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Predgovor

Dragi bralec, pred teboj je postopni vhod v matematiko, fiziko in
tehniko kot soodvisne dosezke ¢loveskega rodu od davnine do
danes.

Knjigo sem napisal za svoje lastne potrebe in v svoje lastno
zadovoljstvo. Hotel sem si ustvariti gladko pot iz ravnine
naravoslovnega neznanja najprej na grice, odtod na hribe, in
konc¢no na gore spoznanja. Pri tem sem zelel na vsakem koraku
cutiti, kot da si pot utiram sam, in sicer zgolj na podlagi dotlej
pridobljenega znanja in orodij. Na taksni poti ne bi smelo biti
neutemeljenih definicij in postulatov, vzetih iz zraka, Se zlasti pa
ne nedokazanih trditev in sklicevanj na prihodnost. Do vsega sem
zelel priti razvidno in "sam".

Za voditeljico sem izbral zgodovino: kakor se je ucil ¢cloveski rod,
tako se naj uci ¢loveski posameznik. Znanje, ki ga je do sedaj
pridobilo ¢lovestvo, namrec ni bilo brez razloga dosezeno po poti,
kakor jo kaze zgodovina. Razvoj znanja je mogoc le na podlagi
obstojecega znanja in le v druzbenem okolju, ki tovrsten razvoj
podpira in po njem povpraSuje. TakSna pot se mi zato zdi najbolj
naraven, zanimiv in u¢inkovit vhod v znanost. Seveda pa je pri
tem smotrno izpustiti Stevilne zgodovinske zablode in stranpoti.

Koli¢ino znanja sem strogo omejil. Vkljucil sem le
najpomembnejSe. Znanje sem oblikoval v zaokroZena poglavja,
navznoter ¢imbolj homogena in med seboj Sibko sklopljena.
Poglavja sem razvrstil po visinskih stopnjah: najprej grice, nato
hribe in kon¢no gore. Vsaka naslednja stopnja je zgodovinsko
mlajSa in gradi na prejsnji. ViSja poglavja vsebujejo nizja kot
posebne primere. Na poti skozi poglavja se noben korak ne
sklicuje na prihodnje korake. Definicije, postulati in domneve so
uvedeni: razvidno je, kaj nas navaja oziroma sili do njih. Izreki so
izpeljani. Meritve so opisane. Ce na dani stopnji ni moZno
dokazati izrekov in izvesti meritev, na to stopnjo ne spadajo.
Vsako novo spoznanje je ¢imprej uporabljeno.

Razvoj znanja z zgodovino kot voditeljico nikakor ni brez tezav.
Stari avtorji so uporabljali druga¢no besedisce in drugacno
matemati¢no pisavo kot danes. Zlasti velja to za simboli¢no
stenografijo, ki se je pojavila Sele dokaj pozno. Posamicna odkritja
praviloma tudi niso bila plod dela enega samega raziskovalca,
marvec je bilo pri njih udelezenih ve¢ avtorjev. Tezko je ugotoviti
in pravi¢no oceniti, kaksen delez pripada komu. In pot do odkritij
je bila dostikrat hudo zavita.

Navedene tezave sem poskusal odpraviti takole. Od vsega
zacCetka sta uporabljena sodobno besedisce in sodobna
matemati¢na pisava. Da zgodovina ne bi zasencila vsebine, sem v
besedilu omenil le najvaznejsSe raziskovalce. Kolikor le mogoce



sem se izognil poimenovanju pojavov, poskusov, konstant,
zakonov in izrekov po osebah; namesto tega sem uporabil ¢im
bolj nevtralno poimenovanje. Kon¢no sem si vzel Se pravico, da
do nekaterih spoznanj pristopim drugace in v drugem vrstnem
redu, kot so se zares zgodila. Bralce prosim, da to sprejmejo z
razumevanjem.

V knjigi (prvem in drugem delu) je domala 500 slik. Kaksnih 30 %
je mojih. Okrog 20 % jih je v javni lasti, ker so bile objavljene
pred letom 1923 oziroma je minilo ve¢ kot 70 let od smrti
njihovih avtorjev. Priblizno 40 % je takih, ki posebnega dovoljenja
za objavo ne potrebujejo, ker so tako odlocili njihovi avtorji ali
ker prvi avtorji niso znani. Za preostalih 10 % slik pa ocenjujem,
da njihova objava zadoscCa zahtevam "fair use" - med drugim je
nekomercialna in izobrazevalna ter ne skoduje trznim aktivnostim
lastnikov licenc - in je zato dovoljena. Lastnikom licenc se
vnaprej zahvaljujem za razumevanje in dobrohotnost.

Ko izro¢am knjigo javnosti, imam v mislih naslednjo ciljno
skupino bralcev: to so odrasli ljubiteljski in poklicni naravoslovci,
ki jih zanimajo osnove, razvoj in poucevanje znanosti ter si zelijo
potesiti prav tisto, kar je navedlo mene do pisanja. Se posebej si
zelim, da bi knjiga nasla pot do Studentov pedagoske fizike in do
uciteljev fizike na vseh Solskih stopnjah. Prvi Se plezajo na svoje
vrhove znanja, drugi pa so jih veC¢inoma ze osvojili, a so morda v
dvomih, katera znanja naj posredujejo in po kateri poti naj vodijo,
da bo izid najboljsi. Zadovoljen bom, Ce jim bo knjiga pri tem
pomagala.

— MARJAN DIVJAK



Merjenje

Teorija in poskus

Teorije in resni¢nost

Pomen matematike

Poucevanje znanosti

Genetic¢na pot

Vodila

Ce lahko to, o éemer govorite, izmerite in izrazite s $tevili, potem
nekaj veste o tem; Ce pa ne znate tega meriti, e ne znate tega
izraziti s Stevili, je vaSe znanje borne in nezadostne vrste.

— W. THOMSON

Znanost hodi po dveh nogah, teoriji in poskusu. Zdaj postavi
naprej eno nogo, zdaj drugo. Nenehen napredek je mogoc¢ samo z
uporabo obeh - s teoreticnim razmisljanjem in potem s
preizkusanjem, ali z odkrivanjem novih zvez pri poskusih in
potem s tem, da pristavimo teoreti¢no nogo in jo porinemo naprej
in tako dalje izmenoma. — R. MILLIKAN

Pri naporih, da bi dojeli resni¢nost, ravnamo kot Clovek, ki
poskuSa doumeti mehanizem zaprte zepne ure. Vidi Stevil¢nico in
pomikanje kazalcev ter sliSi celo tiktakanje, vendar nikakor ne
more odpreti ohisja. Ce je bister, si zamisli mehanizem, ki mu
more pripisovati vse to, kar vidi in sliSi. Vendar se nikakor ne
more zanesti na to, da je edino njegova zamisel taka, da se
morejo z njo pojasniti opazovanja. Svojih zamisli ne more nikdar
preizkusiti ob resnicnem mehanizmu. — A. EINSTEIN

Matematika je jezik za koli¢insko opisovanje sveta ...
Napredovala je, kadar je bilo za matematike kaj resnicnega dela,
in je zastajala, kadarkoli je postala igraca v rokah skupine ljudi,
odtujene od vsakdanjega zivljenja Clovestva ... Sedaj je postalo
modno reci, da je matematika samo igra. Seveda nam to ne pove
prav nicesar o njej. Nekaj nam pove le o kulturnih omejitvah
nekaterih matematikov. Ko clovek recCe, da je matematika igra, se
osebno izjavlja. Nekaj nam pove o sebi, o svojem lastnem odnosu
do nje. Ni¢ nam ne pove o javnem pomenu matemati¢nega jezika.
— L. HOGBEN

Dvignil sem ucbenik fizike, ki so ga uporabljali ... Zacel sem brati:
"Triboluminiscenca. Triboluminiscenca je svetloba, ki jo oddajajo
kristali pri drobljenju ..." Rekel sem: "Torej, je to znanost? Ne!
Povedali ste samo, kaj neka beseda pomeni z drugimi besedami.
Nicesar niste povedali o naravi - kateri kristali sevajo svetlobo pri
drobljenju, zakaj sevajo ... Ce pa bi namesto tega zapisali 'Ko
vzame$ kocko sladkorja in jo zdrobis s kleS¢ami v temi, zagledas
modrikast blisk. Tudi nekateri drugi kristali se tako obnasajo.
Nihce ne ve, zakaj. Pojav imenujemo triboluminiscenca,' potem je
to izkusnja narave." — R. FEYNMAN

V svoji predstavitvi bom praviloma sledil geneti¢ni metodi.
Bistvena zamisel te metode je, da je vrstni red, v katerem je
clovestvo pridobilo znanje, tudi dober vrstni red za njegovo
pridobivanje pri posamezniku ... Vendar to ne pomeni, da
moramo pri poucevanju znanosti ponoviti tiso¢ in eno napako iz
preteklosti. — G. PoLyA






Predsola

Nizja osnovna Sola

Visja osnovna Sola

Srednja Sola

Ucna pot

Kakor se je ucil ¢loveski rod, tako se naj uci ¢loveski posameznik.
To je geneti¢no nacelo uc¢enja znanosti. Po njem zelimo vstopiti v
svet matematike, fizike in tehnike.

Ucenje znanosti po geneticnem nacelu zahteva, da definiramo
ustrezne solske stopnje in jih povezemo z zgodovinskim dobami.
Storimo to! PredsSola naj pokrije prazgodovino (pred 5000 let

pr. n. st. ), osnovna Sola stari in srednji vek (do 1500 let n. st.),
srednja Sola novi vek (do 1900 let n. st.) in visoka Sola sodobnost.
Seveda bomo meje po potrebi tudi prestopali. Napredovati torej
ho¢emo po naslednjih Solskih / druzbenih razvojnih stopnjah.

Nabiralnistvo in lov. Kaksnih 100 000 let pr. n. st. se v Afriki
pojavi sodobni ¢lovek in se do 10 000 let pr. n. St. razsiri po vseh
kontinentih. Je nabiralec in lovec. Pozna kamnito orodje, ogenj in
obleko iz koz. Takratno podnebje je hladno in spremenljivo.

Poljedelstvo in Zivinoreja. Okrog 10 000 let pr. n. St. se podnebje
nenadoma otopli in umiri. Ljudje takoj izkoristijo nove pogoje. V
evrazijskih stepah se pojavi nomadska zivinoreja. V rodovitnih
predelih Bliznjega vzhoda, Jangcekjanga, Mezoamerike in Andov
pa se razvije poljedelstvo ter se razsiri v okolico. Ljudje se ustale
v vaseh. Poznajo loncarstvo, tkalstvo in kovine.

Kmetijske drzave in gradbenistvo. Poljedelsko prebivalstvo se
pocasi namnozi in se organizira v drzave. Razvijejo se
mezopotamska (3500 let pr. n. St.), egipcanska (3000 let

pr. n. §t.), kitajska (2000 let pr. n. $t.), majevska (300 let n. st.),
azteska (1200 let n. $t.) in inkovska (1200 let n. st.) civilizacija.
Ljudje orjejo, namakajo in zidajo stavbe ter templje. Ponekod
prevazajo tovore z vozmi in veslacami. Uvedejo pisavo, Stevilke,
koledar, kataster in zakonik.

Urbanizacija in rokodelstvo. Ob Sredozemskem morju, na robu
Mezopotamije in Egipta, se okrog leta 1000 pr. n. St. razvijejo
primorske mestne drzavice, najprej fenicanske in grske. Trgujejo
in kujejo denar. Rimska drzava okrog leta O n. St. imperializira
Sredozemlje in prinese drzavnost v njegove province. Z velikostjo
pa rastejo tudi tezave na mejah. Pastirski nomadi iz srednje
Evrazije okrog leta 500 n. $t. razrusSijo zahodni del imperija. Na
njegovem ozemlju se pojavijo nove drzave. Nato si nomadi iz
Arabije do leta 1000 n. S$t. podvrzejo juzni in vzhodni del. Znanja
iz vzhodne Evrazije prinesejo na njen zahod.

Pomorstvo in trgovina. Prebujene zahodnoevropske drzave okrog
leta 1500 n. st. razvijejo tisk, smodniSko oroZje in oceanske
jadrnice. Kolonizirajo Afriko, Ameriko, Avstralijo in Oceanijo.
Trgovina moc¢no poraste.
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Visoka Sola

Industrija in elektrifikacija. Svetovni trg zahteva svoje. Razvije se
tovarniska proizvodnja snovi in izdelkov, ki jo okrog leta 1800

n. St. zacno poganjati parni stroji. Sledi odkritje
elektromagnetizma, kar spremeni svet. Drzave se elektrificirajo:
gradijo elektrarne ter preko daljnovodov napajajo elektromotorje,
grelce in razsvetljavo v industriji, mestih in gospodinjstvih.
Namnozijo se motorni avtomobili, vlaki, ladje, podmornice in
letala.

Komunikacije in informatika. Clove$tvo po letu 1900 n. t. iznajde
brezzi¢ne elektricne komunikacije, digitalno zajemanje in zapis
informacij, racunalnike in jedrski reaktor. V vesolje poslje
satelite, sonde in ljudi. Na obzorju se pokaZe nesluten razvoj
robotike in medicine.

V vsaki izmed nastetih dob so se rojevali posamezniki, znani in
neznani, ki so doprinasali k razvoju takratne znanosti. Seveda so
njihovi doprinosi vplivali nazaj na druzbeno okolje in ga po svoje
preoblikovali. Privzemimo vlogo teh posameznikov in se podajmo
na ¢cudovito pot spoznavanja in mojstritve narave od pradavnine
do danasnjih dni!
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Zasuk nihala

Kompleksna sStevila ali
fazoriji

Kompleksna stevila

Skalariji in fazorji - Ra¢unske operacije - Imaginarna enota -
Potenca in eksponencial - Kompleksne funkcije - Harmonic¢ne
vrste - Primer spektralne analize - Kompleksne harmoniéne vrste -
Harmonicni integrali

28.1 Skalarji in fazorji

Na vrvici obeSena kroglica - tezno nihalo - lahko niha sem in tja v
navpicni ravnini. Trenutni odmik kroglice iz njene ravnovesne
lege opiSemo z ustreznim relativnim Stevilom, skalarjem: odmik v
desno, na primer, je pozitiven in odmik v levo je negativen. Odmik
nihala je torej koli¢ina, ki ima poleg velikosti Se predznak.

Kroglica pa lahko tudi krozi v vodoravni ravnini; pri tem se njena
projekcija na poljubni premer kroga spreminja. Trenutni zasuk
nihala opiSemo potem na dva nacina: z dvema projekcijama -
odmikoma u; in u; - na dva medsebojno pravokotna premera ali z
velikostjo u in fazo @. Zasuk nihala je torej koli¢ina, ki ima poleg
velikosti Se fazo. Odmik nihala je poseben primer zasuka za fazo
0 ali 180°.

Slika 28.1 Zasuk kot kompleksno stevilo
oziroma fazor.

c>

U+

Na odmika u; in uy, ki opisujeta zasuk, pogledamo kot na celoto
in proglasimo: vsakrsna dvojica relativnih Stevil (uj, up) je
kompleksno Stevilo 11 z realno komponento u; in imaginarno
komponento u;. Obenem definiramo Se absolutno vrednost |i| in

fazo Arg (11):

U = (uq, up) = (ucos @, usin @) (28.1)
Re (ﬁ) =Uq
Im(fl) = Uy

|G]? = u? =u1? + uy?

. Uy
Arg (i) =@ =atan —.
up

Ker ima kompleksno stevilo poleg velikosti Se fazo, mu bomo rekli
tudi fazor. Poljuben fazor bomo oznacili s ¢rkami 1, v in w.

11
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Mnozenje fazorja s
skalarjem

Sestevanje in
odstevanje fazorjev

Mnozenje in deljenje
fazorjev

28.2 Racunske operacije

Kompleksna Stevila (fazorji) so razsiritev relativnih Stevil
(skalarjev). Slednja vkljucujejo kot pare, katerih imaginarna
komponenta je enaka ni¢. Racunanje s fazorji hocemo zato
definirati tako, da bo pomen rac¢unskih operacij nad skalarji
ohranjen. Razviti hocemo kompleksni racun (BOMBELLI, EULER,
GAUSS).

Naj ima fazor imaginarno komponento enako ni¢. Tedaj je
"enakopraven" navadnemu realnemu odmiku. Mnozenje takega
odmika s pozitivnim ulomkom pomeni njegov razteg ali skrcitev, z
negativnim pa hkrati Se obrat njegove usmeritve. Zato definiramo
tako tudi za kompleksni zasuk:

cili=(cuy, cuy). (28.2)

Sestevanje dveh realnih odmikov pomeni, da na konec prvega
nataknemo zacCetek drugega in oba nadomestimo s premikom, ki
sega od zacCetka prvega do konca drugega. Zato definiramo tako
tudi za kompleksne zasuke:

U+v=(ui+vyuy+vy). (28.3)
A A Slika 28.2 Sestevanje fazorjev po
T ufv paralelogramskem pravilu.
0 :
7% f
Ual==7-> """" :G
vy ul1 Uq+Vq

To je Ze znano paralelogramsko pravilo za sestevanje premikov
(9.7). Odstevanje je obratna operacija k seStevanju in ga tako tudi
definiramo: znake za seStevanje (+) nadomestimo z znaki za
odstevanje (—).

Fazor u (cos ¢, sin ) opisuje razteg realnega enotnega premika za
faktor u in zasuk za kot ¢@. To nas sili, da mnozenje fazorja
ti=u(cosa,sina) s fazorjem v =v(cosp, sinB) definiramo kot
zasuk prvega za argument drugega in hkratni ustrezni razteg:

uv=uv(cos(a+p),sin(a+p)). (28.4)
A A Slika 28.3 MnoZenje fazorjev po su¢nem pravilu.
u-v Prvi fazor zasu¢emo za fazo drugega fazorja in ga
pomnozimo z njegovo velikostjo.
N v
A
S/y ® U
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Deljenje je obratna operacija od mnozenja, zato smo prisiljeni
definirati

0/ = (u/v) (cos (a — B), sin (a — B)) . (28.5)

Mnozenje in deljenje smo definirali z absolutnimi velikostmi in
argumenti operandov. Ugodno bi bilo vedeti, kako se to zapiSe s
komponentami. Neposredni racun pokaze:

v = (u1vy — UyVy, U1Va + UsVy) (28.6)
U/v = (u1vy + Uy, Ugvy — UqVa) .

Z vpeljanimi definicijami ostanejo v veljavi vsa racunska pravila,
ki veljajo za skalarje (in Se prej za naravna Stevila) (2.1): vsota in
produkt dveh fazorjev sta komutativna in asociativna, produkt pa
je distributiven glede na vsoto.

28.3 Imaginarna enota

Definiciji za vsoto in produkt omogocata, da poljuben fazor
zapiSemo v obliki

U=u;-(1,0)+uy-(0,1). (28.7)

Stevilska para (1, 0) in (0, 1) poimenujemo realna enota in
imaginarna enota. Njuni velikosti sta, slede¢ definiciji, enaki 1.
KrajSe zapiSemo

U=uj+iuy (28.8)
i=(0,1).

Realno enoto (1, 0) torej zapiSemo kar kot skalar 1, imaginarno
enoto (0, 1) pa kot "skalar" i. Ta zapis ima izjemno prakti¢no
vrednost. Ce se delamo, da je imaginarna enota i kar navaden
skalar, lahko vsako kompleksno Stevilo obravnavamo kot skalarni
binom. Te pa igraje seStevamo, odStevamo, mnozimo in delimo!
Ce med ra¢unom pridelamo kvadrat ali kaksno vi$jo potenco
imaginarne enote, upostevamo, da velja, slede¢ definiciji
mnoZenja, i-i=(0,1)(0,1) = (-1, 0), torej

i2=-1. (28.9)

Rezultat, ki ga dobimo, je prav tak, kot ¢e bi mukoma racunali s
pari Stevil po osnovnih definicijah. Zgled pove to najbolje.
Namesto takole: (3,5)-(2,4)=(3-2—-5:4,3-4+5-2)=(—14,22)
racunamo raje takole: (3+5i)(2+4i)=2-3+2-5i+4i-3+4i-5i=
6 + 22i + 20i? = —14 + 22i. Razlika je oCitna.

Mnozenje skalarja z imaginarno enoto nazorno pomeni, da skalar
zavrtimo za kot 90° v nasprotni smeri urinega kazalca. Dvakratno
mnozenje z imaginarno enoto torej zavrti skalar za 180°, to je,
spremeni mu predznak. To velja tudi za mnozenje kateregakoli
fazorja z imaginarno enoto.

Velikost kompleksnega Stevila i je podana, kot vemo, takole:
|Gi|? = uy? + uy?. To je enako produktu (u; + iup)(u; — iuy). Drugi

13


ch2.htm#eq1

14

Fazor kot baza
potence

Fazor kot eksponent
potence

faktor je oCitno enak prvemu, le predznak imaginarne enote ima
nasproten. ReCemo, da je prvemu konjugiran, in zapiSemo

U*=u; —iup (28.10)
|G|? = ad*.
Konjugirano vrednost fazorja si nazorno predstavljamo kot
njegovo preslikavo preko realne osi.

28.4 Potenca in eksponencial

Naravno potenco fazorja definiramo enako kot naravno potenco
skalarja:

at=i-u...4. (28.11)
To zaradi (28.4) ne pomeni ni¢ drugega kot
u"=u"(cosng +isin neg). (28.12)

Namesto naravnega eksponenta n si v zapisanem obrazcu
mislimo reciproc¢ni naravni eksponent (koren) 1/n, ulomni
eksponent p =n/m ali relativni eksponent *p. Ali obrazec za
takSne skalarne eksponente Se vedno velja, je nesmiselno
vprasati, saj potenciranja fazorja z "nenaravnim" eksponentom s
Se nismo definirali. Pa proglasimo prav ta obrazec za definicijo!
Torej:

s =u’(cossp+isins). (28.13)

Paziti moramo le na naslednje. Ker sta sinus in kosinus periodi¢ni
funkciji, je treba namesto izraza @/n racunati izraze (¢ + k2m)/n,
k=0,1,2...n—1. "Nenaravne" potence fazorja so torej veclicne.

Kvadratni koren iz negativnih skalarjev doslej ni bil dolocen, to
je, ne obstajajo skalarji - ne pozitivni ne negativni -, katerih
kvadrat bi bil negativni skalar. Ce pa na skalar —p pogledamo kot
na ekvivalentni fazor (—p, 0), potem je kvadratni koren iz njega
prav lahko najti: (—p, 0)1/?2 = p'/2 (cos /2 +isinm/2) = ip!/2.
Kvadratni koreni negativnih skalarjev so (imaginarna)
kompleksna Stevila.

Kako pa bi razsirili eksponencial (potenco z bazo e) od skalarnega
argumenta na kompleksnega? Stisnimo zobe in razvijmo funkcijo
e'? - za katero ne vemo, kaj pomeni! - v poten¢no vrsto, kakor da
bi bil argument i¢ skalar! Pri tem upos$tevajmo pravilo i2= -1, s
Cimer v vrsti ostanejo samo gole vrednosti i. Naredimo Se en greh
in zberimo skupaj vse tiste ¢lene, ki ne vsebujejo i, ter skupaj

one, ki i vsebujejo. Iz slednjih izpostavimo i in dobimo vsoto dveh
vrst. Vzhi¢eno ugotovimo, da sta to potencni vrsti za kosinus in
sinus, torej

el?=cosp+ising. (28.14)

Ce naj si eksponentna funkcija zasluZi svoje ime, bi moralo veljati
Se



NajlepSa enacba

Kompleksni zapis
kotnih funkcij

Kotne funkije
kompleksnega
argumenta

ell = U1 +iu2 = Ul git2 = U1 (cos uy + isin uy) . (28.15)

Pri u; =0 se pridelani kompleksni eksponencial zares reducira v
skalarnega. No, pa proglasimo ta rezultat, do katerega smo prisli
s stisnjenimi zobmi, za definicijo kompleksnega eksponenciala! To
gotovo lahko naredimo, kajti s tem ni¢ ne vplivamo na dosedanja
dejstva o skalarnem eksponencialu. Pravo vpraSanje pa je seveda
tole: ali iz sprejete definicije sledijo takSna pravila za racunanje s
kompleksnimi eksponenciali, ki so enaka rac¢unskim pravilom za
skalarne eksponenciale? Kratki racuni res pokazejo, da veljajo
osnovna pravila exp ii - exp v =exp (i1 + V); exp li/exp V = exp (i — V);
in exp 1V = exp (i - V). Sprejeta definicija je torej dobra.

Ce za argument v eksponencialu izberemo i, dobimo
presenetljivo enacbo e'™ + 1 = 0. V njej je medsebojno povezanih
pet najpomembnejsih stevil: 0, 1, 1, e in i, povezujejo jih pa tri
osnovne operacije: seStevanje, mnozenje in potenciranje. Za
povrh je vkljucen Se znak enakosti. Mnogi imajo to enacbo za
najlepso od vseh v matematiki.

28.5 Kompleksne funkcije

Enacba expig = cos ¢ + isin ¢ kaze, kako je eksponentna funkcija
(imaginarnega argumenta) izrazena s kotnimi funkcijami. Ali je
mozno tudi obratno, torej izraziti kak$no kotno funkcijo z
eksponentnimi funkcijami? Za ¢ - —@ se enacba glasi

exp (—ip) = cos ¢ —isin ¢. Obe enacbi sestejemo in dobimo

el +elo (28.16)
cosp=——.
2
Ce enacbi odstejemo, pa pridelamo
) el —e~lo (28.17)
sing = —
1

Uspeli smo. Za izracunavanje numeri¢nih vrednosti kotnih
funkcij, recimo za izracun cos 3 ali sin 3, izpeljani enacbi sicer
nista uporabni, saj se reducirata v identiteto. Na primer:
cos3=[expi3 +exp (—i3)]/2 = [(cos3 +isin3) +

(cos 3 —isin 3)]/2 = cos 3. Sta pa zelo uporabni pri dokazovanju
trigonometri¢nih identitet, recimo znamenite identitete

(sin @)? + (cos @)? = 1. Ra¢unanje z eksponentnimi funkcijami je
namre¢ mnogo lazje od racunanja s kotnimi funkcijami.

Ni¢ nam ne brani, da razsirimo definicijo kotnih funkcij tudi na
kompleksne argumente:

cos i = ell 4 g~itl (28.18)
2
pill _ g-id
sintl= ——
2i
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Kompleksne funkcije
skalarja

Kompleksne funkcije
fazorja

Superpozicija
harmonikov

S tem postaneta funkciji sinus in kosinus kompleksni, to je, njuna
zaloga vrednosti so kompleksna Stevila. Na primer: cos (4i+ 3) =
[exp (—4 +3i) + exp (4 — 31)1/2 = [exp (—4) exp 3il/2 +

[exp4 exp (—3i)]/2 = [exp (—4)/2](cos 3 +isin 3) +

[exp (+4)/2](cos 3 —isin3) = [exp(—4) +exp4)]cos3/2 +

ilexp (—4) —exp4]sin 3/2, kar je kompleksno Stevilo.

Na izraz i@t = u (cos ¢ + isin @) lahko pogledamo kot na kompleksno
funkcijo @ skalarnega argumenta ¢: vsaki vrednosti ¢ pripada
natanko dolocena vrednost @i. Splosno funkcijo te vrste lahko
definiramo kot

U(t) = uy(t) +iux(t), (28.19)

recimo i = at + ibt?. Pojavi se vprasanje, ali in kako lahko taks$ne
funkcije odvajamo in integriramo. Pravzaprav ni kaj dosti
premisljevati. Odvod definiramo kot

di  du; iy du, (28.20)
qu_dir 0o
dt dt dt
in integral kot
Jadt=fu;dt+ifuydt. (28.21)

Ko ¢lenoma odvajamo (d/d¢) (cos ¢ +isin ¢), dobimo

—sin @ +icos ¢, kar je enako i(cos ¢ +1isin ¢). Zapisano z
eksponencialom to pomeni (d/dg) ¥ = ie'?. Vidimo, da kompleksni
eksponencial odvajamo natanko tako kot skalarnega, pri cemer
obravnavamo enoto i kot navaden skalar. Podobno velja za
integriranje.

Na izraze w=cil, w= 102, w=e!, w=cos 1 ali W= sin & lahko
pogledamo kot na kompleksne funkcije fazorskega argumenta.
Vsaki vrednosti I pripada natanko dolocena vrednost w. Splosno
funkcijo te vrste zapiSemo kot w = f(i1). Ocitno je, da je to
preslikava tock (in s tem krivulj) iz ene ravnine v drugo ravnino.
Podrobnej$e obravnavanje takih funkcij, vklju¢no z njihovim
odvajanjem, integriranjem in razvojem v potencne vrste, pa
prepustimo drugim, ki to potrebujejo ali jih zanima.

28.6 Harmonicne vrste

Struna lahko niha harmonicno s (kroznimi) frekvencami w, 2w,
3w itd. Osnovno nihanje se ponavlja po vsaki periodi T = 2n/w,
naslednje po periodi T, = 21/2w, pa tudi po periodi T = 2T, itd.
Aktualno periodi¢no nihanje strune je sestavljeno iz vsote
izbranih harmonic¢nih nihanj. S primerno izbiro harmonic¢nih
komponent je mozno pridelati zelo razlicne periodi¢ne funkcije.



Razvoj funkcije v
harmonic¢no vrsto

u Slika 28.4 Vsota dveh sinusoid. Modra je
sinx, zelena je (1/3) cos 3x, rdeca je vsota.
Prikazan je interval med 0 in 4n. Ce sta
frekvenci v celostevil¢nem razmeriju, je
rezultat periodi¢na funkcija.

To nas navaja na misel, da se da vsaka (ne prevec divja)
periodic¢na funkcija s periodo T zapisati v obliki harmonicne vrste
(FOURIER)

© (28.22)
fity=ao+ > (ancosnwt+ b,sinnwt).
n=1

Pri tem je w = 21/T. Za nekatere funkcije je morda dovolj le nekaj
¢lenov, za druge pa je potrebnih neskon¢no mnogo.

Ce poznamo amplitude a, in b,, lahko funkcijo f(t) zlahka
izra¢unamo. Kaj pa obratno? Ce poznamo funkcijo, ali lahko
izracunamo amplitude?

Razmisljamo takole. Preko periode T ima vsak sinus enako mnogo
hribov kot dolin; njegov integral je zato ni¢. Podobno velja za
kosinuse. Integral vseh clenov, razen konstantnega, je zato nic, in
integral funkcije mora zato biti enak integralu konstantnega
¢lena:

T (28.23)
=1fﬂw&
do T g .

Ce pomnoZimo harmoniéno vrsto (28.22) na levi in desni strani s
¢lenom cos kwt, pridelamo na desni strani vsoto "istoimenskih"
produktov cos nwt - cos kwt in "raznoimenskih" produktov
sin nwt - cos kwt. Potem integriramo vsako stran preko periode T.
"Raznoimenski" integrali so vsi enaki nic. "Istoimenski" integrali
pa so tudi enaki ni¢, ¢e n#k; le v enem samem primeru, ko n=k,
znaSa integral T/2. Velja torej

9 T (28.24)

anp= }ff(t) cosnwtdt, n=1,2,3...
0

Na podoben nacin ugotovimo Se

)T (28.25)
bn=%fﬂﬂ$nmmdt n=1,23...
0

Integriranje poteka preko periode T. Ta je seveda lahko poljubno
zamaknjena. Namesto spodnje meje 0 lahko zato izberemo
poljubno mejo ty in integriramo med ¢ty in to+ T.
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Vsota amplitud

Skatlasta funkcija

Energija harmoni¢nega nihanja nihala je sorazmerna s kvadratom
amplitude (21.19). To nas navede na izrac¢un integrala f? preko
periode T. Morda bomo odkrili kaj zanimivega? Trigonometri¢no
vsoto kvadriramo in pridelamo mnozico meSanih produktov med
sinusi in kosinusi. Vsi produkti razen kvadratov sinusov in
kosinusov so enaki ni¢ in velja:

T L (28.26)
— [ fiRdt=ag®+ = D (a,®+by?).
T 2 <

n=1

Povprecna vrednost kvadrata funkcije je torej enaka vsoti
kvadratov posamicnih amplitud.

28.7 Primer spektralne analize

Za zgled razvijmo v harmonicno vrsto, to je spektralno
analizirajmo, "Skatlasto" periodi¢no funkcijo, ki je na prvi polovici
periode enaka f(t) =1 in na drugi polovici enaka f(t) = —1. Upamo,
da funkcija zaradi nezveznih skokov ni predivja za legitimni
razvaj.

u Slika 28.5 Skatlasta funkcija in njeni

N\ harmoniki. Prvi harmonik je moder, vsota

1 prvih dveh je zelena in vsota prvih treh je
rdeca.
0 X
v
-1
\—/

Integrale f(t) cos nwt in f(t) sin nwt preko cele periode razdelimo
na dva dela: preko prve polovice in preko druge polovice, jih
zlahka integriramo in dobimo f(t) = (4/m) [(1/1) sin wt +

(1/3) sin 3wt + (1/5) sin 5wt + ...]. Funkcija je liha in je zato
sestavljena iz samih sinusov.

Pri t =T/4 znasa f(t) =1 in wt = (2u/T)(T/4) = /2, zato se vrsta
zapiSe kot n/4=1-1/3+1/5—-1/7 £... To je ze znana vrsta
(17.10). Povprecje kvadrata funkcije je 1 in je enako vsoti
kvadratov spektralnih koeficientov, iz ¢esar sledi

m? 1 1 (28.27)

—=1+=+=+..

8 32 52
Obe Stevilski vrsti lahko izracunamo in ugotovimo, da res drzita.
To je pokazatelj (Ce Ze ne dokaz), preko posledic, da je spektralna
analiza "skokovitih" funkcij veljavna. Na podoben nacin lahko
pridelamo mnoge zanimive Stevilske vrste.
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Kompleksna vrsta

Zvezni spekter

Izracun spektra

28.8 Kompleksne harmonicne vrste

Ce trigonometri¢ne funkcije zapi§emo v obliki cos wt =

(et + e~19)/2 in sin wt = (el“! — e~1!)/2i, se razvoj v harmoni¢no
vrsto zapiSe prav na kratko:

o (28.28)
fity=Re > A enet
n=—ow
AO =dy
1 _
Ap= 5 (an—1ibyp)

1
A= E (an+1ibyp)

iz Cesar sledi tudi

T (28.29)
A== [fieotdt, n=0,+1,%2...
T
0
in Se
T o (28.30)
— [fp2dt= > A2,
T
0 n=-—o

To je kompleksni zapis harmonicne vrste. Tak zapis je ugoden
zato, ker je integriranje eksponentnih funkcij, ceravno
kompleksnih, praviloma lazje od integriranja trigonometri¢nih
funkcij.

28.9 Harmonicni integrali

Kaj pa, ce funkcija ni periodi¢na, to je, Ce je njena perioda
neskonc¢na? Naj bo perioda T zelo dolga: pomislimo na enkraten
brenk na struno, ki se ponovi le vsako uro. Tedaj je osnovna
frekvenca wg = 21/T zelo majhna. Posamezne frekvence w = nwy
so zato razporejene zelo na gosto. Pricakujemo, da se amplitude
A, potem z naras¢anjem n le poc¢asi spreminjajo. Stevilo
spektralnih ¢rt dn na intervalu dw znasa dn = dw/wg. Vsota
amplitud na tem intervalu je A, dn = (A,/w,) dw . Definiramo
gostoto spektra kot A, /wo=A(w), pa lahko vsoto zapiSemo z
integralom:

® (28.31)
fit)=Re [ A(w)e“dw.

— 00

Gostoto zveznega spektra razberemo iz enacbe za diskretne
spektralne koeficiente. Periodo T zapiSemo kot 21m/wg, delimo obe
strani z wg in pridelamo
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Simetri¢na
transformacija

w (28.32)
A(w)=i [ fiye-“tdt.
2n

o]

Podobno dobimo Se povezavo

o ® (28.33)
- J frdt= [ |A(w)*dw.
21 o i
Realna funkcija f(t) in kompleksna funkcija A(w) sta torej
medsebojno povezani. ReCemo, da je ena harmonic¢na
transformacija druge. Tistim, ki radi posplosujejo in imajo radi
simetrijo, se ob tem porodi naslednja misel: zakaj ne bi bili obe
funkciji kompleksni in zakaj ne bi bil predintegralski faktor pri
obeh transformacijskih enacébah isti, najbolje kar enak ena? Ce
stisnemo zobe in proglasimo f(t) za kompleksno funkcijo f(t); ¢e
namesto w piSemo 2mv, torej dw = 2ndp; in Ce zapiSemo Se
20A(w) = B(v), s tem pridelamo par

® (28.34)

fy= [ B)e2m™tdp

Bw)= [ fitye2mtdt

o]

ter povezavo

* ® (28.35)
[ fwPrdt= [ 1Bw)2dv.

To je iskana transformacija v "unitarni" obliki. Zapisano gotovo
velja, ¢e fit) = (f(t), 0). Da pa velja $ir$e, nas prepricuje simetrija.
Pustimo se ji prepricati. ]



29

Premik kot puscica

Komponente premika

Dolzina in
usmerjenost premika

Vektorji in matrike

Premiki - Vektorji - Razteg in vsota - Enotni vektorji - Skalarni
produkt - Vektorski produkt - Dvojni produkti - Matrike - Posebne
matrike - Racunske operacije - Sistem linearnih enacb - Inverzna
matrika - Lastni vektorji - Diagonalizacija

29.1 Premiki

Clovek se iz kraja A lahko premakne v razliéne sosednje kraje B,
C, D itd. Vsak tak premik si predstavljamo kot ravno puscico iz
zaCetne toCke v kon¢no tocko. Zamisljena puscica ima dolzino in
smer. Puscico iz tocke A v tocko B, na primer, bomo oznacili z ryz.

Kako bi premik ryg opisali kvantitativno? V zacetni tocki A si
zamislimo primeren koordinatni kriz, recimo takega z vzhodno
(x), severno (y) in navpi¢no (z) osjo, in pogledamo, kaksne so
projekcije premika na te osi.

z Slika 29.1 Premik in njegove

komponente.

y
X

Projekcije premika na koordinatne osi znasajo x, y in z. Re¢emo,
da so to komponente premika v postavljenem koordinatnem
sistemu. Z njimi sta popolnoma doloceni dolzina in smer premika.
Za trojico komponent zato recemo, da reprezentirajo premik v
izbranem koordinatnem sistemu in zapiSemo na kratko (Ce
izpustimo oznako zacetne in konc¢ne tocke)

r=(xy,2). (29.1)

Dolzino premika oznac¢imo z r. Hipotenuzni izrek (8.4) in
definicije kotnih funkcij (15.13) povedo, da veljajo naslednje
povezave med komponentami ter velikostjo in usmeritvijo
premika:

r2=x2+y? + 22 (29.2)

p% = X2 + 2

X=pCOS @

y=psing

zZ=rcosf.
Poljubna tocka prostora je torej enolicno doloCena s kartezicnimi
koordinatami x, y, z; s cilindricnimi koordinatami ¢, p, z; ali s
sferi¢nimi koordinatami ¢, 0, r.
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sistema

Invarianca dolzine

Vektorji

29.2 Vektoriji

Koordinatni sistem smo usmerili po straneh neba. Kaj Ce sistem
zasucemo, recimo okrog navpic¢ne osi za kot ¢ v nasprotni smeri
urinega kazalca?

y Slika 29.2 Zasuk koordinatnega sistema.
y A Prikazan je zasuk okrog osi z. V
zavrtenem sistemu so komponente
vektorja spremenjene, vektor sam, kot
premik v prostoru, pa ostaja
X’ nespremenjen.

EEEEE CEEE TR

X

V zasukanem koordinatnem sistemu ima premik r komponente x',
y'in z'. Iz risbe razberemo, da velja med obojimi komponentami
naslednja povezava:

X'=+xCcos@+ysing (29.3)
y'=—xsing+ ycos g
Z'=z.

Sistem lahko zasuc¢emo tudi okrog kake druge osi - vzhodne,
severne ali poljubno nagnjene. Povezave med starimi in novimi
projekcijami so tedaj drugacne.

Ceprav so komponente preu¢evanega premika v razliénih
sistemih lahko razlicne, pa vendarle opisujejo isti premik.
Izhodis¢na in ciljna tocka lezita namrec relativno glede na ves
snovni svet enako, ne glede na to, na kateri del sveta ju
relativiziramo.

Dolzina premika mora biti v vseh koordinatnih sistemih enaka.
Pri zasukanem sistemu (recimo tistem okrog navpicne osi) se v to
prepricamo s kvadriranjem in sesStevanjem leve in desne polovice
transformacij (29.3). Dobiti moramo in tudi dobimo

X|2 +y|2+zl2=x2 +y2+22. (294:)

Velikosti in smeri v prostoru nimajo samo premiki, ampak tudi
druge preko njih definirane koli¢ine, na primer hitrost ali
pospesek ali sila. Rekli bomo, da so to vektorji. Vektorji so torej
koli¢ine, ki imajo poleg velikosti Se smer v prostoru. Premik je
njihov prototipni predstavnik. Vektorje bomo oznacevali s
poudarjenimi ¢rkami, na primer u, v, w. V komponentni obliki pa
bomo namesto oznak x, y, z raje pisali oznake 1, 2 in 3, na primer
u = (uy, uy, uz). Taksne sploSne vektorje si bomo predstavljali kar
kot premike. Z njimi ho¢emo tudi racunati, to je, razviti hocemo
vektorski racun (GIBBS).
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Razteg vektorja

Vsota vektorjev

Linearna kombinacija
vektorjev

Enotni vektoriji

29.3 Razteg in vsota

Sani, ki drsijo po ledu premo in enakomerno, opravijo v enotnem
Casu, recimo v 1 sekundi, nek premik. V daljSem casu pa
opravljeni premik "podaljSajo". To nas navede, da definiramo
"razteg" vektorja kot mnozenje vektorja s skalarjem:

Au = (Auj, Auy, Aus). (29.5)

Kadar je skalar negativen, se smer nastalega vektorja obrne.
Ocitno velja Au=ul in A(uu) = u(Au) = (Ap)u.

Ladja na morju opravi premik iz tocke A v toCko B in nato Se
premik iz tocke B v toCko C. S tem definira rezultantni premik iz
A v C. To nas navede, da definiramo vsoto dveh vektorjev takole:
na konec prvega vektorja nataknemo zacetek drugega, sestavljeni
vektor pa sega od zacetka prvega do konca drugega vektorja.
Alternativno lahko zacetek drugega vektorja premaknemo v
izhodisce prvega vektorja, sestavljeni vektor pa je enak diagonali
ustvarjenega paralelograma. To je Ze znano paralelogramsko
pravilo (9.7)

A Slika 29.3 Vsota dveh vektorjev. Prototip
u+v je sestevanje dveh premikov ali dveh sil
Ut Vp frmmsmmmmmmsmmsmnee o2 : po paralelogramskem pravilu.
v s
Vy |-, ! E
Ugfeerbers Homnnnn u
V1 U‘] u1+V1 -
Risba pokaze:
u+v=(u;+vy,uy+vy uz+vy). (29.6)

Vsota je oCitno komutativna in asociativna. Glede na produkt s
skalarjem pa je distributivna.

Mnozenje vektorja s skalarjem in seStevanje vektorjev lahko
zdruzimo v izraz Au + pv + vw. To je linearna kombinacija treh
vektorjev. Njen rezultat je seveda vektor. Ce trije vektorji med
seboj niso paroma vzporedni, lahko s primerno izbiro treh
skalarjev poustvarimo kakrSenkoli vektor.

29.4 Enotni vektoriji

Pa opremimo izhodi$ce koordinatnega sistema s tremi vektorji, ki
rastejo vzdolz vsake osi! Naj imajo ti vektorji dolzine 1. To so
enotni vektorji

e;=(1,0,0) (29.7)
e;=(0,1,0)
e;=(0,0,1).
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Racunanje z njimi

Zapis s
komponentami

Z njimi lahko poustvarimo kakrsenkoli vektor. Potrebni skalarni
koeficienti so kar enaki komponentam vektorja:

u=uie; +uze;+ uzes=> u;e;. (29.8)

3 Slika 29.4 Enotni vektoriji.

€3

e
Uy

Uz
;
Z uporabo enotnih vektorjev zapiSemo razteg vektorja kot
Au =213 uje;= > Ause; in vsoto dveh vektorjev kot
u+v=>3ue;+3ve;= > (u; +v;e;. Dosedanje racunanje z vektorji
lahko torej formalno prevedemo na ra¢unanje z relativnimi Stevili
in tremi enotnimi vektorji, pri Cemer se delamo, kot da so ti
navadni skalarji.

29.5 Skalarni produkt

Sila F, ki deluje na telo pod kotom ¢ glede na njegov premik s,
opravlja delo Fscos ¢. To nas navede, da definiramo skalarni
produkt dveh vektorjev:

U V=UvVCoSQ. (29.9)

Specialno za enotne vektorje velja, na primere;-e; =1, e;-e; =0
itd. Produkt dveh enakih enotnih vektorjev (med katerima je kot
0°) je enak 1. Produkt dveh razlicnih enotnih vektorjev (med
katerima je kot 90°) pa je enak 0.

Kako bi skalarni produkt zapisali s komponentami? Vsak vektor
zapiSemo z enotnimi vektorji in navzkrizno pomnozimo vse clene.
Potem upostevamo, kaj pomenijo nastali produkti enotnih
vektorjev (nic ali ena), in dobimo v komponentnem zapisu

u-v=uvy + uyvy + uzvs. (29.10)
Poseben primer nastane, ¢e mnozimo vektor s samim seboj.
Potem dobimo

u-u=u®+u?+uz?=u (29.11)

Skalarni produkt dveh vektorjev je skalar. Skalar je enak v
vsakem koordinatnem sistemu. To pomeni, da je skalarni produkt
invarianten glede na spremembo koordinatnega sistema.

Z racuni se prepricamo, da je skalarni produkt komutativen, ni
acociativen in je distributiven nad vsoto.
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29.6 Vektorski produkt

Sila F, ki deluje na drog pri razdalji r od njegove vrtilne tocke, in
sicer pod kotom ¢, izvaja navor Frsin ¢. To nas navede, da
definiramo vektorski produkt dveh vektorjev:

uXxv=uvsing-n, (29.12)

pri Cemer je n enotni vektor, pravokoten na ravnino obeh
vektorjev in usmerjen v smeri gibanja desnega vijaka, ko prvi
vektor zavrtimo proti drugemu.

uxv Slika 29.5 Vektorski produkt. Prototip je
A navor, ki ga ustvarjata sila in rocica.

Y

= U

Specialno za enotne vektorje velja, na primer e; X e; =0,

e; X e; = ej3 ipd. Produkt dveh enakih enotnih vektorjev (med
katerima je kot 0°) je enak 0. Produkt dveh razlicnih enotnih
vektorjev (med katerima je kot 90°) pa je enak tretjemu vektorju
s pozitivnim ali negativnim predznakom, kakor pac Ze pove
pravilo vijaka.

Tudi vektorski produkt hocemo zapisati s komponentami.
Ravnamo tako kot pri skalarnem produktu in dobimo

u X v=(Uyv3 — U3Vy, U3V] — U1V3, U1Vy — UVy) . (29.13)

Vektorski produkt dveh vektorjev je vektor. Z racuni se
prepricamo, da je antikomutativen u X v= —v X u, ni asociativen
in je distributiven nad vsoto.

29.7 Dvojni produkti

Ker je vektorski produkt vektor, se pojavi vprasanje, kaj se zgodi,
Ce ga pomnozimo Se z enim vektorjem, bodisi skalarno ali
vektorsko.

Produkt w- (u x v) poimenujemo skalarno vektorski produkt. Je
skalar. Izraz v oklepaju je Stevilsko enak ploS$cini paralelograma s
stranicama u in v in ima smer njegove normale. Skalarno
pomnozen s prvim faktorjem pa postane enak prostornini
paralelepipeda s stranicami u, v in w. Prostornina je neodvisna od
tega, kateri dve stranici dolocata bazo in katera doloca viSino.
Zato lahko pisemo tudi

w-(uxv)=(wxu)-v. (29.14)

Znaka za skalarni in vektorski produkt lahko torej zamenjamo, Ce
le obdrzimo vrstni red faktorjev.

25


pict3a/cross.gif
pict3a/cross.gif

26

Vektorsko vektorski
produkt

Preslikava vektorjev

Sorazmernostna
matrika

Produkt w x (u X v) poimenujemo vektorsko vektorski produkt. Je
vektor. Pravokoten je na smer tako prvega kot drugega
(oklepajnega) faktorja. To pomeni, da je koplanaren z vektorjema
v oklepaju. Racun s koordinatami pokaze:

wX(Uuxv)=u-(w-v)—v-(w-u). (29.15)

Rezultat je razlika koplanarnih vektorjev, pri cemer je vsak
skalarno pomnozen s skalarnim produktom preostalih dveh
vektorjev.

29.8 Matrike

Ko pomnozimo vektor x s skalarjem A, ga raztegnemo v vektor u.
Vsaka komponenta vektorja se pri tem raztegne enako: u; = Ax;.
Kaj pa, ¢e vsako komponento pomnozimo z drugacnim skalarjem:
u; = A;x;? Potem je nastali vektor ne samo raztegnjen, ampak tudi
zavrten. Z izbiro trojice A; je popolnoma doloceno, kaksen vektor
nastane iz poljubnega vhodnega vektorja: komponente novega
vektorja so sorazmerne istoleznim komponentam vhodnega
vektorja. NajsplosnejSo sorazmernost pa zapiSamo kot

ur =A11x1 +Ax2 +A3x3 (29.16)
Uy =An1x1 +Azx2 + Arzxs
us =A31X1 +A32X2 +A33X3 .

S koeficienti Aj; je preslikava vhodnih vektorjev v izhodne
popolnoma dolocena.

Zapisani sistem enacb ima na levi strani izhodni vektor in na
desni strani tablico koeficientov, "pomesano" z vhodnim
vektorjem. Morda lahko to zmesSnjavo nekako razcepimo na dva
lo¢ena dela? S srec¢no roko zapisemo takole

up| [A11Ai2Aiz| |x1 (29.17)
Uy |=|A21 Ay Az || X2
uz| |Az1 Az Azz| X3

in deklariramo, da sta oba zapisa ekvivalentna. S tem smo na
mah vpeljali: zapis vektorja kot stolpca; kvadratno tablico stevil,
matriko; in mnoZenje matrike z vektorjem. Komponento i
izhodnega vektorja dobimo, ko skalarno pomnozimo i-to vrstico
matrike z vhodnim stolpcem:

U= DA . (29.18)
Na kratko bomo vse skupaj zapisali kar
u=A-x. (29.19)

Matrika je torej operator, ki preslika en vektor v drugega; kaksna
natancno je preslikava, je pa seveda odvisno od konkretnih
elementov matrike. Poljubne matrike bomo oznacili s ¢rkami A,
B, C in podobno. Z njimi ho¢emo tudi racunati, to je, razviti
hoc¢emo matri¢ni racun (CAYLEY).
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29.9 Posebne matrike

Kaksna je matrika, ki katerikoli vhodni vektor preslika v enak
izhodni vektor?

100 (29.20)
I=010|
001

Pa tista, ki katerikoli vhodni vektor raztegne vzdolz treh osi za
faktorje A1, A, in A3?

A 00 (29.21)
D= 0A2 0l
0 043

Seveda so lahko vsi trije faktorji med seboj enaki. Tedaj se vektor
zgolj raztegne in ni¢ ne zavrti.

Kaj pa matrika, ki katerikoli vhodni vektor zavrti okrog osi 3 za
kot ¢ v nasprotni smeri urinega kazalca? Ocitno je taka matrika
opisana z zasukom koordinatnega sistema okrog osi 3 v smeri
urinega kazalca:

cos@ —sing 0 (29.22)
R;=|singp cospO|
0 01

Matriki, ki vrtita vektorje okrog drugih dveh osi, sta podobni.
Rotacijska matrika R; ima R;; =1, vse ostale elemente v i-ti vrstici
in i-tem stolpcu enake 0, Stirje preostali elementi pa vsebujejo ze
zapisano Cetverico sinusov in kosinusov s primernimi predznaki.

29.10 Racunske operacije

Produkt matrike s skalarjem definiramo tako, da raztegne
(seveda tudi skrci ali obrne) sicersnje izhodne vektorje:
(AA) -x=2A(A-x). Da to drzi, moramo vpeljati predpis

AA =B = Bjj=2Aj. (29.23)
Vsoto dveh matrik definiramo tako, da proizvede vsoto sicersnjih
posamicnih izhodnih vektorjev: (A+B)-x=A-x+ B -x. To je res,
Ce vpeljemo pravilo

A+B=C=C;=A;+B;. (29.24)
Produkt dveh matrik pa definiramo z zaporednim delovanjem
posamicnih matrik: (A-B)-x=A" (B -x). Da bi bilo to res, moramo
vpeljati dolocilo

A-B=C=C;j=3rAiBy. (29.25)
V produktni matriki je ij-ti element enak skalarnemu produktu
i-te vrstice prvega faktorja in j-tega stolpca drugega faktorja.

Pri raCunanju veljajo - z eno izjemo - enaki zakoni kot med
skalarji. Vsota je komutativna in asociativna. Produkt ni
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komutativen, a je asociativen. Produkt je distributiven nad vsoto.
Mnozenje s skalarjem je distributivno nad vsoto in asociativno s
katerimkoli faktorjem produkta.

29.11 Sistem linearnih enacb

Ce imamo podano sorazmernost A - x = u, lahko za vsak vhodni
vektor x izracunamo izhodni vektor u. Kaj pa, Ce je podan izhodni
vektor, kako potem izracunamo vhodnega? Ocitno moramo resiti
sistem treh linearnih enacb s tremi neznankami.

Sistem enacb se ne spremeni, ce zamenjamo dve vrstici; Ce
mnozimo vsak Clen v vrstici z istim skalarjem; ali ¢e k vrstici
pristejemo ali odStejemo drugo vrstico. Da bo manj pisanja,
zapiSemo sistem kar s koeficienti:

A1 A Az Uy (29.26)
Aj1 Az Agz Uy .
Az A3 Azz U3

To je "razSirjena" matrika, zlepek "prave" matrike in izhodnega
vektorja. Z nastetimi manipulacijami nad celotnimi vrsticami
poskuSamo pravo matriko preoblikovati v enotno matriko, pri
cemer se desni stolpec preoblikuje v iskano reSitev:

[A|ul-[1]x]. (29.27)
Preoblikovanje organiziramo takole

1. Na vrh postavimo vrstico, ki ima (absolutno) najvecji prvi
koeficient.

2. Vsako naslednjo vrstico delimo z njenim prvim ¢lenom (da
dobimo vodilno 1) ter pomnozimo z vodilnim ¢lenom prve vrstice,
nakar od nje odstejemo prvo vrstico. Tako dobimo vodilno 0.

3. Pokrijemo prvo vrstico in prvi stolpec in nadaljujemo, dokler ne
pridelamo matrike, ki ima pod diagonalo same 0.

4. Postopek ponovimo od spodaj navzgor, da dobimo diagonalno
matriko.

Vsako vrstico delimo z diagonalnim ¢lenom, da nastane enotna
matrika.

Ker na vrh prenasamo vrstice z najvecjim vodilnimi ¢leni, se
izogibamo deljenju z majhnimi Stevili in s tem minimiziramo
zaokrozitvene napake.

29.12 Inverzna matrika

Matri¢na enacba A -x =u je po obliki enaka kot skalarna enacba
Ax = u. Kako pa resimo slednjo? Tako, da jo na obeh straneh
mnozimo z 1/A, to je s takim Stevilom, da postane koeficient pred
neznanko enak ena. Pa storimo tako tudi z matricno enacbo!
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Sistem A - x = u pomnozimo na obeh straneh s tako, Se neznano
matriko A~1, da velja

A 1A x=Ix=A"1-u. (29.28)

S tem je sistem formalno reSen. Kako pa bi dolocili to inverzno
matriko? Ker velja A-A~! =1, zapi$imo razSirjeno matriko

A1 A1pA13 100 (29.29)
Ay Ay Ay 010,

Na enak nacin kot pri reSevanju sistema enacb pretvorimo levo
matriko v enotno matriko, pri cemer na desni nastane inverzna
matrika

[A|IT-[1|A71]. (29.30)
Ko z njo pomnozimo izhodni vektor, dobimo iskano resitev.

Sistem enacb lahko torej resimo neposredno ali po ovinku, z
inverzno matriko. HitrejSa je prva pot. Kadar pa je treba resiti
vec sistemov enacb, ki se med seboj locijo le po izhodnem
stolpcu, je hitrejSa druga pot.

Za posebne matrike dobimo naslednje inverzne matrike. Enotna
matrika se invertira v enotno matriko. Diagonalna matrika se
invertira v diagonalno matriko, katere elementi so enaki
reciproc¢nim vrednostim originalnih elementov. Katerakoli
rotacijska matrika pa se invertira v takSno matriko, katere stolpci
so enaki originalnim vrsticam; reCemo, da je to transponirana
matrika R~1 =RT.

29.13 Lastni vektorji

Matrika je operator, ki pozira vhodne vektorje in iz njih izdeluje
izhodne vektorje. Slednji so v sploSnem zavrteni in raztegnjeni.
Pojavi se vprasanje, ali kateri od njih morda niso zavrteni, ampak
samo raztegnjeni. Take vektorje bomo poimenovali lastne
vektorje matrike. Faktorje, za katere so ti vektorji raztegnjeni, pa
bomo imenovali lastne vrednosti matrike.

Identicna matrika I spremeni vhodni vektor (uy, uy, u3) v izhodni
vektor (uj, Uy, uz). Vektor ni ne zasukan ne raztegnjen, ampak
popolnoma enak vhodnemu. Matrika ima torej neskon¢no mnogo
lastnih vektorjev. Vse pripadajoce lastne vrednosti so enake 1.

Diagonalna matrika D spremeni vhodni vektor (uq, uy, uz) v
izhodnega (A u;, Ayuy, Asuz). Izhodni vektor je torej raztegnjen in
zasukan. Vektor (uy, 0, 0) se spremeni v (A uy, 0, 0); ta vektor je
zgolj raztegnjen in ni ni¢ zasukan. Podobno velja za vektorja

(0, up, 0) in (0, 0, u3). Vektor (u;, 0, 0) ima lahko poljubno vrednost
komponente u;, pa je Se zmeraj lastni vektor. Da se izognemo
taksSni mnogoli¢nosti, ga normiramo, da znasa njegova dolZina 1,
torej: (1,0, 0). (To naredimo tako, da vsako komponento delimo z
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absolutno vrednostjo vektorja.) Podobno naredimo z ostalima
dvema lastnima vektorjema. Normiranje vektorjev ne spremeni
njihovih lastnih vrednosti, ki znaSajo A1, A, in As.

Rotacijska matrika R3 zavrti vsak vektor razen tistega, ki kaze
vzdolz osi 3. To je - v normirani obliki - vektor (0, 0, 1). Njegova
lastna vrednost je 1. Podobno velja tudi za drugi dve rotacijski
matriki.

Povezava med dvema vektorjema v naravi poteka dostikrat v kosu
snovi. Dober primer je atom v kristalu, ki je na okoliSnje atome
privezan s tremi "vzmetmi" v treh pravokotnih smereh. Ce deluje
na atom zunanja sila F vzdolz kaksne vzmeti, se atom premakne v
smeri sile za premik x. Za majhne sile velja F = kx. Ce pa deluje
sila poSevno in vzmeti niso enako moc¢ne, nastali premik ni vec
vzporeden s silo. Za majhne sile velja F = k- x. Vektor sile torej
ustvarja na atomu vektor premika. Lahko tudi recemo, da atom
preslikuje vhodni vektor (silo) v izhodni vektor (premik). V
nekaterih snoveh je izhodni vektor zmeraj vzporeden z vhodnim
vektorjem, ne glede na to, kako je slednji usmerjen. V drugih
snoveh pa je bolj ali manj poSeven. Le vzdolZ nekaterih smeri je
usmerjen kolinearno. Atom in njegove vezi s sosedi v snovi torej
dolo¢ajo, kje potekajo te osi. To so glavne osi preslikave. Ce kos
snovi obracamo, se z njim obracajo tudi glavne osi.

2 Slika 29.6 Sorazmernost vektorjev. Prototip
O X je premik atoma (x), vezanega v kristalu, ki
ga povzrocdi sila (F) nanj. Osi so usmerjene
. F : vzdolz atomskih vezi z okolico.
2 SRERED :
Fi k1Xq

Kosu snovi je prav vseeno, v kakSnem opazovalnem sistemu
opisujemo njegovo aktivnost, torej lokalno preslikovanje
vektorjev. Ce je opazovalni sistem tak, da njegove osi sovpadajo z
glavnimi osmi, je preslikava vektorjev opisana posebno
preprosto - z diagonalno matriko. Lastni vektorji pa imajo po eno
samo nenicelno komponento. Kadar pa je opazovalni sistem
zasukan kako drugace, se v njem tako vektorji kot matrika
zapisejo v "zasukani" obliki. Diagonalna matrika dobi
nediagonalne elemente, lastni vektorji pa dobijo ve¢ nenicelnih
komponent.

Kako zapisemo enacbo u =D - x v koordinatnem sistemu,
zasukanem okrog ene izmed glavnih 0si? Na enacbo delujmo z
ustrezno rotacijsko matriko R-u=R-D-x=R-D-I-x. Enotno
matriko zapiSemo kot I=R~1-R=RT-R, pa dobimo
(R-u)=(R-D-R")-(R-x). Sorazmernostna matrika R-D-RT=A je
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simetricna, to je, Aj=Aj;. Lastni vektorji "zasukane" simetri¢ne
matrike so o¢itno enaki "zasukanim" lastnim vektorjem prvotne
diagonalne matrike. Lastne vrednosti obeh so pa enake.

29.14 Diagonalizacija

Iz povedanega sklepamo, da lahko vsako simetri¢cno matriko
preoblikujemo nazaj v diagonalno matriko in s tem najdemo njene
lastne vektorje in lastne vrednosti. Matriko je treba "le" obdelati
s primernimi rotacijskimi matrikami.

Rotacijsko matriko, ki ima diagonalna elementa R,,=Rg, =

cos @ = ¢ ter izvendiagonalna elementa R,;=—R,,= sin@p=s,
oznac¢imo kot R,,. Transformacija Rp,‘A - RT,, izdela matriko A,
ki je enaka izvorni matriki s spremenjenima vrsticama p in q ter
stolpcema p in q. Izbrati Zelimo tak$no rotacijsko matriko, torej
taksni vrednosti c in s, da bo element A, postavljen na nic.

Slika 29.7 Diagonalizacija matrike s primernim

I I
- —0O——— s — .
P-C \ N vrtenjem.
% | %
q—-S C
I [
p q

—

Transformacijski izraz mnoZzimo po komponentah in upostevamo
simetrijo, pa dobimo eksplicitne enaCbe za A", A'qq, A'rp (r# p),
A'rq(r#q) in A'y,, vse kot funkcije brezcrtastih elementov in (Se
neznanih) vrednosti c in s. Postavimo A',; =0, iz Cesar sledi
tan2¢ =2A,./(Aqq —App). S tem sta torej doloCeni obe vrednosti ¢
in s, z njima rotacijska matrika R, in z njo transformirana

matrika A', ki ima element A',, postavljen na nic.

Diagonalizacija poteka takole. V izvorni matriki A poiSCemo
najvecji element A,, nad diagonalo, z njim doloCimo rotacijsko
matriko Ry, ter z njeno pomocjo izracunamo novo matriko A’', ki
ima ustrezen element postavljen na ni¢. Pri tem se nekateri
preostali elementi spremenijo. Postopek ponavljamo na novi
matriki, dokler ta ne postane diagonalna. Tako dobimo lastne
vrednosti. Lastne vektorje pa potem doloc¢imo iz definicijske
enacbe A - x = Ax, ki jo zapiSemo v obliki (A — Al) - x = 0. Sistem
resimo za vsak A na ze znani nacin.

Tako. Uspeli smo diagonalizirati simetricno matriko, ki opisuje
linearno odvisnost dveh vektorjev v naravi. Diagonalizacijo

drugih tipov matrik in probleme, povezane s tem, pa prepustimo
drugim. OJ
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Hodograf vektorja

Odvod in diferencial

Veckratne funkcije

Vektorske funkcije skalarja - Vektorski diferencial in integral -
Skalarne funkcije vec spremenljivk - Parcialni odvodi - Totalni
diferencial - Verizno odvajanje - Razvoj v potenc¢no vrsto -
Maksimum in minimum - Vezani ekstremi - Ploscinski integrali -
Prostorninski integrali - Veckratni integrali

30.1 Vektorske funkcije skalarja

Vektorji so stalni ali se s Casom spreminjajo. TakSen je, na primer,
vektor iz srediSca Zemlje do izbrane tocke na njenem povrsju:
vrti se glede na zvezde. V koordinatnem sistemu, ki ima os z
usmerjeno vzdolz zemeljske vrtilne osi in 0os x usmerjeno proti
tocki Gama na nebesnem ekvatorju, velja

r=(Rsinfcoswt, Rsinfsin wt, Rsin ). S tem smo dobili prototip
za splosno vektorsko funkcijo skalarnega argumenta:

u(t) = [ua(t), ua(t), us(®)]. (30.1)

Vektorsko funkcijo si nazorno predstavimo kot krivuljo, ki jo
zariSe konica vektorja, ko se s "Casom" obraca in razteguje
oziroma krci. Seveda morajo biti na krivuljo nanesene ustrezne
casovne oznake. Tako sliko imenujemo hodograf vektorja.

1 2 Slika 30.1 Hodograf vektorja.
3

Pojavi se vprasanje, ali lahko vektorsko funkcijo odvajamo in
integriramo, oziroma kaksSen pomen, ¢e sploh, imata ti dve
operaciji za vektorje.

30.2 Vektorski diferencial in integral
Odvod in diferencial definiramo po vzoru skalarnih funkcij kot
u(t+ dt) — u(t) (30.2)
m

dt

u =

dt-0
du=u'-dt.
Diferencial du je tangentni prirastek na hodografu vektorja. Pri
majhni spremembi argumenta je priblizno enak pravi spremembi

vektorja. Tako definiran odvod je tudi vektorska funkcija in jo
lahko nadalje odvajamo. Drugi odvod oznacimo d2u/dt?=u".
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Razvoj v poten¢no
vrsto

Integral

Slika 30.2 Sprememba in diferencial
(tangentna sprememba) vektorja.

Iz definicij trivialno sledijo zapisi v komponentah:

u'=(uy', up', us') (30.3)
du = (duq, duy, dus).

Za vektorske funkcije veljajo ista pravila odvajanja kot za
skalarno funkcijo. Tako odvajamo vsoto, vse vrste produktov (s
skalarno konstanto, s skalarno funkcijo, skalarni produkt in
vektorski produkt) ter posredno skalarno funkcijo.

Razvoj v potencno vrsto izvedemo tako kot pri skalarni funkciji.
Velja:

| ' 4
uty=u()+ 20 WO o, (30.4)
1! 2!
oziroma
u(to + h) =u(ty) + ul(fO) h+ uz('tO) h2+ .. (30.5)

Oba razvoja seveda lahko zapiSemo tudi v koordinatah. Vsaka
vektorska enacCba pri tem razpade na tri skalarne enacbe.

Celotna sprememba vektorja je enaka limitni vsoti njegovih
diferencialnih sprememb; vektor iz konice zaCetnega vektorja v
konico kon¢nega vektorja znasa

u=[wdt=udt [uydt, [usdt). (30.6)

Ce je konéni vektor enak zadetnemu, je oéitno integral enak nié.
Ker so pravila odvajanja "standardna", so takSna tudi pravila za
integriranje.

30.3 Skalarne funkcije ve¢ spremenljivk

Skalarne funkcije so lahko odvisne od ve¢ spremenljivk, ne le od
ene. Zgled je recimo prostornina valja, ki je odvisna od njegovega
radija in viSine: V =mr?h. Ali pa prostornina zraka v valju z batom,
ki je pod pritiskom in potopljen v toplotno kopel: V=RT/p. In,
seveda, najbolj nazorna odvisnost od vseh: viSina kakSne ploskve
nad ravnino, na primer polkrozne kupole nad tlemi:

h? =R? — (x? + y?).
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Vse tovrstne funkcijo dveh argumentov zapiSemo v skupni obliki
u=f(x,y) ali kar

u=u(x,y). (30.7)
Njihov graf si lahko nazorno predstavljamo kot ploskev nad

ravnino. Funkcije treh in ve¢ spremenljivk zapiSemo podobno, ne
moremo pa si jih ve¢ predstavljati kot ploskve.

u

Slika 30.3 Ploskovni graf.

u(x.y)

g

X

30.4 Parcialni odvodi

Poglejmo funkcijo u v izbrani tocki (x, y)! Tam ima funkcija neko
vrednost, namreé u = u(x, y). Ce se sedaj premaknemo v kaksno
sosednjo tocko, se vrednost funkcije spremeni. Posebej sta
odlikovana dva premika: pri prvem se premaknemo v tocko

(x + dx, y) in pri drugem v tocko (x, y + dy). KaksSna je sprememba
funkcije pri prvem "vzdolznem" premiku, povemo s parcialnim
odvodom

(30.8)

u(x+dx,y) —u(x,y)
m .

Uy =
dx

dx-0

Ravnamo torej natanko tako, kot pri funkciji enega samega
argumenta, ko smo definirali njen navadni odvod. Za razliko od
prej pa ne oznacimo odvoda kot u', marvec¢ kot u,. Ker ima
funkcija dva argumenta, je pac treba nekako povedati, za
katerega velja odvajanje. Ustrezni odvod po drugem argumentu
pa zapiSemo kot u,,.

Parcialne odvode izracunavamo prav tako kot navadne. Saj je
funkcija vec¢ spremenljivk, ki jo odvajamo po eni sami
spremenljivki, pri Cemer drzimo vse druge konstantne, v tem
pogledu nerazlocljiva od funkcije ene same spremenljivke. Veljajo
vsa pravila odvajanja. Izracunani odvod je spet funkcija in jo
lahko znova odvajamo, bodisi po prvem, bodisi po drugem
argumentu. Tako pridelamo odvode u,y, uyy, Uy, in uy,. Zadnja dva
sta med seboj enaka.

30.5 Totalni diferencial

Parcialni odvodi povedo, koliko se funkcija spremeni, ce
spremenimo kakega od njenih argumentov, pri cemer druge
drzimo konstantne. Koliko pa se funkcija spremeni, ce
spremenimo vse argumente?
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Verizno pravilo

Slika 30.4 Totalni diferencial funkcije.
Visinski prirastek tangentne ravnine je
enak vsoti robnih prirastkov. Funkcija je
zelena, tangentna ravnina modra in
diferenciali rdeci.

Risba pokaze, da velja

du = (du)y + (du)y = u,dx + u,dy. (30.9)
Recemo, da je du totalni diferencial funkcije. Z njim zapiSemo
parcialne odvode na naslednji nacin:

(du)x _du (30.10)

=— =Uy.
dx X

Oznaki dx in dy torej pomenita isto kot dx in dy, namrec¢
diferencial neodvisne spremenljivke. Oznaka du pa pomeni
diferencial funkcije, kadar se spreminja zgolj ena izmed
neodvisnih spremenljivk. Oznaka ne pove, katera spremenljivka
je to. Velja dogovor, da je to tista, nad katere diferencialom je
zapisan. Pri rokovanju z diferenciali bomo morali na to paziti. V
izrazu du = (au/ax)dx + (du/dy)dy, na primer, ne smemo KkrajSati
diferencialov dx in dx ter dy in dy, ker s tem pridelamo izraz

du =du + du, v katerem je izgubljena informacija o merodajnih
spremenljivkah. Zato oba diferenciala du nista med seboj enaka
(Ceravno sta enako zapisana) in ju ne smemo sesteti v 20u.

30.6 Verizno odvajanje

V funkciji u = u(x, y) je vsaka neodvisna spremenljivka lahko
funkcija tretje spremenljivke t, torej x = x(t) in y = y(t). Zgled je
plin pod zunanjim tlakom in temperaturo, ki se spreminjata s
casom. Pojavi se vprasanje, kako izracunati odvod du/dt.
Diferencial du delimo z dt in dobimo:
du_au dx+au dy (30.11)
dt  axdt oaydt’
To je verizno pravilo odvajanja.
Kaj pa, Ce je vsaka neodvisna spremenljivka funkcija dveh, ne
ene, spremenljivke: x = x(t, s) in y = y(t, s)? Ravnamo tako kot prej:
ou  du ax N au ay (30.12)
ot ox at a9y ot

in podobno za du/ds. Sedaj vidimo, kakSna moc se skriva v
pametni notaciji!


pict3a/totdif.gif
pict3a/totdif.gif

Implicitno odvajanje

Posredni razvoj

Operatorski zapis

Prvi odvod

Drugi odvod

Funkcija dveh spremenljivk je lahko podana tudi v implicitni
obliki F(x, y, u(x,y)) = 0. Ce gre, iz nje izrazimo u = u(x, y) in
izraCunamo njene parcialne odvode. Lahko pa ravnamo drugace.
Izraz F razumemo kot funkcijo treh spremenljivk, od katerih sta
dve med seboj neodvisni, tretja pa je odvisna od njiju. Enacbo na
obeh straneh odvajamo po veriznem pravilu na x, pri Cemer
upostevamo dx/dx =1 in 9y/ax = 0:

au (30.13)
Fx,yuy=0=F,+F, a— =0.
X

Sledi ou/dx = — F,/F,. Podobno izracunamo tudi odvod du/dy.

30.7 Razvoj v potencno vrsto

Tudi funkcijo dveh spremenljivk hocemo razviti v poten¢no vrsto
okrog tocke (0, 0). Funkcijo zapiSemo kot

u(x, y) =u(x(t), y(t)) = u(t) in postavimo x(t) = at in y(t) = Bt. Seveda
velja razvoj v vrsto u(t) = u(0) + u't+ 1/2 - u"t? + ... Nato
izraCunamo odvod u' = du/dt po veriznem pravilu, pri Cemer
upostevamo dx/dt = a in dy/dt = 8. Podobno izracunamo drugi
odvod u" = d?u/dt?. Dobljena odvoda vstavimo v vrsto in
pridelamo

u(x,y)=u(0,0) + (30.14)

1
Xit Yuy+ o (CUpx + 2XYUyy + Y2Uyy) + ...

Odvodi so vsi racunani v tocki (0, 0). Seveda lahko funkcijo
razvijemo tudi okrog kake druge tocke (a, b). Tedaj velja, v
polepsSanem zapisu,

u(a+x,b+y)=u(a,b) + (30.15)
i(xi+y—)u+l(xi+yi)2u+

1! ox ay 21 ax ay

Koeficienti so odvisni le od vrednosti funkcije in njenih parcialnih
odvodov v tocki (a, b). ViSje parcialne odvode smo zapisali na
kratko kot "potence". Izraz (8/0x)?, na primer, pomeni 9%/dx2, to je
drugi odvod.

30.8 Maksimum in minimum

Hribi imajo svoje vrhove in globeli. To so njihovi lokalni ekstremi.
Ekstremi so lahko samo v tockah, kjer sta oba parcialna odvoda
uy in u;, enaka ni¢. Ugotoviti je treba Se, ali gre v takih
stacionarnih tockah za maksimum ali minimum ali morda za
sedlo.

Naj bo stacionarna tocka (a, b). Navpicni presek u(x, b) skoznjo je
funkcija zgolj ene spremenljivke. Kot vemo, ima taka funkcija

maksimum, ako je njen drugi odvod negativen, in minimum, ako
je drugi odvod pozitiven. Podobno velja za funkcijo u(a, y). Tako
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Kriterij za ekstrem

Presek ploskve

Sovpad tangent

lahko Ze recemo: v maksimumu morata biti oba odvoda u,, in Uy
negativna in v minimumu pozitivna. Toda to Se ni dovolj. Drugi
odvod v katerikoli smeri, ne zgolj v smeri koordinatnih osi, mora
biti negativen (v maksimu) oziroma pozitiven (v minimumu).

Okrog stacionarne tocke razvijemo funkcijo v potencno vrsto do
kvadratnih ¢lenov, pri cemer postavimo oba prva odvoda na nic.
Dobimo, da je u(a + h, b + k) enako

u(a, b) + 1/2 - (uxx h? + 2uyy, hk + uy, k?). Da bo v tocki maksimum,
mora biti drugi ¢len negativen za vsak h in k. Za minimum pa
mora biti ta ¢len pozitiven. Da bo to res, mora Cetverica drugih
odvodov zadoscati dolocenemu kriteriju. KakSen je ta kriterij?

Drugi ¢len (brez faktorja 1/2) zapiSemo v taki obliki, da se
znebimo Clena z meSanim faktorjem hk:

Q=A[(h + Bk/A)? + (CA — B%)k?/A?]. Pri tem smo druge odvode
zaradi kratkosti oznacili s ¢rkami A, B in C. Pri pozitivnem A je
koli¢ina Q za vsak h in k pozitivna, ¢e je le CA — B?>0. Pri
negativnem A pa je koli¢ina Q vseskozi negativna pri istem
pogoju. Iskani pogoj za ekstrem je torej

U=Max = Uy <0, Uyy < 0in Uylyy — Uyy? >0 (30.16)
U =min = Uy >0, Uy, > 01N U Uy, — Uy? > 0. (30.17)

Recemo, da je to diskriminanta drugih odvodov.

30.9 Vezani ekstremi

Hribovje v mislih prerezemo z navpi¢no ravnino v smeri sever-jug
pri koordinati x = a, ali pa v smeri vzhod-zahod pri koordinati
y=Db. Nastaneta ravninski krivulji u=u(a, y) ali u=u(x, b). Kje
ima taka krivulja ekstreme, ze znamo dolociti. Kaj pa, Ce se po
hribih vije cesta, katere talne koordinate so opisane z enacbho,
bodisi eksplicitno ali implicitno? Kje na cesti so njeni ekstremi?
Za splosno funkcijo u = u(x, y) zelimo torej najti ekstreme, ki
zadoS$cajo dodatnemu pogoju

p(x,y)=0. (30.18)
RecCemo, da so to vezani ekstremi.

Slika 30.5 Vezani ekstrem. Ploskev je
podana z izohipsami. V ekstremni
tocki je tangenta na krivuljo tudi
tangenta na lokalno izohipso.

u = const

¢=0

Slika kaze naslednje. Ko se premikamo po krivulji ¢ =0,
dozivljamo razli¢ne vrednosti u. Tam, kjer naletimo na ekstrem,
sta tangenti na ¢ in u enaki: u,/u, = ¢,/¢,. Drugace povedano:
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ux+Ap,=0 (30.19)
uy+Ap,=0,

pri Cemer je A (Se neznani) sorazmernostni faktor med odvodi.
Zapisani enacbi in pogoj ¢ = 0 tvorijo sistem treh enacb s tremi
neznankami x, y in A. Njegova reSitev nam da stacionarne tocke.
Ali so to maksimumi ali minimumi, pa pove diskriminanta drugih
odvodov na ze znani nacin.

30.10 Ploscinski integrali

Funkcija u = u(x, y) lahko opisuje tudi porazdelitev mase ali
elektricnega naboja po ravnini: u =dm/dS ali u=de/dS. Masa (ali
naboj), ki je naloZena na dveh lo¢enih ploskovnih elementih dS,
se seSteva. ReCemo, da je ekstenzivna kolic¢ina. Za temperaturo,
na primer, pa to ne velja. Pravimo, da je intenzivna kolicina. Naj
bo torej U ekstenzivna koli¢ina in u = dU/dS njena ploskovna
gostota. Nad izbranim ravninskim obmoc¢jem je potem
nakopicena tolikSna limitna vsota:

U=Jfuds. (30.20)

Kako naj izraCunamo zapisani integral? Naj bo ravninsko
podrocje pravokotnik [a, b] X [¢, d]. Vzdolzno in precno ga
razrezemo v ozke trakove. Tako dobimo plosScinske elemente
dS =dxdy.

Ya Slika 30.6 Ploscinski elementi v kartezi¢nih
koordinatah. Integracija poteka najprej po
dx vrsticah in nato po stolpcih oziroma obratno.
dy
X

Potem integriramo po vsakem pasu vzdolZ smeri x, pri Cemer
obravnavamo y kot parameter; dobimo delne vsote

AU(y) = [ u(x, y) dx. Nato integriramo dobljene vsote vzdolz smeri
y: U= [AU(y)dy. Seveda lahko integriramo tudi obrnjeno: najprej
vzdolz osi y in nato vzdolz osi x. Velja torej

d b b d (30.21)
U= [[fudxdy= [dy [udx= [ dx [udy.
C a a C

Kadar definicijsko obmocje funkcije ni pravokotnik, ampak je
krivoc¢rtni lik, raCunamo z ustreznim spremenljivim intervalom
la(y), b(y)] ali [e(x), d(X)].

Posebno lep krivocrten tloris je tak, ki ima obliko kroga okoli
izhodisc¢a. V tem primeru ga je smiselno razrezati v ploskovne
elemente z radialnimi premicami ¢ = const in s koncentri¢nimi
krogi p = const.
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Razcep integrala

Cilindri¢ni razcep

Slika 30.7 Ploscinski elementi v polarnih
koordinatah. Razcep je primeren za gostoto

u(p, @).

Elementi, ki jih tako pridelamo, imajo plosc¢ine dS =dp-pdeg.
Ploskovna gostota na teh elementih mora biti podana kot u(p, ¢).
Skupna ekstenzivna koli¢ina tedaj znasSa

U= [[updpde. (30.22)

Integriramo po ustreznem "pravokotnem" podrocju, recimo
[0,R] % [0, 2m].

Posebej odlikovana ekstenzivna kolic¢ina, ki jo lahko nalozimo na
ploskovni element dS, je prostornina prizme dV nad njim.
Ploskovna gostota je v tem primeru kar viSina ploskve h. Integral
U= fudS potem pomeni V= [hdS. Tako racunamo prostornine
teles, ki jih zamejujejo krovne ploskve. Ce ima "krovna" ploskev
negativno visino, torej Ce lezi pod koordinatno ravnino, je
izraCunana prostornina negativna.

30.11 Prostorninski integrali

Ekstenzivna kolicina je lahko porazdeljene tudi po prostoru. Tedaj
jo pac integriramo tam in sicer natanko tako, kot po ravnini:

U= fudv. (30.23)

Ce ima preuéevani prostor obliko kvadra, ga razkosamo na
drobne kocke dV =dx-dy-dz in integriramo.

Z) dy Slika 30.8 Prostorninski elementi v kartezi¢nih
E}*‘ dz koordinatah. Integracija poteka po Sirini, globini in
/ visini v tem ali kakem drugem vrstnem redu.
J
X

Integriramo po ustreznem kvadru, recimo po [0, a] X [0, b] X [0, c]:
U= [[[udxdydz. (30.24)

Cilindri¢ni prostor je bolje razkosati na prostorninske elemente
dV=dp-pde-dz.
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7z A Slika 30.9 Prostorninski elementi v
cilindri¢nih koordinatah. Razcep je primeren
za gostoto u(p, ¢, 2).

dz

_4—pdo

dp

; P

Integriramo po potrebnem "kvadru", recimo
[0,R]Ix [0, 2] x [0, H]:

U=[[[updpdedz. (30.25)

Krogelni prostor pa je naravno razkosati na elemente
dV=dr-rsinfde-rdo.

z Slika 30.10 Prostorninski elementi v
krogelnih koordinatah. Razcep je primeren za
gostoto u(r, @, 0).

rdoe
dr

rsin® de
y

Integriramo po "kvadru", recimo [0, R] X [0, 2i] X [0, i1]:

U= [[fur?sin6drdede. (30.26)

30.12 Veckratni integrali

Poleg ekstenzivnih koli¢in, ki so porazdeljene po ravnini ali
prostoru, poznamo tudi take, ki so porazdeljene po prostorskem
kotu, na primer svetilnost I =dP/dQ. V tem primeru ne
integriramo po ravnini, ampak po kotu dQ = d¢d6.

Nasploh velja, da lahko integriramo kakrsnokoli ekstenzivno
skalarno funkcijo, ki je porazdeljena po eno-, dvo- ali
vec¢dimenzionalnem konfiguracijskem prostoru. Ce integriramo
po enodimenzionalnem prostoru, imamo opravka z navadnim
integralom, ¢e po vecdimenzionalnem, pa z veCkratnim
integralom. [J
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Koordinate

Enacba premice

Krivulje in ploskve

Krivulje in ploskve - Premica - Kroznica - Elipsa - Parabola -
Vektorski opis krivulj - Lo¢na dolzina - Lokalne lastnosti krivulj -
Osnovne ploskve - Vektorski opis ploskev - Krivulje na ploskvi -
Lokalne lastnosti ploskev - Zemljemerstvo na krogli - Zemljepisne
projekcije - Polarna stereografska - Ekvatorska valjna konformna -
Stoz¢na konformna - Druge projekcije

31.1 Krivulje in ploskve

Veckrat smo omenili, da enacba y = y(x) opisuje ravninsko
krivuljo, ¢e sta spremenljivki x in y dolzinski koordinati. Enacba
z=2(x,y) pa na podoben nadin opisuje ploskev v prostoru. Cas je,
da se opisa krivulj in ploskev lotimo sistematicno (DESCARTES,
GAUSS).

Osnova za opis krivulj in ploskev z enacbami je "poimenovanje"
vsake prostorske tocke z njenimi koordinatami (x, y, z) v poljubno
izbranem koordinatnem sistemu, katerega osi so med seboj
pravokotne in umerjene v enakih dolzinskih enotah. Recemo, da
so to kartezi¢ne koordinate. Razdalja med dvema tockama potem
znasa, po hipotenuznem izreku,

s2=(xa—x1)2+ (V2 —y1)? + (22 — 21)2. (31.1)

Pametno je sistem izbrati tako, da bo enacba krivulje ali ploskve v
njem ¢im bolj preprosta.

31.2 Premica

Najpreprostejsa "krivulja" je premica. UteleSa jo, na primer,
brazda ladje, ki pluje po morju v stalni smeri ¢ glede na sever. Pot
ne sme biti predolga, da se ne pokaZe zakrivljenost morja.
Koordinatni sistem postavimo v zacetno pristaniSce, ordinatno os
y usmerimo proti severu in abscisno os x proti vzhodu. Enacba
brazde-premice se potem glasi

y=kx (31.2)
k =tan ¢.

y Slika 31.1 Premica. Najkraj$a pot med dvema
to¢kama v prostoru.

Smerni koeficient k ima nazoren pomen: to je prirast ordinatne
razdalje na prirast abscisne razdalje. Ce je koeficient pozitiven,
premica narasca, sicer upada.
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Premico, ki ne gre skozi izhodiS¢e, ampak seka ordinatno os v yy,
opiSemo kot (y — yo) = kx. Ce seka abscisno os v tocki x,, velja
y=k(x —xq). Ako pa gre skozi tocko (xg, yo), se enacba premice
glasi (y — yo) = k(x — xo).

Pri ladji, ki pluje z enakomerno hitrostjo, sta njeni koordinati
enoli¢no doloceni s pretecenim casom t:

x=At (31.3)
y=Bt.

Ladja zariSe isto premico ne glede na to, kako hitro pluje oziroma
kako hitro tecCe Cas (to je ura, ki jo imamo). Zato bomo opustili
casovne enote in uporabljali kar brezdimenzijska Stevila. TakSen
"Cas", ki zavzema vrednosti na intervalu (—«, +«), bomo
poimenovali parameterski ¢as oziroma parameter in ga
oznacevali kar s t. Vsaki vrednosti parametra ustreza natanko
ena vrednost koordinat. Primerjava parametricnega in
eksplicitnega zapisa pove k = B/A.

31.3 Kroznica

Iz sive davnine je poznana kroznica: krivulja, katere vsaka toCka
je enako oddaljena od izbrane tocke, sredi$¢a. Ze stara ljudstva
so jo risala s kolickom in vrvico pri gradnji kolib in obzornih
krogov. Mi bomo postavili koordinatni sistem v sredisce kroga.
Potem pove hipotenuzni izrek

X2+ y?=r. (31.4)
V translatorno zamaknjenem koordinatnem sistemu pa ima

sredisce kroga koordinati (xg, Vo). Tedaj o¢itno velja
(X = x0)? + (y = yo)* =12

y Slika 31.2 Kroznica. Vsaka njena tocka je
enako oddaljena od izbrane tocke, sredisca.

Tudi kroznico lahko opiSemo parametri¢cno. Spomnimo se
enakomernega krozenja nihala (18.14), pa takoj uvidimo

xX=rcost (31.5)
y=rsint,

pri Cemer lezi parameter t na intervalu [0,21m].
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31.4 Elipsa

Pre¢no presekano bambusovo steblo ima rob v obliki kroznice. Ce
ga presekamo posSevno, pa je rob "raztegnjena" kroznica, elipsa.
Kako bi tako elipso narisali na tleh? Prej ali slej - morda kot
kaksSen kraljevi vrtnar - odkrijemo postopek: srediSce kroga
"raztegnemo" v dve sredisci, nanju privezemo vrv, jo nategnemo z
risalnim kolickom in za¢rtamo Zeljeno krivuljo. Elipsa je s tem
definirana kot mnozica tocCk, pri katerih je vsota razdalj do dveh
izbranih tock, gorisc, konstantna.

