi odvodi ∂v/∂t. Med
obojimi velja advekcijska povezava dv/dt = ∂v/∂t + (v ·∇)v .

Sile, ki delujejo na snovne dele kontinua, so dveh vrst:
prostorninsko porazdeljene (kot npr. teža) f in površinsko
porazdeljene (sile ob dotiku). Za vsako ploskev dS, ki si jo
zamislimo v snovi, moramo vedeti, s kakšno silo dF deluje levi del
na desnega in obratno: dF=σdS. Matrika devetih koeficientov σij
je (simetrični) napetostni tenzor. Gibalni zakon za del snovi se
potem glasi ρdv/dt = f+ divσ. Zapisani zakon lahko uporabimo za
izračun gibanja šele, ko poznamo napetostni tenzor za
preučevano snov. To nam uspe za dve vrsti snovi: za prožno snov
in za viskozno stisljivo tekočino.
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Za prožno snov tako izpeljemo enačbo gibanja ρ∂2u/∂t2 =
f+ G∇2u+ (K + G/3)∇(∇u), vsebujočo prožnostni in strižni modul
(CAUCHY / NAVIER). To je valovna enačba. Z njo izračunamo
deformacije in lastna nihanja "lepih" teles, na primer upogib
nosilca, zasuk gredi, nihanje krožne opne, nihanje gumijaste žoge
in podobno. Iz nje tudi izpeljemo enačbi za hitrost longitudinalnih
in transverzalnih valov v neomejeni snovi. Obojni valovi nastajajo
pri potresih. Z merjenjem časa potresnih sunkov na več
opazovalnicah izračunavamo žarišča potresov. Ker se
transverzalni valovi ne širijo skozi tekočine, ugotovimo, da ima
Zemlja pod trdno skorjo tekoč plašč.

Za viskozno stisljivo tekočino pa izpeljemo gibalno enačbo
ρ dv/dt = f−∇p + η∇2v+ (ζ + η/3)∇(∇v), vsebujočo strižno in
dilatacijsko viskoznost (NAVIER / STOKES). Enačbo lahko
poenostavimo za primer neviskozne in/ali nestisljive tekočine. Iz
nje tudi izpeljemo enačbi za zvočne in gravitacijske valove.

Posebej zanimiv kontinuum jo zemeljsko ozračje. To je suh zrak s
primesmi vodne pare, oblačnih kapljic in padavinskih delcev. Vse
skupaj opišemo z zapletenim sistemom enačb. Osnovo tvorijo
enačbe za suh zrak: hidrodinamična gibalna enačba, energijska
enačba, kontinuitetna enačba in enačba stanja. Dodane so še
razne enačbe za primesi. Upoštevamo tudi sistemske sile zaradi
vrtenja Zemlje, sončno obsevanje in hribovitost. Začetne pogoje v
ozračju določimo iz množice meritev, nadaljnji razvoj pa
izračunamo z računalnikom. Tako uspešno napovedujemo vreme
za nekaj dni vnaprej. Rešitev sistema enačb je zelo občutljiva na
majhne spremembe v začetnih pogojih (LORENZ), zato bolj
dolgoročnih napovedi (zaenkrat) ne zmoremo izdelovati.

Analitična termodinamika
Termodinamični sistem, na primer posoda s plinom, je v
ravnovesju popolnoma opisan z enačbo stanja. Ta enačba
povezuje temperaturo, pritisk, prostornino in še kaj, če je sistem
bolj zamotan. Stanje sistema se lahko spreminja. Prehod iz
začetnega v končno stanje je "reverzibilen" ali ne. Reverzibilen je
tak prehod, katerega nazaj zavrten posnetek je realističen.
Izotermno ali adiabatno stiskanje sistema je reverzibilno.
Prevajanje toplote, difuzija in gorenje pa to nisto.

Posebej zanimive so take spremembe, po katerih se sistem vrne v
začetno stanje. To so krožne spremembe. Tudi te so lahko
reverzibilne ali ne. Odkrijemo, da za krožno reverzibilno
spremembo velja ∮dQrev/T = 0 (CARNOT). Vsota dovedenih in
odvedenih toplot, uteženih s pripadajočimi temperaturami, je
enaka nič. To pomeni, da za reverzibilen prehod iz enega stanja v
drugega velja ∫ dQrev/T = S2 − S1. S tem je definirana entropija S
sistema relativno na poljubno izbrano stanje. Entropija je funkcija
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stanja. Kakršenkoli prehod med dvema stanjema – reverzibilena li
ne – je povezan s spremembo entropije. Ta sprememba je natanko
tolikšna kot pri reverzibilnem prehodu. Entropija je aditivna in se
ne ohranja. V izoliranem sistemu narašča, dokler sistem ne
doseže notranjega ravnovesja. Če sistem ni izoliran, pa se
njegova entropija seveda lahko zmanjša, vendar se pri tem
poveča entropija okolice. Skupna entropija sistema in okolice se
poveča. To je entropijski zakon (CLAUSIUS).

Z vpeljano entropijo se energijski zakon zapiše v obliki
dU = TdS − pdV oziroma v kateri izmed ekvivalentnih oblik: za
entalpijo dH = TdS + Vdp, prosto energijo dF = −SdT − pdV ter
prosto entalpijo dG = −SdT + Vdp. To so diferencialne enačbe za
termodinamične potenciale. S parcialnimi odvodi potencialov po
pripadajočih spremenljivkah so določene preostale
termodinamične spremenljivke. Za sistem v ravnovesju imajo
potenciali minimalne vrednosti. Zapisane enačbe veljajo – s
potrebnimi dopolnitvami – tudi za večfazne, večkomponentne in
celo za kemično reagirajoče sisteme (GIBBS). Omogočajo nam, da
izračunamo, kolikšen delovni izplen prinašajo razne krožne
spremembe in kakšne so ravnotežne konstante raznih snovnih
pretvorb. Tako med drugim ugotovimo, da znaša maksimalni
izkoristek toplotnega stroja η = ΔT/T in da so ravnovesja v
dvofaznem sistemu (para in voda, voda in led) opisana z enačbo
dp/dT = H/ΔV.

Do sedaj smo statistično opisovali množico enakih, vendar
preprostih sistemov – atomov, molekul, elektronov in fotonov.
Sedaj opis razširimo na množico enakih, vendar poljubnih
sistemov. Tak sistem je, na primer, zaprta posoda z vodo in paro.
Sistem, sestavljen iz N delcev, opišemo v principu s 3N
posplošenimi koordinatami qi in s 3N posplošenimi impulzi pi ter
ga predstavimo kot točko v 6N faznem prostoru. Nato si
zamislimo neskončno mnogo takih sistemov (ali obravnavani
sistem v neskončno mnogo trenutkih) v toplotni kopeli in
raziščemo, kako so njihove "točke" porazdeljene po faznem
prostoru. Ugotovimo, da je porazdelitev prav taka, kot pri
preprostih sistemih, namreč kanonična (GIBBS):
Pi = (1/Z) exp (−Ei/kT). Pri tem je Pi delež sistemov, ki so v
energijskem stanju Ei, Z pa je normalizacijska konstanta –
particijska funkcija. Termodinamični potenciali se izražajo preko
njenih odvodov. Tudi za entropijo najdemo statistično razlago
(BOLTZMANN). Sorazmerna je logaritmu števila mikrostanj Ω, ki
sestavljajo aktualno energijsko stanje sistema: S = k ln Ω. V
termodinamičnem ravnovesju je ogromna večina sistemov v
tistem makrostanju, ki je sestavljeno iz največ mikrostanj, zato je
tedaj entropija največja.
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Četverna lega

Četverni vektorji

Četverna
elektrodinamika

Štirirazsežni svet
Ugotovili smo, da niti časovni presledki niti dolžine v svetu niso
enake, če jih merimo v različnih inercialnih sistemih. Pri sedlanju
iz enega sistema v drugega se časi in lege med seboj prepletajo:
transformacija lege vsebuje čas in transformacija časa vsebuje
lego. Čas in lega igrata formalno enakopravno vlogo. Zato na svet
pogledamo (MINKOWSKI) kot na štirirazsežni prostor, katerega
točke – dogodke – predstavimo s štirimi koordinatami: tremi
prostorskimi in eno časovno (časom, pomnoženim s svetlobno
hitrostjo). Takšno četverico poimenujemo četverno lego:
xi = (ct, x, y, z). Njena kvadratna norma xi · xi = (ct)2 − x2 − y2 − z2 je
invarianta, to je, v vsakem inercialnem sistemu je enaka.
Transformacijo četverne lege iz enega v drug inercialni sistem
opišemo z ustrezno transformacijsko matriko: xi' = Lij xj. Podvojeni
indeks, tukaj in zanaprej, pomeni seštevanje po njem.