Tocko na polovici zveznice med obema goriScema poimenujemo
srediSce elipse. Skozi srediSce potekata dva odlikovana premera:
dolga os 2a in kratka os 2b. Razdaljo med srediS¢em in
(katerimkoli) goriScem poimenujemo ekscentri¢nost e. Ko je
risalni kolicek v temenu velike osi, vidimo, da velja r; + r, = 2a. Ko
je v temenu male osi, pa hipotenuzni izrek pove b? + e? = a2

y Slika 31.3 Elipsa. Vsota razdalj iz dveh

1 izbranih tock, goris¢, je do vsake njene tocke
&

enaka.
Koordinatni kriz postavimo v sredisce elipse in ga zavrtimo tako,
da njegove osi sovpadajo z veliko in malo osjo. Levo goriS¢e ima
potem koordinato (—e, 0) in desno (+e, 0). Razdalji od goris¢ do
izbrane tocke na elipsi znaSata r? = (x + e)? + y? in
r? = (x — e)? + y*. Njuna vsota mora biti ry + r, = 2a in iz tega
pogoja sledi, z nekaj racunanja, enacba

x? 2 31.6
;+ZL2=1. ( )

Elipso v premaknjenem koordinatnem sistemu (oziroma
premaknjeno elipso v obstojecem sistemu) pa opiSemo z
zamenjavo x =X — Xo in y—=y — yo.

Pri a = b preide elipsa v krog, kakor je tudi prav. Parametri¢ni
opis zato kar uganemo:

x=acost (31.7)
y=bsint.

Parameter t lezi na intervalu [0, 2m1]. Da je to res pravi opis,
preverimo z vstavitvijo v implicitno enacbo.

31.5 Parabola

Krogelno zrcalo (katerega presek je krozni lok) zbira vzporeden
snop zarkov v goriS¢no tocko, vendar samo tedaj, kadar je snop
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ozek. Bolj oddaljeni zarki se po odboju sekajo v goriscu, ki je blize
temenu. Morda obstaja kaksna krivulja, ki bi vse vzporedne Zarke
zdruzevala v isti tocki? Drugace povedano: tako krivuljo -
parabolo - bi morale sestavljati tocke, ki so enako oddaljene od
premice in goriS¢ne tocke.

y Slika 31.4 Parabola. Vsaka njena toc¢ka je
enako oddaljena od izbrane tocke, gorisc¢a, in
od vodilne premice.

Postavimo koordinatni sistem tako, da bo premica "vodilja"
vodoravna pri koordinati (0, —p/2). GoriSce je potem v tocki

(0, +p/2). Razdalja poljubne tocke na iskani krivulji od gorisca je
ri? = (y — p/2)? + x? in razdalja te to¢ke od premice je r, = |y + p/2|.
Iz pogoja r, =, sledi, z nekaj racunanja,

2py=x2_ (318)

Enacba ima obliko y « x2. Spomnimo se, da prav takS$na enacba
opisuje tir kamna pri vodoravnem metu [18.6]. Tam naraSca
vodoravna koordinata s ¢asom in navpi¢na s kvadratom casa, kar
nas navede na naslednji parametri¢no zapis parabole z navpi¢no
simetrijsko osjo:

x=At (31.9)
y=DBt?.

Vstavitev polarnih enacb v implicitno enac¢bo pove 2p = A2/B.

31.6 Vektorski opis krivulj

Namesto s koordinatami lahko delamo z ustreznimi vektorji lege:
r=(x,y). Razdaljo med dvema tockama potem zapiSemo kot
absolutno vrednost razlike dveh vektorjev: s = |r; — ry|.

Parametrski zapis krivulje pove, kako se vsaka koordinata
spreminja s ¢asom: x = x(t) in y = y(t). To zapiSemo v vektorski
obliki kot

r(t) = (x(t), y(t)) . (31.10)

S ¢asom se vektor spreminja - obraca, daljSa in krajSa - in s svojo
konico zarisuje hodograf - krivuljo. NarascajoCi parameter t
definira pozitivnho smer gibanja po krivulji.

Kako se odvod ene koordinate po drugi izraza z odvodoma
koordinat po parametru? Verizno pravilo pove
dy/dt = (dy/dx) - (dx/dt), torej
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dy ' (31.11)
dx  x'’

Odvod po parametru smo oznacili s ¢rtico. Drugi odvod pa
racunamo takole. Posredno odvajamo (d/dx)(dy/dx) =
(d/dt)(dy/dx) - dt/dx. Ker dy/dx = y'/x"' in dt/dx = 1/x', velja

d?y  x'y"'—y'x" (31.12)
dx? x'3 '

Kako za funkcijo y = y(x) doloc¢iti parametri¢no obliko? Izberemo
(skoraj) poljubno funkcijo x = x(t) in nato izracunamo y = y(x(t)).
Ocitno je moznosti za izbiro neskonc¢no. PoiS¢emo taksno, da je
rezultat najbolj preprost. Posebno zanimiva izbira je kar x =t.
Tedaj velja r(x) = (x, y(x)). Parabolo, na primer, zapiSemo kot

r(t) = (At, Bt?) ali kot r(x) = (x, x%/2p). O¢itno je parametri¢ni zapis
krivulje zelo nazoren in vsestranski.

Kako pa iz parametricne oblike x = x(t), y = y(t) dolociti eksplicitno
oziroma implicitno obliko funkcije? Iz prve in druge enacbe
izrazimo t, ju izenacimo in dobimo iskano enacbo, ki jo po potrebi
Se preoblikujemo v lepsSo obliko.

31.7 Loc¢na dolzina

Prirast parametra za dt se odraza kot sprememba vektorja
dr= (dx, dy) oziroma kot kratek kos krivulje, lo¢ni element
ds? = dx? + dy?.

y Slika 31.5 Locni element krivulje. Njegova
dolZina je limitno enaka spremembi vektorja
lege.

AS
a¢ dy
dx
r

X
Velja ds = |dr|. Enacbo delimo na obeh straneh z dt, pa dobimo
ds=|dr|=|r'|dt=V(x'?+y'?)dt. (31.13)

Dolzina poti, ki jo zariSe vektor med zacetno in konc¢no lego,
znasa

s=[vix2+y?)dt. (31.14)
Ce je parameter koordinata t = x, pomeni odvajanje na parameter
kar odvajanje na koordinato: x' =dx/dx=1 in y' = dy/dx, torej
ds=v(1+y'?)dx.

Dolzina krivulje od izbrane zacetne tocke naprej in nazaj je
odlicen parameter za opis krivulje. Krivulja je tedaj kot cesta, na

kateri so v enakih dolzinskih presledkih postavljeni mejniki. Vsak
tak mejnik ima svoje koordinate in krivuljo opiSemo kot
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Tangenta

Normala

Ukrivljenost

r(s) = (x(s), y(s)). Parameter je sedaj vezan zgolj na krivuljo in ni¢
na okolico. Pri tak$ni parametrizaciji seveda velja x'? + y'? =1
(Crtica oznacuje odvod po parametru s).

Kako dolzinsko parametrizirati krivuljo, ki je podana s sploSnim
parametrom t? — Izracunamo dolzino vzdolz krivulje kot funkcijo
Casa s(t). — Izracunamo obratno funkcijo t(s). — Vstavimo jo v
prvotno enacbo r(t(s)). Za krog, na primer, dobimo x = rcos (s/r)
in y=rsin(s/r).

31.8 Lokalne lastnosti krivulj

Smer krivulje v izbrani tocki je podana z normaliziranim
premikom
_dr (31.15)
T ds’
Stevec in imanovalec ulomka delimo z dt in dobimo enotni
tangentni vektor r'/|r'|, to je

(x',y") (31.16)

T=—"7"71+1.
V(X2 +y?)

Tangenta, na kateri lezi enotni tangentni vektor, ima smerni
koeficient k =y'/x'. Ce se dve krivulji sekata, je kot med njunima

tangentnima vektorja dolocen s skalarnim produktom
Ty .T, = COS Q.

T

S tangentnim vektorjem je definiran normalni vektor, ki stoji nanj
pravokotno:

n=kxrt, (31.17)

pri Cemer je k enotni vektor v smeri osi z. Normalni vektor
dobimo s kriznim mnozenjem vektorskega produkta (ali z
mnozZenjem z rotacijsko matriko za 90°):

(=y',x" (31.18)
n=—.
Vix?+y?)
Normala, na kateri lezi normalni vektor, ima smerni koeficient

k =—x'/y'. To je negativna reciprocna vrednost smernega
koeficienta tangente.

Koliko se zasuce enotni vektor preko dolzinskega elementa, je
mera za lokalno ukrivljenost krivulje

dt (31.19)
K=| |-
S

Izracunamo jo takole. — Vektor r(t) odvajamo po Casu posredno:
r' = (dr/ds) - (ds/dt) in dobimo Tv. — Vektor r' odvajamo po casu
posredno: r" = (d/ds)(Tv) - (ds/dt), upostevamo pravilo za odvod
produkta in dt/ds = Kn ter dobimo Kv2n + tdv/dt. — IzraCunamo



Krivinski radij

Invariante krivulj

Ravnina

produkt r' x r' = Kv3t X n. — Iz slednjega izrazimo K, pri Cemer
upostevamo T X n =Kk, in dobimo K = (r' X r'")k/v3, torej:

_ x'y" —y'x" (31.20)
- (x'2 +y'2)3/2 :

Enacbe za tangento, normalo in ukrivljenost se ustrezno
poeneostavijo, ce vzamemo t = x ali t =s. Ukrivljenost se, na
primer, izrazi kot K=y"/(1 + y'?)%/? oziroma kot K =V (x"? + y"?) .

Ko izracunamo ukrivljenost kroznice z radijem R, dobimo v vsaki
tocki vrednost

1 (31.21)

Ce je ukrivljenost krivulje K, zato re¢emo, da je njen lokalni
krivinski radij R = 1/K. Krivulja je lokalno "nerazlocljiva" od
takega "pritisnjenega" kroga. Pritisnjeni krog je lokalno enak
krivulji v tem smislu, da imata enak "nicti", prvi in drugi odvod.

Slika 31.6 Krivinski radij krivulje. To je radij
kroga, ki se najtesneje prilega krivulji.

Nekatere znacilnosti krivulje so odvisne od njene lege v izbranem
koordinatnem sistemu. Primer so nagibi tangent ali normal glede
na abscisno ali ordinatno os. Pri vrtenju koordinatnega sistema se
taksni nagibi ne ohranjajo. Po drugi strani pa je ukrivljenost v
izbrani tocki krivulje neodvisna od izbire koordinatnega sistema.
RecCemo, da je to invariantna lastnost krivulje oziroma njena
invarianta. Invariante se ne izrazajo s koordinatami, marvec le z
njihovimi diferenciali.

31.9 Osnovne ploskve

Ravnina, ki gre skozi izhodisce koordinatnega sistema, zareze v
ravnini xz enotni vektor r; = (cos 84, 0, sin8;). V ravnini yz zareze
vektor r, = (0, cos 6,, sin 6;). Poljubna linearna kombinacija teh
dveh vektorjev r=Ar; + Br, je krajevni vektor do ustrezajoce
toCke na preucevani ravnini. ZapiSimo to kombinacijo v
komponentah. Iz prve enacbe x = A cos 0, izrazimo A, iz druge
y=Bcos 8, izrazimo B in oboje vstavimo v tretjo enacbo
z=Asin 6, + Bsin 6,. Tako dobimo eksplicitno enacbo ravnine

Z=k1X+k2y, (31.22)

pri Cemer sta k; in k; smerna koeficienta, torej tangensa obeh
naklonskih kotov 6, in 6.
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Vodoravno kroznico x? + y? = r? premikamo v navpi¢ni smeri. Pri
tem zariSe plasc¢ valja. Enacba zanj je kar enaka enacbi kroznice:

X2+ 2 =12 (31.23)

Premico z = kx zavrtimo okrog navpicne osi z. Nobeni tocki se pri
tem koordinata z ne spreminja, njena koordinata x pa prehaja v
koordinate p =v(x? + y?). Enacbo z = kp kvadriramo in dobimo
enacho stozca

22 (31.24)

Kroznico x? + z? = r? zavrtimo okoli navpi¢ne osi z. Transformacija
x? - x2 + y? da enacbo krogle

X2+ yr+22=r2. (31.25)

Elipso x%/a? + z?/c? = 1 zavrtimo okrog navpi¢ne osi z. Dobimo
rotacijski elipsoid
x2 y* 2 (31.26)
2tataTh
Parabolo 2pz = x? zavrtimo okrog navpic¢ne osi z. Nastane
rotacijski paraboloid

2pz=x2+)2. (31.27)

Vse zapisane enacbe veljajo v posebno skrbno izbranih sistemih.
Tako so tudi enacbe preproste. Seveda pa lahko koordinatni
sistem translatorno premaknemo, kar je isto, kot da premaknemo
ploskev v nasprotni smeri. Premik vzdolZ osi z, na primer, je
ekvivalenten transformaciji spremenljivke z— z — 2. Enacba se
temu ustrezno "pogrsa". Se huj$e lepotne spremembe doseZzemo z
rotacijo.

31.10 Vektorski opis ploskev

Izbrane ploskve smo zapisali implicitno ali eksplicitno. Pojavi se
vprasanje, ali (in kako) jih lahko zapiSemo parametri¢no oziroma
vektorsko. Poskusimo z najpomembnejSo ploskvijo, kroglo.

Tocka na krogli radija R je enoli¢no dolo¢ena z vektorjem lege
r=(x,y, z). Komponente vektorja izrazimo, kot ze znamo, z
azimutnim kotom ¢ in s polarnim kotom 6 (29.2):

x=Rsin6Ocos @ (31.28)
y=RsinBOsin¢
z=RcosH6.

Vsaki dvojici kotov torej pripada ustrezna trojica koordinat. Na
podoben nacin se lotimo tudi drugih ploskev. Valj in stoZec, na
primer, parametriziramo z azimutnim kotom in visino. Ne
predivje ploskve nasploh opiSemo z dvema parametroma:

r(u, v) = (x(u,v), y(u,v), 2(u,v)) . (31.29)



Parametrski kot

Dolzinski element

Parametra sta lahko karkoli. V posebnem primeru izberemo kar
dve koordinati: r=(x, y, z(x,y)). Tedaj preide parametri¢ni opis v
eksplicitnega. Hkrati nam ponudi Se naslednjo nazorno sliko: dva
sploSna parametra tvorita posebno "parametri¢no" ravnino. Tocke
te ravnine se preslikajo v tocke na aktualni ploskvi.

31.11 Krivulje na ploskvi

Krivulja (u(t), v(t)) v parametricni ravnini se preslika v ustrezno
krivuljo na ploskvi. Poseben primer je preslikava, ko je eden
izmed parametrov konstanten, recimo v = const. Tedaj se na
ploskvi zariSe ena izmed izo-parametri¢nih krivulj. Pri razlicnih
vrednostih konstante se nariSe mnozica takih krivulj - krivo¢rtnih
koordinat na ploskvi. Tako se na krogli, na primer, zarisejo
poldnevniki ¢ = const in vzporedniki 6 = const.

Slika 31.7 Parcialna premika na ploskvi.
To sta prirastka vektorja lege vzdolz
u+du  krivoértnih koordinat na ploskvi.

Vektorja ry in r, lezita v lokalni tangentni ravnini vzdolZ obeh
krivo¢rtnih koordinat. Kaksen je sekalni kot teh koordinat, «,
pove skalarni produkt:

r,'r, (31.30)

Iruliry|

cosa=

Pri lepo izbranih parametrizacijah je kot v vsaki tocki (morda s
kaksno izjemo) enak 90°. Tedaj so krivocrtne koordinate med
seboj pravokotne. Taksni so poldnevniki in vzporedniki na krogli.

V tangentni ravnini lezi tudi totalni diferencial - "poSevni" premik
dr=r,du + r,dv. S kvadratom tega premika je dolocena njegova
dolzina ds? =dr-dr, tore;j:

ds? =r,2du? + 2r r,dudv + r,2dv? = (31.31)
gllduz + 2g,,dudv + g22dV2 .

V komponentah zapiSemo

g1 =x2+yt+2,2 (31.32)

d12 = XyXy + YWy + 242y

g22 = sz +yv2 + sz .
Koeficienti g1, g12 in g»; so realna Stevila. Vsaka tocka na ploskvi
ima svojo trojico teh Stevil. Recemo, da so to metri¢ni koeficienti
ploskve. Njihov pomen je, da diferenciale parametrov "povezejo"
z diferenciali dolzin. Ce izberemo druga¢no parametrizacijo
ploskve, se metricni koeficienti seveda spremenijo. V pravokotni
koordinatni mrezi je koeficient g, = 0. Za kroglo v standardni
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Geodetke

Plosc¢inski element

Normala

Odmik tangentne
ravnine

parametrizaciji izracunamo gi1; = r?sin®6 in g, =% Za valj pa
ginn=11ingyp=r2

Dolzina krivulje na ploskvi je limitna vsota vseh dolzinskih
diferencialov, torej (Ce oznacimo odvod po Casu s ¢rtico)

s=[V(g11u? +2g1,u'V' + gopv'?)dt. (31.33)

Med dvema oddaljenim tockama A in B na ploskvi poteka
neskonéno mnogo krivulj. Ena od njih je najkrajSa. ReCemo, da je
to geodetka. Na krogli je geodetka glavni krog, to je tak, ki ima
sredisce v srediscu Zemlje. Nazorno si geodetko predstavljamo
kot elasti¢no nit, napeto med obema toCkama: elasti¢nost jo skrci
na najkrajSo dolzino.

Dolzinska elementa vzdolz krivo¢rtnih koordinat, pravokotnih ali
ne, sta (ds), =vgi1du in (ds), = Vg,dv. Plosc¢ina paralelograma, ki
ga zamejujeta, pa znaSa

dS = (ds), (ds),sina =V(g11g22 — g12?)dudv. (31.34)

Ploscina ploskve je limitna vsota ploscinskih elementov, torej
dvojni integral

S=[[V(g11922 - g12») dudv. (31.35)
Za parametra, ki sta kar koordinati, se enacba poenostvi v obliko
S=[[VvQ +22+2z2 dxdy. (31.36)

31.12 Lokalne lastnosti ploskev

Tangentna vektorja lezita v tangentni ravnini. Njun vektorski
produkt je pravokoten nanjo. Ce ga normiramo, dobimo normalo
_ nXn, ryXxXr, (31.37)
S rexrmy| V(gigz— 9122
Za parametra, ki sta kar koordinati, se enacba zapiSe v obliki
ne Pzl (31.38)
V(1 +224+272)

Vektor iz opazovane tocke v bliznjo okoliSnjo tocko na ploskvi,
torej vektor r(u + du, v+ dv) — r(u,v), aproksimiramo s potenc¢no
vrsto z linearnim ¢lenom (r,du + rydv) in s kvadratnim ¢lenom
Ly (rydu? + 2r,,dudv + r,,dv?). Prvi ¢len je pomik po tangentni
ravnini. Drugi ¢len je pomik do pritisnjenega kroga v smeri
pravokotno na krog. Ce ga pomnoZimo z normalo, dobimo
pravokotno razdaljo od tangentne ravnine:

2dh = L1;du? + 2L1,dudv + Ly,dv? (31.39)
Liyy=ry-n

Liz=ry-n

Ly=ry-n.



Ukrivljenost

Dolzina geodetke

Za kroglo v standardni parametrizaciji izra¢unamo Lq; =rsin? in
Lyy=r.ZavaljpaveljaLi;=0in Ly, =r.

n Slika 31.8 Odmik ploskve od tangentne
T ravnine. Limitno je enak odmiku
pritisnjene paraboloidne ploskve.

Ukrivljenost ploskve je enaka ukrivljenosti pritisnjenega kroga:
dh = ds?/2R, torej 1/R = 2dh/ds?, zato:

K= Lllduz + 2Lq,dudv + L22dV2 (31.40)
Bl glldUZ + 2g1,dudv + gzzdvz '

To je ukrivljenost ploskve v smeri, ki jo dolocata du in dv. Skozi
izbrano tocko potekajoce krivulje imajo vecjo ali manjsSo
ukrivljenost. Izmed njih ima ena maksimalno ukrivljenost

Kiax = 1/Ryin in druga minimalno Ky, = 1/Rnax. Najdemo ju kot
ekstremalne vrednosti po vseh smereh. V to se ne bomo spuscali.
Ko taks$ni vrednosti najdemo, se lahko igramo z njunima
vrednostima: tvorimo, na primer, "povprecno" ukrivljenost

K = (Kpnax + Kinin)/2 ali "metri¢no" ukrivljenost K = Kpax - Kinin ter
poskusamo najti, kako se izrazata s koeficienti gy ... Lyy. Tudi to
zahtevno zabavo prepustimo drugim, ki jih to zanima.

Poglejmo Se nekaj zgledov. Ravnina ima v vsaki tocki vse
ukrivljenosti ni¢. Zato ji tudi reCemo ravnina. Na krogli so
poldnevniski krivinski radiji vecji od vzporedniskih. Vsi glavni
krogi skozi vsako tocko pa imajo enak radij, ki je enak
poldnevniskemu. Najmanjsi krivinski radij na valju je enak
polmeru valja in najvecji je neskoncen. Podobno je pri stozcu.
Vidimo, da se da marsikaj dognati tudi brez racunanja.

31.13 Zemljemerstvo na krogli

Na majhnih razdaljah je zemeljska povrsina ravna in koti,
premice in trikotniki na njej se pokoravajo ze spoznanim
pravilom, recimo pravilu o vsoti notranjih kotov v trikotniku ali
hipotenuznemu pravilu o razdalji med dvema tockama. Na vecjih
razdaljah pa je treba upostevati zemljino zakrivljenost. "Ravne"
premice na njej postanejo glavni krogi. Vsota notranjih kotov
trikotnika postane vecja od 180°, kar se lepo vidi na primeru
trikotnika z bazo na ekvatorju in vrhom na polu. Hipotenuzni,
kosinusni in sinusni izrek za trikotnike pa bo treba na novo
premisliti.

Za lazje preucevanje bomo vse dolzine na krogli merili z radijem
kot enoto. S tem postane radij brezdimenzijska koli¢ina z
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velikostjo 1, dolzinski odsek vsakega glavnega kroga pa sStevilsko
enak srediS¢nemu kotu, v radianih, na katerega je napet. Prvo
vprasanje, ki si ga zastavimo, je: kolikSna je dolzina glavnega
kroga med dvema toCkama?

Na tocki naj kazeta vektorja r1(61, ¢1) in ry(6,, @) iz sredisca
krogle. Njuna velikost je enaka ena. Kot med njima, torej
brezdimenzijska dolzina glavnega kroga, je dolocen s skalarnim
produktom r; - r, = cosa. Zmnozimo komponente, upostevamo
kosinus razlike in dobimo

cos a = sin 07 sin 6, cos (¢, — @1) + cos B, cos ;. (31.41)

Razdalja, v dolzinskih enotah, je potem d = Ra. Poseben primer
@1 = @, pove dolzino poldnevnika: a = |6, — 04|, kakor tudi mora
biti.

Pravokotni trikotnik na krogli dolocajo trije enotni vektorji iz
njenega izhodisSca do trikotnikovih ogliS¢. Vseeno je, kako je
koordinatni sistem postavljen. Izberemo ga tako, da kaze vektor
ry, vzdolz osi x, vektor r, lezi v ekvatorski ravnini xy pod
dolzinskim kotom a in vektor r; lezi v poldnevniski ravnini pod
Sirinskim kotom h. Vektorji so torej naslednji: r, = (1, 0, 0),

r, =(cosa,sina, 0) in r; = (cosacosh, sinasin h, sin h). Kot d med
r; in r3 je hipotenuza trikotnika in je dolo¢en s skalarnim
produktom cosd =r; - r,. Pomnozimo komponente in dobimo
hipotenuzni izrek

cosd =cosacosh. (31.42)

Pri kratkih stranicah aproksimiramo cos x = 1 — x2/2, zanemarimo
visoke potence in izrek preide v ravninskega.

Podobno se lotimo poSevnega trikotnika na krogli. Omejimo se na
"prave" trikotnike, katerih koti so manjsi od m in katerih stranice
so tudi manjSe od .

Slika 31.9 PoSevni trikotnik na krogli.
(Mercator, 2013)

Na tri oglisca trikotnika kazejo vektorji OA, OB in OC.
Koordinatni sistem usmerimo, kot kaze slika. V njem velja
OA=(0,0,1) in OB = (sinc, 0, cos c). Vektor OC se projicira v ON
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Sinusni izrek

Projekcija krogle

pod kotom A, torej OC = (sinb cosA, sinbsinA, cosb). Skalarni
produkt OB - OC = cos a. Zmnozimo komponente in dobimo:

cosa=cosbcosc+sinbsinccosA. (31.43)

Stranica a je podana z drugima dvema stranicama in kotom med
njima. To je iskani kosinusni izrek. Velja seveda za vsakrsno
permutacijo zapisanih koli¢in. Opazimo tudi, da je kosinusni izrek
povsem enak izrazu za dolzino geodetke (31.41). To pa ni ni¢
¢cudnega, saj je slednji le poseben primer prvega: za glavne kroge
uporablja poldnevnike in ekvator.

Pri majhnih razdaljah aproksimiramo sinx = x in cosx = 1 — x%/2,
zanemarimo visoke potence in izrek preide v ravninskega. V
posebnem primeru, ko A =90°, je trikotnik pravokoten in izrek se
reducira v hipotenuzni izrek.

Ideniteta sin?A =1 — cos?A nas navede na misel, da vanjo
vstavimo cos A iz kosinusnega izreka in upamo, da se bo izcimil
sinusni izrek. Res pridelamo izraz sinA/sina =f{(a, b, ¢). Desna
stran izraza je invariantna glede na ciklicno permutacijo stranic,
kar pomeni, da mora veljati

sinA B sin B B sinC (31.44)

sina sinb sinc

To je sinusni izrek. Pri majhnih razdaljah preide v ze znano
ravninsko obliko.

Hipotenuzni, kosinusni in sinusni izrek nam pomagajo pri
racunanju kotov in stranic na krogli to¢no na tak nacin, kot to
poc¢nemo v ravnini. Ko delamo s kroglo polmera R namesto 1,
moramo vse stranice trikotnika, podane v dolzinskih enotah,
deliti z R. Drugace receno: namesto brezdimenzijske stranice a
moramo povsod pisati a/R in podobno za druge stranice.

31.14 Zemljepisne projekcije

TocCke na zemeljski povrsini so enoli¢no dolocene s svojimi
zemljepisnimi koordinatami: Sirino 6 (oziroma polarnim kotom
0 =11/2 — 6) in dolzino @. Zemljo verodostojno predstavimo s
pomanjSanim krogelnim modelom. TakSen globus pa je, zal,
neprimeren za prenaSanje in tudi ni dovolj velik za podroben
prikaz manjsSih obmocij. Naravno je torej pomisliti, kako bi ga
preslikali - v celoti ali deloma - na ravno ploskev, zemljevid.
IScemo torej primerne preslikave

(x,y) < (6, ). (31.45)

Recemo jim zemljepisne projekcije.
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Napake projekcij

Preslikava z zarki

Polarni izvor Zarkov

Slika 31.10 Preslikava krogle na

ravnino s svetlobnimi zarki. Oblika
sence je zanimiva tudi za slikarje.
(Rubens, 1613)

Vsaka preslikava, ki jo vpeljemo, preslika Zemljine poldnevnike in
vzporednike v dve druzini ravninskih krivulj. Dva bliznja
vzporednika in poldnevnika na Zemlji oblikujeta plosc¢inski
element, priblizni pravokotnik. Ko se takSen pravokotnik preslika,
pricakujemo naslednje nevsecnosti: kot med sti¢nima stranicama
se spremeni; razmerje med tema stranicama se spremeni; enaki
pravokotniki na razlicnih lokacijah se preslikajo neenako, bodisi
po dolzini, Sirini ali plos¢ini. Seveda ho¢emo najti take preslikave,
ki bodo obremenjene s ¢im manj nevsecnostmi. Posebej
pomembno je, da se ohranjajo lokalni koti, to je lokalna razmerja
stranic. Tedaj se oblika in orientacija drobnih likov pri preslikavi
ohranja. Drobni krogi se, na primer, preslikajo kot krogi. Takim
preslikavam recemo konformne.

31.15 Polarna stereografska

Preslikajmo severno poloblo na tangentno ravnino na severnem
polu! Preslikujemo lahko z zarki, ki izhajajo is sredisca krogle, iz
njenega juznega pola ali iz juZzne neskonc¢nosti. V vsakem primeru
se Zemljini poldnevniki preslikajo v radialne premice, vzporedniki
pa v koncentri¢ne kroge. Razdalja med krogi je odvisna od izbire
zarkov. SrediScni zarki "prevec" raztegnejo ekvatorske predele,
neskoncni pa jih "prevec" stisnejo. OsredotoCimo se torej na juzni
pol kot izvor zarkov. To je polarna stereografska projekcija.

y

b4
o
T

6/2

s Do

Slika 31.11 Polarna stereografska projekcija. Projekcija je primerna za prikaz
polarnih dezel, pa tudi za prikaz zvezdnega neba.

Slika pokaze, da se tocka P(0) preslika v tocko P'(p). Ker je obodni
kot enak polovici sredis¢nega, razberemo iz pravokotnega
trikotnika SNP' povezavo

- (31.46)
= an — .
P 2
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Konformnost

Morska navigacija

Za radij Zemlje izberemo primerno pomanjsano vrednost:
R=M"-Rg, na primer M =1:107. Namesto polarnega kota 0 lahko
uporabimo tudi zemljepisni kot 6 =90° — 6. V tangentni ravnini
vpeljemo koordinatni sistem z izhodis¢em v polu; os y kaze vzdolz
poljubnega poldnevnika ¢y. Potem velja

x=psin (¢ — @g) (31.47)
y=—pcos(p— ).

S tem je preslikava zakljuCena. Seveda ni treba projicirati celotne
hemisfere, ampak le kakSen njen del. Tedaj na tangentni ravnini
vpeljemo lokalni koordinatni sistem, ki je glede na polarnega
ustrezno translatorno zamaknjen.

Je projekcija morda konformna? Plos¢inski element na krogli je
priblizno pravokotnik z vzporednisko stranico Rsinfde¢ in s
poldnevnisko stranico R df. Ustrezajoci ploscinski element v
tangentni ravnini je tudi priblizno pravokotnik s stranicama pde
in dp. Z razmerjem istoleZznih stranic sta podana raztezna faktorja
H=pdp/RsinOde in K=dp/RdO. Ce je preslikava konformna,
mora veljati H =K. Izracunamo odvod dp/df in ga vstavimo v
enacho. Pokaze se, da je kvocient razteznih faktorjev enak 1.
Preslikava je povsod konformna.

Polarna stereografska projekcija je primerna za prikaz dezel v
visokih zemljepisnih Sirinah, pa tudi za prikaz zvezdnega neba.

31.16 Ekvatorska valjna konformna

Ko mora ladja pluti iz kraja A v oddaljeni kraj B, ima na voljo
neomejeno mnogo poti. Ce odmislimo tokove, vetrove in neurja,
je najboljsa pot tista, ki je najkrajsa, torej geodetka, to je glavni
krog na krogli. Tak$na geodetka je na polarni stereografski
projekciji v splosnem krivulja, ki seka poldnevnike pod razli¢nimi
koti. Doloc¢iti in zarisati jo brez obseznega racunanja ni mozno. Pa
tudi sledenje taki ¢rti bi zahtevalo, da krmar stalno spreminja
magnetni kurz ladje.

Druga moznost je krivulja, ki seka vse poldnevnike pod istim
kotom - loksodroma. Je sicer daljSa od geodetke, vendar je za
krmarjenje mnogo bolj primerna. Seveda je tudi loksodroma kriva
¢rta na polarni stereografski projekciji (razen ce pluje ladja po
poldnevniku). Kaj ne bi bilo ¢udovito, ¢e bi imel navigator na mizi
zemljepisno projekcijo, na kateri bi bila loksodroma povsod ravna
¢rta? Med krajema A in B bi potegnil ravno ¢rto in s tem dolocil
kurz ladje. Bolj preprosto ne gre. Poizkusimo, kot navigatorji,
najti tako projekcijo!
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Valjna projekcija

Vpeljava konformnosti
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Slika 31.12 Ekvatorska valjna konformna projekcija. Projekcija je primerna za
prikaz ekvatorskih dezel in za pomorsko navigacijo.

Da bo loksodroma ravna, morajo ocitno biti poldnevniki
ekvidistantne premice, vzporedniki pa nanje pravokotne premice
v takSnih medsebojnih razmakih, da je mreza povsod lokalno
konformna. To pomeni, da moramo projicirati kroglo na valj, ovit
okoli njenega ekvatorja. Valj se seveda da razviti v ravnino. Na
valju postavimo koordinatni sistem z osjo x vzdolz ekvatorja in y
vzdolz poljubnega poldnevnika ¢,. Tocke s poldnevnika ¢ se vse
preslikajo v

Xx=R(p— o). (31.48)

Pri tem se tocCke iz razlicnih Sirin 6 preslikajo v ustrezne y, kakor
doloca zahteva po konformnosti. Ravnamo tako kot pri polarni
stereografski projekciji. Izena¢imo raztezna faktorja
H=dx/Rsinfdg in K=dy/Rd6. V dobljeni enacbi sta vsebovana
dva odvoda. Prvega dx/d¢ zlahka izracunamo in s tem je dolocen
drugi: dy/d6 = R/cos 6. Locitev spremenljivk in integracija pove

6 (31.49)
y=RlIntan 5

Razmiki med vzporedniki torej narascajo z oddaljenostjo od
ekvatorja. To je tudi pricakovati, saj projekcija na silo Siri in
paralelizira krogelne poldnevnike. Seveda ni treba projicirati
celotne krogle, ampak le kakSen njen del. Tam postavimo lokalni
koordinatni sistem, ki je ustrezno translatorno premaknjen.

Ekvatorska valjna konformna projekcija je odlicna za pomorsko
navigacijo in primerna za prikaz dezel v nizkih zemljepisnih
Sirinah.

31.17 Stozcéna konformna

Razrast industrializacije, Sirjenje ZelezniSkega in cestnega
omrezja ter nenehna vojskovanja zahtevajo natancne zemljevide
velikih drzav. Pokaze se potreba po ustrezni projekciji za srednje
zemljepisne Sirine. Smer raziskave je hitro pri roki: zemeljsko
kroglo je treba projicirati na plasc stozca, ki se je dotika v
izbranem vzporedniku. Poldnevniki so tedaj radialne premice,
vzporednike - koncentri¢ne kroge - pa Zelimo razmestiti tako, da
bo projekcija konformna. Tako kot valj lahko tudi stozec nato
razvijemo v ravnino.
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Slika 31.13 Stoz¢na konformna projekcija. Projekcija je primerna za prikaz
dezel v zmernem pasu.

Naj se stozec dotika vzporednika 6o =11/2 — 0, ki je za po oddaljen
od vrha stoZca. Vrhnji polkot stozca je potem tudi enak §y. Obseg
stozca po tem vzporedniku znasa L; = 21 pg sin 6. Ko plasc stozca
razvijemo v ravnino, nastane izsekan krog, katerega celotni
obseg je L, =21 py. Razmerje teh dveh obsegov L, /L, =k = sin 6.
(Spomnimo se na stozcaste Sotore, tipije, prerijskih
severnoameriskih domorodcev! Plasc tipija je to¢no polovica
kroga: k =1/2. To pomeni, da ima vrhnji polkot 6, = 30°.)

V izsekani krog vpeljimo ravninski koordinatni sistem z vrhom v
preseciS¢u tangentnega vzporednika in poljubnega poldnevnika
@o. Os x je usmerjena vzdolz vzporednika in os y vzdolz
poldnevnika. Krogelni poldnevnik ¢ postane na razvitem plascu
stolpca poldnevnik kg.

Ploskovni element na razvitem plasScu stoZca ima vzporednisko
stranico p kdg in poldnevniSko stranico dp, s ¢imer sta dolo¢ena
raztezna faktorja glede na ploskovni element na krogli. Izenacitev
razteznih faktorjev vodi do enacbe dp/p = kd6/sin 6. Integriranje
obeh strani da reSitev

0 31.50
p=Ctank£ ( )

k =sin (11/2 — 0y).
Konstanto C doloc¢imo iz razteznega pogoja: p(6p) = Rtan6y. S tem
sta doloceni tudi koordinati
X =pcosk(p— @p) (31.51)
Yy =po—psink(e—@o).
VzdolZ tangentnega vzporednika so razdalje to¢ne. Ce za
tangentni vzporednik izberemo pol, preide stozec v tangentno
ravnino in projekcija v polarno stereografsko. Ce za tangentni

vzporednik izberemo ekvator, pa preide stoZec v valj in projekcija
v ekvatorsko valjno konformno.

Stozc¢na konformna projekcija je dobra za prikaz dezel na
srednjih zemljepisnih Sirinah.
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Razli¢ice projekcij

Zemlja kot rotacijski
elipsoid

Globalne projekcije

31.18 Druge projekcije

Vsaka izmed obravnavanih tipov projekcij - ravninska, valjna in
stoz¢na - ima ve¢ razli¢ic. Ce, na primer, razvrstimo vzporednike
na enake medsebojne razdalje, dobimo ekvidistantne projekcije.
Razdalje vzdolz poldnevnikov so tedaj pravilne. Spet drugace
izbrana razvrstitev poldnevnikov pa zagotovi, da so pravilne
ploscine. To so ekvivalentne projekcije. Jasno je, da spremenjene
projekcije niso ve¢ konformne.

Zemlja je krogla le v prvem, ¢eravno zelo dobrem priblizku. Tisti,
ki zelijo ve¢jo natancnost, jo aproksimirajo z rotacijskim
elipsoidom s kratko polosjo med poloma. Projekcijske enacbe se
mocno zapletejo in vprasanje je, kdaj jih je sploh smiselno
uporabljati. Splos¢enost Zemlje je namrec zelo majhna:
(a—b)/a=1/300.

Nobena izmed nastetih projekcij ni primerna za prikaz celotne
zemeljske oble. Obliko velikih in "oddaljenih" kontinentov namrec¢
mocno popacijo. So pa ljudje iznasli mnogo kar sprejemljivih
globalnih projekcij. Zal to, da je teh projekcij mnogo, pove, da
nobena ni povsem zadovoljujoca. Ena izmed boljsih je elipticna
projekcija z naslednjimi znacilnostmi. Slika sveta je elipsa z
razmerjem polosi 1:2. Ekvator in vzporedniki so vzporedne daljice
z enakomernim presledkom. Centralni poldnevnik je daljica. Vsi
drugi so polelipse, simetricne glede na ekvator in na centralni
poldnevnik. Polelipsi skozi £90° tvorita krog. Projekcijski obrazci
so ustrezno zamotani in jih ne bomo izpeljevali. [J
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Primeri polj

Gradient polja

Prostorska polja

Skalarna in vektorska polja - Gradient in smerni odvod - Pretok in
divergenca - Cirkulacija in rotor - Operacije drugega reda -
Krivoc¢rtne koordinate - Cilindri¢ne koordinate - Krogelne
koordinate

32.1 Skalarna in vektorska polja

Kolic¢ine, ki so "porazdeljene" po tockah prostora in so torej
odvisne od treh prostorskih koordinat, imenujemo prostorska
polja. Dobri primeri so naslednji: temperatura, pritisk in hitrosti v
ozracju ter gravitacijske, elektricne in magnetne sile v prostoru.
Nasteta polja so bodisi skalarna ali vektorska. Ker primerov za
kompleksna polja (Se ) nimamo, se z njimi ne bomo ukvarjali.

[ -

501

Slika 32.1 Prizemno polje zra¢nega pritiska in vetrov nad Atlantikom. Izmerile
so ga ladje, ki so prikazane s krozci. Pritisk je podan z izobarami (v palcih
zivega srebra) in veter z zastavicami. Veter piha priblizno vzporedno z
izobarami. (US Weather Bureau)

Splosno skalarno polje, neodvisno od ¢asa, bomo oznacili kot
U=U(x,y,2) (32.1)
in splosno vektorsko polje kot
V= (vx(x,y, 2), vy(X, y, 2), V.(X, y, 2)). (32.2)

Razis¢imo, kaj lahko povemo o njih!

32.2 Gradient in smerni odvod

Zacnimo s skalarnim poljem. Ko se premaknemo iz izbrane tocke
polja v kako sosednjo tocko, se polje v sploSnem spremeni.
Sprememba na enoto dolzine dU/ds je odvisna od tega, v katero
smer se premaknemo. Izmed vseh smeri je ena - oznacimo jo z
enotnim vektorjem n - posebej odlikovana: to je tista, vzdolz
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Koordinatni zapis

Operator nabla

Smerni diferencial

katere je sprememba polja najvecja. Velikost in smer te
spremembe opiSemo z vektorjem, gradientom polja:

du (32.3)

gradU=n-—.

ds
Gradient skalarnega polja je torej vektorsko polje. Njegovi
vektorji kazejo, v kateri smeri se skalarno polje najbolj spreminja
in kako velike so te spremembe. Definicija gradienta ni odvisna
od izbire koordinatnega sistema. Je invarianta polja.

Kako bi gradient izrazili s koordinatami? Vpeljimo poljuben
koordinatni sistem. Gradientni premik ds ima v smeri osi x
komponento dx = ds/cos a, pri cemer je a kot med gradientno in
abscisno smerjo. To pomeni, da dU/dx = (dU/ds) cos a. Podobno
velja za preostali dve komponenti. Vse tri enacbe zdruzimo v
vektorsko obliko. V desni strani prepoznamo (dU/ds) n, torej velja

aU aU oaU (32.4)

gradU—(— —,—).
ox dy 0z

Velikost gradienta je seveda |grad U| in njegova smer je
n=grad U/|grad U]|.

dy Slika 32.2 Gradient skalarnega polja.
Definiran je kot odvod v smeri najvecjega

........ narascanja polja.

\dx
u U+du

Tudi na komponentni izraz za gradient lahko pogledamo kot na
produkt: (aU/ax, aU/ay, aU/az) = (3/9x, d/ay, 8/0z) U. S tem vpeljemo
vektorski operator nabla in velja

gradU—VU (32.5)
Jd
v=( 2,22
ax’ ay oz

Nabla je diferencialni operator in simboli¢ni vektor. Ima lastnosti
tako odvoda kot vektorja. Pricakujemo, da bodo zanj veljala
podobna pravila odvajanja kot za navaden odvod. Kratki rac¢uni (v
komponentah in z enotnimi vektorji i, j in k) res pokazejo, da
veljajo standardna pravila V(cU) =cVU, V(U+V)=VU+ VV in
V(UV)=UVV+VVU.

Kako pa se skalarno polje iz tocke r spreminja v izbrano smer
dr=(dx, dy, dz)? To povemo s smernim diferencialom

dU=U,dx + U, dy + U,dz. (Indeksi ne pomenijo komponent, saj jih
skalar pac¢ nima, ampak parcialna odvajanja.) Desno stran
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Pretok

Divergenca

zapiSemo kot skalarni produkt dveh vektorjev, gradienta in
premika, ter dobimo

dU=VU-dr=(dr-V)U. (32.6)

Kar je zapisano v oklepaju, razumemo kot operator smernega
diferenciranja. Skalarni produkt gradienta in nanj pravokotnega
premika je enak nic, torej je diferencial v tej smeri enak nic,
kakor tudi mora biti.

Zaporedne smerne diferenciale lahko seStejemo in dobimo
spremembo polja med dvema oddaljenima tockama, izrazeno
preko gradienta tega polja

U,-U,=[VUds. (32.7)

Vrednost polja v toCki 2, relativna na vrednost v tocki 1, je
neodvisna od tega, po kateri poti jo dolocamo. To je izrek o
integralu gradienta. Pravzaprav ni ni¢ drugega kot posplositev
osnovnega izreka integralnega racuna (17.2), namrec da je
"navadni" integral funkcije ene spremenljivke enak limitni vsoti
njenih diferencialov. V posebnem primeru, ko je pot sklenjena,
torej zanka, je krivuljni integral gradienta enak nic.

32.3 Pretok in divergenca

Poglejmo sedaj vektorska polja. Kakor tece reka po strugi, tako
"teCe" splosno vektorsko polje skozi prostor; nazorno si ga
predstavljamo kar s tokovnicami. Pretok reke skozi izbrani presek
struge nam da zamisel, da prav tako definiramo pretok
vektorskega polja skozi izbrano ploskev:

o=fv-nds, (32.8)

Ploskev je lahko ravna ali zvita. K pretoku skozi vsak njen
ploskovni element prispeva le pravokotna komponenta polja, to je
projekcija poljskega vektorja na smer ploskovne normale. V
komponentah zapiSemo n-dS = (dy dz, dzdx, dx dy), torej

Jv-nds=[[v.dydz+ [[v,dzdx+ [[v,dxdy. (32.9)

Vsak presek struge ima svoj pretok. Ce med dvema zaporednima
presekoma ni izvorov in ponorov, sta oba pretoka enaka. To nas
napelje na misel, da uvedemo pretok skozi sklenjeno ploskey,
sestojeco iz dveh zaporednih presekov in iz zamejitvenih sten
struge. Ali Se bolje: skozi sklenjeno ploskev kakrsnekoli oblike,
potopljeno v reko, to je v vektorsko polje. Kadar je pretok polja
skozi sklenjeno ploskev razlicen od ni¢, bomo rekli, da so znotraj
ploskve neto izvori polja: pozitivni ali negativni. Kadar pa je
pretok ni¢, v notranjosti bodisi ni izvorov/ponorov ali pa se
medsebojno iznicujejo.

Za podrobnejSo raziskavo notranjih izvorov (ponore bomo
zanaprej obravnavali kot negativne izvore), naredimo sklenjene
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divergence

ploskve znotraj vektorskega polja poljubno majhne. S tem
definiramo prostorninsko gostoto izvorov kot

. (32.10)
divv= lim — $v-ndS.
V—»OV

RecCemo, da je to divergenca polja. Divergenca vektorskega polja
je skalarno polje. Definirana je neodvisno od izbire koordinatnega
sistema in je zato invarianta polja.

Z dv, Slika 32.3 Divergenca vektorskega
V,+ —dz . o .
A T 28z polja. Definirana je kot neto pretok
vektorskega polja skozi majhno zaprto
| ploskev.
dz
pve .
S5 | -
dy

X

Kako naj divergenco izrazimo s koordinatami? Vpeljemo poljuben
koordinatni sistem. Sklenjeni ploskvi damo obliko kvadra. Slika
pokaze naslednje. Neto pretok v smeri z znaSa (dv,/dz)dz - dxdy.
Podobno velja za neto pretoka v smeri x in z. Vse tri pretoke
sestejemo, delimo s prostornino dxdydx in dobimo
divv=%+%+%=v-v. (82.10)
X dy 0z
Prostornino znotraj poljubne sklenjene ploskve si mislimo
zapolnjeno s samimi drobnimi kvadri. Pretok skozi kvader znasa
§ v-ndS =V -vdV. SesStejemo pretoke po vseh kvadrih. Prispevki
po sti¢nih ploskvah se medsebojno iznicijo in preostane pretok
skozi oklepajoCo ploskev:

$v-ndS=[V-vdv. (32.12)

Pretok polja skozi sklenjeno ploskev je torej enak integralu
divergence tega polja po zaobjeti prostornini. Ta skoraj
samoumevni divergencni izrek omogoca, da namesto integriranja
po povrsini (kar je ponavadi tezko) raje integriramo po
prostornini.

Divergenca je skalarni diferencialni operator. Z malo racunanja v
komponentah in z enotnimi vektorji ugotovimo, da veljajo
standardna pravila odvajanja: V- (cv)=cV v,

V- (u+v)=V-u+VvV-vinVv-(Uv)=UV-v+vV-U.
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32.4 Cirkulacija in rotor

Reka tece ponekod gladko, drugod se vrtinc¢i. Na zamisljeni
krozni poti po obrobju takega vrtinca so vsi hitrostni vektorji bolj
ali manj usmerjeni vzdolZz poti. Na podobni poti kje drugje, izven
vrtincev, pa so hitrostni vektorji na kakSnem odseku usmerjeni
vzdolz poti, na preostalem odseku pa v nasprotno smer. Kaze
torej, da je integral vektorskega polja po sklenjeni poti, to je
zanki, pomemebna koli¢ina. Zato definiramo cirkulacijo
sploSnega vektorskega polja po poljubni zanki kot

r=9¢vds. (32.13)
V komponentah se integral glasi
$vds=$v.dx+ $v,dy+ $v,dz. (32.14)

Kadar je cirkulacija po zanki razlicna od ni¢, recemo, da so na
(vsaj eni) ploskvi, napeti na zanko, prisotni neto vrtinci polja. Ce
je preucevana cirkulacija enaka ni¢, pa bodisi vmes ni vrtincev
oziroma se ti medsebojno iznicujejo.

Za bolj natan¢no obravnavanje notranjih vrtincev naredimo zanke
v vektorskem polju ravninske, poljubno majhne in jih tudi
orientiramo v razlicne smeri. Zanka definira komponento rotorja
polja v smeri svoje normale. Primerno zasukana zanka pokaze, v
kateri smeri n je komponenta rotorja najvecja in s tem enaka
celotnemu rotorju:

1 (32.15)
rotv=n- lim — fﬁvds.
S—»OS

Rotor vektorskega polja je tudi vektorsko polje. Njegovi vektorji
kazejo, kje so vrtinci polja, kako so moc¢ni in kako so usmerjeni.
Definicija rotorja je neodvisna od izbire koordinatnega sistema in
je zato invarianta polja.

Slika 32.4 Rotor vektorskega polja.
Definiran je kot cirkulacija
vektorskega polja vzdolz majhne
zanke.

z
‘O Vy B
Vy =Y
dx
/A dy D

X

Kaksen je rotor v koordinatnem zapisu? Doloc¢iti moramo njegove
tri pravokotne komponente, to je, preuciti tri ustrezno usmerjene
zanke. Slika pove naslednje.

Produkt vds znasa na odseku OA: v, dx; na odseku AD:
(vy + (9vy/0x) dx) dy; na odseku DB: —(v, + (dvy/dy) dy) dx; in na

65


pict3a/rot.gif
pict3a/rot.gif

66
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odseku BO: —v, dy. Vse seStejemo, delimo s plos¢ino dxdy in
dobimo izraz za komponento rotorja vzdolz osi z. Podobno
napravimo Se za drugi dve osi in dobimo vse tri komponente
rotorja

av, 9dv, dvy v, 9v, IV (32.16)

rotv=(—2——y,—x——z,—y——x)=v><v.

ay 0z 9z ox ax  ay
Tako kot gradient in divergenca se tudi rotor lepo izraza z
operatorjem nabla.

z Slika 32.5 Rotor in njegove komponente.

A
X
Prepricali bi se Se radi, da se tri pravokotne komponente rotorja,
izraCunane iz treh kvadratnih zank, res sestavljajo v vektor. Slika
pove naslednje. Naj trikotnik ABC doloca ravnino, katere normala
n kaze v smer rotorja. Normala oklepa s koordinatnimi osmi kote
a, B in y. Ploscina trikotnika je S, in cirkulacija I, poteka vzdolz
stranic AB, BC in CA. Ta cirkulacija je enaka vsoti treh cirkulacij
I'y, I'yin I, po treh stranskih trikotnikih OBC, OCA in OAB, saj se
prispevki vzdolz skupnih stranic izni¢ijo. Plos¢ina stranskega
trikotnika Sy =S, cosa in podobno za druga dva. NasStete
cirkulacije zapiSemo kot produkte ustreznih rotorjev in plosc¢in
ter dobimo (po deljenju z S,) rot,v=cosarot,v+ cosfrot,v+
cos yrot,v. Iz tega razberemo rot,v=n- (rot,v, rot,v, rot,v). To je
dokaz, da se rotor res projicira v pravilne komponente oziroma da
komponente res opisujejo pravi vektor.

Majhna okrogla plosc¢ica z narisano puscico, ki plava po gladini
vode in se pri tem vrti, kaze, kakSen je lokalni rotor v navpicni
smeri. Integral obodne hitrosti po obsegu ploscice znasa 2mrv,
ploscina je mr?, njun koli¢nik pa pove rot,v = 2v/r=2w. Rotor je
torej enak dvakratni kotni hitrosti vrtenja. V notranjosti tekocine
pa si moramo misliti prozorno kroglico s tremi vrisanimi
puscicami.

Ploscino poljubne ploskve, napete na veliko zanko, si mislimo
razkosano na drobne kvadrate. Cirkulacija po kvadratu znasa
fvds=(V xv)-ndS. Sestejemo cirkulacije po vseh kvadratih.
Prispevki po sti¢nih robovih se medsebojno iznic¢ijo in preostane
cirkulacija po zunanji oklepajoci zanki:

$vds=[(Vxv)-ndsS. (32.17)
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Cirkulacija polja po sklenjeni zanki je torej enaka integralu
rotorja tega polja po katerikoli zaobjeti ploskvi. Ta rotorski izrek
omogoca, da namesto integriranja po zanki raje integriramo po
ploskvi in obratno, kakor je pa¢ racunsko lazje.

Rotor je vektorski diferencialni operator. Z nekaj racunanja v
komponentah in z enotnimi vektorji ugotovimo, da veljajo
naslednja pravila odvajanja: V x (cv)=cV X v,
VX(Uu+v)=VSXu+VIxvinVx(Uv)=U(N xv)—vx ((VU).

32.5 Operacije drugega reda

Gradient skalarja je vektor. Nad tem vektorjem lahko izvrSimo
operacijo divergence ali rotorja. Kaj dobimo? Racunanje s
komponentami pokaze:

?U  o%U N a2U (32.18)

+
ox2  oy? 922

V-(VU)=V?U=
Vx(VU)=0.

Simboli¢no lahko torej racunamo tako, kot da bi bil nabla pravi
vektor in skalarno polje navaden skalar: a-(ac)=(a-a)c=a?c. In
ax(ac)=(axa)c=0.

KakSen pomen ima izraz V2U? Okrog preucevane tocCke si
zamislimo kocko z robovi dl. V sredisc¢ni tocki aproksimirajmo
02U/ox? = [(U;41—Uy)/dl — (U;—Ui_1)/d11/dl in podobno za druga dva
odvoda. Dobimo V2U = (U — U,)/S, pri ¢emer je U, polje v
preucevani tocki (v sredini kocke), U povpreéna vrednost polja na
Sestih ploskvah kocke in S povr$ina kocke. Ce je torej izraz V2U v
preucevani toCki enak ni¢, je vrednost polja v tej tocki enaka
povprec¢ni vrednosti na "ekvidistantni" ploskvi okrog nje. Ce ni
ni¢, pa meri odmik od tega povprecja. V pomanjkanju boljSega
imena mu bomo rekli delta polja in ga oznacili AU. Delta polja
torej pove, koliko se polje v izbrani tocki razlikuje od povprecja v
neposredni okolici.

Zanimiva je tudi ugotovitev, da gradient poljubnega skalarnega
polja nima vrtincev. To je pricakovano, saj je le z drugimi
besedami povedano, da je integral gradienta po sklenjeni zanki
enak nic.

Rotor vektorja je vektor. Tudi nad njim lahko legitimno izvr§imo
operacijo divergence ali rotorja. Racunanje v komponentah, v
zadnjem primeru precej dolgovezno, pove:

V- (Ixv)=0 (32.19)
IVx(Vxv)=V(V- v)—V2v.

Spet smemo racunati kot s pravimi vektorji. V produktu a - (a x b)
je faktor v oklepaju vektor, pravokoten na a in b, torej je njegov
skalarni produkt z a enak ni¢. Druga enacba pa je tudi taka, kot

67



68

Konservativna polja

Skalirni faktorji

pravi dvojni vektorski produkt. Spet dobimo zanimiv rezultat,
namre¢ da rotor poljubnega vektorskega polja nima izvorov.

Preostala operacija drugega reda - gradient divergence - je Ze
zaobjeta v identiteti za rotor rotorja.

Naj bo vektorsko polje tako, da je njegova cirkulacija (oziroma
rotor) povsod enaka ni¢: V¥ X G = 0. ReCemo, da je taksno polje
konservativno. Dober primer je homogeno gravitacijsko polje v
blizini Zemlje. Ker vemo, da je rotor enak nic tudi za gradient
poljubnega skalarnega polja, sledi, da se da konservativno
vektorsko polje izraziti kot gradient ustreznega skalarnega polja:
G = —V ¢. To skalarno polje poimenujemo potencial. Negativni
predznak vklju¢imo zato, ker zelimo, da se potencial veca vzdolz
smeri polja.

Slika 32.6 Potencial konservativnega

‘ A 5 polja. Prikazano je homogeno
| G | 2 gravitacijsko polje G. Vrednost potenciala
] / ¢ v izbrani tocki je doloc¢ena z integralom
e polja vzdolz poljubne krivulje iz referentne

/ |_ 2 tocke.

X
0

Kako izracunamo potencial? Izberemo referentno tocko v polju in
ji dodelimo poljubno vrednost potenciala. Potem izracunamo
krivuljni integral vzdolZ poljubne poti do vsake toCke polja in s
tem dolo¢imo tamkaj$nji potencial: ¢ — ¢pg = f G ds. Pot izberemo
tako, da je racunanje najlazje. Ocitno je tovrstna izbira potenciala
nedolocena za izhodiS¢no konstanto. Drugace receno: Ce je ¢
potencial konservativnega polja, potem je tak tudi ¢ + const. Za
gravitacijsko polje G = (0, 0, —g) tako izraCunamo ¢ = gz + gz.

32.6 Krivocrtne koordinate

Kadar ima polje cilindri¢no ali krogelno simetrijo, ga je priro¢no
obravnavati v temu prilagojenih koordinatah. Cilindri¢ne
koordinate so, kot vemo: p, ¢ in z, krogelne pa: r, 0 in ¢. Poljubne
pravokotne krivocrtne koordinate oznac¢imo s q;, q; in q3. Prostor
je prepleten z njihovimi koordinatnimi krivuljami. Skozi vsako
tocko gredo tri med seboj pravokotne krivulje. Vzdolz krivulje 1 je
usmerjen dolzinski element

d81 =h1dq1 (32.20)

in podobno vzdolz drugih dveh. Trije skalirni faktorji h; so
pravzaprav koreni Ze spoznanih metri¢nih koeficientov: h; = Vg;;
(31.31). Za cilindri¢ne koordinate znasajo, kot znano: 1, pin 1 ter
za krogelne: 1, rin rsin6.

Ploscinski element z normalo vzdolz krivulje 1 je
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d51=h2h3qudQ3 (3221)
in podobno za ostali dve. Prostorninski element pa znasSa
dV=h1 h2h3dq1 dqqu3 (32.22)

Zapisani elementi omogocajo, da izracunamo gradient,
divergenco in rotor v krivoc¢rtnih koordinatah, izhajajoc¢ iz
brezkoordinatnih definicij teh koli¢in. Ravnamo prav tako kot pri
kartezi¢nih koordinatah, le raCunanja je vec:

19U 10U 1 U (32.23)
gradU=(——,——,——)

hy 0q1 " hy 9q2 " hs a3
1 dvihohs  dvpohshy  dvshihs
+ + ]

divv=
hihzh3 9q1 Jep) 9q3
1 dvazhs  advohy
rotiv= -
hahs ~ aq2 9q3
1 ovihy  dvshs
rot,v= -
hshi g3 aq1
1 avohy,  dvih;
rotzv= - )

1thy  aqs lep)

Iz enacb za gradient in divergenco sledi enacba za divergenco
gradienta, torej za delto polja v krivo¢rtnih koordinatah:

B 1 d hyhs oU " (32.24)
hihyhz aq1 hi aqq
d hsh; oU d hihy, 0U
— — )+ —(——)].
dq2  hy aq2” dqz  hz aqs

AU

32.7 Cilindricne koordinate

Vstavitev cilindri¢nih skalirnih faktorjev v dobljene enacbe pove:

oU 19U aU (32.25)
gradU=(—,——,—)
ap pap 9z
1opv 1 9v ov
divv=— P Py 4=
o op pop o0z
1 ov opv,
rot,v=—(— — p¢)
0 0z
ov ov
rottpv—(—z——p
0 0z
1 opv ov
rot,v=— p(p__p)
FYo R 17)
19 U 1 92U 92U
AU=——(p— —_——+ —

+ + .

pop  ap p?oag*  9zZ?
Enacbe so videti kar zamotane, vendar se moc¢no poenostavijo, Ce
ima polje osno simetrijo. Temperatura v steni cevi, po kateri tece
vroca voda, ima na primer osno simetri¢ni profil T = T(p). Njegova
gradient in delta zato znaSata
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dT (32.26)

grad,T=—
A 1d ( dT
= —(p—
pdo " dp

Lep vodni vrtinec ima profil hitrosti v, = v,(p). Njegova
divergenca in rotor zato znaSata

divv=0 (32.27)

rot,v= 1 dove .
p dp

Togo vrtenje, ko v, = wp, zadevo Se bolj poenostavi v rot,v= 2w,
kakor tudi mora biti. Ce pa se voda v vrtincu giblje tako, da

VP = const, je rotor povsod enak ni¢. "Vrtinec" je zato
brezvrtincen!

32.8 Krogelne koordinate

Ko v splosne enacbe vstavimo krogelne skalirne faktorje, pa
dobimo:

oU 19U 1 oU (32.28)
gradU=(—,——,————
ar r 90 rsinf a@
) 1 ortv, 1 o9sinBvy 1 av,
divv=— - — —
r or rsin® 90 rsin® ag
1 arsinfv, arvg
rot,v= ; -
r2sin @ a0 aQ
1 arsinfv, v,
rotgv=—: -—
rsinf ar oQ
1 orvyg v,
rot,v=—(——— —
¢ ( ar a0 )
19 oU 1 9  aU 1 92U
AU=——(r* — — — (sin0 — )+ ———.
réor ar r?sin@ a0 90 r?sin? 0 ap?

Te enacbe so Se bolj zapletene kot cilindri¢ne. Se pa lepo
poenostavijo za polja, ki imajo radialno simetrijo. Primer je
temperaturni profil v notranjosti Zemlje, T = T(r). Njegova
gradient in delta znaSata

dr (32.29)
grad, T=—.
AT = l g ( 2 d_T)
" r2dr dr

Tudi teZzno polje v Zemlji in izven nje ima radialno simetri¢en
profil g.= g(r). Njegova divergenca in rotor znasata

di 1 dr?g, (32.30)
iwvg=—

9=="ar

rotg=0.



Zunaj Zemlje, kjer g,= goro?/r?, postane tudi divergenca enaka
ni¢. Tako tudi mora biti, saj tam ni izvorov polja. O
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Izbiranja

Permutacije

Variacije

Kombinacije

Statistika

PreStevanje - Poskusi in izidi - Verjetnosti izidov - Verjetnost
sestavljenih izidov - Binomska porazdelitev - Vsota slucajnih
izidov - Normalna porazdelitev - Povprecje in varianca -
Vecdimenzijske porazdelitve - Soodvisnost spremenljivk -
VzorcCenje in statistika - Merjenje in merske napake - Intervalno
ocenjevanje - PreizkuSanje domnev - Regresijska analiza -
Statisti¢no zavajanje

33.1 Prestevanje

Nekatere stvari v zivljenju lahko naredimo na vec¢ nacinov. Dober
primer je kosilo v restavraciji. Na jedilniku je zapisano: 2
predjedi, 3 glavne jedi in 2 poobedka. Izberemo lahko po eno jed
iz vsake skupine. Koliko razlicnih kosil si lahko privos¢imo?
Oc¢itno N =2-3-2. Nasploh velja: ¢e lahko najprej naredimo N;
izbir; nato - neodvisno od tega, kaj smo izbrali - novih N, izbir; in
tako naprej, je razlicnih izbirnih nizov N=N;-N,...N,. Kaze, da
sta izbiranje in prestevanje izbir pomembni opravili. Poskusimo
torej raziskati kaj vec o tem.

Imejmo niz petih razli¢nih ¢rk (a, b, c, d, e). Ta niz lahko
premes$amo; ena izmed premesav je, na primer, (b, a, c, e, d).
RecCemo, da je to permutacija osnovnega niza. Koliko pa je takih
razlicnih permutacij? Na prvo mesto permutacije lahko postavimo
eno izmed 5 ¢rk. Ostanejo Se Stiri. Na drugo mesto postavimo eno
izmed preostalih 4 ¢rk. Tako nadaljujemo in dobimo
N=5-4-3-2-1=5! razli¢cnih nizov ¢rk. Na splosno lahko torej iz
n-terice razlicnih elementov naredimo P,, njenih permutacij:

P,=n!. (33.1)

Ce vseh n elementov ni razli¢nih, ampak je med njimi r enakih, je
razlicnih permutacij r!-krat manj: P,,” = n!/r!.

Iz niza petih ¢rk (a, b, ¢, d, e) potegnimo poljubne tri ¢rke. Trojke
iz istih ¢rk, a z razlicnim vrstnim redom, obravnavamo kot
razli¢ne: (a, b, c) je torej razlicna od (b, a, c). Recemo, da so to
variacije dolzine 3 iz osnovnega niza. Koliko razli¢nih variacij pa
lahko naredimo? Na prvo mesto v trojki lahko postavimo eno
izmed 5 ¢rk. Preostanejo stiri. Na drugo mesto postavimo eno
izmed preostalih 4 ¢rk. Tako nadaljujemo in dobimo
N=5-4-3=5!/(5-3)! razli¢nih trojk. Na splosno iz n-terice
razlicnih elementov lahko naredimo V" razli¢nih variacij dolzine
r:

" n! (33.2)
(n-nr!"

n

Koliko je pa razli¢nih trojk, pri Cemer obravnavamo trojke iz istih
¢rk, a z razlicnim vrstnim redom, kot enake: (a, b, c) je enaka
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Igralna kocka

Poskus in izid

Pogostost izida

(b, a, c)? ReCemo, da so to kombinacije dolzine 3 iz osnovnega
niza. O¢itno je Stevilo kombinacij manjSe kot Stevilo variacij in
sicer za tolikokrat, kolikor je permutacij niza z dolzino 3, torej
N =5!/(5—-23)!3!. Na splosno lahko torej iz n-terice razlicnih
elementov naredimo C," razlicnih kombinacij dolzine r:

. n! (33.3)

" rt(n—nr)!’

33.2 Poskusi in izidi

Ljudje, ki nimajo kaj boljSega poceti, radi mecejo kocke. TaksSna
igralna kocka ima na svojih ploskvah narisane pike. Vsaka
ploskev ima svoje stevilo pik: od ena do Sest. Ko kocko vrzemo na
mizo, se zakotali, ustavi in njena zgornja ploskev pokaze doloceno
Stevilo pik. Vnaprej nikoli ne vemo, koliko jih bo padlo. Ljudje
stavijo denar, kaj se bo pri metu zgodilo, in tisti, ki ugane, pobere
stave. Te so lahko raznovrstne: padla bo trojka; ne bo padla
trojka; padlo bo sodo Stevilo; v dveh zaporednih metih bo padla
vsaj ena Sestica; pri hkratnem metu dveh kock bo padlo skupaj
deset pik; in Se mnogo drugega.

Slika 33.1 Igralni kocki. Izid meta ene ali vec
kock je slu¢ajna spremenljivka. (Anon)

Na met kocke lahko pogledamo kot na poskus, ki ima Sest moznih
elementarnih izidov: Stevilo pik od ena do Sest. Vnaprej ne vemo,
kaksSen bo izid predstojecega poskusa, zato recemo, da je tak izid
slucajna spremenljivka, ki lahko zavzame celoStevil¢ne vrednosti
med ena in Sest. Pricakujemo pa, da se bo v velikem Stevilu
poskusov (torej metov), pojavil vsak izmed Sestih izidov v
priblizno enakem delezu in sicer v eni Sestini primerov, e je le
kocka "postena". Pravzaprav je res obratno: Ce se vsak izid
pojavlja enako pogosto, recemo, da je kocka postena.

33.3 Verjetnosti izidov

Pa izmerimo, kako pogosto se pojavljajo posamicni izidi za
doti¢no kocko! Kar naprej jo mecimo in belezimo vsakokratne
izide, to je vrednosti slucajne spremenljivke x. Ta spremenljivka
lahko zavzame vrednosti x; =1, x, =2 ... x¢ = 6. Ko vrzemo kocko
10-krat, se izid x3, na primer, pojavi 2-krat, torej v 2/10 poskusov.
Pri N poskusih se nasploh izid xx pojavi Ni-krat. Razmerje N /N
se z vsakim nadaljnjim metom spremeni. V zaCetku se od meta do
meta mocCno spreminja, kasneje pa se cedalje bolj zgosc¢a okrog
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neke limitne vrednosti. Vsak izid se zgosca okrog svoje limite. S
tem je definirana njegova relativna frekvenca oziroma pogostost

lim Ny (33.4)

k=N—>oo N

Pri posSteni kocki, na primer, izmerimo v 1000 metih
P3=0,17=1/6 in enako za ostale izide. Pogostosti elementarnih
izidov prikazemo s tabelo ali grafom - frekvencno porazdelitvijo
izidow.

0.2 v U(1/6) Slika 33.2 Frekvencna porazdelitev izidov pri
metu posStene kocke. Vsak izid n se pojavlja z
enako pogostostjo: porazdelitev je
enakomerna.

0.1 -

0 n

1 2 3 4 5 6

Iz definicije je jasno, da mora za vsakrsno frekvencno
porazdelitev veljati

Sp=1. (33.5)
Recemo, da so porazdelitve normirane.

Cim vedja je pogostost kakega izida v mnozici poskusov, tem bolj
"verjetno" se nam zdi, da bo predstojec¢i posamicni poskus
pokazal ravno ta izid. Povedano izkoristimo za kvantitativno
definicijo verjetnosti: verjetnost kakega izida pri posami¢nem
poskusu, to naj bo njegova relativna frekvenca v mnozici
poskusov pri enakih "delovnih" pogojih. Pogostost se torej nanaSa
na mnozico poskusov, verjetnost pa na posamicen poskus. Izraz
"verjetnost", kakor smo ga definirali in kakor ga ho¢emo
uporabljati, ni ni¢ drugega kot sinonim za izraz "pogostost".
Verjetnosti so decimalna Stevila med 0 in 1.

33.4 Verjetnost sestavljenih izidov

Kaksna je verjetnost, da pri metu kocke pade x3 ali x5? Da bomo
bolj splosni, recimo: kaksna je verjetnost, da se v enem poskusu
pokaze elementarni izid A ali elementarni izid B, torej vsaj eden
izmed obeh? To je seveda tudi svojevrsten izid poskusa.
Poimenujemo ga unija dveh elementarnih izidov ter ga oznac¢imo
kot izid (A U B). Iz definicije verjetnosti neposredno sledi

P(AuUB)=P(A)+P(B). (33.6)

Verjetnost, da se pri enem poskusu pokaze eden ali drugi od
moznih elementarnih izidov, je enaka vsoti verjetnosti obeh
posamicnih izidov. Da postena kocka pokaze x3 ali x5, se zato
zgodi z verjetnostjo 1/6 + 1/6 = 2/6.
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Presek izidov

Stevilo uspehov v
vrsti poskusov

Pravilo o sestevanju verjetnosti ne velja le za dva elementarna
izida, ampak tudi za vec njih. Prav tako ne velja le za
elementarne izide, temvec¢ za kakrsnekoli izide, ki se medsebojno
izkljucujejo, to je, Ce se pokaze eden, se ne more hkrati pokazati
Se drugi. Dva taksna izkljuCujoca se izida pri metu kocke sta, na
primer: pade sodo Stevilo pik (x, ali x4 ali xg) in pade trojka (x3).
Verjetnost prvega izida je 1/2, verjetnost drugega je 1/6, in
verjetnost njune unije, torej enega ali drugega, je 1/2 + 1/6 =4/6.

Kaksna je verjetnost, da pri metu kocke pade x3 in pri naslednjem
metu x5? Da bomo bolj splosni, recimo: kaksSna je verjetnost, da
se v prvem poskusu pokaze elementarni izid A in pri drugem
poskusu elementarni izid B? To je tudi svojevrsten izid (dvojnega)
poskusa. Poimenujemo ga presek obeh izidov ter ga oznacimo kot
izid (A N B). Iz definicije verjetnosti neposredno sledi

P(ANB)=P(A)-P(B). (33.7)

Verjetnost, da se pri prvem poskusu pokaze izid A in pri drugem
izid B, je enaka produktu verjetnosti obeh posamicnih izidov.
Seveda velja vse povedano tudi za vec¢ poskusov in za izide, ki
niso elementarni. V vsakem primeru pa morajo biti poskusi
medsebojno neodvisni, to je, izid drugega poskusa ne sme biti
odvisen od izida prvega poskusa. Da poStena kocka pokaze prvic
x3 in druga xs, se zato zgodi z verjetnostjo 1/6-1/6 = 1/36.

33.5 Binomska porazdelitev

Verjetnost, da pri metu kocke pade Sestica, torej xg, naj bo 1/6.
Verjetnost, da ne pade Sestica, pa je zato 1 — 1/6 = 5/6. Zanima
nas, kolik$ne so verjetnosti, da v 5 metih pade Sestica natanko
0-krat, 1-krat ... 5-krat. Poskusi so sedaj petorke metov,
opazovani izid pa Stevilo Sestic, n, v vsaki petorki. Mecemo
petorke v nedogled. Sproti Stejemo, kolikokrat vsebujejo 0 Sestic,
1 Sestico in tako naprej. S tem so ¢edalje natancneje doloCene
relativne frekvence P,. Ho¢emo jih izracunati.

Bolj splosno lahko nalogo postavimo takole. Delamo take
poskuse, ki imajo le dva izida, "uspeh" T in "neuspeh" F.
Verjetnost za uspeh naj bo p in za neuspeh 1 — p = q. Kaksna je
verjetnost, da je v N poskusih natanko n uspesnih?

En nacin, na katerega se lahko pojavi n=2 uspehovv N=5
poskusih, je TTFFF. Verjetnost tega izida znasSa
p-p-q-q-q=p*q"~". Vendar obstajajo $e drugi nacini, na primer
FFFTT in TFFFT in Se mnogi. Vsak izmed njih je enako verjeten,
ker so zaporedni poskusi med seboj neodvisni. Verjetnosti vseh
moramo sesteti. Koliko razli¢nih N-teric pa pravzaprav lahko
sestavimo iz n ¢rk T in iz (N — n) ¢rk F? Toliko, kolikor je
permutacij N elementov, od katerih je n enakih in (N —n) tudi
enakih: N!/n!(N —n)!. Iskana verjetnost je torej:




Slepo reSevanje
testov

P(n)=Lp”(1 —pN="=By p(n) (33.8)
n!(N — n)! NP
To je binomska porazdelitev (J. BERNOULLI). Pove nam, kaks$na je
verjetnost, da v N poskusih zadenemo natanko n uspesnih izidov,
Ce je verjetnost takega izida pri posami¢nem poskusu enaka p. Da
v petih metih kocke pade natanko ena Sestica, se torej zgodi z
verjetnostjo 0,16.

0.3 1 B(10,0.5) Slika 33.3 Binomska porazdelitev. Prikazana
je verjetnost, da v deseterici metov
postenega kovanca pade glava

0.2 0,1,2 ...10-krat.

0 'I .l!fn

012345678910

Vsota verjetnosti vseh moznih izidov pri enem poskusu (N-terici
metov) mora biti enaka ena, to je, porazdelitev verjetnosti mora
biti normirana. Malo nas skrbi, ali to za izpeljano binomsko
porazdelitev res drzi. Eksplicitno zapisana vsota 3 By ,(n) znasa
CnN°q"+ Cn'pq" 1+ ... CANp". To pa ni ni¢ drugega kot razviti
binom (g + p)", torej (1 — p) + p)", torej 1"=1. Skrb je odvec,
porazdelitev je normirana.

Lep primer "uspeSnega" poskusa je slepo resevanje Solskih testov.
Ucenec dobi 5 vprasanj. Ob vsakem so navedeni 3 odgovori in
samo eden izmed njih je pravilen. Vsi odgovori se zdijo ucencu
enako verjetni, zato na slepo izbere enega. Verjetnost, da je prav
uganil, je zato 1/3. Stevilo uspehov, ki jih tako doseZe, znasa od 0
do 5. Verjetnost, da doseZe 4 ali 5 uspehov, je

Bs,1/3(4) + Bs,1,3(5) = 0,045. Kaj takega se torej zgodi enkrat v
1/0,045 = 20 testih.

Namesto da en ucenec slepo opravi neskoncno testov, si lahko
mislimo neskonc¢no ucencev, ki na slepo opravijo en test.
Frekvencni porazdelitvi po rezultatih sta v obeh primerih enaki.
Ce je torej potrebnih ~ 20 testov, da en u¢enec slu¢ajno doseze
Stiri ali pet tocCk, to slucajno uspe enemu izmed mnozice ~ 20
ucencev.

Se beseda o slepem izbiranju. Izbira enega izmed mnoZice
elementov, recimo enega izmed treh odgovorov, je slepa, ¢e ima
vsak element enako verjetnost, da je izbran. Dober nacin za to je
naslednji: vse elemente osStevil¢imo, Stevilke zapiSemo na listke in
jih zapremo v ¢im bolj enake kroglice, vrzemo kroglice v vrtec se
boben ter Cez nekaj Casa z zavezanimi oCmi potegnemo iz njega
eno kroglico. Za prvo silo, ¢e je elementov malo, zadostujejo kar
prepognjeni listki in navaden klobuk. Da opisana nacina res
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zagotavljata enako verjetnost izbire, pa se na koncu koncev ne
moremo prepricati ni¢ drugace, kot da ju dejansko preizkusimo s
Stetjem izidow.

33.6 Vsota slucajnih izidov

Na met in kotaljenje kocke ucinkuje okolje z mnozico vplivov, ki
jih ne poznamo in na katere je izid silno obcutljiv. Majhna
sprememba v zaCetnih in vmesnih pogojih, pa je rezultat Ze Cisto
drugacen. To nas navede na misel, da bi vpliv okolja na gibanje
telesa lahko preucevali tudi tako, da bi po klancu spuscali
kroglico, nanjo vplivali z gozdom zabitih Zebljickov, in gledali, kje
na dnu bo pristala. Najpreprostejsa je deska z N vrsticami
zebljickov, ki so med sabo razmaknjeni za premer kroglice, pri
cemer je vsaka druga vrsta zamaknjena vstran za polovcno
razdaljo med Zebljicki. To je oZebljena deska.

Slika 33.4 Ozebljena deska. llustracija
deske, ki jo je uporabljal F. Galton.
Spuscene kroglice se razvrstijo po
binomski porazdelitvi. (Eterea Estudios)

Kroglico spustimo z vrha. Na prvi vrstici se odbije levo ali desno,
na drugi prav tako in s cikcakanjem nadaljuje vse do dna.
Verjetnost za odboj v desno naj bo vsakokrat p in za odboj v levo
q=1—p. Ti dve verjetnosti sta ponavadi enaki. V N trkih opravi
kroglica n korakov v desno in N—n korakov v levo. Gibanje
kroglice lahko torej opiSemo kot N-kratni met kocke in Stetje
"ugodnih" izidov. Ugodni izid pri spuScanju kroglice je pac korak
v (recimo) desno. Kolikokrat se bo kroglica premaknila v desno v
N trkih, je torej opisano z binomsko porazdelitvijo By ,(n).

Neto premik v desno, m, je enak razliki premikov v desno in levo:
m=n— (N —n). Izrazimo n z m in ga vstavimo v binomsko
porazdelitev, pri cemer izberemo se p=q=1/2, pa dobimo:

N!

! (33.9)
[N +m)/2]T [(N — m)/2]!

Bn,12(m) = ( ! .
2

To je verjetnostna porazdelitev leg, ki jih doseze kroglica na dnu,

oziroma delez kroglic, ki pristanejo v teh legah. Kadar izraza

N + m ali N — m nista soda, bi morali racunati faktorielo

ulomnega Stevila. Kaj to pomeni, ne vemo in bo morda treba Se

primerno definirati. Zaenkrat bomo pri konkretnem racunanju

aproksimirali (n+ 0,5)! ~n!(n + 1)/2.
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Ce je ozebljena deska dolga, postane porazdelitev simetri¢no
zvonasta. Kaksna je ta porazdelitev, ko raste N Cez vse meje, pri
cemer se omejimo Se na podroc¢je m < N?

Faktoriele velikih Stevil so neznansko velike, zato porazdelitev
najprej logaritmiramo. Nastane vsota logaritmov. Vsak ¢len oblike
Inn! aproksimiramo z integralom: Inn!=Iln1+1In2+...Inn=
f1"Inxdx. Tak integral znaSa (xInx —x) |{", torej - ko zanemarimo
Se 1 vprimeri zn - Inn! =nlnn —n. Nato pridobljene izraze

In (1 + m/N) aproksimiramo s kratko potencno vrsto:

m/n — m?%/2N?. Dobimo In B = —m?/2N, torej

By 1/2(m) =A-e~m/2N, (33.10)

Konstanto A smo pritaknili, ker sumimo, da smo zaradi Stevilnih
aproksimacij zapravili normiranost izhodis¢ne porazdelitve. To
pomeni, da moramo to konstanto zdaj naknadno dolociti iz pogoja
normiranosti, torej A =1/ fexp(—m?/2N)dm. S tem bo normalna
aproksimacija k binomski porazdelitvi popolnoma dolocena.

Kako izraCunati normalni integral I = [ exp(—x?) dx med —o in
+w? Takole: I? = [exp (—x?) dx - [exp (—y?)dy =

[ exp —(x? + y?) dxdy. To je ploskovni integral v kartezi¢nih
koordinatah. ZapiSemo ga v polarnih koordinatah x? + y? =r? in
dxdy = rdrde, preoblikujemo rdr=1/,d(r?) in dobimo integral z
navadno eksponentno funkcijo I2 =1/, f[ exp (—t) dtdg. Za meji
med 0 in « ter med 0 in 2m ga zlahka izraCunamo in znaSa .
Koren iz tega je torej iskani normalni integral:

oo (33.11)
f e’ dx=v.

— 00

S tem je normalizacijska konstanta dolocena: A = 1/V(21N).

33.7 Normalna porazdelitev

Ko z astrolabom dolo¢amo visino zvezde ob kulminaciji, se
izmerki med seboj bolj ali manj razlikujejo. Ce odmislimo
sistematicne napake - ko uporabimo nenatancen kotomer ali ko
narobe odcitamo Stevilko z njega ali ko celo merimo napacno
zvezdo - preostane Se mnozica slucajnih napak - zaradi nihanje
astrolaba, migotanja ozracja in Se kaj. Podobno se dogaja pri
merjenju drugih koli¢in. Izmerke tak$ne zvezne koli¢ine x
razvrstimo v primerno Siroke razrede x = dx/2 in prestejemo,
koliko izmerkov dN(x £ dx/2) pade v vsakega. S tem je doloCena
njihova frekven¢na porazdelitev

dpP lim dN(x*+dx/2) (33.12)
- = - - =p(X),
dx N-= N

ki je seveda normirana:

JdP=[px)dx=1. (33.13)
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Pogledano z drugimi o¢mi: izmerek kolic¢ine je slucajna
spremenljivka in (limitna) frekvenc¢na porazdelitev izmerkov je
njena gostota verjetnosti.

Ko nariSemo gostoto verjetnosti za izmerjene kulminacije ali kako
drugo tovrstno koli¢ino, opazimo, da ima lepo zvonasto obliko, ki
je na mo¢ podobna normalni binomski aproksimaciji, le da je
zvezna (33.10). Zato definiramo normalno porazdelitev kot
(GAauss)

dP 1

dx ov2n
Parameter u pove, kje lezi vrh porazdelitve in parameter o doloc¢a
Sirino vrha. Kot kvadrat ga piSemo zato, da ima enake dimenzije

kot slucajna spremenljivka. Sorazmernostna konstanta poskrbi za
normiranost.

(33.14)

2 2
. e_(X_lJ) 120 = Gp’g(x) .

G(0,1) 05 Slika 33.5 Normalna porazdelitev. Prikazana
je porazdelitev s povprecjem 0 in deviacijo 1.

0.4

— X
3 2 1 o 1 2 3

Dejstvo, da so kaksni izmerki porazdeljeni normalno, nam
sporoca, da nanje vpliva - kakor na gibanje kroglice po zebljasti
deski - mnozica med seboj neodvisnih in nasprotujoc¢ih si drobnih
vplivov. Pravzaprav je normalna porazdelitev celo neke vrste
zagotovilo, da izmerki niso obremenjeni s sistemati¢nimi, ampak
zgolj s slu¢ajnimi napakami.

S porazdelitvijo verjetnosti po spremenljivki x je doloCena tudi
porazdelitev po vsaki drugi, z njo povezani spremenljivki z(x):
dP dPdx (33.15)
dz  dxdz’
Ce so izmerki x porazdeljeni kot dP/dx = Gp0(x), potem so
ustrezajoCi normalizirani izmerki

X— U (33.16)
T o
porazdeljeni kot dP/dz = (dG/dx)(dx/dz), torej takole:
dP 1
dz  v(2m)

To je normalna porazdelitev z vrhom pri uy=0 in s Sirino o=1.
Poimenujemo jo standardna porazdelitev. Verjetnost, da bo
sluc¢ajni izmerek x lezal na intervalu med x; in x,, je zato enaka

z

(33.17)

2
7% 2=Gy1(2).


pict3a/normal.gif
pict3a/normal.gif

Povprecje

Varianca in deviacija

verjetnosti, da bo normalizirani izmerek z lezal na intervalu med
21 = (x1 — p)/o in z, = (x — p)/o. Ta verjetnost je enaka integralu
Gy,1(z) med navedenima mejama. Za konkretno racunanje
potrebujemo Se tabelirane vrednosti Gy ;(2) in njenega integrala

z (33.18)
J Go1(z)dz=erf(2).
0

Slednjega izracunamo z razvojem podintegralske funkcije expt,

t = —2%/2 v potencno vrsto 1+ t+t%/2! + ... in jo ¢lenoma
integriramo:

( 1)n22n+1 (33'19)

1 [oe]
erf(z) = \/_2 nen+1)

n=0
Tako pridelamo tabelo

Tabela 33.1. Standardna porazdelitev in plosc¢ina pod njo.

z Go,1(2) erf(z)
0.0 0,40 0,00
0.5 0,35 0,19
1.0 0,24 0,34
1.5 0,13 0,43
2.0 0,05 0,48
2.5 0,02 0,49
3.0 0,00 0,50

Verjetnost, da lezi izmerek x znotraj intervala 1 + o, je torej
2-0,34 =0,68. Na intervalu = 20 leZi z verjetnostjo 2-0,48 =0,95.
In na intervalu * 3 0 ga najdemo (skoraj) z gotovostjo 2-0,50=1.

33.8 Povpredcje in varianca

Ko zaporedno zlozimo N palic z dolzinami Iy, I, ... Iy, dobimo palico
dolzine L. Enako dolgo sestavljeno palico dobimo tudi z N
enakimi palicami dolZine I, torej N-1=31,. S tem je definirana
povprecna dolzina uporabljenih N palic: [ = (1/N) 3 1,. Ce je palic
veliko in so nekatere med seboj enake, raje racunamo takole:
[=(1/N)SNylx= S (Ni/N) I, = S fx Ix. Keficienti fi so relativne
frekvence palic enake dolzine. Kar velja za palice in njihove
dolzine, posploSimo za poljubno slucajno spremenljivko x: njeno
povprecno vrednost v limitni mnozZici poskusov, ko fi — Py,
definiramo kot (x) =S xx Px = Ave(x). Ce je spremenljivka zvezna,
pa velja

=fxp(x) dx. (33.20)

Vsota utezenih odmikov od povprecja je enaka nic: [ (x — (x))dP =
IxdP—(x)fdP= (x) —(x)=0.

Palice, iz katerih dolocamo povprecje, se med seboj bolj ali manj
razlikujejo. Kolik$no je to razlikovanje, povemo s povprecnim
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kvadratnim odmikom od povpreéja: s;2 = (1/N)3 (I, — )2 oziroma
s =3 fi (I — ). Kar velja za dolZino palic, posplo$imo na
poljubno slucajno spremenljivko: njeno varianco definiramo kot
0> =3 (xx — (x))? Py = Var(x). Koren iz variance, o,, pa
poimenujemo deviacija. Za zvezno spremenljivko velja:

o= (x—(x))?p(x)dx. (33.21)

Integral lahko preoblikujemo: kvadriramo podintegralski binom,
integriramo dobljene ¢Clene in pridelamo izraz

0,2 = [ X2 p() dx — (f x pO) dx)2 = (x?) — (x)2. (33.22)

Ce so porazdelitve podane s tabelo, ra¢unamo njihova povpreéja
in variance s konkretnimi $tevilskimi vrednostmi. Ce so podane z
enacbo, pa lahko racunamo s simboli. Izracunajmo povprecja in
variance tistih porazdelitev, ki smo jih zZe spoznali!

Za enakomerno diskretno porazdelitev (posteno kocko) velja
(x)=3n-(1/6)=3,51in 0,2=3n2%-(1/6) — (3,5)% =(1,7)2. Na interval
(x) = o, padejo vrednosti 2, 3, 4 in 5, to je, 2/3 vseh vrednosti.

Za binomsko porazdelitev Ze poznamo njeno vsoto:

SCN"pP gV~ "= (p+ q)N. Ce bi bil vsak ¢len vsote pomnoZen s
faktorjem n, bi nastala vsota opisovala povprecje. Kako pridelati
faktorje n? Levo in desno stran odvajamo na p in nato mnozimo s
p. Na levi nastane povpreéje (x) =3 nCx"p" gN~" in na desni izraz
np (p+ q)N~1. Ko v njem upo$evamo q =1 — p, najdemo (x) = Np.
Podobno izracunamo varianco - izhodis¢no enacbo dvakrat
odvajamo na p in nato pomnozimo s p?. Tako dobimo 0, = Npq.