Gibanje delca predstavimo s krivuljo – življenjsko črto – v
prostoru-času, pri čemer kot parameter služi čas, ki ga kaže ura
na delcu, to je njegov lastni čas τ. Kratek premik vzdolž
življenjske črte se zapiše kot ds2 = (cdτ)2 = (cdt)2 − dx2 − dy2 − dz2.
Odvod četverne lege po lastnem času, ki je skalar, poimenujemo
četverno hitrost. Ko jo pomnožimo z maso delca, pa dobimo
četverno gibalno količino. Njena ohranitev vsebuje združeni
zakon o ohranitvi gibalne količine in energije. Odvod četverne
gibalne količine po lastnem času pa je četverna sila. V njej se
skriva relativistično popravljeni trirazsežni gibalni zakon. Vsi
našteti četverci se transformirajo enako – z isto matriko – kot
četverna lega. Njihove norme so invariantne.

Za štirirazsežni svet priredimo še enačbe za električni naboj, tok
in elektromagnetno polje. Vpeljemo četverni gradientni operator,
četverno gostoto toka (ki vsebuje gostoto naboja in gostoto toka)
ter četverni potencial (ki vsebuje skalarni in vektorski potencial).
Stara kontinuitetna enačba za naboj se potem zapiše kot četverna
divergenca četverne gostote toka. Iz gostote toka gibalne količine
in iz gostote energijskega toka sestavimo četverni napetostni
tenzor. Kontinuitetni enačbi za gibalno količino in energijo se
potem zapišeta v eni sapi kot četverni gradient četvernega
napetostnega tenzorja. Končno še iz komponent električne in
magnetne poljske jakosti sestavimo četverno poljsko jakost.
Osnovne štiri enačbe polja se potem zapišejo kot dve enačbi za
četverno polje. Vsi vpeljani četverci se transformirajo kot
četverna lega, četverni tenzorji pa kot tenzorski produkt dveh
četvercev. V vseh inercialnih sistemih imajo vse "četverne"
enačbe enako obliko.
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Ukrivljeni prostor-čas

Enačbe gibanja

Enačbe polja

Rešitve enačb

Splošna relativnost
V težnem polju, kakor smo ga opisali s težnim zakonom oziroma s
težno potencialno enačbo, se vplivi širijo neskončno hitro. To je v
nasprotju s teorijo relativnosti. Teorijo gravitacije je zato
potrebno ustrezno nadgraditi (EINSTEIN).

Osnovna zamisel je naslednja: gravitacijsko polje ni nič drugega
kot deformacija inercialnega, to je "ravnega" prostora-časa.
Kakšna je deformacija, določa prisotna snov. Delec se med dvema
točkama giblje po najkrajši poti, geodetki. Dobesedno prosto
pada. Z gibanjem delcev se pa seveda spremeni dotedanja
porazdelitev snovi ter s tem dotedanja deformacija prostora-časa.
Prostor ni nič več nekaj ločenega od snovi, ampak postane ena od
"snovnih" sestavin sveta. Nakaj, kar se upogiba, krivi in valuje.
Nismo ujeti v nevidno togo ogrodje: potopljeni smo v nekakšnem
orjaškem gibkem mehkužcu. Pri roki je nazorna predstava.
Prožno opno napnemo na okvir in nanjo tu in tam položimo
različno težke kamne. Opna se pod njimi usloči. Po opni
zaženemo kroglico in ta se giblje tako, kakor ji velevajo krivine.

Štirirazsežni prostor-čas opišemo s poljubnimi krivočrtnimi
koordinatami xi. Kratek premik v tem prostoru se zapiše kot
ds2 = gij dxi dxj. To je metrična enačba ali krajše metrika.
Koeficienti gij sestavljajo metrični tenzor in opisujejo, kako je
prostor deformiran. Če te koeficiente poznamo, so geodetke
popolnoma določene z geodetskimi enačbami d2xk/dτ2 −
Γk

ij · dxi/dτ · dxj/dτ = 0. V izrazih Γk
ij so skriti metrični koeficienti in

njihovi odvodi. Masni delci, kot rečeno, sledijo geodetkam.
Geodetske enačbe so torej enačbe gibanja, v katerih koeficienti
Γk

ij prevzamejo vlogo gravitacijske sile. Tudi fotoni sledijo
geodetkam, le da te ne morejo biti opisane parametrično z
lastnim časom, saj je zanje enak nič.

Lokalno deformacijo prostora-časa opisuje krivinski tenzor Rij. To
je posplošitev krivinskega radija pri dvorazsežnih ploskvah.
Komponente krivinskega tenzorja so na zamotan način izražene z
lokalnimi diferenciali geodetk. Vsota tega tenzorja in (s skalarno
ukrivljenostjo pomnoženega) metričnega tenzorja je sorazmerna z
napetostnim tenzorjem, katerega komponente vsebujejo
porazdelitev in pretoke mase, energije, gibalne količine in
pritiska po prostoru-času: Rij − 1/2 R gij = κ/8πc4 · Tij.
Sorazmernostni koeficient vsebuje znano gravitacijsko konstanto.
Zapisana tenzorska enačba – ki je sestavljena iz desetih različnih
enačb, ker so nastopajoči tenzorji simetrični – prevzame vlogo
stare potencialne enačbe. Slednja je tudi mejni primer, ko je
gibanje počasno in ukrivljenost majhna, to je, ko je polje šibko.

Reševanje relativistične gravitacijske enačbe pomeni, da za dani
napetostni tenzor iščemo ustrezajoči metrični tenzor, torej
metrične koeficiente. Če je napetostni tenzor enak nič, dobimo
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Princip ekvivalence

Napovedi in preizkusi

Vidni daljnogledi

ravno metriko. Izračun nam uspe tudi v dveh pomembnih
primerih: za središče neskončno velike homogene krogle
(FRIDMAN) in za okolico stacionarne krogle (SCHWARZSCHILD).
Tako dobimo "vesoljsko" metriko in "zvezdno" metriko. Iz prve
sledi opis raztezajočega se vesolja; ujema se s tistim, ki ga že
poznamo. Iz druge pa izpeljemo, kolikšen je radij obzorja okrog
črne luknje. Svetloba, ujeta znotraj tega obzorja, ne more ubežati
preko njega. Črne luknje so nevidne.

V vsaki točki ukrivljenega prostora-časa si lahko mislimo prosto
padajoč predmet, recimo zaprto kabino. Na kabino vezan
koordinatni sistem je lokalno inercialen: vsi pojavi v njem so prav
taki, kakor bi bili v enakomerno se gibajočem sistemu – z izjemo
gravitacije, ki čudežno izgine. Zato vse enačbe, ki veljajo v
"zaresnih" inercialnih sistemih, veljajo v enaki obliki tudi v
lokalnih inercialnih sistemih.

Ali je teorija pravilna ali ne, preverimo preko njenih napovedi.
Teorija med drugim napove naslednje. — Merkur, kot Soncu
najbližji planet, se giblje po elipsi, katere perihelij se počasi
vrti. — Svetloba se pri letu mimo Sonca rahlo odkloni. — Ure
(seveda ne tiste na težno nihalo) tečejo v težnem polju
počasneje. — Svetloba, izsevana iz atomov v težnem polju, je
rdeče premaknjena. — Obstajajo težni valovi. Vse to res opazimo
in kvantitativno potrdimo. Vendar pa so v teh in drugih
"normalnih" okoliščinah posledice teorije tako majhne, da jih
večinoma ni treba upoštevati.

Raziskave vesolja
Razvoj polprevodniških naprav prinese tudi nov svetlobni senzor:
kvadratno "fotomatriko" iz drobcenih fotodiod. V hipu zamenja
dosedanjo fotografsko ploščo v fotoaparatih in astronomskih
daljnogledih. Za krmiljenje, zajem in obdelavo izmerkov seveda
poskrbijo računalniki. Posebni motorji prilagajajo obliko
sestavljenih zrcal tako, da zmanjšujejo motnje iz ozračja in
poskrbijo za ostre slike.

S tako izboljšanimi daljnogledi – s premeri do 10 metrov – uspemo
izmeriti paralakse zvezd do razdalje 300 svetlobnih let in
katalogizirati preko 100 000 zvezd. S tem močno zgostimo
dosedanje zvezdne diagrame. Z dolgim časom ekspozicije pa
sežemo do galaksij na oddaljenosti 10 · 109 svetlobnih let, to je,
skoraj na rob (ali na začetek) vidnega vesolja. V vidnem vesolju
naštejemo 100 milijard galaksij. Samo v naši Galaksiji naštejemo
kakšnih 100 milijard zvezd. Okrog mnogih bližnjih zvezd zaznamo
celo planete. Okrog nekaterih jat ali kopic galaksij pa opazimo
tudi gravitacijski odklon svetlobe iz zadaj ležečih izvorov: kažejo
se kot večkratne slike izvora.
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Radijski teleskopi

Temna masa

Temna energija

Sateliti in sonde

Poleg vidnih daljnogledov zgradimo tudi radijske teleskope.
Največji ima premer antene 300 metrov in leži v mrtvem
vulkanskem kraterju. "Usmerjamo" ga s premikanjem fokalnega
sprejemnika. Z radijskimi teleskopi odkrijemo pulzarje, ki jih
prepoznamo kot hitro se vrteče nevtronske zvezde, in kvazarje, ki
so verjetno ogromne črne luknje v središču mladih (oddaljenih)
galaksij, požirajoče okolišnje zvezde. Radijski teleskop uporabimo
tudi kot radar in z njim zelo natančno izmerimo oddaljenosti do
Lune in do najbližjih planetov.

Pri raziskovanju pa nas čakajo tudi presenečenja. Zvezde na robu
galaksij krožijo hitreje, kakor bi smele, če bi na njih delovalo
skupno gravitacijsko polje galaksije, ocenjeno iz števila in mas
vsebujočih zvezd. Zdi se, kakor da je vsaka galaksija ujeta v
kroglo iz nekakšne temne snovi, ki ne seva (OSTRIKER). Te snovi je
nekajkrat več kot navadne snovi. Kaj naj bi bila, ne vemo.

Oddaljene supernove so manj svetle, kakor bi morale biti pri
oddaljenosti, izračunani iz rdečega zamika njihove svetlobe. To
pomeni, da se vesolje danes širi hitreje kot nekoč. Kaže, da v
vesolju obstaja nekakšna temna energija, enakomerno
porazdeljena, ki vesolje pospešeno napihuje. Kaj naj bi se skrivalo
za vsem tem, ne vemo. Morda so celo meritve napačne. K celotni
masi vesolja naj bi temna energija prispevala 70 %, temna snov
25 %, vidna snov pa zgolj okrog 5 %. Vesolje je kot morje ponoči,
ko vidimo le bele pene na valovih.

Vesolja pa ne opazujemo zgolj z Zemlje, ampak vanj tudi
vstopimo. — V tirnico okoli Zemlje izstrelimo umetne satelite in
nanje postavimo daljnoglede. Tako so povsem izven območja
ozračnih motenj, zaznavajo pa lahko tudi žarke gama, ki jih
ozračje sicer močno absorbira. — Vidne in infrardeče kamere na
satelitih usmerimo proti Zemlji, da sporočajo lego in gibanje
vremenskih sistemov v njenem ozračju. — Mreža posebnih
satelitov z atomskimi urami na krovu pošilja na Zemljo časovne
signale, sprejemniki na Zemlji pa iz njih izračunavajo svojo
zemljepisno lego na 1″ (30 m) natančno. Pri tem morajo
upoštevati vpliv gibanja in težnega polja na tek ur. Kopenska,
morska in zračna navigacija postanejo otročje lahke. — Na Mesec
pošljemo rakete z ljudmi in jih tudi varno vrnemo. — Sonde na
daljinsko krmiljenje in z množico raznih merilnikov pa pošljemo v
orbite okrog Venere, Marsa in drugih planetov. Na Veneri in
Marsu tudi pristanejo in raziskujejo okolico, izmerke in slike pa
pošiljajo na Zemljo. Za izračunavanje poti v težnih poljih ni treba
upoštevati relativnosti. — Energijo za delovanje satelitov in sond
zagotavljajo radioaktivni viri in polprevodniške sončne celice.
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Vektorji stanja

Kvantni prostor

Posplošene baze

Kvantni prostor stanj
Stanje kvantnega sistema, recimo delca v potencialni jami, smo
opisali s kompleksno valovno funkcijo Ψ(x). Zaradi preglednosti
privzamemo, da so koordinate x celoštevilčne. Na valovno
funkcijo Ψ(i) lahko potem pogledamo kot na zaporedje amplitud
{Ψ(1), Ψ(2) …} = {c1, c2 …}. Zaporedje {ci} je "vektor" s končno
ali neskončno mnogo kompleksnimi komponentami. Po zgledu
navadnih vektorjev v tridimenzionalnem skalarnem polju
vpeljemo kvantne vektorje v mnogodimenzionalnem
kompleksnem polju (DIRAC): |S⟩ = ∑ ci|i⟩. Bazni vektor |i⟩ je
stolpec, ki ima i-to komponento enako 1, vse druge pa 0. Njegovo
transponirano (in konjugirano) obliko – vrstico – označimo kot
⟨i| = |i⟩†. Produkt baznega "bra" vektorja z njegovim "ket"
vektorjem je enak 1, z drugimi ket vektorji pa 0. Zato velja
⟨i|S⟩ = ci = Ψ(i).

Stanje kvantnega sistema si torej lahko nazorno predstavljamo
kot vektor |S⟩ v namišljenem kvantnem prostoru. Ta prostor je
napet na končno ali neskončno mnogo baznih vektorjev |i⟩. Vsak
ima dolžino 1. Vsi so pravokotni drug na drugega. Projekcije |S⟩
na bazne vektorje so kompleksna števila ci – verjetnostne
amplitude za različna bazna stanja, v katerih moremo sistem najti
ob merjenju. Število vektorjevih komponent je enako številu
baznih stanj. Prehod iz diskretnih na zvezni nabor baznih
vektorjev je formalno urejen z vpeljavo delta funkcij in njihovih
integralov. V zvezni limiti velja Ψ(x) = ⟨x|S⟩. Posplošitev na
večdelčne sisteme je neposredna.

Namesto s funkcijo Ψ(x) lahko opišemo sistem – v istem stanju – s
funkcijo Φ(G). Velja vse povedano, le bazni vektorji so sedaj
drugi: namesto "lokacijskih" so "gibalni". Zato je ugodno
razmišljati o vektorju stanja neodvisno od tega, na katere bazne
vektorje je projiciran. Postuliramo naslednje (DIRAC). — Stanje
sistema je popolnoma opisano z vektorjem stanja |S⟩ v kvantnem
prostoru. — Vsaka opazljivka A, recimo lega delca, ima v tem
kvantnem prostoru razpet svoj nabor baznih vektorjev |a⟩, na
katerega je aktualni vektor stanja projiciran: |S⟩ = ∑ ca|a⟩. Ko
merimo A, najdemo sistem v enem izmed baznih stanj |a⟩ in
izmerimo mu ustrezajočo vrednost a. — Bazne vektorje |a⟩
opazljivke A in njihove pripadajoče vrednosti a določa enačba
A|a⟩ = a|a⟩, pri čemer je A za to spremenljivko merodajen
operator. — Povprečna vrednost spremenljivke, izmerjena v
mnogo meritvah, znaša ⟨A⟩ = ∑ a|ca|2. — Vektor stanja se v času
spreminja po gibalnem zakonu iħd/dt|S⟩ = H|S⟩, pri čemer je H
energijski operator. Pravzaprav so to stare, že znane enačbe,
zapisane na "nepopoln" način. Če jih množimo s konkretnimi
baznimi vektorji, recimo z ⟨x|, dobimo "popolne" enačbe v
ustreznih koordinatah.
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Mnogotirna pot

Kvantna polja

Za gibanje klasičnega delca velja princip najmanjše akcije.
Domnevamo, da velja nekaj podobnega tudi za gibanje kvantnega
delca. Da se pojavi interferenca, pa morajo različne poti med
seboj nekako sodelovati. Tako postuliramo (FEYNMAN): ko se delec
giblje iz stanja |x1,t1⟩ v stanje |x2,t2⟩, ne ubere enega določenega
tira, ampak "sočasno" ubere vse mogoče tire x(t), ki povezujejo
obe točki. Prispevek posamičnega tira je eksponencial, katerega
(imaginarna) faza je klasična akcija (normirana na kvantno
konstanto) za dotični tir. Celotni prispevek od vseh tirov je
amplituda verjetnosti za prehod: ⟨x2,t2|x1,t1⟩ = ∑ exp (iS/ħ).
Nazorno to pomeni, da je delec opremljen s puščico enotne
dolžine, ki se vzdolž tira vrti. V končni točki seštejemo puščice
vseh tirov v skupno puščico. Njen kvadrat je verjetnost, da se tam
delec pojavi. Prehod iz diskretnih na zvezni nabor tirov je
formalno urejen z vpeljavo mnogotirnih integralov. Dejansko
računanje je obsežno in zamotano.