Pri raCunanju povprecja in variance normalne porazdelitve
moramo izra¢unati integrala oblike [ x exp(—x?)dx in

[ x? exp(—x?) dx. Prvega izraCunamo tako, da spravimo x pod
diferencial, s ¢imer prevedemo integral v lahko resljivo obliko
J exp(—t)dt. Drugega pa se lotimo po delih: u=x,
dv=xexp(—x?)dx in ga s tem prevedemo ne integral za
povprecje. Dobimo (x) = in 0,2 = ¢2.

Katerokoli porazdelitev, ki ima povprecje (x) in varianco o,2,
lahko aproksimiramo z normalno porazdelitvijo, ki ima isto
povprecje in varianco. Ujemanje je bolj ali manj dobro. Normalna
aproksimacija enakomerne porazdelitve je prav slaba, binomske
pa naravnost odli¢na, Ce je le njen parameter N dovolj velik.
Nekaj konkretnih grafov pokaze, da je ujemanje precej dobro Ze
pri N=10.

33.9 Vecdimenzijske porazdelitve

Pri nadaljnji raziskavi bo oc¢itno nerodno uporabljati dve razli¢ni
pisavi, eno za diskretne primere in drugo za zvezna primere.
Odloc¢imo se, da bomo uporabljali le pisavo za zvezno



Dve spremenljivki

Robne verjetnosti

Pogojne verjetnosti

spremenljivko, ki pa jo v bomo primeru diskretnosti razumeli
takole: p(x)dx = Py in [ p(x)dx =3 Py.

Pri streljanju s pusko v tarco je lega zadetka slucajna
spremenljivka.

Slika 33.6 Tar¢a. Lega zadetka je sluc¢ajna
spremenljivka. (Anon)

Vsak zadetek ima svoj vodoravni odmik x in navpi¢ni odmik y od
srediSc¢a tarce. Gostoto verjetnosti za zadetek okrog tocke (x,y),
to je na intervalu (x = dx/2,y = dy/2), definiramo s Stevilom strelov
dN v ta interval, deljenim s Stevilom vseh strelov N:

d?P  lim dN(x*dx/2,y=dy/2) (33.23)
=p(x, y).

dxdy_N*oo N

Predstavljamo si jo kot ploskev oziroma kot hrib, ki je ponekod
bolj, drugod manj visok. ViSina hriba na nekem mestu pove,
kaksna je tamkajSnja pogostost oziroma verjetnost zadetkov.

Verjetnost za vodoravni izid okrog x, neodvisno od tega, kaksen je
navpicni izid, je vsota
dP
e
Predstavljamo si, da smo ves hrib stlac¢ili na vodoravno os, vzdolz

katere se je naredil kumulativni profil u(x). Podobno velja tudi za
tlacenje hriba na navpi¢no os, ko nastane kumulativni profil v(y).

33.24
Ipeoy)dy=ux). ( )

KoliksSna pa je verjetnost za vodoravni izid okrog x pri pogoju, da
je navpicni izid okrog y? Vzdolz ozkega vodoravnega pasu okrog
y = const definiramo verjetnost

dpP lim dN(x = dx/2) (33.25)
Nioaaooy = PXY).

ax VT N N(y + dy/2)
Rekli bomo, da je to pogojna verjetnost za izid okrog x glede na
izid okrog y. Predstavljamo si jo kot profil hriba vzdolz
vodoravnega prereza. Seveda velja podobno tudi za pogojne
verjetnosti vzdolz navpicnih pasov, p(y|x). Iz definicij verjetnosti,
robne verjetnosti in pogojne verjetnosti sledi

p(x,y) =u(x) v(y|x) . (33.26)

Res. Verjetnost za strel okrog (x, y) je enaka robni verjetnosti za
strel okrog x, pomnozeni z ustrezno pogojno verjetnostjo za strel
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okrog y. Kadar je sluCajna spremenljivka y neodvisna od x, je
njena pogojna verjetnost v(y|x) kar enaka "nepogojni" verjetnosti
v(y) in velja Ze znano produktno pravilo (33.7)

p(x,y) =u(x)v(y). (33.27)

Dober primer je streljanje v tarco, ¢e nastane gostota exp(—r?), to
je exp(—x2? — y?), torej exp(—x?) - exp(—y?). Strelca zanaSa v levo in
desno enako, neodvisno od tega, kako ga zanaSa gor in dol, in
obratno.

33.10 Soodvisnost spremenljivk

Za vsako spremenljivko posebej lahko definiramo njeno povpredje
in varianco. Za spremenljivko x tako velja:

(x)= [ [ xp(x,y)dxdy (33.28)
ox2= [ [ (x— (x)?p(x,y) dxdy.

Ocitno sta to povprecje in varianca robne verjetnosti:
(x) = [xu(x)dx in 0,2 = [ (x — (x))? u(x) dx. Podobno velja za
spremenljivko y.

Sama se ponuja Se meSana koli¢ina

o =J L (x— )@ - () p(x,y) dxdy. (33.29)

Poimenujemo jo kovarianca. Pricakujemo, da na nek nacin pove,
kako mocno sta spremenljivki med seboj odvisni. Preverimo to
domnevo! Ce sta spremenljivki neodvisni, torej ¢e p(x) = u(x)v(y),
se kovariantni integral zapiSe kot produkt dveh integralov, od
katerih je vsak enak ni¢, torej je tudi kovarianca enaka ni¢. Ce sta
spremenljivki natanko sorazmerni, torej y = kx, so odmiki od
povprecij maksimalni in koviariantni integral se reducira v ko,
oziroma v (1/k)o,%. Domneva je torej potrjena. Zato je smiselno
definirati

Oy (33.30)

ox0y,’

to je korelacijski koeficient dveh spremenljivk. Koeficient oc¢itno
leZi med vrednostima —1 in 1. Cim vedja je njegova absolutna
vrednost, tem tesnejSa je medsebojna odvisnost spremenljivk.

33.11 Vzorcenje in statistika

Povprecje in varianco smo definirali za neskonc¢no veliko mnozico
poskusov oziroma opazovanj oziroma meritev, to je na neskoncni
(ali zelo veliki) populaciji. Rekli bomo, da sta to populacijska
parametra. Dolo¢imo ju pa seveda lahko le iz kon¢nega vzorca;
tedaj jima bomo rekli vzorc¢ni statistiki.

Vzorcne statistike so seveda le priblizek k ustreznim
populacijskim parametrom. Ce je vzorec velik in slepo izbran,
pricakujemo, da je ujemanje dobro. Pojavi se vprasanje, kako



Povprecje povprecij

Varianca povprecij

Porazdelitev povpredij

tocne so takSne ocene, to je, kolikSne napake pri tem zagresimo.
Poskusimo to narediti za povprecje!

Ko opravimo N poskusov in zabelezimo njihove izide, s tem iz
neskoncne populacije poskusov izberemo koncni vzorec. Za ta
vzorec izracunamo povprecje x. Pri kakem drugem vzorcu bi
dobili drugacno povprecje. Mislimo si, da vzorcenje kar naprej
ponavljamo. Dobimo neskonc¢no populacijo povprecij. Kaksna je
njihova povprecna vrednost (x)? In kaksna je njihova varianca
U)zz?

Na izmerjene vzorcne vrednosti x; ... Xy lahko pogledamo kot na
uresnicitev N slucajnih, med seboj neodvisnih spremenljivk

X; ... Xy iz osnovne populacije. Vse so porazdeljene tako, kot
osnovna spremenljivka X. Spremenljivka X; je pri vzoréenju pac
pokazala vrednost x;, pri drugem vzorcu bi pa pokazala kaj
drugega. Podobno velja za druge spremenljivke. Izmerjeno
povprecje X pa je potem uresniCitev sluCajne spremenljivke

X =(1/N)3 X,

Kaksno je torej povprecje vzorcnih povprecij
(X) = Ave(X; + ... Xy)/N)? Izpostavimo faktor 1/N izven povprecja;
povprecje vsote je vsota povprecij; povprecje X, je povprecje X; in

dobimo:
(X) =(X). (33.31)

Povprecje vzorcnih povprecdij je torej enako populacijskemu
povprecju. To je dobro.

In kaks$na je varianca vzor¢nih povprecij ox? = Var((X; + ... Xn)/N)?
Izpostavimo faktor 1/N izven variance, pri ¢emer postane (1/N)?;
varianca vsote je vsota varianc; varianca X, je varianca X; in
dobimo:

ox> (33.32)
ot =——.

N

Vzorcna povprecja se torej stiskajo okrog populacijskega
povprecja z N-krat manjSo varianco, kot je varianca posamic¢nih
spremenljivk. Tudi to je dobro.

Vzor¢no povprecje je (normirana) vsota N neodvisnih slucajnih
spremenljivk z isto porazdelitvijo. To mo¢no spominja na pot
kroglice po oZlebljeni deski: ena pot, ki jo kroglica ubere, je en
vzorec z N spremenljivkami, njihova vsota pa je kon¢ni odmik
kroglice na dnu. Spremenljivke so "binomske", imajo samo dva
izida. Vsote velikega Stevila binomskih spremenljivk se torej
porazdelijo normalno. Morda velja to tudi za vsote velikega
Stevila "nebinomskih" spremenljivk? Domnevamo torej

1 X—(X) (33.33)

@ wexpl- ( 1
dx exp 2 ox '
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Ni videti lahke poti, da bi z doslej pridobljenim znanjem domnevo
dokazali. Pa ni¢ hudega: saj jo lahko utrdimo eksperimentalno.
Mecemo posteno kocko. Na stranice v mislih napiSemo 1, 2, 3, 3,
4, 5. Verjetnostna porazdelitev izidov je zato P(1) =1/6, P(2) =1/6,
P(3)=1/3, P(4)=1/6 in P(5)=1/6, torej ima (x) = 3,0 in o=1,7.
Kocko vrzemo 10-krat in dobimo prvi vzorec ter njegovo
povprecje (nekje med 1,0 in 5,0). To ponovimo stokrat. Dobljenih
sto povprecij porazdelimo po primerno Sirokih razredih.
Porazdelitev se kar dobro prilega pricakovani normalni z u = 3,0
in 0=1,7/V10=0,5. Daljsi vzorci in StevilcnejSe ponovitve
pokazejo Se boljSe prileganje. Seveda lahko kockine stranice
kakorkoli ostevil¢imo. Bolj kot je osnovna porazdelitev razlicna od
normalne, daljSe vzorce potrebujemo, da je njihova povprec¢na
vrednost zadovoljivo normalno porazdeljena.

33.12 Merjenje in merske napake

Povedano uporabimo za oceno merskih napak. VeCkratna meritev
kaksne koli¢ine, recimo dolzine mize, je namrec slucajno
vzorcenje. Merjena dolzina je slucajna spremenljivka. [zmerjeno
povprecje in varianca pa sta dve statistiki, iz katerih sklepamo na
"pravo" dolzino mize. Ocenimo X = (x) + g,/ VN. Neznano
populacijsko deviacijo o, aproksimiramo kar z znano vzorc¢no
deviacijo s,, pa z nekaj drznosti zapiSemo

_ . Sx (33.34)

(X)=xx—.
VN

Kadar je izmerkov malo, se ni treba muciti z izracunom s,. Kar na
oko ocenimo, kaksen je interval okrog povprecja, v katerega pade
2/3 izmerkov, in zapiSemo (x) = x + dx = x(1 = dx/x). Koli¢ino dx
poimenujemo absolutna napaka in dx/x relativna napaka.

Cim ve¢ je meritev, tem manj$a odstopanja njihovega povpredja
od prave vrednosti pricakujemo. VeCkratno merjenje je torej
dober nadin, da izboljSamo natan¢nost izmerka. Zal pa se z
naras¢anjem N povecuje VN le pocasi. Ce hoemo natanénost
povecati za faktor 10, moramo povecati Stevilo meritev za faktor
100. Pri tem pa niti ne zmanjSujemo sistemati¢nih napak.

Ce je kaksna koli¢ina obremenjena z napako, in to je zmeraj, so
tudi njene funkcije obremenjene z napakami. ReCemo, da se
napake podedujejo oziroma se Sirijo. Kako to gre?

Na napako funkcije lahko pogledamo kot na njen diferencial. Pri
funkciji ene spremenljivke je to navadni diferencial in pri funkciji
veC spremenljivk imamo opravka s totalnim diferencialom.
Seveda pa moramo uposStevati, da so taksni diferenciali lahko
pozitivni ali negativni. Tako z diferenciranjem dobimo naslednja
pravila.



Verjetnostni interval

Ocena intervala

u=cx=du=|c|dx (33.35)
u=xxzy=du=dx+dy
du dx d
du _dx  dy
lul x| 1yl
X du dx d
Sl + —y

u=xy=

u=— —_—= —
y oo lul Xyl
du dx
U=x"=—=|n| —
|ul x|

u=u(x)=du=|u'|dx
u=u(x,y)=du? = (u,dx)? + (u,dy)?.

Napaka vsote ali razlike je vsota napak posameznih ¢lenov.
Relativna napaka produkta ali kvocienta pa je vsota relativnih
napak posameznih faktorjev. Zlasti je nevarno takrat, kadar
naletimo na razliko dveh priblizno enakih ¢lenov. Tedaj je
relativna napaka lahko ogromna. Racunanje odvodov je vCasih
zoprno. V takem primeru lahko ocenimo kar du = u(x + dx) — u(x)
oziroma du = u(x + dx, y + dy) — u(x, y) za primerno izbrane
neodvisne diferenciale.

33.13 Intervalno ocenjevanje

Ko recemo x = u + g/VN, pravzaprav pravimo, da lezi u nekje na
intervalu [X — 0/VN, X + 0/VN] z verjetnostjo 0,68 in izven tega
intervala z verjetnostjo 0,32. Oceno za u pa lahko podamo bolj na
splosno takole: leZi na intervalu [X — x4, X + X,] z verjetnostjo a, na
primer 0.95. Kaks$na je povezava med X, in a?

Vemo tole. Ce je X porazdeljen normalno kot Gy,ovn, Potem je
Z=(X-u)/(c/VN) porazdeljena normalno kot Gp ;. To pomeni, da
je
P(—24<Z<+42,)=PX —xqspu<X+x,)=2erf(z,)=a (33.36)
Xq =2q0/VN.

Za vsako izbrano verjetnost a lahko izracunamo pripadajoco
vrednost x,. Verjetnosti 0,68, na primer, odgovarja z, =1, torej
Xq = 0/VN, kakor tudi mora biti. Verjetnosti 0,95 pa odgovarja
2-krat tolik$en interval. Ce ho¢emo v ve¢ primerih uloviti srednjo
vrednost 11, moramo pac razsiriti lovilno past.

Za izracun x, moramo poznati deviacijo populacije. Te ponavadi
ne poznamo, zato jo aproksimiramo kar z deviacijo vzorca. Sirino
intervala, ki pri 95 % vzorcev vsebuje neznano povpredcje u, torej
doloc¢imo takole. Potegnemo vzorec dolzine N, iz njega
izraCunamo x in s, ter izracunamo xg. 95 = 2S,/VN. S tem je interval
izratunan. Ce ga ho¢emo prepoloviti, potrebujemo $tirikrat ve&ji
vzorec.

Verjetnost, da ocenjeni interval zaupanja dejansko pokrije
neznano pravo povprecje, znasa a. Recemo, da je to stopnja
zaupanja. Seveda pa tvegamo, da povprecje lezi izven intervala.
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Verjetnost, da se to zgodi, znasa 1 — a. Recemo, da je to stopnja
tveganja.

33.14 PreizkuSanje domnev

Vojaski zdravnik trdi, da je povprecna viSina v populaciji vojakov
(x) = a. To domnevo ho¢emo preveriti. Ce domneva drzi, vemo, da
je vzoréna statistika Z = (X — a)/(0,/VN) porazdeljena standardno
kot Gp,1(Z). Ker ne poznamo populacijske deviacije, jo
aproksimiramo z vzoréno deviacijo in dobimo statistiko

T = (X — a)/(Sy/VN). Pri¢akujemo, da je tudi ona porazdeljena
priblizno kot Go,1(T). To pomeni, da je na intervalu [—t,, +t,]=
[-2, +2] pricakovati a =95 % uresnicitev te statistike. Da pade
uresnicitev izven intervala, pa pricakujemo le v 5 % vzorcev. Iz
populacije torej na slepo potegnemo vzorec N vojakov in
izratunamo X, s, ter iz obojega t. Ce pade t znotraj postavljenega
intervala, nimamo kaj re¢i. Ce pa pade t izven tega intervala,
lahko to razlagamo na dva nacina: — domneva je sicer pravilna, a
smo imeli tako nesrecno roko, da smo naleteli na enega izmed
tistih 5 % vzorcev; — domneva je vsekekor nepravilna. Katero
izmed obeh razlag izbrati? Odlo¢imo se, da je bolj verjetna druga
razlaga in domnevo zavrnemo.

S preizkusanjem domnev torej ne sprejemamo, ampak jih zgolj -
bolj ali manj utemeljeno - zavracamo. Oc¢itno lahko pri tem
naredimo dve vrsti napak: domneve ne zavrnemo, ¢eravno je
nepravilna, ali pa domnevo zavrnemo, ¢eravno je pravilna. Kadar
ima zavracanje domneve hude posledice, ho¢emo biti nadvse
gotovi, da jo zavracamo utemeljeno. Takrat gledamo interval
[—3, +3] in ustrezno verjetnost 99,8 %.

Ko zavracamo domnevo, moramo vsekekor povedati, pri kaksni
stopnji tveganja 1 — a to pocnemo. Tako reCemo, da smo domnevo
zavrnili pri stopnji tveganja 5 %, oziroma da se vzorcni podatki
statisticno znacilno razlikujejo od domneve pri tej stopnji
tveganja. Stopnja tveganja pove, kolikSna je verjetnost, da smo
domnevo zavrnili, ceravno je pravilna.

Domnevamo, da lahko na podoben nacin zavracamo
najrazlicnejSe domneve o populacijah, na primer: varianca
porazdelitve je enaka neki vrednosti; povprecji dveh porazdelitev
sta enaki; varianci dveh porazdelitev sta enaki; porazdelitvi sta
enaki; in Se kaj. Postopek je vedno enak: postaviti moramo
ustrezno cenilko in zanjo dolociti porazdelitev. Potem pogledamo,
kako verjetna je dejanska uresnicitev cenilke in se glede na to
odlo¢amo. Vse to je seveda lazje reci kot narediti. PodrobnejSo
obravnavo zato prepustimo tistim, ki to potrebujejo (FISCHER).



Dolocitev koeficientov

Ocena napak

33.15 Regresijska analiza

Soodvisnost dveh spremenljivk, tabeliranih v N parih (x,, y,)
lahko aproksimiramo s premico, ki se jima "najbolj prilega".
Najboljse prileganje definiramo takole: vsota kvadratov odmikov
ene spremenljivke od premice naj bo minimalna. Minimiziramo
lahko odmike y, ali x,,; v sploSnem se dobljeni premici razlikujeta.
Najbolje je minimizirati odmike tiste spremenljivke, ki ima vecjo
deviacijo. Naj bo to spremenljivka y. Zaradi preprostosti Se
privzamemo, da so deviacije spremenljivke x enake nic.

701

6.5 °

BLADDER CANCER RATE

135 16.5 195 225 255 285 315 345 375 405 435
PER CAPITA CIGARETTE SALES

Slika 33.7 Povezava med kajenjem in rakom. Za 44 ameriskih drzav je bilo
doloceno, koliko cigaret na prebivalca je bilo prodanih v letu 1960 in koliko
smrti na 100 tiso¢ prebivalcev zaradi raka na mehurju je bilo zabelezenih v
istem letu. (Fraumeni, 1968)

IScemo torej funkcijo
y*=A+ Bx (33.37)

tako, da bo 3 (y*, — yn)? = S (A + Bx, — yn)? = Q(A, B) minimalen.
Postavimo dQ/dA =0 in dQ/dB =0, s ¢imer pridelamo dve linearni
enachi z dvema neznankama A in B: AN + B3 x, =Yy, in

AS X, + B3 xp% =3 Xpyn. 1z enacb izracunamo obe neznanki in s
tem je regresijska premica dolo¢ena (GAUSS):

_ (E an)(Eyn) - (Exn)(EXnyn) (33-38)
A

B= N(E Xnyn) - (E Xn) (Eyn)
A

A= N(Ean) - (Exn)z-

Vzorcne vrednosti y, imamo lahko za uresnicitev slucajnih
spremenljivk Y,,. Predpostavimo, da je vsaka izmed teh
spremenljivk porazdeljena normalno okrog svoje srednje
vrednosti A + Bx;, z isto "lokalno" deviacijo 0. Zato so vse
spremenljivke Y, — A — Bx,, porazdeljene normalno kot Gy . 1z
tega sklepamo, da je dobra ocena za lokalne deviacije kar enaka
"globalni" deviaciji

A

1 (33.39)
sy% = K,E(yn —A—Bx,)?.
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Parametra A in B sta Cisti funkciji izmerkov y; ... yny. Zato sta njuni
deviaciji oz. napaki s, in sg doloCeni kar z deviacijami oz.
napakami sy slednjih. V obrazec za Sirjenje napak

sa2 =73 (0A/dyn - 5y)? vstavimo dA/dy, = [(3 Xn?) — Xn(S Xn)J/A in
dobimo, po nekaj racunanja,

SA2=sy22Xn2/A (33.40)
sgt=52N/A.

Podobno obravnavamo tudi linearno regresijo ve¢ spremenljivk.
Kogar to veseli, pa se lahko loti celo nelinearne regresije.

33.16 Statisticno zavajanje

Pravijo, da obstajajo tri vrste lazi: navadna laz, huda laz in
statistika. Nedvomno je res, da je statistika mocno orodje za
raziskavo mnozice podatkov, ¢e jo seveda prav uporabljamo. Je pa
tudi res, da se jo da zlorabiti na najrazlicnejSe nacine. Pogosto to
pocno politiki in prodajalci. Kaks$ni so njihovi glavni nacini
zavajanja?

Osnova statistike je vzorcenje. Vzorec mora biti dovolj velik, da iz
njega lahko karkoli sklepamo. Beremo recimo, da se 33,3 %
Studentk na univerzi N. N. poroci s svojimi profesorji. Natanc¢ne
Stevilke in decimalna mesta nas prepricujejo, da raziskovalec ve,
o ¢em govori. Surove Stevilke pa govorijo drugace: v obdobju
raziskave so bile na univerzi vpisane tri Studentke, od katerih se
je ena porocila s profesorjem.

Vzorec mora biti tudi slu¢ajen. Ko anketiramo ljudi, mora imeti
vsak clovek enako verjetnost, da ga izberemo. Beremo recimo, da
73 % Slovencev nasprotuje smrtni kazni. Vprasamo se: katerih
Slovencev? Pokaze se, da je raziskavo naredil levicarski ¢asopis
N. N. preko vpraSalnikov, ki jih je kar prilozil ¢asopisu. Ta Casopis
kupujejo pretezno levicarji in ti imajo bolj odklonilen odnos do
smrtne kazni kot desnicCarji. Sklepanje na celotno populacijo je
povsem neutemeljeno.

Povprecje ni¢ ne pove o razprsenosti izmerkov okrog njega.
Podjetje N. N. na primer objavi, da znaSa povpre¢na mesecna
placa njihovega delavca solidnih 3000 dolarjev. Lepo in prav,
dokler ne odkrijemo, da je v podjetju zaposlenih 9 delavcev in en
direktor. Direktor ima 21.000 dolarjev place in delavci po
mizernih 1000 dolarjev. Skoraj vsakdo je pod navedenim
povprecjem!

Korelacija ne pomeni vzro¢ne odvisnosti. Studentje, ki kadijo,
imajo niZje ocene. To je verodostojno statisticno dokazano. Torej
kajenje povzroca slabe ocene? Morda celo otopi moZzgane? Ni¢ od
tega: Ce gresta kajenje in slabe ocene skupaj, to Se ne pomeni, da
kajenje povzroca slabe ocene. Morda je ravno obratno: slabe
ocene silijo Studente h kajenju. Ali pa nobeno ne povzroca



Obrezani grafi

Obramba

drugega, marvec je oboje posledica kakega tretjega vzroka. Je
morda tako, da druzabni ljudje, ki ne jemljejo prevec resno knjig,
hkrati tudi kadijo vec?

Kako cene rastejo, najlepSe pokazemo z grafom. Recimo, da
kaksSna cena v desetih letih naraste od 100 na 110 dolarjev. Na
grafu z viSino 5 cm, ki ima navpi¢no os ostevil¢eno od 0 do 120, je
rast cene zelo poloZzna krivulja. Morda nam to ni vSec¢? Odrezimo
spodnji in zgornji del grafa (z izgovorom, da sta itak prazna) ter
prikazimo zgolj navpicni interval med 100 in 110 dolarji, seveda
raztegnjen na isto viSino. Mnogo bolje! Graf je sedaj zelo strma
krivulja, ki kar krici, kakSen hud porast cen se je zgodil. Ni¢ ni
bilo ponarejenega - razen vtisa, ki ga graf zapusti. Podobno lahko
polepsamo tudi druge vrste grafov.

Kako si pomagamo, da nas takSne "statistike" in sklepi iz njih ne
zavedejo? Tako, da odgovorimo na nekaj vprasanj. Kdo to pravi?
Kako to ve? Kaj vse manjka (velikost vzorca, nacin vzorcenja,
povprecje brez deviacije, testiranje domnev brez stopnje
tveganja, korelacijski parametri brez ocenjenih napak, grafi brez
meril)? Ali je vse skupaj smiselno? Nikoli pa tudi ne smemo
pozabiti, da je statistika vredna zgolj toliko, kot so verodostojni
podatki, na katerih sloni. ]
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34

Opis gibanja

Dinamika

Delci - Sistemi delcev - Gibalna koli¢ina - Vrtilna koli¢ina -
Kineti¢na energija - Gibanje togega telesa - Vrtenje okoli stalne
osi - Premikanje osi vrtenja - Nihanje togih teles - Splosno nihanje
teles - Gravitacijska konstanta - Gravitacijsko polje - Gibanje
planetov

34.1 Delci

Premiki teles v prostoru so bili izhodiS¢e za vpeljavo vektorjev in
vodilo pri razvoju rac¢unanja z njimi. Zdaj, ko je vektorski racun
zgrajen, postane mocno orodje za opisovanje vsakrsnega gibanja.
Kar smo o gibanju Ze dognali in zapisali, hocemo zato povzeti v
vektorski obliki. Studirali pa smo tockasta telesa, to je taka, ki so
majhna v primerjavi z opravljenimi premiki.
Gibanje tockastega telesa - delca - v vsakem trenutku opiSemo z
vektorjem lege glede na poljuben koordinatni sistem:

r=(xy,2). (34.1)

Ko se delec giblje, mu vektor lege vestno sledi. Je torej funkcija
Casa. Sprememba vektorja lege v kratki ¢asovni enoti opisuje
kratek premik:

dr=ds=(dx,dy,dz). (34.2)

Z vektorjem premika sta doloCena vektor hitrosti v in vektor
pospeska a:

ds (34.3)
Ve (Vx, Vy, V2)

dv
a= - (ax, ay, a,) .

Premik ds je iz izbranega izhodiSca (iz katerega raste enotni
kazalec e;) viden kot zasuk za kot
ds (34.4)
dp=e,x —.
r

Z vektorjem zasuka sta doloc¢ena vektor kotne hitrosti w in vektor
kotnega pospeska a:

de (34.5)
w=—

dt

dw
a=—.

dt

Dolzinske in kotne vektorske koli¢ine so med sabo povezane.
Kratki racuni pokazejo:
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Sile in gibanje

Met palice

V=wXTr (34.6)

a=axr

a.=-w’r

a’=a?+a?.
Ce okolica ne vpliva na delec, se ta giblje premo in enakomerno.
Vpliv okolice - silo F - postuliramo, kot znano (19.5), preko mase
in pospeska delca :

dv d?r (34.7)
m—=m-—=F.
dt dt?

Gibalni zakon mnozimo na obeh straneh s premikom ds,
upostevamo dv/dt-ds =dv-ds/dt =dv-v, integriramo in dobimo,
kot znano (19.13), izrek o kineti¢ni energiji:

mv22 InVl2 —AK (348)

2 2

fF-ds=

Delo sile je enako spremembi kineti¢ne energije. S tem smo
povzeli vsa glavna dosedanja spoznanja o gibanju tockastih teles.

34.2 Sistemi delcev

Telesa okrog nas, gledana od blizu, pa niso tockasta, ampak so
razsezna. TakSno razsezno telo si lahko predstavljamo kot sistem
delcev, medsebojno povezanih s poljubnimi silami. Kamen,
clovesko telo, Zemlja in Osoncje, vse to so sistemi delcev. Vsak
delec v sistemu cuti sile od drugih notranjih delcev (notranje
sile), pa tudi iz okolice (zunanje sile). Postuliramo, da sta sili med
dvema delcema v sistemu nasprotno enaki in lezita na njuni
zveznici. Tak sistem se pod vplivom zunanjih in notranjih sil ter
pod vplivom zunanjih in notranjih navorov nekako giblje. Kaj
lahko povemo o tem gibanju?

Ko vrzemo palico v zrak, se sicer prekopicuje, vendar na nek
nacin vendarle zarisuje parabolo, kakor to dela tockast kamen.
Kaze, da se po paraboli giblje neka odlikovana tocka palice, ki
lezi blizu njenega sredisca. Takoj pomislimo, da bi to lahko bilo
teziSce. Zaradi previdnosti pa tej toCki recimo raje masno
sredis¢e. Domnevamo, da mora za gibanje masnega srediSca
palice veljati ista gibalna enacba, kot Ce bi bila vsa masa palice
stisnjena van,.

e ' slika 34.1 Skok z motornim kolesom.

e

£

N ‘{5‘245;&'%&%%%& ’ Odlikovana tocka vozila in voznika - njuno

masno sredis¢e - se giblje po paraboli. (Anon)
% %
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Masno sredisce

Gibalna koli¢ina

Namesto palice si mislimo poljuben sistem delcev. Ni treba, da je
tog. Na i-ti delec sistema deluje sila F; = d? (m;r;) / dt?. Povzrocajo
jo notranji delci in okolica. Vsota sil na vse delce je
F=3F;=3d?(mr;)/dt?= d? (3 m;r;)/dt?. Ker se notranje sile med
seboj paroma iznicujejo, je to pravzaprav vsota vseh zunanjih sil.
Enacbo lahko preoblikujemo v obliko

d2r* (34.9)

F=m——,

dt?
pri Cemer je m =3 m; celotna masa sistema in r* lega masnega
sredisca, ako vpeljemo

1 (34.10)
rt= ;Emiri.

To je torej lega masnega srediS¢a. Popolnoma in enoli¢no je
dolocena z legami in masami vseh delcev sistema. Masno
sredisce lahko lezi "znotraj" ali "zunaj" sistema. Giblje se s
hitrostjo

_drx (34.11)
Coat’

v*
kakor pac velevajo zunanje sile. Kadar je vsota zunanjih sil enaka

ni¢, se masno sredisce sistema giblje premo in enakomerno.

Ali masno srediSce res sovpada s teziS¢em? Telo, podprto v
tezisCu, se ne vrti, ker je vsota navorov teze enaka ni¢. Za eno
koordinato torej velja 0 =3 m;g - x; = g3 m;x;, pri ¢emer so X;
odmiki od teZziS¢a. Zato mora biti 3 m;x; = 0, torej mx* = 0, torej
x*= 0. Masno sredi$¢e je res tam, kjer je tezis¢e. Ce pa telo ni v
homogenem teznem polju, tega ne moremo trditi. Zaradi
kratkosti bomo v nadaljevanju govorili kar o teziscu.

34.3 Gibalna kolic¢ina

Kadar je vsota zunanjih sil enaka nic, velja v* = const. Torej je
tudi mv* = const oziroma > m;v; = const. Posamicni delci se sicer
gibljejo na razli¢ne nacine, vendar se njihovo gibanje pokorava
zapisani omejitvi. Kaze, da je produkt med maso in hitrostjo
pomembna koli¢ina. Poimenujemo jo gibalna koli¢ina in
definiramo

G =mv*= > m;v;. (34.12)
Iz F=d2(S m;ry)/dt? = d(S m;v;)/dt olitno sledi
JFdt=AG. (34.13)

To je izrek o gibalni koli¢ini (EULER). Ce je sistem izoliran, torej
¢e ni zunanjih sil, se njegova gibalna koli¢ina ohranja, sicer pa je
njena sprememba enaka sunku zunanjih sil. Poglejmo nekaj
primerov.
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Trk dveh teles

Balisti¢no nihalo

Potisna sila curka

Dva avtomobila vozita drug proti drugemu in se ¢elno zaletita ter
sprimeta. Kako se giblje sprijeta zverizena plo¢evina?

Slika 34.2 Trk dveh avtomobilov. Pri tem se
ohranja gibalna koli¢ina. (Guardian)

Dvojica avtomobilov je sistem, na katerega ne delujejo zunanje
sile (teza nima vpliva na vodoravno gibanje). Gibalna koli¢ina
sistema se ohranja; po trku je enaka kot pred njim:

myvy + myvy = (M + my)v. (34.14)

Ce sta avtomobila enako teZka in se gibljeta z enakima
hitrostima, po tréenju lepo obmirujeta. Sicer pa tezje in/ali
hitrejSe vozilo potisne drugega nazaj. Dvakrat lazje vozilo mora
imeti dvakrat vecjo hitrost, da zaustavi nasprotnika.

Trk teles z znanimi masami ponuja dober nacin za merjenje
njunih hitrosti. Puskino ali revolversko kroglo mase m; in
neznane hitrosti v, izstrelimo v mirujoco tezko klado mase my, ki
je obesSena kot toCkasto nihalo. Krogla obtici v kladi. Gibalna
koli¢ina se ohranja: m;v; = (m; + my)v. Klada se odmakne in
zaniha. Njena hitrost skozi ravnovesje je, kot vemo [18.7],
odvisna od amplitude nihanja: v = xqV(g/l). Izmerimo odmik X in s
tem je hitrost krogle enoli¢no dolocena. Za tipi¢ne revolverje
znasSa okrog 300 m/s.

Z vodnim curkom iz gumijaste cevi zalivamo trato. Ko zadene
curek na kaksno oviro, recimo na kamen, ga premakne. Ocitno
nanj deluje z neko silo. S kaks$no silo deluje vodni curek na ravno
oviro pri pravokotnem vpadu? V Casu dt vpade na oviro masa

dm = pSvdt = @,,dt vode. To je nas sistem. Temu sistemu se
spremeni hitrost od v na ni¢, torej gibalna koli¢ina za dG = —vdm.
Sprememba gibalne koli¢ine na enoto Casa pa je sila, s katero
deluje ovira na curek, torej tudi sila, s katero deluje curek na
oviro:

F=0,v. (34.15)

Silo vodnega curka, kot inZenirji, izkoristimo za pogon vodnih
turbin, ki Zenejo elektricne generatorje. 1z visoko lezecih jezer
vodimo vodo po cevi v dolino. Lopatice turbine oblikujemo v
obliki ¢ase, tako da vpadajoca voda ne spolzi na tla, ampak se
odbije nazaj. Tako je sprememba gibalne koli¢ine dvakrat vecja
kot sicer in toliko je vecja tudi sila na lopatice. Namesto vodnih
curkov lahko uporabimo tudi curke vodne pare, ki jo pripravljamo
v visokotlacnih kotlih. To so parne turbine.
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Odriv dveh teles

Reakcijska sila curka

Raketna enacba

Ko iz puske izstrelimo kroglo, udari puska nazaj. Krogla in puska
sta sistem dveh teles, ki pa sedaj ne trcita skupaj, ampak se
odrineta narazen. Pri tem se ohranja gibalna koli¢ina.
Ohranitvena enacba je prav taksna kot pri trku dveh avtomobilov:
(my + my) - 0 =myv; + myv,. Kolikorkrat je puska tezja od krogle,
tolikokrat pocasneje sune nazaj. Tipi¢na krogla ima maso 10g in
odleti s hitrostjo 300 m/s. Tipi¢na puska ima maso 3 kg, zato sune
nazaj s hitrostjo 1 m/s. Ocitno puska ne sme biti prelahka, sicer bi
postala nevarna za strelca samega.

Namesto da streljamo kroglo iz puske, izpuS¢amo curek
stisnjenega zraka iz napihnjenega balona skozi njegovo ustje.
Balon odleti v nasprotno stran kot curek. Kaksno silo ¢uti balon?
Drugace receno: kaksna je reakcijska sila curka? Ocitno je to
nasprotni pojav kot pri vpadu curka na oviro, zato je tudi
razmislek enak in celo rezultat je isti: F = Qpv.

Slika 34.3 Izstrelitev rakete. Prikazana je ena izmed
raket, razvitih med drugo svetovno vojno. Kon¢na
hitrost rakete je odvisna od deleza pokurjenega
goriva in hitrosti izpuha. (NASA History Office)

Ne da bi poznali reakcijsko silo curka, smo jo kot ribici in
mornarji ze od nekdaj izkoriscali za pogon ¢olnov: z vesli smo
odrivali vodo nazaj in reakcija je potiskala ¢oln naprej. Kot
inZenirji pa namesto vesel raje uporabimo vijake. Ladijski vijaki
zajemajo iz okolice vodo in jo potiskajo nazaj. Isto pocno letalski
vijaki z zrakom. Oboji jemljejo potisno snov iz okolice. Lahko pa
vozilo takSno snov tudi vozi s seboj: v rezervoarjih ima spravljen
tekoci kisik in tekoc¢i vodik ali kaj podobnega. Sproti ju seziga in
nastale vroce pline izpuSca skozi zadnje Sobe. To je raketa. Z
raketami sezemo v zunanje plasti ozracja in merimo tamkajsnje
pojave. Izmerke s padalom vrnemo na tla. Nobene tehni¢ne ovire
ni - razen krmiljenja -, da prej ali slej poletimo okoli Zemlje, na
Luno in na Mars!

Kako pa se giblje raketa, ¢e ni zunanjih sil? V izbranem trenutku
ima raketa skupaj z gorivom maso m in hitrost v. Ko izvrze maso
dm goriva z relativno hitrostju u, se ji poveca hitrost za dv.
Gibalna kolic¢ina se ohranja: mdv + udm = 0. Izrazimo dv in
integriramo, pa dobimo

mo (34.16)

v—vg=uln—.
m
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To je raketna enacba (CIOLKOVSKI). Hitrost, ki jo raketa doseze, je
odvisna le od masnega deleza pokurjenega goriva in od hitrosti
izpuha. Ce si mislimo, da drsi raketa po gladki Zemljini povr$ini
brez trenja in zracnega upora ter da ima hitrost izpuha 4 km/s, bi
za doseg orbitalne hitrosti 8 km/s potrosila preko 85 % svoje
zaCetne mase. Seveda pa moramo raketo izstreliti poSevno
navzgor, pri cemer jo zaustavljata gravitacija in upor zraka. Oboje
se izraza kot izguba doseZene hitrosti za gt cos 6; ta izraz moramo
odsteti na desni strani raketne enacbe. Ocenimo, kolikSen delez
mase je potreben, da raketo spravimo do orbite! Naj se raketa
dviguje s pospeskom a =10m/s2. Do viSine h =300km se povzpne
v Casu t =V(2h/a) ~250s. V tem Casu izgubi gt ~ 2,5km/s
pridobljene hitrosti. Raketa mora torej pokuriti toliko mase, da bi
brez gravitacijskega zaviranja dosegla hitrost 10,5 km/s. Za to pa
porabi okrog 95 % mase. Spraviti tono tezek satelit v orbito
zahteva dvajsettonsko raketo. Da pokurimo ¢im manj dodatne
mase, mora raketa doseci orbito ¢im prej, to je, dvigovati se mora
s ¢im vedjim pospeskom. Zal pa ljudje, ki jih morda raketa nosi,
prevelikih pospeskov ne prenesejo.

34.4 Vrtilna kolic¢ina

Ko na i-ti delec delyje sila F;, deluje nanj hkrati tudi navor glede
na poljubno izhodisc¢e: M;=r; x F; = r; x d(m;v;)/dt. Desno stran
lahko zapiSemo kot d(r; x m;v;)/dt. Ta izraz, ko ga diferenciramo,
je namrec v; X myv; + r; X d(m;v;)/dt, pri Cemer je prvi clen enak
ni¢. Sestejemo navore na vse delce, pri cemer se notranji navori
medsebojno iznicijo, in dobimo

L=>rxmy; (34.17)
JMdt=AL.

Vpeljali smo vrtilno koli¢ino L. Ce je sistem izoliran, se vrtilna
koli¢ina ohranja, sicer pa je njena sprememba enaka sunku
zunanjih navorov. To je izrek o vrtilni koli¢ini glede na poljubno
srediSce (EULER). Seveda velja tudi za teziscCe.

Vrtilna koli¢ina glede na poljubno izhodisce in vrtilna koli¢ina
glede na teziscCe sta Stevil¢no razli¢ni. Pojavi se vprasanje, ali sta
med seboj kako povezani. Ce s ¢rtico oznac¢imo vektorje v
teziS¢nem sistemu, velja ry=r*+r;' in v; = v* + v;'. Oboje vstavimo
v definicijsko enacbo za vrtilno koli¢ino, krizema pomnozimo in
dobimo stiri Clene: r* x mv*, rx S myv;' C miri') X v¥in

> (ry' X myvy'). Vsoti v drugem in tretjem ¢lenu sta enaki nic, zato
preostane:

L=r*xmv*+L*. (34.18)

Prvi ¢len je vrtilna koli¢ina teziS¢a glede na aktualno izhodiSce,
drugi pa vrtilna koli¢ina glede na teziSce.



Krozenje planeta

Pirueta drsalke

Zvezdna pirueta

Kineti¢na energija

Poglejmo nekaj primerov. Sonce in Zemlja tvorita sistem, ki je od
zunaj le malo moten. Privzemimo, da je popolnoma izoliran. Ker
je Sonce mnogo tezje od Zemlje, privzemimo Se, da je teziSce
sistema kar v srediS¢u Sonca. Sistemu se ohranja vrtilna koli¢ina
glede na tezisSce; k temu prispeva zgolj Zemlja: r X mv = const,
torej r x v=const. Kadar je Zemlja na svoji poti blize Soncu, se
zato giblje hitreje, in kadar je dalje proc, se giblje pocasneje.

Drsalka na ledu se zavrti okrog podporne noge s siroko
razprostrtima rokama in iztegnjeno nogo. Nato pritegne roki in
nogo tesno k sebi in hitrost vrtenja se ji mo¢no poveca. Med
vrtenjem je drsalka priblizno izoliran sistem, ki se mu ohranja
vrtilna koli¢ina. Ko pritegne zunanje dele telesa k sebi, zmanjsa
njihove razdalje r; od vrtilne osi, zato se ustrezno povecajo
njihove obodne hitrosti v;, torej tudi kotna hitrost. Pritegnjeni
zunanji deli nato povlecejo za sabo Se osrednje dele telesa. To pa
zato, ker Cutijo - poleg centrifugalne sile - Se odklonsko silo, ki
jih pospesuje v tangentni smeri vrtenja.

KBLI 4

W;W Slika 34.4 Drsalka na ledu izvaja pirueto. Kako hitro se

vrti, kazejo njeni lasje in krilo. Pri tem se ohranja vrtilna
koli¢ina. (Anon)

—"

Vrtenje drsalke na ledu je namig, kako si lahko razlagamo vrtenje
Sonca okoli svoje osi in vrtenje planetov okoli Sonca (ter svojih
osi). Predstavljamo si, da se je Sonc¢ni sistem rodil iz ogromnega,
zelo pocasi se vrteCega oblaka plinov. Notranja gravitacija je
oblak cedalje bolj sezemala in zacetno vrtenje se je zato
povecevalo. Lokalne zgoSc¢ine snovi, ki so ponekod nastale, so se
nadalje stiskale in povecevale vrtenje. Kon¢no so se zgostile v
stanje, kakrsno je danes.

34.5 Kineti¢na energija

Ko na i-ti delec vzolz premika ds; deluje sila F;, je opravljeno delo
dA; = F;ds; enako spremembi kineti¢ne energije 1/, m;v;.
Sestejemo delo sil na vse delce in dobimo

1 34.19
K=2§ miviz ( )

Aext +Aint =AK .

Vsota dela vseh sil - zunanjih in notranjih - je enaka spremembi
kineti¢ne energije sistema. To je izrek o kineti¢ni energiji.
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Kineticna energija se ohranja le, kadar ni ne notranjega ne
zunanjega dela. Notranjega dela ni tam, kjer ni notranjega trenja
(kot pri nestisljivi in neviskozni tekocini) ali kjer ni notranjih
relativnih premikov (kot pri togem telesu).

Po zgledu vrtilne koli¢ine poskusimo razcepiti tudi kineti¢no
energijo na dva dela: na kineti¢no energijo teziS¢a in na kineti¢no
energijo okrog tezisca. Tako zapiSemo v; =v* +v;' in vstavimo v
definicijsko enacbo za kineticno energijo. Kvadriramo in
pridelamo tri ¢lene: 1/, mv*?, 1/, S myv;'? in v¥S m;v;'. Zadnji ¢len je
enak nic, zato velja

1 (34.20)
K= 2 mv*2 + K* .

Prvi ¢len je kineti¢na energija teziS¢a, drugi pa kineti¢na energija
glede na tezisce. Recemo jima tudi translacijska in rotacijska
energija.

V izoliranem sistemu se gibalna koli¢ina in vrtilna koli¢ina vedno
ohranjata, kinetiCna energija pa le, ¢e ni notranjega dela. — Pri
trku dveh avomobilove zacetna kineti¢na energija "izgine".
Porabila se je pac za notranje delo, torej za deformacijo in
segrevanje nesrecne plocevine. — Pri strelu iz puske se kineti¢na
energija "ustvari". Seveda je nastala na racun notranje energije
smodnika. — Pri pirueti pa je zadeva naslednja. Zacetno in
konc¢no vrtenje drsalke je togo in poteka okrog navpic¢ne osi. To
pomeni, da za vsako tocko velja v; = r;w. Vrtilno koli¢ino zato
zapiSemo kot L = w3 m;r;? in kineti¢no energijo kot

K=15w?3 m;ri2. To pomeni, da K= Lw/2. Vrtilna koli¢ina se pri
tvorjenju piruete ohrani, kineti¢na energija pa naraste! Od kod je
prisla? Od notranjega dela, to je od drsalkinih miSic, ki so
potegnile roki in nogo navznoter in pri tem premagovale
centrifugalno ter odklonsko silo.

34.6 Gibanje togega telesa

Posebno preprost sistem delcev je tak, ki ohranja obliko; reCemo,
da je tog. Kamen, na primer, je tog sistem. V takem sistemu se
razdalja med poljubnima tockama ne spreminja. Ker so togi
sistemi poseben primer "splosnih" sistemov, velja zanje vse ze
povedano. Zaradi njihove posebnosti pa pricakujemo, da bomo
lahko povedali Se kaj dodatnega. Pri obravnavanju bomo privzeli,
da so togi sistemi zvezni.

TeziSCe togega telesa je, oCitno, vedno na istem mestu glede na
masne tocke, ki ga sestavljajo. Dolo¢camo ga po definicijski enacbi
(34.10), ki jo za zvezna telesa zapiSemo kot mr¥=frdm= frpdV.
Homogena simetri¢na telesa imajo tezis¢a v svojih prostorskih
srediscih; to velja za kvader, valj in kroglo. Kratki racuni
pokazejo, da je teziSce stozca na 1/4 njegove viSine in teziSce



Translacija in rotacija

Otroski vrtiljak

polkrogle na 3/8 njenega radija. TeziS¢a drugih teles bomo
racunali takrat, ko/Ce bo potrebno. "Nepravilnim" telesom
dolocamo tezisc¢a - kot ze vemo [9.7] - tako, da jih obeSamo na
vrvice.

Ce je telo sestavljeno iz dveh teles A in B, ki jima poznamo
tezisci, ju lahko nadomestimo s tockastima masama v njunih

EA m; X; + EB m;x; = M Xax + Mg Xpx. TeziSce teh dveh tockastih mas
pa leZi na njuni zveznici in je zlahka dolocljivo.

Posebej zvito je racunanje teziS¢a homogenega telesa, recimo
ravnila, v katerega je na enem koncu izvrtana luknja. V mislih jo
zapolnimo s primernim ¢epom in izracunamo teziSce polnega
ravnila. Potem pa na nasprotno stran tega teziSCa prilepimo prav
tak Cep, dolo¢imo njegovo teziSce in iz obeh teziS¢ dolo¢imo
skupno tezisce.

Togo telo se lahko giblje na dva odlikovana nacina: vse njegove
tocke se gibljejo vzporedno ali vse toCke krozijo okoli poljubne
osi. Prvo gibanje imenujemo translacija, drugo rotacija. 1z teh
dveh osnovnih gibanj lahko sestavimo poljubno gibanje. To je
zaporedje kratkih translacij teziS¢a in majhnih rotacij okoli
trenutnih osi iz teziS¢a. Oboje dolocajo okoliSnje sile in njihovi
navori. Gibanje teziS¢a opisuje izrek o gibalni koli¢ini in gibanje
okoli njega opisuje izrek o vrtilni koli¢ini. Velja Se izrek o
kineti¢ni energiji, pri Cemer je notranje delo enako ni¢. V vseh
izrekih so hitrosti delcev izrazene kot v; = w % r;. Gibanje tezisca
je taksno kot gibanje tockastega telesa in z njim ne bomo
izgubljali ¢asa. Posvetimo se raznim oblikam vrtenja.

34.7 Vrtenje okoli stalne osi

Osnovni primer vrtenja predstavlja otroski vrtiljak z navpi¢no
osjo. Pri praznem vrtiljaku gre ponavadi os skozi teziSce, Ce pa
nanj nalozimo kakSen zaboj, se teziSCe premakne in os ne gre vec
skozenj. Privzeli bomo, da je os poljubna, to je, da gre bodisi
skozi teziSce ali izven njega.

Slika 34.5 Vrtiljak. Vsi deli vrtiljaka se vrtijo okoli
stalne navpi¢ne osi z enako kotno hitrostjo.
Hitrost vrtenja je dolo¢ena z zunanjimi navori, ki
jih izvajajo igrajoce se deklice. (Warnock, T.)

Podnozje osi vzamemo za izhodiS¢e koordinatnega sistema. Delec
i vrtiljaka je oddaljen od izhodi$¢a za I; in od navpi¢ne osi za r; ter
se giblje s tangentno hitrostjo v;. Njegova vrtilna koli¢ina zato
znaSa L; =m;l;v;. Za navpicno komponento velja L, ;/L;=r;/1;
torej L, ; =m;r;v;= m;r? w. SeStejemo po vseh delcih in dobimo za
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Kineti¢na energija

Krozenje tezisca

vrtilno koli¢ino v navpic¢ni smeri (indeks z bomo odslej kar
izpuscali):
L=]Jw (34.21)
] = 2 m; T','Z .
Koli¢ino J poimenujemo vztrajnostni moment vrtiljaka glede na
aktualno navpi¢no os. Odvisen je od mase in njene razporeditve
okoli osi. Opazimo, da je prav vseeno, kje na tej osi izberemo
izhodiScCe. Vsakokratna vrtilna koli¢ina in vztrajnostni moment
okrog navpicCne osi sta zmeraj enako velika.

Sprememba vrtilne koli¢ine je seveda enaka vsoti zunanjih
navorov, kar pa v primeru togega telesa zdaj zapiSemo v
preprostejsi obliki:

djw dw (34.22)

Enacba ima popolnoma enako obliko kot gibalni zakon za premo
gibanje. Zato takoj uvidimo: ¢e navorov ni, je vrtenje
enakomerno. Stalni navor pa povzroc¢i enakomerno pospeseno
vrtenje.

V zvezni obliki zapiSemo vztrajnostni moment (34.21) kot
J=/[r*dm=[r?pdV. Kratki ra¢uni pokazejo naslednje. Tanek
cilinder polmera r ima vztrajnostni moment (okoli simetrijske osi)
mr?. Enako tezek valj z enakim polmerom ima 1/2 tega, krogla
2/5 tega in drog zgolj 1/3 tega. Vztrajnostni moment
sestavljenega telesa, recimo tankega cilindra in na njem
poloZenega precnega trama, se seStevajo. Posebej zvito je spet
racunanje, kadar ima osnovno telo kaksno luknjo. Velja namrec¢
Jtan =Jaritted +Jplug-

Podobno kot vrtilno koli¢ino poenostavimo tudi izraz za kineti¢no
energijo. V njeni definicijski enacbi (34.19) nadomestimo
tangentne hitrosti v; z rjw in dobimo

1 34.23
K= 5]&)2 ( )

Mimogrede Se opazimo, da velja K= Lw/2. Sprememba kineti¢ne
energije je seveda enaka delu zunanjih sil, saj je delo notranjih sil
enako nic¢. K delu prispevajo le tangentne komponente sil, torej
A=Firdp=Mdog.

Vrtenje vrtiljakove plosc¢adi okrog aktualne navpic¢ne osi, ki ne
gre skozi tezisce, je sestavljeno iz krozenja teziS¢a okrog te osi in
iz hkratne rotacije okrog (vzporedne) teziS¢ne osi. KrozZenje in
rotacija imata isto kotno hitrost. Domnevamo, da se sestavljeno
gibanje izraza kot vsota obeh delnih gibanj, torej



Kotaljenje po klancu

Precesija vrtavke

J=J%+ mr*2 (34.24)
L=L*+mr*tw

1
K=K*+§mr*2w2.

Zadnja dva izreka sta pravzaprav le specializacija izrekov o vrtilni
koli¢ini in o kineti¢ni energiji tezis¢a v sploSnem (netogem)
sistemu, ki smo ju Ze spoznali. Prvi izrek pa takoj sledi iz
drugega, Ce slednjega zapiSemo kot Jw = J*w + mr*?w in delimo z
w.

34.8 Premikanje osi vrtenja

Pri vrtiljaku je os vrtenja stalna. Pri kolesu, ki ga zakotalimo po
klancu, pa se os vrtenja premika, in sicer vzporedno sama s
seboj.

Slika 34.6 Kotaljenje kolesa po klancu. Cim
vedji je vztrajnostni moment kolesa, tem
manjsi je pospesek njegovega tezisca.

Na kolo delujeta dve sili: v teziS¢u prijemlje in nizdol klanca vlece
komponenta teze F; = mgsin ¢. V dotikaliS¢u pa prijemlje in
navzgor po klancu deluje sila podlage F,. Zadnja sila tudi izvaja
navor F,r glede na os kolesa. Velja F; — F, =ma* in For=J*a. Ker
rw =v=v*, je a =a*/r. Iz vsega skupaj sledi

a*=gsing/(1 +J*/mr?). Kolo se torej pospesuje manj kot drsece
sani. Vedji kot je vztrajnostni moment, manjsi je pospesek. Pri
krogli znasa le 5/7 drsnega pospeska in pri valju zgolj 2/3. V
vsakem trenutku je kineti¢na energija kolesa enaka vsoti
translacijske in rotacijske. Vsota kineti¢ne in potencialne energije
se pa ohranja.

Otroci se od nekdaj radi igrajo z vrtavkami. Taksno vrtavko
postavimo s spodnjim koncem osi na mizo, usmerimo os navpi¢no
navzgor in jo s prsti zavrtimo z veliko hitrostjo. Vrtavka se vrti in
njena os ostaja lepo navpic¢na.

Q Slika 34.7 Vrtavka. Ce jo zavrtimo z nagnjeno
0sjo, se zac¢ne ta vrteti okoli navpi¢ne osi in pri

@% dL tem zarisuje plad¢ stozca.
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Ce vrtavko zavrtimo s poSevno nagnjeno osjo, se zgodi nekaj
presenetljivega: vrtavka ne pade, ampak za¢ne njena os kroziti
okrog navpicnice. Pri tem zarisuje plasc¢ stoZca. Pojavu reCemo
precesija. Kaj lahko povemo o njem?

Vrtilna koli¢ina vrtavke L je usmerjena vzdolz njene osi. V ¢asovni
enoti dt se os zavrti za kot d6 okrog navpicnice. Velikost vrtilne
kolic¢ine se pri tem ne spremeni po velikosti, ampak le po smeri.
Velja dL = Ly sin ¢ d6. Sprememba vrtilne koli¢ine na ¢asovno
enoto znaSa dL/dt =L sin ¢ Q. Povzrociti jo je moral nek navor.
Tega izvaja teza, ki prijemlje v teziSCu vrtavke, glede na
dotikaliSce osi s tlemi. Navor M = mgsin ¢ je vodoraven. Ko
upostevamo smeri vseh vektorjev, dobimo:

M=0QXL. (34.25)

Vrtavkina os precedira s kotno hitrostjo Q okoli navpicnice.
Precesija je tem hitrejSa, ¢im vedji je navor, to je, ¢im bolj je
vrtavka nagnjena. Pri danem nagibu pa je precesija tem
pocasnejsa, ¢im hitreje se vrtavka vrti. Ko se zaradi trenja
vrtavka pocasi ustavlja, se njena hitrost precesije veca.

Tudi Zemlja je vrtavka. Vrti se okoli polarne osi, ki je nagnjena
glede na normalo ekliptike. Na Zemljo deluje Sonce s silo, ki pada
z razdaljo (19.17). Masno srediSce in teziSCe krogle sta zato rahlo
razmaknjena. Ce bi bila Zemlja popolnoma okrogla, bi leZalo
njeno teziSce na zveznici med masnima srediS¢ema Sonca in
Zemlje in slednja ne bi ¢utila nobenega navora. Ker pa je
sploScena, ima okrog ekvatorja dodatni masni obro¢. Sonce
privlaci bliznji del obroca mocneje kot oddaljenega in s tem izvaja
navor na Zemljo. Ce se ta ne bi vrtela, bi jo s¢asoma Sonce
zasukalo tako, da bi bila njena polarna os pravokotna na
ekliptiko. Ker pa se vrti, reagira kot vrtavka: vrtilna os precedira.
Soncev navor je najmocnejsi ob solsticijih in enak ni¢ ob
ekvinokcijih. Vendar deluje vedno istosu¢no. Enako kot Sonce
deluje na Zemljo tudi Mesec. Oba navora se seStevata. Tako smo
nasli kvalitativno razlago za ze dolgo znano precesijo tocke gama
po nebesnem ekvatorju [7.8].

Slika 34.8 Zemlja kot vrtavka.
Polarna os zarisuje med zvezdami
krog. Trenutno kaze v smer
zvezde Severnice, ki je zato tudi
eiptka dobila svoje ime.
O

A F sonce

zimski poletni
solsticij solsticij

sonce

Ocenimo velikost precesije Q = M /L sin ¢! — Vrtilno koli¢ino
Zemlje zapiSemo kot L = w - (2/5)mR?. — Maksimalni navor na
ekvatorski obro¢ ocenimo z M =2 -AF R sin ¢. — Silo na masni
polobro¢ dm/2 ocenimo z gradientom gravitacijske sile,
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dF/dr =2k (dm/2) (Ms/rs3 + My/rv3), pri ¢emer vzamemo
dr=Rcos @. — Masni obro¢ dolo¢imo iz razlike prostornin
elipsoida z veliko polosjo a in krogle: dV = (411/3)aR? — (411/3)R3,
torej po mnozenju z gostoto dm =m(a/R — 1). — Vse skupaj
vtaknemo v izhodi$¢no enacbo. Casovno spremenljivost navora
upostevamo tako, da vzamemo kar 1/2 maksimalnega. Dobimo
rezultat Q = (5/2) k (Mg/rs3 + Mu/ry) cos @ (a/R — 1)/ w. Vse
koli¢ine na desni strani poznamo in izraCunamo obhodni ¢as
precesije ~ 16 tisoc let. To je dobra velikostna ocena za dejansko
vrednost 26 tisoC let. Zanimivo je, da je vpliv Sonca na precesijo
manjsi kot vpiv Meseca; razmerje njunih vplivov znaSa okrog 1:2.

34.9 Nihanje togih teles

Tezno nihalo  Na steni obeSena slika zaniha, ko jo odmaknemo iz ravnovesne
lege in spustimo. Nasploh vsako togo telo, ki je vrtljivo okoli
vodoravne izventeziS¢ne osi, niha okrog ravnovesne lege.
RecCemo, da je to teZno nihalo.

Slika 34.9 Nihanje togega telesa. Teza prijemlje v
tezisc¢u in suce telo okrog ravnovesne lege zdaj sem,
zdaj tja.

-

Na obeseno telo deluje teza mg. Prijemlje v teziscu. Ko je telo
odmaknjeno za majhen kot ¢, ima teza komponento

F=—-mgsin ¢ = —mgep proti ravnovesni legi. Ta komponenta izvaja
navor M =[F glede na obesi$Ce. Velja M =] ¢". Ker J =J* + ml?,
sledi ¢@" + wg? @ = 0. To je znana enacba nihanja s frekvenco

gll (34.26)

R A
1+ J%mil%"

Wo
Ce je vse telo stisnjeno v teZisce, je J* =0 in frekvenca nihanja
postane V(g/l), kakor tudi mora biti.

Torzijsko nihalo  Pri obeSenem telesu povzroca sucno nihanje navor teze. Lahko pa
telo prebodemo skozi teziSce in su¢ni navor povzrocamo s
spiralno vzmetjo: M = —k¢. Namesto spiralne vzmeti lahko telo
obesimo kar na zico. Tako dobimo torzijsko nihalo.
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Prosto nihanje

Slika 34.10 Na Zici obesena krozna plos¢a suc¢no niha
okoli ravnovesne lege. To je torzijsko nihalo. Cim tanjsa je
Zica, tem pocasnejse je nihanje. (Kenyon College)

Enak premislek kot prej vodi do enake enacbe gibanja s
konstanto

k (34.27)
= J_* .
Torzijsko nihalo je nadvse primerno za merjenje vztrajnostnih
momentov teles. Najprej za znani vztrajnostni moment, recimo za
krozno plosco, izmerimo frekvenco nihanja ter tako dolo¢imo
konstanto vzmeti. Potem pa iz znane konstante vzmeti in iz

izmerjene frekvence dolo¢imo nezanani vztrajnostni moment,
recimo za (togega) ¢loveka okrog treh teziS¢nih osi.

0.)02

34.10 Splosno nihanje teles

Skupne poteze obravnavanih nihanj lahko zajamemo z isto
enacbo oblike

u"+we?u=0. (34.28)

Resitev enacbe je, kot vemo, harmoni¢no nihanje s frekvenco w.
Koli¢ina u, ki niha, je lahko razdalja, kot ali kaj drugega. Velja
torej

U =1 Ccos wyt + ¢ sin wgt . (34.29)

Konstanti c; in ¢, sta dologeni z za¢etnimi pogoji. Ce za¢nemo
Steti ¢as v maksimalni amplitudi, na primer, postavimo ¢, =0.

Zdaj, ko ze poznamo kompleksna Stevila, pa opazimo Se
naslednje. Zapisana nihajna enacba je pravzaprav realni (ali
imaginarni) del kompleksne enacbe s povsem enako obliko, le da
je v njej kolic¢ina i = (x + iy) kompleksna: (x +iy)" + we? (x +iy) =0
pomeni (x" + wy? x) +i(y" + we?y) =0, to je par "navadnih" enacb.
Zato jo reSujemo kar s kompleksnim nastavkom

Ul = (ug expib) expiwt. Ko ga vstavimo v nihajno enacbo, dobimo
(iw)? + wy? = 0, torej w = wy. Tako realni kot imaginarni del
kompleksnega nastavka sta iskani resSitvi: u = ugcos (wot + 6) ali

U = ug sin (wot + 6). Konstanti ug in 6 dolo¢imo iz zacetnih pogojev.
Ce upostevamo $e obrazec za sinus ali kosinus vsote (15.15), pa
dobimo resitev v obliki u = ¢; cos wgt + ¢, sin wyt. Novi konstanti se
izrazata s starima: uy? =c;2 + cy2 in tan6 = —cy/c;.
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Vzbujeno nihanje

Vzbujano nihanje z
dusenjem

Kako se giblje nihalo, ¢e nanj deluje dodatni zunanji harmonicni
vpliv s svojo frekvenco? Veter z zaporednimi sunki, na primer,
poganja gugalnico. Nihajno enacbo zapiSemo kot

u" +wy?u=Acos (wt+6). (34.30)

Zapisano enacbo razsirimo v kompleksno obliko 4" + wy? (i =

A expiwt, pri éemer A = A expi6. Za resitev pricakujemo nihanje z
isto frekvenco kot zunanji vpliv, zato izberemo nastavek

U =lgexpiwt, pri cemer 1y = ugexpib, in ga vtaknemo v nihajno
enacbo. Dobimo (iw)2%lg + we?ily = A, torej g =A/(we? — w?).
Koli¢ini {ip in A sta povezani z realnim sorazmernostnim
faktorjem, zato sta njuni fazi enaki in velja

u=ugcos (wt + 6) (34.31)
_ A
T V@ —w?)

Nihalo niha harmonic¢no z isto frekvenco w kot vzbujevalec. Cim
manjsa je razlika med frekvenco vzbujevalca in lastno frekvenco
wg nihala, tem vecja je amplituda uy nihanja. Ko sta frekvenci
enaki, je amplituda neskon¢na. Re¢emo, da je nihalo v resonanci
z vzbujevalcem. Seveda nastopa v naravi trenje, ki ga nismo
upostevali, in so zato vzbujene amplitude koncne.

Slika 34.11 Vzbujeno nihanje mostu v
Tacomi. Sibek spremenljiv veter ravno
pravsnje frekvence je most spravil v
resonantno nihanje in ga povsem porusil.
(New York Times)

Pa razis¢imo vzbujeno nihanje z dusenjem! Predpostavimo, da
velja linearni zakon upora, in zapiSimo nihajno enacbo

u" + yu' + wou =A cos (wt + 6) . (34.32)
Postopamo enako kot pri neduSenem vzbujanju in pridelamo
enacbo iy =A/(wy — w +iyw) = RA. To enacbo zapisemo v obliki
llg=Rexpif-Aexpib = RAexpi(6 + 6). Realni del leve strani je
enak realnemu delu desne strani, zato

u=RAcos(wt+6+0). (34.33)

Nihanje je harmonicno s frekvenco vzbujevalca, vendar je
casovno zamaknjeno. Amplituda je doloCena z R in faza s 6.
Doloc¢imo ju!

Definicijski izraz za R kvadriramo, to je, pomnoZimo ga s
konjugirano vrednostjo, in dobimo:
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DusSeno nihanje

Torzijska tehtnica

_ 1 (34.34)
V(@ — 0 + 2wl
Recipro¢ni izraz za R preoblikujemo takole: 1/R = 1/Rexpif =
(1/R) exp (—if) = (wo? — w? + iyw). Realni del dobljenega izraza je
cos 0 in imaginarni del je —sin 8. Njuno razmerje pove

—yw (34.35)
2

tanf =

w2 — w?

Pri nizkih vzbujevalnih frekvencah nihalo kar sledi vzbujevalcu.
Pri visokih stoji pri miru, saj nima ¢asa, da bi mu sledilo. Trenje
poskrbi, da je resonantno ojacanje konc¢no. Nihanje vedno kasni
za vzbujevanjem. Kasnenje narasca s frekvenco. V resonanci
kasni natanko za Cetrt nihaja.

Preostane Se duseno nihanje. Spet predpostavimo, da velja
linearni zakon upora in zapiSimo

u"+ yu' + we?u=0. (34.36)

Na enacbo pogledamo, kot da je kompleksna. Pricakujemo
nihanje z zmanjSevanjem amplitude s casom in zato poskusimo z
nastavkom @ = expift s kompleksnim 7. Kompleksni eksponent
namrec¢ vsebuje realni in imaginarni del, ki poskrbita za oboje.
Dobimo (—72 + iyF+ wg?) expift = 0. Prvi faktor mora biti enak nic,
to pa je pri F=1ip/2 = V(wg? — y*/4) oziroma okrajSano F=iy/2 + w.
Privzemimo, da je dusenje tako majhno, da je podkorenski izraz
pozitiven. Tedaj je frekvenca w realna. Potem dobimo reSitev

i =exp (—yt/2) [c1 exp (iwt) + ¢ exp (—iwt)]. Da bomo kompleksno
resSitev reducirali na realno, moramo postaviti ¢, = ¢1* oziroma
obratno in dobimo

u=uge"2cos (wt+ 6) (34.37)
w=V(wy2—y?),y<wg.

Nihanje je harmoni¢no z manjsSo frekvenco kot pri prostem
nihanju, amplitude pa so eksponentno dusene. Ce je dusenje
premocno, si zlahka predstavljamo, da do nihanja sploh ne pride,
ampak preostane le eksponentno pojemanje. Racunsko pa se tega
ne bomo lotili.

34.11 Gravitacijska konstanta

S suc¢nim nihalom na tanko Zico smo dobili v roke zelo obcutljiv
merilnik sil. Vzbudi nam upanje, da bi lahko z njim izmerili
gravitacijski privlak med dvema kroglama z znano maso in na
znani razdalji ter tako dolocili gravitacijsko konstanto in preko
nje maso Zemlje. Z veliko truda nam - kot zelo spretnemu
eksperimentatorju - to tudi uspe (CAVENDISH).

Na tanko Zicko obesimo lahek vodoraven vzvod dolZine 2r z
dvema svin¢enima kroglama mase m na koncih. Celotni drog ima
vztrajnostni moment J = 2mr?. Ko ga zasuc¢emo in spustimo,



Tehtanje Zemlje

izmerimo Se nihajni ¢as T in iz tega izracunamo su¢no konstanto
k =J(2n/T)?. Uporabimo tanko in dolgo nitko, da je konstanta ¢im
manjsa, to je, nihajni Cas mora biti ¢im vecji. Sedaj je vse
pripravljeno. Umirimo vzvod in v neposredno blizino obeh malih
krogel primaknemo dve veliki krogli z masama po M. Razdaljo
med srediScema male in velike krogle, I, izmerimo predhodno.
Pocakamo da se vzvod zasuce. Da meritve ne motimo, jo delamo v
zaprti sobi in gledamo na sucno skalo z daljnogledom. Iz
izmerjenega zasuka izracunamo navor, iz tega privlak med
kroglama in konc¢no Se gravitacijsko konstanto. Dobimo

K=6,7-10"11 Nm%/kg?. (34.38)

Nasa dosedanja ocena [19.9] torej ni bila prav nic¢ slaba. Za
uspesno meritev smo uporabili: dolzino droga 2 m, maso male
krogle 0,5 kg, maso velike krogle 150 kg, razdaljo med
srediScema krogel 250 mm in nihajni ¢as ~ 20 minut (!). Pri vsem
tem izmerimo zasuk konca droga komaj za ~ 5 mm.

== 1

Slika 34.12 Merjenje tezne konstante. Privla¢na sila med veliko in majhno
kroglo zasuce nihalo. Velikost zasuka pove silo med znanima masama pri znani
oddaljenosti in s tem tezno konstanto. (Cavendish, 1798)

Pri merjenju smo predpostavljali, da se krogli privlacita tako, kot
da bi bila vsa njuna masa zgosScena v njunih sredisc¢ih.

Ko je gravitacijska konstanta izmerjena, jo uporabimo za
dolocitev mase Zemlje iz teznega pospeska na njeni povrsini:

g =KM)/r?. Za maso dobimo 6,0 - 10%4kg. To pomeni, da znasa
povprecna gostota 5,5 kg/dm3. Ker je iz neposrednih meritev
znano, da je gostota kamnin na povrsju Zemlje okrog 2,5 kg/dm?,
mora biti Zemlja v srediscu ustrezno gostejSa. Nasa dosedanja
ocena gostote - kot sredine med maso apnenca in maso Zeleza -
je bila torej kar dobra.
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Jakost polja

Polje krogle

34.12 Gravitacijsko polje

Tudi to, kar smo doslej ze dognali o gravitacijskih poljih, hocemo
sedaj povzeti v jeziku vektorskih polj. Pri tem pricakujemo, da
bomo odkrili tudi kaj novega.

Jakost gravitacijskega polja g v izbrani tocki lahko dolo¢imo
(19.1) z gravitacijsko silo Fy na tamkajSnji testni delec z maso m:

Gravitacijsko polje tockastega telesa z maso M pojema, kot znano
(19.18), z oddaljenostjo r od njega. Polje v tocki P, povzroceno od
masnega izvora v tocki Q, znasa

Mq (34.40)

gp=—K s ngp.

er
Enotni vektor ngp kaze od tocke Q proti tocki P. Sistem delcev pa
ustvarja v tocki P skupno polje

m (34.41)

Q
gp=— E K —2 HQP .
Q 'or
Polje krogle dolo¢imo tako, da najprej izracunamo polje
krogelnega obroca, nato krogelne lupine in slednji¢ celotne
krogle.

Slika 34.13 Polje krogelnega obroca.

X

1
I——dx

| r |
I 1

Masa obroca znaSa dm = 2nRodx, pri Cemer je o ploskovna masna
gostota. V to¢ki P povzroca ta obro¢ polje dg = dmxk cos 6/s?.
Dolociti moramo Se odvisnost 8(s) in x(s). — Ker
R?2=r2+5s%-2rscos#, velja cos0 = (r? — a® + s?)/2rs. — Ker

dx/ds = s/r, velja dx = sds/r. Oboje vstavimo v polje obroca in
dobimo dg = (mRko/r?)(1 + (r*—R?)/s?)ds. Ce je to¢ka P zunaj
lupine, integriramo med r—R in r+R ter dobimo g = km/r?. To je
tocno toliko, kot da bi bila vsa masa lupine stisnjena v sredisce.
Ce je P znotraj lupine, pa integriramo med R—r in R+r ter dobimo
g=0. Seveda je polje znotraj lupine enako nic le tedaj, ¢e ni
drugih mas zunaj lupine. Ce obstajajo zunanje mase (kar seveda
zmeraj), nas krogelna lupina ne $¢iti pred njihovim poljem.

Polna krogla je sestavljena iz koncentri¢nih lupin. Vsaka lupina
proizvaja taksno polje, kot da bi bila stisnjena v sredis¢u. Zunanje
tocke Cutijo torej taksno polje, kot da bi bila vsa masa krogle
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Potencial polja

zdruzena v njenem sredis¢u. Notranje tocke pa Cutijo taksno
polje, kot da bi zunanje plasti ne bilo in bi bila vsa masa iz
notranjih plasti zdruzena v sredis¢u. Povedano velja za slojevito
kroglo, to je tako, katere masa se spreminja z radijem. Ce je
krogla homogena, pa je notranja masa m, sorazmerna z r3, torej
m,/m =r3/R3 in polje zato znasa g = kmr/R3. Polje linearno narasca
od 0 v sredis¢u do km/R? na povrsini.

Ce bi skozi homogeno Zemljo izvrtali navpiéni jasek od pola do
pola in vanj spustili kroglo, bi ta Cutila silo Fg x —r, to je
Fyg/m= —gor/R, in bi nihala sem in tja. Nihajni ¢as bi znaSal
T=2nv(R/gy), torej 1,4 ure. To je natanko toliko, kot potrebuje
izstrelek za obhod okoli Zemlje [18.9].

Ko se testni delec premakne iz ene tocke v drugo, opravi
gravitacijsko polje na njem delo A = [ mg - ds. Ce deluje sila v
smeri premika, je delo pozitivno in delcu se poveca kineti¢na
energija. In obratno. Delo je neodvisno od ubrane poti med
obema tockama, saj bi sicer z gibanjem po zakljuceni zanki dobili
stroj za pridobivanje kineti¢ne energije iz ni¢. Po definiciji je
dovedeno delo enako spremembi potencialne energije. Hocemo,
da pozitivno delo odgovarja zmanjSanju potencialne energije, zato
definiramo:

W-Wy=-[mg-ds. (34.42)

Referentno tocko 0 izberemo kjerkoli in tamkajsnjo potencialno
energijo postavimo na poljubno vrednost, najbolje na ni¢. Delo
gravitacije na masno enoto poimenujemo gravitacijski potencial:

¢—¢o=—Jg-ds. (34.43)

Ocitno velja W= m¢. Iz definicije potenciala tudi neposredno
sledi ¢pap = —ppa ter Pag = poa — Pos = P — Pp. Za tockast delec
pokaze integriranje, pri Cemer postavimo potencial v
neskonc¢nosti na nic,

mq (34.44)

pp=—K—.

T'Qp
Potencial sistema delcev je oCitno vsota potencialov posameznih
delcev:

m (34.45)
¢p=— E K — .
Q 'or
Gravitacijsko polje sistema torej lahko izracunamo na dva nacina:
z vektorskim sestevanjem jakosti ali s skalarnim sesStevanjem
potencialov. Slednje je lazje. Iz potenciala pa, kot znano (32.7),
sledi jakost polja takole: g=—-V¢ .
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Lahek planet

Stozernice

34.13 Gibanje planetov

Sonce in njegov planet, recimo Zemlja, sta priblizno izoliran
sistem dveh teles. Ce je planet lahek v primerjavi s Soncem, je
teziSce sistema kar v srediScu Sonca in relativno se giblje zgolj
planet. Ohranja se vrtilna koli¢ina sistema, h kateri prispeva le
planet, in se v polarnih koordinatah zapiSe kot

L=mrg'. (34.46)
Zaradi te ohranitve je gibanje ravninsko. Ohranja se tudi vsota
kineticne in potencialne energije:

m a 34.47
E=E(r'2+r2cp'2)——. ( )
r

Crtice oznadujejo odvode po ¢asu. Zaradi kratkosti smo zapisali
a=KmM.

Izra¢unati hoc¢emo tir, po katerem se giblje planet. Doslej smo
bolj ali manj upravic¢eno privzemali, da je to krog, sedaj pa
poskusimo tir izpeljati kot posledico gravitacijskega zakona. V
energijski enacbi nadomestimo dr/dt z dr/d¢ - ¢' in nato v njej
nadomestimo vse ¢' s tistim iz vrtilne enacbe. Izrazimo d¢ in
integriramo, pa dobimo:

f Ldr/r? (34.48)
¢= \/[2m(E+ a/r)—L2/r?]°

To je enacba tira r=r(@) v inverzni obliki. Preoblikujemo faktor
dr/r? v d(1/r) in s tem, po nekaj truda, prevedemo integral v
standardno obliko ¢ « [ du/V(1 — u?), katere resitev je arkus
kosinus. Rezultat na koncu, spet z nekaj truda, polepSamo v
obliko

r= N (34.49)
1+e&cosg
L2
p=—
ma
2EL?
=1+ 5
ma

Oblika krivulje, po kateri se giblje planet okoli Sonca, je odvisna
od parametrov p in €. Kak$ne krivulje so to? Ce £ =0, je to o¢itno
kroznica z radijem p. Ko ¢ = 90°, imajo vse krivulje enako
oddaljenost od gorisca, namrec p. Pa narisimo te krivulje za isto
vrednost p in za razlicne vrednosti ¢! Slika pokaze, da so to: krog
(¢ =0); elipsa (¢ <1 oziroma E < 0); parabola (¢ =1 oziroma

E =0); in - nova krivulja! - hiperbola (¢ > 1 oziroma E > 0). Vse te
krivulje so o€itno sorodne, to je, spadajo v isto skupino; recimo
jim stoZernice. Planet se torej lahko giblje okrog Sonca ne samo
po krogu, ampak po katerikoli stozernici.



Obhodni ¢as

Naj bo planet v zacetnem trenutku v legi ry in naj ima hitrost vy.
Njegova energija znaSa E = mvy/2 — a/ry. Z energijo je oblika tira -
kroznica, elipsa, parabola ali hiperbola - popolnoma dolocena.
Presenetljivo je odvisna zgolj od velikosti hitrosti in ni¢ od njene
smeri.

Slika 34.14 Stozernice. Planet se giblje okrog
Sonca po kroznici, elipsi, paraboli ali hiperboli,
odvisno od njegove zaletne lege in hitrosti.
(Scott, A.)

Kako se Ze spoznani parametri stoZernic izrazajo s parametroma
p in £? Nekaj racunanja in risb pove naslednje.

Polosi elipse sta a = p/(1 — €2) = a/2|E| in

b =p/V(1 —&?)=L/V(2m|E|). Velika polos je odvisna zgolj od
energije, ni¢ od vrtilne koli¢ine. Najmanjsi in najvecji radij
znasata rpp, = p/(1+&) =a(l—¢g) in rp.=p/(1—g)=a(l+¢). Za
parabolo velja ryin = p/2. Tako se giblje planet, ¢e v neskonc¢nosti
zacne s hitrostjo ni¢. Za hiperbolo pa dobimo ryi, = p/(e+1) =
ale—1).

Kaksen je obhodni ¢as po elipsi? Vrtilno enacbo zapiSemo v obliki
L=mr?¢p'=2mS', kjer je S plos¢ina, ki jo zarisuje radij vektor.
Integriramo po ¢asu od 0 do T, ko je zarisana vsa ploS¢ina:

LT =2mS. Ploscina elipse znasa S = nab (kar uganemo po
primerjavi s krogom kot posebnim primerom ali izracunamo
integral S=4f?ydx = (4b/a) of?V(a? — x?) dx), zato

T? 4n? (34.50)
a3 kM’

To je razsiritev ze spoznanega orbitalnega zakona za gibanje po
krogu (19.19) na gibanje po elipsi. Obhodni cas je odvisen zgolj
od velike osi. Vse elipse z enako veliko glavno osjo in s Soncem v
goriScu imajo enak obhodni ¢as (in energijo), ne glede na to, kako
so stisnjene. Namesto po kroznici premera 2R s Soncem v
srediScu bi se Zemlja lahko gibala po neskon¢no stisnjeni elipsi z
glavno osjo 2a = 2R in s Soncem v goriScu, torej na skrajnem
koncu elipse. Obhodni ¢as bi bil obakrat enak. Ce bi se torej
Zemlja nenadoma zaustavila, bi se zacela gibati okoli Sonca po
neskonc¢no ozki elipsi z osjo 2a = R. Obhodni ¢as bi bil zato
(1/2)32 = 0,35-krat "daljsi" kot sedanji in do Sonca bi potrebovala
1/2 tega Casa, torej 65 dni. Mesec pa bi padel na Zemljo v 5 dneh.
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Tezek planet

Masa zvezd

Ce je planet tezek, postavimo izhodi$¢e koordinatnega sistema v
masno srediSCe Sonca in planeta. Iz tega izhodiS¢a raste vektor r;
do Sonca in vektor r, do planeta. Vektorja lezita na zveznici obeh
teles. Velja seveda m;r; + myr, = 0. Vektor r=r, — r; kaze smer in
razdaljo od telesa 1 (Sonca) do telesa 2 (planeta). Iz obeh enacb
sledi

nmy (34.51)
rm=——r
mq+my
my
rn=—rT.
mq+mj

Vrtilna enacba sedaj vsebuje vsoto dveh ¢lenov in gibalna prav
tako. Clene, ki vsebujejo ry in r, izrazimo z r in dobimo enaébi
L =pur?g' ter E = (u/2)(r'? + ry@') —a/r, pri ¢emer je

11 =m;my/(my + my). To sta popolnoma enaki enachi, kot smo ju Ze
spoznali, le da zdaj opisujeta gibanje fiktivne tocke z reducirano
maso u okrog masnega srediS¢a. Seveda so tudi vse resitve teh
enacb enake kot prej. Izracunani vektor r(¢) torej kaze lego
fiktivhe mase glede na masni center. S tem sta dolocena tudi
aktualna vektorja ry in rp, eden v smeri r in drugi v nasprotni
smeri. Obhodni ¢as po elipsi z velikim polmerom a = a; + a, tako
znaSa

T2 412

(a1 +az)®  K(My+my)

(34.52)

Pri mnogih zvezdah opazimo, da se gibljejo druga okrog druge in
se preko daljSega casovnega obdobja, recimo stoletja, vrnejo v
zadetno lego. To so dvojne zvezde. Ce merimo in riSemo relativno
lego "druge" (temnejsSe) zvezde glede na "prvo" (svetlejso),
dobimo elipso, njen veliki kotni premer in njen obhodni Cas.

i 90 o Slika 34.15 Relativno gibanje
- —— @ == fog . . .
(,/" ' o852 dvozvezdja. Prikazana je lega temne
wer Ny zvezde Sirij B glede na svetlo zvezdo
@957 e . .
5ot ~ Sirij A. Hodograf je elipsa. Svetla
i ‘@160 . iy v . .
v—y . - zvezda ni v goriscu elipse, kar je
1885 ®1963 znak, da je ta nagnjena. (Sol
|992\.\ \.‘|9es Company)
\\\. ;1969
1991 ®, /
\. ‘,.ISTE
E Q.. I,‘IQT5
1988 -9 __ e
| 1986 ‘?9—54”.,-9’32 1978

SIRIUS Aand B

o 1" 2" 3 & 5 & 7
The APPARENT ORBIT

SCALE
Ce predpostavimo, da leZi ravnina elipse pravokotno na na$o
smer gledanja, postopamo takole. — S paralakso ali kako drugace
izmerimo oddaljenost dvozvezdja in iz kotnega premera elipse
izraCunamo njen dolzinski premer. — Iz znanega obhodnega casa
in velikega polmera izracunamo m; + m,. — V elipsi dolo¢imo
lego goriSca in s tem razmerje polmerov a;/a,, ki je enako
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my/my. — Iz znane vsote in razmerja mas izracunamo posamezni
masi. Tako merimo maso zvezd.

Kako vemo, da je elipsa res pravokotna? Tako, da je primarna
zvezda v njenem gori¢u in da velja zakon o enakih plo$¢inah. Ce
to ne drzi, je elipsa nagnjena. Vidimo samo njeno projekcijo na
zvezdno ozadje. Domnevamo, da se da pravo elipso rekonstruirati
iz njene projekcije, vendar pricakujemo tezko delo in se ga ne
bomo lotili. O
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Gibanje svetlobe po
etru

Gibanje opazovalca
po etru

Krizni interferometer

Relativnost

Svetloba in eter - Merjenje etrskega vetra - Postulati relativnosti -
Inercialni opazovalni sistemi - Transformacija ¢asa in prostora -
Relativnost Casa in prostora - Transformacija hitrosti - Frekvencni
zamik svetlobe - Merjenje hitrosti zvezd - Gibalna koli¢ina - Sile in
gibanje - Polna in lastna energija - Transformacija G in E - Gibalna
koli¢ina svetlobe - Merjenje svetlobnega tlaka - Je vse to res?

35.1 Svetloba in eter

Gibanje teles opazujemo z o€mi, to je, informacijo o njih nam
prinasa svetloba.

Svetloba je valovanje, zato predpostavimo, da potuje po necem,
po etru. Hitrost svetlobe smo Ze izmerili z zobatim kolesom in z
odbojnim zrcalom [27.1] in znasa ¢ = 3,00 - 10°km/s. Meritve ob
razli¢nih ¢asih, krajih in smereh dajo enak rezultat v okviru
merske natancnosti na nekaj odstotkov.

Domnevamo, da je gibanje svetlobe po etru podobno gibanju
zvoka po zraku. Zvocni valovi se gibljejo s hitrostjo ¢ =330m/s
glede na zrak, neodvisno od hitrosti izvora glede na zrak.
Opazovalec, ki glede na zrak miruje, takSno hitrost tudi izmeri.
Ce pa se opazovalec giblje glede na zrak s hitrostjo u, izmeri
hitrost zvoka glede nase ¢ % u, odvisno od tega, ali se giblje pro¢
(—) ali proti (+) valovanju. Isti odnos velja, ¢e izvor in sprejemnik
zvoka medsebojno mirujeta, a zrak se - kot veter - giblje med
njima s hitrostjo u.

Predstavljamo si, da vesoljski eter "miruje", po njem krizarijo
svetlobni valovi in skozenj plujejo nebesna telesa z razlicnimi
hitrostmi glede nanj. Eter mora biti tako fin, da telesa ne cutijo
nobenega upora. Svetloba se glede na eter giblje vedno z enako
hitrostjo. Opazovalec na Zemlji, ki se giblje skozi eter, pa bi moral
zaznati povecano ali zmanjSano hitrost svetlobe, kakor se pac
giblje. Pricakujemo spremembe, ki so vsekakor manjse od nekaj
odstotkov. Zemlja se giblje glede na eter s hitrostjo vsaj 30 km/s
(taksna je njena obhodna hitrost okrog Sonca). Pricakovane
spremembe v hitrosti svetlobe so zato vsaj

+30/3-10°=%0,01 %. HoCemo jih izmeriti. To pomeni, da
moramo meriti z natanc¢nostjo vsaj 0,001 %!

35.2 Merjenje etrskega vetra

Osnovna zamisel meritve je naslednja. Iz Zarnice sevamo
enobarven curek svetlobe in ga s polprepustnim zrcalom
razcepimo na dva delna curka, ki sta medsebojno pravokotna. Ta
dva curka spustimo preko dveh krakov in ju z zrcali spet
zdruzimo v smeri, kjer ju opazujemo z daljnogledom. To je krizni
interferometer. Stevilo svetlobnih valov vzdolZ obeh razdalj v
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Merjenje etrskega
vetra

splosnem ni enako in je odvisno od razlike dolzin krakov ter od
razlike hitrosti svetlobe v njih. Ce bi bil izhodni curek popolnoma
vzporeden, bi bilo vidno polje enakomerno osvetljeno ter bolj ali
manj svetlo. Toda curek vsebuje tudi valovanje z nekoliko
drugacnimi nagibi, zato se pojavijo v sredini vidnega polja
interferencni kolobarji.