Opisana formulacija kvantnega gibanja je nazorno zelo
zadovoljujoča. Ker ne vemo, po kateri poti se delec giblje, pač
seštejemo vse poti. Delec med gibanjem takorekoč preizkuša
oziroma "voha" vse možne poti. Če je zaprt v jami, delec
raziskuje, kaj je zunaj nje in se odloči, ali bo tuneliral ali ne. Če
čepi na vrhu potencialnega hriba, pa ugotovi, da je v okolici
potencialna energija nižja, in se odloči, da pade.

Kar smo ugotovili za gibanje iz ene točke v drugo, velja tudi za
gibanje iz množice začetnih točk v množico končnih točk. To
pomeni, da s tem pravzaprav računamo časovni razvoj valovne
funkcije. Tako definirana valovna funkcija in njen razvoj
zadoščata kvantni gibalni enačbi. Posplošitev na več delcev je
neposredna. Mnogotirni opis kvantnih sistemov je torej
enakovreden valovnemu opisu.

Kvantna elektrodinamika
Kvantna mehanika opisuje gibanje lahkih počasnih delcev, ki ne
izginjajo in ne nastajajo in med katerimi delujejo konservativne
sile, podane s potencialom. Ko jo uporabimo za opis atomov,
predpostavljamo, da se elektroni v njih gibljejo nerelativistično,
kar ni povsem res. Poleg tega je kvantizirano le gibanje
elektronov, elektromagnetno polje sil med njimi pa je opisano
klasično, z električnim potencialom. To ne zadostuje, da bi opisali
vsa dogajanja v atomih, zlasti ne tista, pri katerih se rojevajo in
umirajo fotoni. Izsevanje in absorpcija svetlobe v atomih (in
prostih elektronih) sta pač področji, ki sta kvantni mehaniki tuja,
in smo jih v njenem okviru tudi obravnavali kot tujka.

Iz povedanega izhaja, da bi bilo zaželjeno kvantno mehaniko
nekako razširiti, da bo zajela tako relativistične elektrone kot
fotone. To nam uspe: zgradimo novo teorijo – kvantno
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Virtualni fotoni

"Nemogoči" poskusi

Pospeševalniki delcev

Množica novih delcev

elektrodinamiko. V njej nastopajo tako delci snovi – elektroni in
pozitroni (antielektroni) – kot tudi delci elektromagnetnega
polja – fotoni. Oboji so opisani s kvantnimi polji, ki medsebojno
vplivajo druga na drugo. Elektroni in pozitroni torej niso več
opisani kot posamični delci, pač pa so predstavljeni kot vzbujena
stanja v kvantiziranem elektronsko-pozitronskem polju. Osnovna
enačba kvantne elektrodinamike ima podobno obliko kot osnovna
enačba kvantne mehanike; namesto "stare" valovne funkcije, ki je
odvisna od koordinat elektronov, vsebuje "novo" valovno funkcijo,
ki je odvisna od zasedbenih števil delčnih stanj. Energijski
operator v enačbi pa je temu ustrezno prilagojen.

V kvantni elektrodinamiki se elektromagnetna sila med električno
nabitimi snovnimi delci kaže kot izmenjava virtualnih fotonov –
tako kratkoživih fotonov, da jih ne moremo zaznati. Nabiti delci
nenehno izsevajo in absorbirajo virtualne fotone in tako vplivajo
drug na drugega. Tipični pojav, ki ga postavljena teorija opisuje,
je sipanje: elektrona na elektronu, elektrona na pozitronu, fotona
na elektronu in podobno. Dana je, na primer, začetna
konfiguracija dveh elektronov; kakšna je verjetnost za katerokoli
končno konfiguracijo? Najlažje jo izračunamo po prilagojeni
metodi mnogotirnih poti iz začetne v vsako končno konfiguracijo.
Pri tem moramo vključiti najrazličenjša izsevanja in absorpcije
virtualnih fotonov. Brez računalnika ne gre. Podobno računamo
tudi gibanje hitrih elektronov v električnih poljih atomov in
sorodne probleme. Računi se povsem ujemajo z eksperimenti.

Osnovni delci in polja
Izboljšani detektorji delcev, podprti z računalniki, omogočijo
izvedbo takih poskusov, ki smo jih doslej imeli zgolj za miselne ali
celo za nemogoče. Tako uspe, na primer, interferenčni poskus s
posamičnimi elektroni na dveh režah.

Obstreljevanje atomskih jeder z "naravnimi" izstrelki – predvsem
z "radioaktivnimi" delci alfa in nevtroni – se hitro pokaže za
nezadostno. Nimamo dovolj nadzora nad energijami teh delcev in
želimo si tudi večjih energij. Zato zgradimo pospeševalnike za
"umetne" izstrelke, zlasti elektrone in protone (LAWRENCE).
Pospešujemo jih z električnimi polji – enkrat vzdolž ravnih stez ali
večkrat vzdolž krožnih stez, pri čemer za ukrivljanje poskrbijo
magnetna polja. Uspe nam zgraditi krožno stezo z obsegom
30 km in doseči energijo protonov preko 1 TeV, torej za faktor 106

večjo od radioaktivnih delcev alfa! Seveda za zajem in obdelavo
izmerkov spet poskrbijo računalniki.

Izsledki poskusov so osupljivi. Poleg protonov, nevtronov,
elektronov, pozitronov, nevtrinov in fotonov – do sedaj poznanih
delcev – odkrijemo še nekaj sto drugih, lahkih in težkih. Večina je
zelo kratkoživih. Vse te delce uspemo (GELL-MANN) sistemizirati
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kot sestavljene iz dobrih dveh ducatov osnovnih delcev – delcev
snovi in delcev interakcijskih polj med njimi. Zgledujemo se po
kvantni elektrodinamiki. Snovni delci izsevajo ali absorbirajo
delce polja in tako vplivajo drug na drugega.

Osnovni delci snovi imajo polcel spin in spadajo v dve družini:
leptone in kvarke. Med leptone štejemo: elektron, mion in tauon
ter elektronski, mionski in tauonski nevtrino. Med kvarke pa
štejemo delce u(p), d(own), s(trange), c(charm), b(ottom) in t(op).
K vsakemu delcu obstaja še njegov antidelec, ki ima nekatere
nasprotne lastnosti.

Osnovni delci polj imajo cel spin. Močno polje, ki deluje med
kvarki, sestavljajo gluoni, in sicer osem njih. Šibko polje, ki deluje
med vsemi delci, prenašajo šibki bozoni, troje njih. Obe polji
imata kratek doseg. Elektromagnetno polje med delci z
električnim nabojem pa prenašajo, kot že vemo, fotoni.

Kvark ima električni naboj ±1/3 ali ±2/3 ter barvni naboj, ki je
lahko rdeč, zelen ali moder. Anti-kvarki imajo barvni naboj anti-
rdeč, anti-zelen ali anti-moder. Prosti kvarki ne obstajajo.
Obstajajo le vezani; med drugim tvorijo protone in nevtrone.
Proton je sestavljen iz treh kvarkov tako, da je njegov električni
naboj enak 1 in barvni naboj bel (rdeč + zelen + moder).
Podobno velja za nevtron.

Kvarki se vežejo v protone in nevtrone preko gluonov. Vsak gluon
izmed osmih nosi po en barvni naboj in anti-naboj, recimo moder
in anti-zelen. Preostanek močne sile navzven se kaže kot jedrska
sila, ki veže protone in nevtrone med seboj. Močna sila deluje
celo med gluoni samimi, saj izsevajo in absorbirajo druge gluone.

Tako imamo zgrajene kvantne teorije polj za elektromagnetno,
močno in šibko silo. Vse te teorije so v skladu s posebno
relativnostjo. Deloma je izdelana še poenotena teorija vseh treh
sil. Ta teorija pravi, da so sile odvisne od temperature (energije)
delcev. Močna sila, na primer, z energijo pojema. Pri
temperaturah, kakršne so vladale na samem začetku velikega
poka, naj bi postale vse tri sile med seboj nerazločljive. Ko se je
vesolje širilo in ohlajalo, pa so se tudi sile začele razlikovati.
Šibka in elektromagnetna sila sta že uspešno združeni. Močna
sila na to še čaka.

Kvantni čas-prostor
Kaj pa sila, ki jo je človeštvo spoznalo najprej: gravitacija oziroma
ukrivljen prostor-čas, kakor smo jo že prepoznali? Ali je tudi ona
kvantizirana v hipotetične gravitone?