Pri premikanju enega izmed zrcal opazimo, da v srediSc¢u vidnega
polja nastajajo ali izginevajo kolobarji, odvisno v katero smer
premikamo. Nov kolobar nastane ali izgine, ¢e premaknemo
zrcalo za razdaljo d = A/2, ker se pri tem spremeni Stevilo valov za
1. Nastanek novega kolobarja spremlja premik vsakega starega
kolobarja za medkolobarsko razdaljo. Saj se izhodni curek pri
skrajSanju oziroma podaljsanju delnega curka za eno valovno
dolzino ni¢ ne spremeni in zato se tudi interferencna slika ne
sme. Premik 6r kolobarja kot deleza medkolobarske razdalje Ar je
torej enak zamiku 6A delnih valov kot delezu valovne dolZine A:
Or/Ar=06A/A.

e e Slika 35.1 Interferometer z dvema
N v . oy
Q\ , ‘/:,\ krakoma. Pot Zarkov je podaljSana z
\\‘ RN /,’ﬁ/' e v P P .
Oy iy veckratnimi odbojnimi zrcali.
AVRRNRY VS F v . .
AN i Interferometer sluzi za merjenje razlike
RN A ) ) o .
\‘\\\;\{\\1\\‘:\ /,;»’,’;,’«,/;’,,'f med hitrostjo svetlobe vzdolz in pre¢no na
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\\:\\\gﬁze;;,:yfn" smer gibanja Zemlje okoli Sonca.
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V interferometru postavimo oba kraka na enako dolZino L.
Privzemimo, da se en krak (vzdolzni) giblje ¢elno proti etru, drugi
(precni) pa pravokotno nanj, oba s hitrostjo u relativno na eter.
Preletni Cas t; svetlobe po vzdolznem kraku, tja in nazaj, znasa
ti=L/(c+u)+L/(c—u)= (2L/c)/(1 — u?/c?). V preletnem c¢asu t; po
precnem kraku pa se premakne polprepustno zrcalo za bazo ut,,
zato prepotuje svetloba dve stranici enakokrakega trikotnika nad
to bazo; viSina trikotnika je L in dolZina stranice ct,. S pomocjo
hipotenuznega izreka izraCunamo t, = (2L/c)/(V(1 — u?/c?)).
Preletna Casa nista enaka. Vzdolzni je daljSi. Njuna razlika znasa
6t = (L/c)(u?/c?). Pri raCunu smo aproksimirali koren z binomskim
razvojem.

Razliko preletnih ¢asov delimo z nihajnim ¢asom, pri cemer
upostevamo cty = c/v =2, pa dobimo 6t/t, = L A u/c?. Casovni
zamik vala je sorazmeren z dolzinskim zamikom vala 6t/ty = 6A/A,
ki pa je, kot smo Ze ugotovili, sorazmeren s premikom
interferencnih kolobarjev: 6A/A = 6r/Ar. S premikom 6r je torej
enoli¢no dolocena hitrost u.
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Zal ne vemo, v katero smer moramo usmeriti interferometer, da
bo en krak kazal ¢elno proti etrskemu vetru. (Domnevamo, da
proti vzhodu, ¢e merimo opoldne.) Lahko ga pa vrtimo. Pri tem se
razlika preletnih ¢asov spreminja in z njo se spreminja zamik
izbranega kolobarja glede na njegovo izhodis¢no lego. Maksimum
in minimum zamika kaZeta smer hitrosti etra. Polovicna razlika
med njima, 6r, pa doloca velikost hitrosti. Morebitna razlika v
dolzini krakov se pri vrtenju iznici.

Da bo meritev dovolj natancna, je potrebno Se nekaj domiselnih
prijemov. — Eno izmed zrcal nekoliko zasukamo, da se namesto
kolobarjev v daljnogledu pojavijo interferen¢ne proge. Njim je
laze meriti premike kot kolobarjem. — Dolzino svetlobne poti
povecamo z ve¢ odbojnimi zrcali. — Tresenje okolice omilimo
tako, da interferometer postavimo na tezek kamen, ki plava na
zivem srebru. — Namesto da vrtimo interferometer, raje to delo
prepustimo kar rotaciji Zemlje. — Seveda se lahko zgodi, da v
trenutku merjenja Zemlja res miruje glede na eter, s ¢imer
rotacija interferometra ne bi ni¢ pokazala. Temu odpomoremo
tako, da meritev ponovimo cez pol leta. Dober interferometer in
skrbne meritve bi morale tako zaznati 0,001 % spremembe v
hitrosti svetlobe oziroma hitrosti etrskega vetra nad nekaj
kilometri na sekundo.

oas2 Slika 35.2 Pricakovane (prekinjena ¢rta)
in izmerjene (polna ¢rta) spremembe

T %—__—7 hitrosti. Na navpi¢ni osi so premiki &rt. Na

vodoravni osi so dnevi meritev: opoldne
i (zgoraj) in zvecer (spodaj). Pricakovane
vrednosti so narisane 8-krat pomanjsano.
(Michelson, 1927)

_______

Rezultati poskusa, tako skrbno zamisljenega in izvedenega
(MICHELSON), nas osupnejo. Etrskega vetra, torej tudi etra,
nikakor ne moremo zaznati!

35.3 Postulati relativnosti

Zakaj ni etrskega vetra? Razlaga, da morda Zemlja vlecCe eter s
seboj, se zdi precej za lase privleCena in izumljena zgolj zato, da
bi odpravila nepricakovano tezavo. Razliko v preletnih casih bi
lahko tudi iznicili, tako da bi rekli, da se vzdolzni krak ustrezno
skrajsSa pri gibanju skozi eter. Tudi ta razlaga je dvomljiva. Kako
naj bi eter to dosegel, ko pa plujejo telesa skozenj brez upora, si
je tezko zamisliti.

Ponuja pa se naslednja nadvse presenetljiva moznost: etra pac ni.
Svetloba potuje kar po praznem prostoru. Njena hitrost je
neodvisna od gibanja izvora in opazovalca:

=c. (35.1)
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Kakor hitro Ze teCemo v smeri svetlobe, vedno se odmika z enako
hitrostjo glede na nas. Kakor hitro Ze teCemo proti svetlobi,
vedno se primika z enako hitrostjo glede na nas. Svetlobi iz
priblizujocCe se zvezde izmerimo enako hitrost kot svetlobi iz
oddaljujoce se zvezde. To se upira celotni (dosedanji) ¢loveski
izkusnji, ampak naravi za to ni mar. Povzdignimo torej moznost o
stalnosti svetlobne hitrosti v postulat in se namenimo ugotoviti
posledice! Na pol za Salo lahko recemo, da smo se problema
znebili tako, da smo ga spremenili v postulat.

Kje zaceti? Stalnost svetlobne hitrosti se nikakor ne pokorava
pravilu o sestavljanju hitrosti, ki v vsakdanjem zivljenju tako na
Siroko velja. Omenjeno pravilo sledi iz znanih transformacijskih
enacb za lego teles in za ¢as dogodkov v dveh inercialnih
sistemih (19.7-8): x' =x—ut in t'=t. To pomeni, da te
transformacije niso pravilne, ko imamo opravka z velikimi
hitrostmi. Treba jim bo razsiriti obmocje veljave. Za to pa bo
potreben vnovicen premislek o merjenju ¢asa in razdalj ter o
sedlanju iz enega opazovalnega sistema v drugega. Kaksen je
svet pri velikih hitrostih, bomo morali razbrati iz pridelanih
enacb, saj neposrednih izkuSenj s tem (Se) nimamao.

Pri postavljanju transformacijskih enacb se bomo naslonili na
inercialne sisteme, to je take, v katerih telesa ne dozivljajo
pospeskov, ki ne izhajajo iz okoliSnjih teles. Dober primer je vlak
na ravnem tiru. Dokler vozi "enakomerno", v njem ni pospeskov
razen teznega, seveda. Ko pa zavija v ovinek ali se ustavlja na
postaji, vozi "pospesSeno". Vsak pospesek dobro cutimo. Telesa v
inercialnem sistemu se torej gibljejo - glede na sistem - premo in
enakomerno, razen ¢e nanje delujejo dejanske sile. Ce je en
sistem inercialen, je inercialen tudi vsak drug sistem, ki se glede
na prvega premo in enakomerno giblje. V vsakem inercialnem
sistemu potekajo gibalni pojavi enako. V vlaku z zaprtimi okni
nikakor ne moremo z metanjem kroglic reci, ali vlak miruje glede
na tir ali se "enakomerno" giblje. To posplosimo v postulat: v vseh
inercialnih sistemih imajo zakoni narave enako obliko.

35.4 Inercialni opazovalni sistemi

Sedim na Zelezniski postaji in mimo pripelje vlak. Pogledam na
stensko uro: urni kazalec vidim, recimo, na 7 h. Recem, da je vlak
pripeljal na postajo ob ¢asu 7h po stenski uri. Prihod vlaka na
postajo in prihod kazalca na Stevilko 7 h sem videl istocasno.
Zgodila pa sta se na istem mestu, namrec¢ na zelezniski postaji.
Rekel bom, da sta ta dva dogodka ¢utno socasna.

Skozi daljnogled opazujem Jupiter. Nenadoma se na njem pojavi,
recimo, nekaksna eksplozija. Pogledam na stensko uro: kazalec
vidim, na primer, na 7h. ReCem, da je eksplozija nastala ob 7h po
stenski uri. (Oddaljeno) eksplozijo in (lokalni) pomik kazalca na
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stevilko 7 h sem videl isto¢asno. Zgodila sta se pa na razlicnih
mestih. Tudi za ta dva dogodka bom rekel, da sta ¢utno soc¢asna.

Vem, da svetloba potuje od Jupitra do Zemlje slabo uro. Zato
recem, da se je eksplozija zgodila ob ¢asu 7h—1h=6h po
stenski uri, ¢eravno je takrat na Jupitru seveda nisem videl.

Ce bi bila na Jupitru ura in ¢e bi na njej - z namisljenim super-
daljnogledom - videl 6 h ob eksploziji, bi lahko takoj rekel, da se
je eksplozija zgodila ob 6 h po Jupitrovi uri. Ne bi mi bilo treba
upostevati niti stenske ure niti preletnega Casa svetlobe. Seveda
bi takrat, ko bi na oddaljenem Jupitru videl 6 h (in eksplozijo), na
lokalni stenski uri videl 7 h.

Povedano lahko posplosimo. Na svet pogledamo kot na mnozico
dogodkov. Vsak dogodek, recimo eksplozija na Jupitru, ima svojo
lego in svoj ¢as. Oboje je dolo¢eno z ozirom na izbrani opazovalni
sistem. Opazovalni sistem, to je namisljena toga kockasta resetka
iz palic. Razdalje med sosednjimi ogli$¢i so enake in izmerjene s
polaganjem metrske palice. V vsakem ogliscu je tabla s tremi
Stevilkami, ki pomenijo razdalje od izbranega izhodiS¢nega
oglisca. V vsakem ogliScu je tudi ura, ki je sinhronizirana z
izhodiS¢no uro na nacin, kakor smo ga opisali za Zemljo in
Jupiter.

Sinhronizacijo ur lahko izvedemo na vec¢ nac¢inov. — Najbolj
preprosto je, da v izhodis¢u zberemo in sinhroniziramo mnozico
ur, nakar jih pocasi razvozimo v vsa oglisca sistema. — Lahko tudi
iz izhodiSca posljemo blisk svetlobe ob lokalnem casu ty v tocko
A. Tam se odbije ob lokalnem casu t, (ki ga moramo Se dolociti) in
se vrne v izhodisScCe ob lokalnem cCasu t;. Definiramo ts = (t; — tg)/2.
Ko se torej odbiti blisk vrne v izhodis¢e ob Casu t;, "nosi s seboj"
sliko oddaljene ure, ki kaZe t,. Ce je, na primer, to=0h, t; =2h,
potem ty=1h. — Ali pa v vsako ogliSCe namestimo uro in njen
kazalec postavimo na vrednost ty + r/c, pri Cemer je ty poljubna
vrednost, recimo 0h, in r razdalja od izhodisc¢a. Ure ne sprozimo.
Ko razmestimo vse ure, se vrnemo v izhodis¢e, postavimo
izhodisS¢no uro na ty, jo sprozimo in isto¢asno posljemo svetlobni
signal v vse smeri. Ko signal doseze kako uro, jo sprozi, recimo
preko fotocelice.

Kakorkoli Ze, s tem so vse ure sinhronizirane. Opazovalec, ki sedi
v kateremkoli oglis¢u reSetke, vidi okoli sebe mnoZico ur. Cim
bolj so oddaljene od njega, tem manjsi ¢as vidi na njih. Ura, kjer
opazovalec vidi za 1 h manjsi ¢as kot na lokalni uri, je od njega
oddaljena za r=c-1h. Nasploh je na uri, ki je oddaljena za r,
viden Cas t =ty —r/c, ko je na lokalni uri viden cas tg.
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Slika 35.3 Pogled vzdolz (enodimenzionalnega)
opazovalnega sistema. V enakomernih razdaljah so
namescene dolzinske table in sinhronizirane ure.
Dogodek se zgodi ob neki tabli in uri. Z njima sta

doloceni ¢asovna in prostorska koordinata dogodka.
(-2h, 2L)

Seveda opazovalnega sistema ne moremo zares postaviti v del
sveta, ki ga preucujemo. Vendar pa ho¢emo, da bo nase nadaljnje
razmisljanje o ¢asu in prostoru konsistentno s tem, da bi sistem v
principu lahko bil prisoten.

Cas dogodka, to je $tevilka na njemu lokalni uri. Vsak opazovalec,
v katerikoli tocki opazovalnega sistema ze sedi, vidi enak Cas
tega dogodka. Saj pride do njega svetloba od dogodka in od
tamkajSnje ure vStric po isti poti.

Lega dogodka, to so tri stevilke na njemu lokalni tabli. Vsak
opazovalec, v katerikoli toCki opazovalnega sistema zZe sedi, vidi
enako lego tega dogodka.

Lego in ¢as dogodka poimenujemo njegove svetovne koordinate.
Tri od njih so krajevne in ena ¢asovna.

V neki tocki opazim eksplozijo A ob (tamkajSnjem) Casu ts. Nekaj
kasneje opazim v drugi tocki Se eno eksplozijo B, in sicer ob
(tamkajSnjem) Casu tg = ts. OCitno se je druga eksplozija zgodila
pri vec¢ji oddaljenosti. Oba dogodka, ki sta lo¢ena v prostoru, a
"razposiljata" enak Cas, poimenujem socasna dogodka. Saj bi ju
mirujo¢ opazovalec na sredi med njima videl kot cutno socasna.

V neki tocki na osi x nenadoma zagledamo vesoljsko ladjo. To je
dogodek A. Na lokalni tabli in uri vidimo njegovo lego x, in ¢as t,.
Nekaj kasneje vidimo ladjo v drugi tocki na osi x. To je dogodek
B. Na lokalni tabli vidimo njegovo lego xg in Cas tg. Kaksna je
hitrost ladje? Definiramo:

XB — XA (352)

tp—ta

V=

Vsak opazovalec, v katerikoli tocki opazovalnega sistema ze sedi,
bi videl enake zacCetne in enake konc¢ne svetovne koordinate, zato
bi izra¢unal enako hitrost ladje.

35.5 Transformacija ¢asa in prostora

V "mirujocem" opazovalnem sistemu S se naj giblje "premicni"
opazovalni sistem S'. Koordinatne osi obeh sistemov naj bodo
istosmerne in gibanje izhodiS¢a S' naj poteka vzdolZ osi x s
hitrostjo u. Vsak sistem sestoji iz toge mreze in ur. Ko se izhodisci
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obeh sistemov srecata, tamkajsSnja opazovalca nastavita osrednji
uri na 0 in nato sinhronizirata vsak svoje ure na ze opisani nacin.
Nenadoma se nekje v svetu pojavi eksplozija. Opazovalec v S jo
vidi pri svojih koordinatah (t, x, y, z) in opazovalec v S' pri svojih
koordinatah (t', x', y', 2'). Kako so te koordinate med seboj
povezane? Kaksna je torej transformacija koordinat?

Predpostavimo, da ima iskana transformacija za koordinato x
linearno obliko x' = p(x — ut) z neznanim faktorjem yp. Izhodisce
premic¢nega sistema ima koordinato x' =0, kar pomeni, da se
giblje kot x = ut, kakor tudi mora biti. Ker sta sistema
enakopravna, mora imeti obratna transformacija enako obliko z
nasprotnim predznakom hitrosti: x = y(x' + ut'). Preostali dve
koordinati sta na gibanje pravokotni, zato postavimo y'=y in
z=2. Ko sta opazovalca vstric, eden izmed njiju izseva svetlobni
signal v vse smeri. V vsakem sistemu ima signal obliko krogle:
x=ct in x' = ct'. Vstavimo x v prvo transformacijsko enacbo in x' v

drugo, pomnozimo leve in desne strani ter izvleCemo
B 1 (35.3)
YA —uwey

Nato izrazimo x' iz prve transformacijske enacbe, ga vstavimo v
drugo ter iz nje izrazimo t'. Tako dobimo relativisticno
transformacijo (EINSTEIN)

t'=yp(t—ux/c? (35.4)
x'=p(x — ut)

y=y

zZ'=z.

Obratne transformacijske enacbe dobimo, ko zamenjamo
predznak pri u ter Crtice pri koordinatah. Vpeljani faktor y je
odvisen od hitrosti. Pri majhnih hitrostih v primerjavi s svetlobo
je enak 1, nato pa narasca. Pri majhnih hitrostih preidejo nove,
relativisti¢ne transformacije v stare, klasi¢ne, kakor tudi mora
biti.

8

Slika 35.4 Odvisnost faktorja y od hitrosti. Pri
vsakdanjih hitrostih je faktor nerazlocljiv od 1.

1 L 1 1
0 0.2 0.4 0.6 0.8 1.0
v/c

Dva dogodka A in B v sistemu S se v sploSnem razlikujeta v ¢asu
in kraju; njuno razlikovanje opiSemo kot

At=tg—ta (35.5)
AX=Xg—Xa.

123


pict3b/gamma.gif
pict3b/gamma.gif

124

Izguba socasnosti

Podaljsanje Casa

SkrajsSanje dolzin

Transformacijske enacbe takoj povedo, kaksne so razlike v
sistemu S":

At' = p(At — uAx/c?) (35.6)
Ax'= p(Ax — uAt).

Ocitno so ¢asovne in prostorske razlike istih dveh dogodkov,
kakor ju vidita opazovalca v S in S', razli¢ne. Kaj torej zapisane
relativisti¢ne transformacije pravzaprav pomenijo? Kaksen je
svet, ki ga opisujejo? Poglejmo nekaj posebnih primerov.

35.6 Relativnost casa in prostora

Recimo, da se v sistemu S zgodita dva dogodka istocasno, torej
da imata enaki Casovni koordinati tg = t,, to je, njuna razlika
znaSa At=0. V sistemu S' zato velja At' = —yuAx/c?, kar v
splosnem ni ni¢. To pomeni, da dogodki, ki so so¢asni v enem
sistemu, niso nujno socasni v drugem! To je relativnost
socasnosti.

V sistemu S' naj se v tocki x'g nekaj dogaja, recimo prizge, gori in
ugasne ogenj. Dogajanje se zacne ob t;' in konca ob t;', traja torej
At'=t,' —t;'. Ker Ax' =0, velja At' = pAt. Oznacimo "mirujoce"
trajanje z Aty in "gibajoce" trajanje z At, pa velja:

At = pAty. (35.7)

GibajocCe trajanje je daljSe kot mirujo¢e! Namesto ognja si
mislimo tiktakanje ure. Vsak tik-tak je podaljSan. Gibajoca se ura
torej tiktaka pocCasneje od mirujoce ure. To je podaljsanje casa
(EINSTEIN). Ker sta sistema enakovredna, vsak opazovalec vidi pri
sosedu pocasnejSe ure kot pri sebi. Svoje ure pa vidi normalno.

Slika 35.5 Podaljsanje casa. Gibajoca se
e — ura tece pocasneje.
toX
* I
tyx,

V sistemu S' naj miruje palica. Njen zadnji konec je pri xg' in
sprednji pri x5'. Njena dolzina je oCitno Ax' = x,' — xg'. Opazovalec
v S zazna dva dogodka. (1) Zadnji konec palice doseZe tocko xg'
ob casu t. Sprednji konec palice je tedaj ob uri, ki kaze manj kot
t. (2) Nekaj kasneje doseze prvi konec palice uro, ki kaze t; ta ura
lezi pri x4. Ker At =0, velja Ax' =y Ax. Oznacimo "mirujoco" palico
z Aly in "gibajoc¢o" z Al, pa velja

Al=Aly/y. (35.8)

—

Gibajoca palica je krajsa kot mirujoca! Namesto palice si mislimo
kar razmik v koordinatni resetki. Vsak razmik je skrajSan.
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Gibajoci se sistem je torej stisnjen v smeri gibanja. To je
skrajsanje dolzin (EINSTEIN). Ker sta sistema enakovredna, vsak
opazovalec vidi pri sosedu bolj stisnjene resetke kot pri sebi.
Svoje reSetke pa vidi normalno.

X, t \

Je skrcenje palice "zaresno" ali "navidezno"? Skrcenje ni zaresno
v smislu, da ga s palico vred gibajoCi se opazovalec ne zazna. Je
pa zaresno v smislu, da ga (v principu) zazna vsak drug
opazovalec.

Slika 35.6 SkrajSanje dolzin. Gibajoca se
telesa so skrajSana v smeri gibanja.

—

35.7 Transformacija hitrosti

Kaksne so hitrosti teles, opazovane iz razlicnih opazovalnih
sistemov?

Omejimo se najprej na dogodke vzdolz osi x. Delec naj se giblje
med dvema dogodkoma. S krajevnim in ¢asovnim intervalom v
vsakem sistemu je podana tamkajsSnja hitrost gibanja. Premik
Ax' = p(u)(Ax — uAt) delimo s trajanjem At' = p(u)(At — uAx/c?),
pokrajSamo p, Stevec in imenovalec delimo z At ter upostevamo
Ax/At =v, in Ax'/At' =V',. Tako dobimo

Vy— U (35.9)
Vy = ————— .
* 1—vu/c?

V treh razseznostih, ko dogodki niso omejeni na os x, dobimo na
podoben nacin se

1 vy (35.10)
Vy=— ————
y 1-vu/c
1 V,
V, =

Ty l-va/c?’

To je transformacija hitrosti (EINSTEIN). Obratno transformacijo
dobimo na Ze znani nacin - s spremembo predznaka hitrosti u ter
s premescanjem cCrtic. Pri majhnih hitrostih u <« ¢ preidejo enacbe
v znano klasi¢no obliko. Ce postavimo v, = ¢, dobimo v,' = ¢, kakor
tudi mora biti. Hitrost svetlobe je v vsakem sistemu stalna. Ni
vecje hitrosti od svetlobne.
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35.8 Frekvencni zamik svetlobe

V izhodisc¢u S naj miruje svetilka, ki oddaja bliske s frekvenco v,
recimo enega na uro. Kaksno frekvenco v' zaznava opazovalec v
izhodiscu S' po svoji lokalni uri?

Ko izhodisc¢i obeh sistemov sovpadata, izseva svetilka prvi blisk.
Tega vidita oba izhodiS¢na opazovalca, vsak na svoji lokalni uri,
ob 0. Drugi blisk izseva svetilka, za opazovalca v izhodis¢u S po
njegovi izhodis¢ni uri, ob t. Opazovalec v S' vidi ta blisk na uri, ki
je sosednja izhodis¢u S, ob t' = pt. Istocasno vidi na svoji lokalni
uri t' + ut'/c. Za opazovalca v S je torej minil med dvema bliskoma
Cas t=1/v, za opazovalca v S' pa t' + ut'/c = 1/v'. Velja torej:

1/v' = pt(1 + u/c). UpostevajoC y=1/V((1—u/c)(1+u/c)) dobimo
(EINSTEIN)

D' _\/(l—u/c) (35.11)

v V(l+u/c)
Frekvenca bliskov, ki jo zazna oddaljujocCi se opazovalec, je torej
manjsa. Ce se opazovalec pribliZuje, torej u — —u, se pa frekvenca
poveca. Vseeno je, ali se giblje izvor ali opazovalec, Steje le njuna
medsebojna relativna hitrost. Kadar gibanje ne poteka po
zveznici izvora in opazovalca, velja zapisano le za vzdolzno
komponento hitrosti. Namesto bliskov svetlobe si mislimo kar
svetlobo samo s svojimi hribi in dolinami. Potem velja zapisana
enacba tudi za frekvenco svetlobe.

Ce upostevamo c = 2Ap, velja tudi
A" V(1 +ufc) (35.12)

A VA -ulo)’
Za majhne hitrosti velja priblizek v(1 + u/c) = 1 + u/2c. Stevec in
imenovalec pomnozimo s Stevcem, zanemarimo kvadratne Clene
in dobimo A'/A =1 + u/c oziroma

AA u (35.13)

A ¢
Valovno dolzino svetlobe, recimo diskretni spekter natrijeve pare,
merimo s spektrometrom na mrezico. Crte gibajo¢ega se izvora
so premaknjene glede na ¢rte mirujocega izvora. Govorimo o
rdecem premiku ali modrem premiku crt. Locljivost dobrega
laboratorijskega spektrometra je okrog R =2A/AA = 6000, torej
okrog 1 A pri vidni svetlobi. Tolikien premik ¢rte ustreza hitrosti
izvora 50 km/s. Tako hitrih svetil v laboratoriju ne zmoremo
ustvariti.

35.9 Merjenje hitrosti zvezd

Pa saj se giblje Zemlja okrog Sonca z orbitalno hitrostjo
ve = 30km/s! Spektri zvezd morajo biti zato ustrezno
premaknjeni. Najvecji zamik pricakujemo od zvezd, ki lezijo na



ekliptiki v smeri ali v nasprotni smeri Zemljinega gibanja. Ce
zvezda miruje glede na Sonce, pricakujemo dvakrat letno njen
spektralni zamik, ki ustreza Zemljini orbitalni hitrosti: enkrat
rdecega in enkrat modrega. Ce se zvezda giblje glede na Sonce,
pa bo vsaj eden od odmikov Se vecji.

ki Slika 35.7 Hitrost zvezde. Ko se
Zemlja priblizuje zvezdi, zaznamo
modri premik njenih spektralnih ¢rt.
Ko se odmika, zaznamo rdeci premik.
Z obema premikoma sta doloceni
hitrost zvezde in hitrost Zemlje glede
na Sonce.

+ VE

Vstar

-V,
Vg E

Merilna metoda  Slika pove naslednje. V tockah A in B, pol leta narazen, znaSa
hitrost Zemlje va = Vgiar + Vg in Vg = Vgiar — V. Enacbi medsebojno
enkrat seStejemo in enkrat odstejemo, pa dobimo vg = (vy — vg)/2
in vgar = (va + vg)/2. Hitrosti v, in vg sta dolocCeni z izmerjenima
frekvencnima premikoma. S tem sta doloceni tudi orbitalna
hitrost vg in (radialna) hitrost zvezde vgiar.

Vzorcniizmerki  Primerna zvezda za opazovanje je svetli Arktur, ki je po spektru
zelo podoben Soncu. Arktur sicer ne lezi to¢no na ekliptiki,
vendar nam gre le za oceno in nagib zanemarimo. Opazovanje
spektra okrog valovnih dolzin 4300 A z natan¢nostjo okrog 0,1 A
pokaze spektralna zamika, ki ustrezata vy =40km/s in
vg = —30km/s, kar pomeni vg = 35 km/s in vg,r =5km/s. S
spektroskopskim merjenjem smo torej dolocili orbitalno hitrost
Zemlje na 20 % natancno. To nam daje zaupanje, da je tudi
izmerjena (radialna) hitrost Arkturja pravilna v okviru navedene
natanc¢nosti. Meritve drugih svetlih zvezd v paralakti¢ni
oddaljenosti do nekaj deset svetlobnih let pokazejo podobne
hitrosti. Najvecje hitrosti dosegajo 100 km/s.

35.10 Gibalna kolic¢ina

Gibalno koli¢ino delca smo definirali kot G = mv. Kadar ni
zunanjih sil, se gibalna koli¢ina sistema delcev ohranja. Ker so se
pa spremenile transformacijske enacbe za hitrost, se pojavi
vpraSanje, kaj je z ohranitvijo gibalne koli¢ine, opazovane v
razli¢nih sistemih.

Elasticni trk  Preucimo elasti¢ni trk dveh enakih delcev. Opazovalni sistem S
postavimo tako, da se delca priblizujeta eden proti drugemu z
nasprotno enakima hitrostima v. To je tezisc¢ni sistem. Delec 1
ima v njem pred trkom hitrost (—vy,—vy) in po trku (-v,, +vy),
delec 2 pa pred trkom (v,,vy)in ponjem (v, —v,). Sprememba
gibalne koli¢ine v vsaki koordinatni smeri je torej enaka nic.
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Slika 35.8 Trk delcev, opazovan
v "mirujoem" teziS¢nem
sistemu. (Berkeley Physics
Course, hrvaski prevod)
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Kako pa je videti trk v sistemu S', ki se glede na S giblje s
hitrostjo u =v,? V tem sistemu ima delec 1 pred trkom hitrost
(—vix', —v1y') in po njem (—vy,', +vy,'), delec 2 pa (0,vy,') in
(0,—vyy'"). Transformacijske enacbe za hitrosti povedo:

—viy' = =2V, /(1 +v,2/c?); viy' =vy/(1 + vi2Ic?)p(vy); vax' = 0; in
Vay' = Vy P(Vy).

Slika 35.9 Trk delcev, opazovan v v gibajo¢em se sistemu. Z njim sta
definirana gibalna koli¢ina in gibalni zakon za hitra telesa. (Berkeley Physics
Course, hrvaski prevod)

Ocitno je, da y-komponente hitrosti v S' niso enake, ¢eravno so
enake v S. To pa zato, ker v S niso enake x-komponente hitrosti,
ampak imajo nasprotne predznake. Vidimo torej, da klasi¢na
definicija gibalne koli¢ine ne zagotavlja njene ohranitve v vseh
opazovalnih sistemih. Ohranitev gibalne koli¢ine pa je prevec
pomembna, da bi se ji zlahka odrekli. Zato poskusimo spremeniti
njeno definicijo tako, da bo pri nizkih hitrostih presla v staro, in
da bo pri vseh hitrostih ostal ohranitveni zakon v veljavi.

Nova definicija mora biti taka, da y-komponenta gibalne koli¢ine
ni odvisna od x-komponente hitrosti opazovalnega sistema, v
katerem opazujemo trk. Vemo, da se pri sedlanju iz enega
sistema v drugega ne spreminja razmik Ay. Vendar pa je Cas At,
potreben za prelet Ay, odvisen od sistema, in zato je taka tudi
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Nov gibalni zakon

Stalna sila

Kako jo spoznamo

komponenta v, = Ay/At. Namesto na laboratorijsko uro, ki meri
At, pogledamo na uro, ki jo nosi delec sam. Ta ura meri lastni Cas
delca At. Vsi opazovalci se strinjajo o vrednosti tega Casa, pa je
zato Ay/AT enak v vseh sistemih. Ker At = At/y, velja Ay/AT=
Ay/At - At/At= (Ay/At)y. Torej bo y-komponenta od yv enaka v
vseh sistemih. Zato definiramo

G =my(v)v. (35.14)

To je razSirjena definicija dosedanje gibalne koli¢ine (EINSTEIN).
Ce so hitrosti majhne, preide v staro definicijo.

35.11 Sile in gibanje

Gibalni zakon za masni delec smo do sedaj pisali kot F = mdv/dt.
Ker je masa konstantna, velja tudi zapis F = d(mv)/dt. Nanj lahko
pogledamo kot na definicijo sile preko spremembe (stare) gibalne
koli¢ine. Slednja se, kot smo videli, ne ohranja. Zato ne
premisljamo kaj dosti in raje definiramo silo, torej vpliv okolice
na delec, preko spremembe nove gibalne koli¢ine:

dG (35.15)
—=F.
dt

To je relativisti¢ni gibalni zakon (EINSTEIN). Pri majhnih hitrostih

preide v klasi¢nega.

Ce na delec ne deluje nobena sila (ali je vsota sil nanj enaka ni¢),
se mu ohranja gibalna koli¢ina, to je, delec se giblje premo in
enakomerno. Kako pa se delec giblje pod vplivom stalne sile?
Gibalni zakon zapiSemo v obliki p(v)v = Ft/m in izvleCemo hitrost:
Ft/m (35.16)

YEVA + FEYmo?)

Spocetka narasca hitrost sorazmerno s casom: v = (F/m)t, kakor
tudi mora biti. Kasneje pa hitrost narasca ¢edalje poCasneje in se
bliza hitrosti svetlobe. Snovna telesa zato ne morejo doseci
svetlobne hitrosti. Pot, ki jo opravi telo, dobimo iz integrala
s=[vdt:
c2

— 2_
s F/m(\/(1+(Ft/mc)) 1).

(35.17)

Razvoj v binomsko vrsto pove, da za zaCetne Case velja
s =(F/m)t?/2, kar je tudi prav.

Kako pa vemo, da je kaksna sila konstantna? Tako, da se telo pod
njenim vplivom giblje na pravkar izracunani nacin! In katera sila
v naravi naj bi bila takSna? Gravitacija v blizini Zemlje ali Sonca
je sicer homogena, a mnogo presibka. Morda elektri¢cna sila na
lahko nabito telo v zaporedno zvezanih kondenzatorjih? Ali pa
namisljena vesoljska ladja, katere izpuh je prilagojen tako, da
med izgubljanjem mase velja F/m = const? Kot vidimo, se da
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energije

racunsko zatrditi marsikaj, ¢esar v naravi morda sploh ni mogoce
najti.

35.12 Polna in lastna energija

Sila F naj pospesuje delec vzdolZ osi x od zacCetne hitrosti u=0 do
koncne hitrosti u=v. Ho¢emo, da je dovedeno delo enako
spremembi kineti¢ne energije: K= [ F - dx. Silo izrazimo kot
spremembo (relativisticne) gibalne koli¢ine v ¢asu:
JF-dx=[dG/dt-dx = [¢"udG. Integral najprej preoblikujemo po
delih v obliko G- u — [ G du, vstavimo izraz za gibalno koli¢ino

G = y(u)mu in reSimo preostali integral s spremembo diferenciala
u-du-d(1 —u?/c?). Ta integral znamo izracunati in dobimo

K= (y(v)—1)mc?. (35.18)

Ce razvijemo y po binomskem izreku, vidimo K =/, mv? + ... Pri
majhnih hitrostih je torej relativisti¢cna kineti¢na energija enaka
klasicni, sicer pa je vecja. Lepo je videti, kako vse dobljene
enacbe prehajajo v klasi¢ne.

Izraz za kineti¢no energijo lahko zapiSemo takole:
y(v)mc? =K + mc?. Prvi ¢len poimenujemo polna energija in je
vsota kineti¢ne energije in mirovne energije (EINSTEIN):

E=K+ mc? (35.18)
E = p(v) mc?

Ce ni zunanjih sil, recimo pri izoliranem trku dveh teles, se (poleg
gibalne koli¢ine) ohranja polna energija, to je vsota obeh
omenjenih energij. Ni treba, da se ohranjata kineti¢na energija in
mirovna energija vsaka zase.

Slika 35.10 Odkritje slavne enacbe o
ekvivalenci mase in energije. (Harris, S.)

Naj telo miruje v opazovalnem sistemu. Potem nima kineti¢ne
energije in velja E = mc?. Ce telo seva in s tem izgubi energijo AE,
se mu masa zmanjSa za Am = AE/c?. Pri tem ni bistveno, da
odvzeta energija postane energija sevanja. Iz tega sklepamo, da
masa telesa meri energijo, ki jo telo vsebuje. Drugemu telesu, ki
svetlobo absorbira, pa se poveca energija in s tem masa. Svetloba
takorekoC prenasa maso iz sevalcev na absorbente.

Kolik$na energija se skriva v 1 g snovi? Strahotnih 10° GJ; toliko v
enem dnevu proizvede najvecja hidroelektrarna, kar smo jih
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doslej zgradili. — Koliko mase izgublja Sonce s sevanjem?
Nepredstavljivih 104 ton v enem letu, kar je priblizno masa
kamnite kocke s stranico 200 km. Vendar je to zgolj nezaznavnih
10~ celotne mase. — Koliko mase pa pridobi kos zZeleza, Ce ga
segrejemo od 300K na 500 K? Nezaznavnih 10712 za¢etne mase.

Definicijsko enacbi za polno energijo in definicijsko enacbo za
gibalno koli¢ino kvadriramo in drugo odstejemo od prve, pazec
na enote. Ugotovimo (EINSTEIN)

E?2 —(¢G)? = (mc?)?. (35.20)

Desna stran ni odvisna od izbire koordinatnega sistema, saj sta c
in m konstanti. To pomeni, da je leva stran enacbe enaka v
vsakem opazovalnem sistemu, da je energijska invarianta.

35.13 Transformacija G in E

Definicijo gibalne koli¢ine G = myv lahko zapiSemo v obliki

G = mdr/dt. To pomeni, da se gibalna koli¢ina transformira tako
kot krajevni vektor, saj sta masa in lastni ¢as invarianti.
Transformacijo x' = p(x — ut) pomnozimo z maso in odvajamo na
lastni ¢as, upostevajo¢ mdt/dt = my = E/c?, pa dobimo

Gx' = p(Gx — uE/c?). (35.21)

Preostali dve transformaciji sta G,' =G, in G,' = G,. Podobno
obdelamo transformacijo t' = p(t — ux/c?). Mnozimo jo z m,
odvajamo na 7 ter pridelamo

E'=p(E - uG,). (35.22)

To so transformacije gibalne kolicine (EINSTEIN).
Transformacijske enacbe smo izpeljali za posamicen delec, veljajo
pa seveda tudi za celetno gibalno koli¢ino in energijo sistema
delcev. Enake transformacijske enacbe kot za G in E veljajo tudi
za spremebe AG in AE:

AG,' = p(AGy — UAE/c?) (35.23)
AE' = p(AE — uAGy).

Izolirani sistem delcev v S ima AG =0. Da bo tudi v S' veljalo

AG' =0, mora veljati Se AE =0. To je: ohranitev gibalne koli¢ine
velja v obeh sistemih le v primeru, ko v prvem sistemu velja Se
ohranitev energije. Podobno je z ohranitvijo energije: ce AE =0,
potem bo AE'=0 le v primeru, ko AG = 0. Ohranitev energije velja
v obeh sistemih le, ¢e v prvem sistemu velja Se ohranitev gibalne
kolicine.

To je nekaj novega. Gibalna koli¢ina in energija sta medsebojno
povezani koli¢ini. Ohranitvena zakona za gibalno koli¢ino in
energijo torej nista ve¢ neodvisna, ampak imamo opravka z enim
samim zakonom - ohranitvijo G in E. Saj se obe koli¢ini pri
sedlanju iz enega inercialnega sistema v drugega "pretvarjata"
druga v drugo.
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Svetlobni tlak

Dober zgled je neelasti¢ni trk. Naj se dva enaka delca blizata
drug drugemu z enakima hitrostima, trcita in obtic¢ita skupaj. Pri
tem naj v okolico ne oddata ni¢ energije, recimo s svetlobo.
Ohranitev gibalne koli¢ine pove my(v)v — my(v)v= Mp(V)V. Iz
tega sklepamo, da V=0. Ohranitev energije pa pravi

mc2p(v) + mc2p(v) = Mc?p(V) = Mc?. Tako ugotovimo M = 2my(v).
Masa skupka je vecja od vsote izvornih mas. Izgubljena kineti¢na
energija se pojavi kot mirovna energija (masa). Masa skupka
torej zajema notranjo kineticno in potencialno energijo sestavin.
Za mase teles pa ohranitveni zakon ne velja vec.

35.14 Gibalna koli¢ina svetlobe

Ce sta energija in gibalna koli¢ina delcev med seboj povezani
koli¢ini, mar ne velja to tudi za svetlobo? Svetloba vendarle nosi s
seboj energijo; ali morda nosi tudi gibalno koli¢ino?

Predstavljajmo si zaprt vagon na kolesih. Njegova dolzina je L in
masa M. Iz leve stene naj svetilka izseva blisk svetlobe proti
desni steni, kjer se absorbira. Najprej je bilo nekaj energije E na
levi steni, potem pa na desni. Energija se je premaknila za
dolZino vagona. Vendar: energija ima maso E/c2. Ce bi bil pri
premiku energije vagon pri miru, bi se premaknilo njegovo
tezisce. Ni nam vSec, da bi se teziS¢e vagona premaknilo zgolj
zaradi dogajanja v njegovi notranjosti. Zato zahtevamo, da tezisce
ostane pri miru, to je, da se vagon premakne za x v levo. Veljati
mora torej (1) Mx = (E/c?)L.

Kaj je premaknilo voz v levo? Ob izsevu svetlobe je moral nanj
delovati odriv z gibalno koli¢ino G. Vagon je pri tem dobil odrivno
hitrost (2) v=G/M. S to hitrostjo se je gibal kratek ¢as (3) t=L/c,
dokler svetloba ni dosegla druge stene, nakar se je ustavil. Velja
x =vt. Vstavimo v iz (2) in t iz (3) ter dobljeno vrednost x
vstavimo v (1). Tako dobimo (EINSTEIN)

E (35.24)

To je gibalna koli¢ina bliska svetlobe z energijo E. Gostota
gibalne koli¢ine

G (35.25)

g=;

je G/V=G/Sct = (E/St)/c?, torej

J (35.26)
g=—-

c
V snopu svetlobe s presekom S in dolzino ct je G = g- Sct gibalne
koli¢ine. Ce se ta svetloba v celoti absorbira na izhodnem

preseku, tam odda G/St = gc gibalne koli¢ine na ¢asovno in
ploskovno enoto, to je, izvaja tlak



Svetlobni mlin

Torzijski svetlomer

p=gc. (35.27)

Ce se svetloba ne absorbira, ampak se odbije, je sprememba
njene gibalne koli¢ine dvakrat toliksna, to je, tlak je dvakrat vecji.
Nasploh je tlak odvisen od tega, kolikSen deleZ R svetlobe se
odbije:

p=(1+R)gc. (35.28)

Sonéna svetloba z gostoto toka 1 kW/m? izvaja pritisk 0,3
miliponda na m? ¢rne povrsine. Celotna Zemlja ¢uti potisno silo,
ki je ~ 10!3-krat manjSa od gravitacijskega privlaka Sonca. Ni se
nam treba bati, da nas bo odpihnilo v vesolje.

35.15 Merjenje svetlobnega tlaka

Morda lahko svetlobni tlak dokazemo? Naredimo drobno in lahko
lopaticasto kolo, ki je vrtljivo okoli navpi¢ne osi, in ga pokrijemo s
steklenim zvonom, iz katerega izsesamo vecino zraka. Eno stran
lopatic potemnimo, drugo pozrcalimo. Svetloba deluje z vecjim
tlakom na zrcalno povrsino, zato bi se moralo kolesce zavrteti s
temno stranjo lopatic naprej. Caka nas presenecenje: kolesce se
res zavrti, a s svetlo stranjo lopatic naprej.

Slika 35.11 Svetlobni mlin. Lopaticasto kolo je
vrtljivo okrog navpic¢ne osi v izsesani posodi.
Lopatice so na eni strani ¢rne, na drugi zrcalne. Ko
na kolo sije svetloba, se vrti. (Anon)

Kako je to mogoce? Sklepamo, da je kriv zrak pod zvonom. Temna
stran lopatice se mocneje segreje in od nje se segreje tudi
doti¢na plast zraka. Segreti zrak povzroci okrog lopatic
konvekcijske tokove in z njimi povezane tlacne podpritiske, ki
delujejo na lopatice. Da se znebimo teh vplivov, moramo
poskrbeti za za ¢imboljsi vakuum.

Svetlobni tlak nam z mnogo truda uspe izmeriti (LEBEDEV), in
sicer z lopaticasto precko, obeSeno na tanki nitki v stekleni
posodi z visokim vakuumom. Poskus spominja na onega za
dolocevanje gravitacijske konstante. Vir svetlobe je elektricna
obloc¢nica, ki ji s spremenljivim uporom lahko spreminjamo moc¢
sevanja. Svetlobo iz oblo¢nice vodimo z zrcali in leCami skozi
izstopno diafragmo na eno lopatico znanega preseka in rocice.
Pred izhodno diafragmo odcepimo del svetlobnega toka in ga
vodimo na termoclen z galvanometrom. Odklon galvanometra
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Eksperiment kot
sodnik

sluzi kot indikator, kako moc¢no seva obloc¢nica. Ko vklju¢imo
oblocnico, vpade njena svetloba na lopatico in precka se zasuce.
Obenem se odkloni tudi galvanometer in pokaze moc oblocnice.
Zasuk precke je sorazmeren z navorom nanjo; in navor je
sorazmeren z gostoto vpadajocega energijskega toka.

Slika 35.12 Merjenje svetlobnega tlaka.
B = oblo¢nica, W = vodni filter za
blokado infrardece svetlobe, T =
termoclen, R = prostor za vrtljivo precko,
G = steklena posoda, S1-S4 = krmilna
zrcala za usmerjanje svetlobe na eno ali
drugo stran precke. (Lebedev, 1901)

Pred meritvijo je treba celotno pripravo kalibrirati. Su¢ni
koeficient nitke dolo¢imo iz nihajnega Casa umerilne precke z
znanim vztrajnostnim momentom. Energijski tok svetlobe, ki
izstopa skozi diafragmo, pa dolo¢imo z majhnim kalorimetrom, in
sicer pri razlicnih moceh oblocnice. S tem kalibriramo tudi
galvanometrsko skalo. Ko je priprava kalibrirana, prizgemo
oblocnico in ji nastavimo primerno jakost. Galvanometer pove,
kaksen je svetlobni tok in odklon precke pove, kakSen je svetlobni
tlak. Rezultati potrdijo njuno pricakovano soodvisnost na 10-20 %
natancno, tako za ¢rno kot za zrcalno lopatico.

35.16 Je vse to res?

Koncali smo z razvojem teorije relativnosti. Pod "teorijo"
razumemo zaokrozen sistem postulatov in izrekov, ki iz njih
sledijo, morda z nekaterimi dodatnimi privzetki. Izreki morajo
biti, vsaj v principu, eksperimentalno preverljivi.

Zal so presenetljivi pojavi, ki jih teorija relativnosti napoveduje,
vecinoma znatni Sele pri dovolj hitrih telesih. Takih teles zaenkrat
v laboratoriju ne najdemo oziroma jih ne zmoremo ustvariti.
Krogle iz pusk so prepocasne in tehtnice premalo natanc¢ne.
Vendar pa smo le uspeli potrditi, s poskusom, dve napovedi
teorije: frekvencni zamik svetlobe (ki vodi do pravilne ocene
Zemljine orbitalne hitrosti) in gibalno koli¢ino svetlobe (ki vodi do
pravilne ocene za svetlobni tlak). Upamo, da bomo v nadaljevanju
raziskav nasli Se vec poti, kako teorijo eksperimentalno preveriti.
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Po drugi strani je pa tudi res, da temelji teorija relativnosti na
eksperimentalno dobro preverjenih postulatih in da so izreki iz
njih, tako vsaj kaze, racunsko pravilni. To nam daje pravico, da jih
privzamemo za pravilne, dokler jih, morda, verodostojni
eksperimenti ne ovrzejo. [
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Model plina

Plinska enacba

Termokinetika

Idealni plin - Tlak in temperatura - Porazdelitev po legi -
Porazdelitev po hitrosti - Makrostanja in mikrostanja - Porazdelitev
po energiji - Fazni prostor stanj - Ekviparticija energije - Specifi¢ne
toplote - Ravnovesni pojavi - Transportni pojavi - Difuzija primesi -
Prevajanje toplote - Termi¢no gibanje

36.1 Idealni plin

Toplotni pojavi in toplotne lastnosti teles (pritisk plina,
temperatura snovi, notranja energija, specificna toplota, toplotna
prevodnost itd.) so bili do zdaj obravnavani fenomenolosko.
Nismo se prevec vprasevali, zakaj so taksni, kot so. Ker pa je snov
sestavljena iz delcev - atomov in molekul, bi se morale
makroskopske lastnosti teles izraziti preko mikroskopskih
lastnosti teh delcev, to je z njihovimi masami, legami, hitrostmi in
medsebojnimi silami. Te naloge se ho¢emo zdaj lotiti.

Najpreprostejsa telesa so Cisti plini. Tak plin si predstavljamo kot
roj enakih molekul, ki se kaoti¢no gibljejo v vse strani in pri tem
trkajo med seboj in s stenami posode. Same molekule so lahko
sestavljene iz enega ali iz ve¢ atomov. Kot vemo iz poskusa z
oljnim madezem [23.6], imajo atomi velikost ~ 0,1 nm. Do
nadaljnjega privzamemo, da so molekule majhne v primerjavi s
potjo med dvema zaporednima trkoma in da so trki popolnoma
elasticni, to je, da se pri njih ohranja kineti¢cna energija. Razen ob
trkih naj molekule ne vplivajo druga na drugo. Recemo, da je to
idealni plin oziroma njegov kineticni model (BERNOULLI, D.).

Slika 36.1 Kineti¢ni model plina. To je roj
istovrstnih molekul, ki se nenehno gibljejo in
elasti¢no trkajo. (Bernoulli, D., 1738)

Maso posamicne molekule oznac¢imo z m; in hitrost njenega
teziSc¢a z v. Stevilo molekul N na prostorninsko enoto V

poimenujmo Stevilska gostota:
N (36.1)
n=—.
\%

V znani plinski enacbi pV = (m/M)R*T zapiSimo maso plina kot
m = m.N in molarno maso kot M = m;N,. Tako dobi enacba obliko
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p=nkT (36.2)

Sorazmernostni koeficient k poimenujemo termic¢na konstanta. Ta
je popolnoma dolo¢ena s plinsko konstanto in s kilomolom. Zal za
slednjega poznamo (zaenkrat) le red velikosti, namre¢ N ~ 10?27,
kar vodi na oceno k ~ 10723J/K. 1z enacbe razberemo, da je tlak
plina odvisen le od temperature plina in od Stevilske gostote
molekul. Oc¢itno je, da imata dva plina, recimo kisik in vodik,
zaprta vsak v svojo posodo z batom in izpostavljena enaki zunanji
temperaturi in pritisku, enako Stevilo molekul na prostorninsko
enoto. In koliko jih je? Pri p=1atm in T= 300K izraCunamo
ogromnih n = p/kT ~ 1026/m3,

S stevilsko gostoto molekul je dolo¢ena tudi njihova povprecna
medsebojna razdalja: I3=V/N = 1/n. V zraku pri standardnih
pogojih znasa I ~ 1 nm, torej desetkrat toliko, kot so molekule
velike.

36.2 Tlak in temperatura

Ko plinska molekula s komponento hitrosti v, zadene ob steno, se
od nje odbije z nasprotno enako hitrostjo. Sprememba gibalne
koli¢ine pri tem znasa 2m;v,. V Casu t tr¢ijo ob steno vse
molekule, ki so oddaljene od nje za najvec¢ v,t. Na ploskovno
enoto S torej zadene nv,tS molekul, kar pomeni spremembo
gibalne koli¢ine za nv,tS - 2m,v,. Ta sprememba, deljena s casom
in ploskvijo, je tlak na steno: p =2nm;v,2.

Upostevati moramo Se dvoje. Prvi¢, nimajo vse molekule enake
hitrosti: v, so razli¢ni. Zato moramo vzeti povprecje kvadratov
hitrosti vzdolz smeri x. Ker pa pri tem povprecujemo kvadrate
tako pozitivnih kot negativnih hitrosti, moramo od tega povprecja
vzeti le polovico: p =nm;(v,2). Drugi¢, molekule se ne gibljejo le v
smeri x, ampak tudi v smereh y in z. Povprecja kvadratov hitrosti
v teh smereh so enaka. Zato velja (v?) = 3 (v,2). Tako dobimo

1 2 36.3
p= gnml(v2)= gn(m1v2/2). ( )

Pritisk plina je torej sorazmeren s stevilsko gostoto molekul in z
njihovo povprecno translacijsko energijo. Enacbo lahko zapiSemo
tudi v obliki p =1/3 p(v?). 1z nje dolo¢imo standardno hitrost

Vrms = V{v2) molekul pri znanem tlaku in gostoti. Kisik v posodi z
batom pri standardnih pogojih ima gostoto p = 1,3 kg/m3, zato
imajo molekule v, = 500 m/s. Vodikove molekule so 16-krat lazje
od kisikovih, zato je njihova hitrost v16 = 4-krat vecja, torej okrog
2000 m/s. Mimogrede opazimo, da je izracunana hitrost molekul
nekoliko vecja od hitrosti zvoka v zraku. To je razumljivo, saj
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razredcine in zgos¢ine ne morejo potovati hitreje, kot se v
povprecju gibljejo molekule.

Kaj pa, Ce je plin mesSanica iz dveh vrst molekul z maso m; in m;?
Tedaj se zdi oc¢itno, in do morebitnega preklica privzamemo kot
resni¢no, da medsebojni trki poskrbijo, da je povprecna
translacijska energija vsake vrste molekul enaka:

( % myvi?) =( % myvy?) . (364
Seveda velja to tudi za ve¢ vrst molekul. In ne samo za molekule
v plinu, med katerimi ni sil (razen ob trkih), ampak tudi za tiste,
med katerimi vladajo sile, na primer v gosti tekocini ali trdnini.
Prenos in izenacCevanje kineti¢ne energije med elasti¢nimi
molekulami pac nista odvisna od sil, ki vladajo med njimi, ampak
zgolj od njihovih mas in relativnih hitrosti. Po analogiji velja
povedano tudi za atome v molekuli in za atome v kristalu. Vsak
delec - atom ali molekula ali zrno snovi - ne glede na svojo maso
in sestavo ima enako povprecno translacijsko energijo. Tezji delci
se gibljejo pocasneje in lazji hitreje.

Primerjava plinske enacbe p = nkT in enacCbe za kineticni pritisk
plina p = (2/3)n{m,v?/2) pove

( 1 myv2) = 3 kT. (36.5)

2 2
Povprecna translacijska energija molekul (take ali drugac¢ne
vrste) v plinu je torej sorazmerna z njegovo temperaturo, kakor
smo jo definirali s plinskim termometrom. Drugace receno: tisto,
kar imenujemo temperatura, je (preimenovana) povprecna
translacijska energija molekul.

Na zapisano povezavo med temperaturo in translacijsko energijo
lahko pogledamo tudi kot na definicijo temperature preko
termicnega gibanja. Potem iz nje in iz enacbe za kineti¢ni pritisk
takoj sledi plinski zakon: pV«T. S tem je ta eksperimentalno
ugotovljeni zakon povzdignjen v izrek, ki sledi iz izreka o gibalni
kolic¢ini, ta pa seveda iz osnovne enacbe gibanja.

Translacijska energija molekule ni njena celotna kineti¢na
energija. Slednja je, po definiciji, enaka vsoti kineti¢nih energij
vseh njenih atomov. To vsoto lahko vedno zapiSemo kot vsoto
translacijske energije teziSCa molekule ter kineti¢ne energije
relativnih gibanj atomov glede na teziS¢e. Zadnjo pa lahko v
posebnih primerih zapiSemo kot vsoto rotacijske in nihajne
energije molekule.

36.3 Porazdelitev po legi

Ce na plin v posodi ne vpliva nobena zunanja sila ali je ta Sibka in
posoda majhna, so molekule porazdeljene po prostoru
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Umetne molekule

enakomerno, to je, njihova Stevilska gostota je povsod enaka.
Tako je, na primer, z zrakom v sobi. Na molekule sicer deluje
teza, vendar je termic¢no gibanje dovolj moc¢no, da preprecuje
molekulam kopicenje pri tleh. Drugace je v zemeljskem ozracju.
Privzemimo, da je ozracje izotermno, ceravno to ne drzi povsem.
Potem vemo (22.5), da pada pritisk z viSino takole:

p = po exp —Mgz/R*T. Pritisk izrazimo kot p =nkT in kilomolsko
maso kot M =mN,, pa dobimo

n = nge mMgz/kT (36.6)

Stevilska gostota molekul se torej z vi$ino zmanj$uje. Rac¢unali
smo le za molekule ene vrste in za njihov delni tlak oziroma delno
gostoto. Seveda velja enacba za katerokoli vrsto molekul v zra¢ni
meSanici. LaZzje molekule (dusik) bi morale zato pocasneje
pojemati z viSino kot tezje (kisik). Zaradi konvektivnega meSanja
zraka pa Cesa takega ne opazimo.

16

Slika 36.2 Porazdelitev molekul kisika v
1 teznem polju Zemlje. Izra¢unane so vrednosti
4 za dve temperaturi.

14

12

i
o
T

visina (km)

0 25 50 7.5 10.0 12.5 15.0
dP/dz (procent/1km)
Nad izbrano talno ploskvijo S ima ozracje obliko stolpca, v
katerem je N molekul. V plasti dz je delez dN/N = dP molekul. Ker
n = NdP/Sdz « dP/dz, lahko porazdelitev molekul po viSini
zapisSemo tudi kot

dpP = Ae—m19z/KT (36.7)
dz
Normirna konstanta A je doloCena s pogojem [ (dP/dz)dz =1, torej
_ Mg (36.8)
kT

Pri nizkih temperaturah ali moc¢ni teZnosti je normirna konstanta
velika: tedaj so prevladujocCe zasedene spodnje plasti ozracja. Pri
visokih temperaturah ali Sibki teznosti pa postane konstanta
majhna: tedaj je zasedenost priblizno enaka po vseh viSinah.

Zapisana porazdelitev ne velja zgolj za molekule v ozracju,
temvec tudi za drobne prasne delce v mirni sobi in za drobne
kalne delce v stojeci vodi. Saj so ti delci necisto¢ pravzaprav
orjaske molekule in imajo enako povprecno translacijsko energijo
kot okoliSke prave molekule zraka ali vode.
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To nas navede na naslednjo zamisel. Naredimo drobne kroglaste
"molekule" znane velikosti in mase ter jih vrzimo v vodo. Potem
prestejmo, z mikroskopom, njihovo Stevilsko gostoto na dveh
viSinah. Iz razmerja teh dveh gostot nato izracunajmo termicno
konstanto, saj so vse ostale koli¢ine poznane oziroma merljive!

Slika 36.3 Porazdelitev gumijastih kroglic v vodi po visini.
Kroglice imajo premer 0,6 pm. Navpi¢ni razmiki so zarisani na

10 um. Prikazana je risba na podlagi fotografskih slik. (Perrin, 1913
/ predelava Pohl, 1969)

Zamisel je odli¢na, izvedba pa, kot ponavadi, tezka. Kot
spretnemu eksperimentatorju nam vendarle uspe (PERRIN). Iz
gumijeve smole z znano gostoto izdelamo kroglice premera

0,6 pym. (Gumo raztopimo v alkoholu. Raztopini primesamo vodo,
da izpadejo drobne kroglice. Te so razli¢nih velikosti. Lo¢imo jih s
centrifugiranjem.) Z velikostjo kroglic je natan¢no dolo¢ena tudi
njihova masa (reda velikosti 10-19mg). Kroglice spustimo v vodo
znane temperature, kjer se jim teza ustrezno zmanjSa zaradi
vzgona. Mikroskop naravnamo na razli¢ne globine, fotografiramo
vidna polja in na fotografijah prestejemo ostro vidne delce.
Stevilska gostota kroglic se prepolovi priblizno preko razdalje

10 um. Tako uspemo dolociti

k=1,4-10"23J/K. (36.9)

S tem so mnogo natanc¢neje kot do sedaj doloceni tudi kilomol
N, =R*/k, atomska masna enota u = 1kg/N, in celo osnovni naboj
e9=F/Nx:

NA=6,0-1026 (36.10)
u=1,7-10"2"kg
e0=1,6-10"19As.

Tudi velikost plinskih molekul lahko na novo ocenimo iz njihove
gostote v tekoci fazi: pjiqg=m1/(2 r)3. Za vodno molekulo, ki ima
maso m; = 18 u, izraCunamo premer 0,3 nm.

36.4 Porazdelitev po hitrosti

Molekule v plinu se torej nenehno gibljejo. KaksSna pa je
pravzaprav njihova porazdelitev po hitrosti? Opazujmo
prostornino, v kateri je Stevilska gostota molekul povsod enaka,
recimo sobo ob morju. Delez molekul dP, ki imajo hitrost na
intervalu v, = dv,/2, oznac¢imo z f(v,)dv,. Hitrosti v treh smereh so
med seboj neodvisne, zato je delez molekul na hitrostnem
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Velikost hitrosti

Meritve hitrosti

intervalu v, + dv,/2, v, * dvy/2, v, = dv,/2 enak produktu
f(VX)f(Vy)f(Vz)dedVdeZ.

Ker so vse smeri enakovredne, mora biti porazdelitev odvisna
zgolj od celotne hitrosti molekule, ni¢ od njenih komponent:
fVIfV)fv,) = F(v2 4+ v,? + v,2). Temu pogoju zadosca funkcija
flv,) =A exp (—=Bv,)? in podobno za preostali dve komponenti.
Konstanti A in B bo treba Se doloc¢iti. Predznak minus smo
pritaknili zato, ker mora biti pri ¢edalje vecjih hitrostih cedalje
manj molekul. Delez molekul na majhnem hitrostnem intervalu je
torej enak A3 exp —B(v,% + vy? + v,2) dv,dvydv, =

A3exp (—Bv?) dv,dv,dv,. Upostevamo dv,dv,dv, = v?sinf dvd6 de
in integriramo po obeh kotih, pa dobimo

flv)dv = A3 exp —(Bv?) 4r1v2 dv.

Konstanti A in B dolo¢imo iz dveh pogojev: normiranosti
[flv)dv, =1 in povprec¢ne kineti¢ne energije [ 1/, mqv,2f(v)dv, =
kT/2. Izracun integralov pove B =m;/2kT in A = V(B/m), torej
(MAXWELL)

dap — A e—M1Vx/2kT (36.11)
dv,
d;P =A3 4:1-[ v2e—m1v2/2kT
dv
A=( m )12
2nkT

Porazdelitev plinskih molekul po hitrosti teziS¢a ni ni¢ odvisna od
njihove Stevilske gostote, ampak le od temperature. V sobi na
vrhu izotermnega ozracja je zato prav taka kot v sobi na njenem
dnu.

25 T T T T

Slika 36.4 Porazdelitev kisikovih molekul po
20 | 300K kisk 4 hitrosti. Izracunane vrednosti za dve

15 L 600 K temperaturi.
10 + g

5 F

dP/dv (procent/100m/s)

0 1 1 1 1
0 200 400 600 800 1000

hitrost (m/s)
Iz pogoja df/dv = 0 dolo¢imo hitrost v maksimumu porazdelitve, to
je, najverjetnejso oziroma modalno hitrost: vieq = V(2/3)Vims. 12
porazdelitvene funkcije izraCunamo povprecno hitrost
Vave = J Vfdv = v(8/311)vms. Modalna in povprecna hitrost sta obe
manjsi od standardne, prva za 20 % in druga za 10 %. Pri taksni
natancnosti je vseeno, katero izmed treh proglasimo za
"povprec¢no" in jo oznacimo z v.

Napovedane hitrosti molekul ho¢emo preveriti s poskusom.
Platinasto Zico, prevleceno s srebrom, segrevamo s tokom. Iz nje
izletajo atomi srebra. Zico namestimo v os navpicnega valja z


pict3b/maxwell.gif
pict3b/maxwell.gif

Pobeg plinov

navpic¢no rezo v plascu. IztekajoCe srebrove atome ujamemo na
zaslon. Ko valj miruje, se naredi na zaslonu tanka srebrna ¢rta.
Valj zavrtimo in ¢rta na zaslonu se razsiri. Debelina plasti srebra
na izbranem mestu ¢rte pove relativno stevilo atomov, ki so tja
prileteli. Z mikroskopom najdemo lego maksimalne debeline. Tja
je priletelo najvec atomov. Iz razseznosti valja in hitrosti vrtenja
(okrog 2000 obratov na minuto) dolo¢imo, kaksne so bile hitrosti
teh atomov. S tem smo dolocili najverjetnejSo hitrost. Dobro se
ujema z napovedano hitrostjo pri temperaturi zice.

Slika 36.5 Meritev hitrosti molekul. 1z vroce Zice
izletavajo atomi srebra skozi rezo vrte¢ega se valja in
padajo na zaslon. Debelina srebra na zaslonu v
odvisnosti od zasuka kaze hitrostno porazdelitev.
(Stern, 1920)

Poskus lahko Se izboljSamo. Nitko vzamemo iz valja in njene
iztekajoCe atome z zaporednimi zasloni z luknjicami oblikujemo v
snop. Valj se vrti kot prej in srebro se nabira na njegovi notranji
strani nasproti reze. Relativno debelino srebrnega sloja dolo¢imo
z njegovo svetlobno prepustnostjo.

Dovolj hitre molekule na vrhu ozracja lahko pobegnejo v vesolje.
Za to morajo imeti ubezno hitrost preko 11 km/s [19.11]. Pri
teznosti in temperaturah, kakr$ne vladajo na Zemlji, je delez
takih molekul neznaten. Zemlja ne izgublja ozracja. Drugace je z
Mesecem. Opazovanja zvezd ob njegovem robu kazejo, da nima
ozraCja. Morda ga je nekoc¢ imel, vendar je njegova teznost
premajhna, da bi ga bil obdrzal. Okrog majhnih lun v Osoncju
nasploh ne pricakujemo ozracij, zlasti ne iz lahkih plinov.

36.5 Makrostanja in mikrostanja

Porazdelitev molekul ozracja po viSini opisuje funkcija

exp (—mygz/kT), porazdelitev po hitrosti pa, na primer, funkcija
exp (—mv,?/2kT). Obe porazdelitvi imata obliko

exp (—energija/kT). To nas navaja na misel, da se molekule plina
pravzaprav razporejajo po njim dostopnih energijah, potencialnih
in kineti¢nih, na dolo¢en nacin, namrec eksponentno.
Porazdelitev po legi in hitrosti pa je zgolj drugotna posledica. Kaj
neki bi bil temu vzrok?
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Energijska stanja

Makrostanja

Mikrostanja

Zamislimo si plin delcev (atomov ali molekul). Predpostavimo, da
so vsakemu delcu na razpolago energijska stanja E;. Zaradi
lazjega razmisljanja naj bodo ta stanja diskretna. Predstavljajmo
si jih kot navpicno lestev s klini. Vsak klin oznacuje eno
energijsko stanje. Delci se lahko porazdelijo po klinih na razlicne
nacine. Nekaj jih gre na prvega, nekaj na drugega itd. Odkriti
hocemo vzrok, zakaj jih najdemo na vsakem klinu ravno toliko,
kot je treba, in ne ve¢ ali manj.

Recimo, da imamo Stiri delce A, B, C in D ter lestev s klini 0, 1, 2,
3 ... energijskih enot. Delce hocemo razporediti po klinih tako, da
bo njihova skupna energija 3 energijske enote. To lahko naredimo
takole: (1) 1 delec gre na klin 3, 3 delci na klin 0; ali (2) 1na 2, 1
nalin2na0;ali(3)3nalinlna0.ReCemo, da so to tri
makrostanja za predpisano energijo 3 enote.

Tabela 36.1. Porazdelitev stirih delcev A, B, C, D po energijskih nivojih 0, 1,
2 ... enot tako, da je energija vsake porazdelitve enaka 3 enote. Mozna so tri
makrostanja (1), (2) in (3) s pripadajo¢imi mikrostanji. Najve¢ mikrostanj ima

(1)
3 * A B C D
2 - - - - -
1 - - - - -
Q  Fxx BCD ACD ABD ABC
(2)
3 - - - - - - - - - - - - -
2 * A B B B C C C D D D
1 * B ¢ b A C D A B D A B C
0 xx CDh BD BC CD AD AC BD AD AB BC AC AB
(3)
3 - - - - -
2 - - - - -
1 kxx BCD ACD ABD ABC
o * A B C D

Makrostanje (1) je lahko dosezeno tako, da gre na klin 3 bodisi
delec A, B, C ali D, trije preostali pa na klin 0. Oc¢itno so to 4
nacini za tvorjenje tega makrostanja. Recemo, da je makrostanje
dosezeno preko 4 mikrostanj.

Makrostanje (2) dosezemo takole: na 2 gre bodisi A, B, C ali D;
vsaki¢ gre na 1 eden izmed preostalih treh; in vsakic gresta
preostala dva na 0. Oc¢itno je to makrostanje dosezeno preko

4 -3 =12 mikrostanj.

Makrostanje (3) pa doseZemo takole: na 1 gredo trije izmed A, B,
C, D, preostali osamelec pa na 0. To so 4 mikrostanja.



Verjetnost mikrostanj
in makrostanj

Stevilo mikrostanj v
makrostanju

Makrostanje z najvec
mikrostaniji

Postulirajmo, da so vsa mikrostanja enako verjetna. To je, izbrani
delec se v dovolj dolgem casu enako mnogokrat znajde v vsakem
od njih. Ne vidimo namrec razloga, da bi se v kakem mikrostanju
znasel bolj pogosto kot v drugem. To pa pomeni, da se sistem
delcev znajde v makrostanju (2) veckrat kot v drugih dveh
makrostanjih. Naravno je postulirati: verjetnost, da se sistem
znajde v nekem makrostanju, je enaka njegovemu delezu
mikrostanj. Torej: verjetnost za makrostanje (1) je

4/(4+12+4+4) =4/20 =0,2; za makrostanje (2) je 12/20=0,6; in za
makrostanje (3) je 0,2.

Kakor stvari stojijo, bo v vecini primerov, ko sistem pogledamo, ta
v makrostanju (2), redkeje pa v preostalih dveh makrostanjih.
Eno makrostanje, namrec¢ (2), takoreko¢ strli iz vseh makrostanj.
Ce je delcev veg, je to trlenje $e mnogo bolj izrazito. Skoraj
vedno potem najdemo sistem v tem makrostanju.

36.6 Porazdelitev po energiji

Kar smo povedali za sistem stirih delcev, posploSimo na mnozico
N enakih delcev, zaprtih v prostornini V. Vsakemu delcu so na
voljo energije Ey, E;, E> ... Koliko je nacinov, da na teh energijskih
nivojih Eq, Eq, E», ... ¢epi Ny, Ny, N, ... delcev, pri cemer S N;=N
in 3 N;E; = E? Drugace receno: dano je makrostanje

(Ng, N1, N5 ...); preko koliko mikrostanj je lahko dosezeno?
RazmiSljanje v primeru Stirih delcih nas pouci:

. NI (36.12)
T No!N;!No! ...~

V omenjenem primeru res velja B(3,0,0,1) =4!1/3!10!0!1! =4,
B(2,1,1)=(4!/2!'1!1!=12 in B(1,3) =4!/1!3! = 4. Izmed njih je
najvedji B(2,1,1).

Izmed vseh moznih makrostanj hocemo zdaj najti tistega, ki ima
najveC mikrostanj, to je, najti hocemo taksen nabor (Ng, Ny, N5 ...),
da bo B (Ny, N1, N;...) maksimalen, pri cemer smo omejeni z
zahtevama ENi =N in EE,-N,- =FE.

Ker je N zelo velik, uporabimo znano aproksimacijo iz [33.6],
namrec¢ InN! = NInN — N, in sicer tako za N! kot za posamicne N;!,
pa dobimo InB = NInN — 3(N;InN; — N;).

Ker je InB narascajoca funkcija B, je maksimiranje prve enako
maksimiranju druge. V maksimumu mora veljati dinB =0, torej
(ker je N konstanten) > InN;dN; = 0. Pri variiranju dN; mora za
oba pogoja veljati AN =Y dN; =0 in dE =3 E;dN; = 0.

Vsem trem enacbam hkrati zadostimo, kakor vemo iz vezanih
ekstremov [30.9], ¢e postavimo 3 (InN;+ a + BN;)dN;=0 z
neznanima parametroma a in 5. Spremembe dN; so zdaj poljubne.
Da bo zapisana enacba veljala za vse dN;, mora biti
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Fazne koordinate

InN; + a+ BE; =0 za vsak i. Torej je najbolj verjetna porazdelitev,
tista z najve¢ mikrostanji, naslednja: N; = exp (—a) exp (—BE;).

Da bo porazdelitev v skladu z Ze znanima porazdelitvama molekul
po legi in hitrosti, moramo postaviti 8 = 1/kT. Drugo konstanto
dobimo iz normirnega pogoja. Ker

SN;=>exp(—a)exp (—E;/kT) =N, imamo

exp (—a) =N/3 exp (—E;/kT), torej ob upostevanju N;/N = P;:

P;= 1 e—Ei/kT (36.13)
Z

zZ=3 e~ Ei/kT

Sorazmernostno konstanto smo zapisali kot 1/Z. To je iskana
najverjetnejSa porazdelitev plinskih delcev (atomov, molekul) po
svojih (privzeto) diskretnih nivojih energije. Porazdelitev pove,
koliksen procent delcev P; ima energijo E;. Poimenujemo jo
kanonic¢na porazdelitev (BOLTZMANN).

Za zvezna energijska stanja - in taka smo doslej spoznali pri tezni
in kineticni energiji - si predstavljamo, da so nivoji zelo gosti.
Tedaj preide diskretna porazdelitev v zvezno in normalizacijska
vsota v integral:

dP = le—E/deE (36.14)
Z

Z=J -FATAE.

Zasedenost del¢nih energijskih stanj, diskretnih ali zveznih,
pojema eksponentno z narascajoco energijo. Ali drugace receno:
procent delcev, ki zasedajo kaksno svoje energijsko stanje,
pojema z narascajoco energijo.

Povprecna energija znasa (E) = fEdP = (1/Z)f E exp (—BE) dE.
Opazimo E exp (—BE) = —d/dB exp (—BE). Odvod izpostavimo iz
integrala in dobimo (E) = —(1/2)d/dp [ exp (—BE) dE, torej

_1dz (36.15)

- d_ﬁ .
To je povprecna energija enega delca. Notranja energija pa je
vsota povprecnih energij vseh delcev, torej E = N(E). Zapisna
relacija velja seveda tudi za diskretna stanja.

36.7 Fazni prostor stanj

Energija vsakega delca - atoma ali molekule - je odvisna od
njegove lege in gibanja tezisca; e je delec sestavljen, pa Se
dodatno od relativne lege in relativhega gibanja njegovih
sestavnih delov glede na teziSCe. V posebnih primerih je to
gibanje mozno opisati kot vrtenje ali nihanje.

Poglejmo najpreprostejsi primer, ko je stanje posamicnega delca
opisano le z lego rin s hitrostjo v njegovega tezi$¢a. Sesterico



Atomarni sistemi

(r, v) poimenujemo fazne koordinate delca. Stanje izbranega
delca v nekem trenutku si potem predstavljamo kot tocko v
faznem prostoru s Sestimi medsebojno "pravokotnimi"
koordinatnimi osmi.

: Slika 36.6 Pot delca v dvodimenzionalnem
faznem prostoru. Lega (abscisa) in hitrost

| (ordinata) sta izra¢unani za duseno nihanje.
(Gilchrist, A.)

Ko se delec giblje, njegova tocka zarisuje krivuljo. V dolgem casu
obisce krivulja vse razpolozljive koticke faznega prostora. Tudi
drugi delci imajo svoje tocke, ki se gibljejo. Vse tocke skupaj
tvorijo nekaksen oblak. Gostota oblaka na mestu (r, v) pove,
kaksen delez tock, torej delcev, je v faznem intervalu

dx dydz dv,dv,dv, = d3rd3v. V ravnovesnem stanju se gostota
oblaka nikjer ne spreminja. Kolikor toCk pritece v fazni element v
povprecju, toliko jih tudi odtece. Majhne fluktuacije nas zaenkrat
ne zanimajo. Primerjava sedimentne porazdelitve (36.7) in
hitrostne porazdelitve (36.11) s kanoni¢no porazdelitvijo (36.14)
pove, da dE « d3rd3v oziroma

dP = 1 e~Er VKT 43pd3y (36.16)

7= f e~E@VI/KT 43pd3y .

To je zvezna porazdelitev delcev po energiji v obravnavanem
Sestdimenzionalnem faznem prostoru. Z njo opiSemo atomarne
pline, recimo helij ali zivosrebrno paro, pa tudi atomarne kristale,
recimo baker ali oglje.

V atomarnem plinu ima vsak atom zgolj kineti¢no energijo
E=1ymv?=Yymv,2 + Yoympvy? + Y3 myv, 2. Ustrezajoca
porazdelitev po faznem prostoru je ze znana hitrostna
porazdelitev, preraCunana na prostorninsko enoto:
dP/dV « exp (—m;Vv2/2kT) d3v.

V atomarnem kristalu niha vsak atom okoli svoje ravnovesne
lege. Odmike v treh smereh oznac¢imo x, y in z. Pri majhnih
odmikih je sila sorazmerna z odmikom F, = —ax in enako za ostali
dve smeri. Kristal naj bo torej izotropen. To pomeni, da ima atom
v kristalu kineti¢no in potencialno energijo K+ W=1/, m;v,? +
Yomvi2+ Yomiv 2+ Yyax? + Y,ay? + 1/, az?. Porazdelitev
atomov po legi in hitrosti razpade na dva faktorja:

dP x exp (—mv?/2kT) d3v x exp (—ar?/2kT) d3r. Prvi faktor opisuje

147


pict3b/phase.gif
pict3b/phase.gif
picref.htm

Molekularni sistemi

Razclenitev energije

148

hitrostno porazdelitev in je prav tak kot pri plinu. To pomeni, da
je hitrostna porazdelitev atomov neodvisna od tega, kaksne sile
jih vezejo na okolico. Enaka je v plinu, tekocini in kristalu. Drugi
faktor opisuje prostorsko porazdelitev. Ta je identi¢na
porazdelitvi po hitrosti, ¢e preimenujemo r-v in a - my. To
pomeni, da so identi¢ni tudi izrazi za standardni, modalni in
povprec¢ni odmik od ravnovesne lege, na primer (r?) = 3kT/a.

Niso vsi plini atomarni; vecina jih je sestavljena iz molekul, to je
iz skupkov atomov. Za opis stanja take molekule ni dovolj Sest
koordinat za lego in hitrost teziS¢a. Potrebne so dodatne
koordinate: za usmeritev glavnih osi; za vrtenje okoli njih; za
medsebojne razdalje atomov; in za spremembe teh razdalj. Cim
bolj zapletena je molekula, tem ve¢ dodatnih koordinat je
potrebnih. Podobno je s kristali. Njihovi gradniki niso vedno
atomi. Vodni led, na primer, je sestavljen iz molekul. Tudi stanje
molekule v kristalu je zato treba opisati z dodatnimi
koordinatami. Obravnava molekularnih sistemov je o¢itno mnogo

bolj zapletena kot obravnava atomarnih sistemov.

36.8 Ekviparticija energije
Energijo enoatomne molekule v plinu brez zunanjega polja
zapiSemo kot vsoto E = !/;mv,? + 1/;mv,2 + 1/,mv,2. Vprasamo se:
koliko energije pripada, v povprecju, vsakemu ¢lenu? Povprecna
energija
B = [ Eexp (—E/KT) d3v (36.17)
Jexp (—E/kT)d3v

razpade v vsoto treh enakih integralov, od katerih se prvi - po

krajSanju podintegralov dv, in dv, - glasi

[ mv2exp (—1/2mv,2/kT) dvy (36.18)
[exp (=1/;mv,2/kT) dv,

(Ex) =

S prilagoditvijo diferenciala predelamo enacbo v obliko (E,) =

KT [ t? exp (—t2) dt/ [ exp (—t2) dt. Spodnji integral Ze poznamo: to
je normalni integral in znasa vn. Zgornji integral izracunamo
takole: [t?exp (—At?)dt= [ —d/0A exp (—At3)dt =

—a/dA [ exp (—At?) dt. Prilagodimo diferencial v obliko d(tVA)/vA in
dobimo normalni integral ter po odvajanju !/,A732Vm. ZaA=1 je
torej iskani integral enak !/, vi. Tako ugotovimo

By = Ler (36.19)
x! = 2 .

Podobno velja za (Ej) in (E,). Na vsak kvadratni ¢len v kineti¢ni
energiji translacije torej pride !/, kT energije.

Enak rezultat velja tudi za energijo rotacije, ki vsebuje tri
kvadratne ¢lene oblike !/,J;w;?, pri Cemer integriramo po faznih
intervalih d3w. In prav tako za energijo nihanja, ki vsebuje tri



Molekule in kristali

Clene za kineti¢no energijo '/,mv;? ter tri ¢lene za potencialno
energijo '/,ar?, pri Cemer integriramo po faznih intervalih d3vd3r.
Morebitno zunanje polje na rezultat ni¢ ne vpliva. Na vsak
kvadratni ¢len v izrazu za energijo torej pride !/, kT energije. To
je ekviparticijski izrek.

TeziSCe vsakrsne plinske molekule se lahko giblje v treh smereh.
RecCemo, da ima tri prostostne stopnje. Translacijska energija za
vsako prostostno stopnjo je podana s kvadratom ustrezne
komponente hitrosti. Na vsako prostostno stopnjo torej pride

1/, kT energije, skupaj 3/, kT, kakor tudi mora biti. Za enoatomno
molekulo je to tudi celotna energija, ki jo nosi.

Toga dvoatomna molekula se dodatno vrti okrog dveh
pravokotnih osi. Ima Se dve prostostni stopnji. Rotacijske energija
za vsako os je opisana s kvadratom ustrezne kotne hitrosti.
Molekula ima torej skupaj °/, kT energije.

Ce dvoatomna molekula ni toga, ampak niha, ima $e eno
prostostno stopnjo vec za kineticno energijo nihanja (sorazmerno
s kvadratom hitrosti) in eno stopnjo za potencialno energijo
nihanja (sorazmerno s kvadratom odmika). Skupaj torej nosi

I, kT energije.

Nelinearna triatomna molekula ima poleg treh translacijskih
prostostnih stopenj Se tri prostostne stopnje za vrtenje, tri za
kineti¢no energijo nihanja in tri za potencialno energijo nihanja,
torej skupaj 9/, kT. Ce je molekula linearna, pa odpadejo na
translacijo tri, na rotacijo dve in na nihanje $tiri stopnje, skupaj
tudi %/, kT.

@@ om@— Slika 36.7 Nihanje molekule CO3 na

(a) (b) Stiri razlicne nacine. (American

Chemical Society)
oD@

Nasploh ima molekula iz r atomov najvec¢ 3r prostostnih stopenj
(vsak atom tri) za kineti¢no energijo; od tega odpade na
translacijo 3/, kT in na notranje gibanje najvec¢ 3/, (r— 1) kT
kineti¢ne energije. Poleg tega ima Se primerno Stevilo prostostnih
stopenj za potencialne energije nihanj.

(c)

Atom v kristalu ima Sest prostostnih stopenj: po tri za kineti¢no in
potencialno energijo nihanja, skupaj torej 6/, kT.

Vse te trditve o prostostnih stopnjah in o porazdelitvi energije po
njih bi bilo seveda zanimivo preveriti z meritvami. Za to
potrebujemo povezavo do ustreznih makroskopskih kolic¢in -
notranje energije in specificnih toplot.
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Specifi¢ne toplote

Kristalna snov

TeZave na obzorju

36.9 Specificne toplote

Notranja energija plina je enaka vsoti energij posamic¢nih
molekul: translacijskih, rotacijskih in nihajnih. Ce imajo torej
molekule f prostostnih stopenj, znasa notranja energija plina

36.20
U=N£kT. ( )

Toplotna kapaciteta plina pri stalni prostornini je sprememba
njegove notranje energije na enoto temperature: Cy = (dU/dT)y,
zato

36.21
vl @021

Specificna toplota plina pri stalni prostornini je toplotna
kapaciteta na masno enoto: cy=Cy/Nm;, to je

fk fR* (36.22)
cy==—"—==—1.

2m 2 M
Specificna toplota plina pri konstantnem tlaku je c, = cy+ R*/M,
torej

R* 36.23
cp=(£+1)ﬁ. ( :

In slednji¢ - razmerje specifi¢nih toplot

c 2 36.24
K=-"L2=1+= ( :
Cv f

opisuje, kaksna je adiabatna stisljivost plina: TV¥~! = const.

Notranja energija kristala je enaka vsoti nihajnih energij (treh
kineticnih in treh potencialnih) posamic¢nih atomov. Notranja
energija kristala in njegova specificna toplota sta zato

U=3NkT (36.25)
cy=3R*/M.

To je Ze znana, eksperimentalno ugotovljena povezava med
specificno toploto in molarno maso kristalnih snovi (23.5).
Zanimivo je, da notranja energija ni odvisna niti od mase atomov
niti od jakosti medatomnih sil. Kristal je zato lahko sestavljen iz
vec vrst atomov in elasti¢ne sile med njimi so lahko v razli¢nih
smereh razlicne.

Razmerje specifi¢cnih toplot plina znamo izmeriti (22.19). Za
enoatomni helij, ki ima 3 prostostne stopnje za gibanje, bi moralo
veljati Kk =5/3 =1,67. Ujemanje s poskusom je odli¢no pri vseh
temperaturah.

Dvoatomni vodik ima 7 prostostnih stopenj. Zanj bi moralo veljati

kK =9/7 =1,28. Poskus pa pokaZze pri sobnih temperaturah
1,40 =7/5. Zdi se torej, kot da bi imele molekule le 5 prostostnih
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Izhlapevanje tekocine

stopenj, to je, da bi ne nihale. To si lahko razlagamo takole.
Molekula niha le pri dovolj visokih temperaturah; pri sobni
temperaturi molekula ne niha, ampak se le togo vrti okoli dveh
osi; pri Se nizjih temperaturah pa "zamrzne" tudi vrtenje in
preostaja le translacija.

Triatomna vodna para ima pri sobni temperaturi razmerje toplot
1,33 = 8/6, kar si razlagamo tako, da ima 6 prostostnih stopenj
(tri za translacijo in tri za rotacijo). Iz tega sklepamo, da je
molekula toga in ni linearna, saj bi takrat imela le 5 prostostnih
stopenj oziroma razmerje toplot 1,40.

Druge dvoatomne in vecatomne molekule se vedejo podobno. Vse
prostostne stopnje pokazejo le pri visokih temperaturah. Z
nizanjem temperature pa zacnejo prostostne stopnje "izginjati",
najprej nihajne in nato Se vrtilne. Kaj bi bilo temu vzrok, zaenkrat
niti ne slutimo.

x Slika 36.8 Odvisnost razmerja specifi¢nih
"S—K toplot k = ¢cp/cy od temperature za

dvoatomne molekule vodika in kisika.
(Feynman, 1963)

L |
9] 500 1000 1500 2000
TEMPERATURE (°C)

Podobno je s specifi¢no toploto kristalnih snovi. Ujemanje med
napovedjo in meritvami je vec¢inoma zelo dobro. Le pri nizkih
temperaturah se zacne toplotna kapaciteta nepricakovano
manjsati. Zakaj, nam tudi ni jasno. Morda se vrtenja in nihanja v
atomskem svetu le ne dogajajo tako preprosto, kakor pri velikih
telesih.

36.10 Ravnovesni pojavi

Verjetnost, da najdemo delec v prostorninski enoti na razli¢cnih
mestih, je doloCena s potencialno energijo delca na teh mestih.
Ponuja se precej primerov.

V zaprti posodi je voda in nad njo para. Povsod vlada ista
temperatura. Molekule v pari so dale¢ narazen, tiste v vodi pa
blizu skupaj. Koliko je molekul na prostorninsko enoto v pari v
primerjavi s tistimi v vodi? Drugace receno: kako gosta je para
pri dani temperaturi in kako je ta gostota odvisna od
temperature?

Prostornina pare je V, in vode V;, ustrezni Stevilski gostoti
molekul pa n, =N,/V; in n; = N1/V;. Med molekulami v vodi vlada
privlac¢na sila; drugace ne bi bile kondenzirane. Da molekula
izleti iz vode, mora prejeti doloceno delo. Molekula v pari ima
zato za W vecjo energijo od tiste v vodi. Razmerje Stevilskih

151


pict3b/equipart.gif
pict3b/equipart.gif
picref.htm

152

lonizacija plina

Kemic¢ne reakcije

gostot molekul v obeh fazah je (N,/V;,)/(N1/V1) =exp (—W/KT). Ena
molekula vode v prostornini V; tekocCe faze zavzema prostornino
Vo =V1/N; =1/n4, zato (Ce piSemo n, namesto n,)

noe L gwnr, (36.26)

Vo
To je ze znana enacba za parni tlak (22.23), ki smo jo svoj Cas
nasli eksperimentalno. Sedaj smo jo dvignili na raven izreka.
Sorazmernostni faktor ni povsem konstanten: voda se, na primer,
praviloma razteza pri segrevanju. Prav tako je izstopno delo W
rahlo odvisno od temperature, saj so privlacne sile med
molekulami odvisne od prostornin, ki jih zasedajo. Vendar pa k
temperaturni odvisnosti prevladujoce prispeva faktor 1/T v
eksponentu in spremembe preostalih faktorjev lahko ignoriramo.

V zaprti posodi prostornine V je plin atomov, recimo zivosrebrna
para. Pri medsebojnih trkih nekateri atomi izgubijo elektron in
postanejo ioni. Nekateri izbiti elektroni pa se spet zdruzijo z
razpolozljivimi ioni nazaj v nevtralne atome. Oznacimo Stevilske
gostote vseh treh vrst delcev n,, n; in n.. VprasSanje je: kaksno je
ravnovesno razmerje med temi gostotami pri razlicnih
temperaturah?

Ker se atomi spreminjajo v ione in ti nazaj v atome, mora veljati
ns + n; =n. Ker se ohranja naboj, pa mora veljati Se ne = n;
(veCkratne ionizacije ne upostevamo). Privzamemo, da elektron
potrebuje energijo W, da zapusti atom. Razmerje med prostimi
elektroni (na prostorninsko enoto) "v pari" in vezanimi elektroni
(na prostorninsko enoto) "v tekocini" podaja koli¢nik
(No/V)/(Na/Vavail) = exp (—W/KT). Oznaka Vg, pomeni skupno
prostornino, ki je na razpolago elektronom za vezanje. Elektroni
se lahko vezejo na Nj ionov s prostorninami Vj, torej Vayai = N;iVo.
Koli¢nik delimo v Stevcu in imenovalcu z V in dobimo

NeN; (36.27)

-W/kT

=—e

Ngy VO
S potrebnimi spremembami velja enacba tudi za viSje stopnje
ionizacije. Za ionizacijo iz stopnje i v stopnjo i+1 zapiSemo
koli¢nik ne nj.1/n;, ionizacijsko energijo W;,; — W; in ionsko
prostornino V;.

Termicno loCevanje atomov na ione in elektrone ter njihova
ponovna rekombinacija je natanko takSen proces kot loCevanje
molekul na atome in njihovo ponovno zdruzevanje. Ko se dva
atoma A in B zdruzita v molekulo AB, je A "elektron", B "ion" in
AB "atom". Ravnovesno stanje zato kar prepiSemo

MANB it (36.28)

NnaB


ch22.htm#eq23

Prosta pot

Gostota toka

Sorazmernostna konstanta K je odvisna od tega, koliko
prostornine je na voljo za zdruZevanje atomov in od drugih
podrobnosti. S tem smo razlozili konstanto kemicne reakcije K iz
[23.12] in izpeljali njeno odvisnost od temperature.

36.11 Transportni pojavi

Ko se molekula giblje v plinu, ji ostale molekule s svojimi preseki
postavljajo zapore. Naj bodo molekule enoatomne, torej okrogle.
Taka molekula trc¢i ob drugo, ¢e sta njuni sredisci blize, kot znasa
premer 2r posamic¢ne molekule. Med dvema zaporednima trkoma
preleti molekula doloc¢eno pot I. Te poti so enkrat krajse in drugic
dalj$e. Povprecna prosta pot I je doloena s prostornino valja
n(2r)2l, na katero odpade v povpre¢ju ena molekula, torej

1 (36.29)

= )
(2r)%n

Cim vedja je gostota molekul in ¢im vedje so, tem krajsa je
njihova povpreé¢na prosta pot. Ce privzamemo 2r~ 0,1 nm in
n~1026/m3, znasa [ ~ 10 nm, torej stokrat toliko, kot premer
molekule. Povprecna pot ni enaka povprecni razdalji med
molekulami, saj je prva odvisna od velikosti molekul, slednja pac
ne.

Ce molekule niso okrogle, $e vedno predstavljajo ovire. Namesto
geometri¢nega preseka 1m(2r)? vpeljemo trkalni presek dveh
molekul o kar z definicijo

i 1 (36.30)
“on’
S trkalnim presekom je potem definiran efektivni premer

molekul: o=1(2r)2.

VzdolZ koordinatne osi x si mislimo kvadratno cev. Skozi njen
presek S pri legi x letijo molekule z leve proti desni in z desne
proti levi. Na vsaki strani tega preseka, pri x—I in pri x+1, si
mislimo Se dva preseka. Pri teh presekih so dozivele molekule
svoje zadnje trke. S tem sta doloceni gostoti n in povprecni
hitrosti v v obeh prostorskih odsekih. V ¢asu dt prileti skozi
osrednji presek z leve strani dN* =S dt (1/6) (nv),_j molekul in z
desne AN~ =Sdt(1/6) (nv),+j molekul. Faktor 1/6 uposteva, da se
molekule gibljejo enakopravno v Sest smeri. Neto tok molekul
torej znasa dN/dt = (S/6) [(nV)x_i (nV)x+il = —(S/6) d(nv)/dx]- 21, kar
zapiSemo v lepsi obliki

dN Zd(m?) (36.31)

dt 3 dx

Neto toka ni, ¢e je gradient produkta nv enak ni¢. Ce je na eni
strani vec¢ja gostota molekul ali ¢e imajo tam vecje hitrosti (zaradi
viSje temperature), pa njihov tok prevlada.
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Naj bo na obeh straneh preseka enaka temperatura, kar pomeni,
da je enaka tudi povprecna hitrost. Premaknemo jo ven iz
diferenciala. Upostevamo m; dN =dm in m; dn =dp, pa dobimo
gostoto masnega toka

dp (36.32)
=_p-=X
Jm dx
1 .
D=—-—vI
3

To je difuzijski zakon - enacba za difuzijo molekul snovi v smeri
padajocega gradienta gostote.

Precno na smer toka imajo molekule hitrostno komponento v, in
zato komponento gibalne koli¢ine G, . Za tok pre¢ne gibalne
koli¢ine velja dG,/dt = =S (I/3)d(nvm; v )/dx. Izpod diferenciala
potegnemo m;, n in v, to je, izklju¢imo neto difuzijo molekul.
Upostevamo dG/dt = F in preimenujemo @, = u, pa dobimo

F du (36.33)
s~ Tax

1 .
n= Evlnml.

To je znana enacbha za viskozno trenje tekocin (20.9). Dodatno
vidimo, od &esa je odvisna viskoznost n. Ker [ « 1/n, je viskoznost
neodvisna od gostote plina. Faktor v pa pravi, da je viskoznost
sorazmerna s korenom iz temperature.

Vsaka molekula z f prostostnimi stopnjami prenasa v toku
energijo fkT/2. Za energijski tok velja dQ/dt = —S(I/3)d(nfkT/2)/dx.
Izpod diferenciala potegnemo n, f, k in 1/2 ter dobimo

__,dr (36.34)
Jo=-2

— 1 =7
A= vinfk.

To je znana enacba za prevajanje toplote (22.30). Dodatno vidimo,
od ¢esa je odvisna toplotna prevodnost A pri plinih. Ker [ « 1/n, je
tudi toplotna prevodnost neodvisna od gostote plina. Pri enaki
temperaturi prenese majhno Stevilo molekul ravno toliko energije
kot veliko stevilo. Svojo malostevilénost pa¢ kompenzirjajo z
daljSo prosto potjo. Je pa prevodnost, prav kot viskoznost,
sorazmerna s korenom iz temperature.

Transportni koeficienti D, n in A so oc¢itno med seboj povezani. Ob
upostevanju p =nm; in cy = fk/2m; dobimo
n=pD (36.35)
n=2/cy.
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Difuzijska enacba

Normalna resitev v
neomejenem prostoru

Ce torej izmerimo gostoto in specifi¢no toploto plina ter enega
izmed transportnih koeficientov, zlahka izracunamo preostala
dva.

Koeficienti so odvisni od "mikroskopskih" koli¢in my, f, n, v in .
Za dani plin pri danih pogojih znamo vse te koli¢ine izracunati in
iz njih nato doloc¢iti koeficiente. Za Kkisik (ali zrak) pri standardnih
pogojih tako dobimo D ~ 10 mm?/s, n~1-10"%kps/m? in
A~10-10"3W/Km. To se v okvirju faktorja 3 ujema z
neposrednimi meritvami.

36.12 Difuzija primesi

Difuzijo oblaka primesi, recimo molekul vode v zraku, opiSemo z
masno gostoto oblaka p(r,t). Zanjo vemo dvoje. Prvi¢, gradient
gostote povzroca tok:

j=-DVp. (36.36)

Drugi¢, masa se pri pretakanju ohranja. Sprememba mase znotraj
zaprte ploskve je zato enaka neto toku skozi to ploskev: dm/dt =1
oziroma d/dt fpdV=— ¢ j-ndS. Na levi strani zamenjamo vrstni
red odvajanja in integriranja, na desni strani pa izrazimo
ploskovni integral s prostorninskim: fdp/ot-dV=— [V -jdV. To
mora veljati za vsako prostornino, zato

d 36.37
ap —_vj. ( )
at

Lokalna sprememba gostote je torej enaka divergenci masnega
toka. Tok iz prve enacbe vstavimo v drugo enacbo in dobimo

d (36.38)

% _ DVZ?p.

ot
Privzeli smo, da je difuzivnost D povsod po prostoru enaka. To je
difuzijska enacba, konkreten primer parcialne diferencialne
enacbe. Opisuje, kako se zaradi difuzije spreminja gostota oblaka
na vsakem mestu v prostoru. V eni dimenziji se enacba glasi

op a%p (36.39)
at  ax2’
Naj bo prostor za difuzijo neomejen. Najpreprostejsi zacetni
profil gostote je oster vrh pri x = 0. Gibanje delca primesi po
ozadju molekul spominja na kotaljenje kroglice po ozlebljeni
deski [33.6]. Porazdelitev kroglic po odmiku od sredisc¢ne lege je
normalna. Domnevamo, da je tako tudi pri difuziji delcev primesi:
okrog zacetne lege se bodo razprsili normalno in ta razprsitev se
bo s¢asoma Sirila in nizala. Zato izberemo nastavek
p=1/¥(2ma) - exp (—x?/2a), pri ¢emer je a neznana funkcija ¢asa.
Vstavimo ga v difuzijsko enacbo in ugotovimo, da ji zadosc¢a, ako
a = 2Dt. To torej pomeni, da je resSitev
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prostoru

Difuzijska enacba

)2 (36.40)

ex
o,V(21) P 20,2

0,2=2Dt.

px,t) =

O pravilnosti se prepricamo tako, da resitev vstavimo v difuzijsko
enacbo.

Normalna resSitev v dveh dimenzijah je produkt normalnih resitev
v posamic¢nih dimenzijah. Dobimo jo, ¢e nadomestimo x? — r? (zal

ne moremo pisati p, ker to oznako Ze uporabljamo za gostoto!) in
0,%>— 0,2 =4Dt. Podobno velja za tri dimenzije: x2-r? in

02— 0,2=6Dt.

Q Slika 36.9 Difuzija tockastega izvora.
14 Prikazana je enodimenzionalna difuzija za
D=1 in ob ¢asovnih enotah 0.01 (modra) ter
1 (rdeca).

Kaj pa, Ce zacetni profil v neomejenem prostoru ni tockast,
ampak je razmazan v oblak p(r,0)? Potem je gotovo tezko - Ce
sploh - najti analiti¢no resitev p(r,t). S tem se ne bomo ukvarjali.

Prostor, v katerem poteka difuzija, je lahko tudi omejen s stenami
take ali drugacne vrste. Poleg zacetnega profila po vsem prostoru
so potem merodajni tudi robni pogoji, ob vseh c¢asih, na teh
stenah. V eni dimenziji na intervalu [0,l], na primer, sta lahko
podana pogoja p(0,t) =A in d/ox p(l,t) = 0. V takih primerih je
gotovo Se tezje karkoli izracunati, posebej Se, e ima zamejeni
prostor "¢udno" obliko. ReSevanje tovrstnih problemov zato raje
prepustimo drugim.

36.13 Prevajanje toplote

Prevajanje toplote v snovi opiSemo s temperaturnim poljem T(r,t).
Vemo tole. Prvi¢, gradient temperature povzroca toplotni tok:

Jj=—-AVT. (36.41)

Drugic, energija se pri pretakanju ohranja, to je, lokalna
sprememba notranje energije na prostorninsko enoto je enaka
divergenci toplotnega toka:

aq T (36.42)

—=c,p—=—-V"'j.
ot PP J

Tok iz prve enacbe vstavimo v drugo enacbo in dobimo
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Stacionarne reSitve v
omejenem prostoru

Pijana hoja

aT (36.43)

— =D"V?T
ot
. A
D*=—
CpP

Privzeli smo, da je prevodnost A povsod po prostoru enaka in da
se gostota lokalno ne spreminja. Dobljena enacba ima enako
obliko kot Ze spoznana difuzijska enacba in jo bomo zato tako tudi
imenovali. Opisuje, kako se zaradi prevajanja toplote spreminja
temperatura na vsakem mestu v snovi. V eni dimenziji se enacba
glasi

aT L 0°T (36.44)

—=D"—.

ot ax?
Ker imajo enake enacbe enake resitve, velja vse, kar smo
tozadevnega povedali za difuzijo snovi, tudi za prevajanje toplote.
Formalno moramo samo upostevati T—p in D*— D. Ker pa ima
prevajanje toplote velik praktiCen pomen, poskusimo najti Se
kaksno dodatno druzino resitev. Ponuja se sama: to so
stacionarna stanja, ko se polje temperature v zamejenem
prostoru ne spreminja vec. Tedaj aT/ot = 0 in resiti moramo
enacbo V2T =0.

Najpreprostejsi je zid [0, I] s konstantnima temperaturama T, in
T, na vsaki stani. Difuzijska enacba se v tem primeru glasi
d?T/dx? = 0. Ker je drugi odvod ni¢, mora biti prvi odvod
konstanten: dT/dx = C. LoCimo spremenljivki, integriramo

TlfT dT = C of*dx in dobimo T — T; = Cx. Konstanto C dolo¢imo iz
pogoja T(x=1)=T,, torej C = (T, — Ty)/I.

Stacionarni profil temperature v votlem valju [p;, p] pri notranji
in zunanji temperaturi T; in T, opisuje enacba

(1/p)d/d(pdT/dp) = 0. Faktorja 1/p se znebimo z mnoZenjem z p.
Ker je preostali odvod enak ni¢, mora biti pdT/dp=C. Lo¢imo
spremenljivki in integriramo: 1, /7dT = C,,J°dp/p. Dobimo
T—T;=Cln(p/p1). Konstanto C dolo¢imo iz pogoja T(p =py) =T»,
torej C = (T, — T1)/In (p2/p1).

Podobno je z votlo kroglo. Merodajna difuzijska enacba se glasi

(1/r?)d/d(r3dT/dr) = 0. Na povsem enak nacin kot pri valju dobimo
T—-T;=-C(1/r—1/r) in konstanto C=— (T, —T1)/(1/ry — 1/r7).

36.14 Termicno gibanje

Namesto da gledamo difuzijo oblaka delcev, lahko pogledamo
gibanje posameznega delca. Najbolj osupljivo tovrstno gibanje
kazejo drobna rastlinska semena v vodi. Opazujemo jih pod
mikroskopom.
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Prisilna hitrost

Gibljivost in
difuzivnost

Kroglice v vodi

Slika 36.10 Kaoti¢no gibanje drobnih
S o delcev v vodi. Gibanje povzrocajo trki
\_\J ] molekul. Delci so kroglice s premerom
1 mikrometra. Prikazane so lege treh

= delcev vsakih 30 sekund. Mrezni

- razmik znasa 3 mikrometre.

N ML / (Perrin, 1909)
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Ob casu t =0 naj bo delec v neki tocki, ki jo proglasimo za
zacCetno. Nato cikcaka v vse smeri. Verjetnost, da se bo po casu t
znaSel na mestu r+ d3r od zacetne lokacije, je sorazmerna s
tamkajSnjo gostoto "prirejenega" oblaka, ki se zaCne Siriti iz iste
zacCetne toCke. Vemo, da je ta gostota normalna in ima (v treh
dimenzijah) disperzijo 0% = 6Dt. Disperzija pa ni ni¢ drugega kot
povprecni kvadrat odmika od zacetne toCke. To pomeni, da tudi
za delec velja

(r?y=6Dt. (36.45)

Tavajoci delec se torej v povprecju odmika od zacetne lege
sorazmerno s Vvt.

Ce na tavajoci delec deluje kak$na dodatna sila razen vplivov
okolisnjih molekul, recimo teza, opazimo, da se na njegovo slepo
gibanje doda prisilna hitrost v smeri sile. KaksSna je v povprecju
ta hitrost? Je kar pospesek F/m; krat povprecni ¢as T med dvema
trkoma:
(36.46)
Varit = —— F=pF.

m
Prisilna hitrost je sorazmerna sili. Sorazmernostni koeficient u
poimenujemo gibljivost delca. Gibljivost je tem vecja, ¢im vecji je
cas med dvema trkoma (tedaj je manj trkov, ki pospesSevanje
ustavljajo) in ¢im lazji je delec (tedaj med dvema trkoma nabere
vec hitrosti).

Prisilno gibanje in difuzija delca morata biti povezana, saj sta obe
vrsti gibanj posledica termi¢nega gibanja ozadnih molekul. V
enacbo D = [V/3 vstavimo [ = VT in T = pm;, upostevamo
ekviparticijo m;v?/2 = 3kT/2 in dobimo

D =pkT. (36.47)

Hitrejsa kot je difuzija delca (ali oblaka), vecja bo tudi njegova
prisilna hitrost, ko ga podvrzemo zunanji sili. Ena¢cba omogoca
izraCun enega koeficienta, ¢e poznamo drugega.

Kaksna je mobilnost drobne kroglice v vodi? Zunanja sila je teza,
zmanjsSana za vzgon. Ko kroglica enakomerno pada, je ta sila
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nasprotno enaka sili upora F = 6nnrvgg. S tem je dolocena
najprej mobilnost in preko nje difuzivnost:

kT (36.48)
Ceunr’

Difuzivnost D kroglic v vodi lahko dolo¢imo z merjenjem
povprecnega kvadrata odmika v odvisnosti od ¢asa. Za delce reda
velikosti 1 pm, plavajoce v vodi, znasa ta odmik ~ 10 pm v minuti.
Enacba omogoca (vnovi¢en) izracun termic¢ne konstante, saj so
vse ostale kolicine v njej znane. Meritve dajo podobne rezultate
kot tiste s sedimentno porazdelitvijo kroglic. [J
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Jakost polja

Polje tockastega
naboja

Sila med dvema
nabojema

Staticna E & M polja

Elektri¢no polje - Pretok in cirkulacija - Elektri¢ni potencial -
Elektricni dipol - Polarizacija snovi - Magnetno polje - Pretok in
cirkulacija - Magnetni potencial - Magnetni dipol - Magnetizacija
snovi - Relativnost polj - Transformacija polj - Gibanje skozi polja

37.1 Elektri¢no polje

Poleg gravitacijskega polja, ki ga okrog sebe ustvarjajo vsa
telesa, smo doslej spoznali Se dve polji: elektri¢no, ki ga
ustvarjajo nabiti delci (elektroni in ioni), in magnetno, ki ga
ustvarjajo tokovi teh delcev. Kar smo spoznali, hocemo sedaj
povzeti in razsiriti v vektorski obliki.

Jakost elektricnega polja E v izbrani tocki, recimo v blizini nabite
krogle ali v notranjosti ploS¢atega kondenzatorja, smo definirali
(25.1) preko elektri¢ne sile F, na tamkajsnji testni delec z
nabojem e:

F.=eE. (37.1)

Smer polja je po dogovoru enaka smeri sile na pozitivni testni
naboj. Poljsko jakost znamo izmeriti z vrtljivim influenc¢nim
kondenzatorjem, priklju¢enim na balisti¢ni galvanometer [25.3].
Lepo bi bilo, ko bi jo znali tudi izracunati, in sicer za vsakrsno
porazdelitev nabojev. Sledimo tej Zelji!

Najpreprostejse elektricno polje je tisto, ki ga okrog sebe
ustvarja tockast naboj. Ne moremo si kaj, da ne bi pomislili na
gravitacijsko polje, ki ga ustvarja masni delec (34.40). Morda je
elektricno polje podobno, to je sorazmerno z nabojem in obratno
sorazmerno s kvadratom oddaljenosti od njega? Torej:
Ep=Kee—Q2 nop. (37.2)
rqQp
Oznaka Ep pomeni poljsko jakost v tocki P. Ustvarja jo naboj eq,
ki je v toCki Q. Enotni vektor nqp kaze iz toCke Q v toCko P.
Razdalja med obema tockama znasSa rop. Konstante k. zaenkrat
ne moremo dolociti.

Ali je domneva pravilna? Na sreco imamo Ze orodje, s katerim jo
lahko preverimo: torzijsko tehtnico, ki se je tako dobro obnesla
pri merjenju gravitacijskih sil. Z njo ho¢emo izmeriti silo na
tockast delec v polju drugega tockastega delca, to je,
privlak/odboj med dvema tocCkastima nabojema.

Poskus poteka takole (COULOMB). Na svileno nit obesimo precko
iz izolatorja. Na koncu precke je pritrjena prevodna kroglica.
Dotaknemo se jo z enako, a naelektreno kroglico. Naboj se
porazdeli polovi¢no na obe kroglici, ki se odbijeta. Izmerimo
zasuk precke in s tem silo pri razlicnih razdaljah med obema
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Superpozicija polj

Pretok polja

kroglicama (sila je sorazmerna z zasukom). Tako potrdimo
odvisnost Fx 1/r?. Potem se naelektrene kroglice na precki
dotaknemo z enako veliko, a nevtralno, in tako razpolovimo naboj
na prvi. Ponovimo meritev sile in potrdimo odvisnost F « e.
Domneva glede sile in s tem poljske jakosti je torej potrjena.

mamessenprrs  Slika 37.1 Merjenje elektricne sile med dvema
to¢kastima nabojema. Privlak ali odboj med dvema
naelektrenima kroglicama zasuka precko, obeSeno
na niti. Zasuk je sorazmeren s silo. Pokaze se, da je
sila sorazmerna z nabojema in obratno sorazmerna
z oddaljenostjo med njima. (Coulomb, 1785)

Elektricne sile - torej tudi polja - tockastih izvorov se vektorsko
sestevajo:

(37.3)

€q
EP=Ke 2 2 Ngp.
q 'er

Ce so naboji po prostoru porazdeljeni zvezno, jih opiSemo z
gostoto naboja p=de/dV in vsota preide v integral

HQP .
T'sz

EP =Ke f
Iz znane porazdelitve nabojev lahko torej vedno dolo¢imo, kaksno
je polje. Izracunati moramo le ustrezno vsoto oziroma integral.
Seveda moramo poznati konstanto k; to delo nas $e ¢aka. Ce je
porazdelitev kolickaj zamotana, pa hitro naletimo na racunske

tezave.

37.2 Pretok in cirkulacija

V vsakem vektorskem polju lahko racunamo pretoke skozi
poljubne zamisljene ploskve. Kaksni so pretoki v elektricnem
polju, to je elektri¢ni pretoki?

Slika 37.2 Pretok elektri¢cnega polja skozi

ES,=E,S, sklenjeno ploskev je sorazmeren zaobjetemu
ESh=E,S=® neto naboju.
D, =P

z ‘:psurf =Z<I)sphere

Zamislimo si ozek stozec z vrhom v tockastem naboju. Skozi
izbrani pravokotni presek dS, na razdalji r od vrha stoZca znasa
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Pretok v
kondenzatorju

pretok polja d® = EdS,,. Ker E « 1/r? in dS,, « r?, je pretok polja
enak skozi vsak presek stozca, ne glede na to, kako je oddaljen od
vrha. Pretok skozi zakljuceno ploskev, sestavljeno iz obeh
pravokotnih presekov in iz vmesnega plasca stozca, je torej enak
ni¢. — Pretok skozi poSevni presek je enak pretoku skozi
pravokotni presek, saj EdS, =E, dS. — Poljubno sklenjeno
ploskev lahko prebodemo z mnozico sovrsnih stozcev. Pretok
skozi vsak stozec je enak nic¢. Torej je tudi pretok skozi vsako
zakljuceno ploskev, ki ne vsebuje nobenih izvorov, enak ni¢. Kaj
pa, Ce ploskev vsebuje izvore? Izvor zapremo v kroglo poljubno
majhnega radija. Pretok skozi zunanjo ploskev je potem enak
pretoku skozi notranjo kroglo: @ = E 4nr?. Ker E = k.e/r?, velja

$E-dS=4nk.e. (37.5)

Kaj pa, Ce sta prisotna dva izvora? Tedaj je pretok

$ (E1,+E»,)dS = § E1,dS + § E;,dS. Ce je delec zunaj, ni¢ ne
prispeva k pretoku. Ce je delec znotraj, pa ustrezno prispeva.
Tako lahko izjavimo: pretok elektricnega polja skozi zakljuceno
ploskev je sorazmeren zaobjetemu neto naboju. To je zakon o
elektricnem pretoku (GAUSS). Pravzaprav ni ni¢ drugega kakor
posploseno zapisan zakon o elektricni sili (37.2). Velja zato, ker
elektri¢na sila pojema natanko s kvadratom razdalje.

Pa zaprimo eno plosco ploScatega kondenzatorja v namisljen valj!
Polje se pretaka pravokotno skozi notranjo ploskev S valja. Skozi
zunanjo ploskev je pretok enak nic, ker je tam polje enako nic.
Skozi plasc¢ pa je pretok tudi ni¢, ker je tam polje vzporedno s
ploskvijo. Zato dobimo E = 4nk.e/S.

te Slika 37.3 Pretok skozi zaprt valj, ki objema
C—— 1= = == "=+ eno plosco v plos¢atem kondenzatorju. K
celotnemu pretoku prispeva le pretok skozi
E S spodnjo ploskev valja.
|y Y Y Y

Vemo pa, da za kondenzator velja e/S = ¢(yE, zato

1 (37.6)
Ko = .
41'180

S tem je konstanta k., dolocena preko elektricne konstante &g in
zna$a 9,00 - 10° Vs/Am. Pretok polja lahko zato zapiSemo v leps$i
obliki, ki ne vsebuje ve¢ motecega faktorja 4m. Seveda pa pride ta
faktor potem v nekatere druge enacbe. Velja torej
e (37.7)
$E-dS=—.
€o
Z besedami: pretok elektricnega polja skozi poljubno zaprto
ploskev je sorazmeren z neto nabojem v njeni notranjosti. Slednji
je lahko pozitiven ali negativen. V diferencialni obliki pa seveda
zapiSemo

163


pict3b/gaussplane.gif
pict3b/gaussplane.gif

164

Simetri¢na polja

Cirkulacija polja

Potencial polja

— P . (37.8)
€o

Zakon o elektricnem pretoku dobro sluzi za dolocanje elektri¢nih
polj, kadar so ta lepo simetri¢cna. — Enakomerno nabito
neskonc¢no plosco zaobjamemo z valjem; polje teCe pravokotno
skozi obe osnovni ploskvi: E =e/25¢ « (e/S). — Enakomerno
nabito neskonc¢no zico objamemo z valjem; polje tece pravokotno
skozi plas¢: E = e/2mnrleq « (e/l)/r. — Enakomerno nabito kroglo pa
zaobjamemo s koncentri¢no kroglo; E = e/4nr? gy « e/r?, kakor tudi
mora biti. Vse te rezultate bi sicer lahko dobili z neposrednim
superpozicijskim sestevanjem, vendar z mnogo vec truda.

Druga lastnost elektricnega polja, njegova cirkulacija, je enaka
ni¢, saj nabiti delec, ki se giblje po sklenjeni kruvulji, pri enem
obhodu ne pridobi nobene energije. Ce bi jo, bi bil to stroj za
ustvarjanje energije iz nic. Torej:

$E-ds=0. (37.9)

Z besedami: cirkulacija po zaklju¢eni zanki je enaka nic. To je
zakon o elektricni cirkulaciji. V diferencialni obliki ga zapiSemo

VXE=0. (37.10)

Polje je torej brezvrtincno. Enacbi za pretok (oziroma divergenco)
polja in za cirkulacijo (oziroma rotor) polja sta osnova za Studij
stati¢nih elektri¢cnih polj.

37.3 Elektri¢ni potencial

Ker je polje E brezvrtincno, ga lahko opiSemo z gradientom
potenciala/napetosti U (32.18):

E=-VU. (37.11)

Negativni predznak pritaknemo, ker hocemo, da potencial pada v
smeri sile na pozitivni naboj. V integralni obliki pa piSemo

B (37.12)
Up—Upx=- [E-ds.
A

Potencial polja med tockama A in B je torej delo na enoto
pozitivhega naboja, ki ga opravimo, ko - nasprotujoc¢ sili polja -
pocasi prenesemo ta naboj po katerikoli poti od A v B. Delo je
pozitivno, ko potiskamo naboj proti polju, in negativno, ko ga
moramo zadrzevati nazaj. Ocitno je potencial nedolocen do
aditivne konstante, to je VU = V(U + const). Drugace receno:
vrednost potenciala v izhodis¢ni tocki A lahko poljubno izberemo.

Ko smo Sele odkrivali elektricne pojave, smo najprej kvantitativno
vpeljali napetost in preko nje dolocali jakost polja. Sedaj, ko vemo
vec¢, pa smo postavili jakost polja na prvo mesto in z njo definirali



Potencial nabojev

Potencialna enacba

napetost. Seveda smo to naredili tako, da se novi postopek ujame
S starim.
Kaksen je potencial tockastega naboja, ki Cepi v tocki Q?
Integriramo njegovo elektricno poljsko jakost (37.2) od
neskonc¢nosti do izbrane tocke P in dobimo
1 e 37.13
Up = —Q . ( )
41'[80 rqQp

Potencial v neskonc¢nosti postavimo na ni¢. To seveda lahko
naredimo, saj s tem gradienta potenciala, ki doloca elektri¢no
polje, ni¢ ne spremenimo. Ko se blizamo pozitivnemu naboju,
narasca potencial proti +«. Ko se blizamo negativnemu naboju,
pa potencial pada proti —.

Slika 37.4 Potencial (pozitivnega) tockastega
naboja. Ekvipotencialne ploskve so rdece,
nanje pravokotne silnice so ¢rne. Potencial v
neskoncnosti je ni¢, nato narasca z blizanjem
proti pozitivnemu naboju oziroma upada z
blizanjem proti negativnemu naboju.
(HyperPhysics)

Potencial ve¢ nabojev je kar vsota potencialov posamic¢nih
nabojev:

1 eq (37.14)
Up = ——
41'[80 Q rop
1 dVv,
Up= PodVa
41'[80 rop

Ce moramo izra¢unati jakost polja iz dane porazdelitve nabojeyv,
najprej izracunamo njihov potencial in nato, preko gradienta tega
potenciala, iskano jakost polja. To je ponavadi lazje kot
neposredna pot, saj moramo izracunati skalarni integral namesto
vektorskega.

Static¢no elektri¢no polje je povsem opisano z enacbama za
divergenco in rotor polja. Lahko ga pa opiSemo tudi preko
potenciala. Jakost polja iz definicijske enacbe za potencial (37.11)
vstavimo v divergenc¢no enacbo (37.8) in dobimo
37.15
vy=-£. (57.15)
€o

To je potencialna enacba. Njene resitve, Ce je podana
porazdelitev nabojev po vsem prostoru, Ze poznamo; to so
Up =K. [ pqdVq/rqp. Kadar v preucevanem delu prostora ni
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nabojev, ampak so zgolj na njegovih robovih oziroma zunaj ter jih
ne poznamo, pa moramo resiti homogeno potencialno ena¢bo

V2U=0. (37.16)

Resiti zapisano enacbo v omejenem prostoru pomeni najti taksno
polje U, ki bo zadoscalo enachi in hkrati robnim vrednostim
potenciala. Takoj vidimo, da imamo opravka s povsem enako
enacho, kot je enacba za prevajanje toplote v stacionarnih
razmerah [36.13], V2T = 0. Za plos$cati, valjasti in krogelni
kondenzator, ki imajo na "notranji" plosci potencial U; in med
ploS¢ama potencialno razliko AU, zato reSitve kar prepiSemo:
U-U,xx, U=U;«In(p/p1) in U-U; «(1/r—1/r).
Sorazmernostne konstante smo izpustili. Gradienti potencialov
povedo, kaksne so jakosti polj: E, =dU/dx = const,
E,=dU/dp«1/p in E,=aU/dr « 1/r?, kakor tudi mora biti.

Potencial v Poseben primer predstavlja naelektren prevodnik. Vsi naboji so

prevodniku - pakopideni na njegovi povrsini, ker se pa¢ medsebojno odbijajo.
Potencial na povrsini je konstanten, saj bi sicer povzrocal tokove.
Ker v notranjosti ni nabojev, mora v katerikoli tocki veljati
V2U = 0. ReSitev ne more imeti lokalnih ekstremov. Edina reSitev,
ki ima stalno vrednost na robu in nima lokalnih ekstremov, je
konstanta. Gradient konstantnega potenciala pa je ni¢. V
notranjosti torej ni elektricnega polja.

37.4 Elektric¢ni dipol

Atome si predstavljamo kot drobne kroglice, ki vsebujejo
negativne in pozitivne naboje. Kakorkoli so ti Ze porazdeljeni,
navzven je atom nevtralen. Ko pa atom zaide v zunanje elektricno
polje, deluje na njegove pozitivnhe naboje sila v smeri polja, na
razmakneta. Atom postane elektricni dipol. Podobno velja za
molekule. Za nekatere izmed njih, recimo "nesimetri¢ni" CO,
moramo celo dopustiti, da so dipoli ze brez vpliva zunanjega

polja.
z Slika 37.5 Elektri¢ni dipol. Sestavljata ga dva
U razmaknjena, nasprotno enaka naboja.
v
/" [
d/2 y
y

X
v @
Elektri¢ni dipol  Preden se lotimo atomskih in molekulskih dipolov, moramo

preuciti idealizirani dipol: dvojico nasprotno enakih tockastih
nabojev e na medsebojni razdalji d.
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Dipolni priblizek

Dipol v elektricnem
polju

Dipol naj bo usmerjen vzdolz osi z in naboja naj bosta oddaljena
od izhodiSc¢a za d/2. Potencial dipola je potem U =U; + Uy,
Ui=k.e/VI(z—d/2)? + x>+ y?], Uy =K. (—e) /V[(z + d/2)? + x% + y?].
Glejmo polje dalec¢ pro¢. Potem lahko aproksimiramo

(z+£d/2)? =22+ zd. UpoStevamo Se x> + y> + 22 =r? in z/r=cos 0,
pa dobimo po krajSem racunu

1 edcosf (37.17)
T

Koli¢ina ed je oCitno pomemebna in zato jo poimenujemo
elektri¢ni moment dipola p. = ed. Ce definiramo d kot usmerjeno
razdaljo d od —e do +e, velja

p.=ed. (37.18)
1 ‘e
U= pe r.
4ney 12

Vektorska oblika je veljavna za kakrsnokoli lego in orientacijo
dipola, ¢e pod r razumemo oddaljenost od njega.

Slika 37.6 Polje elektri¢cnega dipola.
Ekvipotencialne ploskve so ¢rtane in (nanje
pravokotne) silnice so polne. (Anon)

Namesto dveh nasprotnoimenskih nabojev preuc¢imo sedaj oblak
nabojev, pozitivnih in negativnih, nakopicenih okrog
koordinatnega izhodiSc¢a. Oblak naj vsebuje enako mnogo
pozitivnih in negativnih nabojev. Zanima nas potencial v tocki R
iz izhodiSca; proti tej toCki naj kaze enotni vektor eg. Oznacimo
lokacijo i-tega naboja z d; in oddaljenost od njega do opazovane
tocke z r;. Potem velja U =k, e;/ ;. Naj bo opazovana tocka
dalec proc. Potem velja r; =R —d;- eg. Ob upostevanju d; < R sledi
1/ri=(1/R)- (1 +d;-er/R), to je,

B 1 pe-egr (37.19)
" 4mg, R?
pe=2ed,.

Vpeljali smo dipolni moment nevtralnega oblaka. Dale¢ pro¢ od
oblaka je polje (priblizno) dipolno.

Ce zaide dipol v elektri¢no polje, deluje na vsakega izmed
njegovih dveh nabojev elektri¢na sila. V homogenem polju sta sili
na posamicen naboj nasprotno enaki in celotna sila je zato nic.
Vendar pa sili izvajata tudi navor in ta ni enak nic.
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1 Slika 37.7 Na dipol v homogenem
elektricnem polju deluje navor, ki ga poskusa
usmeriti vzdolz silnic.

M

e 4

r

Fa

Naj bo dipol postavljen pravokotno na elektri¢ne silnice. Potem
¢uti navor M =2eEd/2 = p.E. Ce je dipol glede na silnice
odklonjen za kot 0, pa ¢uti navor M = p. E sin 6. V vektorski obliki
zapiSemo

M=p,.xE. (37.20)

Neto sila na dipol se pojavi le, Ce je polje nehomogeno. Tedaj sili
na naboja nista nasprotno enaki. Naj ima polje navpicni gradient
dE/dz in naj se dipol v njem usmeri navpi¢no. Na zgornji naboj
potem deluje sila eE,, navzgor in na spodnji naboj sila eEy;
navzdol. Razlika obeh sil znaSa F = e(E,, — Epot). Velja Se

Eiop = Enot + (0E/02)d, zato F = p,dE/dz. Sila deluje v smeri
narascanja polja.

Fiop Slika 37.8 Na dipol v nehomogenem
elektricnem polju deluje sila, ki ga poskusa

e povleci v smeri mocnejsega polja.
e top

bot

F bot

Ce je dipol nagnjen glede na polje, pa moramo upostevati
ustrezne projekcije. Naj bo pri negativhem naboju jakost polja E
in pri pozitivnem E + dE. Sila na dipol je potem
F=¢(E+dE)—eE =edE. Spomnimo se obrazca za smerni
diferencial skalarnega polja dU=VU-dr=(dr-V)U in ga
uporabimo za smerni diferencial vektorskega polja: dE = (dr- V)E.
Pomnozimo z e in dobimo

F=(p.-V)E. (37.21)

To je sila, s katero naelektren glavnik privlaci k sebi koscke
papirja, v katerih je induciral elektri¢ne dipole.

V stabilni ravnovesni legi je dipol orientiran v smeri elektricnih
silnic. Ko ga zasukamo za kot ¢, znasa velikost navora

M = p.E sin . Pri tem opravimo delo A= [Mdgp =

—peE cos @ + p.E. To delo lahko dipol vrne, zato z njim definiramo
potencialno energijo dipola AW = A takole:

W=—p,-E. (37.22)
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Homogena
polarizacija

S to definicijo narasca energija od —p.E v stabilni legi do +p.E
pri zasuku 180°.

37.5 Polarizacija snovi

Vemo, da se kapaciteta ploscatega kondenzatorja poveca, Ce vanj
vstavimo dielektri¢no snov, na primer steklo (25.4). Faktor
povecanja smo poimenovali dielektricnost snovi, €. Povecanje
kapacitete seveda pomeni, da se zmanjSa napetost med ploS¢ama.
Ker je napetost krivuljni integral elektri¢ne poljske jakosti, pa
sklepamo, da se ta v dielektriku zmanjsa, Ceprav ostajajo naboji
na plos¢ah nespremenjeni. Kako je to mogoce?

+ + + +|e

free

epoI

epoI

S T e

Slika 37.9 Polarizacija dielektrika v kondenzatorju. Homogeno elektri¢no polje
influencira v snovi elektri¢ne dipole. Zato se na zgornji in spodnji plos¢i pojavita
nasprotno enaka vezana naboja. Polje v snovi je manjsSe kot polje v praznem
kondenzatorju.

Zamislimo si zaprto Skatlo, ki objema mejo med ploSco in
dielektrikom. Ker je elektri¢no polje v slednjem zmanjSano,
sklepamo, da je neto naboj znotraj ploskve manjsi, kot bi bil brez
dielektrika. Sklep je samo eden: na povrsini dielektrika se je
moralo pojaviti nekaj nasprotnih nabojev k tistim, ki so na ploSci.
Od kod so prisli? Iz atomov dielektrika. V teh atomih namrec
negativnega naboja v smeri polja. Inducirani naboji se v
notranjosti dielektrika izravnajo (zaradi homogenosti polja), na
povrsini pa ne in tam se pojavi vezan povrsinski naboj. Ta
razredci obstojeci naboj na ploscah.

Naj dobi atom ali molekula elektri¢ni moment p, = ed. Vsoto

momentov v prostorninski enoti poimenujemo polarizacija snovi:

dp. (37.23)
= =ned.
dv

P

Zaradi polarizacije se na povrsini S nabere e, = Sned naboja
oziroma njegova ploskovna gostota o, = P. Pretok skozi
obravnavano Skatlo torej zapiSemo E = (Ofree — Opo1)/€o OZiroma
E = (0free — P)/eo.

Ce polje ni premo¢no, predpostavimo sorazmernost
P=y.5E, (37.24)

Sorazmernostni faktor y, poimenujemo elektri¢na
susceptibilnost. Potem znasSa v dielektriku E = O.ce/€0(1 + Xe). S
tem je dolocena tudi napetost med ploscama kondenaztorja
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Nehomogena
polarizacija

Osnovne enacbe v
dielektriku

Merjenje
susceptibilnosti

U =El in njegova kapaciteta C = 0geeS/U = (1 + xe) £0S/1. To
pomeni, da

=1+ .. (37.25)

Kaj pa, Ce polarizacija ni homogena? Naboj, ki se premakne skozi
namisljeno majhno ploskev v dielektriku, je potem enak njeni
plosc¢ini krat normalni komponenti polarizacije, torej oo =P n.
Skozi zaprto ploskev vstopajo in izstopajo polarizacijski naboji.
Znotraj ploskve se zato spremeni koli¢ina naboja za
Ae=—[P-ndS. Spremembo naboja izrazimo kot Ae = [ p,dV.
Izenacitev obeh izrazov pove [pp,dV = —[P-ndS. PlosCinski
integral polarizacije izrazimo z prostorninskim integralom njene
divergence, pa dobimo

Ppoi=—V-P. (37.26)

Tolik$na gostota polariziranega naboja se torej nabere v vsaki
tocki, kjer je divergenca polarizacije razlicna od ni¢. To so pravi
naboji; polarizacijski naboji jim reCemo samo zato, da pojasnimo,
kako so se tam znasli.

a) By [+ + + + Slika 37.10 Vezani neto naboji. a) Homogeno
s polariziran valj. Na zgornji in spodnji ploskvi

ima vezan naboj. b) Dva razli¢no polarizirana
Ppoi  valja drug vrh drugega. Na vmesni ploskvi

o L
n T obstaja vezani neto naboj.
P

Osnovni enacbi elektrostatike sta divergencna in rotorska. V
divergencni enacbi V - E = p/eg pomeni p gostoto vseh nabojev,
prostih in polarizacijskih. ZapiSimo p = Pfree + Ppol iN Ppo1 = —V - P,
pa dobimo

+GC

—O

P 37.27
v_(E,_'__)=pfree' ( )
&o €0

UpostevajoC P = (g — 1)goE se dobljena enacba poenostavi v

Ptree (37.28)

€0

V-(cE)=

To je torej divergencna enacba, ki velja v dielektrikih. Druga
enacha, rotorska, pa seveda ostaja nespremenjena: V x E=0. Na
povsem enak nacin kot v praznem prostoru iz obeh enacb sledi
(37.29)
V- (evU) = e
€0
Dielektri¢nost pustimo pod znakom odvajanja ter s tem
upostevamo, da se lahko v prostoru spreminja.

Kako pa merimo susceptibilnost oziroma permeabilnost
dielektrikov in kaksne so Stevil¢ne vrednosti? Permeabilnost
merimo po definiciji: izmerimo kapaciteto ploScatega


pict3b/ebound.gif
pict3b/ebound.gif

Polje v rovu in rezi

Jakost polja

Polje tokovodnika

kondenzatorja brez in z dielektrikom med plos¢ama. Razmerje
kapacitet je enako permeabilnosti. S tem je dolocena tudi
susceptibilnost. Zelo majhne spremembe kapacitete merimo z
uporovnim mostickom [24.10] (z dvema kondenzatorjema in
dvema uporoma) in izmeni¢nim virom napetosti. Pokaze se
naslednje.

Dielektriki so treh tipov. — V prvih je dielektri¢nost neodvisna od
jakosti polja in specificna susceptibilnost y./p se ne spreminja s
temperaturo. TaksSna sta, na primer, zrak (¢ =1,0005) in tekoci
kisik (1,5). Predstavljamo si, da so njihovi atomi/molekule
nepolarni, to je, da nimajo stalnih elektricnih momentov. Zunanje
polje momente Sele ustvari. — Druga skupina ima tudi
dielektri¢nost neodvisno od jakosti polja, njihova specificna
susceptibilnost pa pada z narascajoco temperaturo. Taksni so, na
primer, vodna para pri 100 °C in 1 atm (¢ =1,006), tekoCa voda
pri 20 °C (80) in led pri —20 °C (16). Predstavljamo si, da so te
molekule polarne, to je, da imajo stalne elektri¢ne dipole.
Zunanje polje jih obra¢a v svojo smer. Cim vija je temperatura,
tem tezje jih polje "pocesSe". — Nazadnje obstaja Se nekaj spojin,
katerih permeabilnost je zelo visoka in niti priblizno konstantna.
Z njimi se ne bomo ukvarjali.

V snovi, postavljeni v zunanje elektricno polje, se preko influence
dipolov vzpostavi notranje polje. Ce je snov plinasta ali tekod¢a, je
to polje neposredno dostopno meritvam. Ce pa je snov trdna,
moramo V njej izvrtati votlino, kjer zelimo meriti. Vendar pa
elektri¢na poljska jakost v tej votlini ni enaka tisti v snovi, in je
celo odvisna od oblike votline. Posebno zanimiva sta dva mejna
primera za votlino: pre¢na reza in vzdolzni rov. Preto¢na enacba
za eno ploskev reze pove, da je polje v rezi vecje od polja v snovi,
in sicer je taksno, kot v kondenzatorju brez dielektrika:

Egot = €E = Eq. Cirkulacijska enacba za rob rova pa pove, da je
polje v rovu enako polju v snovi Eyyppe = E.

37.6 Magnetno polje

Jakost magnetnega polja B v izbrani tocki prostora, recimo
znotraj dolge tuljave s tokom, smo definirali (25.5) preko
magnetne sile F, na tamkajsnji testni tokovodnik Il. Vektorsko
ponovimo:

F,=IIxB. (37.30)

Magnetno poljsko jakost Ze znamo izmeriti z vrtljivo indukcijsko
tuljavo in prikljucenim balisti¢cnim galvanometrom [25.6]. Lepo bi
bilo, ko bi jo znali tudi izraCunati, in sicer za vsakrsno
porazdelitev tokov po prostoru.

K jakosti polja v izbrani tocki prispevajo vsi tokovni elementi v
prostoru. Zal pa poskusov s posami¢nimi tokovnimi elementi ne
moremo delati. Tako tudi ne moremo neposredno izmeriti, kakSno
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Polje tokov

je njihovo polje. Vse, kar lahko storimo, je tole: predpostavimo,
da je polje tokovnega elementa taksno ali drugacno ter da se
posamicna polja vektorsko seStevajo; izracunamo, kaksno bi
moralo biti potem polje nekaterih preprosto oblikovanih
tokovodnikov, recimo dolge ravne Zice ali krozne zanke; in
preverimo s poskusom, ali je res tako.

Prva misel, ki nas obide, je tale: Ce pojema elektri¢no polje s
kvadratom oddaljenosti od tockastega izvora, pojema morda tudi
magnetno polje tokovnega elementa na tak nacin; hkrati pa
morda v izbrani smeri Steje zgolj pravokotna projekcija tokovnega
elementa in ne celotni element. Poskusimo torej s predpostavko
(BIOT/SAVART)

IdSQXHQp (3731)

BP =Km § 2
r“qp

Oznaka Bp pomeni poljsko jakost v tocki P. Iz tokovnega elementa
Idsq, ki je v toCki Q, je proti P usmerjen enotni vektor ngp.
Razdalje med obema tockama je rqp. Konstante kp, zaenkrat ne

moremo dolociti.

Ali je domneva pravilna? Izracunajmo, kaksno bi moralo biti polje
dolgega ravnega vodnika! Iz izbrane tocke na oddaljenosti R od
vodnika vidimo tokovne elemente pod raznimi koti ¢ in na raznih
oddaljenostih r. Vidna dolzina (pravokotna projekcija) takega
elementa znaSa ds=rdg in R=rcos ¢, zato [ds/r*>=1/R, torej

B =2k, I/r. Polje pojema obratno sorazmerno z oddaljnostjo od
vodnika. Ce torej drug ob drugega obesimo dva dolga vodoravna
vodnika, bo eden drugega privlaceval s silo na dolzinsko enoto
F/l «I1I,/r. To pa zlahka preverimo eksperimentalno in ugotovimo,
da res drzi (AMPERE).

Slika 37.11 Sila med dvema vodnikoma
AB in CD. Prikazana je replika priprave, s
katero je bil poskus prvic izveden.
(Oldenburg Universitat)

Zacetna domneva o polju tokovnega elementa je zato
podkrepljena in jo bomo do morebitnega preklica imeli za
pravilno.

Ce tokovi niso tanki, marve¢ razmazani po prostoru, jih opiSemo z
gostoto tokov j=dI/dS. Magnetno polje, ki ga ustvarjajo, pa se
zato zapiSe v obliki

§Jo nor (37.32)
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Kot vidimo, so enacbe za magnetno polje tokov presenetljivo
podobne enacbam za elektri¢no polje nabaojev.

37.7 Pretok in cirkulacija

Slike magnetnih polj z opilki kazejo, da so magnetne silnice okrog
tokov vedno sklenjene: nimajo ne izvorov ne ponorov. To nas
navede na domnevo, da je pretok magnetnega polja skozi vsako
zaprto ploskev enak nic¢. Postulirajmo torej zakon o magnetnem
pretoku

$B-dS=0 (37.33)
oziroma
V-B=0. (37.34)

Kaj pa cirkulacija polja? Lotimo se je po zgledu za pretok
elektricnega polja!

Slika 37.12 Cirkulacija magnetnega polja
Bys,=B,s vzdolZ sklenjene zanke je sorazmerna z
Bs;=BS =T objetim tokom.

=T

X, .=z

curve circle

Objemimo polje ravnega vodnika s krozno zanko polmera r!
Zanka naj lezi pravokotno na vodnik. Cirkulacija po tej zanki
znasa § B-ds= B-2nr= 2k, I-21. Ker B« 1/r, je prav taksna tudi
cirkulacija po katerikoli drugi zanki, ki tok objema. Ce je znotraj
zanke vec¢ tokov, pa Steje njihova neto vsota. Navedene ugotovitve
posplosimo v zakon o magnetni cirkulaciji (AMPERE):

¢ B-ds=4nk,l. (37.35)

Z besedami: cirkulacija magnetnega polja po zakljuceni zanki je
sorazmerna z neto tokom skoznjo. Ni treba, da je zanka
ravninska, lahko je poljubno skrivencena.

Pa v dolgi tuljavi objemimo N navojev na dolzini I s pravokotno
zanko!

Slika 37.13 Cirkulacija po zanki, ki objema
navoje v dolgi tuljavi. K celotni cirkulaciji

NI
000000000 prispeva le notranja stranica.
I

B
000000000

FYYYVVY)
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enacba

Polje B znotraj tuljave je homogeno, zunaj pa enako nic, zato
znasSa cirkulacija po zanki B -I = 4mnk,, NI. Vemo pa, da za tuljavo

velja B = ugNI/l, iz ¢esar sledi

Ho (37.36)
Kp=—.

4n

S tem smo dolocili doslej nepoznano konstanto k. Znasa
1,00-10-7 Am/Vs. Zakon o magnetni cirkulaciji lahko zato
zapiSemo v lepsi obliki

¢ B-ds=pol (37.37)
oziroma
¥ x B = p1gf. (37.38)

Zakon o magnetni cirkulaciji ima pri racunanju magnetnih polj
podobno vlogo kot zakon o elektricnem pretoku pri racunanju
elektricnih polj.

37.8 Magnetni potencial

Divergenca rotorja poljubnega polja je enaka ni¢ (32.19). To
pomeni, da lahko jakost danega magnetnega polja B zapiSemo
kot rotor ustrezno izbranega magnetnega potenciala A:

B=VxA. (37.39)

Ker dobimo jakost polja z odvajanjem potenciala, je ta nedolocen
do poljubne aditivne konstante. Vprasamo se lahko celo: ¢ce A
doloca B (preko svojega rotorja), ali Se kakSen drugacen A'
doloca isti B? Torej: kdaj velja B=V X A' =V x A? Tedaj, ko
VXA'—-VxXxA=YX(A'—A)=0. Toda: Ce je rotor kaksSnega
vektorja enak ni¢, mora biti ta vektor gradient nekega skalarja:
A'— A =Vy. To pa pomeni, da je A nedolocen celo do aditivnega
Clena V.

Jakost polja B je doloCena s tokovi, zato je tako tudi s
potencialom. Kako je potencial potem odvisen od tokov? V
rotorsko enacbo V x B = j1gj vstavimo B =V X A in dobimo

V X (V X A) = ugj. Dvojni vektorski produkt znamo zapisati kot
V(V-A) — V?A. Postavimo Se pogoj V:-A=0. S tem ne vplivamo na
B. (Ker V-A'=V-A + V2y, lahko s primerno izbiro y napravimo
kakrsenkoli V-A'.) Tako dobimo

V2A=—lla]'- (37.40)

To je vektorska potencialna enacba, torej tri skalarne potencialne
enacbe za tri komponente tokov. Vsaka od njih je formalno
identi¢na s potencialno enacbo za naboje. Torej poznamo tudi
njeno resitev:

Ho rJqdV, (37.41)
Ap= _fu_
4n rqQp



Vzor¢ni potenciali

Kadar v polju ni tokov, ampak so podane zgolj robne vrednosti
potenciala, reSujemo enacbo V2A =0 na podoben nacin kot njeno
skalarno vzornico.

Zanimivo bi bilo videti, kaksni so potenciali nekaterih znanih
magnetnih polj.

B, Slika 37.14 Magnetni potencial tuljave.
Silnice polja so modre, tokovnice
potenciala so rdece. Obe polji sta osno

A, simetricni.

Magnetna poljska jakost znotraj dolge tuljave premera R je
konstantna in usmerjena vzdolz tuljave: B, = uoNI/I. Rotor
iskanega potenciala A ima torej le komponento rot,A =B,.
Tokovnice potenciala so zato koncentri¢ni krogi. Komponento
rotorja zapiSemo v polarnih koordinatah kot

(1/r)(arA,/or — 0A,/ 9¢) = B,. Drugi Clen je ni¢. KakSen mora biti
A,(r), da je enacba izpolnjena? Ocitno A, =Kr, kar vodi na 2K =B,
oziroma K = uoNI/21. Velikost potenciala torej narasca linearno od
osi proti ovojem.

Zunaj ovojev mora biti rotor v vsaki tocki enak nic:
(1/r)(arA,/ar) = 0. To je res, Ce A, = K'/r. Zaradi zveznosti mora
veljati K'/R = K/R. Velikost potenciala torej pada obratno
sorazmerno z oddaljenostjo od ovojev.

+1 A Slika 37.15 Magnetni potencial ravnega
vodnika. Silnice polja so modre, tokovnice
potenciala so rdece. Obe polji sta osno

|
. simetricni.

55
=

Magnetno polje okrog dolgega ravnega vodnika ima koncentri¢ne
tokovnice: B, = pol/2nr. To pomeni, da ima rotor potenciala le
tangentno komponento rot,A = B,(r). Tokovnice potenciala so
ravne Crte, vzporedne z vodnikom. Komponento rotorja zapiSemo
0A/0z — dA,/dr = B,(r). Prvi Clen je enak ni¢. Da bo enacba
izpolnjena, mora veljati A, = —KlInr, iz ¢esar sledi K = pol/21m.
Velikost potenciala pada sorazmerno z logaritmom oddaljenosti.

Magnetno polje opiSemo bodisi z njegovo jakostjo B ali s
potencialom A. Kateri opis je "pravi"? Odgovor je odvisen od
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Magnetni dipol

tega, kaj razumemo pod "pravi", in se zato z njim ne bomo
ubadali.

37.9 Magnetni dipol

V atomih ujeti elektroni se - tako si predstavljamo - bolj ali manj
gibljejo. Atomi torej niso zgolj skupki nabojev, ampak tudi drobni
tokokrogi. Nekateri atomi, morda vsi, se zato vedejo kot drobceni
magnetki s severnim in juznim polom. Re¢emo, da so magnetni
dipoli. Zaradi termi¢nega gibanja so dipoli usmerjeni v vse
mogoce smeri. Ce pa zaidejo v zunanje magnetno polje, se bolj ali
manj usmerijo vzdolz njega. Dopustiti moramo, da velja podobno
tudi za molekule.

Preden se podrobneja lotimo atomarnih dipolov, moramo preuciti
idealiziran magnetni dipol: pravokotno zanko s stranicama a in b,
po kateri tece tok I. Zanko orientirajmo, kakor kaze slika.

4
[

/) /
"t 7

a

Slika 37.16 Magnetni dipol. UteleSa ga pravokotna zanka, po kateri tece tok.

V smeri 2z ni tokov, zato A, =0. V smeri x sta dva toka j, vzdolz
dveh stranic a. Potencial A, teh tokov je formalno enak kot
potencial U dveh nabitih palic z nabojema p. Palici imata
nasprotno enak naboj. Pri velikih oddaljenostih zato ustvarjata
dipolni potencial U = p, - e,/ 41mgor?. Dipolni moment je naboj na
eni palici krat razmik med njima, torej p, =Aab. Z A smo oznacili
naboj na dolzinsko enoto, to je linearno gostoto naboja. Kosinus
kota med rin e, znaSa —y/r. Tako zapiSemo

U = —(Aab/4neor?)(y/r). Ko nadomestimo A z Ijpgg, preide U v A,:

Ho Iab y (37.42)

Na enak nacin dobimo

A 1o Iab x (37.43)

Yo 4nm 2 r’

Tokovnice vektorskega potenciala (pri velikih razdaljah) torej
potekajo v krogih okrog osi z v isti smeri kot tok po zanki.
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Slika 37.17 Magnetni potencial dipola. Silnice polja so modre, tokovnice
potenciala so rdece. Obe polji sta osno simetri¢ni.

Velikost potenciala je sorazmerna z Iab, to je, z magnetnim
momentom pm =Iab =IS. Ce proglasimo magnetni moment za
vektor, ki je normalen na zanko, pa lahko zapiSemo magnetni
potencial v vektorski obliki:

po=IS (37.44)
_ Ho Pm X €r
am 2

Zapisana enacba velja za zanko poljubne oblike, saj si jo lahko
mislimo sestavljeno iz samih pravokotnih zank.

Ko je magnetni dipol postavljen v magnetno polje, ¢uti navor in Ce
je polje nehomogeno, Se silo. V homogenem polju so razmere
naslednje.

Slika 37.18 Navor na magnetni dipol v homogenem polju. Magnetno polje
poskusa zvrteti dipol v smer silnic.

Na vsako stranico b deluje magnetna sila F =IbB z rocico
(a/2) sin 8. Navor obeh sil torej znasa M =2 -IbB(a/2)sin6 =
pmB sin 8. Vektorsko zapiSemo

M=p,xB. (37.45)

V nehomogenem polju pa so razmere taksne.
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Slika 37.19 Sila na magnetni dipol v
nehomogenem polju. Magnetno polje poskusa

Pm potegniti dipol v smeri gradienta silnic.
zy1

Fzy2

Magnetni moment naj bo usmerjen vzdolz osi z. Da bomo splosni
kljub posebni orientaciji dipola, naj bo magnetno polje usmerjeno
poljubno. — Vzdolz osi z deluje neto sila F,y; — F,y» = Idx(—AB) =
—IdxdyoB,/oy = — IS 0B,/dy. — Podobno velja za neto silo
preostalih dveh stranic: F,, — F,x» = —ISaB,/dx. — Obe neto sili
sestejemo in dobimo F, = —py(dB,/dy + dB,/dx). Ker je divergenca
polja enaka ni¢, mora biti izraz v oklepaju enak —dB,/dz, torej

F, = pndB,/dz. — Podobno velja za neto sili vzdolz preostalih dveh
komponent: F, = p,0B,/dx in F, = p,dB,/dy. — Vse tri komponente
zapisemo v obliki F = p, - VB =V (py,B). Ta enacba seveda velja za
izbrani koordinatni sistem, ko je moment usmerjen vzdolz osi z.
Kar zares Steje, je kot med magnetnim momentom in gradientom
polja. V poljubno zasukanem koordinatnem sistemi zato zapiSemo

F=V(py B)=(py V)B. (37.46)

V stabilni ravnovesni legi je dipol orientiran v smeri magnetnih
silnic. Ko ga zasukamo za kot ¢, je velikost navora M = p,,B sin ¢.
Pri tem opravimo delo A= fMdg= —p,Bcos ¢ — pnB. To delo
lahko dipol vrne, zato z njim definiramo potencialno energijo
dipola

W=—p,-B. (37.47)

S to definicijo narasc¢a energija od —py,B v stabilni legi do +p,,B
pri zasuku za 180°.

37.10 Magnetizacija snovi

Vemo, da se magnetno polje tuljave mocno okrepi, Ce vanjo
vstavimo Zelezen valj [25.7]. Sklepamo, da so se na povrsini valja
pojavili dodatni tokovi, ki tecejo okrog valja prav tako kot prosti
tokovi po ovojih. Od kod so prisli? Kaze, da so atomi zeleza
majhni tokokrogi, ki imajo svoje magnetne momente. Ti so
usmerjeni v razlicne smeri. Ko pride Zelezo v magnetno polje, pa
se dipoli bolj ali manj usmerijo vzdolz njega. V notranjosti Zeleza
se drobni krozni tokovi med seboj izravnajo, na povrsini pa ne in
tam se pojavijo vezani povrsinski tokovi. Ti okrepijo Ze obstojece
proste tokove in s tem magnetno polje v notranjosti tuljave.
Domnevamo, da se tudi v drugih snoveh pojavljajo magnetni
dipoli, ceravno mnogo Sibkejsi.
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Vsoto atomarnih magnetnih momentov p,, =IS na prostorninske
enoto poimenujemo magnetizacija snovi:
d 37.48
M= P _ niS. ( )
dv

Zaradi magnetizacije se po plascu valja pojavi tok Iiyag =nVI=MI,
torej njegova linearna gostota Iy.g/l =M.

a) b) M, (2) Slika 37.21 Vezani neto tokovi. a)
M, M, (1) Homogeno magnetiziran kvader. Po
. f T plascu tecejo vezani tokovi. b) Dva

T I

razli¢no magnetizirana kvadra drug
L i g e ob drugem. Po vmesni ploskvi tece
I I vezani neto tok.

Ce magnetizacija ni homogena, pa razdelimo snov na majhne
kocke. Tokovi po njihovih sti¢nih ploskvah se ne izravnavajo vec.
Poglejmo navpi¢no vmesno ploskev dveh kock! — Iz slike
razberemo neto vmesni tok I=1 — I, = M,b - (M, + AM,)b =
—AM,b = —(0M,/ox)ab. To pomeni, da j,=I/ab = —oM,/ox. —
Obstaja pa Se en prispevek k j,, namre¢ sprememba M, vzdolz z.
Pogledamo vodoravno vmesno ploskev med dvema kockama in
zanjo na podoben nacin ugotovimo j, = dM,/dz. — Oboje skupaj
torej da j, = oM, /ox — dM,/dz. To pa je komponenta rotorja
magnetizacije v smeri osi x, zato zapiSemo vektorsko:

Jmag=V XM. (37.49)

Toliks$ni tokovi se pojavijo v snovi, kjer je rotor magnetizacije
razlicen od ni¢. To so pravi tokovi; magnetni jim reCemo samo
zato, da pojasnimo, kako so nastali.

V rotorski enacbhi V x B = igj pomeni j vse tokove, tako proste kot
magnetizacijske. UpoStevajmo j = jiree +Jmag il jmag =V X M, pa
dobimo

V x (B — poM) = Hgjree - (37.50)

Postavimo, da je magnetizacija sorazmerna z magnetnim poljem,
in raziS¢imo posledice:
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Mo Xm B (37.51)
Ho

Sorazmernostni koeficient poimenujemo magnetna
susceptibilnost. Potem se rotorska enacba zapise v obliki
V X [(1—Ym)B] = lgjsree. Integralna oblika te enacbe, uporabljena
na dolgi tuljavi, pove (1 — ym)BIl = uoNI, torej B = uoNI/I(1 — ym).
Vemo pa ze, da za snov v tuljavi velja B = upioNI/I. Primerjava
obeh enacb izda

1 (37.52)
—=1-Ym.
1

Za susceptibilnosti, ki so po velikosti mnogo manjsSe od 1, velja
11=1+ yn. Rotorska enacba v (predpostavljeni linearni) snovi se
zapise kot

B . (37.53)
V x E = HaoJfree -

Kaksne pa so, s Stevilkami, susceptibilnosti oziroma
permeabilnosti raznih snovi in ali so magnetizacije res
sorazmerne s polji? To ugotavljamo z merjenjem sile na vzorec
snovi v znanem nehomogenem magnetnem polju. Pripravimo si
mocno tuljavo in izmerimo, na standarden nacin (z indukcijsko
tuljavico), jakost in gradient polja ob ustju. Oboje lahko tudi
izraCunamo. Primerna je tuljava z dolzino 1 ¢evelj, zunanjim
premerom 1 Cevelj, notranjim premerom 1/3 Cevlja, napajana z
mocjo nekaj sto kilowattov in hlajena s sto litri vode na minuto.
To je ze kar resna naprava. TaksSna tuljava ima ob ustju jakost
polja ~ 1Vs/m? in gradient ~ 10 Vs/m?m. Potem tja obesimo
vzorec snovi na obcutljivi tehtnici ter izmerimo silo nanj:

F = p,dB/dz. Tipi¢na sila na gramski vzorec snovi zna$a nekaj
milipondov. Iz sile in gradienta polja izraCunamo magnetni
moment py,, ga delimo s prostornino vzorca V in dobimo
magnetizacijo M. Iz enacbe M = (yw/11g)B nato izraCunamo
susceptibilnost in s tem tudi permeabilnost.

Pokaze se naslednje. Z izjemo Zeleza, niklja in Se nekaterih
feromagnetnih snovi je magnetna permeabilnost vseh snovi zelo
blizu 1. Od nje se razlikuje tipi¢no za +107°. Nekatere snovi
imajo permeabilnost vecjo od 1, to je, imajo pozitivno
susceptibilnost; taksSen je, na primer aluminij. Poimenujemo jih
paramagnetne. Druge snovi pa imajo permeabilnost manjso od 1,
to je, imajo negativno susceptibilnost; primer je baker.
Poimenujemo jih diamagnetne. Da je susceptibilnost snovi lahko
negativna, je posebej presenetljivo: v taksni snovi se magnetni
dipoli postavljajo proti smeri magnetnega polja. Zakaj je vse tako,
kot je, ne moremo vedeti, ne da bi prej podrobneje raziskali
gibanje nabojev v atomih. To nas Se Caka.



Feromagnetne snovi

Polje v rovu in rezi

Nekaj posebnega je Zelezo in njegovi podobniki. Opisana merilna
tuljava deluje na gramski vzorec Zeleza s silo nekaj sto pondov!
Zaradi tako moc¢nih uc¢inkov se lahko meritev magnetnih lastnosti
feromagnetikov lotimo na bolj udoben nacin. Primeren je torus iz
preucevane snovi. Na nasprotnih straneh sta naviti dve tuljavi;
ena je preko ampermetra prikljucena na vir toka, druga pa na
balisti¢ni voltmeter. Po korakih povecujemo tok in vsakokrat iz
induciranega sunka napetosti izracunamo zveCanje magnetnega
polja. Tako dobimo tabelo B proti I. Cirkulacija po zanki naokrog
po torusu pove (B — M) = j1oNI/I. Ce nariSemo graf B proti NI/I,
lahko za vsako tocko grafa izracunamo tamkajSnjo magnetizacijo
M in iz nje susceptibilnost ter permeabilnost.

B(T) Slika 37.22 Histereza mehkega Zeleza in
6 ! o kaljenega jekla. Prikazana je odvisnost
b2 i w“‘iZ,«» | notranjega polja B v odvisnosti od zunanjega
' / toka NI/l = H. (Koskin, 1988)
0,8
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V narisanem grafu opazimo naslednje. Z narasCanjem zunanjega
magnetilnega toka H = NI/l narasca tudi notranje magnetno polje
B. NarasScanje je nelinearno in se priblizuje konstantni nasiceni
vrednosti Bnax. Ko nato zmanjSujemo tok H nazaj proti ni¢, se
polje B tudi zmanjsSuje, vendar pri H = 0 preostane Se nekaj polja.
To je "remanentno" polje Ben. Da polje zbijemo na nic, je
potreben obraten "koercitivni" tok Heperc. Z Narasc¢anjem in nato z
manjSanjem obratnega toka se ustrezno jaca in slabi obratno
magnetno polje in zgodba se ponovi. Jakost polja torej ni enoli¢na
funkcija zunanjih tokov, marvec je odvisna tudi od zgodovine
polja. Recemo, da ima polje histerezo. Za mehko zelezo izmerimo
Brem =1,2Vs/m? in Hpere = 500 A/m. Remanentno polje v zelezu
ostane, ko izklju¢imo magnetilni tok. Jeklo ima priblizno takSno
remanenco kot mehko zelezo in tisoCkrat vecjo koercitivnost.
Namagneteno jeklo je torej mnogo teze razmagnetiti in je zato
primerno za stalne magnete.

V snovi, postavljeni v zunanje magnetno polje, se preko indukcije
dipolov vzpostavi notranje polje. Ce je snov plinasta ali teko¢a, je
to polje neposredno dostopno meritvam. Ce pa je snov trdna,
moramo v njej izvrtati votlino, kjer zelimo meriti. Vendar pa
magnetna poljska jakost v tej votlini ni enaka tisti v snovi, in je
celo odvisna od oblike votline. Posebno zanimiva sta dva mejna
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nabojev

primera za votlino: precna reza in vzdolzni rov. Preto¢na enacba
za eno ploskev reze pove, da je polje v rezi enako polju v snovi:
Bgot = B. Cirkulacijska enacba za rob rova pa pove, da je polje v
rovu manjSe od polja v snovi in sicer je taksno, kot je v prazni
tuljavi: Biynnel = UB = By.

37.11 Relativnost polj

Ko smo rekli, da je magnetna sila na naboj sorazmerna z njegovo
hitrostjo, smo molce privzeli, da to hitrost merimo relativno na
tokovodnike, ki magnetno polje ustvarjajo. Kaj pa, ¢e hitrost
merimo glede na kakSen drug referentni sistem?

Poglejmo dolgo ravno Zico, ki miruje v laboratorijskem sistemu S.
Po Zici naj tecejo v desno elektroni z linearno gostoto naboja A in
s hitrostjo v glede na S. Ozadje toku tvorijo pozitivni ioni, tudi z
linearno gostoto A; zZica je navzven nevtralna. Tok v Zici znaSa
I'=Av. Zunaj zZice, na razdalji r od nje, je pozitiven testni naboj e,
ki se giblje v isto smer in z natanko isto hitrostjo, kot elektroni v
zici. Kaksno silo ¢uti ta naboj?

Zica je nevtralna, zato naboj ne ¢uti elektri¢ne sile. Ker pa se
giblje, ¢uti magnetno silo F,, = evB proc¢ od zice. Ker B = jipI/21r,
zna$a ta sila Fy, = epugAv?/2mnr. Testni naboj se zato pospesi pro¢ od
Zice.

Pa poglejmo na isto zico iz koordinatnega sistema S', v katerem
elektroni (in testni naboj na zacetku) mirujejo. V tem sistemu se
ionsko ozadje giblje s hitrostjo v proti levi. Ker je testni naboj v S'
pri miru, ne more cutiti nobene magnetne sile. Zdi se tudi, da ne
more Cutiti nobene elektri¢ne sile, saj imajo negativni in pozitivni
naboji v Zici (v sistemu S) enako gostoto. Torej se testni naboj
sploh ne bi smel pospesiti od Zice, kar je seveda skregano z
realnostjo. Kje smo za$li?

V sistemu S sta gostoti pozitivnega in negativnega naboja res
popolnoma enaki, sicer bi se pojavilo elektri¢cno polje, ki pa ga bi
mobilni elektroni hitro nevtralizirali. V sistemu S' pa se ioni
gibljejo s hitrostjo v in relativisticno skrajsanje dolzin jim poveca
gostoto na A/V(1 —v?/c?) = A + Av%/2¢?. Elektroni pa so pri miru,
zato je njihova gostota manjSa kot v S za Av2/2¢?. To pomeni, da
ima zica, opazovana iz S', neto gostoto naboja Av?/c?. Okrog sebe
zato ustvarja elektri¢no polje E = (Av%/c?)/2ngyr. Testni naboj ¢uti
silo F, = eE, ki je (ko vstavimo E) natanko enaka sili Fp,.

Cisto magnetna sila v S je enaka Cisto elektri¢ni sili v S', vsaj za
neprevelike hitrosti! Opazovalca v obeh sistemih torej vidita enak
pospesek testnega naboja, le da ga eden pripiSe magnetni, drugi
pa elektri¢ni sili. Elektricne in magnetne sile - ter zato tudi
elektri¢cna in magnetna polja - niso nekaj absolutnega, ampak so
odvisne od tega, iz katerega opazovalnega sistema opazujemo.



Transformacija izvorov
polj

Opazovalni sistem

Gibanje pre¢no na
polje

Kaksna pa je transformacija nabojev in tokov, ko sedlamo iz
enega opazovalnega sistema v drugega? Videli smo, da Ce je
gostota nabojev v njihovem lastnem sistemu (kjer mirujejo) enaka
Po, potem je v sistemu, ki se giblje s hitrostjo v, gostota povecana:
p=po/ V(1 —=v?/c?).V tem sistemu je gostota toka

Jj=pv=pev/V(1 —v?/c?). Spomnimo pa se tudi, da sta energija E in
gibalna koli¢ina G delca, ki se giblje s hitrostjo v, naslednja:
E=mc?/V(1 —v?/c?) in G=mv/V(1 —Vv?/c?). Koli¢ini p in j sta torej
odvisni od hitrosti v natanko tako, kot koli¢ini E in G. 1z tega
sklepamo, da se Cetverica koliCin p in j transformira prav tako kot
Cetverica E in G, to je, prav tako kot Cetverica t in r (EINSTEIN):

J'x=v(jx—up) (37.54)

Jy=Jy

J'z2=Jz

p'=y(p—uj/c?).
V kateremkoli opazovalnem sistemu ze opazujemo naboje in
tokove, vedno veljajo zanje iste osnovne enacbe elektrodinamike.
Gibanje delcev, ki ga z njimi izraCunamo, bo vedno enako.

37.12 Transformacija polj

Zamislimo si, da sedimo na ravni cesti in gledamo vzdolz nje (os
x). Ob straneh sta dva navpicna zidova, ki polzita vzdolz ceste s
hitrostjo vg. Zidova sta nasprotno enako naelektrena: desni
pozitivno in levi negativno. V lastnem opazovalnem sistemu
nabojev, torej v sistemu, povezanem z zidom, je ploskovna gostota
nabojev ogy. Ker nas obdajajo naboji in tokovi, cutimo elektri¢no in
magnetno polje. Cesta je opazovalni sistem S.

z Slika 37.23 Transformacija polj. Nasprotno nabiti

B navpicni plosci se gibljeta vzdolz osi x. Mirujo¢
opazovalec zaznava elektri¢no in magnetno polje

+ L~ Ey in B,. Gibajo¢ se opazovalec pa zaznava
\E drugacni polji E'y, in B'.

+ \

x/ " >y
1
»
v, &

V S je zaradi relativisticnega skrcenja gostota nabojev vecja:

o =0y/V(1 —vy?/c?). Elektri¢no polje je homogeno in poteka od
desne proti levi. Po zakonu o elektricnem pretoku velja E, = o/g
(1). Magnetno polje je homogeno in poteka navpic¢no navzgor. Po
zakonu o magnetni cirkulaciji velja B, = ugovg (2).

Po cesti pripelje tovornjak s hitrostjo v glede na cesto. Tovornjak
je opazovalni sistem S'. Glede na tovornjak se zidova gibljeta s
hitrostjo v'y = (vo — v)/(1 + vgv/c?) (3). Gostota nabojev na stenah je
o'=09/V(1—=V'%/c?), torej o' =0V (1 —vo?/c?)/ V(1 —=Vv'¢?/c?).
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Polja in izvori

Vstavimo v'y iz (3) in dobimo o' =0 (1 —vov/c?)/ V(1 —v?/c?) (4). S
tem pa tudi lahko izracunamo E', = 0'/gq in B', = 100"V, ter ob
upostevanju (1) in (2) dobimo

E',= y(E,— uB,) (37.55)
B',=y(B,—uE,/c?).

Namesto dveh navpic¢nih sten si zamislimo vodoravna tla in strop,
torej namesto ploskev v ravnini xz ploskvi v ravnini xy.
Razmis$ljanje je enako in rezultat naslednji:

E';=y(E;+uB,) (37.56)
B',=p(By, + UE,/c?).

Do zdaj se je tovornjak - gibajoc¢i se opazovalec - premikal
pravokotno na elektricno in magnetno polje. Ostane Se
premikanje vzporedno z njima. Za elektri¢no polje si zamislimo
dve steni, pravokotni na cesto. Opazovalcu na tovornjaku, ki vozi
od ene stene proti drugi, se njuna ploscina ni¢ ne spremeni,
razdalja med obema pa se skrajSa. Ker je jakost elektri¢cnega
polja med stenama odvisna le od ploskovne gostote naboja in nic¢
od vmesne razdalje, velja

E'\=E,. (37.57)
Pogled na zapisane enacbe kar klice po tem, da bi moralo veljati
Se

B',=B,. (37.58)

Domnevo upravi¢imo takole. Zamislimo si, da poteka cesta po osi
dolge tuljave s tokom. Vozniku se zdi tuljava krajsa:

I'=IV(1 —v%/c?), to je, Stevilo ovojev na dolzinsko enoto, N/I', je
zanj vecje. Magnetno polje bi moralo zato biti ve¢je. Vendar pa je
tok, ki ga voznik izmeri v ovojih, manjsi od toka, ki ga izmeri
cestar. Slednji namrec s staliS¢a voznika uporablja uro, ki tece
pocasneje, zato isti pretoceni naboj preracunava na manj
casovnih enot, torej meri vecji tok. Velja I' = de/dt' =

(dt/dt")de/dt = (dt/dt)I =1I/V(1 — v3/c?). V produktu NI'/I', s katerim
je magnetno polje doloceno, se obe spremembi izravnata.

Spremembe polj (37.55-58) (EINSTEIN) so lokalne. To pomeni, da
so z vrednostmi E in B, ki ju opazimo v neki prostorsko ¢asovni
tocki, enolicno dolocene vrednosti E in B v kateremkoli drugem
opazovalnem sistemu. Zato so transformacijske enacbe za polja,
ki smo jih postavili s pomocjo posebno preprostih izvorov -
ploscatega kondenzatorja in dolge tuljave, veljavne splosno. Tako
se namrec transformirajo polja; izvori, ki ta polja povzrocajo, so
pri vsem skupaj nepomembni.

37.13 Gibanje skozi polja

Transformacijske enacbe za polja omogocajo, da izracunamo,
kaksna polja vidimo, ko se gibljemo mimo poljubnih stalnih



nabojev in tokov. Dober primer je letalo, ki leti skozi zemeljsko
elektri¢cno in magnetno polje. Njegova hitrost naj bo zavidljivih
v=300m/s. Vendar je to je mnogo manj od svetlobne hitrosti,
zato lahko v transformacijskih enacbah uporabimo priblizek
y=1/V(1 —v?/c?)= 1 +v?/2c?, ki znese za letalo 1 +5-10713,
Tipi¢no elektri¢no polje je navpicno, usmerjeno je proti tlom in
ima jakost ~ 100V/m. Magnetno polje nad severnim polom je
navpi¢no, usmerjeno je proti nebu in ima jakost ~ 1075 Vs/m?2.

Precenje elektricnega  Privzemimo, da leti letalo le skozi navpi¢no elektri¢no polje E,.
Polid L eti naj vodoravno v poljubno smer (os x). Transformacijske
enacbe povedo, da vidi pilot moc¢nejSe elektri¢no polje E', =y E,
in novonastalo magnetno polje B', =y VE,/c%. Sprememba
elektri¢nega polja za 5- 10~ V/m je nezaznavna. Nastalo
magnetno polje pa znasa 3-10-13Vs/m?, kar je tudi nezaznavno.

PreCenje magnetnega  Naj leti letalo le skozi navpi¢no magnetno polje B,. Leti naj
polida  yodoravno v poljubno smer (os x). Transformacijske enacbe

povedo, da vidi pilot moc¢nejSe magnetno polje B',=yB, in
novonastalo elektricno polje E', = yvB,. Sprememba magnetnega
polja za 5-10713Vs/m? je nezaznavna. Nastalo elektri¢no polje pa
znasa 3-1073V/m in je na prvi pogled zlahka merljivo: z
voltmetrom moramo le izmeriti potencialno razliko med koncema
kril. V praksi tega zal ni mogoce narediti, ker se tudi voltmeter s
prikljucki giblje skozi polje. Seveda pa to lahko naredimo (in smo
ze naredili) v laboratoriju s premikanjem precke po tirnicah.

Nastanek precnega elektricnega polja pri gibanju opazovalca
skozi magnetno polje ni ni¢ drugega kot relativisti¢ni opis za
indukcijo napetosti pri gibanju vodnika: E',=yvB,— U;=Bvl. To
kaze, da je magnetizem pravzaprav relativisti¢ni pojav.
Dinamicna indukcija pa je moc¢na potrditev, da je teorija
relativnosti pravilna. [J
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Ohranitev nabojev

Ohranitev pretokov

Indukcija elektri¢nega
polja

Indukcija magnetnega
polja

Elektromagnetni valovi

Elektromagnetno polje - Elektromagnetni valovi - Ravno
valovanje - Stojno valovanje - Energija valovanja - Valovni
potenciali - Dipolno sevanje - Radijski valovi - Valovanje v snovi -
Valovanje v dielektriku - Valovanje v prevodniku - Vpad na
dielektrik - Vpad na prevodnik - Uklon na ovirah

38.1 Elektromagnetno polje

Mirujoc¢i naboji so obdani s stati¢nim elektri¢nim poljem in
stacionarni tokovi so obdani s staticnim magnetnim poljem.
Elektrostati¢cno in magnetostaticno polje sta med seboj povsem
neodvisna. Vemo pa, da se lahko naboji gibljejo in tokovi
spreminjajo. Pridruzena polja potem niso vec¢ stati¢na, ampak se
spreminjajo s ¢casom. To so polja, ki jih hocemo sedaj raziskati.

Kakorkoli se naboji in tokovi Ze spreminjajo, vedno velja zakon o
ohranitvi naboja. Po zgledu za ohranitev mase (36.37) zapiSemo
kontinuitetno enacbo

V-j=—a—p. (38.1)
ot

Naboji so izvori in ponori elektricnih pretokov. Upraviceno se zdi

predpostaviti, da se tudi pretoki ohranjajo, to je, da zakon o

elektricnem pretoku (37.8) velja celo za naboje, ki se gibljejo.

Podobno predpostavimo tudi za zakon o magnetnem pretoku

(37.34). Postuliramo torej

38.2

V-E=£ ( )
€o
V-B=0.

V spremenljivem magnetnem polju se, kot vemo, pojavlja
elektricno polje, kakor ga zaznamo z indukcijsko tuljavo in
prikljuenim balisti¢nim galvanometrom. Zakon o dinamic¢ni
indukciji (25.8) pove fUdt = —S AB. Za majhno zanko plosc¢ine S
in obsega s v homogenem polju zapiSemo odvisnost elektricnega
polja od lokalne spremembe magnetnega polja kot Es/S = —AB/At
oziroma v vektorski obliki

oB (38.3)
VXE=——.
at

Vsako magnetno polje je, kakor vemo, povezano z lokalnim
tokom: V x B = j1gj. Ce izratunamo divergenco te enacbe, vidimo,
da je divergenca toka enaka divergenci rotorja polja; ta pa je za
vsako polje enaka ni¢: V- j= 0. Torej bi moral biti tok I skozi
vsako zaprto ploskev enak nic¢. To pa gotovo ne more biti res, saj
vemo, da lahko naboje kopi¢imo, na primer na eni plosci
kondenzatorja. Enacba za rotor magnetnega polja zato ne more
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Osnovne enacbe v
vakuumu

biti popolna; manjka ji ¢len, ki bi zagotovil, da se bo divergenca
enacbe reducirala v kontinuitetno enacbo, torej
V X B = ugj + [missing].

Kaj naj bi bil manjkajoci ¢len? Vsekakor mora zanj veljati

V - [missing] = g 9p/dt. Gostoto naboja izrazimo iz elektri¢ne
divergencne enacbe: p=¢oV - E, zato dp/ot = 98/dt (g V- E) =

V - (g9 dE/at). Iskani Clen je potemtakem [missing] = uoeg dE/at,
torej (MAXWELL)

. oE (38.4)
VXB=IJQI+].IOSOE.

|1 Slika 38.1 Praznjenje kondenzatorja skozi
upor. Magnetna cirkulacija po zanki aS je
enaka ne glede na to, ali jo racunamo iz

oS toka I, ki prebada ploskev Sq, ali iz
"premikalnega toka" €gaE/at, ki prebada
ploskev S;. (Anon)

o

|1

S tem je zakljuCen nabor Stirih osnovnih enacb elektrodinamike,
ki popolnoma opisujejo elektricno in magnetno polje: njuno
povezanost z izvori ter njuno medsebojno odvisnost. Te enacbe
so: dve divergencni (38.2) in dve rotorski (38.3) (38.4). V
stacionarnih razmerah se enacbe reducirajo na dva medsebojno
neodvisna para: za elektrostatiko in za magnetostatiko.
Kontinuitetna enacba ni neodvisna, ampak sledi iz Cetverice
osnovnih enach.

Kaj pravzaprav pravijo osnovne enacbe? Tole: v prostoru
obstajajo elektricna in magnetna polja. Izvor elektri¢nih polj so
naboji in spremenljiva magnetna polja. Izvor magnetnih polj so
tokovi in spremenljiva elektri¢na polja. Elektri¢cno in magnetno
polje sta dva obraza istega, elektromagnetnega polja.

Osnovne enacbe elektrodinamike so posplositve nasih dosedanjih
spoznanj o elektricnih in magnetnih poljih. Ne moremo jih
izpeljati iz kaksSnih drugih enacbh; ¢e bi jih lahko, ne bi bile ve¢
osnovne. Ali so pravilne ali ne, pa bomo sklepali na podlagi
posledic, ki iz njih sledijo.

38.2 Elektromagnetni valovi

Za preucevanje elektromagnetnega polja so najpreprostejse
razmere v vakuumu, kjer ni nabojev in tokov. Tam se osnovne
enacbe glasijo:
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Valovne enacbe

Njihove resitve

V-E=0 (38.5)

Na tretjo enacbo delujemo z rotorjem V x. Na levi strani dobimo
rotor rotorja, kar zapiSemo kot VX (VX E)= V- (V-E) —V?E
(32.19), pri cemer je Clen z divergenco enak ni¢. Na desni strani
zamenjamo vrstni red odvajanja V X oB/ot = 9/t (V X B) in
upostevamo V X B = gyig 9E/dt. Tako dobimo enacbo

) ’E B (38.6)
V-E — EoHlo ﬁ =0.

Podobno obdelamo cetrto enacbo in dobimo

, B _ (38.7)
V°B — EoHo F =0.

Obe enacbi imata enako obliko. Opisujeta, kako se
elektromagnetna motnja v vakuumu spreminja s ¢asom. Ocitno
igra pri tem pomemebno vlogo produkt elektricne in magnetne
konstante. Da so enote v prostorskem in casovnem cClenu enake,
mora imeti reciproc¢na vrednost tega produkta enoto hitrosti na
kvadrat, kar tudi drzi. Zato definiramo novo konstanto

5 1 (38.8)
ci=——

€oHo
Vstavimo Stevilske vrednosti in dobimo ¢ = 3,00 - 108 m/s. Izjemno
presenecenje! Saj to je vendar hitrost svetlobe, kakor smo jo svoj
Cas izmerili (27.1)! To ne more biti nakljucje. Sklepamo, da je
svetloba elektromagnetno valovanje tak$nih valovnih dolzin, ki jih
vidimo, in da zapisani enacbi opisujeta elektromagnetne valove
razli¢nih vrst. Zato ju poimenujemo valovni enachbi.

V eni dimenziji se vsaka posami¢na komponenta valovnih enacb -
oznacimo jo z u - zapiSe v obliki

u 1 d%u (38.9)

ax2  c?oat?’
Ce tak$na enacba res opisuje valovanje, mora veljati tudi za
ravne valove u = ugexpik(x —ct), k =2n/A. Argument lahko
zapiSemo v prirocnejsi obliki k(x — ct) = kx — wt, kjer w = ck.
Vstavitev v valovno enacbo potrdi domnevo. Pa ne samo to:
resitev valovne enacbe je tudi vsota dveh ali ve¢ ravnih valov
razli¢nih valovnih dolzin, ki se vsi gibljejo z isto hitrostjo. Iz
mnozice takih valov lahko sestavimo poljubno funkcijo u;(x — ct).
To je hrib poljubne zacetne oblike u;(x, 0), ki drsi, ne da bi
spreminjal svojo obliko, vzdolZz koordinatne osi s hitrostjo c.
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Povezava E in B

Slika 38.2 Gibanje valovne motnje.