V primerjavi z ostalimi tremi osnovnimi silami je gravitacija tako
šibka, da ne igra nobene vloge v atomih in jedrih. Pomembna
postane le v ekstremnih področjih: v notranjosti črnih lukenj in v
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zgodnjem, gostem vesolju. S tem se pojavi tudi delovna potreba
po njeni kvantizaciji. Še močnejše gonilo za to pa je stremljenje
po poenotenem opisu vseh štirih sil, to je k izdelavi "velike teorije
vsega". Ta teorija naj bi kvantizirala ukrivljeni prostor-čas in
mase delcev ter zaobjela vse štiri znane sile in morda še kakšno
neznano.

Pot do velike teorije vsega ni znana. Nekateri raziskovalci
izhajajo iz obstoječih kvantnih teorij polj in jih poskušajo
prilagoditi, da bi vključili še gravitacijo. Težava pri tem je, da
izhodiščne teorije polj temeljijo na ozadju ravnega prostora-časa.
Drugi pa raje izhajajo iz splošne relativnosti in poskušajo
kvantizirati njene enačbe, nato pa vključiti še preostale sile, če bo
šlo. Zdi se, da je ta pristop boljši. Kakšnih posebnih uspehov do
sedaj pa še ni.

Zadnja meja
Ali bo kdaj izdelana velika teorija vsega, ne vemo. Lepo bi jo že
bilo imeti. Vendar na poti do nje stojijo visoke, morda
nepremostljive ovire: matematične in eksperimentalne. Do sedaj
je bilo človeštvo pri napredovanju še vedno uspešno. Upajmo, da
bo tako tudi tokrat.

Danes se zdi, da so trenutne ovire napredka matematične, in te
verjetno niso nepremostljive. V okviru svojih omejitev bo človeški
razum že našel način, kako jih odpraviti. Še zmeraj je bilo tako. S
tem bi uspešno in poenoteno, vsaj v principu, opisali vse, kar je v
naravi opaženega. Mnogo bolj resne so pričakovane
eksperimentalne ovire. Sodobne meritve postajajo tako težke in
merilne naprave tako drage, da se zdi, kot da že trkamo ob
eksperimentalno mejo. Tudi če bi končno teorijo le uspeli izdelati,
se kaj lahko zgodi, da njenih napovedi (recimo gravitonov) ne bi
mogli izmeriti. Prav tako nikoli ne bi mogli biti gotovi, da izven
končne teorije ni ničesar več, kar bi ji lahko oporekalo (tudi če bi
teorija sama tako trdila). Morda je takšna možnost še najbolj
verjetna.

Kakor vse kaže, bodo v prihodnje čedalje večjo vlogo igrali
računalniški izračuni in simulacije izsekov sveta. Morda pri tem
ne bo treba več reševati poznanih enačb gibanja, ampak
preigravati nekaj preprostih pravil, kakor pri šahu, ki bi se jim
pokoravali sestavni delci sveta pri medsebojni igri gibanja.
Računalniki pa bi morali biti dovolj hitri, da bi po teh pravilih
lahko uspešno računali. Konec koncev lahko tudi na vesolje
pogledamo kot na orjaški računalnik, ki s svojimi sestavnimi deli
"računa" in "kaže" rezultate, ne da bi reševal kakršnekoli enačbe.
Do takih pravil in do takih računalnikov pa še ni vidne, kaj šele
speljane poti. □
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enačba dušenega nihanja 34.10
enačba hidrostatike 10.2
enačba nihanja 19.4
enačba preslikave 12.5
enačba tokovnice 20.8
enačba vsiljenega dušenega nihanja

34.10
enačba vsiljenega nihanja 34.10
enačba za parni tlak 22.11
enačbe elektrodinamike v snovi 38.9
enačbe elektrostatike v snovi 37.5
enačbe magnetostatike v snovi 37.10
enačbe, pomen 6.5, 6.6
enakonočje 3.4
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energija nihanja 19.8
energija valovanja 21.14
energijski zakon 22.6, 22.7
enobarvna svetloba 12.4

farad 25.2
fermionska porazdelitev 43.4
fermionski plin 43.4
feromagnetna snov 37.10
fokusiranje svetlobe 4.7
fotoaparat 27.11
fotocelica 40.2
fotodioda 40.2
fotoelektrični pojav 40.2
fotografska plošča 27.11
fotoni 11.1, 12.1

energija 41.1
gibalna količina 35.14, 41.1
masa 41.1
spin 42.13
valovna dolžina 41.1

fotonski plin 43.10
fotopomnoževalka 40.2
fotoprevodnost, glej fotoupor
fotoupor 27.6
frekvenčni premik svetlobe 35.8
frekvenčni premik zvoka 21.12
frekvenca svetlobe 27.3
frekvenca valovanja 21.2
frekvenca zvoka 21.9
funkcije 14.1–2, zapis z

enačbo 14.1, 14.8, 33.15
grafom 14.1, 14.7
tabelo 14.1, 14.8

funkcije več spremenljivk 30.3–7

Galaksija 12.10
oblika 45.7
število zvezd 45.7
velikost 45.7

galaksije
beg 45.8
medsebojna razdalja 45.7
oblika 45.7
oddaljenost 45.7
širjenje prostora 45.8
velikost 45.7

galvanometer 24.8
galvanski člen 24.6
geocentrični model sveta 3.6
geometrijska vrsta 15.2
gibalna količina 34.3, 35.10

relativistična transformacija 35.13
gibalni zakon 19.3, 34.1
gibanje 1.7
gibanje delca v potencialni jami 42.9
gibanje tekočin 20.6
gibanje točkastega telesa 34.1

gibanje togega telesa 34.6
kotaljenje 34.8
rotacija 34.6, 34.7
težno nihanje 34.9
torzijsko nihanje 34.9
translacija 34.6
vrtavka 34.8

gladinski hodci 42.2
glasbeni intervali 21.11
glasilke 21.10
glina 4.5
gnomon 3.3
gorenje 4.3, 11.2
gorišče 12.2
gradbeni obok 20.3
gradient polja 32.2
gravitacijska energija 9.8, 19.8, 19.11,

34.12
gostota 20.8

gravitacijska konstanta 19.9, 34.11
gravitacijska poljska jakost 19.10,

34.12
gravitacijska sila 19.9
gravitacijski potencial 34.12
gravitacijski zakon 19.9
gravitacijsko polje 19.10, 34.12

krogle 19.10, 34.12
grezilo 3.3
guma 4.7

harmonične vrste 28.6, 28.8
harmonični integrali 28.9
hektar 8.9
heliocentrični model sveta 8.13
henry 25.7
hertz 21.2
higrometer na las 22.12
hitrost 1.7, 18.1, 18.3, 18.5, 34.1, 35.7

obodna 18.8, 34.1
pospešek 18.3, 18.5, 34.1
radialni 18.8, 34.1
tangentni 34.1

hitrost razpadanja 44.11
hitrost svetlobe 27.1, 35.2, 38.2
hitrost valovanja 21.1
hitrost zvoka 21.8, 21.9
hkratnost 1.6, 35.4
hladilni stroj 22.15
horizontalna ravnina 1.5
indukcija 25.5

kinematična 25.5
lastna 25.11
dinamična 25.5

indukcijski zakon 25.5
induktivni upor 25.9
induktivnost (tuljave) 25.7
inercialni sistem 19.6, 35.3
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influenca naboja 24.2
infrardeča svetloba 27.8
infrazvok 21.10
integral funkcije 17.1

elementarni integrali 17.2
pravila integriranja 17.3

interferenca svetlobe 27.3
interferometer 35.2
invarianca svetlobne hitrosti 35.3
ioni 24.6
ioni v elektrolitih 24.7, 39.8
ionizacijska celica 41.3
ionizacijska cev 44.2
ionizacijska energija atoma 41.9, 44.2
ionizacijski števec 44.2
ionosfera 40.8
iskrilna tuljava 26.8
izbitje notranjega elektrona 41.11
izhlapevanje 4.2, 36.10
izključitveno načelo 41.13
izotopi 39.6
izparevanje, glej izhlapevanje
izparilna toplota 22.10

specifična 22.10
izrek o gibalni količini 34.3
izrek o gibanju težišča 34.2
izrek o istoležnih stranicah 8.2
izrek o kinetični energiji 19.8, 34.1,