Druga taka funkcija je uy(x + ct), torej hrib drugacne oblike, ki se
giblje v nasprotni smeri. SploSna resitev valovne enacbe je vsota
obeh:

u=u;(x—ct) +uy(x+ct). (38.10)

38.3 Ravno valovanje

Ravno valovanje ho¢emo sedaj podrobneje preuciti. Naj potuje
valovanje v smeri enotnega vektorja n; potem zapiSemo

E=Eoei(k-r—wt) (38.11)
B =B, eilk-r—wt) ,

pri cemer k =kn. Kaj o teh dveh nastavkih povedo divergencne in
rotorske enache?

Nastavek za E vstavimo v divergencno enacbo V- E =0, racunamo
po komponentah in dobimo iEy-k =0, to je E-n=0. Vektor
elektricne poljske jakosti je torej pravokoten na smer gibanja
valovanja. Podobno ugotovimo za magnetno poljsko jakost:
B-n=0. Tudi vektor magnetne poljske jakosti je pravokoten na
smer gibanja valovanja.

Nastavka za E in B vstavimo Se v rotorsko enacho V x B =
—(1/c?)9E/at, racunamo po komponentah in dobimo ik x B =
—iEyw/c?. Ker w = kc, dobimo

E=cBxn. (38.12)

Vektorja E in B sta torej med seboj pravokotna. Ker |[n| =1 in
B L E, velja |E| =|cB|, to je

E=cB. (38.13)

V ravnem valovanju torej nihata elektri¢na in magnetna poljska
jakost socCasno: kjer je vozel prve, je tudi vozel druge, in kjer ima
maksimum prva, ga ima tudi druga. Elektric¢ni poljski jakosti
1V/m je pri tem pridruzena magnetna poljska jakost 107°Vs/m?2.

Electric

Fieid Slika 38.3 Ravni elektromagnetni
F——— Wavelengy S _ val. (Anon)
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38.4 Stojno valovanje

Ravni valovi so resSitev valovne enacbe v neomejenem prostoru.
Kaksne pa so njene resitve v omejenem prostoru, recimo v zaprti
kovinski Skatli? Omejimo se le na take resitve, pri katerih
elektricno polje v vseh tockah niha sinhrono, torej

E=Ey(r)e i, (38.14)

Valovna enacba se v tem primeru poenostavi v amplitudno
enacbo

V2E0= —k2E0 (3815)
k% =w?/c?.

Amplitude Ej stojnih valovanj so seveda odvisne od oblike
resonantne Skatle. Podobna amplitudna enacba velja tudi za
magnetno polje.

Elektricno in magnetno polje na meji s prevodnikom ne moreta
biti poljubna. V prevodniku se namrec¢ naboji hipno
prerazporejajo tako, da v njem ni elektricnega in magnetnega
polja. — Mejo objamemo s tanko pravokotno zanko. Cirkulacija E
po zanki je enaka spremembi pretoka B skoznjo. Ker lahko
naredimo zanko zelo ozko, je sprememba pretoka skoznjo nic,
torej E|(1)I — E(2)I= 0.V prevodniku je E(2) =0, zato na meji velja
robni pogoj E; = 0. — Mejo objamemo Se s plitvo pravokotno
Skatlo. Divergenca B skoznjo mora biti enaka nic, torej
B,(1)S—B,(2)=0. V prevodniku je B(2) =0, zato na meji velja
robni pogoj B, =0.

Najpreprostejsi resonator je kvadratna skatla x € [0, al, y€[0, b],
z€[0, h]. Poglejmo, ce obstajajo taki valovi, pri katerih je E
usmerjena vzdolz osi z in neodvisna od z, torej Eo=(0, 0, E, (X, V)).
Zaradi kratkosti bomo namesto E, zanaprej pisali kar E.
Amplitudno enacbo zapiSemo v kartezi¢nih koordinatah

62_E d’E (38.16)

Resitev iS¢emo z nastavkom E(x, y) = X(x)Y(y). Dobimo
X"/IX +Y"/Y=—k2. To je mozno le, ¢e je vsak izmed obeh ¢lenov
enak konstanti: X"/X = —k,? in Y"/Y = —k,?, pri Cemer k,? + k,? = k2.
Resitvi teh dveh enacb sta sinus ali kosinus. Da zadostimo pogoju
na mejah x =0 in y=0, izberemo sink,x in sinkyy. Da zadostimo
Se pogoju na mejah x =a in y=>b, pa postavimo k, = mi/a in
ky=nmn/b, m,n=1, 2,3 ...Iskane resitve so torej

. mIx . nimy (38.17)

E,n=sin — sin —,
a b

Katerakoli izmed teh resitev, recimo E;q, je dobra, prav tako pa
katerakoli njihova linearna kombinacija, recimo A-E ;1 + B- Eq,.
Frekvenca nihanja znasa
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w? I (38.18)

W _mr, My
2 a s b .

Ustrezno magnetno polje dobimo iz rotorske enacbe V2 Ej = iwB.

Neposredni racun pove B, = (ik,/w) sin kyx cos kyy in

By = —(ik,/w) cos kyx sin kyy. Imaginarni faktor i pove, da magnetno

nihanje kasni za elektri¢nim za /2. Polji E in B sta med seboj

pravokotni, kar potrdimo z izracunom E-B = 0.

Slika 38.4 Stojno elektromagnetno valovanje E11
v kvadratnem resonatorju. Elektri¢ne silnice so
navpi¢ne, magnetne so krozne. (The Great Soviet
Encyclopedia)

Kaj pa cilindri¢na votlina p € [0, al, ¢ €[0, 2u], 2 €[0,h]? Spet
iS¢imo polje, v katerem je E(, usmerjena vzdolzZ osi z in neodvisna
od z, torej E, (p, ) ali krajSe kar E. Amplitudno enacbo potem
zapiSemo v cilindri¢nih koordinatah, upostevajoc¢ (32.25), kot

19 oFE 1 9’E (38.19)

——((—)+———+k*E=0.

pdp  ap p*ap?
Izberemo nastavek E = R(p)®(@) ter ga vstavimo vanjo. Ce
dobljeno enacbo pomnozimo $e z p?, postane njen drugi ¢len
(1/@)d2®/d¢?, torej neodvisen od p, zato mora biti enak konstanti,
ki jo zapiSemo kot —n?. Tako dobimo dve loCeni enacbi:

d dR (38.20)
p—(p—)+[(kp)*—n?IR=0
do * dp
d?o
— +n?d=0.
de?

Resitev druge enacbe je sinus ali kosinus argumenta n¢. Zanj
moramo upostevati periodi¢ni mejni pogoj @(p) = @(p + 2m), kar
pomeni, da mora biti n celo stevilo 0,1,2,3...in

&(p) =cosng. (38.21)

Prvo enacbo polepsamo z vpeljavo spremenljivke kp =t v obliko
t?R" + tR' + [t?> — n?] = 0. Resitev iSCemo z nastavkom v obliki
potencne vrste R(t) =t"> cjtf . Vstavimo ga v enacbo in dobimo
S (n+j)%cit"t + [t2 —n?]3 ¢;jt"* = 0. Koeficiente ¢; moramo zdaj
tako izbrati, da bo enacba veljala. S precej truda najdemo

o ) (38.22)

-1y ko .

R(kp) = 2 J'(n—+_])' ( o Y¥*n=J.(kp).
J

Funkcije Jo, J1 ... poimenujemo cilindri¢ne funkcije.
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Na robu mora biti vsaka cilindri¢na funkcija enaka ni¢. Za
funkcijo J, moramo zato izbrati takSne vrednosti km,
m=1,2,3..., da J,(knma) = 0. Funkcija J,, na primer, ima prvo
niclo pri 2,4, zato mora biti kg; = 2,4/a. Iskana stojna valovanja v
cilindri¢ni votlini so torej

Enm=Jn(knmp) cosng. (38.23)

Seveda je resSitev tudi katerakoli njihova linearna kombinacija.
Frekvence nihanja pa so w?/c? = k,,2. Ustrezno magnetno polje
dobimo iz rotorske enacbe V2E; = iwB,. Neposredni racun pove
B, = (in/wp) Jn(knmp) sin ne in B, = (—i/w) (dJ,/dp) cosng. Magnetno
polje je spet pravokotno na elektricnega in kasni za m/2.

Slika 38.6 Stojno elektomagnetno valovanje Egq
v cilindricnem resonatorju. Elektri¢ne silnice so

Ese navpi¢ne, magnetne so krozne. (The Great Soviet
Encyclopedia)

38.5 Energija valovanja

Elektromagnetno polje deluje na naboje in jih premika. Ce se
naboj pospesuje, prejema od polja delo. Ce naboj zavira, pa delo
oddaja. Delo toka na Casovno in prostorninsko enoto znaSa
P/V=UI/SI=JE.

Ohranitev energije Iz osnovnih enacb ho¢emo izlusciti, kako je j- E povezan s polji.
Gostota toka nastopa v magnetni rotorski enacbi. Skalarno jo
pomnozimo z E/uy, da dobimo j-E =¢goEE' — (1/1p)E-V X B =0.
Elektri¢no rotorsko enacbo pomnozimo z B/}jiy, da dobimo
BB'/1ip+ (1/119) B- ¥ X E = 0. Obe enacbhi seStejemo in dobimo
Jj-E+&yEE'+ BB'/ug+ (1/ug)(B-V X E—E-V x B)=0. Prvi Clen je
iskano delo. Drugi in tretji ¢len, ki vsebujeta ¢asovne odvode polj,
zapiSemo skupaj kot a/at (€gE?/2 + B%/21,). Izraz v oklepaju je
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enacb

gostota energije polja w. Zadnji ¢len, ki vsebuje rotorje polj,
zapiSemo kot V- (1/ug)(E % B). Izraz v oklepaju je gostota
energijskega toka jem. Dobili smo torej energijski zakon

ow (38.24)

a_t = _v'jem_j'E

£ 1
w="E2+— B>
2 219

Jem = i ExXB.
Ho
Energija polja se torej po prostoru raznasa z valovi. Lokalna
sprememba gostote energije gre na racun energijskega
pritoka/odtoka zaradi valov in na racun kineti¢ne energije
nabojev. Ce se nosilci nabojev gibljejo v snovi z uporom, pridobi
snov notranjo energijo.

Pri ravnem valovanju je gostota energije
w = (g0/2)E? + (1/210)B? = goE?, ker B = E/c. V vsaki toc¢ki prostora
ta gostota niha. Kak$na je njene povprec¢na vrednost? Ker (E2) =
(2/m) fo™2E(? cos? wt dwt = Eo/2, velja

£ 1 (38.25)

w)= 2 Eg?=—By?.
(w) 5 Bo 20 0

Gostota energijskega toka znas$a jem, = (1/u0)EB = £ocE?, torej
Jem) = c(w). (38.26)

Soncna svetloba, ki vpada na Zemljo, nosi gostoto energijskega
toka (jem) ~ 1 kW/m2. To pomeni, da je v njej gostota energije

(w) ~1076J/m3in amplitudi elektromagnetnega polja Eo ~ 103V/m
ter By ~ 1076 Vs/m?2.

38.6 Valovni potenciali

Stati¢no elektri¢no in staticno magnetno polje smo opisali z
elektricnim in magnetnim potencialom. Poskusimo s tema
potencialoma opisati Se spremenljivo elektromagnetno polje. Kot
izhodiSce sluzijo popolne osnovne enacbe elektrodinamike, ki
vkljucujejo naboje in tokove.

NajpreprostejSe izmed osnovnih enacb je magnetna divergenc¢na
enacba V- B = 0. Ker je divergenca vsakega rotorja enaka nic,
lahko zapisemo:

B=VXxA. (38.27)

Polje B nastopa tudi v elektri¢ni rotorski enacbi V x E + aB/ot = 0.
Nadomestimo ga z (38.27), zamenjamo vrstni red odvajanja po
Casu in prostoru ter dobimo V x (E + 9A/dt) = 0. Ker je rotor
vsakega gradienta enak nic, lahko izraz v oklepaju zapiSemo kot
—VU in dobimo:



Zakasnjeni potenciali

0A (38.28)
E=-VU-—.
ot
V elektri¢ni divergencni enacbi V- E = p/gy nadomestimo E z
(38.28) in dobimo V2U — /0t V - A = p/gg (1).

Preostane $Se magnetna rotorska enacba V x B = p1gj + (1/c2)oE]/at.
Nadomestimo B z (38.27) in E z (38.28), uposStevamo obrazec za
dvojni vektorski produkt in dobimo —V?A + V- (V-A) +
(1/¢?)a/ot VU + (1/c?)a?A/at? = poj (2).

V enacbi (2) lahko izberemo poljuben V-A. Vemo namrec, da je
rotor nedolocen do aditivnega gradienta: V x (A + Vo) =
VXA+VxVp=V XxA. Pri tem je ¢ poljubno skalarno polje, torej
tudi ¢ =V-A. Izberemo V-A = —(1/c?)aU/at, se tako iznebimo
dveh ¢lenov in dobimo

14%A ) (38.29)

-~ =—Hd.

2A
c? ot?

Ista izbira za V- A, postavljena v (1), pa pove

16°U _ p (38.30)

U
c? ot? &0
Dobili smo dve valovni enacbi za elektri¢ni in magnetni potencial.
Vse spremenljivke so lepo loCene. Ce so razmere stacionarne,
odpadeta oba Clena s casovnima odvodoma in enacbe preidejo v

ze znane potencialne enacbe, kakor tudi mora biti.

Pri stati¢nih poljih je njihova jakost v opazovani tocki popolnoma
dolocena z naboji in tokovi po vsem prostoru. Domnevamo, da je
pri spremenljivih poljih podobno, le da na vrednost polja v izbrani
tocki ob ¢asu t vplivajo naboji in tokovi z razdalj r ob ustrezno
zakasnjenih casih t —r/c. Saj se elektromagnetni vplivi Sirijo s
koncno hitrostjo. To je drzna, a plavzibilna domneva. Poskusimo
jo dvigniti na raven izreka, to je, izpeljati jo iz znanih enacb.

V izhodisc¢u koordinatnega sistema si mislimo tockast naboj de(t),
ki spreminja jakost, a se ne giblje. V izhodiScu velja valovna
enacCba V2U — (1/c¢?)9%U/at? = —(de/dV)/ey. Zunaj izhodisSca je desna
stran enaka nic.

Pricakujemo krogelno simetri¢no resitev, zato krajevni ¢len
zapiSemo v krogelnih koordinatah: V2U = (1/r?)a/or (r> aU/ar).
Vpeljemo substitucijo U = u(r)/r in - s postopnim odvajanjem od
znotraj navzven - izra¢unamo V2U = (1/r)o%u/or?. Namesto u
zapiSemo nazaj Ur in tako pridelamo valovno enacbo v obliki
a2Ur/ar? — (1/c?)a%Ur/at?> = 0.

Dobljena enacba ni ni¢ drugega kot enodimenzionalna valovna
enacba za spremenljivko Ur, katere sploSno resSitev Ze poznamo.
Tako lahko zapisemo U(r,t) = f(t—r/c)/r + g(t + r/c)/r. To sta dva
krogelna vala, od katerih se prvi giblje navzven in drugi
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navznoter. Slednjega iz reSitve izpustimo, ker nas zanima, kako
naboj dela valove in ne, kako od zunaj prihajajoci valovi vplivajo
na naboj.

V blizini izhodiSc¢a je ¢asovna zakasnitev zanemarljiva:

U(t) = f(t — r/c)/r = f(t)/r. Polje se spreminja sinhrono z nabojem.
Za taksno polje velja "staticna" resitev U(t) = f(t)/r = de(t)/4negr.
NebliZnje polje tockastega naboja, ki ima bliznje polje za limito, je
zato U(t) =de(t—r/c)/4neyr. Poljubno porazdeljeni naboji pa tvorijo
v opazovani tocki P superpozicijo

1 i polt—rqp/c)dVq (38.31)
4:1'[50 rqQp .

Up(t) =

Podobno ugotovimo Se

jo(t—rop/c)dV, 38.32
Ap(t) = Ho Jal op/c)dVq ' ( )
4n rqQp

Domneva je bila pravilna: polje je res opisano z zakasnjenimi
potenciali.

38.7 Dipolno sevanje

Mirujo¢ elektri¢ni dipolni oblak je obdan s staticnim elektri¢nim
poljem. Ce se elektri¢éni moment oblaka spremeni, se spremeni
tudi okoliSnje elektri¢no polje, spremenljivo polje ustvari
magnetno polje in tako naprej. Spremenljivi dipol torej okrog
sebe ustvarja elektromagnetno polje. Kaksno je?

Naj bo dipolni oblak v izhodiScu koordinatnega sistema. Zanima
nas polje v tocki R iz izhodiSca; proti tej toCki naj kaze enotni
vektor n. Oznacimo lokacijo vsakega nabojnega elementa z d in
oddaljenost od njega do opazovane tocke z r. Naj bo opazovana
tocka dalec¢ proc¢. Potem veljar=R—n-d.

Zakasnjeni potencial U(t) v opazovani tocki je sorazmeren s
prostorskim integralom p(t—R/c+n-d/c)/r. Aproksimiramo r=R
in ga izvleCemo iz integrala, zanemarimo n-d v primerjavi z R in
dobimo prostorski integral p(t—R/c). Ker je oblak nevtralen, je ta
integral enak ni¢. Torej je U(t) =0 (1).

Podobno obravnavamo zakasnjeni potencial A(t) in pridelamo
prostorski integral j(t—R/c). UpoStevamo [jdV=Sev=d/dt> ed =
p.', pa dobimo A(t) = pe'/411eoc?R (2).
Iz (1) in (2) sledi, ob uporabi E =VU — dA/dt, za magnetno polje
okoli spreminjajoCega se dipola
_ p'xn (38.33)
" AnggcdR
Drugi odvod elektricnega momenta je treba seveda upostevati ob

Casu t — R/c. Elektri¢no polje je povezano z magnetnim kakor pri
ravnem valovanju.



Nihajoci dipol

Modro nebo

Slika 38.7 Dipolno sevanje. Prikazano je polje E
in B ob ¢asu t in vzro¢na sprememba dipola p"
ob prejsnjem c¢asu t — R/c.

Ce usmerimo os z koordinatnega sistema vzdolZ vektorja p.",
velja:
B Pe" sin O (38.34)
4neyciR’
Gostota energijskega toka jem = £9c2EB znasa
_ (pe"sin0)” (38.35)
16m2gyc3 R

Jem

in izsevana moc¢ P = § j.,, dS skozi obdajajoco kroglo

po P (38.36)

6reycd

Svetloba je elektromagnetno valovanje in sevajo jo atomi.
Sklepamo, da so sevajocCi atomi pravzaprav elektri¢ni dipoli, ki
nihajo z razlicnimi frekvencami. Za nihajo¢ dipol p = po cos wt
izraCunamo moc sevanja

B po’w* cos? wt (38.37)

P
611 C3

in povprecno moc¢ (povprecje kvadrata kosinusa preko enega
nihaja je 1/2)

)= PO (38.38)
12mepcd

Sevanje ni izotropno, ampak je svetilnost I = dP/dQ =j¢,R?
odvisna od polarnega kota:

(I) = Eﬂsin29. (38.39)

2 4n

Bela sonc¢na svetloba je mesSanica elektromagnetnih valov z
razlicnimi frekvencami/barvami. Ko valovi vpadajo v ozracje, se v
plinskih molekulah (vec¢inoma dusSika in kisika) influencirajo
elektric¢ni dipoli in zanihajo. S tem za¢no sami sevati na vse
strani; reCemo, da se je vpadna svetloba sipala na molekulah.
Dipoli nihajo vsiljeno z isto frekvenco kot vpadajo¢a svetloba. Cim
krajsa je valovna dolzina svetlobe, tem mocnejSe je sipanje.
Modra svetloba se sipa mocneje kot rdeca: zato je nebo modro.
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Odprt nihajni krog

Zvecer, ko je Sonce nizko nad obzorjem in je zato pot zarkov skozi
ozracje dolga in sipanje veliko, pa je zahodno nebo bolj ali manj
rdece. Iz bele soncne svetlobe so se izsipale modre sestavine in
preostal je visek rdec¢ih. Ce Zemlja ne bi imela ozradja, bi bilo
nebo ¢rno in podnevi bi videli zvezde. Tako mora biti na Mesecu.

Zakaj pa so potem oblaki beli? Saj se svetloba vendar sipa tudi na
kapljicah! In zakaj sploh vidimo kapljice, ko pa vodne pare, iz
katere kapljice nastanejo, ne vidimo? Valovna dolzina vidne
svetlobe je nekaj tisockrat vecja, kot je premer atomov. Zato
molekula vode ¢uti homogeno nihajoée elektri¢no polje. Ce se
zdruzi N molekul, nihajo sinhrono. Amplituda nihanja se poveca
za N-krat, gostota sevanja pa za N?-krat. Kapljica postane vidna.
Vendar pa kvadratno narasScanje ne traja v nedogled. Ko postane
premer kapljice primerljiv z valovno dolzino svetlobe, nihajo
molekule z medsebojnim faznim zamikom in za¢no interferirati
destruktivno. Za modro svetlobo je ta meja dosezena Ze pri
majhnih, za rdeco pa pri vecjih kapljicah. Rdece sipanje je zato
mocnejSe od modrega in ga preglasi. Modra barva izgine in oblak
postane bel.

38.8 Radijski valovi

Ce nihajo¢i elektri¢ni dipoli res $irijo okrog sebe
elektromagnetne valove, potem bi jih morale sevati tudi Zice
oziroma naprave, po katerih tecejo izmenicni (torej spremenljivi)
tokovi. Omrezna nihanja s frekvenco 50/s bi povzrocila valove z
valovno dolzino 6000 km. Takih valovnih dolzin v laboratoriju ne
moremo meriti. Za valovno dolzino reda velikosti 1 m, primerne
za poskuse, pa so potrebna nihanja tokov z ogromno frekvenco
3-108/s. V kak$nih napravah bi lahko tak$na nihanja nastajala?

Spomnimo se na elektri¢ni nihajni krog, sestavljen iz
kondenzatorja in tuljave. Ko naelektrimo kondenzator in
sklenemo stikalo, za¢ne po krogu nihati tok sem in tja. Naboj se
pretaka iz ena plos¢e kondenzatorja na drugo z visoko frekvenco
(25.24); "ceveljski" kondenzator in "Ceveljska" tuljava proizvajata
nihanje s frekvenco 10%/s. Ce raztegnemo nihajni krog, dobimo
linearno "ogrodje", po katerem niha tok. Nihanje je tem hitrejSe,
¢im manjsi sta plosci in ¢im manj ovojev ima tuljava. V mejnem
primeru se tuljava reducira v ravno zico. Odprti nihajni krog se
preoblikuje v navadno Zico s prevodnima ploS¢icama na obeh
koncih. Dobili smo torej hitro nihajoc¢ dipol, ki utegne res doseci
Zeljeno frekvenco. Ce ga nabijemo in sklenemo stikalo, za¢ne
nihati.


ch25.htm#eq24

IskriS¢ni oddajnik

Iskris¢ni sprejemnik

Slika 38.8 Zaprt in odprt nihajni krog. Plosci
sta nasprotno enako nabiti. Ko sklenemo
stikalo, zaniha naboj gor in dol. Nihajo¢ naboj
je elektri¢ni dipol, ki seva elektromagnetne
| _ —L— valove.

Zal je nihanje odprtega nihajnega kroga duseno in resiti moramo
vprasanje, kako ga znova in znova nabijati ter proziti. K sreci se
spomnimo na indukcijsko tuljavo s prekinjevalcem, ki med
svojima izhodnima prikljuckoma ustvarja elektri¢ne iskre, to je,
prikljucka periodi¢no nabija, da se potem medsebojno praznita
[26.8]. Pa povezimo stikalna prikljucka dipola z izhodoma iz
tuljave, ki jo opremimo s samodejnim prekinjevalcem
(elektromagnetnim stikalom). Kaj lahko pricakujemo?

Tok prihaja iz tuljave v kratkih sunkih. Tak sunek pride ob Casu,
ko prekinitveno stikalo (del indukcijske tuljave) prekine primarni
tokokrog. To se zgodi morda 50-krat na sekundo. Tokovni sunek
najprej nabije obe plosc¢i nihajnega dipola, eno pozitivno in drugo
negativno. Ko sta tako moc¢no nasprotno naelektreni, kot je le
mogoce, preskoci med kroglicama iskra. Zrak med kroglicama je
sicer dober izolator, a ko preskoci iskra, se ionizira in postane kar
dober prevodnik. Kakor hitro torej preskoci prva iskra, postaneta
plosc¢i povezani skoraj tako, kot z Zico. In tako nastane prevodni
nihajni krog. Zato zacne po ioniziranem kanalu med kroglicama
teci tok sem in tja z zelo visoko frekvenco. Zaradi upornosti pa
izzveni mnogo prej kot v petdesetinki sekunde, ko pride nov
sunek iz indukcijske tuljave. Medtem zrak postane spet izolator in
igra se ponovi.

Vsak sunek iz indukcijske tuljave torej povzroci kratko duseno
nihanje toka z visoko frekvenco med obema plos¢ama. Nastal je
nihajoci dipol, ki seva elektromagnetne valove v prostor. Pripravo
poimenujemo iskrisc¢ni oscilator.

Slika 38.9 Iskris¢ni oscilator - oddajnik
elektromagnetnih valov: (a) kovinske plosce,
(b) baterija, (c) indukcijska tuljava, (d)
iskris¢e. (Corbin, 1917)

Kako bi zaznali izsevane valove? Z indukcijo toka v sklenjeni zZi¢ni
zanki. Ko valovi potujejo skozi zanko, v njej inducirajo elektri¢no
napetost in poZenejo tok. Ce je zanka pres¢ipnjena in opremljena
z zaklju¢nima kroglicama, pa preko reze - upajmo - skacejo
drobne iskrice. To je iskris¢ni sprejemnik. Namesto prescipnjene
krozne zanke lahko uporabimo kar presc¢ipnjeno ravno zico.
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Poskusi z valovi

Vse barve teme

Osnovne enacbe v
snovi

Slika 38.10 Iskris¢ni sprejemnik elektromagnetnih
valov. (Corbin, 1917)

.

Tako. Sestavili smo oddajnik in sprejemnik (HERTZ); lotimo se zdaj
poskusov. Oddajni dipol postavimo v gorisce parabolicnega
kovinskega zrcala. S tem pricakujemo usmerjen curek valov.
Otipavamo ga s sprejemnim dipolom, ki je prav tako postavljen v
goriSce svojega parabolicnega zrcala, da se mu s tem poveca
obcutljivost.

Vklju¢imo oddajnik. V nekaj metrov oddaljenem sprejemniku se
pokazejo iskrice; tako drobne so, da jih opazimo le v popolni temi
in pod povecevalno lupo. Elektromagnetni valovi torej res
obstajajo! — V blizino oddajnika postavimo raven cinkov zaslon in
s sprejemnikom otipamo polje pred njim. Najdemo maksimume in
minimume, torej vozle stojnega valovanja. Iz razdalje med njimi
doloc¢imo valovno dolzino ustvarjenih valov. Odvisna je od
frekvence uporabljenega oddajnika, ta pa od njegove velikosti,
oblike, razdalje iskriSCa in Se Cesa. Z majhnimi oddajnimi dipoli
dosezemo valovne dolzine okrog 1 metra. — Curek valov ne
prodira skozi kovinski zaslon, prodira pa skozi leseno steno. —
Curek valov, vpadajo¢ na asfaltno prizmo, se lomi. — V curek
valov postavimo resetko iz vzporednih bakrenih zZic in z njenim
sukanjem ugotovimo, da so valovi polarizirani. Vsi ti poskusi
potrjujejo: poleg vidne svetlobe obstajajo se drugi, metrski
elektromagnetni valovi. Prav kakor vidni valovi se ti valovi
transverzalni, se odbijajo in lomijo. Poimenovali jih bomo radijski
valovi.

Obstoj metrskih radijskih valov nas navaja na misel, da obstajajo
elektromagnetni valovi vseh valovnih dolzin, od najkrajSih do
najdaljsih. Bolj ali manj samovoljno jih razdelimo na naslednje
razrede: ultravijoli¢na svetloba, vidna svetloba (0,4-0,8 pm),
infrardeca svetloba, mikrovalovi (nad 1 mm) in radijski valovi
(nad 1 m). Zaradi kratkosti si bomo vzeli Se pravico, da besedo
"svetloba", kadar ne bo skode, uporabljamo v dveh pomenih: za
vidno svetlobo in za poljubno elektromagnetno valovanje.

38.9 Valovanje v snovi

Cas je, da pogledamo, kak$en je medsebojni vpliv
elektromagnetnega valovanja in snovi. Vemo ze, da stati¢no
elektricno polje snov polarizira, pri cemer se v njej pojavijo
vezani naboji. Staticno magnetno polje pa snov magnetizira, pri
cemer se pojavijo vezani tokovi. Pri spremenljivih poljih vse to
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obvelja. Upostevati pa moramo, da spremenljiva polarizacija
doprinasa Se dodaten tok (37.26). Tako zapiSemo celoten naboj
0 = Prree — V - P in celoten tok j =jree + V X M + P'. Ta naboj in tok
vstavimo v osnovne enacbe elektrodinamike in zlahka dobimo

P 38.40
v'(E_'__)=pfree ( )
€o €0
V-B=0
oB
VXE=——
ot
. 1 o P
V X (B — 1oM) = Hojree + — — (E+ —).
cs ot Eo

Linearna snov  Z znanima aproksimacijama za linearno snov E + P/ey =¢E in
B — ugM = B/u pa dobimo

V- -cE= Pfree (38-41)
€o
V-B=0
oB
VXE=——
at

v B o 1 9¢E
X — = —_ .
I HoJtree 02 ot
Pricakujemo, da sta dielektri¢nost £ in permeabilnost u odvisna
od frekvence valovanja. V prevodnikih moramo upostevati Se

dodatno povezavo j=0oE.

Mejni pogoji  Zapisane enacCbe veljajo tako za homogeno kot za heterogeno
snov, to je, dielektri¢nost in permeabilnost sta lahko funkciji
kraja. Na zunanjih mejah obravnavanega telesa ali na notranjih
mejah med dvema telesoma pricakujemo ustrezne robne pogoje.
Poskusimo jih dolociti.

Mejo med snovjo (1) in (2), na kateri ni prostih nabojev in tokov,
zapremo v nizko Skatlo. Preto¢ni enacbi § B-dS=0in §cE-dS=0
povesta
B, (1)=B,(2) (38.42)
e1E, (1)=&E, (2).
Mejo zaprimo Se v ozko zanko. Ker je zanka ozka, velja
/B'-dS—-0in fE'-dS - 0. Cirkulacijski enacbi § E-ds =0 in
¢ B/u-ds =0 potem povesta
Ey (1) =E(2) (38.43)
By (1)/m =By (2)/p2.
Pri prehodu iz ene snovi v drugo se torej ne spremenita normalna

magnetna komponenta in tangentna elektricna komponenta polja.
Ostali dve komponenti dozZivita skokovito spremembo.
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Kompleksni lomni
koli¢nik

38.10 Valovanje v dielektriku

Pomemeben primer valovanja v snovi je valovanje v neomejenem
homogenem izolatorju, kjer ni prostih nabojev in tokov, recimo v
vodi. V osnovnih enacbah zato postavimo ustrezne clene na nic.
Ker sta dielektricnost in permeabilnost konstanti, ju izpostavimo
pred operatorje odvajanja po prostoru in ¢asu. Tako dobimo
nabor §tirih enacb: V-E=0,V-B=0, VX E=—-0B/dt in

V X B = (gp1/c?)9E/at. Ta nabor je formalno identiCen tistemu za
prazen prostor, ¢e oznac¢imo eu/c? = 1/v2. To pomeni, da je reSitev
enacCb ravno valovanje, ki se Siri s hitrostjo

c (38.44)
= @ .
S hitrostjo valovanja je definiran lomni koli¢nik snovi n = c/v, torej
n=vVvepu. (38.45)

Permeabilnost izolatorjev se ne razlikuje znatno od 1, zato n = Ve.
Tako smo odkrili Se eno povezavo med elektromagnetizmom in
svetlobo.

1%

Lomni koli¢nik in dielektri¢cnost znamo meriti neoodvisno. Prva
koli¢ina bi moral biti enaka korenu iz druge. Meritve pokazejo za
zrak pri standardnih pogojih obakrat 1,0003, torej odli¢no
ujemanje. Zelo dobro je nasploh ujemanje pri zlahtnih plinih (npr.
He), simetri¢nih dvoatomnih plinih (H,, O,, N5) in kovinskih
parah. So pa tudi izjeme. Lomni koli¢nik tekoce vode znasa 1,33,
koren iz njene (stati¢ne) dielektri¢nosti pa kar 9. Razlaga je hitro
pri roki. Molekula vode ima permanentni elektricni moment. Polje
tako hitro niha, da mu molekularni dipoli ne uspejo slediti.
Preden se povsem usmerijo v trenutno smer polja, se to Ze obrne
VvV nasprotno smer.

38.11 Valovanje v prevodniku

Kaj pa valovanje v neomejenem homogenem prevodniku, to je v
kovini s prostimi elektroni? Tam se lahko kopicijo prosti neto
naboji in teCejo prosti tokovi. Privzamemo, da se morebitni neto
naboji takoj razprsijo (zaradi odbijanja), to je, postavimo ¢len
pleg=0. S tokovi pa ni tako. Clena j1gj ne smemo izni¢iti, ampak
upostevamo j = oF in dobimo naslednje stiri enacbe: V-E=0,
V-B=0,VxE=-0B/ot in ¥ x B = (eu/c?)oE/ot + (ou/eoc?)E. Na
elektricno rotorsko enacbo delujemo z rotorjem VX, na levi strani
uporabimo obrazec za dvojni vektorski produkt in ¢rtamo ¢len z
elektri¢cno divergenco, na desni strani zamenjamo vrstni red
Casovnega in prostorskega odvoda ter substituiramo V x B iz
magnetne rotorske enacbe. Tako dobimo V2E — (gu/c?)d?E/ot? —
(op/eoc?)oE/ot =0 (1). To je valovna enacba z dodatnim ¢lenom.

Enacbo (1) poskusamo resiti v eni dimenziji s kompleksnim
nastavkom E = E, exp (ikx — iwt). Vstavitev v reSevano enacbo da



Ekstinkcijski
koeficient

Odbojni zakon

povezavo k= (w/c)V(ep + iop/eqw). Upostevamo, da so
permeabilnosti enake 1 (razen pri feromagnetikih) in dobimo

LW 38.46
k=—ve (58.40)
C

~ O- .
E=g+ —1.
Eow

Pridelali smo kompleksni valovni vektor in, z definicijo,
kompleksno dielektri¢nost. To, da je racun izvrgel kompleksni
valovni vektor, ceravno smo (potiho) predpostavili, da je realen,
nas ne bi smelo motiti. Saj so vsi racunski postopki potekali tako,
da so bili skupni realnim in kompleksnim koli¢inam.

Po zgledu realnih koli¢in definiramo Se kompleksni lomni koli¢nik

n=ve. (38.47)
Izenacb é=¢'+¢"iin A2=(n"'+n"1)2= (n"?-n"2)+2n'n"i
razberemo €'=n'2—n"%?in " =2n'n". K tema dvema enac¢bama
obratni enacbi sta

& ' 38.48
n'=V( £l +e ) ( :
2
. |&] — €'
n —\/( 5 ),

kjer |£] = V(e'? + £"?). KakSen pa je pomen realnega in
imaginarnega dela lomnega koli¢nika? Ker k = (w/c)A =
ko(n'+in"), je ob izbranem trenutku E « exp (ikx) =
exp (ikgn'x) - exp (—kon"x). To je (zamrznjen) duseni val s
prostorsko frekvenco kgn' in eksponentno pojemajoc¢o amplitudo.
Energijski tok j « |E|? = exp (—2kon"x) = exp (—Bx) pojema
eksponentno z razdaljo. Pri vpadu valovanja na prevodnik torej
realni del lomnega koli¢nika doloc¢a prostorsko frekvenco, to je,
igra vlogo "navadnega" lomnega koli¢nika. Imaginarni del pa
doloca koeficient dusenja. Zato zapiSemo
. c . ) (38.49)
n=n+_—i=n+xki.

2w
Imaginarni del lomnega koli¢nik poimenujemo ekstinkcijski
koeficient in ga oznac¢imo s k. Kovine so za vidno svetlobo
neprosojne, zato v njih ne moremo meriti niti loma niti dusenja.
Kompleksni lomni koli¢nik kovin zato ostaja do nadaljnjega
nemerljiva koli¢ina.

38.12 Vpad na dielektrik

Ravno valovanje naj vpada z leve proti desni na navpi¢no mejo
med dvema dielektrikoma. Namesto snovi je veljaven tudi
vakuum. Meja naj leZi pravokotno na os x koordinatnega sistema
pri x =0. Vpadno valovanje je u; =A; expi(k; - r— w;t) in odbito
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valovanje u; =A; expi(ky - r— wyt). Zahtevamo zveznost faze na
mejni ploskvi v vsakem trenutku: k; - r—wit = ky - r— wst. Iz tega
najprej sledi w; = w,. Frekvenca odbitega valovanja je enaka kot
frekvenca vpadnega valovanja, kakor tudi mora biti.

Za vsak vektor r, ki kaze na mejo, zahteva zveznost faze tudi
k,-r=k; r, torej (k; — k) -r=0. To pomeni, da je k; — k;
pravokoten na mejo oziroma (k; — ky) X n=0. Sledi

ki, x n—k,; x n=0 oziroma k; sina; = k; sin a,. Ker potujeta
vpadno in odbito valovanje po isti snovi, je k; =k,, zato

a;=ay. (38.50)

To je znani odbagjni zakon (12.1). Odbiti kot je enak vpadnemu,
kakor tudi mora biti. Ker ¢; = wy/k; = w1/k1, je seveda enaka tudi
hitrost: c; =c;.

Lomni zakon  Namesto odbitega valovanja glejmo sedaj prepusSceno valovanje.
Oznacimo ga z indeksom 2. RazmiSljanje je enako. Zveznost faze
zahteva najprej w; = w,. Prepusceno valovanje ima isto frekvenco
kot vpadno. Tako tudi mora biti. Druga zahteva, namrec
k,-r=Kk,-r, pavodido k; sina; = k; sina,. UpoStevamo k; = wi/cy
in ky = wy/cy; = w/cy, pa dobimo

sinay B sinay (38.51)

C1 C»
To je znani lomni zakon (12.3). Enacbo pomnozZino s ¢ in dobimo
nisina; =nysina,. (38.52)

Prepusceno valovanje je zlomljeno, kakor tudi mora biti. KolikSen
je lom, dolocata hitrosti valovanja v prvi in drugi snovi. Hitrost v
snovi je zmanjSana za faktor n glede na hitrost v vakuumu. Za isti
faktor je zmanjSana tudi valovna dolzina, saj ostaja frekvenca
nespremenjena.

Odbojnost in  KolikSen delez energije pa se odbije oziroma prepusti skozi mejo?
prepustnost  Naj bo elektri¢na poljska jakost vpadajoce svetlobe pravokotna
na vpadno ravnino. Iz slike razberemo naslednje.

z Slika 38.11 Vpad svetlobe na dielektrik. Del
B B, svetlobe se odbije in del nadaljuje pot.
i Prikazan je ravni val, v katerem je elektri¢na
E E; poljska jakost pravokotna na vpadno ravnino.
n a | oy
€4 X
€2
(22 32
E2
n,

Za vpadno svetlobo: E;, =A expik;s, By=(ni/c)Acosaexpik;s,
B,=(ni/c)Asinaexpikis. Za odbito svetlobo: E, = Bexpik;s,
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Pravokotni vpad

B, =—(ny/c)Bcosaexpikisi, B,=(ni/c) Bsinaexpik;s;. In za
prepusceno svetlobo: Ey, = C expik;s,, By = (ny/c) C cos a; exp ikzs,,
B, = (ny/c) Csina, expik,s;. — Komponenta E, mora biti zvezna:
Aexpikis+ Bexpik,s; = Cexpikys,, zato mora pris; =0, s;=01in
s=0 veljati A+ B=C (1). — Komponenta B, mora tudi biti zvezna:
(n1/c)Acosa—(ny/c)Bcosa= (ny/c) Ccossy, torej ni(A—B)cosa=
n, C cos ay (2). — Iz enacbe (1) izrazimo C in ga vstavimo v
enacbo (2). Iz tako dobljene enacbe izrazimo koli¢nik B/A, to je,
razmerje odbojne in vpadne amplitude, ter ga kvadriramo

R =|B/C|?, da dobimo razmerje odbitega in vpadnega toka
oziroma odbojnost (FRESNEL)

Ny CoOSa — Ny COS ay) 5 (38.53)
1= .
nicosa+ n;cosa,

Enacbo lahko polepsamo. Vanjo substituiramo n, = n; sin a/sin a,
ter z uporabo sinusa vsote oziroma razlike kotov dobimo

sin (a — ay) 5 (38.54)
sin(a+ay)

1=

Podobno racunamo za vpadajoco svetlobo, pri kateri je elektricna
poljska jakost vzporedna z vpadno ravnino. Dobimo (FRESNEL)

Ri=| N, COS @ — Ny COS ay) 5 (38.55)
Ny Cosa + nicosay
in
Ri=| tan (a — ay) 2. (38.56)
tan (a + ay)

Vsota odbitega in prepuscenega toka je enaka vpadlemu toku,
zato je z odbojnim koli¢nikom podan tudi prepustni kolicnik
oziroma prepustnost: Rj+Ty=1inR, +T, =1.

! T T Slika 38.12 Izracunani odbojni koli¢nik za
08} n=15 steklo (n=1,5).
g 0.6 | E
<}
3 04k 4
o
0.2 Rs Ry i
o . .

0 15 30 45 60 75 90
Vpadni kot (stopinje)
Soncna svetloba ni polarizirana, ampak je enakomerna mesanica
raznosmerno polariziranih valov. Zanjo velja R = (R + R))/2 ter
R+T=1.

Pri pravokotnem vpadu, ko a =0 in zato tudi a; =0, ni razlike
med pravokotno in vzporedno usmerjenostjo elektricne jakosti, in
odbojni koli¢nik znaSa
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Polarizacijski kot

Odboj in lom

Odbojnost in
prepustnost

ny—np (38.57)

R=| 2.

ng+np
Od vode se torej odbije le 2 % vpadle energije in od stekla 4 %. Na
okenski Sipi se odbija svetloba od obeh ploskev, torej skupaj
okrog 8 %, Ce zanemerimo visje odboje.

Kadar a + a; =90° je tangens neskoncen in R = 0. Pri katerem
vpadnem kotu ag se to zgodi? Pri n; sinag = n,sin (90° — ag) =
n, cos ag, torej pri

n, (38.58)

ag =atan —.

ni
To je ze poznani polarizacijski kot [27.5]. Za vodo znasSa 53° in za
steklo 56°. Vzporedno polarizirana svetloba, vpadajoca pod tem
kotom, se ni¢ ne odbije, ampak se le lomi. Ce je vpadajoca
svetloba poljubno polarizirana, se njena vzporedna komponenta
nic¢ ne odbije, preostane le pravokotna komponenta. Odbita
svetloba je zato polarizirana v smeri pravokotno na vpadno
ravnino. Slika Sonca na vodni gladini, ki je vidimo pod kotom
90° — 53° =37° pod ocesno vodoravnico, je popolnoma vodoravno
polarizirana.

38.13 Vpad na prevodnik

Kaj pa vpad svetlobe iz dielektrika na prevodnik, recimo iz zraka
na zglajeno srebrno plosco? Pri vpadu svetlobe na dielektrik smo
upostevali le, da je dielektricnost na obeh straneh meje razli¢na.
Ni¢ nismo zahtevali, da je realna, ceravno smo samoumevno tako
racunali. Zato vse izpeljane enacbe valjajo v nespremenjeni
obliki, ¢e v njih nadomestiomo realne lomne koli¢nike s
kompleksnimi. TakSne pa imajo, kot vemo, prevodniki. Ugotovimo
naslednje.

Odbojni zakon ostane nespremenjen.
Lomni zakon se v kompleksni podobi glasi:
Ny sindy,=n;sina; . (38.59)

Da je leva stran enacbe kompleksna in desna realna, ni razlog za
skrb. Saj so realna Stevila pravzaprav kompleksna Stevila z
nicelno imaginarno komponento. S tem postane sinus lomnega
kota kompleksna funkcija kompleksnega argumenta sinZ =

(exp iz — exp (—i2))/2i. Podobno velja za kosinus: cosZ =

(expiZ + exp (—i2))/2. Med seboj sta obe funkciji povezani

sin?Z + cos?Z=1. S to povezavo izlu§¢imo iz lomnega zakona, da
znaSa kosinus lomnega kota

Ay cos dy = V(A2 — ni?sinay) . (38.60)

Enacbe za odbojne in prepustne koli¢nike ostajajo
nespremenjene, le da so v njih faktorji fi, in cos d, kompleksni.
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Mrezica tankih rez

Stevilske vrednosti Rj(a) in R, (a) za dani snovi n; in A, zato
izraCunamo brez tezav, pac po pravilih kompleksne aritmetike.

1 T T T T T

Slika 38.13 Izracunani odbojni koli¢nik za
08 | n=15+25i vpad svetlobe iz zraka (n =1,0) na hipoteti¢ni

06 L R | prevodnik (n=1,5+2,51i).

Odbojnost
P

0.4 | P 1

0.2 B

0 1 1 1 1 1
0 15 30 45 60 75 90

Vpadni kot (stopinje)

Grafi kazejo, da prevodniki - zaradi velikega ekstinkcijskega
koeficienta - moc¢no odbijajo svetlobo pri vseh vpadnih kotih. Ne
obstaja pa kot, pri katerem bi se odbojnost zmanjsala na nic.
Namesto tega obstaja glavni kot, pri katerem ima odbojnost rahel
minimum. Odboji od prevodnikov pri tem kotu zato niso znatno
polarizirani. Vse to potrjujejo tudi eksperimenti z zglajenimi
kovinami, recimo s srebrom ali z aluminijem.

Tudi enacba za odboj pri pravokotnem vpadu ostaja
nespremenjena. Zaradi preproste oblike pa jo lahko zapiSemo
tudi eksplicitno z obema komponentama lomnega koli¢nika:
_ (= n1)* +k7° (38.61)
B (ny + n1)2 +K22 '

Enacba omogoca izracun ene izmed treh kolicin R, n, in k,, Ce sta
drugi dve poznani. Ce torej uspemo izmeriti ekstinkcijski
koeficient merjenca, je z meritvijo odbojnosti dolo¢en tudi njegov
lomni koli¢nik.

38.14 Uklon na ovirah

Valovanje, ki vpada na raven zaslon z odprtino, se za njim
uklanja. Valovanje v izbrani tocki za zaslonom je vsota krogelnih
elementarnih valov iz vsake tocke odprtine. Posebej preprost je
uklon, pri katerem vpada ravno valovanje pravokotno na zaslon.
Izvorna valovanja imajo tedaj povsod po odprtini enako amplitudo
in enako fazo. Tedaj velja za "zamrznjeno" valovanje v tocki P za
oviro superpozicija up « [ dS exp (iks)/s, pri cemer je s razdalja od
to¢kovnega izvora do opazovane toc¢ke. Ce opazujemo uklonsko
sliko dale¢ za zaslonom, je s priblizno konstanten in ga lahko
izvlecemo izpod integrala. Tedaj velja

up « | exp (iks)dS . (38.66)

Izracunajmo uklonjene energijske tokove za mrezico iz tankih
rez, za Siroko rezo in za okroglo odprtino!

Slika kaze, da moramo izracunati vsoto up « expiks; +
expik(s; + A) + expik(s; + 2A) + ... = expiks; - [1 + expikA +
expik2A + ... expik(N—1)A], pri ¢emer je A =asina.
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Siroka reza

I/S(' - Slika 38.14 Uklon na mreZici tankih rez na
_______ al %/ medsebojni razdalji a. Ravno valovanje vpada na
(@]
)

a mrezico pod pravim kotom. Opazujemo uklonjeno
| valovanje dalec pro¢ pod razli¢nimi koti a.

Racunamo takole. V oklepaju je geometricna vsota, ki znasa
(expikNA — 1)/ (expikA — 1). Izracunamo up up*, uposStevamo
identiteti expin+exp(—in)=2cosnter 1 —cosn=2sin%nin
dobimo w « (sin 1/,NkA)?/ (sin !/;kA)?. Limita sinNn/sinn, ko n-0,
znasa N, zato lahko zapiSemo

sin (}/,Nka sin a) ) (38.67)
Nsin (Y;kasina) *

J) =Jjol

S tem smo uklonjeni tok v smeri a normirali glede na uklonjeni
tok pri a = 0. Maksimumi lezijo tam, kjer !/,kasina = nasina/A =
0,1, 2m..., torej kjer asina=n-A, n=0,1,2..., kar ze vemo.

10 Slika 38.15 Uklon valovanja za mrezico iz
1 dveh rez (modro) in iz petih rez (rdece).
Prikazana je relativna gostota toka v
odvisnosti od parametra D =1 (a/A) sina.

-T 0 b1

Ce so reZe zelo ozke, so vsi maksimumi enako mo¢ni. Lega
maksimumov je neodvisna od Stevila rez N. So pa maksimumi tem
0Zzji, ¢im vec je rez. Med dvema sosednjima maksimumoma lezi
N-2 majhnih sekundarnih maksimumov.

Siroko rezo si mislimo sestavljeno iz samih ozkih reZ, ki se med
seboj stikajo. Izracunati moramo up « f dy exp (ik(s + As (y))), pri
cemer As =ysina.

y Slika 38.16 Uklon na Siroki rezi z debelino a.
Okoliscine so enake kot pri mrezici.
As=ysina

a2 /

- -
a2, 3

Rac¢unamo takole. Ker exp (iks) ni odvisen od y, ga izpustimo in
preostane [dyexp (ikysina) v mejah Fa/2. Diferencial zapiSemo v
obliki (1/k sina) d(kysina), s ¢imer preide integral v obliko

(1/k sina) [ exp (—in) dn v mejah F(a/2)k sin a. Izracunamo

Jexp (—in)dn=iexp(—in), vstavimo meje, upostevamo

(exp (in) — exp (—in))/2i =sin n in dobimo up «sin (ksina)/ksina.
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Kvadriramo in upostevamo, da sinn/n—-1, ko n— 0, pa lahko
zapiSemo
. __sin(kasina) (38.68)

j@=jol ———— 1.

kasina
Sorazmernostna konstanta jj je gostota toka na zaslonu pri
uklonskem kotu a = 0. Prvi minimum je pri (2n/24)asina =1, torej
prisina=a=0,5-A/a. Za rdeco svetlobo in 1/4 mm Siroko rezo
znaSa a =0,1°. Med obema prvima minimumoma je torej kot 0,2°.
Na meter oddaljenem zaslonu to znasa okrog 3 mm.

ifio) Slika 38.17 Uklon za Siroko rezo.
1 Prikazana je relativna gostota toka v
odvisnosti od parametra D =21 (a/A) sin a.

-7 0 T

Okrogla odprtina  Okroglo odprtino si mislimo razrezano v vodoravne in navpicne
trakove. Izracunati moramo up « [ exp (iks) dS =
Jexp (ik(s + As)) dS « f exp (ikAs) dS. Z uposStevanjem As = —xsin0
je torej pred nami dvojni integral

+a  +h(y) (38.69)
Up x f dy f dx e—ikxsin®
—a  —h(y)

a ;
y +a y -a z
h
AN

As=-X sind

Slika 38.18 Uklon za okroglo odprtino. Razmere so take, kot pri uklonu na
Siroki rezi.

Desni integral je enakega tipa kot pri rezi in ga tako tudi
izracunamo ter dobimo up « (1/sin6) [_,t¢dy - sin (k sin 6 - h(y)).
Upostevamo y=asing, h=acos @ in dy=acos@de, s Cimer

dobimo
/2 (38.70)
Up ¢ — f sin (kasin6-cos @) cos pdg.
sin@ _
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Na prvi pogled integrala ne znamo izracunati. Lahko pa nanj
pogledamo kot na funkcijo parametra n = kasin 6. Definirajmo
torej funkcijo J kot

n/2 (38.71)

Jm == [ sin(n-cosg)cospde.
- —1/2

V definicijo smo zaradi lepsSega vkljucili "normalizacijski" faktor
1/m. — Ali lahko funkcijo J izracunamo? Podintegralsko funkcijo
sint, t = ncos @ razvijemo v potenc¢no vrsto t — t3/3! + t3/5! — ...
Tako pridelamo vsoto integralov oblike cos?" ¢, ki jih znamo
integrirati. Dobimo vrsto

38.72
(=1)" (2)2n+1. ( )

Jm= 2, nln+ 1) 2

n=0

To pa ni ni¢ drugega kot Ze spoznana cilindri¢na funkcija J;
(38.22)! S funkcijo J; zapiSemo iskano amplitudo kot

up « J1(ka sin 08)/sin 0, jo kvadriramo, upostevamo J;(n)/n—1/2, ko
n—- 0 (kar ugotovimo iz vrste), in kon¢no pridelamo:

i0) = ol 21 (ka.sm9) 2 (38.73)
kasin®
Sorazmernostna konstanta jj je gostota toka na zaslonu pri 6 = 0.
Prvi minimum je pri (2n/A)asin® = 3,8, torej pri sina=a =
0,61A/a= 1,221 /2a. Za rdeco svetlobo in 1/4 mm Siroko luknjo
znasa 0 =0,2°. Prvi minimalni obroc¢ je torej napet na kot 0,4°. Na
meter oddaljenem zaslonu to znasa okrog 6 mm. To je nekaj vec
kot pri enako Siroki rezi.

ifio Slika 38.19 Uklon za okroglo odprtino.
1 Prikazana je relativna gostota toka v
odvisnosti od parametra D = 2m (a/A) sin 6.

-3.8 0 3.8

Ko z daljnogledom opazujemo zvezdo, se njena svetloba uklanja
na okroglem objektivu premera 2a. V gori$¢ni ravnini se tvori
uklonska slika. Zvezda ni ostra, ampak razmazana v majhen disk.
Ce sta dve zvezdi blizu skupaj, se diska prekrivata in ju ne
moremo razlocevati. NajmanjsSa razdalja, ko ju Se loCimo, je
nekako tedaj, ko pade maksimum ene zvezde v prvi minimum
druge. Kotna locljivost daljnogleda je zato 1,22A/2a=2A/2a,
kakor smo svoj Cas Ze ugotovili eksperimentalno. ]
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Piezoelektri¢ni pojav

Termoelektri¢ni pojav

Elektroni in ioni

Piezo- in termoelektrika - Termi¢ni elektroni - Curki elektronov -
Odklon curka v poljih - Relativisti¢ni odklon - Masni spektrometer
ionov - Naboji na kapljicah - Elektroni v snovi - Dielektri¢nost -
Permeabilnost - Prevodniki - Svetloba in elektroni

39.1 Piezo- in termoelektrika

Ce privzamemo, da so nosilci elektriénega naboja res elektroni in
ioni, v kar ne dvomimo prevec¢, dobimo s tem novo, upajmo da
plodovito izhodis¢e za usmerjanje nadaljnjih raziskav.
Razmisljamo takole.

Kristal izolatorja, recimo kvarca, je resetka iz ionov, ki so med
seboj povezani z elektronskimi pari kot vezmi. S to resetko je
dolocena tudi porazdelitev elektricnih dipolov po kristalu.
Porazdelitev je taka, da se sosedni dipolni momenti med seboj
iznicujejo. Kaj pa, Ce bi kristal deformirali, recimo stisnili?
Resetka bi se potem spremenila in morda bi se elektricni dipoli
vec ne iznicevali. Na nasprotnih ploskvah kristala bi se zato
pojavili vezani pozitivni in negativni naboji in med njimi bi
zavladala napetost.

Naredimo poskus! Kristal kvarca vtaknemo med dve kovinski
ploscici, povezani z balisticnim voltmetrom. Ko ploscici stisnemo,
se voltmeter res za hip odkloni. O¢itno je zaznal napetostni
sunek, to je izenacevanje nabojev med obema plosc¢icama.
Izmerimo, da sta pretoCeni naboj in s tem napetost kar
sorazmerna s pritiskom: U « p. Sorazmernostni koeficient je
odvisen od vrste, oblike in razseznosti kristala. Tipi¢no znasa 10V
na kp/cm?, kar je presenetljivo veliko. Odkrili smo piezolektricni
pojav pri nekaterih kristalih (CURIE, P.).

V kovini elektroni niso vezani na ionsko resetko, marvec¢ se lahko
prosto gibljejo skoznjo. Ce staknemo dve kovini, se morda nekaj
elektronov preseli iz kovine, kjer so Sibkeje vezani, v kovino, kjer
so vezani mocneje. Z ene strani meje na drugo se preseli toliko
elektronov, da ustvarijo dovolj veliko potencialno zaporno plast in
preseljevanje se ustavi. Ce naredimo krozno zanko iz dveh Zic, sta

......

......

podvrzemo razlicnima temperaturama (enega potopimo v vrelo in
drugega v ledeno vodo, na primer), se morda potencialni plasti
razlikujeta, pojavi se gonilna napetost in po zanki stece tok. To je
termoclen.

Naredimo poskus! Meritve z voltmetrom res pokazejo, da obstaja

vvvvv

temperaturno razliko: U « AT. Sorazmernostni koeficient je
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Dioda

Diodni tok

Katodna cev

odvisen od vrste snovi in znasa tipi¢no 10 pV/K. Odkrili smo
termoelektricni pojav (SEEBECK).

Termoelektri¢ni pojav lahko izkoristimo kot generator napetosti
iz temperaturnih razlik v okolju. Da dobimo dovolj visoke
napetosti, moramo le zaporedno povezati ve¢ kovinskih parov. Ali
pa merimo temperaturne razlike v okolju preko merjenja
napetosti.

39.2 Termicni elektroni

Ali lahko prevodniske elektrone spravimo ven iz kovine, morda s
segrevanjem? Kakor iz tekoCe vode pri segrevanju izhlapevajo
molekule, tako morda iz kovin izhlapevajo tudi elektroni!

Ravnamo takole. V zaprto stekleno cev na vsakem koncu vtalimo
kovinsko elektrodo in izsesamo zrak na okrog 10~3mm Hg. Tedaj
imajo molekule zraka povprecno prosto pot (36.29) (ki je
obratnosorazmerna z Stevilsko gostoto) okrog 10 cm. S tem
hoc¢emo omogociti elektronom nemoteno izhlapevanje in gibanje
v prostoru. Eno elektrodo segrevamo z elektricnim grelcem do
zarenja. Elektrodi priklju¢imo na izvor enosmerne napetosti -
baterijo nekaj 10V: vroco elektrodo na negativni prikljucek
(katoda) in hladno na pozitivhega (anoda). Prikljuc¢eni
ampermeter pokaze, da skozi cev tecCe tok. Oc¢itno iz vroce
elektrode res izstopajo elektroni, ki jih nato elektri¢no polje med
elektrodama poganja proti hladni elektrodi. Ko prikljucka
zamenjamo, pa tok ne tecCe. Iz hladne elektrode namrec elektroni
ne morejo izstopati. Opisani cevi reCemo dioda (EDISON).

Slika 39.1 Prva dioda - navadna zarnica na ogleno
nitko, ki ima vtaljeno dodatno kovinsko elektrodo.
Sestavil jo je T. Edison. Ko med elektrodo in Zarilno nitko
priklju¢imo baterijo (elektrodo na pozitivni pol), stece
skozi diodo tok. (National Museum of American History)

Koliksen tok tece skozi diodo, je odvisno od oblike, lege in
velikosti elektrod, od temperature katode ter Se ¢esa. V vsakem
primeru pa je tok odvisen od napetosti: najprej hitro narasca,
potem pa se ustali. Tedaj anoda sproti poskrka vse izhlapele
elektrone iz katode. Tipi¢ni nasiceni tokovi znasajo 10-100 mA in
tipi¢ne napetosti pri nasi¢enju 10-100V.

Da bomo tok elektronov skozi prostor lazje preucevali, diodo
ustrezno preoblikujemo. Razpotegnemo jo v hruskasto cev.
Katodo in anodo namestimo v njen vrat ter v anodo izvrtamo
luknjico. Tako upamo, da bodo nekateri elektroni zleteli skoznjo
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in nadaljevali svojo pot v razsirjeni prostor kot katodni Zarki. Obe
elektrodi priklju¢imo na baterijo do 1000V ali na indukcijsko
tuljavo, ki je vir utripajoce enosmerne napetosti do 10kV. Izdelali
smo katodno cev (THOMSON).

Slika 39.2 Katodna cev. Prikazana je katodna cev, ki jo je uporabljal J. Thomson
za meritve elektronov. V sredini sta vtaljeni elektrodi kondenzatorja. (University
of Cambridge).

Za uspesno delovanje katodne cevi je potrebno, kakor zmeraj,
urediti kup podrobnosti. — Najprej moramo curek sploh videti. V
cev zato dodamo majhno koli¢ino tega ali onega plina in
poskusamo, ali njegove molekule, ko jih elektroni zadenejo, kaj
sevajo. S poskusanjem ugotovimo, da sta primerna anodna
napetost 100-300V in helij oziroma vodik pri tlaku okrog
10~2mm Hg. Curek elektronov, ki tece skozi helij, zariSe lepo
modro ¢rto. — Pri visjih anodnih napetostih opazimo na steklu,
kamor vpada curek, svetlo piko. Heliju kot oznacevalcu zZarka se
zato lahko odrecemo. PoskuSsamo pa najti premaz, ki bi svetil ¢im
mocneje. Za primerno kombinacijo se pokaZeta anodna napetost
okrog 1kV in premaz iz cinkovega sulfida. — Hkrati poskuSamo
tudi povecati izhlapevanje elektronov iz katode in iS¢emo premaz
s ¢im nizjim izstopnim delom. Za primernega se pokaze barijev
oksid. — Konc¢no Se izboljSamo kolimacijo snopa z dodatkom ene
ali ve¢ zaslonk.

S katodno cevjo smo dobili v roke prvovrstno orodje za
ustvarjanje in raziskavo elektronskih curkov v vakuumu.

39.3 Curki elektronov

Ko elektron preleti potencialno razliko U, med katodo in anodo,
je na njem opravljeno delo eU, in to je enako pridobljeni kineti¢ni
energiji mv?/2, Ce je hitrost majhna v primerjavi s svetlobno.
Elektron v curku ima zato hitrost

v=\/2€UA. (39.1)

m

Kaksna je ta hitrost, vnaprej ne moremo vedeti, ker Se ne
poznamo mase elektronov. Njihov naboj pa Ze poznamo (36.10);
izra¢unali smo ga iz elektrolizne in kilomolske konstante.
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Hitrostna
nehomogenost

Elektri¢ni odklon

Za elektron, ki preteCe napetost 1V, bomo rekli, da ima energijo
1 elektronvolt oziroma 1 eV. Ker Ze poznamo osnovni naboj, velja
leV=e-1V=1,6-10"17].

Merjenje energije elektronov v joulih je oCitno nerodno, zato jo
bomo raje merili v elektronvoltih. To velja tudi za energije atomov
in molekul. Povprec¢na termicna translacijska energija atoma ali
molekule, na primer, znaSa K = (3/2)kT. Taksno energijo bi imel
elektron, ki bi pretekel tolikSno napetost U, da e U = (3/2) kT. Pri
1000 kelvinih znasa U= 0,1V, kar pomeni K= 0,1 eV. Ocitno so
kineti¢ne energije delcev zaradi termi¢nega gibanja mnogo
manjSe kot energije, ki jih imajo elektroni v katodnih ceveh.

Ali se elektroni v izhodnem curku kaj razlikujejo po hitrosti? To bi
se zgodilo, ¢e bi se elektroni razlikovali po masi, po zacetni
energiji ob izstopu iz katode in po trkih ob anodo pri preletu
skoznjo. Pricakujemo, da so mase vseh elektronov enake. Vpliv
anodne luknje zanemarimo. Izhlapeli elektroni pa imajo le najvec
toliksSno zacetno energijo, kot znaSa termic¢na energija delcev v
katodi, torej okrog 0,1 eV. To pa je zanemarljivo v primerjavi z
energijami preko aktualnih pospeSevalnih napetosti nekaj sto ali
tisoC voltov. Pricakujemo torej, da je elektronski curek hitrostno
homogen.

Kaj pa, ¢e pospeSevalna napetost ni konstantna, ampak se s
Ccasom hitro spreminja? To se dogaja pri indukcijskih tuljavah. V
tem primeru so nekateri elektroni pospeSeni z vecjo in drugi z
manjsSo napetostjo. V curku zato najdemo elektrone z
najrazlicnejsSimi hitrostmi. Taki curki so hitrostno nehomogeni.

39.4 Odklon curka v poljih

Elektronski curki nosijo naboj in ti naboji se gibljejo, torej
predstavljajo elektricni tok. Zato nanje gotovo delujeta elektri¢na
sila Fe=eFE (37.1) in magnetna sila F,, =11 x B (37.30), ki se za
posamicen elektron zapiseta kot

F=e(E+vXxB). (39.2)

RaziS¢imo vpliv teh sil! V vodoravno katodno cev namestimo
kondenzator iz dveh podolgovatih ploscic dolzine I na medsebojni
razdalji d. Skozi ta kondenzator naj teCe elektronski curek; z njim
je definirana os x. Napetost U med listicema ustvari v
kondenzatorju homogeno polje E = U/d, ki je usmerjeno
(postavimo) navpi¢no navzdol.

vz Slika 39.3 Elektri¢ni odklon. Curek
v elektronov se odkloni v elektri¢cnem polju
| kondenzatorja.

[0)
>
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Magnetni odklon

Hitrost elektronov

V kondenzatorju prezivi elektron t =I/v ¢asa. Medtem mu
elektricna sila podeljuje pospesek a = Fo/m = eE/m in mu podeli
hitrostno komponento navzgor v, = at = eEl/mv. Po prehodu
kondenzatorja je zato elektron odklonjen od prvotne smeri za kot
v,/v =tan 6, pri majhnih odklonih torej za

eEl (39.3)
omv?’

Vidimo, da 6 « 1/mv?. Vsi elektroni z enako kineti¢no energijo se
enako odklonijo. Recemo, da je elektricno polje selektor curka po
kineticni energiji. Kvalitativen poskus pokaze, da se elektronski
curek res odkloni. Ce je curek hitrostno nehomogen (na primer
pridobljen z indukcijsko tuljavo), se pri tem raztegne v navpic¢no
pahljaco. Hitrejsi elektroni pac¢ prezivijo v kondenzatorju manj
Casa in se manj odklonijo, pocasnejsi pa bolj.

Postavimo na vsako stran katodne cevi enako obrocasto tuljavo.
Razmaknjeni naj bosta za polovico svojega premera: polje med
takima tuljavama je namre¢ dobro homogeno. Odvisno je od toka,
ki teCe skoznju, in ga lahko izmerimo na primeren nacin. Polje naj
bo pravokotno na cev in usmerjeno (postavimo) v desni bok
gibajocih se elektronov.

Slika 39.4 Magnetni odklon. Curek
elektronov se odkloni v magnetnem polju
tuljave.

Vv

Curek cuti silo evB pravokotno na svojo smer, kar ga zvija
navzdol v krozni lok z radijem r. Magnetna sila je centrifugalna,
zato evB = mv?/r, torej 1/r=eB/mv. Po prehodu magnetnega polja
po loku s so elektroni odklonjeni za kot ¢ = s/r, to je

eBs (39.4)

o=—".

mv
Vidimo, da ¢ « 1/mv. Vsi elektroni z enako gibalno koli¢ino se
enako odklonijo. Recemo, da je magnetno polje selektor curka
elektronov po gibalni kolic¢ini. Kvalitativni poskus pokaze, da se
elektronski curek res odkloni. Ce je curek hitrostno nehomogen,
se pri tem raztegne v navpicno pahljaco. Hitrejsi elektroni se
manj odklonijo.
Kaj pa, ¢e hkrati uporabimo navpicno elektricno polje, ki odklanja
curek navzdol, in vodoravno magnetno polje, ki odklanja curek

navzgor? Premer tuljave v tem primeru naj bo enak dolzini
kondenzatorja. Elektron, ki prileti s hitrostjo v v prekrizani polji,
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Elektri¢ni odklon

cuti neto silo obeh polj in se ustrezno odkloni, navzgor ali
navzdol. S prilagajanjem jakosti enega ali drugega polja (preko
drsnih upornikov) lahko dosezemo, da se elektron ne odkloni
nikamor, ampak potuje naprej v ravni Crti. Tedaj velja eE = evB,
torej

E (39.5)

v=—.

B
Za elektrone, ki so preleteli napetost 300 voltov, tako izmerimo
strahotne hitrosti okrog 10-103km/s. V eni sekundi prepotuje tak
elektron celotni premer Zemlje! Seveda pa je to Se vedno zgolj
3 % svetlobne hitrosti. Ce na prekriZzani polji vpadajo elektroni
razli¢nih hitrosti, se prepustijo v vodoravni smeri zgolj tisti s
hitrostjo E/B, drugi pa zavijejo vstran. Polji zato delujeta kot
hitrostni selektor elektronov.

Z izmerjeno hitrostjo v pri znani napetosti U, je enoli¢no
dolo¢eno razmerje e/m = v2/2U,. Natan¢ne meritve povejo
e/m=1,7-10' C/kg. Ker poznamo e = e, je s tem ugotovljena
tudi masa elektronov:

me=9,1-10"3kg. (39.6)

Elektron je torej 1800-krat lazji od atomske masne enote, ali kar
je prakticno isto, od vodikovega atoma.

Kaj pa, ¢e ne poznamo napetosti U,? Tedaj uporabimo enacbi
(39.3) in (39.4), ki opisujeta odklone in ne vsebujeta napetosti U,.
To je dvojica enacb z dvema spremenljivkama v in e/m. Njuna
reSitev pove v=¢E/OB in e/m = E¢?/B*0l. Za primer 6 =¢ inl=s
velja v=E/B in e/m = EO/B?l. To pa je Ze iskana enacba. Govori
nam, kako meriti: nastavite primeren E in izmerite odklon 6.
Vkljucite tuljavo in nastavite B tako, da se Zarek vrne v izhodisce.
Nato iz izmerkov izracunajte v in e/m.

39.5 Relativisti¢ni odklon

Sedaj, ko poznamo maso elektronov, lahko tudi izracunamo, s
kaksno napetostjo jih moramo pospesiti, da se gibljejo
relativisti¢no. Velja eU = (p(v) — 1)mc?, iz ¢esar sledi za v/c=0,9
vrednost U= 6,5-10°V, torej nekaj milijonov voltov. Tako visokih
napetosti z obstoje¢imi usmerniki ne zmoremo ustvariti. Kljub
temu pa izracunajmo, kako bi se taksni relativisticni elektroni
odklanjali v elektricnem in magnetnem polju.

Opazovalni sistem S privezemo na kondenzator in opazovalni
sistem S' na vpadajoci elektron. Za opazovalca v S torej
kondenzator miruje in elektron se giblje v desno s hitrostjo v. Za
opazovalca v S' pa elektron miruje in kondenzator se giblje v levo
s hitrostjo —v. Cas v S, ki ga potrebuje elektron za prelet
kondenzatorja, je t =1/v. Opazovalec S' vidi kondenzatorjevo polje
E'=yE. Opazovalec S' vidi skrajSan kondenzator I'=1/y. V S' zato
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potrebuje elektron preletni ¢as t' =1'/v. Vmes deluje nanj sila
F'=eE"'. Ta sila mu da pospesek (neralitivisti¢ni, ker so hitrosti v,
majhne) a' = F'/m. V Casu t' zato pridobi hitrost v,' = a't'. Ta hitrost
v S znasa v, =v,'/y. V dobljeno enacbo za v, vstavimo, po vrsti,
vse predhodne enacbe, delimo z v in dobimo

_ eEl (39.7)

ymv2’

To je prav takSna enacba kot za pocasne elektrone, ¢e za njihovo
maso vzamemo vrednost ym. Hitri elektroni se torej po teoriji
relativnosti odklonijo manj, kot bi se po klasi¢ni teoriji.

Gibalna enacba za elektron v magnetnem polju je

d(ymv)/dt =ev x B. Ker je E =0, je |v| = const. Zato je tudi

y = const in lahko zapiSemo ym dv/dt =ev x B. To pomeni, da se
hitri elektron odklanja ravno tako kot pocasni, Ce le za njegovo
maso vzamemo vrednost ym. Torej velja

_ eBs (39.8)

Cymv’
Odklonska pot elektrona ima obliko kroznega loka z radijem r.
Ker ¢ = s/r, zna$a ta radij r= ymv/eB. Ce je magnetno polje
razsezno, lahko elektron v njem zarise cel krog.

Enacbi za elektri¢ni in magnetni odklon vsebujeta dve
spremenljivki: v in e/m. Za primer 6 = ¢ in [ = s sledi iz izenacitve
desnih strani enacb v = E/B. Vstavitev te hitrosti v prvo enacbo pa
da e/ym = EO/B?]. Hitrim elektronom torej izmerimo hitrost in
razmerje e/m podobno kot pocasnim. Po relativisti¢ni teoriji
doloCeno razmerje je vecje kot po klasicni.

39.6 Masni spektrometer ionov

Elektricno in magnetno polje odklanajata seveda tudi ione,
pozitivne in negativne. S tem se ponuja nacin, kako meriti njihove
mase. V prostor med katodo in anodo zapremo nekaj plina.
Namesto da preluknjamo hladno anodo, preluknjajmo vroco
katodo. Elektroni na svoji poti od katode na anodo ionizirajo plin
in nastali pozitivni ioni potujejo proti katodi ter skozi njeno
luknjico. Tako dobimo curek pozitivnih ionov oziroma kanalske
Zarke. Za razliko od curka elektronov pa niso niti masno niti
hitrostno homogeni: saj lahko nastane ionizacija kjerkoli,
pospesevalne razdalje se zato razlikujejo in s tem tudi pridobljene
hitrosti.

Ionski zarek je po odklonu v kondenzatorju navpi¢no raztegnjen:
v izbranem odklonu se znajdejo enako hitri, a masno razli¢ni ioni.
Kako naj jih lo¢imo? S takim odklonom v vodoravni smeri, ki
razlicno odklanja lahke kot tezke delce. TakSno pa je magnetno
polje, ki je vzporedno z elektricnim.
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Slika 39.5 Masni spektrometer ionov. K = katoda, F = kanal, AA =
kondenzator, NS = magnet, S = zaslon, P = S¢itnik. V posodi na desni je plin.
Priklju¢ena indukcijska tuljava ga ionizira. Pozitivni ioni te¢ejo skozi kanal.
Kondenzator jih odklanja navzdol in magnet vstran. Na zaslonu se riSejo deli
parabol. (Thomson, J., 1897)

Izbrani ion se torej odklanja v navpi¢ni smeri za 6 « z x eE/mv? in
v vodoravni za ¢ xy xeB/mv. Sorazmernostna koeficienta
vsebujeta geometri¢ne konstante. Z izlocitvijo hitrosti iz obeh
enacb dobimo

y? e B? (39.9)

Ioni z istim e/m in razli¢nimi hitrostmi torej zariSejo na zaslonu
navpic¢no parabolo, pravzaprav le njeno polovico. Razlicne tocke
na paraboli odgovarjajo istemu e/m in razli¢ni hitrosti. Ce so
prisotni razli¢ni ioni, vsak s svojim e/m, se zariSe vec parabol.
Predpostavljamo, da nosijo ioni po en osnovni naboj. Ce nosi ion
dva naboja, se zarise kot ion z enim nabojem in polovi¢no maso.

Masama m; in m, ustrezata pri viSini z odmika y; in y,. Njuno
razmerje zna$a m;/my = (y»/y1)? in je neodvisno od velikosti in
oblike priprave ter polj. Ce poznamo maso ene parabole, z
meritvijo odmikov y pri istem z dolo¢imo tudi maso vseh ostalih
parabol. To delamo na fotografskem posnetku zaslona. Na
posnetku ni vidna navpic¢na os, zato naredimo dve polovic¢ni
osvetlitvi in vimes zamenjamo smer magnetnega polja. Tako
pridelamo obe polovici parabol. Za umeritveno parabolo so
primerni katerikoli ioni z znano maso, na primer kisikovi.

Slika 39.6 Masni spekter. loni z istim razmerjem
e/m padajo na isto parabolo. Hitrejsi ioni blize vrhu,
pocasnejsi bolj pro¢. Opazna sta dva izotopa neona.
(Thomson, J., 1913)

Z opisanim masnim spektrometrom odkrijemo, da so elementi z
necelim masnim Stevilom pravzaprav mesanica elementov z
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Polkrozni
spektrometer

razli¢nimi celimi masnimi Stevili. Neon, na primer, ima masno
Stevilo 20,2, spektrometer pa pokaze dve vrsti ionov: 20 in 22,
prvih vec in drugih manj. ReCemo, da so to izotopi neona. S tem
ozivimo domnevo, da so atomi pravzaprav sestavljeni iz celega
Stevila enako tezkih delcev.

Locljivost paraboli¢nega spektrometra znaSa Am/m = 1/10.
Preucevanje izotopov pa zahteva vecjo natancnost. Kot
raziskovalci, ki nas zanima prav to podroc¢je, iS¢emo in izumimo
mnoge izboljSave. Ena izmed njih je polkrozni spektrometer, ki
dosega natanc¢nost 1/103.

| o Slika 39.7 Polkrozni
'_—l—_l_ spektrometer. Hitrosthno homogeni
gas D ————  electron beam A
= chode curek ionov se v magnetnem
S S polju razcepi v delne curke z
ALl . TR = Pv s .
t*_l !_—7 Jor— razlicnim razmerjem e/m.
T - Prikazana je shema spektrometra,

ki ga je sestavil K. Bainbridge.
(SchoolPhysics, UK)

magnetic field
perpendicularto the * * * et ™ e e e e s

diagram

Spektroskop je sestavljen iz ionske komore, selektorja hitrosti in
masnega analizatorja. V ionski komori poseben elektronski curek
bombardira atome in jih ionizira v pozitivne ione. Polje med
anodo in preluknjano katodo pospesi nastale ione ven iz komore.
Na izhodu imajo ioni razli¢ne hitrosti. Sledi prehod skozi
prekrizani E in B polji, ki prepustita le ione z ostro doloceno
hitrostjo v=E/B. Teh izstopnih elektronov je seveda mnogo manj,
kot je vstopnih. Ionski curek nato vpade v homogeno magnetno
polje, ki ga razcepi in ukrivi v delne curke z razli¢nimi radiji. Ioni
z enakimi masami m se uvrstijo v curek z radijem r=mv/eB. Ko
se curki odklonijo za 180°, zadenejo ob ravno fotografsko plosco.
Curek z radijem r zadene plosco na oddaljenosti 2r od vstopne
toCke. Masa ionov je torej kar sorazmerna z oddaljenostjo.

Zakaj prestrezemo curke pri 180° in ne kje drugje? Poskus (in
tudi risba in racun) pokaze, da se curek, ki je pri vhodu v
magnetno polje zmeraj rahlo divergenten, po preletu za 180° spet
lepo fokusira.

= & & a%ss=s5a & Slika 39.8 Masni spekter neona z izotopoma
; , : ;‘ ,‘ ,IA,; i' 20 in 22 ter klora z izotopoma 35 in 37, kakor
e ju je s svojim spektrometrom izmeril F. Aston.
d f 7797  (University of Cambridge)
INFE " TRy R

Vecina spektrometrov deluje na pozitivne ione. Taksni so tudi
ioni, ki bi drugace od njih pricakovali, da bodo negativni, recimo
klorovi. Atomi v ionizacijski komori pri obstreljevanju z elektroni
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pad prej izgubijo kak elektron kot pa da kak$nega ujamejo. Ce pa
kaksSen negativni ion le nastane, ne zmore poti do katode.

39.7 Naboji na kapljicah

Malo nas skrbi, ¢e imajo elektroni in ioni res zmeraj enako velik
naboj oziroma celosStevilski mnogokratnik tega naboja. Morda pa
bi lahko drobne naboje neposredno merili in sicer na drobnih
nosilcih?

Meritev nabojev  Med vodoravni plos¢i kondenzatorja, ki je priklju¢en z drsnim
delilcem napetosti na baterijo 1000V, razprsimo oljne kapljice. Te
se zaradi drgnjenja skozi Sobo naelektrijo. Opazujemo jih z
daljnogledom, pri ¢emer jih osvetljujemo z Zarnico. Dokler na
ploscah ni napetosti, padajo kapljice enakomerno. Njihova teza je
enaka linearnemu zra¢nemu uporu: p4nr3/3 = 6manrv. Vzgon
zanemarimo. Z merjenjem hitrosti med dvema vodoravnima
¢rtama dolo¢imo radij izbrane kapljice in iz njega maso. Potem
vklju¢imo napetost. Nekatere kapljice se pospesijo navzdol, druge
navzgor, kakor so pa¢ naelektrene. Napetost prilagodimo tako, da
izbrana kapljica miruje. Tedaj je njena teza enaka elektricni sili:
mg = eU]/l, iz Cesar izraCunamo naboj. Premerimo mnogo kapljic
in ugotovimo, da so njihovi naboji res majhni mnogokratniki
osnovnega naboja, za katerega dobimo 1,6-10~1° As. Manjsih
nabojev ne opazimo. S tem smo potrdili dosedanjo domnevo.

Slika 39.9 Merjenje osnovnega naboja na
kapljicah v elektricnem polju plos¢atega
kondenzatorja. Prikazana je priprava, ki jo je
zgradil in uporabil A. Millikan. (University of
Chicago)

Pri meritvah vc¢asih opazimo, kako mirujoc¢a kapljica nenadoma
zacne padati ali se dvigati. Oc¢itno je zajela kaksSen ion iz okolice.
Opazimo pa tudi, da se vse mirujoce kapljice sCasoma, v kaksni
minuti, zacno dvigati. Ocitno izhlapevajo in elektri¢na sila
prevlada nad tezo.

39.8 Elektroni v snovi

Snov je polna elektronov. V dielektrikih - trdnih, tekocih in
plinastih - so elektroni vezani v atomih. V trdnih kovinah se
prosto gibljejo skozi resetko iz "mirujoc¢ih" pozitivnih ionov. In v
prevodnih raztopinah potujejo, kakor kavboji na konjih, na
gibljivih negativnih in pozitivnih ionih. Nekateri pa tudi
samostojno, kakor kavboji brez konj.
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Koliko je pravzaprav elektronov v atomih raznih vrst? Tega
zaenkrat ne vemo. Privlacna je misel, da je v najlazjem atomu
vodika en elektron, v vseh naslednjih po teZi pa ustrezno vec.

Koliko pa je preseznih elektronov na nabitih telesih? Preucimo
ploscati kondenzator, ki ima bakreni plosc¢i z debelino d =0,1 mm
in plo$c¢ino po S =1 dm? na medsebojni razdalji I = 1 cm. Vsaka
elektroda ima maso m = pSIl=8,9g. V kilomolski masi bakra

M =64kg je Ns atomov. Vsak atom prispeva, tako predpostavimo,
1 prevodni elektron. V kilomolski masi je zato N, prevodnih
elektronov. Skupni naboj teh elektronov je Nyeo=96-106As. V
eni elektrodi pa je m/M tega naboja, to je 13400 As. Kondenzator
ima kapaciteto C =¢( S/l = 8,9 pF. Z napetostjo 30kV (ki jo dobimo
iz tornega stroja in izmerimo s stati¢nim voltmetrom) spravimo
na eno elektrodo naboj e=CU=2,7-10~7 As. Vec¢ja napetost
povzroci preboj. Vendar pa je ta naboj 13400/2,7-1077 =

50 - 109-krat manjsi kot skupni naboj vseh prevodnih elektronov.
To pomeni: na vsakih 50 milijard prostih elektronov pride en
elektron viSka. Kar se kaze kot velika naelektrenost teles, je
pravzaprav hudo neznaten viSek ali primanjkljaj elektronov na
njih.

Elektri¢ni tok po zicah, to je gibanje elektronov vzdolz njih. Kako
hitro se gibljejo elektroni? To pove gostota toka: j=nev, pri
¢emer n = N/V = Npp/M. Maksimalni tok, ki lahko tece po bakreni
zici, ne da bi se ta prevec grela, znasa j = 10 A/mm?. To pomeni,
da se tedaj gibljejo elektroni s "strasno" hitrostjo 0,7 mm/s! To se
na prvi pogled zdi malo, vendar tak elektron v eni sekundi preleti
mimo milijona ionov. Seveda je to gibanje naloZeno na obstojece
termicno gibanje, ki je neprimerno hitrejse.

Kako si ob tej majhni hitrosti razlagamo dejstvo, da se elektricna
lu¢ v stanovanju prizge takoj, ko pritisnemo na stikalo? Elektroni
vzdolz Zice se res premikajo pocasi, njihov vpliv na naslednika v
vrsti pa je bliskovit. Stvar je podobna, kot ¢e z batom potisnemo
vodo v cevi. Delci vode se premaknejo malo, njihov udarni val pa
napreduje s hitrostjo zvoka.

V vodni raztopini kislin, baz ali soli so nosilci elektricnega toka
pozitivni in negativni ioni. Vsaka vrsta ionov se pri tem giblje s
svojo hitrostjo in prispeva svoj delez k skupnemu toku:
j=ntetvt +n-e v~. Pozitivni ioni se gibljejo v smeri polja,
negativni pa v nasprotni smeri, vendar imajo nasproten predznak,
zato imata prispevka obojih enak znak. Obravnavajmo vodno
raztopine morske soli NaCl. Ima naj koncentracijo 1 M/m?, to je
58 kg/m3. Ce so vse molekule disociirane, je v raztopini natanko
N, ionov Nat in prav toliko ionov Cl~. Ker nosita obe vrsti ionov
enak naboj in sta priblizno enako tezki, privzamemo, da se tudi
gibljeta enako hitro. Potem velja j = 2Nv. Pri toku 1 A/cm? tako
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dobimo v ~ 0,1 mm/s. Seveda je tudi to gibanje nalozeno na
obstojece termic¢no gibanje.

Elektroni in ioni v snovi so vzrok za njihove elektri¢ne in
magnetne lastnosti. Te so opisane z dielektri¢nostjo &,
permeabilnostjo i in prevodnostjo o ter z raznimi iz njih
izpeljanimi koli¢inami, na primer z lomnim koli¢cnikom n. Vse to
so fenomenoloske kolicine. Doslej se nismo kaj dosti sprasevali,
od Cesa so odvisne. ZadosScale so nam kvalitativne razlage. Zdaj,
ko poznamo maso in naboj elektronov, pa se vprasamo, kako bi te
makroskopske koli¢ine kvantitativno povezali z mikroskopskimi.

39.9 Dielektri¢cnost

Zacnimo z dielektricnostjo. Omejimo se na dielektrike v plinastem
stanju. To pa zato, da bomo lahko zanemarili medsebojni vpliv
molekul. Privzemimo najprej, da molekule nimajo stalnih dipolnih
momentov. Za elektri¢no polje E v dielektriku velja, kakor vemo,
povezava e E=E + P/gg (1), pri Cemer je polarizacija P enaka vsoti
molekularnih dipolov p. na prostorninsko enoto P = (N/V)p. (2).
Za ne premocna polja privzamemo, da je influencirani
molekularni dipol sorazmeren z lokalnim poljem na mestu
molekule:

pe=a50Eloca1- (3910)

Sorazmernostni koeficient a poimenujemo polarizabilnost.
Lokalno polje je vsota zunanjega polja in polja okoliSnjih molekul.
Ker so molekule dale¢ narazen, njihov vpliv zanemarimo in velja
E\ocqn =E. Vstavimo (39.10) in (2) v (1), pa dobimo £ =1 + (N/V)a.
Ker N/V= Nm;/Vm; = (Nm;/V)/(M/Np) = pNA/M, sledi

M (39.11)
; (8— 1)=NA(X.

Dielektricnost nepolarnega plina je torej sorazmerna z njegovo
gostoto. Meritve pokaZzejo, da je tak plin, na primer, vodik. Za
vodik pri standardnih pogojih izmerimo e —1=0,26 X 1073, iz
¢esar izratunamo najprej a = 10 A3 in nato iz tega
pe/E=0,5-10"6eA/(kV/cm). Po zgledu eV smo vpeljali eA kot
e-A. Polje 1kV/cm torej influencira v vodikovi molekuli elektri¢ni
moment, ki ustreza razmiku dveh elementarnih nabojev za
pozitivnega in negativnega naboja v vodikovi molekuli se torej
razmakneta manj kot za milijoninko njeneg premera.

Ce imajo plinske molekule stalne elektriéne momente, se ti bolj
ali manj obracajo v smeri polja. Porazdelitev dipolov po
odklonskem kotu 6 glede na smer polja je odvisna od njihove
energije pri tem odklonu: dn/ndQ = A exp (p.E cos 6/kT) =

A (1 + peE cosO/kT). — V smeri 0 =0 je delez A(1 + pE/kT)
dipolov, v smeri 6 =1 pa A(1 — p.E/kT) dipolov. Ve¢ dipolov je torej



v smeri polja kot v nasprotni smeri. To se kaze kot polarizacija. —
Normirno konstanto dolo¢imo iz pogoja f(dn/ndQ)-dQ =1.
Integriramo po dQ =2nsin6dO in dobimo A = 1/4m.