34.5
izrek o mehanski energiji 19.8
izrek o vrtilni količini 34.4
izrek o vzporednih oseh 34.7
izsev 27.7, 27.13

gostota 27.7
iztekanje iz posode 20.8

jedrski reaktor 44.13
jeklo 4.6
joule 19.2

kalij 11.8, 23.4
kalorimeter, ledni 22.10
kalorimeter, vodni 22.7
kamnine 1.2
kanalski žarki 39.6
kanonična porazdelitev 36.6, 43.2
kapaciteta (kondenzatorja) 25.2
kapacitivni upor 25.9
kapilarni dvig / spust 20.10
katodna cev 39.2
katodni žarki 39.2
kavčuk 4.7
kelvin 22.2
kemijske formule

kvalitativne 11.8
kvantitativne 23.3–4, 23.11

keramika 4.5
kilogram 19.2

kilokalorija 22.6
kilomol 23.7, 23.8, 36.3
kilomolska masa 23.7
kilopond 9.2
kilopondmeter 9.8
kinetična energija 19.8, 34.5, 35.12

gostota 20.8
rotacijska 34.5, 34.7
težišča 34.5
translacijska 34.5, 36.2

kinetična teorija toplote 36.2
kinetični model plina 36.1
kisik 11.2, 11.4, 24.7
kisline, lugi in soli 11.5
kitara 21.11
klanec 9.5
klor 11.5
koks 4.4
kombinacije 33.1
kompleksna amplitudna enačba 42.7
kompleksna difuzijska enačba 42.6
kompleksne funkcije 28.5
koncentracija 23.9
kondenzacija 4.2
kondenzator 24.3

influenčni 25.3
ploščati 25.1

konjska moč 9.8
konservativno polje 32.5
konvekcija toplote 22.16

v atmosferi 22.16
v dimniku 22.16

konvektivni oblaki 22.16
kot generatorji toka 25.3

koordinate, cilindrične 29.1, 32.7
koordinate, kartezične 18.8, 29.1, 31.1
koordinate, polarne 18.8
koordinate, sferične 29.1, 32.8
koordinatni sistem 18.5, 19.6
korelacijski koeficient 33.10
koreni 6.4, 15.3
kositer 4.6
kot 7.2, 8.4
kotna hitrost 18.8, 34.1
kotna minuta 7.2
kotna sekunda 12.9
kotna stopinja 7.2
kotni pospešek 34.1
kotomer 7.2
kovarianca 33.10
kovine 4.6
kozmični žarki 44.15
krhkost 20.3
kristali 4.6

mrežna razdalja 41.3
mrežna zgradba 43.3
nihanje atomov 43.3
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kristalizacija 23.9
kritična temperatura 22.9
kritični tlak 22.9
krivulje

dolžinski element 31.7
elementarne 31.2–5
krivinski radij 31.8
opis z enačbo 31.1
tangenta 31.8
ukrivljenost 31.8
vektorski opis 31.6

krog
obseg 8.4
razni izreki 8.4

kronometer 7.5
krožna konstanta 8.4, 17.4, 28.7
kulminacija 3.1
kulminacijska višina 7.3
kvadrant 7.2
kvadratna enačba 14.6
kvadratna funkcija 14.6
kvadratni zakon upora 20.9
kvantna amplitudna enačba 42.7
kvantna konstanta 41.1
kvantna stanja,

čista 42.7
mešana 42.7

kvantni gibalni zakon 42.6
kvantni oscilator 42.10
kvantni rotator 43.1

laminarni tok 20.6
lastna energija 35.12
lastne amplitude 42.7

lastne energije 42.7
ledišče 22.2
lega 1.5, 34.1
lepenje 19.5
les 1.2
letne dobe 3.4
leto 7.1

civilno 7.1
linearna enačba 14.6
linearna funkcija 14.6
linearna regresija 33.15
linearni zakon upora 20.7
liter 8.10
ločevanje zmesi 4.1
ločljivost

daljnogleda 27.3, 38.14
mikroskopa 27.3

logaritemska funkcija 15.5
logaritemsko računalo 13.7
logaritmi 13.4–6
lom elektromagnetnega valovanja

38.12, 38.13
lom svetlobe 12.3

lomni količnik 12.3, 38.10, 38.11,
39.12

lomni zakon 12.3, 21.6, 38.12
lupa 12.7

magnetna cirkulacija 37.7
magnetna deklinacija 24.5
magnetna energija 25.10

gostota 25.10, 38.5
magnetna konstanta 25.7
magnetna polarizacija 37.10
magnetna poljska jakost 25.4, 37.6

polja tokov 37.6
tokovodnika 37.6

magnetna sila 25.4
magnetna sonda 39.11
magnetna susceptibilnost 37.10
magnetne snovi 24.4
magnetni dipol 24.4, 37.9
magnetni model snovi 24.4
magnetni moment 37.9
magnetni navor 25.4
magnetni potencial 37.8
magnetni pretok 25.5, 37.7
magnetni učinek toka 24.8
magnetnica 24.5
magnetno polje 25.4

silnice 25.4
magnetoelektrični pojav 39.11
magnetofon 40.10
magnetoskop 40.10
magnetostatični zakon 37.6
masa 19.2

gostota 19.2
težka 19.3
vztrajna 19.3

masa in energija 35.12, 35.13
masni primanjkljaj jedra 44.8
masni tok 20.6
masno središče 34.2
matrike 29.8–9

in lastni vektorji 29.13–14
računanje z njimi 29.10–12

medatomske vezi 43.1
ionska 43.1
kovalentna 43.1
kovinska 43.3
molekulska 43.3

medenina 4.6
meglična kamera 44.3
mehanični ekvivalent toplote 22.6
meja natezne trdnosti 20.3
meja prožnosti 20.3
menzura 8.10
merske napake 33.12

absolutna 33.12
intervalna ocena 33.13
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ocena 33.12
relativna 33.12
širjenje 33.12
značilna mesta 6.2

mešana svetloba 12.4
Mesec 3.5, 12.10

masa 19.12
oddaljenost 8.12, 40.13
težni pospešek 19.10
velikost 8.12

mesec 7.1
metacenter 10.8
metan 11.4
meter (palica) 8.1, 8.11
meter 8.1, 8.11
mikrofon 26.10
mikroorganizmi 12.7, 12.8
mikroskop 12.8
mikrovalovi 40.12
milja 8.1
milo 4.7
minerali 4.6
minuta 7.5
mm Hg 10.3
moč 9.8
močna (jedrska) sila 44.1
modri premik svetlobe 35.8
molekule 11.1

dolžina vezi 43.1
medsebojna razdalja v plinih 36.1
nihanje 43.1, 43.2
povprečna hitrost 36.2
povprečna prosta pot 36.11
relativna masa 23.3
velikost 23.6, 36.3
vrtenje 43.1, 43.2
vrtilno-nihajni spektri 43.1

morska milja 8.11
motor z notranjim izgorevanjem

glej eksplozijski motor
mrki 3.6, 8.13

načelo nedoločenosti 42.5
naelektritev s trenjem 24.1
nafta 11.6
namagnetenje snovi 24.4
naočniki 12.6
napetostni most 24.9
natrij 11.8, 23.4
natrijev klorid (morska sol) 11.8
navor 9.7

notranji 34.4
teže 9.7
zunanji 34.4

navpičnica 1.5
nebesna os 3.5
nebesna telesa 3.5

nebesni ekvator 7.4
nebesni pol 3.5
nebesni poldnevnik 7.4
nebesno gibanje

Meseca 3.5
planetov 3.5
Sonca 3.1, 3.5
zvezd 3.5

nevtralizacija 11.5
nevtrino 44.10
nevtroni 44.1, 44.7

masa 44.7
newton 19.2
nihajni krog, električni 25.11
nihalo na spiralno vzmet 7.5
nihalo, balistično 34.3
nihalo, nitno 7.5
nihalo, težno 7.5
nihanje

amplituda 18.7
frekvenca 18.7
krožna frekvenca 18.7
lastna frekvenca 34.10
nihajni čas 18.7
perioda, glej nihajni čas

nihanje, dušeno 34.10
nihanje, harmonično 18.7, 34.10
nihanje, težno 7.5, 18.7, 19.4
nihanje, vzbujeno 34.10
nihanje, vzbujeno z dušenjem 34.10
nihanje, vzmetno 19.4
normalna porazdelitev 33.7
notranja energija 22.6, 36.9
nukleoni 44.1
nuklidi 44.9

obratna sorazmernost 14.4
obrestni račun 6.5, 6.6
obzorni krog 3.4
odboj elektromagnetnega valovanja