Povprecni moment v smeri polja znaSa

(pe) = [ (dn/ndQ)p. cos 8 dQ. Integriramo podobno kot prej in
dobimo

B Do> (39.12)

(pe) = kT

K dielektri¢nosti polarnih molekul prispevajo tako inducirani kot

orientirani molekularni dipoli (DEBYE):

po*/eo ) (39.13)
3kT

M
—(e—1)=Nxla+
Jol

Konstanti a in py sta znacilni za posamezne snovi. Enacba ima
obliko y=a + b/T. Z merjenjem dielektri¢nosti pri razlicnih
gostotah in temperaturah lahko nariSemo odvisnost y od 1/T ter
dobimo premico. Iz nje dolo¢imo konstanti b in a in iz njiju
elektricni moment pg ter polarizabilnost a.

e1 T T Slika 39.10 Odvisnost susceptibilnosti (¢ — 1) vodne
0004t f/ . pare od temperature (1/T). Prikazani so merski

e podatki pri konstantni gostoti, to je v zaprti togi
0003} /" i posodi. (Feynamn, 1963)

//
/
0.002— ; -
/
/
oooi— / -
/
ol

Il L
0 0.001 0.002 0003
/T (K™Y

Meritve pokaZzejo, da je tak plin, na primer, voda. Za vodo
izmerimo po= 0,4 eA in a=1,5A3. To sta tudi tipi¢na reda
velikosti za druge polarne molekule. Povpre¢ni moment molekule
pri sobni temperaturi, zasukan v smeri polja z jakostjo 1 kV/cm,
znas$a (pe) =20-10~¢eA. Influencirani moment pa znasa
0,5-107%eA, kar je za red velikosti manj.

Na osnovi izmerjenih elektricnih momentov lahko marsikaj
sklepamo o molekulah. Vodna molekula H,O, na primer, ima
stalni elektricni moment. Zato ne more biti linearna H—O—H,
ampak mora biti prepognjena. Molekula CO, pa stalnega
momenta nima, zato tudi ne more biti prepognjena, ampak je
linearna O=C=0. Oboje seveda ze vemo iz prostostnih stopenj in
razmerja specificnih toplot [36.9].

Konstanti a in py sta odvisni od tega, kako so pozitivni in
negativni elektri¢ni naboji porazdeljeni po molekuli, to je, kako je
molekula zgrajena. Tega zaenkrat ne vemo podrobno. Upamo pa,
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da bomo v nadaljevanju raziskav to dognali. Tedaj bomo obe
konstanti lahko kar izracunali.

39.10 Permeabilnost

Kakor smo dolocevali elektricne momente plinskih molekul, tako
dolocujemo tudi njihove magnetne momente. Preuc¢imo najprej
pline, katerih molekule nimajo stalnih magnetnih momentov.
Poimenujmo jih nemagnetne molekule. Privzamemo, da se pri
majhnih jakostih magnetnega polja v njih inducirajo magnetni
momenti, ki so sorazmerni z jakostjo polja:

Pn=BB/u. (39.14)

Sorazmernostni koeficient poimenujemo magnetna
polarizabilnost. Upos$tevajo¢ M = (N/V)py, in B/u=B — ugM
dobimo 1/u—1=— (N/V)B= — (oNa/M)B. Za p, ki je blizu 1, velja
1/u—1=1-pu, zato

M (39.15)
;(11_1)=NAﬁ-

(ZaSli smo v tezave z oznakami: M pomeni kilomolsko maso in M
magnetizacijo.) Permeabilnost plina iz nemagnetnih molekul je
torej sorazmerna z njegovo gostoto.

Stalne magnetne momente obravnavamo prav tako kot stalne
elektricne momente, zato lahko rezultat kar prepisemo

Po* (39.16)
=——B8
(Pm) KT
Po*Ho ) (39.17)
3KT °°

M
E(Il_l):NA(B'l'

(Spet smo v tezavah z oznakami: p, pomeni velikost magnetnega,
ne elektricnega momenta molekule.) Specificna susceptibilnost
plina iz magnetnih molekul je torej obratno sorazmerna z njegovo
temperaturo.

Ker imajo plini okrog 1000-krat manjSo gostoto kot snov v
tekocCem ali trdnem stanju, pricakujemo, da bo tudi njihova
susceptibilnost ustrezno manj$a, to je reda velikosti = 1079 pri
standardnih pogojih. To se, Zal, pokaze za resnicno.

Z mnogo truda ugotovimo, da ima vodik nemagnetne molekule in
susceptibilnost —2,1 - 10~°. Temu ustreza inducirani moment
Pw/B=—3,0-10"1°AA2/T. Predstavljajmo si, da kroZi elektron v
atomu s frekvenco v okrog ploscine S. Tedaj ustvarja moment
pm=1S = (e/t)-S = evS. Momentu p,, torej ustreza frekvenca

V = pp/eS. Za vodikov moment to znese 1,9-10°Hz. To se morda
zdi na prvi pogled veliko, vendar je neznatno v primerjavi s
frekvenco 10'% Hz, s katero nihajo elektroni, ko izsevajo vidno
svetlobo.



Prevodnost

Posebnost med plini je kisik, ki ima magnetne molekule in
nenavadno veliko susceptibilnost +1,9- 1076, Iz temperaturne
odvisnosti izlu§éimo B = 0 in py = 2,7 - 1073 AA2. Pri sobni
temperaturi potem velja (pn,)/B = 6,2 - 10~6AA%/T. Pri jakosti polja
1T se torej vzdolz polja usmeri le tiso¢ina razpolozljivega
momenta.

Zanimivo je, da se kot plini z nemagnetnimi molekulami pokazejo
le diamagnetni plini. Paramagnetni plini se pa vedno pokazejo kot
plini z magnetnimi molekulami. To nas navaja na misel, da se
sicer inducirajo momenti v vseh molekulah - nemagnetnih in
magnetnih, vendar jih v slednjih zmeraj preglasijo orientirani
momenti. Vse konstante 8 so negativne.

(n-1)/p Slika 39.11 Odvisnhost specifi¢ne magnetne
1 T susceptibilnosti (12— 1)/p od magnetnega polja
T>T in temperature. Prikazane so kvalitativne
para 2> odvisnosti za diamagnetno (modro) in
paramagnetno (rdece) snov.
0 =B
dia 7.7,

Konstanti f in py sta odvisni od tega, kako se pozitivni in
negativni elektri¢ni naboji gibljejo po molekuli, to je, kako je
molekula zgrajena. Tega zaenkrat ne vemo podrobno. Upamo pa,
da bomo v nadaljevanju raziskav to dognali. Tedaj bomo obe
konstanti lahko kar izracunali.

39.11 Prevodniki

Elektroni v kovinski Zici se prosto gibljejo in pri tem trkajo z ioni.
Vedejo se kot plin. Ce je v Zici stalno elektri¢no polje, ¢utijo
elektroni silo F = eE in se gibljejo, kakor vemo iz kineticnega
opisa plinov, s prisilno hitrostjo (36.46)

eET (39.18)
Vdrift = —

Koli¢ina 7 je povprecni ¢as med dvema trkoma (oznako za
povprecje bomo kar izpustili). Ustrezna gostota toka znasa

J=nevgis=0E (39.19)
ne?t
O'=
m

Koli¢ino o poimenujemo specificno prevodnost kovine. Ce
upostevamo j=1I/S in E = U/l, dobimo I = (gS/l)U, v ¢emer takoj
prepoznamo zakon upornosti U= RI, kjer R=1/0S =£&I/S. Lepo je
videti, da smo nasli zanj mikroskopsko razlago in smo ga
spremenili v izrek!
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Kompleksna
prevodnost

Precna napetost

Enacba za specificno prevodnost omogoca, da izracunamo
povprecni ¢as med trki. Za baker, na primer, poznamo
0=5,9-107/Qm in n=N/V= pNy/M= 8,3-102%8/m3 ter
izraCunamo T=2,5-10"'*s. S tem je dolo¢ena tudi prisilna hitrost
Varit/ E =4 (mm/s)/(V/m). Pri gostoti toka j = 10 A/mm? vlada v zici
polje E =j/c=0,17 V/m, tako da je vgnirt = 0,7 mm/s, povsem v
skladu s predhodnimi izrac¢uni.

Kaj pa, ¢e je kovina v spremenljivem elektricnem polju? To je
tedaj, ko je zZica priklju¢ena na izmenicno napetost. Ko se
elektron giblje skozi kovino, ima ob vsakem trenutku t gibalno
koli¢ino G(t). Dve stvari se lahko zgodita v kratkem prihodnjem
Casu dt. — Prvi¢, elektron dozivi trk z verjetnostjo dt/T, izgubi vso
dotedanjo gibalno koli¢ino in izide iz trka s slu¢ajno gibalno
koli¢ino eEdt. Prispevek elektrona k svoji novi gibalni koli¢ini
znasa G(t + dt) = dt/t-eEdt. — In drugic, elektron ne dozivi trka
z verjetnostjo 1 — dt/T. Po Casu dt ima potem gibalno koli¢ino
G(t) + eEdt. Prispevek k svoji novi gibalni koli¢ini znasa
G,(t+dt) = (1 — dt/1)(G(t) + eEdt. Oba prispevka sestejemo,
zanemarimo viSje potence dt in dobimo

dG G (39.20)

—=——+¢E.

dt T
To je gibalna enacba s pospeSevalno silo eE in z zaviralno silo
G/t. Pri enakomernem gibanju je leva stran enaka nic¢ in enacba
preide v znano obliko (39.18).

Za polje E = Ey exp (—iwt) poiSCemo resitev enacbe z nastavkom
G = Gy exp (—iwt). Tako pridelamo enacbo Gy =eEyt/(1 —iwT).
MnoZimo obe strani z ne/m in dobimo

j=0E (39.21)
. o
0= .

1 —-iwTt

Prideleli smo kompleksno prevodnost, ki je odvisna od frekvence
polja. To pomeni, da gostota toka ni vec v fazi z jakostjo polja. Z
narascajoco frekvenco se prevodnost manjsa. To je razumljivo:
preden uspe polje dovolj pospesiti elektrone, se ze obrne in jih
zacne pospesevati nazaj. Vpliv pa je znaten Sele pri visokih
frekvencah, ko postane 1/w primerljiv s 1. To pa so ze frekvence
vidne svetlobe. Za w =0 se enacba skré¢i na ze znano stacionarno
obliko, kakor tudi mora biti.

Elektronski curek se v magnetnem polju odklanja. To bi moralo
veljati tudi za elektri¢ni tok po prevodniku. Ce po prevodniku v
obliki traku tece tok in je nanj pravokotno usmerjeno magnetno
polje, bi se morali elektroni nakopiciti ob enem robu. Tako bi se
morala pojaviti napetost med obema robovoma traku.
Izracunajmo to prec¢no napetost.



Svetloba v plazmi

m Slika 39.12 Precna napetost. Ko tece
\_/ elektri¢ni tok skozi prevodnik v magnetnem
polju, se pre¢no nanj pojavi elektri¢na

- + napetost.

Kovinski trak naj bo Sirok b in debel d. Vzdolz njega naj tece tok
I=nev-bd. Elektron v toku cuti magnetno silo F, = evB. Iz prve
enacbe izrazimo hitrost v in jo vstavimo v drugo enacbo ter
dobimo F,, = IB/nbd. To magnetno silo uravnovesa elektri¢na sila
F.=eU/b. Z izenacitvijo sil dobimo (HALL)

1 IB (39.22)
T ned’

Precna napetost je torej sorazmerna s tokom in z magnetnim
poljem. Sorazmernostni koeficient je odvisen od gostote
prevodniskih elektronov. Za baker, recimo, smo zZe predpostavljali
n=8,3-10%8/m3, zato je sorazmernosta konstanta zanj enaka
7,5-10711' m3/As. Za trak debeline 0,1 mm, tok 1A in polje 1T
dobimo, po racunu, U= 75uV. Merjenje precne napetosti pri
znanem toku in polju pokaze, da je sorazmernostna konstanta
bakra 5- 10~ m3/As. To pomeni, da je prevodniSkih elektronov
vec, kot smo domnevali, in vsak atom bakra odda v povprecju 1,5
elektrona v skupno elektronsko morje.

Magnetni trak s tokom je priro¢en merilnik za magnetno polje, a
zal le za velike jakosti. Rekli mu bomo kar magnetna sonda. Prav
tako lahko z njim merimo gostoto prevodniskih elektronov v
razlicnih kovinah.

39.12 Svetloba in elektroni

Za elektromagnetni val v prevodniku velja £ =1 +io/gqw. V enacbi
namesto prevodnosti o upostevamo kompleksno prevodnost J,
torej £ =1 +id/epw. Vstavimo 4, pri visokih frekvencah v faktorju
(1 —iwT) zanemarimo 1 in dobimo

w2 39.23
el _p; ( )
)
ne?
wp2 = —
meo

Plazemska frekvenca w, doloca, kako se valovanje vede. Ce
w < wp, je € realen in negativen, zato je k imaginaren: val se po
vpadu hitro zadusi. Ce w > wy, pa je € realen in pozitiven, zato je
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Atomski oscilatorji

Mejni primeri

k realen: valovanje potuje skozi prevodnik brez dusenja. Za
kovine je wp ~ 10'°Hz. To pomeni, da so za vidno svetlobo
nepropustne, kar razumno odgovarja resnici.

Poglejmo Se svetlobo v dielektricnem plinu. Predpostavimo, da
lahko elektroni v atomih prosto nihajo. Izbrani elektron lahko
niha z lastno frekvenco wg, recimo v smeri z. To pomeni, da je v
atomu vezan z elasti¢no silo mwy2z. Opravka imamo z atomskim
oscilatorjem.

Ko svetloba potuje ¢ez atom, se elektron znajde v spremenljivem
elektromagnetnem polju. Nanj delujeta elektri¢na in magnetna
sila. Razmerje teh sil je F,/F. < evB/eE, pri cemer je v hitrost
elektrona. Ker B = E/c, velja Fy,/F.<V/c. Ce v < c, kar
predpostavimo, je magnetna sila zanemarljiva.

Elektron v nihajocem elektricnem polju vsiljeno niha. Zanj velja
gibalna enac¢ba mz" = —mwqyz — eEysin wt. Enacbo smo Ze srecali
in resili (34.31), zato rezultat kar prepiSemo: z = zysin wt in

20 = eEy/m(wg? — w?). Upostevamo po vrsti p, = ez, P = (N/V)pe,
P=¢gy(e—-1)E,e—1=n’-1=(n-1)(n+1)= 2(n-1), pa dobimo
disperzijsko enacbo

e?/m N (39.24)

n—ls——
2e0(wp? — w?) V

Za dolge valove lahko zanemarimo w v primerjavi z wgy. Tedaj je
lomni koli¢nik neodvisen od valovne dolzine in je opisan s
konstantama wg in N/V. Zrak je prozoren za vidno svetlobo.
Svetlobo absorbira Sele v ultravijolicnem delu spektra, pri valovni
dolzini A = 1860 A. To odgovarja frekvenci v=1,6- 101> Hz.
Elektron absorbira najmocneje svetlobo tiste frekvence, ki jo sam
seva, zato je navedena frekvenca tudi lastna frekvenca
elektronovega nihanja. Konstanta N/V = N,p/M je popolnoma
dolocena z gostoto 1,3 kg/m3 in povprec¢no kilomolsko maso

28,8 kg zraka, zato izracunamo n—1=4-107%. To se dobro ujema
z izmerjeno vrednostjo 3-10~* pri standardnih pogojih.

Disperzijska enacba pove, kako je lomni koli¢nik odvisen od
frekvence svetlobe. Za vidno podrocje je imenovalec pozitiven,
zato lomni koli¢nik narasca s frekvenco. To je v skladu z
opazovanji: vijolicna svetloba se lomi mocneje kot rdeca.

Ko je frekvenca svetlobe enaka lastni frekvenci elektrona, bi
moral biti lomni koli¢nik neskoncen. To je seveda posledica
uporabljenih aproksimacij: nismo upostevali, da je nihanje
elektrona duseno, ker pac seva energijo.

Ko postane frekvenca svetlobe mnogo viSja od lastne frekvence
elektrona, lahko zanemarimo w, v primerjavi z w. Lomni koli¢nik
postane manjsi od ena. To na prvi pogled pomeni, da se giblje
zelo kratkovalovna svetloba v snovi hitreje kot v vakuumu. Tezavo



Veckratni oscilatoriji

odpravimo z naslednjo domnevo. V nekem smislu je res: hitrost
Cistega harmonicnega valovanja - njegova fazna hitrost - je lahko
vecja od ¢. Ovojnica dveh ali vec c¢istih valov, ki se gibljejo z
razli¢no fazno hitrostjo, pa kaze modulacijske "hribe" in "doline",
in njihova hitrost - grupna hitrost - ni nikoli vecja od c. Za prenos
sporocil je vedno potrebno modulirano valovanje in s tem je
reSena teorija relativnosti. V raziskavo te razlage se ne bomo
spuscali.

Pri izpeljavi disperzijske enacbe smo obravnavali atom kot
harmonicni oscilator z eno samo frekvenco. To gotovo ni res: kot
vemo, sevajo atomi mnogo razli¢nih frekvenc. Zato moramo
disperzijski model ustrezno izpopolniti. Njegova naravna

posplositev je
1 ng e?/m (39.25)
v <k 2e0(wi — w?)

Frekvence wy so dolocene z lego ¢rt v spektru plina, koeficienti f;
pa z njihovo relativno jakostjo. Dokler ne poznamo zgradbe
atomov, obojih ne moremo izracunati, ampak se moramo opreti
na izmerke. ]
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40 Elektronika

Dioda in usmernik - Fotodioda in fotopomnozevalka - Trioda in
ojaCevalec - Osciloskop - Oscilator - Radijska povezava -
Brezzi¢na telefonija - Razvoj radia - Televizija - Magnetni zapis -
Radiosonde - Mikrovalovi - Radar - Sonar - Druzbeni vpliv

40.1 Dioda in usmernik

Dioda  Vakuumska cev z Zarilno nitko - dioda - je nov, zanimiv element,
skozi katerega tecCe elektri¢ni tok. Odvisnost tega toka od
napetosti med obema prikljuckoma diode - njeno karakteristiko -
dolo¢imo z drsnim baterijskim virom, voltmetrom in
ampermetrom.

m Slika 40.1 Dioda. Dioda je vakuumska cev z dvema

( elektrodama: vroco katodo (zarilno nitko) in hladno
anodo. Prikazana je prva uporabna dioda, ki jo je
sestavil ). Fleming. (Science Museum, London).

i

7

=4

1

Karakteristika diode  Karakteristika diode je povsem drugacna, kot smo jo navajeni pri
drugih elektri¢nih elementih - uporniku, tuljavi in kondenzatorju.
Njena glavna znacilnost je, da tece tok skozi diodo le v eni smeri:
tedaj, ko je hladna elektroda, anoda, pozitivha glede na vroco
elektrodo, katodo. Druga znacilnost pa je, da tok ne narasca
linearno z napetostjo, ampak se pri dolo¢eni napetosti ustali,
postane nasicen.

Anode current
I, mA
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Slika 40.2 Karakteristika diode. Prikazan je tok skozi tipi¢no diodo v odvisnosti
od anodne napetosti glede na katodo pri razli¢nih temperaturah zarilne nitke.
Pri visjih temperaturah je nasiceni tok vecji. Neposredno segrevana (polna) in
posredno segrevana (¢rtasta) nitka. (Meadows, 1978)
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Delovna tocka diode

Polovi¢ni usmernik
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Karakteristika pove, kakSen je tok I skozi diodo, ko med njenima
priklju¢koma vlada napetost Up, torej f{Up) (1). Ce z baterijo Upp
poganjamo tok skozi zaporedno zvezana upornik R in diodo, pa
napetost med prikljuckoma diode ni enaka napetosti med
prikljuckoma baterije, ker nekaj napetosti vlada tudi med
prikljuckoma upornika. Vsota padcev napetosti po krogotoku je
enaka gonilni napetosti Upp =IR + Up, torej Up = Upp — IR
oziroma I = (Upp — Up)/R (2). Enacbi (1) in (2) za dve neznanki Up
in I reSimo graficno. Enacba (2) je namrec¢ delovna premica, ki
seka ordinato pri Upp/R in absciso pri Up = Upp. Njeno presecisce
z narisano f{Up) pove napetost na diodi in tok skoznjo, to je njeno
delovno tocko.

Vo

t 3

+
|—-‘§8€

diode response

load line

r,
&
g

operaling point

\fl-lll

Slika 40.3 Delovna tocka diode. Delovna tocka je dvojica (I, Up), to je tok skozi
diodo in napetost na njej. Dioda je prikazana s trikotnim simbolom. Elektroni
tecejo skozi diodo od prikljuc¢ka (—) do prikljucka (+). (Anon)

Ce diodo priklju¢imo na izmeniéno napetost, bo prepuséala tok le
tedaj, ko bo napetost na anodi pozitivha. PrepusSceni tok bo torej
utripajoce enosmeren: vseboval bo samo pozitivne vhodne
polvalove. Na izhodnem uporniku bo zato ustvarjal utripajoco
enosmerno napetost. Tok lahko zgladimo, ¢e vzporedno k
izhodnemu uporniku priklju¢imo kondenzator. Kadar bo vanj
dotekal tok, se bo polnil, ko pa bo tok presahnil, se bo praznil
skozi upornik. Praznitveni ¢as kondenzatorja mora biti dolg v
primerjavi z nihajnim ¢asom izmeni¢enaga toka.

51
T
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* o
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Slika 40.4 Polovi¢ni diodni usmernik. Gretje diode in napetost na njej
zagotavlja vhodni transformator. Izglajevalni kondenzator, vzporeden
izhodnemu uporniku Ry, ni narisan. (Schure, A.)
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Polni usmernik

Fotodioda

Usmernik izboljSamo s sredis¢nim odcepom iz transformatorja in
z dodatkom druge diode. Tok skozi izhodni upornik zato vsebuje

pozitivne polvalove in obrnjene negativne polvalove. Izglajevalni
kondenzator tok Se bolj zgladi.

SECOND ARY VOLTAGE
acae ot S
EQUAL IN TR
\| AMPLITUDE I

E 1\! E\JI_' AT
LOAD VOLTAGE

Slika 40.5 Polni diodni usmernik. Gretje diod ni prikazano. Izglajevalni
kondenzator, vzporeden izhodnemu uporniku, ni narisan. (NEETS)

Elektrifikacija je pripeljala izmenicni tok iz elektrarn v vse hiSe in
raziskovalne laboratorije. Z usmernikom smo sedaj dobili v roke
Se orodje, kako iz tega izmeni¢nega vira dobiti enosmere vire,
tako nizke kot visoke. Zlasti slednje je nadvse pomembno: ni nam
treba vec graditi 1000-voltnih baterij, ampak uporabimo kar
ustrezen transformator in usmernik. Za velike napetosti in tokove
morajo biti seveda diode primerno zgrajene. Z
visokonapetostnimi usmerniki nekaj deset kilovoltov poganjamo
katodne cevi in masne spektrometre. Z nizkonapetostnimi pa
polnimo akumulatorje.

40.2 Fotodioda in fotopomnozevalka

Morda lahko izbijamo elektrone iz katode tudi s svetlobo, ne le z
gretjem? Saj svetloba nosi s sabo energijo. Potem katode ni treba
greti, ampak jo le osvetljujemo. Poskus pokaze, da to drzi, Ce je le
katoda iz primerne snovi, recimo iz cezijevega antimona Cs3Sb.
To je fotodioda.

Light

At =

Slika 40.6 Fotodioda. Svetloba vpada na katodo in iz nje izbija elektrone. Te
elektrone sproti srka anoda in s tem omogoca elektri¢ni krogotok. (Anon)

Karakteristika fotodiode je podobna karakteristiki termicne
diode. Pri dovolj veliki pozitivni napetosti na anodi ta posrka vse
izbite elektrone: tok je nasicen. Odli¢na lastnost pa je odvisnost
tega nasicenega toka od osvetlitve: pri stalni anodni napetosti (in
stalnem spektru svetlobe) je tok kar sorazmeren z osvetljenostjo.
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Slika 40.7 Karakteristika fotodiode. Dodana je delovna premica za gonilno
napetost 150V in delovni upor 10 MQ. Tok je sorazmeren z osvetlitvijo.
Osvetlitev je podana v lumnih: 11m = 1/680 W za svetlobo 5500 A. (Strojnik,
1962)

Delovno premico in delovno tocko fotodiode izberemo po ze
znanem postopku. Na sliki je prikazan primer, ko sta dioda in
zaporedni upornik 10 MQ priklju¢ena na napetost 150V. V temi ni
toka in napetost na diodi znasa 150V. Pri osvetlitvi 0,1 lumna
stecCe tok 2 pA in napetost na diodi pade na 130V. Linearna
odvisnost toka od osvetlitve velja vse do osvetlitve 0,51m, ko
doseze tok 10 pA in pade napetost na diodi na 50V.

Ko vpadejo hitri elektroni na anodo, v njej poniknejo, hkrati pa -
taka misel se nam porodi - morda iz nje izbijejo sekundarne
elektrone. Cim hitrejsi so vpadni elektroni, tem ve¢ sekundarnih
izbijejo. Morda pride na en vpadni elektron, v povprecju, celo vec
sekundarnih. Te potem anoda spet posrka vase. Kaj pa, Ce bi te
elektrone posrkala kaksna dodatna, bliznja elektroda? Potem bi
na njo dotekal vedji tok, kot ga daje fotokatoda. Seveda nam nic
ne brani, da zaporedoma vklju¢imo celo ve¢ dinod, ki druga drugi
jacajo tok, in tako dobimo fotopomnozevalko. Poskus pokaze, da

je domneva pravilna.
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Slika 40.8 Fotopomnozevalka. Iz katode izbiti elektroni se pospesujejo proti
zaporednim dinodam in iz njih izbijajo sekundarne elektrone. Nastane plaz
elektronov. (Florida State University)

Primerna snov za dinode je kar taka, kot je za katodo. Vsaka
naslednja dinoda je na bolj pozitivni napetosti od predhodne,
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Trioda

Karakteristika triode

Ojacanje signalov

tipicno za 100V. Uspe nam nanizati do deset zaporednih dinod in
pridelati ojacanje toka za faktor 106!

Fotodiode in fotopomnozevalke uporabljamo, na primer, za
merjenje svetlobnih spektrov.

40.3 Trioda in ojacevalec

Na tok, ki tece skozi termi¢no diodo, lahko vplivamo z zunanjim
magnetnim ali elektricnim poljem. Tok takoreko¢ krmilimo. Pojavi
se zamisel, kako bi tok krmilili bolj nadzorovano: tako, da med
zarilno nitko in plosco vstavimo Se eno elektrodo v obliki
prepustne mrezice. Ko na mrezico pritisnemo negativno napetost
glede na Zarilno nitko, tok elektronov bolj ali manj zavremo,
odvisno od velikosti pritisnjene napetosti. Izumili smo triodo.

Slika 40.9 Trioda - dioda z dodano tretjo
elektrodo, mrezico, med vroco katodo in
anodno. Prikazana je prva trioda, ki jo je
sestavil L. Forest. (Perham Collection, San
Jose)

Odvisnost anodnega toka od anodne napetosti - pri izbrani
vrednosti zarilnega toka in pri razlicnih vrednostih mrezi¢ne
napetosti - izmerimo z ampermetrom in voltmetrom. Pri mreZzi¢ni
napetosti 0V se trioda kaze kot dioda s pripadajoCo tokovno
krivuljo. Cim bolj negativna je mreZi¢na napetost, tem bolj
dusena je ta tokovna krivulja.

Amody arent Slika 40.10 Karakteristika
triode: tok skozi triodo v
odvisnosti od anodne
napetosti pri razli¢cnih mreznih
napetostih, obakrat glede na
katodo. (Meadows, 1978)

A

o= 2
] 20 40 B0 80 100 120 140 160 180 200 220 240 260 280 300
Anode voltage V,, V .

Poglejmo, kaj pravi narisana karakteristika triode! Naj bo anodna
napetost 160V in mrezna napetost —5V. Tedaj teCe skozi anodo
tok 7mA. To je delovna tocka triode. Pri nespremenjeni anodni
napetosti nato spremenimo mrezno napetost na —7.5V. Tok se
zmanjsSa na 3mA. Na 3 mA pa bi se znizal tok tudi pri
nespremenjeni mrezni napetosti in zmanjSanju anodne napetosti
na 120V. Vidimo, da na spremembo toka enako vpliva majhna
sprememba mrezne napetosti za 2,5V ali velika sprememba
anodne napetosti za 40 V. Ce je v anodnem krogu upornik, so

235


pict3b/forest.jpg
pict3b/forest.jpg
picref.htm
picref.htm
pict3b/triode-current.gif
pict3b/triode-current.gif
picref.htm

Ojacevalec z mrezno
baterijo

Ojacevalec brez
mrezne baterije

Elektronski voltmeter

236

spremembe napetosti na njem sorazmerne s spremembami toka
skozenj. Mrezna sprememba za 2,5V se zato na uporniku pokaze
kot sprememeba za 40V - oboje glede na izbrano delovno tocko
triode, seveda. ReCemo, da je trioda ojacevalec. V obravnavanem
primeru ima ojacanje 40/2,5 = 16. Tipi¢na ojaCanja znasajo med
10 in 100.

Z zadovoljstvom torej ugotovimo, da smo izumili ojacevalec
signalov.

Slika 40.11 Triodni ojaevalec. Vhodna
sprememba napetosti glede na mrezi¢no
napetost Ug se odraZa kot sprememba
anodnega toka skozi breme Ry, in s tem
povezana sprememba padca napetosti na
njem. Grelna baterija ni narisana. (Meadows,
1978)

Grid bias
battery

Triodni ojacevalec potrebuje za svoje delovanje tri baterije:
grelno, mrezi¢no in anodo. To ni prakticno. Namesto da znizamo
mrezicno napetost glede na katodo, lahko zviSamo katodno
napetost glede na mrezico. To naredimo z upornikom Ry v
katodnem prikljucku: anodni tok I, gre skozenj in na njem
povzroci potrebni padec napetosti Rils. Vendar tok skozi Ry niha,
kar ni dobro, ker zelimo na mrezici imeti konstantno referentno
napetost. Zato vzporedno k Ry vklju¢imo Se kondenzator Cy z
visoko kapaciteto (in zato nizko kapacitivno upornostjo), ki
nihajoc¢o komponento toka "kratkosti¢no" speljuje mimo upornika.
Preostali dve bateriji - anodno in grelno - pa lahko nadomestimo
z odcepi iz ustreznega usmernika.

SMOVPO o+HT Slika 40.12 Triodni ojacevalec brez

mrezne baterije. Negativno napetost
mrezice glede na katodo zagotavlja
padec napetosti na uporniku Ry.
Anodna baterija ni prikazana;
priklju¢ena je med +HT in
ozemljitvijo. (Lythall, H.)

AFout

Dioda kot usmernik se ponuja kot naravna vhodna enota za
voltmeter na tuljavo. Ta, kot vemo, meri le enosmerno napetost.
Hitro nihajo¢i napetosti namre¢ tuljava ne more slediti. Ce pred
njim vklju¢imo usmernik, pa postane tudi merilnik za izmeni¢no
napetost.

Merjenje sibkih napetosti si nadalja olajSamo z vkljucitvijo triode
kot ojaCevalca: namesto merilnika s tuljavo na tanki sucni zici
lahko potem uporabimo robusten merilnik s tuljavo na spiralni
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Delovanje

vzmeti. V prakticnem elektronskem voltmetru uporabimo oboje:
usmernik in ojacevalec.
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Slika 40.13 Elektronski voltmeter za izmeni¢no napetost. Sestavljen je iz
usmernika (s filtrom R2-C2), ojacevalca in elektrometra na vrtljivo tuljavo.
Merilna obmocja izbiramo s preklopnim delilcem napetosti R3-R5. Ni¢elno tocko
elektrometra prilagajamo s potenciometrom R6. (Rider, J.)

Elektronski voltmeter kalibriramo z znanimi enosmernimi
napetostmi. Kar potem kaze, so efektivne vrednosti izmenic¢nih
napetosti. Uporabljamo ga prav tako kot navadnega. Paziti pa
moramo na potovanje ni¢elne tocke na mrezici, kar je predvsem
posledica nehotenih sprememb v ogrevni napetosti. Zato moramo
pred vsako meritvijo po potrebi prilagoditi delovno tocko
ojacevalca z ustreznim potenciometrom.

40.4 Osciloskop

Tudi katodna cev je voltmeter: navpi¢ni odmik zarka na zaslonu
je sorazmeren z napetostjo na odklonskem kondenzatorju (39.3).
Zarek ima vlogo kazalca. Reagira bliskovito, ne tako kot kazalec
tuljavnega elektrometra. Z njim torej lahko riSemo hitro
spreminjajoce se napetosti, na primer omrezno napetost 50 Hz.
Zal pa tega nihanja ne razlo¢imo, saj se premika Zarek vedno po
isti navpicni ¢rti. Kaj pa, Ce bi se zarek med navpi¢nim nihanjem
premikal Se vodoravno? Potem bi na zaslonu narisal ¢asovni
potek vhodne napetosti! To bi bilo moZno, ¢e bi napetost na
vodoravnem odklonskem kondenzatorju narascala linearno med
—Up in + Uy v nastavljivem Casu ty, sprozila pa bi se toc¢no takrat,
ko bi vhodni signal presegel nastavljivo vrednost Uiy, recimo od
spodaj navzgor. V Casu ty (ko zarek potuje preko zaslona), bi
morali biti onemogoceni vsi morebitni novi prozilni zahtevki. Po
preteku tega Casa pa bi bilo proZenje spet omogoceno.
Potrebujemo torej casovno krmilno vezje, ki bo iz katodne cevi
naredilo osciloskop. Z mnogo truda nam tak$no vezje uspe
sestaviti in sicer zgolj iz Ze poznanih elektri¢cnih elementov. Vezje
je zamotano, zato podrobnosti izpustimo.
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Slika 40.14 Shema osciloskopa. Ko vhodni signal doseze predpisano vrednost,
ustvari sprozilno vezje oster signal, ki aktivira vodoravno premikanje zarka. Na
zaslonu se nariSe ¢asovni graf vhodnega signala. Kasnilno vezje poskrbi, da
signal ne dospe do navpic¢nih plos¢, preden se zac¢ne vodoravno premikanje
zarka. (CircuitsToday)

Dobri osciloskopi imajo navpi¢no obcutljivost 1 mV na cm in
dosegajo vodoravni preletni ¢as 1 s na cm.

Meritve zvoka  Z osciloskopom lahko gledamo vsak ¢asovno spremenljiv pojav, e
ga le znamo spremeniti v elektri¢ni signal. Tako gledamo zvok. Ni
treba drugega, kot da na navpicni odklonski kondenzator vodimo
signal iz primernega mikrofona. Tako si lahko ogledamo, kako
nihajo razna zvocila, recimo struna na violini.

Slika 40.15 Nihanje strune na violini, kot ga
pokaze osciloskop. Na osnovni sinusni val so

| N | nalozeni visji harmoniki. Struna niha z osnovno
1 *“ ;"._ A N ,ﬁ ;Lr(,. ;k mA/ frekvenco 440 Hz. (Humboldt University)

!

AR \

Merjenje sr¢nih tokov  Ze od poskusov z zabjimi kraki vemo, da se mi$ice kréijo pod
vplivom pritisnjene elektricne napetosti. To nas tudi navaja na
misel, da je kr¢enje zivih miSic posledica elektri¢nih signalov, ki
vanje prihajajo po zivcih iz mozganov in hrbtenjace. Posebej
ocCitno je nenehno kréenje sré¢ne misice. Morda lahko z
osciloskopom vidimo elektri¢ne tokove, ki kréenje spremljajo?

Ravnamo takole. Na vsaki strani prsnega kosa pritrdimo kovinsko
elektrodo v obliki kovanca in ju preko ojacevalca vezemo na
osciloskop. Upamo, da se ionski tokovi iz srca Sirijo od celice do
celice v okolico vse do povrsine koze. Tam jih upamo zaznati z
obema elektrodama. Uspe nam, vendar Sele s primerno zgradbo
elektrod. Dobra elektroda je srebrn disk, ki je na prikozni strani
prevlecen s tanko plastjo srebrovega klorida. Med elektrodo in
kozo je potrebna Se prevodna plast, ki vsebuje klorove ione,
recimo kar slana voda, ki jo zmeSamo z vazelinom, da postane
lepljiva pasta.
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" 4 Slika 40.16 Sr¢ni tok na zaslonu osciloskopa.
Vidna sta dva sréna utripa na medsebojni razdalji
~ 1 sekunde. (University of Michigan)

Preletni ¢as osciloskopa nastavimo na nekaj sekund. Izmerjeni
srcni signali imajo stopnjo velikosti 1 mV. Iz njihove oblike
sklepamo na morebitne bolezni. Podobno merimo tudi mozganske
tokove.

40.5 Oscilator

Povratna zveza  Na triodni ojacevalec lahko pogledamo kot na ¢rno Skatlo z
dvema vhodnima in dvema izhodnima prikljuckoma. Izmenic¢na
napetost Us med vhodnima prikljuckoma se kaze kot napetost Uy
med izhodnima priklju¢koma. Razmerje A = Uy/Us poimenujemo
napetostno ojacanje. Pri triodnem ojacevalcu je izhodna napetost
fazno zamaknjena za 180° glede na vhodno, zato je ojacanje
negativno.

Kako pa se ojacevalec vede, ¢e del njegovega izhoda speljemo
nazaj na vhod, recimo preko uporovnega delilca? Re¢emo, da smo
ustvarili povratno zvezo. Vrnjeni signal se seSteva s sicersnjim
vhodnim signalom in ga ojaca ali oslabi, pa¢ odvisno od tega,
kaksen je fazni zamik vracanega signala. ReCemo, da je povratna
zveza pozitivna li negativna.

Amplifier
A

Feedback
network

8

Slika 40.17 Ojacevalec s povratno vezjo. Del izhodnega signala se vodi nazaj
na vhod skozi povratno vezje, recimo skozi uporovni delilnik. Tam se zaporedno
pridruzi sicerSnjemu vhodnemu signalu. (Meadows, 1978)

Nova izhodna napetost je U'g. Vraca se njen del BU',. Sestavljeni
vhod je potem U; = Ug + BU'y. To je napetost, ki jo ojacevalec vidi
na svojem vhodu in jo seveda ojaca v U'g=AU; =A(Us + BU'y), iz
Cesar sledi U'g =AU/ (1 —AB) oziroma Ag=U'o/Us=A/(1 —AB).
Oznaka A pomeni oja¢anje ob uporabi povratne vezi. Ce pri
triodnem ojacevalecu z A = —50 vracamo, na primer, §=0,01
izhodne napetosti preko uporovnega delilca (kar ne vpliva na
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Oscilator

Triodni oscilator

fazo), znasa A= —33. Ojacanje se zmanjSa. Povratna zveza je
negativna.

Zakaj bi sploh uporabili negativno povratno zvezo, ce pa
zmanjSuje ojacanje? Zato, ker so relativhe spremembe A; dosti
manj$e od relativnih sprememb A, ki jih povzrocajo. Ce je A zelo
velik, je namre¢ BA mnogo vecji od 1 in As= —1/B, torej neodvisen
od sprememb A. Negativna povratna zveza zato stabilizira
ojaCanje. Vezje postane manj obcutljivo na spremembe v
napajalni napetosti, temperaturi, vhodni frekvenci in drugem. Ce
potrebujemo vecja ojaCanja, pa zmeraj lahko zaporedno zdruzimo
dve ali ve¢ ojacevalnih stopenj.

Posebno zanimiva povratna vez v ojaCevalcu nastane, ko AB=1.
Takrat je Ar= . To pomeni, da se na izhodu pojavlja znatna
napetost tudi tedaj, ko na vhod sploh ne vodimo zunanje
napetosti. Ko namrec¢ prizgemo ojacevalec, se v njem vzpostavijo
stalni tokovi in napetosti ter ojacevalec postane sposoben
ojacevanja. Superponirane na te stalne vrednosti so majhne
fluktuacije razli¢cnih frekvenc: elektricni Sum. Ta Sum spravlja
ojacevalec v nihanja z razlicnimi frekvencami. Prevladajo tiste
frekvence, pri katerih je celotni fazni zamik signala od vhoda do
izhoda in nazaj skozi povratno vez enak 360°. OjacCevalec s
kriticno ali pozitivno povratno vezjo postane oscilator.

Amplifier

-

Slika 40.18 Ojacevalec s pozitivho povratno vezjo kot oscilator. Nihajni krog na
izhodu doloca frekvenco osciliranja. Povratna vez je izvedena z indukcijskim
sklopom dveh tuljav. (Meadows, 1978)

Da iz "razglaseno" nihajocega ojacevalca dobimo Zeljeno
frekvenco, ga je treba opremiti z vezjem, ki to frekvenco izbira.
To je seveda nihajni krog. Nihajni krog predstavlja breme na
izhodu iz ojacevalca. Povratno vez ustvarimo z induktivno
povezavo na njegovo tuljavo. Nihajni krog, delujo¢ pri svoji lastni
frekvenci, tudi zagotovi dodatni fazni premik za 180°, kar je
pogoj za ojacevanje.

Prakti¢na izvedba triodnega oscilatorja je prikazana na spodnji
sliki.
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Slika 40.19 Triodni oscilator - triodni ojac¢evalec z nihajnim krogom na izhodu
in v pozitivni povratni vezi. Za negativno napetost mrezice glede na katodo
poskrbita Cg in Rg. Podobno vezje je prvi sestavil E. Armstrong. (Meadows,
1978)

Negativno delovno napetost na mrezici lahko zagotovimo z
baterijo v mrezicnem krogotoku. Bolj prakticno pa je, da jo
poskusamo potegniti iz obstojecih virov. To nam uspe z
elementoma Rg in Cg. Pri vkljucitvi in vzpostavljanju nihanja se
namre¢ zgornja plos¢a Cg naelektri negativno glede na katodo
(podrobnosti so zapletene in jih izpustimo). Ce je RgCg vedji od
nihajnega Casa, se Cg ne izprazni bistveno med enim polnihajem
povratne napetosti in se obnovi nazaj med drugim. Kondenzator
potemtakem deluje kot enosmerna baterija.

Nihajni ¢as oscilatorja dolo¢imo z izbiro kondenzatorja C in
tuljave L. Lahko ga pa tudi zvezno spreminjamo z uporabo
spremenljivega kondenzatorja. Brez vecjega truda so dosegljive
frekvence od 10 Hz do 10 MHz. Vsa ta nihanja lepo vidimo na
osciloskopu.

Kristalni oscilator ~ Frekvenca oscilatorja je obCutljiva na razne spremembe v vezju,
predvsem na temperaturo in ogrevno napetost. Povratna zveza
ni¢ ne pomaga, saj verno sledi frekvenci nihajnega kroga. Kako
pa bi stabilizirali ta obcutljivi nihajni krog? Tako, da ga
nadomestimo z neobcutljivim. Seveda je to le leporecje: iskano
stvar moramo Se najti.

Spomnimo se piezolektri¢nosti kremenovega kristala [39.1]: ko
ga stisnemo, se na njem pojavi napetost; in ko nanj priklju¢imo
napetost, se stisne. Izmeni¢na napetost zato kristal spravi v
nihanje in to tem mocnejSe, ¢im blize je lastni frekvenci kristala.
Kristal s prikljucenima elektrodama je torej resonator, ki iz
skozenj tekoCega toka izbira/ojacuje svojo lastno frekvenco.
Nihajni krog zato nadomestimo s primerno obrezanim kristalom
in s tem izumimo kristalni oscilator.
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Slika 40.20 Kristalni triodni oscilator. Frekvenca nihanja je dolocena z lastnim
nihanjem kristala. Negativno delovno napetost na mrezici zagotavljata Ry in Cy.
Prikazano je vezje, kakrsnega je sestavil G. Pierce. (Lynthall, H.)

Pokaze se, da je kristalni oscilator Se mnogo stabilnejsi od
navadnega. V glavnem cuti le (majhen) vpliv temperaturnih
sprememb, ¢cemur pa - Ce je potrebno - zlahka odpomoremo z
vzdrzevanjem stalne okoliSnje temperature. Kristali, ki jih rezemo
iz kremena, omogocajo nihanja med 10kHz in 100 MHz. Vidimo
jih na osciloskopu.

40.6 Radijska povezava

S triodnim oscilatorjem dobimo v roke vir nedusenega
visokofrekvenc¢nega nihanja, potrebnega za tvorbo radijskih valov
z dolzino nad nekaj deset metrov [38.8]. Ni treba drugega, kot da
primerno dolgo navpicno Zico pres¢ipnemo in oba srediS¢na
konca vtaknemo v izhod iz oscilatorja. Spodnjo Zico ozemljimo.
Zica tako postane nihajo¢a dipolna antena, ki seva radijske valove
Vv prostor.

Kako naj zaznamo te valove? Z drugo anteno! V njej se inducira
izmenicni tok s frekvenco vpadajocih valov. Sprejemno anteno v
sredini pres¢ipnemo in vtaknemo v vhod diodnega usmernika, ki
visokofrekvencni izmenicni tok zgladi v enosmernega. Na izhodu
pa priklju¢imo galvanometer.

triode || triode "] diode
osc (- amp } % rect [

Slika 40.21 Oddajnik in sprejemnik radijskih valov.

Poskrbimo Se za nekaj izboljSav. Za vec¢jo moc¢ sevanja priklju¢imo
na izhod oscilatorja najprej ojacevalec in Sele na njegov izhod
oddajno anteno. Slednje tudi ne priklju¢imo neposredno, ampak
preko induktivnega stika. Prav tako, preko induktivnega stika,
priklju¢imo sprejemno anteno na usmernik. V anodni krog
oddajnega ojacevalca vgradimo stikalo. Ko stikalo pritisnemo, se
sprejemni galvanometer odkloni. Vzpostavili smo radijsko
povezavo!
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40.7 Brezzic¢na telefonija

Radijska povezava med oddajnikom in sprejemnikom je
"nesnovna zica", ki povezuje oba kraja. Poskusimo vanjo vtisniti
govor in ga iz nje tudi izvlec¢i! Drugace receno: vzpostaviti
hoc¢emo brezzi¢no telefonijo.

Radijski oddajnik  Prilagoditev oddajnika za telefonsko uporabo je preprosta: dodati

mu moramo le mikrofon in poskrbeti, da bo ustrezno vplival na
jakost izsevanih valov.
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Slika 40.22 Prikljucitev mikrofona v anodni krog izhodnega oja¢evalnika.
Mikrofonski tok je pred vkljucitvijo oja¢an s svojim oja¢evalnikom. T1 = vhod iz
oscilatorja, T3 = izhod v anteno, T2 = induktivni priklju¢ek mikrofona. (NEETS)

Najbolje je, ¢e mikrofon vklju¢imo v anodni krog izhodnega
ojacevalnika, in sicer zaporedno k tamkajSnjem viru visoke
napetosti. To naredimo preko induktivnega stika. Anoda potem
cuti vektorsko vsoto obeh virov - gonilnega enosmernega in
mikrofonovega spremenljivega. Temu ustrezno se spreminja
jakost anodnega toka in s tem jakost izhodnega valovanja.
Sestavili smo radijski oddajnik.

Diodni sprejemnik  Prilagoditev sprejemnika - diodnega usmernika - je tudi
preprosta: namesto izhodnega galvanometra namestimo
primerne slusalke. UposStevati pa moramo Se naslednje. Na
anteno vpadajo radijski valovi iz razlicnih oddajnikov, in ti valovi
se med seboj razlikujejo po nosilni frekvenci. V anteni se seveda
inducira "mesanica" teh frekvenc. Anteno zato priklju¢imo na
nihajni krog. Ta iz vhodnega nihanja "pobere" svojo lastno
frekvenco. Nastavimo jo s spremenljivim kondenzatorjem. Tako
izbiramo med razlicnimi oddajniki. Izhod iz nihajnega kroga pa
vodi potem na diodni usmernik (FLEMING).
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Slika 40.23 Diodni sprejemnik. Pri piezoelektri¢nih slusalkah (kapacitivno
breme) je upornik R1 potreben in kondenzator Cy pogresljiv. Pri magnetnih
slusalkah je kondenzator Cy potreben in upornik R pogresljiv. (Nagy, K.)

Opisani diodni sprejemnik dobro deluje, Ce je antena dolga in
visoko obesSena in ¢e oddajna postaja ni predalec¢. Uspesno ga
uporabimo na ladjah.

Z diodnim sprejemnikom ne sliSimo Sibkih signalov. Saj dioda
signal le zgladi in ga ni¢ ne ojaca. Lahko pa diodo nadomestimo s
triodo in tako sestavimo triodni sprejemnik (FOREST).
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Slika 40.24 Triodni sprejemnik. Mrezica nima prednapetosti, zato hkrati ojacuje
in usmerja anodni tok. S kondenzatorjem C1 nastavljamo sprejemno frekvenco.
Kondenzator Co blokira enosmerno napetost. Upornik R1 odvaja zajete
elektrone iz mrezice. Kondenzator C3 je obvod signala mimo visokoupornih
slusalk. Reostat Ry nastavlja gretje katode. (Nagy, K.)

Vhodni signal zdaj vodimo na mrezico triode in z njim krmilimo
anodni tok. Na mrezici ni negativne prednapetosti. Tok zato
ojacano, vendar usmerjeno zaniha. Zgladimo ga na izhodnem
kondenzatorju, kjer ga tudi poslusamo s sluSalkami. Triodni
sprejemnik je precej bolj obcutljiv od diodnega in ga uspes$no
nadomesti na ladjah.

40.8 Razvoj radia

Radijski prenos zvoka je tako obetaven izum, da se okrog njega
razvije celotna veja industrije. Ustanovijo se posebne firme za
proizvodnjo in prodajo radijskih oddajnikov in sprejemnikov ter
njihovih sestavnih delov. Firme ustanavljajo svoje raziskovalne
oddelke, ki nenehno izboljsujejo svoje izdelke. Ti postajajo zato
Cedalje bolj zapleteni. Vsi pa si delijo isto funkcionalno osnovo.

Osnova radijskega prenosa zvoka je naslednja: oddajnik proizvaja
in seva nosilni radijski val, na katerega nalozi avdio signal,
sprejemnik pa ga sprejema in iz njega ta avdio signal izvlece.
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Govorimo o tvorjenju, modulaciji, izsevanju, sprejemu in
demodulaciji radijskih valov.

Antenna

Y

Oscillator Modulator > Amplifier

|

Audio
Information

Slika 40.25 Oscilator proizvaja nosilno radijsko valovanje, modulator ga
modulira z avdio signalom iz mikrofona, ojacevalec ojaca in antena izseva. Vir
elektricnega napajanja ni prikazan. (Lowe, D.)

Antenna

Speaker

RF Audio
Amplifier [ Tumer Detector > Amplifier

Slika 40.26 Shema radijskega sprejemnika. Antena sprejema modulirane
radijske valove razli¢nih frekvenc (od razli¢nih oddajnikov), uglasevalec izbere
eno frekvenco, detektor jo demodulira, ojacevalec ojaca in zvocnik spremeni v
zvocne valove. Vir elektri¢cnega napajanja ni prikazan. (Lowe, D.)

Oscilator v oddajniku vsebuje bodisi nihajni krog ali kristal.
Slednji zagotavlja vecjo frekvencno stabilnost. To pomeni, da
oddajne postaje lahko delujejo na bliznjih frekvencah, saj se
nobena ne spreminja znatno in ne zaide v frekven¢no obmocdje
sosede. Vsak oddajnik deluje na svoji frekvenci. Sprejemniki pa
se uglasijo na tistega, ki jih zanima.

Mesalna frekvenca  Da lahko lovijo Sibke signale, dobijo radijski sprejemniki vec
zaporednih ojacevalnih stopenj. Pri uglasevanju na izbrano
postajo je zato treba nastaviti vsako stopnjo. Vse stopnje morajo
torej biti nastavljive. To je neprakti¢no. Pojavi se zamisel, da bi
razlicne vhodne frekvence najprej pretvorili v isto "mesalno"
frekvenco, nakar bi vse ojacevalne stopnje delale samo z njo.
Resitev je skrita v naslednjem matematicnem izreku: produkt
dveh sinusoid s frekvencama f; in f, je sorazmeren z vsoto dveh
sinusoid s frekvencama f; + f in f; — f>. Potrebno je torej sestaviti
"mesalec frekvenc". Njegova vhoda sta dva: sprejemana
frekvenca RF in nastavljiva frekvenca LO, izhod pa frekvenca
IF =|RM — LO|. Kot dobrim inZenirjem nam to tudi uspe, in sicer
kar iz nekaj diod, kondenzatorjev in tuljav. Ko hocemo, na primer,
s sprejemnikom IF = 30 kHz poslusati frekvenco RM = 100 kHz,
nastavimo LO =70kHz.

Modulacija ~ Glavna kvalitativna razlika med radijskimi sistemi je nacin, kako
modulirajo nosilni val. Temu lahko spreminjamo amplitudo ali
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Lastnosti radijskih
valov

frekvenco, odvisno pac od tega, kje in kako v vezje uvedemo
avdio signal.

A. CARRIER

B. SIGNAL

C. AMPLITUDE MODULATED WAVE

WIAVAVRANA

D. FREQUENCY MODULATED WAVE

Slika 40.27 Modulacija radijskih valov. Amplituda ali frekvenca nosilnega
visokofrekvencnega vala je modulirana z nizkofrekven¢nim avdio signalom.
Prikazan je monofrekvencni avdio signal. (Anon)

Vsaka vrsta modulacije seveda zahteva ustrezen nacin
demodulacije.

Nosilni radijski valovi imajo frekvence med 100 kHz in 100 MHz
(3km -3 m). Zaradi priro¢nosti jih razdelimo na dolge valove

(~ 100kHz), srednje valove (~ 1 MHz), kratke valove (~ 10 MHz)
in zelo kratke valove (~ 100 MHz). Izku$nje z oddajanjem in
sprejemanjem teh valov pokaZejo naslednje.

Dolgi valovi se veCinoma Sirijo od antene kot prizemni valovi, to
je, kot valovi med dvema vzporednima vodnikoma: zemljinim
povrsjem in ozra¢jem. Elektri¢no polje v valovanju je usmerjeno
navpic¢no in magnetno vodoravno. Morje je bolj prevodno kot
kopno in valovi se ¢ezenj bolje Sirijo. Valovi se tudi moc¢no
uklanjajo okrog ovir in zato ne delajo senc.

Zelo kratki valovi se Sirijo "premocrtno"”, tako kot vidna svetloba.
V dani smeri pada njihova energijska gostota s kvadratom
razdalje. Okrog ovir se slabo uklanjajo in delajo za njimi sence.
Radijski sprejem je zato mogoc le tedaj, Ce je oddajnik v vidni Crti
od sprejemnika. Seveda pa pomagajo odboji od tal in okoliSnjih
OVIr.

Srednji in kratki valovi se Sirijo na vmesen nacin. Posebej
zanimivo je, da se odbijajo od zgornje, ionizirane plasti ozracja;
recemo ji ionosfera. Odboj je mocnejsi ponoci. Oc¢itno ima pri tem
svoje prste vmes Sonce, ki s svojimi zarki tako ali drugace
ionizira ozracje. Zaradi odboja se doseg oddajnika podaljsa.

Vsi radijski valovi se moc¢no absorbirajo na kovinskih ovirah,
nekovinske pa bolj ali manj predirajo. Temu ustrezno morajo biti
namescene tudi sprejemne antene.
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Uporabna vrednost

Zakaj sploh uporabljamo tako visoke frekvence za nosilni val?
Zato, ker njihovo hitro spremenljivo elektromagnetno polje
inducira v sprejemni anteni mnogo vecje tokove, kot bi jih nizke
frekvence. Inducirana napetost v zanki je namre¢ sorazmerna s
spremembo magnetnega pretoka skoznjo, torej s frekvenco
nihanja. Brez visokih frekvenc bi bil uporabni doseg oddajnikov
zanemarljiv.

Mo¢i zgrajenih radijskih oddajnikov so odvisne od tega, kako
dale¢ Zelimo z njimi poseci. Segajo od 1 W do 1 MW. Slednji imajo
vec¢ zaporednih ojacevalnih stopenj in njihove elektronke so
velike kot ¢lovek. Taka elektronka pokuri samo za gretje 10 kW,
zato jih je treba hladiti z zrakom ali celo z vodo.

Radijski sprejemniki zaznavajo in demodulirajo $e moc¢i 10712 W,
V ugodnih pogojih z njimi sliSimo dolgovalovne oddajnike z
nasprotne strani Zemlje.

Zakaj pa uporabljamo dve vrsti modulacije, amplitudno in
frekvencno? Najprej je bila razvita amplitudna modulacija. Pri
uporabi se je potem pokazalo, da sprejemnik v¢asih Sumi in
prasketa. Signal na vhodu v sprejemnik je namrec¢ vedno
superponiran z motnjami iz okolice, recimo od razelektritev v
ozradju. Te motnje vplivajo v glavnem na amplitudo signala. Ce
modulacijo skrijemo v frekvenco, ne v amplitudo, postanejo
motnje brezpredmetne. To je tudi glavni razlog za razvoj in
uvedbo frekvencne modulacije tam, kjer potebujemo vecjo Cistost
sprejema.

Prve radije uporabimo za razposiljanje ¢asovnih signalov iz
astronomskih centrov. Z njimi nastavljamo ¢as na kronometrih
povsod po svetu, zlasti na ladjah.

Ladje sporocajo svojo lego in usklajujejo gibanje z drugimi
ladjami. Ko so v stiski, pa poklicejo na pomoc.

Vremenske opazovalnice na kopnem in na ladjah sporocajo
vremenske podatke - tlak, temperaturo, vlago, veter in

oblacnost - v meteoroloske centre. Ti centri pa potem razposiljajo
vremenska obvestila in napovedi.

Slika 40.28 Radijski sprejemnik v hisi. Prvi

:f:“’ sprejemniki so bili dragi in privoscili so si jih
lahko le bogati. (Anon)

Rastoca industrija poskrbi, da radijski sprejemniki prodro v hiSe
in domove. Oddajne postaje pa priskrbijo vsebino: obvestila,
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Opis slike

Video kamera

porocila, predavanja, intervjuje, govorne igre, prenose Sportnih
tekem in - nadvse cislano - zivo glasbo iz studijev in koncertnih
dvoran. Ljudem se odpre svet. Nikoli ve¢ ne bo tako, kot je bilo.

40.9 Televizija

Ce Ze prenasamo zvok po radijskih valovih, zakaj ne bi prenasali
Se slike? Saj je slika - recimo tista na zaslonu fotografske
kamere - pravzaprav zaporedje vrstic in vsaka vrstica je
zaporedje razlicno svetlih tock. Potrebujemo "le" pripravo, ki bo
otipala sliko vrstico za vrstico in zgradila ustrezajo¢ elektri¢ni
video signal. Pa tudi pripravo, ki bo iz video signala izvlekla
zaporedne vrstice in jih narisala drugo pod drugo na primeren
zaslon. Prenos video signala od prve priprave do druge - vklju¢no
z modulacijo in demodulacijo - pa je seveda prav tak kot prenos
avdio signala. Zahtevamo Se, naj bralna priprava prebere sliko v
delcku sekunde. Tako se slika na snemalnem zaslonu lahko
spreminja in prav tako se bo spreminjala slika na prikazovalnem
zaslonu. Na ta nacin bomo prenasSali gibajoce se slike, video.

Height

Slika 40.29 Slika kot zaporedje vrstic. Slika je dvodimenzionalno polje razlicno
svetlih tock. Za prenos po linearnem kanalu (radijskem valu) jo je potrebno
razdeliti na vrstice in te vrstice posiljati drugo za drugo. Snemalna naprava
mora zato sliko razkosati in predvajalna naprava jo mora znova sestaviti.
(SlideShare)

Mnogo truda je potrebnega, da kot inzenirji zamisel udejanimo in
sestavimo uporabno video kamero. Osnova zanjo je fotografska
kamera, ki ustvarja sliko na stekleni zadnji steni. Ta je na zunanji
strani premazana najprej s prevodno (signalno) plastjo in nato Se
s fotoprevodno plastjo (tarco). Slednja je tanka plast iz
izolatorske mice, v kateri so natrosene drobne kroglice

(0,025 mm) iz fotoprevodne snovi, recimo iz antimonovega
trisulfida (SbS3) ali svincevega monoksida (PbO). Svetloba preleti
steklo in signalno plast ter vpada na kroglice, ki pri tem izsevajo
elektrone. MocnejSa svetloba izbije iz kroglice vec¢ elektronov.
Izbite elektrone privlaci signalna ploSca, ki je pozitivna, in se po
ozemljitvi takoj izlocijo iz cevi. Na osvetljeni kroglici ostane
drobcen pozitivni naboj in kroglica tvori s signalno plos¢o nabit
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Video zaslon

Televizijski oddajnik

kondenzator. V tarci je tako vtisnjena vidna slika kot ploskovna
porazdelitev pozitivnega naboja.
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Slika 40.30 Snemalna cev v video kameri. Svetloba izbija elektrone iz
fotoprevodne plasti in na njej vtisne sliko iz pozitivnih nabojev. Elektronski Zarek
otipa sliko vrstico za vrstico. Vsako naelektreno tocko pri tem razelektri, kar se
pokaze kot ustrezno velik tokovni sunek na izhodu iz cevi. (SlideShare)

Shranjeno sliko na kroglicah otipava elektronski zarek iz
elektronskega topa. Usmerjajo ga okoliSnje tuljave, podobno kot
pri osciloskopu. Zarek razelektri nabito kroglico, ki jo zadene, in
s tem povzroci ustrezen tokovni sunek iz signalne plosce. Tokovni
sunek je enak naboju, ki je bil shranjen v kroglici. Razelektrena
kroglica je pripravljena, da jo svetloba spet naelektri do
naslednjega prihoda Zarka. Izhodni tok iz signalne plosce se v
pomoznih vezjih dopolni Se s signali za zacetek in konec vsake
vrstice ter za konec vseh vrstic slike. To je video signal.

Mnogo lazja je izdelava predvajalne naprave, ki sprejema video
signal in ga riSe na zaslon. Za to je primerna kar katodna cev,
opremljena z vezjem/tuljavami za premikanje zarka na prav tak
nacin kot v video kameri. Vezje mora prepoznati signale za
zacCetek in konec vrstice ter za konec slike ter ustrezno premikati
zarek. Jakost riSoCega zarka pa je krmiljena z video signalom, ki
je voden na posebno elektrodo tik ob izhodu iz elektronskega
topa. Bolj kot je ta elektroda negativna, bolj je Zarek oslabljen.
Tako opremljena katodna cev je odlicen video zaslon.

Video signal iz video kamere se sproti posilja v svet preko
televizijskega oddajnika. Srce oddajnika je kristalni oscilator, ki
tvori nosilni radijski val. Nanj se naloZi video signal z amplitudno
modulacijo. Hkrati se na podval, ki je glede na nosilni val
frekvencno zamaknjen, nalozi Se avdio signal iz mikrofona, in
sicer s frekvencno modulacijo. Oba vala se izsevata skupaj.

249


pict3b/vidicon.gif
pict3b/vidicon.gif
picref.htm

Televizijski sprejemnik

Tehni¢ne znacilnosti

Televizija in druzba

250

AM picture signal

Crystal » RF » Power ¥
osclllator amplifier amplifier
1 Transmitter
antenna
Scanning and
synchronizing
circuits
Light - bt
‘ »
> fad . AM £
Television Video ; Combining
: camera " amplifier || n'gon(:g:%tgg network
r'y
Microphone M
Audio » modﬁgtin sound
amplifier ampl‘ifisrg transmitter *
section \

FM sound signal

Slika 40.31 Televizijski oddajnik. Video signal iz video kamere se nalozi na
nosilni radijski val. Doda se mu avdio signal iz mikrofona, nakar ga antena
izseva v prostor. (SlideShare)

Izsevane radijske valove lovijo televizijski sprejemniki. Antena
sprejemnika sprejema valovanja od vseh oddajnikov, uglasevalec
iz te meSanice izbere zeljeno frekvenco (skupaj z njeno
podfrekvenco), ojacevalec ju ojaca, detektor razcepi na avdio in
video signal, nakar se oba ojacita in vodita na zvoc¢nik ter video
zaslon.
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Slika 40.32 Televizijski sprejemnik. Sprejemnik razcepi televizijski signal na
video in avdio signal ter prvega prikaze na slikovni cevi in drugega v zvocniku
spremeni v zvok. (SlideShare)

Tipi¢na televizijska slika je sestavljena iz 625 vrstic s po
(4/3)-625 "tockami". Zarek jo prebere/nariSe 25-krat na sekundo.
Clovesko oko ne zaznava tako hitrih skokovitih sprememb in vidi
zgolj gladko gibanje. V video signalu si torej sledi
625-625-(4/3)-25=10-10° "to¢kovnih" jakosti na sekundo.
Najvisja frekvenc¢na komponenta v video signalu je zato 10 MHz.
Ce jo hotemo vtisniti v nosilni val, mora imeti ta vsaj tolik$no
frekvenco. Zato tudi delujejo televizijski oddajniki na zelo kratkih
valovih okrog 100 MHz. Nosilna frekvenca za avdio signal je za
okrog 5 MHz viSja od nosilne frekvence za video signal. Oddajne
moci dosegajo 100 kW.

Televizija nadgradi radio. Televizijski sprejemnik postane sredisce
doma in okno v svet. In ker ljudje v glavnem is¢ejo razvedrilo in
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Magnetofon

zabavo, se razmnozijo razne specializirane televizijske postaje, ki
ljudem dajajo, kar pac ti hocejo, torej "razvedrilne" oddaje in
igrane filme vseh vrst. Stiriindvajset ur na dan. Vse skupaj pa
obilno zacinijo s placanimi oglasi, ki jih vstavljajo v najbolj
neprimernih trenutkih.

Slika 40.33 Televizija nadgradi radio
s slikami in postane sredis¢e doma.
(Anon)

Svojo priloznost prepoznajo tudi politiki in drugi zavajalci
cloveskega miSljenja: nikoli v zgodovini Se niso imeli taksne
moznosti, da nagovorijo toliko ljudi naenkrat in jih poskusajo
naplahtati na ta ali oni nacin: ne samo z glasom, temve¢ tudi s
stasom. Podobno je z ekshibicionisti vseh vrst. "Poglej me!" je
namrec ena izmed osnovnih otroskih potreb in nekateri otroci pac
nikoli ne odrastejo. Za pet minut slave, da se lahko pokazejo na
televizijskih zaslonih, so pripravljeni storiti vse. Tako televizija
poleg nespornih in sijajnih dobrobiti - vzgojnih, izobrazevalnih in
razvedrilnih - prinese tudi kopico slabosti, ¢e se ne pazimo:
neznansko izgubo Casa, pasivizacijo in indoktrinacijo.

40.10 Magnetni zapis

Avdio signal iz mikrofona in video signal iz televizijske kamere se
sproti nalagata na radijske valove in razposiljata k sprejemnikom.
Kakor hitro nastajata, tako hitro tudi izginjata. Kaj ne bi bilo
krasno, ko bi ju znali kam shraniti? Potem bi ju lahko v
prihodnosti spet poslusali in gledali. Ali pa bi ju naknadno, in
morda celo veckrat, posiljali sprejemnikom.

Kako shraniti ¢asovno spremenljiv elektri¢ni signal na izhodu iz
mikrofona ali kamere? Tako, da na izhod priklju¢imo primeren
elektromagnet, ki dovajani elektricni tok "spreminja" v magnetno
polje, in skozi to polje enakomerno vlecemo magnetibilni trak, da
ga polje magneti. MocCnejsi elektricni tok povzroc¢i mocnejso
namagnetenost traku. Magnetni zapis pa kasneje beremo z
obratnim postopkom: namagneteni trak vleCcemo mimo
elektromagneta, v katerem se zato inducira elektri¢na napetost
med koncema tuljave. Izumili smo magnetni zapis in branje
elektricnega signala.

Od zamisli do dobro delujoCe naprave je seveda trnova pot.
Najprej se osredoto¢imo na avdio signal. Kot primeren za
zapisovanje se pokaze podkvast elektromagnet iz laminiranega
mehkega Zeleza in z ozko rezo med poloma. To je magnetna
glava. Tik pod rezo magnetne glave tecCe trak od enega na drugi
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Magnetoskop

vrtecCi se kolut. En kolut je vle¢ni; poganja ga primeren
enosmerni elektromotor. Trak je iz plastike in je premazan s
slojem, ki vsebuje drobne delce Fe;03 ali CrO,. Za zapisovanje
zvoka do frekvence 20 kHz zadosSca, da se giblje trak s hitrostjo
nekaj centimetrov na sekundo. Zapisovalna glava sluzi tudi kot
bralna glava. Primeren ojacevalec skrbi, da je tok v zapisovalno
glavo (iz mikrofona) ali iz bralne glave (do zvo¢nika) dovolj velik.
Tako smo sestavili magnetofon.

~ Slika 40.34 Magnetna
zapisovalna glava in trak.
Elektri¢ni tok skozi
elektromagnet bolj ali manj
. < A— _Megrdalayer namagneti pod njim teko¢
Substrate trak. (What-When-How)

_
Tape motion

Trak, na katerem je posnet zvok, lahko znova uporabimo za
zapisovanje. To omogoca dodatna brisalna glava pred
bralno/zapisovalno glavo, ki trak razmagneti, to je, ga namagneti
z zvokom frekvence nad 20 kHz. Takega zvoka ne sliSimo.

Za zapis videa v televizijski locCljivosti je potrebna frekvencna
Sirina okrog 5 MHz. Trak bi se zato moral gibati s hitrostjo preko
deset metrov na sekundo, kar je mehansko nesprejemljivo. Zapis
videa vzdolz traku zato ni mogoc. Kaj pa zapis precno ali poSevno
na trak? Slednje omogoca zapisovalna glava na poSevno
usmerjenem vrtljivem valju. Ko se valj vrti, zapisuje glava na trak
posevno sled. Vzdolz ene sledi so zapisane vse vrstice posamicne
slike. Se bolj prakti¢no je, da sta na valju dve glavi; ena zapisuje
sode in druga lihe vrstice slike.

Slika 40.35 Vrtljivi boben z dvema
magnetnima glavama. Pri enem obratu
bobna zapise vsaka glava eno posevno
sled. Vzdolz ene sledi so zapisane vse
sode vrstice in vzdolz druge vse lihe
vrstice posamicne slike. (Anon)

path of head

Tipi¢en valj ima premer nekaj centimetrov in se vrti s 25 obrati
na sekundo, trak pa se giblje s hitrostjo nekaj centimetrov na
sekundo. Sirina video sledi na traku zna$a okrog 0,05 mm in
njena dolzina nekaj centimetrov. Ob enem robu traku se
zapisujejo Se sinhronizacijski imulzi in ob drugem zvok. Za oboje
poskrbita ustrezni mirujoci glavi. Branje videa in zvoka s traku
poteka podobno kot zapisovanje - preko istega vrtljivega bobna in
glav. Nabor glav zakljucuje mirujoca brisalna glava, s katero je
mogoce brisati video sledi, avdio sled ali oboje skupaj.
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Vremenske sonde

40.11 Radiosonde

Seveda zvok in slika nista vse, kar lahko prenasamo po radijskih
valovih. PrenaSamo lahko kakrSenkoli elektri¢ni signal, recimo
"elektrificirane" izmerke raznih merilnikov, na primer
termometra. Poskrbeti moramo le za pretvorbo izmerjene
koli¢ine, na primer temperature, v elektri¢ni signal.

Takoj nam pade na misel, da bi na opisani nacin lahko udobno
merili tlak, temperaturo in vlago v ozrac¢ju. Obesimo, v mislih, na
balon Skatlo z ustreznimi merilniki/pretvorniki in majhen
oddajnik na baterijo ter vse skupaj spustimo. Balon se bo dvignil
v viSave in sproti meril ter oddajal podatke o navedenih treh
kolicinah. Na tleh pa bomo to sprejemali in belezili. Zamislili smo
si radiosondo.

Slika 40.36 Vremenska sonda. Helijev balon ponese
v visave Skatlo z merilniki za tlak, temperaturo in
vlago ter z radijskim oddajnikom, ki sporoca izmerke
sprejmniku na tleh. (NOAA)

Kot raziskovalci v drzavnih meteoroloskih sluzbah zamisel hitro
uresni¢imo. Za primernega se pokaze balon iz tankega lateksa,
napolnjen s helijem do premera okrog 1,5 m. Tak balon ima dovolj
vzgona, da dvigne breme 1 kg od tal do visine preko 30
kilometrov. Ker pri tem prihaja v obmoc¢je ¢edalje nizjega tlaka,
se razpenja in na koncu poci. Pritrjeno padalo poskrbi, da
preostanki padejo na tla brez skode.

V skatli pod balonom so ze spoznani merilniki: aneroidni
barometer, bimetalni termometer in higrometer na las. Rocica,
pritrjena na barometrsko komoro, premika eno izmed plosc¢
pridruzenega kondenzatorja in mu s tem spreminja kapaciteto.
Termometer in higrometer na podoben nacin premikata vsak svoj
kondenzator. Poseben urni mehanizem z vrteco se kontaktno
roCico prikljucuje nastete tri kondenzatorje, enega za drugim,
vzporedno h kondenzatorju nihajnega kroga oddajnika.
Nihajnemu krogu se zato spreminja kapaciteta in s tem
frekvenca. Radijski val oddajnika je torej frekvencno moduliran.
Amplitudna modulacija ni dobra, ker se sonda oddaljuje in se na
tleh sprejemana amplituda zato manjSa. Sprejemnik na tleh
signal demodulira in ga preko elektromagneta in premi¢nega
peresa riSe na papirni trak.

253


pict3b/radiosonde.jpg
pict3b/radiosonde.jpg
picref.htm

254

Oscilator

Iz izmerkov nariSemo navpicni profil ozra¢ja. Pove nam, med
drugim, koliko je ozracje stabilno, to je, kolikSna je verjetnost, da
se v njem razvije konvekcija. Vsakodnevno spuScanje vremenskih
sond postane rutinsko opravilo meteoroloskih sluzb na kopnem in
na prekooceanskih ladjah.

40.12 Mikrovalovi

Dipolne radijske antene sevajo v vse smeri. V¢asih pa si zazelimo,
da bi vzpostavili radijsko povezavo zgolj med dvema stalnima
tockama, recimo iz doline, kjer je "vir informacij", na vrh hriba,
od koder bi jih potem oddajali na vse strani. Za to potrebujemo
usmerjeni paraboli¢ni anteni na obeh tockah: oddajno in
sprejemno. Sirina snopa 6, v katerega seva paraboli¢na antena s
premerom D, je dolo¢ena z uklonom valov na njenih robovih
[38.14]: 6 ~A/D. Za ozke snope so torej potrebni kratki valovi in
velike antene. Ve¢ kot desetmetrske antene so ze neprakti¢ne. Da
seva desetmetrska antena v kot ene stopinje, pa so potrebni
valovi reda velikosti ~ 10 cm, torej mikrovalovi.

Ko poskusamo s triodnim oscilatorjem tvoriti radijske valove s
frekvenco nad ~ 100 MHz, to je z valovno dolzino pod ~ 3m,
naletimo na tezave; motiti zacneta kapacitivnost med
elektrodama (ne moremo je dovolj zmanjsati) in preletni cas
elektronov. Izumiti moramo nov tip mikrovalovnega oscilatorja in
ojacevalca.

Spomnimo se na stojno valovanje v resonancnih votlinah. Kaj ko
bi elektronko - skozi katero tece curek elektronov - ovili s
toroidno votlino; morda bi se v njej vzbudilo stojno valovanje, ki
bi ga potem odvajali skozi majhno odprtino. To je priblizno tako,
kot ¢e pihamo zrak mimo ustja steklenice, da zazveni. Stevilni
poskusi vodijo do refleksnega klistrona.

reflection room

coupling loop resonant cavity

- MEAIIR
L ) 11X
e |

accelerating grid

kathode

Slika 40.37 Refleksni klistron. Pospeseni elektronski curek tece proti negativni
anodi in se od nje odbija nazaj. Pri tem te¢e mimo torusne votline in v njej
vzbuja stojece mikrovalove. Te odvzemamo skozi posebno odprtino in vodimo
po koaksialnem kablu. (AAC - All About Circuits)
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Ojacevalec

Usmernik

Izvorni curek elektronov je hitrostno homogen. Ko pa leti mimo
ustja votline, v kateri je stojno valovanje, se nekateri elektroni
dodatno pospesijo, drugi pa zavrejo, kakrsno elektri¢no polje pac
Ze srecCajo ob ustju. Currek postane zaporedje zgoscin in
razredcin. Ko se odbije od anode, te zgoScine spet priletijo do
ustja, vplivajo na polje in poniknejo skozi kolektor/ozemljitev. S
primerno dolzino elektronke in s primerno anodno napetostjo
poskrbimo, da prideta curek in polje v resonanco: vsaka zgos$cina
prispe k ustju votline tedaj, ko ji polje nasprotuje, in jo zato
zaustavi. Kineticna energija elektronov se prenese v energijo
polja. Majhna zanka v resonancni votlini deluje kot sekundarni
ovoj transformatorja in odvaja del energije v koaksialni kabel -
dve Zici, "ena znotraj votle druge". Mo¢ mikrovalov, ki potujejo
skozi kabel, izmerimo s priklju¢enim termoclenom. Tako
zgradimo refleksne klistrone z mo¢mi med 1 mW in 1 W ter s
frekvencami med 1 in 100 GHz.

Poleg mikrovalovnega oscilatorja potrebujemo Se mikrovalovni
ojacevalec. Dobimo ga tako, da k obstojeci torusni votlini dodamo
Se eno ali ve¢ zaporednih enakih votlin. Mikrovalove dovajamo v
prvo votlino in jih odvzemamo iz druge (ali zadnje). Delovanje je
podobno kot pri refleksnem magnetronu, le da curka ne
odbijamo, ampak ga kar posrkamo v kolektor/ozemljitev. To je
vecvotlinski klistron. Po zgledu "navadnega" radijskega
ojacevalca lahko del izhoda tudi vodimo po koaksialnem kablu na
vhod in dobimo mikrovalovni oscilator, torej alternativo
refleksnemu klistronu. Dvovotlinski klistroni dosegajo ojaCanje
102, vecévotlinski pa celo do 108. Izhodne povprecne moci
dosegajo 1 kW. Temu ustrezna morata biti enosmerni izvor moci
in hlajenje kolektorja.

RF coaxial
signal output
input cable
m*/ RFIpO{Ner
outpu
Beam —E_
control —
I
I
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Slika 40.38 Dvovotlinski klistron. Prva votlina poskrbi za grupiranje elektronov,
druga pa jim resonantno odvzema energijo. (AAC - All About Circuits)

Kakor vakuumska trioda ne zmore ustvarjati mikrovalov, tako jih
tudi vakuumska dioda (prikljucena med os in plasc¢ koaksialnega
kabla) ne zmore izravnavati. Zato tudi ne moremo z

galvanometrom meriti jakosti visokofrekventnih tokov na izhodu
ali odcepu iz kablov. Morda pa obstaja kaksSna snov, kristal, ki bi
elektricni tok - enosmerni, nizkofrekventni in visokofrekventni -
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prevajala (vsaj deloma) anizotropno? Raziskave odkrijejo, da so
taksni, med drugim, kovinski sulfidi. Najboljse rezultate pa
pokaze silicijev kristal, ki se ga dotika tanka, priostrena kovinska
zica ali igla. To je kristalna dioda. Deluje pri vseh frekvencah,
tudi mikrovalovnih. Zakaj sploh deluje, nam zaenkrat ni jasno,
ampak za uporabo to ni potrebno.

(De)modulacija  Mikrovalove zmoremo torej ustvarjati (s klistronom), usmerjeno
izsevati (z oddajno anteno) in zaznavati (s sprejemno anteno in
kristalnim detektorjem). Za prenos zvoka in slike pa jih moramo
Se modulirati in demodulirati. Tukaj nas elegantno resi
frekvenc¢na konverzija [40.8]. Z "navadnim" radijskim oddajnikom
ustvarimo modulirane radijske valove IF, nato pa te valove v
frekvenc¢nem mesalcu (s kristalnimi diodami) pomnozimo z
mikrovalovi LO iz mikrovalovnega oscilatorja (refleksnega
klistrona) ter pridobimo modulirane mikrovalove RF. Modulacija
se pri tem ohranja. Po potrebi te valove Se ojacimo z
mikrovalovnim ojacevalcem (klistronom). Primer: iz IF = 30 MHz
in LO=1,000GHz dobimo RF =1,030 GHz. Podobno je pri
demoduliranju. Prejete valove RF vodimo v mesSalec, kjer jih
pomnozimo z LO in dobimo IF. Tega pa obdelamo z "navadnim"
radijskim sprejemnikom.

40.13 Radar

Princip radarja  Vemo, da se radijski in svetlobni valovi odbijajo od ovir. To velja
tudi za mikrovalove, ki jih izseva mikrovalovna antena. Ce tak
mikrovalovni snop zadene, na primer, ob sovrazno letalo, se bo od
njega odbil v vse smeri, tudi nazaj. Kaj, ko bi poskusali zaznati
odbite valove? Ce bi v izbrano smer izsevali kratek paket
mikrovalov in izmerili zakasnitev t njegovega morebitnega
odmeva, bi s tem doloc¢ili tako smer kot oddaljenost r
morebitnega letala: r=ct/2. Z vrteCo se anteno pa bi dolocili lege
letal v vsej okolici. Izumili smo (vojaski) radar.

Synchronizer Transmitter Duplexer
Switch
[
Power Yo 5
Supply -] 'l | | l
Antenna
Y L L r
Display “ Recaiver

Slika 40.39 Princip radarja. Oddajnik tvori mikrovalove, antena jih izseva in
sprejema odmeve, sprejemnik pa jih ojaCuje in prikazuje na katodnem zaslonu.
(FAS - Federation of American Scientists)
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Tehni¢na izvedba

Uporaba radarja

Tehnic¢na izvedba radarja je naslednja. — Navaden kvarc¢ni
oscilator s pomoznim vezjem nenehno ustvarja zaporedje ostrih
prozilnih impulzov. — Mikrovalovni oscilator nenehno tvori
mikrovalove in jih uvaja v mikrovalovni ojacevalec. — Enosmerni
vir visoke napetosti stalno polni verigo vzporedno vezanih
kondenzatorjev. Vzporedno k verigi je prikljucena s plinom
napolnjena trioda, tiratron. Njena mrezica je na zaporni negativni
napetosti in skozi triodo ni toka. Ko na mrezico dospe pozitiven
prozilni signal, postane trioda prepustna in nabrani naboj na
kondenzatorjih se zacne pretakati skoznjo v visokonapetostni
transformator in naprej v ojacevalec mikrovalov. Pretakanje je
silovito in traja le kratek Cas, toliko, da napetost na triodi pade
pod prevodno vrednost. Po tem postane trioda neprevodna in
zacne se vnovi¢no polnjenje kondenzatorjev. — S prejeto mocjo
tvori mikrovalovni ojacevalec kratek paket mikrovalov. — Ko
tecejo mikrovalovi po valovodu mimo odcepa proti sprejemniku,
morajo slednjega "zapreti". Med sredico in plas¢em odcepnega
koaksialnega kabla je prikljuc¢ena s plinom napolnjena dioda,
tlivka. MimobeZno valovanje jo prizge in s tem kratkosti¢no
sklene vhod v sprejemnik. V sprejemnik zato ne prodre nic
valovanja in ga ne more sezgati. — Ko se paket popolnoma izseva,
tlivka ugasne in pot odmevom v frekvenc¢ni mesalec je odprta.
Drugi vhod v mesalec je lokalni mikrovalovni oscilator, ki deluje
na rahlo razli¢ni frekvenci od oddajnega oscilatorja. Posebno
vezje skrbi, da je ta frekvencni zamik konstanten. Frekvencno
znizani izhod iz mesSalca potem obdela navaden radijski
sprejemnik. — Prozilni signal, ki sprozi kondenzatorsko
razelektritev, sprozi tudi casovno bazo na standardnem
osciloskopu. Odmevi iz sprejemnika se vodijo na odklonske plosce
osciloskopa in se nariSejo kot porazdelitev odmevov po

razdalji. — Bolj pregledno pa se radarski odmevi prikazejo na
katodnem zaslonu z radialno preletno ¢rto. Smer preleta je
doloCena z usmeritvijo antene. Odmevi se riSejo vzdolz ¢rte bolj
ali manj svetlo. Poseben premaz zadrzi sliko nekaj sekund.

Slika 40.40 Slika na katodnem
zaslonu radarja. Viden je katodni
zarek in dolga veriga nevihtnih
oblakov, Ki jo je zarisal pri svoji
rotaciji. (FAA - Federal Aviation
Administration)

s
R
NS

o

o
3

Radarji, sprva namenjeni odkrivanju sovraznih letal, takoj najdejo
pot v civilno uporabo. Civilni radarji delujejo z valovnimi
dolzinami med nekaj centimetri in nekaj deset centimetri, z
najrazli¢cnejSimi Sirinami in oblikami snopov ter z raznovrstnimi
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dolzinami impulzov, frekvencami impulzov in oddajnimi moc¢mi.
Tipi¢ne vrednosti radarskih parametrov so naslednje: valovna
dolzina 5-10 cm; Sirina snopa 1-2°; frekvenca impulzov
250-1000/s; dolzina impulza 1-3 ps; vrsna moc¢ v impulzu
10-1000 kW; povprecna moc¢ sevanja 10-1000 W; najmanjsSa
zaznavna mo¢ 10714W (!). Ladje z radarji tipajo okoli sebe skozi
no¢ in meglo ter odkrivajo druge ladje, Ceri in ledene gore.
LetaliSCa opazujejo zracni prostor nad seboj in skrbijo za red pri
preletanju, pristajanju in vzletanju letal. Vremenske sluzbe
opazujejo odmeve od deznih kapljic in ledenih zrn v oblakih ter
dolocajo lego ter gibanje nevihtnih oblakov. Uspe jim celo meriti
jakosti padavin pri tleh. Prav tako sledijo dvigovanju vremenskih
sond ter doloCajo smer in hitrost vetrov na razli¢nih visinah. In
astronomi uspejo izmeriti odmeve od Meseca ter bliznjih planetov
ter tako potrdijo njihove oddaljenosti.

40.14 Sonar

Pod vodo radar zal ne dela, ker je duSenje mikrovalov premocno.
Se pa skozi vodo dobro Siri zvok. Kaj, ko bi naredili "radar" na
zvocne valove? Recimo mu sonar.

Thplexer
Synchrenizer }—-{ Transmitter ‘ Switch

Slika 40.41 Shema sonarja. Od radarje se razlikuje le po tem, da hamesto
elektromagnetnih valov izseva in prejema zvocne valove. (FAS - Federation of
American Scientists)

Ker so frekvence zvoka in ultrazvoka mnogo nizje od radijskih
frekvenc, lahko za oddajno in sprejemno vejo sonarja uporabimo
kar navadne radijske komponente in ni potrebe po mikrovalovnih
komponentah. Namesto antene ima sonar kupolo, v kateri so
namesceni bati. Vsak bat je povezan s piezolektricnim kristalom v
kondenzatorju ali z magnetostrikcijskim jedrom v tuljavi.
NihajocCe polje kondenzatorja ali tuljave povzroci nihanje bata in
obratno. Kako je izsevani zvo¢ni impulz usmerjen, je dolo¢eno s
faznimi razlikami med bati. S posebno pripravo (vrtljivo ploS¢o na
kontaktni podlagi) lahko opazovalec ro¢no nastavlja casovne
zakasnitve oz. fazne zamike batov, to je doloCa smer izseva.
Plosco lahko vrti tudi elektromotor. Izmerki se riSejo na katodni
zaslon in/ali na papirnat trak.
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Elektronska revolucija

Hitrost zvocnih valov v vodi znasa 1500 m/s. Sonarji delujejo na
frekvencah med 10 in 100 kHz, kar pomeni z zvo¢nimi valovnimi
dolzinami med 10 in 1 cm. Tipi¢cne moci v impulzu znasajo 1 kW.
Cim krajsi so zvoc¢ni valovi, tem bolj so duseni. Uporabni doseg
sonarja je med 500m (100kHz) in 5000 m (10kHz). Tipi¢ne Sirine
snopov pa znasajo med 10 in 45 stopinjami.

Tudi sonar je bil razvit za vojasko uporabo, predvsem kot "zvo¢no
oko" podmornic. Drugace pa sedaj z njim merimo globino morja
pod ladjami, da se zavarujemo pred nasedanjem. Izdelamo tudi
karto hribovitosti morskega dna. Ce sonar postavimo na dno in
usmerimo navzgor, lahko merimo viSino valov. Ribici pa ga
uporabljajo za odkrivanje ribjih jat. Pri tem Stejejo predvsem
odmevi od ribjih zra¢nih mehurjev.

Dolgo preden je ¢lovek izumil sonar, ga je narava oblikovala v
zivalih. Z zvoc¢nimi "kliki" se orientirajo in lovijo kiti, delfini in
netopirji. V marsikaterem pogledu so njihovi sonarji celo boljsi od
nasih. Od njih se moramo Se marsicesa nauciti.