38.12, 38.13
odboj svetlobe 12.2
odboj zvoka 21.8
odbojni zakon 12.2, 21.5, 38.12
odbojnost 27.10, 38.12–13
odklonska sila 19.7
odvod funkcije 16.1

elementarni odvodi 16.3
pravila odvajanja 16.4, 16.5
parcialni odvodi 30.4

ogljik 4.4
ogljik-14 44.15

ogljikovi oksidi 11.3, 11.5
ohm 24.10
ojačevalec 40.3
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oko 12.6
kratkovidnost in daljnovidnost
12.6

oksidacija 11.2, 23.11
opazovalni sistem 19.6, 35.4
orbitalna hitrost 18.9
orbitalni čas

siderski 18.10
sinodski 18.10
in središčna masa 34.13

orbitalni tiri 34.13
orbitalni zakon 18.9, 19.11, 34.13
orbitiranje dvozvezdja 34.13
orbitiranje planetov in satelitov

18.9–10
oscilator 40.5
osciloskop 40.4
osmoza 23.10
osmozni tlak 23.10
osnovni naboj 24.7, 36.3, 36.10, 39.7
osvetljenost 27.6
ozračje 1.3

naelektrenost 25.3
pritisk 10.3, 22.4
sestava 11.2
temperatura 22.3

paralaksa 8.6
planetov 27.12
zvezd 27.12

paralelogramsko pravilo 9.6
paramagnetna snov 37.10
parcialne diferencialne enačbe 36.12
parna turbina 26.1
parni stroj 22.13
parsek 27.12
pepelika 4.7
permeabilnost 25.7, 39.10
permutacije 33.1
piezoelektrični pojav 39.1, 40.5
pilotski valovi 42.1
piščali 21.8
planetarni model atomov 41.11–13
planetarni model vodikovega atoma

41.9–10
planeti 3.5, 12.10

periode 18.10
polosi 18.10, 40.13
lune 12.10

plavanje 10.8
plimovanje 19.12
plimske sile 19.12
plin 1.3

idealni 36.1
plinska enačba 22.4, 36.1
plinska konstanta 22.4, 23.8
plinski adiabatni zakon 22.8

plinski gorilnik 11.3
plinski izobarni zakon 22.4
plinski izohorni zakon 22.2
plinski izotermni zakon 20.4
ploščina 8.9
ploščina pod krivuljo 17.5
ploščine elementarnih likov 8.9
ploščinski integral 30.10
ploskve

elementarne 31.9
krivulje na ploskvi 31.11
normala 31.12
opis z enačbo 31.1
ploščinski element 31.11
ukrivljenost 31.12
vektorski opis 31.10

podaljšanje časa 35.6
podobni trikotniki 8.2
polarizacija pri odboju 27.5
polarizacija svetlobe 27.5
polarizacijska prizma 27.5
polarizacijski kot 27.5, 38.12
polarizacijski zakon 27.5
polje in krivočrtne koordinate 32.6

cilindrične 32.7
sferične 32.8

polna energija 35.12
relativistična transformacija 35.13

polprevodniki 43.7
popolni odboj svetlobe 12.3
porazdelitev delcev po hitrosti 36.4
porazdelitev delcev po legi 36.3
porazdelitev po faznem prostoru 36.7
poševni met 18.5–6
poševni trikotnik 8.7

izrek o vsoti kotov 8.7
kosinusni izrek 8.7
sinusni izrek 8.7

poskusi in izidi 33.2
potenčna funkcija 14.5
potenčne vrste 15.3
potence 6.1, 6.3, 13.3, 28.4
potencialna enačba 37.3, 37.8
potencialna enačba, homogena 37.3
potencialna energija 20.1, 21.14,

34.12
povprečje vzorčnih povprečij 33.11
povprečna vrednost 33.8
površina 8.9
površine elementarnih teles 8.9
površinska napetost 20.10
pozitron 44.15
pravokotni trikotnik

hipotenuzni izrek 8.3
kotna razmerja 8.5

preizkušanje domnev 33.14
premik 34.1
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premo enakomerno drsenje 18.1
premog 4.4
pretakanje tekočine po cevi 20.7
pretok polja 32.3
prevajanje toplote 22.18, 36.11, 36.13
prevodniki in izolatorji 24.1
prevodniški elektroni 39.11
princip elementarnih valov 21.4
princip relativnosti 35.3
princip superpozicije 42.7
prisilna hitrost 36.14
projekcija, ekvatorska valjna

konformna 31.16
projekcija, polarna stereografska

31.15
projekcija, stožčna konformna 31.17
projekcije, geografske 31.14, 31.18
prosti pad 18.3–4
prosto razpenjanje plina 22.8
prostornina 8.10
prostornina vrtenine 17.5
prostornine elementarnih teles 8.10
prostorninski integral 30.11
prostorninski tok 20.6
prostorski kot 21.14
prostostne stopnje 36.8
protoni 44.1, 44.6

masa 44.6
prožnostna energija 20.1
prožnostni modul 20.2
prožnostni zakon 19.4, 20.1
psihrometer 22.12

radar 40.13
radij 41.6
radijski valovi 38.8
radio 40.6–8
radioaktivno datiranje 44.11, 44.15
radioaktivnost 41.6
radiosonda 40.11
raketna enačba 34.3
ravni val delcev 42.4
ravno elektromagnetno valovanje

38.3, 38.5
ravnotežje reakcij 23.12, 36.10

ravnotežna konstanta 23.12,
36.10

ravnovesje tekočine 10.2
ravnovesje telesa 9.1, 9.5–7
razcep spektralnih črt v električnem

polju 41.14
razcep spektralnih črt v magnetnem

polju 41.14
razcepljenost spektralnih črt 41.14
razkrajanje snovi 11.1
razpad alfa 44.10
razpad beta 44.10

razpad gama 44.10
razpadanje jeder 44.9
razpadni čas 44.11
razpolovna debelina 27.10
razpolovni čas 44.11
razpršenost lege in hitrosti 42.4
razpršilna leča 12.5
raztopine 4.1, 23.9

koncentracija 23.9
razvoj funkcije v harmonično vrsto

28.6
elementarni razvoji 28.7

razvoj funkcije v potenčno vrsto 16.6
elementarni razvoji 16.7

rdeči premik svetlobe 35.8
reakcijska sila curka 34.3
redukcija 23.11
reflektor 12.9, 45.1
refraktor 12.9
rektascenzija zvezd 7.8
relativistične transformacije gibanja

časa 19.6, 35.5
hitrosti 19.6, 35.7
lege 19.6, 35.5
pospeška 19.6

relativistične transformacije
nabojev in tokov 37.11
polj 37.12–13

relativistični gibalni zakon 35.11
relativnost električne in magnetne sile

37.11
relativnost gibanja 19.6
relativnost sočasnosti 35.6
rentgenska cev 41.2
rentgenska svetloba 41.2
rentgenski spekter 41.3
rentgenski žarki 41.2
resonanca 21.8, 34.10, 40.5
rosišče 22.11
rotor polja 32.4
rotorski izrek 32.4
rude 4.6

oksidne 4.6
sulfidne 4.6

scintilacijsk števec 44.2
segrevanje plina 22.1

izobarno 22.4
izohorno 22.2

segrevanje
z delom 22.6
z električnim tokom 24.9
s svetlobnim tokom 27.6

sekunda 7.5
sence 3.2, 7.4, 8.2
sestavljanje hitrosti 18.2
sestavljanje premikov 18.2
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sestavljena leča 12.5
sevalna konstanta 27.8
sevalna vršna konstanta 27.8
sevalni spektralni konstanti 27.8
sežigna toplota 22.10

specifična 22.10
sferični trikotniki 31.13

hipotenuzni izrek 31.13
kosinusni izrek 31.13
sinusni izrek 31.13

sila 9.1
nasprotna 9.1
notranja 34.2
prijemališče 9.7
rezultanta 9.5, 9.6
ročica 9.7
zunanja 34.2

sila curka 34.3
silicij 40.12, 43.3
sinusoida 15.8
sipanje delca na potencialni oviri 42.8
sipanje delcev alfa na jedrih 41.7
skalarna polja 32.1
skrajšanje dolžin 35.6
slučajne spremenljivke 33.2
slušalke 26.10
smerni odvod 32.2
smodnik 11.7
snovi 1.2
soda 4.7
solarna konstanta 27.6
soliter 11.7
solna kislina 11.5
solsticij 3.4
sonar 40.14
Sonce 3.1, 12.10

gostota toka na Zemljo 27.6
izsev 27.7, 45.1
magnetno polje 41.14
masa 19.11, 45.1
oddaljenost 8.12, 27.2, 45.1
starost 44.11, 45.1
temperatura površja 27.9, 45.1
velikost 8.12, 45.1

sorazmernost 14.3
sorazmernost mase in teže 19.2
spajanje snovi 11.1
spekter zvoka 21.14
spektralne črte 27.4
spektrometer 27.4
spektrometer, masni 39.6
spektrometer, rentgenski 41.3
spektroskop 27.4
spojine 11.1
spremembe teles 1.8
spremenljivke 14.1
stabilnost 9.7

standardna deviacija 33.8
standardni kozmološki enačbi 45.9
statistično laganje 33.16
steklo 4.7
stiskalnica, hidravlična 10.5
stiskanje plina

adiabatno 22.8
izotermno 22.8

stisljivostni modul
adiabatni 22.8
izotermni 20.4

stoječe elektromagnetno valovanje
38.4

stopinja, temperaturna 22.2
strani neba 3.3
strelno orožje 11.7
strižna napetost 20.2
strižni modul 20.2
sunek napetosti 25.5
sunek navora 34.4
sunek sile 34.3
sunek toka 24.8
svetilnost 27.7
svetloba 3.2, 12.1
svetlobna hitrost 27.1, 35.2, 38.2
svetlobne preslikave 12.5
svetlobni eter 35.1
svetlobni spekter 12.4

absorpcijski 27.4
črtasti 27.4

svetlobni tlak 35.14, 35.15
svetlobni tok 27.6

gostota 27.6
svetlobni valovi 27.3
svetlobni žarki 3.2, 12.1
svetlobno leto 27.12
svetlost 27.7
svinec 4.6

šibka (jedrska) sila 44.10
širjenje svetlobe 12.1, 27.6–7
škripec 9.9
števila, decimalna 5.4

računanje z njimi 5.5
števila, kompleksna 28.1

računanje z njimi 28.2
števila, naravna 2.1–2

računanje z njimi 2.3–7
števila, relativna 13.1

računanje z njimi 13.2
števila, ulomna 5.1–2

računanje z njimi 5.3
število delcev 36.1

gostota 36.1
številski tok 36.11

gostota 36.11
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talilna toplota 22.10
specifična 22.10

tališče 22.2
taljenje 4.2
tehtnica, torzijska 34.11, 37.1
tehtnica, vzmetna 9.3
tehtnica, vzvodna 9.2, 9.7
tekočina 1.3

idealna 20.8
telefon 26.10
telegraf 26.9
telesa 1.1

deformabilna 1.3
oblika in snov 1.2
sistem delcev 34.2
točkasta 34.1
toga 34.6

televizija 40.9
telo na klancu 9.5
telo na vrveh 9.6
temperatura 1.4

absolutna 22.2
in kinetična energija 36.2
relativna 22.2

temperaturna razteznost 22.5
teodolit 12.9
termična emisija elektronov 39.2
termična ionizacija atomov 36.10
termična konstanta 36.1, 36.3
termično gibanje 11.1, 36.14
termočlen 39.1
termoelektrični pojav 39.1
termometer, alkoholni 22.3
termometer, bimetalni 22.5
termometer, plinski 22.2
termometer, sevalni 27.9
termometer, uporovni 27.6
termometer, živosrebrni 22.3
termoskop, plinski 22.2
termoupor 27.6
tesla 25.5
teža 1.4, 9.1

in pospešek 19.1
specifična 9.4

težišče 9.7, 34.6
težiščnice 9.7
težna energija, glej gravitacijska

energija
težni pospešek 18.4, 18.7
težno kroženje 18.8
tlak 10.1

hidrostatični 10.2
v kapljici 20.10
zastojni 20.9

tlak nasičene pare 22.11

tlak plina 22.1, 22.4
delni 22.12
kinetična slika 36.2

točka Gama 7.8
tokomer, ožinski 20.8
tokomer, zastojni 20.9
tokovne niti 20.8
tokovnice 20.6
tona 19.2
topljenje 23.9
toplota 22.6

specifična 22.7, 36.9, 43.2, 43.3
toplotna prevodnost 22.18, 36.11
toplotni tok 22.18

gostota 22.18
toplotni vetrovi 22.17

planetarna cirkulacija 22.17
toplotno raztezanje 22.1
toplotno sevanje 27.8, 43.10
torij 41.6
torni električni generator 24.3
trajanje 1.6
trajni magneti 24.4
trdnina 1.3
trenje, po podlagi 19.5
triangulacija 8.6, 8.8
trigonometrične funkcije 15.6–8
trioda 40.3
trk teles 34.3

čelni 44.5
delcev 44.5
elastični 44.5
neelastični 44.5

trkanje elektronov z atomi 41.8
tuljava 25.4

indukcijska 25.6
tuneliranje alfa 44.10
tuneliranje delca 42.8
turbulentni količnik 20.6
turbulentni tok 20.6
tvorba parov 44.15

ubežna hitrost 19.11
uho 21.10
uklon elektromagnetnega valovanja

38.14
uklon elektronov na kristalih 41.4
uklon rentgenske svetlobe na kristalih

41.3
uklon svetlobe 27.3, 38.14
uklon zvoka 21.8
uklonska mreža 27.3, 38.14
ultravijolična svetloba 27.8
ultrazvok 21.10
umetna radioaktivnost 44.12
upor, v tekočini 19.5
uporovni most 24.10
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ura (enota) 7.4
ura, kvarčna 40.5
ura, nihalna 7.5
ura, sončna 7.4
ura, vzmetna 7.5
uran 41.6, 44.11
uranova bomba 44.13
usmernik 40.1
utekočinjanje plina 22.9

valenčni elektroni 24.7, 43.1
valenca 23.5, 24.7
valovanje na gladini 21.3

hitrost 21.3
lom 21.6
odboj 21.5
popolni odboj 21.6
uklon 21.7
valovne fronte in žarki 21.4

valovanje na struni
lastno nihanje 21.2
potujoče valovanje 21.2
stoječe valovanje 21.2
valovna motnja 21.1

valovna dolžina delcev 41.4
valovna dolžina svetlobe 27.3
valovna dolžina zvoka 21.9
valovna enačba 38.2
valovna funkcija, glej verjetnostna

amplituda
valovni delci 42.1
valovni paket delcev 42.4
valovni vektor 21.2
variacije 33.1
varianca 33.8
varianca vzorčnih povprečij 33.11
večdimenzijske verjetnostne

porazdelitve 33.9
večkratni integral 30.12
vektorji 18.2, 29.1–2

računanje z njimi 29.3–7
vektorska polja 32.1
vektorske funkcije 30.1–2
verižna reakcija 44.13
verižni razpad 44.11
verjetnost izida 33.3
verjetnost lege 42.3
verjetnost sestavljenega izida 33.4
verjetnostna amplituda 42.3
verjetnostna gostota 42.3
verjetnostna porazdelitev 33.3
verjetnostni model atomov 42.13
verjetnostni model vodikovega atoma

42.11–12
verjetnostni tok 42.6
Vesolje

masna gostota 45.10

število galaksij 45.7
prasevanje 45.11
velikost 45.8

Vesolje, razvoj
prihodnost 45.10, 45.11
starost 45.8
Veliki pok (rojstvo) 45.8
zgodovina 45.11

vesoljski širitveni parameter 45.8
vesoljski širitveni zakon 45.8
vetrna turbina 26.1
vezavna energija jedra 44.8
vezavna energija nukleona v jedru

44.8
vidna svetloba 27.3
vijak 9.9
virusi 41.5
viskozimeter 20.7
viskoznost 20.5, 36.11
vitel 9.9
vlaga v zraku

absolutna 22.12
relativna 22.12
specifična 22.12

voda 1.3
destilirana 11.6

vodik 11.3, 11.5, 24.7
vodikov oksid (voda) 11.3
vodikova bomba 44.14
vodikova spektralna konstanta 41.9
vodna črpalka 10.4
vodna para

nasičena 22.11
vodna turbina 26.1
vodno kolo 9.10
volt 24.9
voltmeter, elektronski 40.3
voltmeter, tuljavni 24.11

vezava 24.11
vosek 11.2
vozel 18.1
vrelišče 22.2
vrteči se sistem 19.7
vrtilna količina 34.4
vrzeli 43.7
vzgon 10.8
vzgonski zakon 10.8
vzorčenje 33.11
vztrajnostni moment 34.7
vzvod 9.7

watt 19.2

zakon o delnih tlakih 22.12
zakon o električnem pretoku 37.2,

38.1
zakon o električnem uporu 24.10,

39.11
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zakon o električni cirkulaciji 37.2, 38.1
zakon o izotropiji svetlosti 27.7
zakon o kilomolu plina 23.3
zakon o laminarnem toku 20.7
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