40.15 Druzbeni vpliv

Kakor sta indukcijski generator in transformator sprozila
elektrifikacijo drzav in s tem popolnoma spremenila zivljenje
ljudi, tako sta preprosta dioda in trioda omogocili razvoj
elektronike in povzrocili Se vecje spremembe v druzbi. Brez teh
dveh skromnih elementov ne bi bilo svetovne ¢asovne sluzbe,
brezzi¢nih komunikacij v kopnem, ladijskem in letalskem prometu
in, zlasti, nobenega radija in televizije po domovih v razvitih
drzavah. Tezko si je predstavljati zivljenje brez vseh teh naprav.
Samo sprasujemo se lahko, kaj bo v nadaljnjem razvoju znanosti
in tehnike Se pustilo podoben druzbeni pecat. []
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41

Energija
fotoelektronov

Kvantni delci

Fotoni - Rentgenski zarki - Rentgenska spektrometrija - Valovne
lastnosti delcev - Elektronski mikroskop - Zarki alfa, beta in
gama - Notranjost in jedro atoma - Planetarni in valovni model
atoma - Vodikov atom - Elipti¢ne tirnice - Vecelektronski atomi -
Magnetni moment - Spin elektrona - Struktura ¢rt

41.1 Fotoni

Pri elektroniki smo ugotovili, da tece skozi fotodiodo tem
mocnejsi nasiceni tok, ¢im mocneje jo osvetljujemo. Mocnejsa
svetloba ocitno izbija iz katode vec elektronov na ¢asovno enoto
kot SibkejSa. Kako je pa s kineticno energijo teh izbitih
fotoelektronov? Pricakujemo, da tudi ta narasca z osvetljenostjo:
na posamicen elektron pa¢ mora v ¢asovni enoti pasti tem vec
energije, ¢im vecja je jakost svetlobe. Pa naredimo poskus!

Monodhromatic

= | =
Sodiam _Q o

phate

Slika 41.1 Merjenje energije fotoelektronov z zaporno napetostjo. Strgalo je
potrebno zato, da ocistimo izbrano katodno povrsino tik pred meritvijo. (Anon)

V evakuirano stekleno buco zatalimo katodo iz natrija, kalija ali
litija in jo osvetljujemo z monokromatsko vidno svetlobo. Izbite
elektrone zaustavljamo z negativno napetostjo na anodi. S
presenecenjem ugotovimo, da je zaporna napetost U - torej tudi
kineti¢na energija elektronov K= eU - neodvisna od jakosti
svetlobe (LENARD)! Sibka svetloba izbija prav tako hitre elektrone
kot mocna, le manj jih je. Poskus ponovimo s svetlobo razlicnih
valovnih dolzin. In spet presenecenje: maksimalna kineti¢na
energija izbitih elektronov je odvisna od frekvence svetlobe
(LENARD)! Ultravijolicna in modra svetloba (Cetudi Sibka) izbijata
hitrejSe elektrone kot rumena (Cetudi mocna). Nizkofrekvencna
(rdeca in infrardeca) svetloba pa elektronov sploh ne izbija.
Natanc¢nejSe meritve pokazejo sorazmernost (MILLIKAN)

K=hv-W (41.1)
h=6,63-10"34]s.
Sorazmernostna kvantna konstanta h je neodvisna od snovi, iz

katere je katoda, konstanta W pa je od te snovi odvisna. Slednjo
si razlagamo kot potrebno delo, da se elektron iztrga iz kovine.
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Kvanti energije in
fotoni

Gibalna koli¢ina
fotona

Ker kineti¢na energija ne more biti negativna, sledi, da se se
elektroni ne izbijajo, Ce je frekvenca svetlobe v = W/h.
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Slika 41.2 Zaporna napetost kot funkcija frekvence vpadajoce svetlobe za
natrij. Prazni kvadrat je pobrisan izracun kvantne konstante. (Millikan, 1916)

Opazenega rezultata si ne moremo razloziti drugace, kot da
elektromagnetno polje predaja svojo energijo elektronom v
paketih, kvantih energije. Elektron lahko prevzame enega ali vec
kvantov energije, nikakor pa ne polovicni ali kak drug ulomni
delez. Recemo, da je energija elektromagnetnega polja
kvantizirana koli¢ina. In Ce je energija svetlobe kvantizirana pri
absorpciji, zakaj ne bi bila tudi pri emisiji ali celo pri Sirjenju? To
nas navede na misel, da mora biti svetloba - kljub svoji valovni
naravi - sestavljena iz delcev, fotonov, od katerih ima vsak
energijo (EINSTEIN)

E=hv. (41.2)

Vidna svetloba z valovno dolzino 5000 A, to je s frekvenco

0,6 - 1012 Hz, je torej sestavljena iz fotonov z energijami po 2,5eV.
Koliko pa je fotonov v son¢ni svetlobi? Privzamemo, da je ta kar
monokromatska vidna. Gostota toka sonc¢ne svetlobe na Zemlji
zna$a j = E/St =1kW/m?2. Ker E = N - hp, izraCunamo

N/St =j/hv ~ 102! /m?s. Ogromno Stevilo fotonov na sekundo in
kvadratni meter! Clovesko oko zazna Se tok 10716 W na sredini
vidnega spektra. Tedaj pade v oko 250 fotonov na sekundo.

Fotoni so delci, ki se gibljejo s svetlobno hitrostjo in imajo
(mirovno) maso enako ni¢. Zanje zato veljajo relativisti¢ni zakoni.
Za relativisti¢en delec velja, kot vemo, E? — (¢G)? = (mc?)?. Ko
postavimo m =0, dobimo

E hv h (41.3)

G=—=—=—.

c ¢ A
To je gibalna koli¢ina fotona. Ceprav foton nima (mirovne) mase,
pa ima gibalno koli¢ino. Tudi ona je kvantizirana. Ugotovitev
seveda ni presenetljiva, saj vemo ze od prej [35.14], da svetloba
poleg energije prenasa Se gibalno koli¢ino. Sedaj smo temu
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Realnost in modeli

Lastnosti zarkov

Rentgenska cev

dejstvo nasli le korpuskularno razlago. Vse enacbe od prej
ostanejo v veljavi, le celotno energijo svetlobe piSemo kot vsoto
posamicnih energij fotonov: E = Nhv. Tako, na primer, zapiSemo
fotonski tlak na absorbirajoco steno kot p = (N/V)hv.

Pri raziskovanju svetlobe smo torej naredili poln krog: najprej
smo mislili, da je svetloba curek delcev. Potem smo ugotovili, da
je pravzaprav valovanje in nato Se, da je elektromagnetno
valovanje. Zdaj pa kaze, da je kljub vsemu le sestavljena iz delcev,
ceravno so ti nekaj posebnega, saj imajo valovne lastnosti. Kaj je
torej res? Ob tem vpraSanju se zavemo, da pravzaprav ne vemo in
ne moremo vedeti, kaj je svetloba (ali karkoli) v resnici. Saj
gledamo naravo vedno preko svojih Cutil, nikoli neposredno. Vse,
kar nam je dosegljivo, je le izgradnja modelov realnosti. In tisti
model, ki se bolje prilega opazovanjem, proglasimo za boljSega
oziroma za bolj resni¢nega. Nobenega zagotovila nimamo, da bo
tak tudi ostal. NajlepsSa usoda, ki jo kak model lahko dozivi, je ta,
da postane poseben primer bolj sploSnega modela.

41.2 Rentgenski zarki

Pri poskusih s katodno cevjo v temi opazimo, da zraven stojec
fluorescentni zaslon zasveti, ko cev vklju¢imo. Ko jo izklju¢imo,
pa svetlikanje izgine. Iz cevi ocitno nekaj prihaja in vpada na
zaslon. Je to vidna svetloba? Prizgano cev pokrijemo s ¢rnim
papirjem, vendar svetlikanje ne izgine. So to elektroni? Cev
pokrijemo z aluminijasto folijo, a svetlikanje ostaja. Ocitno smo
na sledi neCesa novega. Lotimo se poskusov in ugotovimo
naslednje (RONTGEN).

Iz svetle tocke, kjer elektroni zadevajo zaslon, se v vse smeri -
poleg vidne svetlobe - Sirijo neznani zarki. Ti brez posebnih tezav
prehajajo skozi snovi, ki imajo lahke atome. Ustavljajo jih le snovi
s tezkimi atomi, na primer svinec. Na fotografski plosci puscajo
odtis Zeleznega kljuca, ki je zaprt v kartonski $katli. Zarki se ne
odbijajo in ne lomijo. Na uklonski mrezici se ne uklanjajo. Ni jih
mogoce odklanjati niti z elektricnim in magnetnim poljem. Kaze
torej, da niso niti vidna svetloba niti curki nabitih delcev. Krstimo
jih za rentgenske zarke.

Za preucevanje rentgenskih zarkov preoblikujemo katodno cev v
primernejsSo obliko. Elektronski curek spus¢amo na posevno
nagnjeno anodo iz platine ali volframa; nastajajoci rentgenski
zarki so potem usmerjeni v glavnem v pravokotni smeri. Za pogon
cevi uporabimo indukcijsko tuljavo ali visokonapetostni usmernik
z napetostmi nekaj 10kV. Ker se zaradi trkov elektronov anoda
mocno segreva, jo po potrebi hladimo z vodo. Tako dobimo
rentgensko cev.
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teles

Uklon na kristalu

Slika 41.3 Cev za tvorjenje
rentgenskih zarkov. (Anon)

Ceprav kot odkritelji $e ne vemo, kaj pravzaprav so rentgenski
zarki, je njihova uporabna vrednost takoj oCitna: z njimi lahko
slikamo notranjost ¢loveskega telesa. Vidimo kosti, zlome, zobna
vnetja, morebitne vojne spominke - krogle in Se kaj. Zdravniki
navdusSeno sprejmejo novo orodje. Njegove koristi so
neprecenljive.

Slika 41.4 Slika roke z rentgenskimi zarki.
(General Electric)

Photograph by Wilhelm Reentgen Courtesy Seneral Electric Co

Zal pa se pocasi zatno kazati tudi $kodljive lastnosti rentgenskih
zarkov, zlasti pri ljudeh, ki so jim prekomerno izpostavljeni: zacno
jim izpadati lasje, pojavi se slabokrvnost in Se kaj. Zdravnisko
osebje, ki vsakodnevno upravlja z moc¢nimi rentgenskimi cevmi,
mora biti zato zasc¢iteno s svin¢enimi zasloni.

41.3 Rentgenska spektrometrija

Ena izmed mozZnosti, kaj naj bi rentgenski zarki bili, je naslednja:
to so elektromagnetni valovi, vendar s tako kratko valovno
dolzino, da se ne uklanjajo na uklonskih mrezicah, ki jih zmoremo
narediti. Morda pa se uklanjajo na kristalih, ki so naravne
tridimenzionalne mrezice z "rezami" na medsebojnih razdaljah
nekaj angstremov? Rentgenski zarek spustimo na velik kristal
morske soli in za njim postavimo fotografsko plosco. Na njej
dobimo nekaksne uklonske pike (LAUE). Kaze torej, da so
rentgenski zarki res kratkovalovna svetloba.

RaziSc¢imo uklon na kristalu bolj natanc¢no! Kristali morske soli so
kvadri, ki so bolj ali manj obsekani z ravninami. Zamislimo si
idealni, neobsekani kristal v obliki kvadra. Postavimo ga
navpicno. Tak kvader je tridimenzionalna mreza kock z robom d,
v katere vozliScih ti¢ijo atomi Na in Cl. Predstavljamo si, da je ta
mreza navpi¢na skladovnica vodoravnih mreznih ravnin. Ce pade
na zgornjo ravnino valovanje, se deloma odbije in deloma
prepusti ter nato odbije na naslednjih ravninah. Ako sta valovna
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Rentgenski
spektrometer

dolzina in vpadni kot pravsnja, imajo odboji od vseh mreznih
ravnin enako fazo, se konstruktivno sestejejo in dobimo mocan
odboj, sicer pa ne.

Slika 41.5 Uklon rentgenskih zarkov na kristalnih
ravninah. Pri izbranih kotih imajo odbiti zarki s
R posameznih ravnin enako fazo in konstruktivno

interferirajo.

A".}DC d
X\

B \dsimf}

Slika pokaze, da znaSa pogoj za odboj AB + BC = 2d sin 6 torej
(BRAGG)

2dsin6=NA,N=1,2,3 ... (41.4)

Da nastane konstruktivna interferenca, mora biti valovna dolzina
vpadlega valovanja manjsSa od 2d.

Ce vpada na zgornjo ploskev valovanje z razli¢nimi valovnimi
dolzinami, se pri kotu 6 pac odbije tista komponenta, ki ima
pravsnjo valovno dolzino. Kaksna je ta dolzina, je enoli¢no
doloceno s kotom 6 in medmrezno razdaljo d. Kristal je torej
selektor, ki iz mnozice valovnih dolzin prepusti le izbrano.

Tako upamo izmeriti valovno dolzino rentgenskih zarkov.
Potrebujemo le medmrezno razdaljo kristala. Gostota NacCl je
2,3kg/dm3 in kilomolska masa 58,5kg. V tej masi je N, "molekul"
NaCl. Masa ene molekule je zato m; = M/N,. V prostornini 2 - d3 je
ena molekula. To pomeni p = m;/2d3, iz Sesar sledi d = 2,8 A.

Meritev poteka tako, da na glavno ploskev kristala NaCl
spuscamo ozek rentgenski zarek (ki ga dobimo iz rentgenske cevi
in kolimiramo skozi dve svinCeni zaslonki) pod ¢edalje ve¢jimi
vpadnimi koti 6 od navpic¢nice ter belezimo jakost odbitega
valovanja pod pripadajo¢imi odbojnimi koti. Jakost odbitega Zzarka
belezimo kar na fotografski plosci, ki jo nato obdelamo tako, kot
smo delali pri merjenju izseva zvezd. Bolj priro¢no pa je, da zarek
spustimo v cilindri¢no posodo, napolnjeno s primernim plinom
(etilovim bromidom). Rentgenski zarek ionizira plin in povzroci
elektri¢ni tok v prikljucenem vezju. Tok merimo z
galvanometrom. To je ionizacijska celica. 1z prakti¢nih razlogov
tudi ne nagibamo vhodnega zarka, ampak raje pod stalnim
zarkom vrtimo kristal. Prav tako z zobniki povezemo vrtenje
kristala z vrtenjem merilnika: zasuk prvega za 0 povzroci zasuk
drugega za 26. tako dobimo prirocen rentgenski spektrometer.
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Slika 41.6 Prvi rentgenski
spektrometer. Q = izvor
rentgenskih zarkov, A = zaslon,

C = kristal, D = detektor
(ionizacijska celica). (Bragg, 1915)

FiaG. 4.

Spekter rentgenskih  Takoj vidimo, da je rentgenski spekter sestavljen iz dveh delov:
zarkov  7yeznega in Crtastega. Zvezni spekter ima podobno obliko za vse

anodne snovi. Cim vi$ja je delovna napetost, tem visji je spekter.
Pri kratkih valovnih dolZinah je ostro odrezan. Vse to lepo
razlozimo z domnevo o rentgenskih fotonih. Ko elektroni vpadejo
na katodo, se namrec zaustavijo. To naredijo lahko v enem
velikem ali ve¢ drobnih korakih. Pri tem izsevajo fotone z
ustreznimi frekvencami. V najboljSem primeru se elektron
zaustavi v enem samem koraku in pri tem izseva foton s
frekvenco eU = hvpyax 0ziroma Apn = (12,3 A - kV)/U. Fotoni z
vi§jimi frekvencami (oziroma krajsimi valovnimi dolzinami) sploh
ne morejo nastati. Spekter je zato odrezan. Z merjenjem mejne
frekvence lahko zato natan¢no dolo¢imo kvantno konstanto h.

6 Slika 41.7 Shematic¢ni
spekter rentgenskih Zzarkov.
Spekter je sestavljen iz

B Ko . v
B zveznega in Crtastega dela.
characteristic | . P
radiation Slednji je odvisen od snovi, iz

radiation

/x\ —— katere je anoda. (Cullity,
M:skv 1967)
i \

Kp

i

[N AT

BWL bl ——
0 1.0 2.0 3.0
WAVELENGTH {angstroms)

2)
)/*(/

yd

X-RAY INTENSBITY (relative unita)

Crtasti spekter pa je, nasprotno, odvisen od snovi, iz katere je
anoda. Vsaka snov ima svoj karakteristicen ¢rtni spekter. To je
njen prstni odtis, prav kakor ¢rtni spektri v vidni svetlobi. Valovna
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Kristalometrija

Elektroni kot valovi

dolzina spektralnih ¢rt je neodvisna od uporabljene napetosti,
njihova intenziteta pa z napetostjo raste. Crte kaZejo, da pri trkih
elektronov z atomi v slednjih nastanejo resonantna nihanja z
ostrimi frekvencami.

Obstoj Crtastega spektra izkoristimo za pridobivanje intenzivne
monokromatske rentgenske svetlobe. "Belo" svetlobo spustimo na
kristal in ga tako zasucemo, da odbija svetlobo izbrane Crte.
Dobili smo monokromator.

V kristalu soli pa so poleg vodoravnih mreznih ravnin Se navpi¢ne
ter bolj ali manj poSevne. Na vsakem takem naboru ravnin
nastanejo odboji. Ce kristal vrtimo na vse moZne nacine pod
monokromatskim Zarkom, dobimo zato ojacanja v razli¢nih
smereh. Namesto da sipamo svetlobo na enem velikem kristalu,
ki ga vrtimo, pa jo lahko sipamo na mnozici drobnih kristal¢kov,
ki so razli¢no orientirani. Primerna sta kovinska folija ali kristalni
prah, posut po stekleni plosci. Uklonska slika za taksno tarco ima
obliko koncentri¢nih krogov. Vsak krog pomeni uklon na ustrezni
skladovnici ravnin. Svetlost kroga sporoca Stevilsko gostoto
atomov na teh ravninah. Radij kroga in njegova oddaljenost od
tarce izdajata sipalni kot 0 in preko njega - ter poznane valovne
dolZine - razmik d ustrezajocih ravnin.

Slika 41.8 Uklon monokromatskih rentgenskih
zarkov pri prehodu skozi aluminijasto folijo. V njej so
drobni kristal¢ki, orientirani v vse smeri. Na
"pravilno orientiranih" kristalnih ploskvah nastane
konstruktivna interferenca. (Anon)

Ce so kristal¢ki veliki, krogi niso sklenjeni, ampak so sestavljeni
iz posameznih tock. Ce krogov sploh ni, pa je preucevana folija iz
amorfne, ne iz kristalne snovi. Tako s sipanjme monokromatske
rentgenske svetlobe na kristalnih folijah ali kristalnem prahu
raziskujemo lastnosti snovi.

Slednji¢ pomislimo tudi na to, da bi rentgenske zarke uporabili za
izdelavo mikroskopa. Ker imajo ti zZarki zelo kratko valovno
dolzino, bi morala biti locljivost takega mikroskopa mnogo boljSa
od lo¢ljivosti optiénega mikroskopa. Zal pa v naravi ni snovi, na
kateri bi se rentgenski zarki znatno lomili, zato tudi ne moremo
izdelati ustreznih le¢. Rentgenski mikroskop je torej neuresnicljiv.

41.4 Valovne lastnosti delcev

Ugotovili smo, da se svetlobni valovi kazejo v doloc¢enih
okoliSc¢inah kot curki delcev. Pojavi se drzna misel: morda se pa
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Magnetne lece

tudi curki elektronov lahko pokazejo kot valovanje? Drugace
receno: fotonom, kot brezmasnim delcem, pripisujemo valovno
dolzino. Ali imajo tudi elektroni, kot masni delci, valovno dolzino
in ¢e jo imajo, kakSna neki je? Morda pa velja tudi zanje ista
enacba kot za fotone, namrec¢ (DE BROGLIE)

. h _ h . (41.5)

G my

Cim hitrej$i so delci, tem kraj$o valovno dolzino naj bi imeli.
Elektroni, ki preletijo napetost 100V, bi tako imeli valovno
dolZzino okrog 1A.

Seveda je vse to zgolj domneva. Preveriti jo moramo s poskusom.
Ponuja se kar sam: uklon elektronov na kristalu ali na foliji
kristalckov, ¢isto po vzoru uklanjanja rentgenskih Zarkov. Tak
poskus res naredimo. In poskus domnevo potrdi. Curek
elektronov se na kristalni tarc¢i res uklanja kakor valovanje
(DAVISSON / GERMER)!

Slika 41.9 Uklon elektronov pri prehodu skozi
aluminijasto folijo. Elektroni s pravsnjo energijo imajo
valovno dolzino, primerljivo z medmrezno razdaljo
kristalov, in se na njih uklanjajo podobno kot
rentgenski zarki. (Anon)

Domnevo - oziroma zdaj ze dejstvo - lahko Se razsirimo: ne samo
curki elektronov, ampak curki vsakrsnih masnih delcev - ionov,
atomov ali celo gumijastih kroglic - se vedejo kot ravno
valovanje. Ker so pa ti delci mnogo tezji od elektronov, je njihova
valovna dolzina ustrezno krajSa. Poskus uspe z atomi srebra pri
sobni temperaturi, vendar so zaradi njihove hitrostne
nehomogenosti uklonske slike precej razmazane. Pri
makroskopskih delcih pa je valovna dolzina zZe tako kratka, da je
sploh ne moremo zaznati.

41.5 Elektronski mikroskop

Na elektronske curke lahko torej gledamo kot na valovanje.
Mikavna je misel, da bi z lomljenjem teh curkov izdelali
elektronski mikroskop po zgledu svetlobnega. Locljivost takega
mikroskopa bi morala biti izjemna, saj so valovne dolzine hitrih
elektronov vectisoCkrat manjSe kot pri vidni svetlobi. Tezava je v
tem, da moramo za to najprej izumiti primerne "lece".

Elektroni se odklanjajo v elektricnem in magnetnem polju. To
izkoristimo za konstukcijo magnetnih in elektri¢nih lec.


pict3c/ediff.jpg
pict3c/ediff.jpg
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Slika 41.10 Magnetna lec¢a. Primerno oblikovano
magnetno polje fokusira curek elektronov podobno, kot
steklena leca fokusira curek fotonov. (ETH Zirich)

Magnetna leca je tuljava iz bakrene Zice, zaprta v votel zelezen
cilinder. Cilinder ima v notranji steni krozno rezo v obliki prstana.
Skozi to rezo pronica magnetno polje, ki je v sredini sibko in proti
robovom mocnejSe. Elektron, ki preleti polje, dobi neto sunek
proti osi in zavrtljaj okrog nje. Robni elektroni dobijo vecji sunek
kot tisti ob osi. Vzporeden curek elektronov se zato fokusira v
tocko.

Magnetne leCe razporedimo v elektronskem mikroskopu tako kot
steklene leCe v opticnem mikroskopu. Opazovani predmet
osvetljujemo s hitrimi elektroni in sliko ujamemo na fluorescentni
zaslon ali fotografsko plosco (RUSKA). Dobri elektronski
mikroskopi dosezejo 100 000-kratno povecavo, torej stokrat vec,
kot opticni.

Slika 41.11 Elektronski mikroskop
z magnetnimi leCami. Za
primerjavo je prikazan tudi optic¢ni
mikroskop. (Agar, 1974)

Viewing screen
with final image

/A\ Ocular or
./ projector—
/ lens

— Intermediate
image

Condenser —
lens

1
Filament ' A
Electron microscope

Light microscope

Elektronski mikroskop nam odpre okno v svet s tipicnimi
locljivostmi nekaj deset atomskih premerov. To je nanosvet. V
njem si ogledujemo podrobnosti v celicah ter odkrijemo nova,
presenetljiva bitja - viruse.
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Sevanje urana

Slika 41.12 Virus herpesa, kot ga vidi elektronski
mikroskop. Uporabljena je 50.000-kratna

Pri mikroskopiranju so potrebni zelo tanki vzorci. BioloSke vzorce
moramo tudi kemicno fiksirati in dehidrirati. Namesto
prepuscenega elektronskega curka lahko uporabimo tudi
odbitega. Taksni mikroskopi imajo skromnejSe zahteve glede
VZOTCcev.

41.6 Zarki alfa, beta in gama

Rentgenski zarki izvirajo iz fluorescen¢ne pege na zaslonu
katodne cevi. Fluorescirajo pa tudi druge snovi, recimo uranova
ruda uran-kalijev sulfat K,UO,(S0,),, in sicer potem, ko jo za
nekaj ¢asa izpostavimo son¢nemu obsevanju. Morda pri svoji
fluorescenci tudi oddaja rentgenske zarke? — Uranovo rudo
damo na sonce, da zacne fluorescirati. Potem jo polozimo na
fotografsko ploSco, ki je zavita v ¢rn papir. Skozi papir svetloba
ne more. Plosc¢a pa kljub temu pocrni. Kaze, da je res nekaj
zaznala, morda rentgenske zarke. — Ko tako izvajamo poskuse,
nekaj dni ni sonca, zato neosvetljen kos rude in neuporabljen
paket fotografskih plos¢ spravimo v predal. Ko se sonce spet
pokaze, pa hocemo najprej preveriti, ali so shranjene plosce Se
dobre. Eno razvijemo in ¢aka nas veliko presenecenje. Plosca je
pocrnjena! Uranova ruda izseva neke zarke tudi tedaj, ko ne
fluorescira. Pravzaprav seva ruda nenehno. ReCemo, da je
radioaktivna (BECQUEREL).

Fpw s, oy g i T B4R T gllika 41.13 Polrnitev fotografske plodce z
Erhon' am Mt & &, A C b i L6 o v v .
tilpy 6 1% b, dvema kosoma uranove rude. Med plosco in

enim kosom rude je postavljen kovinski kriz,
ki zarke oslabi. (Becquerel, 1896)

Ker radioaktivni zarki po¢rnijo fotografsko plo$co, so morali
razbiti njene molekule srebrovega bromida. Morda lahko
razbijajo tudi molekule v zraku, to je, jih ionizirajo, tako kot to
delajo rentgenski zarki? KosScke rude postavimo med plosci
nabitega kondenzatorja, ki je povezan z elektroskopom.
Elektroskopova listica pocasi uplahneta. To je potrditev, ki smo jo
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Polonij in radij

Zarki alfa, beta in
gama

iskali. Namesto elektroskopa lahko celo uporabimo obcutljiv
galvanometer in z njim merimo Sibek tok.

Poleg uranovih rud so radioaktivne tudi nekatere druge rude, na
primer tiste, ki vsebujejo torij. Pri tem je vseeno, v kaksnih
kemicnih spojinah sta uran ali torij zvezana. Kaze torej, da
radioaktivni delci spontano izletajo iz notranjosti nekaterih tezkih
atomovw.

Poskusimo izolirati tisti element oziroma elemente iz uranove
rude, ki so odgovorni za radioaktivnost! Z zapletenimi kemi¢nimi
postopki iz rude zapovrstjo odstranjujejmo razlicne primesi.
Sproti z elektroskopom preverjamo, katere snovi so radioaktivne
in katere ne. Tako pridemo - poleg urana in torija - Se do dveh
novih, doslej nepoznanih in moc¢no radioaktivnih elementov:
polonija g4Po in radija ggRa (CURIE). Potrebno je nekaj ton rude,
da dobimo 0,1 g radija. Kot pove galvanometer, seva polonij okrog
103-krat moc¢neje od Cistega urana in radij celo 10%-krat mocneje.
V kalorimetru izmerimo, da - preracunano - 1 gram radija v eni
uri odda 620] toplote. To pomeni, da 1 g radija v 1 uri segreje

1,5 g vode od lediSca do vreliSca. Zdi se tudi, da se radioaktivnost
radija s casom ni¢ ne spreminja, do¢im se radioaktivnost polonija
pocasi, preko mesecev, zmanjSuje.

Radioaktivne zarke hocemo sedaj podrobneje raziskati. Za
sevalne poskuse sta primerna radijev bromid RaBr; ali radijev
klorid RaCl,.

Ozek curek iz vzorca spustimo skozi magnetno polje in s
fotografsko plo$co pogledamo, kam se curek odkloni. Ugotovimo,
da se curek razcepi. Curki iz nekaterih virov se razcepijo v dva, iz
drugih celo v tri delne curke, od katerih gre eden zmeraj
naravnost, preostala dva pa se odklonita vsak na svojo stran.
Opravka torej imamo s tremi vrstami zarkov. Pozitivno nabite
poimenujemo Zarke alfa, negativno nabite Zarke beta in nevtralne
Zarke gama (RUTHERFORD).

Z vstavljanjem ovir med izvor sevanja in svetle¢ zaslon ocenimo
Se doseg sevanj: delec alfa se zaustavi ze v nekaj centimetrih
zraka ali v listu papirja; beta se zaustavi v nekaj metrih zraka ali
milimetru aluminija; gama pa potrebuje za zaustavitev kar nekaj
centrimetrov svinca.

Slika 41.14 Zarki alfa, beta in gama,
izvirajoci iz uranove rude, v mo¢nem
magnetnem polju. Prikaz je shematicen in
razdalje niso sorazmerne. (Curie, 1904)
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gama

Razmerje e/m za nabite delce izmerimo z ustrezno prilagojenimi
masnimi spektrometri. Za detekcijo delcev uporabimo fotografsko
plosco ali svetle¢ zaslon, na katerem Stejemo bliske kar z o¢mi in
mikroskopom. Delci alpha se pokazejo kot dvakrat ionizirani
helijevi atomi. Iz njihovega odklona v magnetnem polju dolo¢imo
gibalno koli¢ino ter iz nje kineti¢no energijo in hitrost. Dobimo
diskretne vrednosti okrog 5 MeV, kar ustreza 5 % svetlobne
hitrosti.

Slika 41.15 Spekter zarkov alfa. Izvor sevanja je kemicno cist uran, sestojec iz
stirih izotopov. (Savannah River Laboratory)

Delci beta se pokazejo kot elektroni z zveznim energijskim
spektrom do 1 MeV, to je s hitrostmi do 90 % svetlobne hitrosti.
Pri merjenju moramo zato uporabiti (Ze spoznane) relativisticne
enacbe za odklon v elektricnem in magnetnem polju. Preseneti
nas zelo velika hitrost elektronov. V katodnih ceveh jim lahko z
visokonapetostnimi usmerniki podeljujemo le energije do okrog
100keV.

Slika 41.16 Spekter zarkov beta. Izvor
sevanja je kemicno cist bizmut. (Neary,

Energy spectrum of beta
decay electrons from 210 1940)

Intensity

0 02 04 0.6 0.8 10 1.2
Kinetic energy, MeV

Delci gama pa se vedejo kot zelo prodorni rentgenski zarki z
diskretnim energijskim spektrom. Njihove energije merimo preko
fotoelektricnega pojava. Energijski razpon je priblizno takSen kot
pri zarkih alfa in beta. Valovnih dolzin visokoenergijskih delcev
gama ne moremo neposredno meriti, ker so premajhne, lahko jih
pa iz energij izracunamo.
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Slika 41.17 Primer spektra
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Kaze torej, da radioaktivni delci spontano nastajajo v notranjosti
nekaterih tezkih atomov. Kaj stoji za vsem skupaj, na tej stopnji
ne vemo. Da bomo odgovorili na to vprasanje, bomo morali pred
tem raziskati, kaksSna je notranjost atomov in kaksSna gibanja tam
potekajo.

41.7 Notranjost in jedro atoma

Pri raziskavi odklona zarkov alfa v magnetnem polju opazimo, da
majhna koli¢ina zraka v vakuumski merilni pripravi vpliva na
gibanje Zarka: njegova slika na svetlecem zaslonu postane rahlo
motna. Ocitno nekaj vpliva na gibanje delcev alfa in jih odklanja
iz zaCetne smeri. To so trki z atomi oziroma z njihovimi elektroni.
Da bi ucinek povecali, obstreljujemo zlato folijo, ki vsebuje tezje
atome z vec elektroni. Na drugi strani folije pa prestrezamo delce
alfa s fluorescentnim zaslonom ter z mikroskopom gledamo in
Stejemo bliske. Razdaljo med izvorom delcev in zaslonom
nastavimo tako, da je Stevilo bliskov na ¢asovno enoto obvladljivo.
Opazujemo pod razlicnimi koti glede na vpadni zZarek.

Slika 41.18 Obstreljevanje zlate folije z Zarki alfa.
R = izvor zarkov, D = folija, S = fluorescencni
zaslon, M = mikroskop, W = cev za zra¢no
¢rpalko. Mikroskop je vrtljiv okoli navpi¢ne osi.
(Geiger, 1913)

Stevilo bliskov - po pri¢akovanju - hitro upada z naraéajo¢im
odklonskim kotom. Nikakor ne pricakujemo, da se bo kakSen
delec odklonil za znaten kot, recimo za 30° ali veC. Saj je delec
alfa okrog 7000-krat teZzji od vsakega elektrona v atomu, naboj in
masa v slednjem pa naj bi bila, tako mislimo, dokaj enakomerno
razmazana. Ker pa smo ze pri merjenju, pogledamo tudi velike
kote. Presenecenje! Take uklone res zaznamo: 1 delec izmed
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jedra

8000 se odkloni celo za 180°. To je tako, kot da bi se
desetkilogramska topovska krogla odbila od lista papirja!

Kako si naj to razlagamo? Tako, da atom ni velika pozitivno nabita
krogla, v kateri plavajo elektroni, ampak je sestavljen iz drobnega
pozitivnega jedra, v katerem je zgoscena skoraj vsa masa atoma,
in elektronov, ki rojijo okoli njega. Z velikostjo roja elektronov je
doloCena velikost atoma. Za vecino delcev alfa je zato atom
popolnoma prozoren, na neznaten delez pa vplivajo velike
odklonske sile (RUTHERFORD).

P Slika 41.19 Nuklearni model atoma. (Anon)

Izracunajmo, za kaksSen kot se odkloni delec alfa z maso m in
nabojem Z;e (Z; = 2) pri vpadu na tockasto jedro z nabojem Z,e!
Zaradi lazjega racunanja, zdaj in kasneje, bomo uporabili
okrajSavo

R (41.6)
" V(4nmsg)

IzhodiSce koordinatnega sistema postavimo v jedro in os x
usmerimo vzdolZ gibanja delcev. Delec naj se giblje vzporedno tej
osi na razdalji b. Ko pride blizu jedra, se odklanja in zariSe
hiperbolo. Obe asimptoti hiperbole, ki sta merljivi, oklepata kot 6.
To je kot odklona.

q

y Slika 41.20 Odklon delca alfa na
atomskem jedru. Odklonski kot je
odvisen od vpadne razdalje glede na
atomsko jedro. (Supek, 1949)

jedro

Ko je delec v tocki (r, @), je njegov pospesSek v smeri y dolocen z
gibalno enac¢bo mdv,/dt =Z1Z,q*sin¢/r? (1). Pri gibanju se
ohranja vrtilna koli¢ina mr?g' = —bmv (2). 1z (2) izrazimo r? in ga
vstavimo v (1). Dobimo mdyv, /dt = —(Z;Z,q*/bv) sin @ dg/dt (3).
Enacbo integriramo od kota 11 do 0, pri Cemer je na zacCetku v,
enak ni¢ in na koncu vsin 6. Tako pridelamo

mvsin8 = (Z1Z,q%/bv)(1 + cos0) (4). Uporabimo Se obrazca za
sinus in kosinus dvojnega kota, pa dobimo odklonsko enacbo
(RUTHERFORD)
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Cim bolj je delec odklonjen, tem bliZe jedru je prisel. Nazaj odbiti
delci so doziveli ¢elni trk z jedrom.

Ugotoviti hocemo Se, koliko delcev alfa iz vpadajocega curka se
sipa v posamezne smeri. Predpostavimo naslednje: delec alfa se
sipa le enkrat; nanj deluje elektri¢na sila jedra; vpliv elektronov
zanemarimo; atomsko jedro je med sipanjem pri miru, to je, je
mnogo teZje od delca alfa.

V valju s presekom S in dolzino I, torej v prostornini V= SI, naj bo
N atomskih jeder. Okrog vsakega jedra si mislimo "¢rno" kroglo
polmera b. Gledano vzdolz valja ima taka krogla ¢rno ploscino
nb?. Ce valj ni predolg, se te plo$¢ine ne prekrivajo in celotna
¢rna plo$cina znasSa Syjack = Nub? = (N/V)ub2Sl. V valj naj vpada I
delcev na casovno enoto. Potem se v ¢asovni enoti siplje

I/Iy = Sp1aci/S = (N/V)ib?l delcev. Na interval b + db/2 odpade

dI/Iy = (N/V)2nbldb sipanj. Razdalja b je podana z odklonsko
enacbo (41.7) in njen diferencial db z odvodom db/d6 odklonske
enacbe. Oboje vstavimo, vpeljemo prostorski kot dQ = 21 sin 6 d6
in dobimo (RUTHERFORD)

dlfle 1 N ZiZpg* , |1 (41.8)
dQ 16V mv?/2 ~ sin%6/2°

To je sipalna enacba. Pove, kolikSen delez delcev, vpadajocih na
folijo debeline I, se sipa v prostorski kot v smeri 6.

Slika 41.21 Sipanje delcev alfa v vse
smeri. Delez sipanih delcev v ozek
prostorski kot je odvisen od smeri.

o H H

Harlinis (Kyushu University)

— -

[+

particle

—_—

Sipalna enacba preneha veljati za majhne kote, saj za smer 6 =0
napoveduje neskoncen delez sipanj. Vendar majhnih kotov itak ne
smemo upostevati. Po odklonski enacbi bi to pomenilo, da je
delec letel mimo jedra pri neskonc¢ni razdalji, kar je izklju¢eno.
Zgornja meja za mimobeZzno razdaljo je namrec¢ Se zmeraj majhna
glede na premer atoma.

Sipalna enacba omogoca, da z merjenjem sipanja dolo¢imo
neznani jedrski naboj tarce. Za baker ugotovimo 29 e, za srebro
47 e in za platino 78 e. Te Stevilke so pa identi¢ne z vrstnim
Stevilom nastetih elementov v periodi¢cnem sistemu. S tem smo
nasli fizikalno razlago zanje: vrstno Stevilo elementa ni nic¢
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drugega kot Stevilo nabojev v njegovem jedru oziroma sStevilo
elektronov v njegovem atomu.

Zdaj, ko poznamo naboj kakega jedra, poskuSajmo oceniti Se
njegovo velikost. Delec alfa z znanim nabojem in z znano
kineticno energijo naj potuje naravnost proti jedru z znanim
nabojem ter se zaradi odbojne sile pocasi zaustavlja. Zaustavi se
na razdalji, ko se je vsa njegova kineti¢na energija pretvorila v
potencialno energijo: mv?/2 = Z1Z,q*/Tmin. 1z tega takoj sledi
razdalja ryi,. Za baker, na primer, dobimo 16-10-3A. Isti red
velikosti velja za druge elemente. Atomska jedra so torej za
faktor 10* manjSa od atomov.

41.8 Planetarni in valovni model atoma

Ker je atom navzven nevtralen, mora biti naboj jedra enak vsoti
nabojev na elektronih. Med jedrom in vsakim elektronom vlada
elektri¢na sila in elektron bi moral pasti v jedro, ¢e ne bi temu
nasprotovala centrifugalna sila gibanja. Elektri¢na sila ima enako
obliko kot gravitacijska, zato mora biti gibanje elektronov v
atomu podobno gibanju planetov v osoncju: krozno ali elipti¢no.
Kaze torej, da je atom miniaturna slika sonc¢nega sistema (BOHR).

/r\\ Slika 41.22 Planetarni model atoma. Elektroni

J » kroZzijo okoli jedra podobno kot planeti cv>koli
Sonca. Dovoljene so le izbrane tirnice. Stevilo
/ \ elektronov na vsaki tirnici je omejeno. Elektron
o ¢ seva le pri skoku iz visje tirnice na niZjo. (Anon)

Planetarni model atoma je na prvi pogled zelo privlacen, vendar
hitro pokaze svoje pomanjkljivosti in nedodelanost. Prvi¢, model
ne razlozi stabilnosti atomov. Vsak krozeci elektron v atomu se
namrec¢ giblje pospeseno in bi zato moral nenehno sevati,
izgubljati energijo ter prej ali slej pasti v jedro. Atomi
potemtakem sploh ne bi smeli obstajati. Drugi¢, model ne razlozi,
zakaj so atomi iste vrste med seboj popolnoma enaki, to je, zakaj
so tirnice elektronov okoli istovrstnih jeder identi¢ne. Saj se
elektroni lahko gibljejo okoli jedra po poljubno velikih tirnicah,
tako kot planeti okoli Sonca. In tretji¢, model ne pove, kako atomi
sploh sevajo in kako se po sevanju obnavljajo.

Ob tem se spomnimo, da elektroni pac niso navadni delci, ampak
imajo valovne lastnosti. Planetarni model atoma potem lahko
nadgradimo takole. — Gibanje elektronov v privlacnem polju
jedra se kaze kot njihovo stojno valovanje. — Moznih je vec¢ vrst
takih stojnih valovanj - atomskih stanj - in vsako izmed njih ima
svojo ostro energijo. — V osnovnem stanju z najnizjo energijo
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elektron ne seva. Ce dobi energijo od zunaj (s trki, vpadnimi
elektroni ali fotoni), sko¢i v eno izmed stanj z viSjo energijo. V
takem vzbujenem stanju pa elektron ne zdrzi dolgo, ampak
spontano, po kratkem casu, pade nazaj v kakSno nizje ali v
osnovno stanje. — Pri padcu iz energijskega stanja E, v E; se
izseva foton z energijo

hl)=E2—E1. (419)

To je valovni model atomov (BOHR, DE BROGLIE). Kvalitativno
"razlozi" stabilnost, identiCnost in sevanje atomov. Razlaga ima
obliko postulatov, ki so oporecni tako zakonu gibanja kot
zakonom elektri¢nega polja.

Slika 41.23 Valovni model atoma. Elektroni so
valovni delci. Dovoljene so le tirnice, vzdolz
katerih pride celo stevilo valov. (Anon)

Da imajo atomi diskretna energijska stanja, jasno kazejo njihovi
Crtasti sevalni in absorpcijski spektri. Pri absorpcijskih spektrih
atomi iz vpadne zvezne svetlobe poberejo le fotone z izbranimi
frekvencami/energijami in jih nato spet izsevajo na vse strani. Kaj
ko bi atome namesto v curek fotonov postavili v tok elektronov?
Poskus opravimo v diodi s parami zivega srebra (FRANCK / HERTZ).
Pocasi veCamo napetost in gledamo, kaj se dogaja s tokom. Ta
sprva raste, pri napetosti 4,9V za¢ne moc¢no upadati, doseze
minimum in nato za¢ne spet rasti. Vrhovi/minimumi se nato
ponavljajo na vsakih 4,9V. Ocitno je kinetiCna energija 4,9 eV
elektronov natanko tolikSna, da jo atomi absorbirajo in preidejo iz
osnovnega v prvo vzbujeno stanje, elektroni pa se pri tem
zaustavijo. Z veCanjem napetosti potem elektroni spet pridobijo
dovolj kineti¢ne energije in igra se ponavlja.

Slika 41.24 Tok elektronov skozi diodo z

zivosrebrno paro. Napetostna razlika med

/ minimumi toka ustreza energijski razliki med
osnovnim in prvim vzbujenim stanjem

atomov. (Herz, 1914)

277


pict3c/broglie2.gif
pict3c/broglie2.gif
pict3c/frank.gif
pict3c/frank.gif
picref.htm

Kvantizacija vrtilne
koli¢ine

Kvantizacija radija
kroznic

Kvantizacija energije

278

Pri navedenih napetostnih minimumih se v spektru Zivosrebrne
pare pojavijo sevalne érte z dolZino 2537 A, kar natanko ustreza
energijam elektronov. Poskus je sijajna potrditev kvantne narave
atomovw.

41.9 Vodikov atom

Najpreprostejsi atom je vodikov. Sestavljen je iz jedra in enega
samega elektrona, ki se giblje v njegovi okolici. Poskusimo
dolociti, kaksna stojna valovanja in energijske nivoje vsebuje!

Elektron se lahko giblje okrog jedra stacionarno le po tistih
kroznicah, vzdolz katerih je razmesceno celo Stevilo valovnih
dolzin:

2urp,=niA,n=1,2,3... (41.10)
Upostevamo A = h/mv in dobimo zahtevo po kvantizaciji vrtilne
kolicine

L=mvr=nh,n=1,2,3... (41.11)

h=h/2m.

Mozna so torej le gibanja s takSnimi radiji in hitrostmi, da je
vrtilna koli¢ina pri tem celosteviléni mnogokratnik kvantne
konstante.

Pri krozenju deluje elektri¢na privlacna sila kot centripetalna sila
mv?/r= q?/r? (1). Hitrost v tej enacbi substituiramo iz (41.11) in
dobimo dovoljene radije tirov (BOHR)
h? 41.12
r=—2-n2=rB-n2,n=1,2,3.... ( )
mq
Najmanj$i radij pripada osnovnemu stanju in znasa rs = 0,53 A.
Vrednost se ujema z redom velikosti atomov (1 R), kakor ga ze
poznamo. Poznane radije vstavimo v (1) in dobimo ustrezajoce
obodne hitrosti: v2 = g?/mr. V osnovnem stanju, ko zna$a radij rg,
izraCunamo hitrost
v 2 41.13
a=—=q—=1/137, ( )
c hc
torej okrog 1 % svetlobne hitrosti. Frekvenca krozenja potem
zna$a v/2nr=6,6- 105 Hz, kar je istega reda velikosti kot
frekvenca vidne svetlobe.

Energija elektrona na kroznici znasa E=K+ W=mv?/2 — q*/r. Iz
(1) izrazimo mv? = q?/r, iz Cesar sledi E = —q?/2r, torej (BOHR)
mq* 1 1 (41.14)

E=-———=Eg

2nZ 2 R g2

Zapisana konstanta znasa Eg = 13,6 eV. Energija vodika, ko n =,
je enaka ni¢. Energija osnovnega nivoja, ko n=1, je —13,6eV.



Toliko energije moramo torej dovesti atomu, da ga ioniziramo.
RecCemo, da je to ionizacijska energija atoma.

lonized atem  Slika 41.25 Napovedani

n= (continuous

0 energy levels)  €N€rgijski nivoji vodika.
085 | J,'lH 75 Energija ioniziranega atoma je
=151 | Paschen |5 | Excited po definiciji enaka ni¢. (Anon)
saries
-3.40 | e 2
51 series
B .
&
& £
_10--
T Lyman
T ik Ground
-13.6 | L

Ujemanje s spektrom  Kako dobro se napovedani energijski nivoji ujemajo z izmerjenim
vodikovim spektrom? Za primerjavo so priro¢ni sevalni prehodi
na nivo n =2 iz nivojev 3, 4, 5 in 6, ki vsi lezijo v vidnem obmodju.
Ujemanje je odlicno - popolnoma znotraj natanc¢nosti, s katero je
dolocena konstanta Eg iz m, q in h. Tudi ujemanje pri drugih
prehodih je odli¢cno. Z modelom vodikovega atoma smo - vsaj za
zdaj - lahko zelo zadovoljni.

400 450 500 550 600 650
Wavelength (nm)

Slika 41.26 Izmerjene spektralne ¢rte vodika za prehode na nivo 2 iz nivojev 3,
4, 5, 6 itd. (Max Planck Institute)

Vodikovo vidno serijo ¢rt lahko zaradi (41.14) zapiSemo z
obrazcem (RYDBERG)

1 1 (41.15)

PER (T )

in iz izmerjenih frekvenc oz. valovnih dolZin neposredno dolo¢imo
konstanto Ry = 3,287 - 1015 Hz. Seveda velja Eg = Ryh.

41.10 Elipticne tirnice

Planeti se ne gibljejo okoli Sonca le po kroznicah, ampak tudi po
elipsah. Dopustimo to tudi za vodikov atom (SOMMERFELD). Kot Ze
vemo iz gibanja planetov [34.13], je velika polos elipse odvisna
zgolj od energije, mala pa - pri dani energiji - Se od vrtilne
koli¢ine. To pomeni, da ima elektron enako energijo, ce se giblje
po kroznici z radijem r ali po elipsi z glavno polosjo a=r:
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Kvantizacija osi

Orbite in lupine

q* (41.16)

E=——.
2a
Ker je energija kvantizirana, mora biti tudi velika polos elipse

enako kvantizirana kot radij:
a=rg-n? (41.17)

K elipsi s polosjo a pripada neskon¢no mnogo elips z razli¢nimi
polosmi b. Po katerih se giblje elektron? V duhu kvantizacije
predpostavimo, da so to le tiste z ostro doloCenimi vrednostmi
vrtilne kolic¢ine:

L=Ih, 1=1,2,3...n. (41.18)

Pri gibanju je vrtilna koli¢ina konstantna: L = mr?¢' = const.
Povrsina, ki jo v casovni enoti prebrise radij vektor, znasa
(1/2)r?¢' =L/2m. V obhodnem c¢asu T prebriSe celotno plo$c¢ino
elipse mab, torej LT/2m =mab. V to enacbo vstavimo kvantizirani a
(41.17), kvantizirani L (41.18) in obhodni ¢as T, ki ga dobimo iz
obhodnega zakona T?%/a® = 412 m/q?, pa dobimo:

[ (41.19)

b=nlrg=—a.

n
Kon=1,jel=1 in tir je kroznica. Kon=2,jel=1alil=2in
mozna sta dva tira: kroznica in elipsa. In tako naprej. Kroznico n
in njej pridruzene elipse poimenujemo orbite, ki sestavljajo lupino
n. Vsaka orbita v lupini ima enako energijo, razlikuje pa se po
vrtilni koli¢ini. Bolj je orbita podobna kroznici, vecjo vrtilno
koli¢ino ima. Stanje vodikovega atoma torej opiSemo z dvema
kvantnima Steviloma: glavnim stevilom n in orbitalnim Stevilom 1.
Glavno sStevilo doloca velikost orbite, orbitalno Stevilo pa njeno
elipti¢nost.

n=4 k=4

Slika 41.27 Elipti¢ne tirnice. Elektroni se ne gibljejo le po kroznih tirnicah,
ampak tudi po elipsah, ki imajo veliko polos enako radiju kroznic. Male polosi
elips so v celostevilcnem razmerju z velikimi polosmi. (Anon)

Ker imajo vse orbite v isti lupini enako energijo, so pri sevalnih
prehodih med dvema lupinama vsi izsevani fotoni enaki, ne glede
na to, med katerimi orbitami se zgodijo. Iz sevalnega spektra
torej ne moremo ugotoviti, ali elipti¢ni tiri res obstajajo ali ne.


pict3c/sommerfeld.gif
pict3c/sommerfeld.gif

Enoelektronski ioni

Vecelektronski atomi

Premeri atomov

Slojevita zgradba
atomov

41.11 Vecelektronski atomi

Kar smo ugotovili za vodikov atom, velja tudi za vsakrsen ion z
enim samim elektronom, na primer za helijev ion He™" z jedrskim
nabojem 2q ali za litijev ion Li%* z jedrskim nabojem 3q. Veljajo
vse enacbe za vodik, ¢e v njih nadomestimo g z Zq. Osnovni in
vzbujeni radiji iona tako znasajo r=rgn?/Z in pripadajoce
energije E = Z2Egr/n?. Helijev ion v osnovnem stanju ima zato
dvakrat manjsi premer od vodikovega atoma in Stirikrat visje
spektralne frekvence, litijev pa je trikrat manjsi in ima devetkrat
povecane frekvence. Spektri vse to potrdijo.

Kako je pa z vecelektronskimi atomi? Ko golemu jedru dodamo
elektrone, se morajo ti nekako umestiti v okolico jedra.
Predpostavimo, da se vsak elektron giblje po kroznici s celim
Stevilom valov. Obstajajo torej kroznice z 1 valom, 2 valoma itd.
Koliko elektronov zasede kaksSno kroznico, pa ne vemo. Morda
gredo vsi v prvo kroznico, morda vsak na svojo ali pa morda nekaj
sem in nekaj tja. Upraviceno se tudi bojimo, da premer kroznic ni
dolocCen zgolj z nabojem jedra, ampak tudi s Stevilom in
razporeditvijo krozecih elektronov. Porodi se misel, da bi morda
kaj veC o tem izvedeli, Ce bi preucili premere atomov, torej radije

eV

Velikost atomov izbranega elementa ocenimo takole. V kilomolski
masi M tega elementa je Ny atomov z masami po m;. En atom
elementa v teko¢i ali trdni fazi zapolnjuje kockico s stranico 2r,
torej prostornino (2r)3. Gostota kockice je

p=m1/(2r)3 = (M/N,A)/(2r3). To je hkrati tudi gostota snovi, zato
(2r)3 = M/Np. Vse koli¢ine na desni so znane oziroma izmerljive.
Fig. (B)
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Slika 41.28 Ocenjeni polmeri atomov. Velikost atoma je funkcija njegovega
vrstnega Stevila. Izbrani atomi kazejo skokovito povecanje velikosti glede na
svojega predhodnika, kar sugerira namestitev elektrona v visjo kroznico.
(Kyushu University)

Pogled na izmerke pove naslednje. — Kaze, da elektroni okrog
jeder zapolnjujejo vec¢ kroznic. — V prvo kroznico gresta najvec 2
elektrona, v drugo najvec 8, v tretjo najvec 8, v Cetrto najvec 18,
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Notranji elektroni

v peto najvec 18 in preostanek v visje kroznice. — Elektroni
zasedajo kroznice po vrsti: v naslednjo gredo, ko je prejSnja
popolnoma zasedena. — Radij kroznice n se manjsa z
nara$canjem njenega Stevila elektronov, to je z vecanjem
jedrskega naboja. — Vsaka naslednja kroznica je ob zacetku
popolnjevanja vecja od prejSnje kroznice ob zacetku
popolnjevanja. Zakaj so zasedbena Stevila kroznic taksna,
zaenkrat ne vemo. Velikost kroznic pa lahko kvalitativno
razlozimo takole. Po zgledu vodikovega atoma privzamemo, da
znaSata radij n-te kroznice in pripadajo¢a mu energija

n? (41.20)
'n =T
n BZ—S
(Z-S)?
n= LR 5 .
n

Pri tem je (Z — S)q efektivni naboj jedra, ki ga cuti elektron na tej
kroznici. Med jedrom in elektronom so namrec gibljejo elektroni
na nizjih kroznicah, ki jedrski naboj zasencujejo. Koliko, je na
splo$no tezko reci.

Poglejmo nekaj primerov. Za zunanjo kroznico helijevega atoma
veljan=1inZ—-S=2-0=2, zato r=rg/2. Za zunanjo kroznico
litijevega atoma paveljan=2inZ—-S=3—-2=1, zato r=4rs.
Obe oceni sta Se kar dobri. Oc¢itno je ocena radija kroznice zelo
obcutljiva na izbiro sencenja S in to tembolj, ¢im viSja je kroznica.
Ce nam je kaj do tovrstne zabave, lahko iz izmerjenih radijev celo
racunamo, kaksSna so pripadajoca sencenja.

Kaj se zgodi, Ce s hitrim elektronom izbijemo iz atoma elektron
na prvi kroznici, kjer sicer zivita dva elektrona? Tole: kakSen
elektron iz druge kroznice vskoci v nastalo luknjo. Pri tem izseva
foton z ustrezno energijo. Na drugi kroznici je imel elektron
energijo (Z—1)2Er/22 (preostali elektron na prvi kroznici
zasencuje jedro) in na prvi energijo Z2Eg/12. Razlika obeh,
deljena s h, pove, koliksSna je frekvenca izsevanega fotona:

3 (41.21)
v="Ry(Z-17.

Za baker znaSa Z =29, torej A = 1,5A. To so rentgenski zarki. Kot
ze vemo, nastajajo ti zarki pri obstreljavanju katode s hitrimi
elektroni. Zdaj tudi vemo, kako nastanejo: z izbitjem notranjih
elektronov v atomih katodne snovi. Pogled na izmerjeni
rentgenski spekter bakra pove, da zapisana frekvenca sovpada z
najmocnejSo ¢rto Ky spektra. Podobno velja za druge elemente.

Enacba (41.20) pravi, da bi morale biti najmoc¢nejSe rentgenske
crte K, v spektrih atomov sorazmerne s kvadrati njihovih vrstnih
Stevil. Meritve to potrdijo (MOSELEY).
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Slika 41.29 Crtni spektri rentgenskih Zarkov za razli¢ne elemente. Prikazane so
tri ¢rte: K, L in M. Vsaka od njih je dvojna ali celo trojna. Velja kvadratna
odvisnost med valovno dolzino ¢rt K (pa tudi L in M) ter vrstnim Stevilom.
(Moseley, 1914)

Zapisani zakon omogoca, da izmerimo jedrski naboj
preucevanega elementa kar iz njegovega rentgenskega spektra.

41.12 Magnetni moment

KroZenje posamicnega elektrona okrog jedra (v kateremkoli
atomu) je pravzaprav elektri¢ni tok po krozni zanki. Obhodni ¢as
elektrona znasa T = 2mnr/v in tok I = e/T. Zanka s tokom ima potem
magnetni moment p,, =IS. Magnetni moment atomskih delcev
bomo odslej oznacevali z 1 namesto s py,. Iz zapisanih enacb in ob
upostevanju mvr =L dobimo
e (41.22)
pu=—L.

2m
Orbitalni magnetni moment krozecega elektrona je torej
sorazmeren z njegovo vrtilno koli¢ino. Usmerjen pa je v
nasprotno smer, ker ima negativen naboj. Ker je vrtilna koli¢ina
kvantizirana (41.17), mora tak biti tudi magnetni moment:

e (41.23)
p=l—nh=Ipg, 1=1,2,3...n
2m

Vpeljali smo elektronski magneton ug=e/2m=9,27-10724]/T =
5,79-107°eV/T. Vsak elektron v atomu ima zaradi svojega
krozenja ustrezen magnetni moment. Njegova velikost je odvisna
od tega, po kateri elipti¢ni tirnici pa¢ krozi. Usmerjen pa je
pravokotno na ravnino krozenja.

Elektron na svojem tiru okrog jedra je tudi vrtavka. Ce nanj
deluje magnetno polje z navorom M, precedira okrog smeri polja
s kotno hitrostjo Q. Kaksna je hitrost precesije, smo Ze spoznali
pri gibanju vrtavke: M =Q x L. To zapiSemo kot

1B sin @ = Q2my/e, iz ¢esar sledi (LARMOR)
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e (41.24)
Q=—RB8.

2m
Ne glede na to, kako je magnetni dipol nagnjen glede na smer
polja, zmeraj rotira z enako kotno hitrostjo. V atomu vodika v

polju 1 Vs/m? znasa kotna hitrost precesije 10~ Hz.

H Slika 41.30 Precesija magnetnega dipola. Kakor
precedira vrtavka okoli smeri gravitacijskega polja,
tako precedira orbitirajoci elektron okoli smeri
magnetnega polja. (Anon)

(Rotirajoc¢i) magnetni dipol elektrona ima v zunanjem magnetnem
polju B energijo W= —uB cos ¢. Energija je odvisna od kota ¢, pod
katerim je nagnjen glede na polje. Je ta smer lahko poljubna?
Privlacna in drzna je misel, da je tudi smer kvantizirana, to je, da
se magnetni dipol nagne le v to¢no doloceno smer. Privzemimo
torej, da se kroznica elektrona v zunanjem polju tako orientira,
da sta projekcija vrtilne koli¢ine in projekcija magnetnega
momenta vzdolZ polja diskretni (SOMMERFELD):

L,=mjh (41.25)

Hz=Mmjug .

m=-1,-1+1...-1,0,1...1-1,1.

Vpeljalo smo magnetno orbitalno stevilo m;, ki opisuje nagib
elektronovega krozilnega magnetnega momenta od smeri polja.

\ Slika 41.31 Orbitalni magnetni
& [ i moment elektrona se v magnetnem
\

polju postavi le pod to¢no dolo¢enimi

L < E ;7 koti glede na polje. (Supek, 1949)
_— 7;7”

Pricakujemo, da se vrtilne koli¢ine vseh krozecih elektronov v
stabilnem atomu sestavijo v skupno vrtilno koli¢ino. Isto velja za
skupni magnetni moment. Privzemimo, da veljata velikostna in
smerna kvantizacija tudi za ti dve koli¢ini:

L=jh (41.26)
1 =jls

LZ= th

Hz = Mmjug

mj=—j,—j+1..-1,0,1..j—1,j.

L

J
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Meritev smerne
kvantizacije

Kako poteka sestavitev, je zaenkrat odprto vprasanje. To je pac
odvisno od Stevila in velikosti elektronskih kroznic v atomu,
njihove zasedenosti, individualnih nagibov, medsebojne sklopitve
in morda Se ¢esa. Za opis kvantizacije smo vpeljali vrtilno stevilo j
in magnetno vrtilno Stevilo m,;.

Kako bi ugotovili, ali atomski magnetni moment ter njegova
velikostna in smerna kvantizacija res obstajajo? Vemo, da v
nehomogenem magnetnem polju deluje na magnetne dipole sila v
smeri gradienta polja: F, = j1,dB/dz. Ce torej spustimo curek
atomov skozi nehomogeno polje, se bodo atomi razlicno odklonili
v smeri polja. Razcep curka na ve¢ curkov bi domnevo potrdil.
Razteg curka v zvezno ¢rto pa bi jo zavrgel.

Slika 41.32 Meritev magnetnega
momenta v srebrovih atomih. V
nehomogenem magnetnem polju se
atomi z razli¢nimi komponentami
Classical momenta vzdolz polja razli¢no odklonijo.
prediction (Anon)

Poskus opravimo s curkom srebrovih atomov. Kapljico staljenega
srebra segrevamo v peci in izhlapele atome usmerimo skozi
zaslonke. Curek spustimo skozi nehomogeno magnetno polje in
opazujemo, kolikSna plast srebra se nalozi na steklenem zaslonu.
Tam odkrijemo, da se je curek razcepil na dva curka. Domneva o
smerni kvantizaciji je torej potrjena! (STERN / GERLACH)

P Slika 41.33 Meritev magnetnega momenta v
éf* i 0 curku srebrovih atomov. Curek se razcepi v

dva curka. Prikazan je rezultat meritev, ki sta
ga dobila O. Stern in W. Gerlach. (Stern, 1922)

Meritev je zahtevna. Poskus je treba izvesti v vakuumu. Pri
dolzini magnetnega polja nekaj centimetrov in pri gradientu
magnetnega polja 10 T/cm znasa razdalja med obema curkoma na
priro¢no oddaljenem zaslonu le nekaj desetink milimetra.
Ekspozicijski Cas je nekaj ur.

41.13 Spin elektrona

Kolikor Ze smo veseli ob izidu poskusa, pa nas ta tudi preseneti.
Pricakovali bi namrec tole. Za j =0 bi se curek ne smel razcepiti.
Za j=1 bi se moral razcepiti na tri curke m;=[—-1,0, +1], za j=2
na pet curkov in tako naprej, vedno v liho Stevilo curkov. Dobili
smo pa dva curka, torej sodo Stevilo. Kako naj si to razlagamo?
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Spin elektrona

Spinski magnetni
moment

Odprta vprasanja

Recimo, da atomovo vrtilno stevilo ne bi bilo le celo Stevilo, torej
j=1,2,3..., ampak tudi polcelo Stevilo, torej j=1/2,3/2,5/2... Za
j=1/2, na primer, bi potem obstajali zgolj dve smerni kvantizaciji
m;=[—1/2,+1/2]. To pa sta ravno dva curka. Prvi je paralelni,
drugi antiparalelni, pravokotnega pa ni.

Slika 41.34 Smerna kvantizacija
polcelih vrtilnih Stevil. Poseben primer
jej=1/2, ki ga pripisujemo elektronu.
(Supek, 1949)

J=" /=%

Od kod pa naj pride polcelo vrtilno Stevilo? Saj ima vsaka
elektronska kroznica le celostevilcna orbitalna Stevila I oziroma
celosStevilcna magnetna orbitalna Stevila m;. Ponuja se drzen
odgovor: od elektrona! Ta mora imeti poleg orbitalne Se lastno
vrtilno koli¢ino, spin. Stvar je podobna kot pri kroZenju planeta
okoli Sonca: planet ima vrtilno koli¢ino zaradi krozenja, pa Se
zaradi vrtenja okoli lastne osi. Zato vpeljemo za elektron spinsko
Stevilo s in magnetno spinsko stevilo mg. (UHLENBECK /
GOUDSMITH)

L=sh, s=1/2 (41.27)
L,=mgh, mg=-s,+s.

Orbitalna (I) in spinska (s) Stevila elektronov v atomu se sestavijo
v vrtilno stevilo (j) atoma. Kako poteka sestavitev pa je, kot smo
ze rekli, zaenkrat odprto vpraSanje.

Kako je pa s spinskim magnetnim momentom elektrona? Na prvi
pogled bi moral ta biti enak p, = (e/2m)L,= h/2. Vendar razcep
srebrovega curka kaze, da odklon ustreza momentom h, ne h/2.
Zato morajo imeti elektroni dvakrat vedji spinski magnetni
moment, kakor jim ga ho¢emo pritakniti, torej:

e (41.28)
],lz=2'%Lz= *h.

Preseneca Se dejstvo, da je atomsko vrtilno Stevilo srebra tako
majhno. Saj je v atomu 47 elektronov. Kje so vrtilne koli¢ine
posamicnih kroznic in kje so spini vseh elektronov? Ocitno se v
atomih kroznice in spini postavijo tako, da se med seboj kolikor
se le da iznic¢ujejo. To ne velja le za srebro, ampak tudi za druge
elemente: ne razcepijo se curki *He, “Be, 2°Ca, 39Zn, 48Cd, °°Sn,
80Hg, 82Pb; v dva curka pa se razcepijo 'H, 3Li, ''Na, 1°K, 2°Cu,
47Ag, 7°Au. Kaze, da se sodo Stevilo elektronov med seboj izni¢uje
v j=0, pri lihem pa preostane vpliv zunanje orbite in zunanjega
elektrona j = 1/2. Najdejo se pa tudi izjeme : 5P ima j=3/2 in 160
ima j=2. Vse to nas navaja na misel, da v vsaki orbiti, ki je
opisana s kvantnimi Stevili n, I in m;, lahko krozita najve¢ dva
elektrona, vsak s svojim spinom = 1/2. To je izkljucitveno nacelo
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(PauLl). Zdi se celo, da imajo nekatere kroznice lahko I =0, kar je
v nasprotju z dosedanjim opisom, ko I = 1. Podrobnosti so oc¢itno
zamotane in se vanje ne bomo spuscali.

41.14 Struktura c¢rt

Ko opazujemo sevalne spektre atomov s spektrometri visoke
lo¢ljivosti, recimo vsaj = 0,1 A, opazimo, da so érte pravzaprav
sestavljene iz veC ozkih ¢rt. Komajda katera ¢rta ostane enojna.
Povzemimo glavna opazanja o strukturi ¢rt in kvalitativne razlage
zanje.

Ko se elektron giblje okoli jedra v elektricnem polju, vidi
relativisticno magnetno polje. Elektronov magnetni moment se
postavi paralelno ali antiparalelno k temu polju. S tem pridobi
magnetno potencialno energijo, ki se pristeje oziroma odsteje k
sicersnji energiji (kinetiCni in elektri¢ni potencialni). Energijski
nivo je zato razcepljen v dvojico nivojev. Ustrezno se razcepijo
tudi spektralne Crte. Vidne ¢rte v spektru vodika so, na primer,
vse razcepljene v dvojice na razdaljah 0,2 A.

Ko sevajoce atome postavimo v zunanje magnetno polje, se jim
spektralne ¢rte razcepijo, nekatere na tri, druge na vec ¢rt
(ZEEMAN). Razlog je podoben kot pri razcepitvi ¢rt v notranjem
magnetnem polju. Orbitalni in spinski magnetni momenti
elektronov se usmerjajo vzdolz polja in s svojimi magnetnimi
potencialnimi energijami doprinasajo k razcepitvi energijskih
nivojev. Razcep v tri ¢rte je simetricen in ekvidistanten. Tako se,
na primer, razcepi vodikova rdeca ¢rta H,. Razdalja med ¢rtami
je sorazmerna z jakostjo polja in ima red velikosti 0,2 A/T. Razcep
v vec Crt je bolj zamotan.

Trojni razcep izbrane Crte spektra izkoristimo za merjenje
magnetnih polj na Soncu in zvezdah. Na Soncu tako izmerimo
najvecje jakosti magnetnega polja v pegah, in sicer do 0,4 T.

Slika 41.35 Razcep natrijevih ¢rt D1 in Dy v
magnetnem polju. (Zeeman, 1897)

Tudi zunanje elektricno polje povzroci razcep spektralnih ¢rt
(STARK), na primer v vodikovem spektru. Polje namrec raztegne
atom v elektricni dipol. Razlicne elipse v isti lupini raztegne
razlicno. Tako nimajo vec¢ vse enakih energij, ampak se energijsko
rahlo razlikujejo. Da opazimo razcep, so potrebna mocna
elektri¢na polja do 10°V/cm. [
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Pilotski val

Gladinski hodci

Nemoteno gibanje

Valovha mehanika

Valovni delci - Makroskopski hodci - Ansambli in valovne funkcije -
Ravni valovi in valovni paketi - Razmazanost gibanja - Kvantni
gibalni zakon - Lastne funkcije energije - Sipanje na potencialni
oviri - Gibanje v potencialni jami - Harmonicni oscilator -
Enoelektronski atom - Vrtilna koli¢ina - Vecelektronski atomi

42.1 Valovni delci

Videli smo, da se fotoni in elektroni pri nekaterih poskusih vedejo
kot delci in pri drugih kot valovi. Kako si naj to razlagamo? So to
delci ali valovi? Ali morda oboje hkrati? In kaksni so potem opisi
in zakoni njihovega gibanja?

Privla¢na je misel, da so fotoni in elektroni hkrati delci in valovi.
Morda je vsak elektron delec, obdan z nekak$nim stojnim valom.
Predstavljamo si lahko, da morda elektron niha in "trese" prostor
okoli sebe, to je svoje ozadje, in v njem ustvarja svoj pilotski val.
Ta val potem vpliva nazaj na gibanje elektrona. Elektron in njegov
pilotski val sta nerazdruzljiva celota - valovni delec. Ko prileti
elektron na oviro, recimo na dve rezi v zaslonu, gre pilotski val
skozi obe rezi, pri tem interferira sam s seboj in nastali
interferencni val usmeri elektron skozi eno izmed rez. Nato oba
nadaljujeta pot do zaslona. Tako se dogaja z vsemi elektroni, ki
vpadejo na oviro. Vendar se vsak ukloni drugace in na zaslonu
naredi drugo piko. Vsi elektroni skupaj pa zgradijo celotno
interferencno sliko. Podobno velja tudi za druge delce - masne in
brezmasne.

42.2 Makroskopski hodci

Morda lahko nihajoce delce in njihove pilotske valove
poustvarimo z makroskopskimi telesi? V plitvo posodo nalijemo
silikonsko olje in posodo tresemo v navpic¢ni smeri s takSno
frekvenco, da se na gladini pojavijo prvi kapilarni valovi. Potem
frekvenco rahlo znizamo, da valovi izginejo, in na gladino
previdno spustimo milimersko kapljico olja. Kapljica za¢ne
skakati po gladini kot ¢lovek po trampolinu: zaradi tanke plasti
zraka med kapljico in oljem pa se med seboj ne zdruzita. Pri
primerni frekvenci pride kapljica v resonanco z gladino: tedaj se
okoli nje pojavi stojni val. Kapljica jezdi na svojem valu. Kapljica
in njen val tvorita pri tem nerazdruzjivo celoto; re¢emo, da je to
valovni hodec (COUDER).

Valovni hodec niha na tistem mestu v kadi, kamor smo kapljico
spustili. Ko pa ga rahlo potisnemo v izbrano smer, se giblje tja
premo in enakomerno. Delec in val, oba se gibljeta
sinhronizirano.
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Sipanje na oviri

Vezano gibanje

Slika 42.1 Gladinski hodec. To je milimetrska
kapljica olja na navpic¢no nihajoci oljni gladini.
Okoli kapljice se izoblikuje stojni val. Kapljica in
val se zdruzno gibljeta premo in nekomerno.
(Bush, 2015)

Postavimo na hodcevo pot oviro z dvema rezama! Hodec vpade
na oviro, njegov pilotski val gre skozi obe rezi, interferira sam s
sabo, potegne kapljico skozi eno rezo in jo nato usmeri v
doloc¢eno smer. Hodec je s tem zarisal svoj tir.

Slika 42.2 Vpad hodca na oviro z dvema rezama.
(Couder, 2006)

Zaporedni hodci, ki jih vse spustimo iz istega mesta z enako
hitrostjo, po prehodu ovire zavijejo v razlicne smeri. To pa zato,
ker drobne razlike v zac¢etnih pogojih in s tem drobne razlike pri
vpadu na oviro kriti¢no vplivajo na prehod. Poglejmo porazdelitev
velikega Stevila uklonjenih tirov po smeri! Potihoma pricakujemo,
da bo podobna, kot ¢e bi na rezi vpadalo ravno valovanje z
valovno dolZino pilotskega vala. Zal izrazitih maksimumov in
minimumov ne uspemo poustvariti.

70 . - - Slika 42.3 Smerna porazdelitev
uklonjenih tirov za dvojno rezo.
Zarisala jo je mnozica 301 enakih
hodcev. Interferen¢nih maksimumov
in minimumov (zal) ne uspe
poustvariti. (Andersen, 2015)
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Dajmo hodca v krozno ogrado in vrtimo nihajoco posodo okoli
navpicne osi! Tir hodca se zdi sprva kaoti¢nen. S¢asoma pa zacne
pilotski val interferirati s svojo brazdo in casovno povprecje tira
pokaze izrazite krozne maksimume. To je statistiCna porazdelitev
hodcevih lokacij po prostoru. Ima obliko osno simetri¢nih stojnih
valov. Razlika med statisticnim stojnim "valovanjem" in pilotskim
valom hodca je oc€itna.
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Rusenje tirov

Delci in ansambli

Slika 42.4 Hodcev tir v krozni ogradi za
razli¢na trajanja. Po dolgem casu se
pokazejo koncentri¢ni krogi, kjer se je
hodec najvec zadrzeval. To je statisticni
stojni "val", ki opisuje "razprSenost"
hodceve lege po prostoru. (Harris, 2013)

Valovni hodci nudijo nazorno sliko o tem, kako se utegnejo gibati
elektroni. Seveda slika ni popolna: hodci se gibljejo v dveh
dimenzijah in njihov pilotni val je vtisnjen v okoliSnjo tekocino.
Elektroni se gibljejo v treh dimenzijah in sredstvo, v katero je
vtisnjen njihov pilotni val, je "prostor". Pri hodcih je izvor tresenja
v ozadju, pri elektronih pa v njih samih. Glavna razlika med
obojima pa je naslednja. Hodce lahko gledamo s svetlobo, ki jo
odbijajo, in jih pri tem ni¢ ne motimo. Elektrone pa lahko
gledamo, v principu, le preko "otipavanja" s fotoni (ali drugimi
delci) in pri tem bolj ali manj mo¢no ter nepredvidljivo
spremenimo njihovo hitrost. Tir, ki ga opazujemo, s tem
razrusimo. Kljub temu pa bomo sliko obdrzali kot vodnico v
nadaljnje raziskave. Ce se bo pokazala za nepravilno, jo bomo pac
spremenili ali zavrgli.

42.3 Ansambli in valovne funkcije

Kam na zaslon bo izsevani elektron po preletu kristala priletel,
tega vnaprej ne vemo. Zadetek je kriticno odvisen od zacetnih
pogojev elektrona in od motenj, ki jih ta dozivi vzdolz svojega
tira. Vemo pa, da mnozica izsevanih "enakih" elektronov na
zaslonu nariSe dolocen vzorec. Oc¢itno je nepredvidljivo gibanje
posamicnih elektronov vendarle taksno, da se v mnozic¢ni
ponovitvi pokorava dolo¢enim zakonitostim.

Namesto da preucujemo enkratno gibanje posami¢nega
elektrona, kar je verjetno brezupno pocetje, raje preucujmo
mnogokratno ponovitev tega gibanja pod istimi pogoji. Idealno bi
to pomenilo, da en in isti elektron znova in znova spravljamo v
isto zaCetno stanje (izhod is topa) in vsakokrat izmerimo, kam na
zaslon vpade. V praksi tega seveda ne moremo narediti. Zato
namesto enega elektrona pripravimo mnozico elektronov v
kolikor se da enakem stanju in delamo poskuse z njimi. Namesto
s posamic¢nim elektronom - v gibanju iz topa proti zaslonu - se
bomo torej ukvarjali z ansamblom takih elektronov/gibanj.
Namesto o tiru posamicnega elektrona r=r(t) pa bomo govorili o
njegovi verjetnostni porazdelitvi po prostoru
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Ravni valovi

dp (42.1)
phw)—dv.
Ko govorimo o verjetnostni porazdelitvi elektrona v prostoru, se
spomnimo na tole. V elektromagnetnem valovanju je gostota
energijskega toka sorazmerna s kvadratom elektricne poljske
jakosti: j « |E|?. To pomeni, da je tudi pogostost/verjetnost, da v
okolici kaksne tocke zaznamo foton, sorazmerna s kvadratom
elektri¢ne poljske jakostji: dP/dV « |E|2. Predstavljamo si lahko, da
so elektromagnetni valovi nekaksno "pomozno ogrodje", ki
opisuje gibanje ansambla fotonov: kjer je polje mocnejse, se
pojavlja vec fotonov, kjer je SibkejSe, pa manj.

Kaj ne moremo elektronov obravnavati podobno? Postulirajmo
"pomozno ogrodje" za gibanje ansambla elektronov po prostoru -
kompleksno polje ¥(r,t) - in zahtevajmo: verjetnost dP, da se
elektron znajde znotraj prostorninskega elementa dV, znaSa
(BORN)

d—P=|lII|2_ (42.2)

dv
Polje ¥(r,t) poimenujemo valovna funkcija ansambla elektronov.
Zaradi kratkosti bomo vec¢inoma rekli kar valovna funkcija
elektrona. Pri tem se bomo zmeraj zavedali, da je to zgolj
jezikovna olajSava in da se valovna funkcija nanasa na ansambel
in ne na individualni delec. Namesto valovna funkcija bomo
obcasno rekli tudi amplituda stanja ali kar stanje. Verjetnostna
definicija zahteva, da je valovna funkcija normirana:

J1w)2dv=1. (42.3)

Verjetnost, da elektron najdemo kjerkoli, je pac¢ enaka ena. S tem
smo privzeli, da elektroni ne morejo nastati in izginiti.

42.4 Ravni valovi in valovni paketi

NajpreprostejSe je gibanje elektronov, ki posamic izletajo iz
elektronskega topa in nemoteno vpadajo na oddaljeni zaslon.
Kdaj kakSen elektron izleti iz topa, tega ne vemo. Vemo pa, da
ima kineti¢no energijo K=eU. S tem sta doloCeni njegova gibalna
koli¢ina G =v(2mK) in hitrost v = G/m. Prelet poteka po prostoru,
kjer ni elektricnega polja, zato je tam potencialna energija
elektrona enaka ni¢ in njegova mehanska energija E je kar enaka
kineti¢ni energiji. Gibanje ansambla elektronov med topom in
zaslonom opisemo formalno z ravnim valom

Y(x,t) =Aellkx—wh) (42.4)
Z upoStevanjem znanih povezav

G=h/A =hk (42.5)

E=hv=hw



Valovni paketi

dobimo
W(x, t) = AellGx—ED/N (42.6)

To je torej valovna funkcija ansambla prostih elektronov z gibalno
koli¢ino G, pri Cemer E = G?/2m. Verjetnostna gostota znaSa

|W|? = U*W = A? in je neodvisna od ¢asa in kraja, kakor tudi mora
biti: kadarkoli in kjerkoli v curek postavimo primeren merilnik,
zmeraj zaznamo priblizno enako Stevilo elektronov na ¢asovno
enoto. Ker je verjetnostna gostota konstantna vzdolz celotne osi
x, valovne funkcije ne moremo normirati. Zato opisuje zgolj
relativne verjetnosti in ne absolutnih.

Slika 42.5 Valovna funkcija ansambla prostih
delcev. To je kompleksna vijacnica. S ¢asom
se togo pomika vzdolz svoje osi. (Anon)

Ravni val opisuje elektrone z ostro doloceno gibalno koli¢ino in s
popolnoma nedoloceno lego. Vemo pa, da s superpozicijo ravnih
valov razli¢cnih valovnih dolzin lahko zgradimo najrazlicnejsSe
funkcije [28.9]. Poljubno valovno funkcijo ob ¢asu t =0, recimo ji
valovni paket, torej lahko zapiSemo kot
1 _ (42.7)
U(x)=—— ) A(k)e**dk.
0= om S AW
Oblika paketa ¥(x) je odvisna od tega, kaksne utezi A(k)
izberemo. Ce Zelimo sestaviti toéno dolo¢en paket, moramo
izbrati, kot Ze vemo, to¢no dolocene utezi

1
V(21m)

Kaksen pa je stvarni pomen paketa ¥(x)? Slejkoprej pomeni

njegov kvadrat verjetnostno gostoto dP/dx = |¥|?: na intervalu

x £ dx/2 znotraj paketa nastejemo delez dP ansambelskih

elektronov. V paketu pa se ne skrivajo elektroni z enotno gibalno

koli¢ino k, marvec elektroni, ki imajo razli¢ne vrednosti k: eni

imajo taksno, drugi druga¢no. Simetrija enacb vsiljuje zakljucek
£=|A|2. (42.9)
dk

Tudi verjetnostna porazdelitev gibalne koli¢cine mora biti

normirana:

J1AI2dk=1. (42.10)

Valovni paket ¥(x) in njegov spekter A(k) sta torej medsebojni
harmonic¢ni transformiranki. Kot Ze vemo, velja za taki dve

(42.8)

A(k) = Jwoe i dx.
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paket

funkciji povezava [ |¥|2dx = [ |A|2dk. Ce upoStevamo normiranost
obeh funkcij, je to pac¢ oCitno: 1=1.

Ce imamo torej opravka s paketom ¥(x) in Zelimo vedeti, kak3$ne
so gibalne koli¢ine elektronov v njem, izracunamo najprej spekter
A(k) kot harmonic¢no transformacijo ¥(x) in ga nato kvadriramo.
Razli¢ni paketi o¢itno vsebujejo razlicne razpone gibalnih kolic¢in.
Elektroni v takem paketu torej niso "razmazani" zgolj po
prostoru, ampak so "razmazani" tudi po hitrosti. Seveda to ne
pomeni, da je kak individualni elektron ob istem Casu na razlicnih
mestih oziroma da ima ob istem casu razliCne hitrosti, ampak
naslednje. Ce v ansamblu elektronov dolo¢amo lego - bolj v
mislih kot zares -, zaznamo nekatere tu, druge drugje v paketu;
in Ce jim doloCamo hitrost - spet bolj v mislih kot zares -, se
pokaze pri enih taka, pri drugih drugacna. Kaksno lego in kaksno
hitrost elektrona bomo izmerili v posami¢nem primeru, vnaprej
ne moremo napovedati. Izracunamo lahko le verjetnosti za
izmerke.

42.5 Razmazanost gibanja

Pa izberimo primeren razsip gibalnih koli¢in A(k) in poglejmo,
kaksen je ustrezni valovni paket ¥(x)! Priro¢na izbira je
standardni razsip A(k) « exp —(k — ko)?/40%2. Njegova harmoni¢na
transformacija je W(x)  exp ikox - exp —x20%2. Ce zapiSemo

ok =1/40,2, vidimo, da smo dobili standardno moduliran ravni
val. Disperzija gibalne koli¢ine in disperzija lege sta med seboj
povezani:

oxox=1/2. (42.11)

Cim $irsi je valovni paket, tem oZji razpon hitrosti najdemo v
njem. V neskon¢nem ravnem valu je hitrost enovita, kakor tudi
mora biti.

Slika 42.6 Valovni paket ¥(x) s standardnim spektrom A(k). Prikazana je le
realna komponenta paketa. (Anon)

Standardni paket vsebuje ravne valove z razli¢nimi valovnimi
vektorji, ki pripadajo razli¢cnim hitrostim elektronov:

expi(kx — wt) = expik(x — wt/k), w/k = G/2m =v. Zato se ti ravni
valovi tudi razlicno hitro gibljejo. Standardni paket se zato giblje,
hkrati pa se mu tudi spreminja oblika. Pricakujemo, da se njegova
prostorska disperzija veca, zaradi normiranosti pa se mu vrh
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niza. Hitrejsi ansambelski elektroni pac¢ bezijo naprej, pocasnejsi
pa zaostajajo.

Kaj pa valovni paketi drugacnih oblik? Tudi oni imajo disperzijo
lege in gibalne kolic¢ine:

Ax? = {(x = {(x))?) = (x*) = (x)? (42.12)
AG?*=((G—(G)*) =(G*) - (G)?,

pri ¢emer je (F(x)) = [F(x) |¥(x)|>dx in (F(G)) = [F(G) |A(G)|?>dG.
Brez izgube sploSnosti privzamemo, da sta povprecji (x) in (G)
enaki ni¢, kar dosezemo s primernim zamikom koordinat. Tako
dobimo Ax2 = [ x2|W(x)|2dx in AG? = [ G2]A(G)|?dG. — Uvedemo
okrajSavi fix) = x¥(x) in g(G) = GA(G). Potem velja Ax? = [ |f(x)|?dx
in AG? = [|g(G)|*dG. — K funkciji g(G) uvedemo obratno
harmonic¢no transformiranko h(x) =

(1/V(2mh)) [ g(G) exp (iGx/h) dG. Integracija po delih da

h(x) = —ihd/dx ¥(x). — Po energijskem izreku velja

[19(G)|?dG = [ |h(x)|?dx, zato AG? = [ |h(x)|?> dx. — Za poljubni
kompleksni funkciji fin h velja (kakor se prepricamo posebej)
"trikotniSka neenakost" [ f¥fdx- [ h*h dx = |f f*h dx|?. Oznacimo
z=[f*hdx in z* = [ h*fdx. Ker |z|? = Re(2)? + Im(2)? = Im(2)? =

((z — 2%)/2i)?, lahko zapiSemo

|f f¥h dx|? = ((J f*g dx — [ g*fdx)/2i)%2. — Z nekaj truda izraCunamo
[ f*gdx — [ g*fdx =ih. Nato zlozimo skupaj vse delne rezultate in
dobimo Ax2? AG? = (ih/2i)? oziroma (HEISENBERG)

A AG>h (42.13)
xAG=—.
2

Produkt razprSenosti lege in gibalne koli¢ine je za vsak paket
vecji od h/2. Posebej je odlikovan normalni paket, pri katerem je
produkt razprSenosti najmanjsi. Pri tridimenzionalnih paketih
velja zapisana relacija razprsenosti za vsako smer in ustrezno
komponento gibalne koli¢ine posebej.

Elektronski paket v vodikovem atomu ima razprsenost lege in
razprSenost gibalne koli¢ine. Privzemimo, da je radij atoma vecji
od razprsenosti lege: r=Ax (1) in da je gibalna koli¢ina elektrona
vecja od svoje razprsenosti: G = AG = h/2r (2). Energija atoma
znasa E = G?/2m —q?/r (3). 1z (2) izrazimo radij r=h/G (4), ga
vstavimo v (3) in dobimo E = G%/2m — q*G/h (5). Poi$¢emo
minimum te energije, torej resitev enacbe dE/dG =0, in dobimo

G = g*m/h. Vstavitev v (4) in (5) da polmer in ionizacijsko energijo
vodikovega atoma:

h? (42.14)
r=—
mq
ma*
E=- ma
2h2
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Rezultat je tocno tak kot pri planetarnem modelu atoma [41.9], to
je 0,53Ain —13,6eV.

42.6 Kvantni gibalni zakon

Kakor elektromagnetni valovi zadosScajo klasi¢ni valovni enacbi,
tako pricakujemo, da tudi valovne funkcije ansambla elektronov -
prostih ali v polju sil - zadosc¢ajo neki kvantni valovni enacbi.
Poisc¢imo jo!

Najpreprostejse je gibanje prostega delca vzdolz osi x.
Kakrsnokoli Ze je to gibanje, k energiji delca prispeva zgolj
njegova kineti¢na energija: E = G2/2m. Enacbo pomnozimo s
poljubno valovno funkcijo: E - W(x,t) = G2/2m - W(x,t). Ce je ta
funkcija ravni val ¥ = expi(Gx — Et)/h, potem vidimo
E-W=ihoW/ot in G%/2m- W = —h?%/2m 8*W/ax?, torej:

oV h? 9°W (42.15)

ih = .
at 2m ox>?
Zapisana enacCba zagotovo velja za kakrsenkoli ravni val. Velja pa
tudi za vsoto dveh ali ve¢ ravnih valov, na primer a¥; + b¥,, v kar
se prepricamo z neposredno substitucijo. To pomeni, da velja tudi
za poljuben valovni paket, saj je ta sestavljen iz samih ravnih
valov. Zato lahko zadevo obrnemo in recemo: tule je enacba, ki
opisuje gibanje valovnih paketov; ¢e poznamo valovni paket ob
nekem cCasu, enacba napoveduje njegovo prihodnost. Posplositev
na tri dimenzije je preprosta:
L ov h? (42.16)
ih—=—-—V2y,
at 2m
Gibanje prostega delca ni preve¢ zanimivo. Mnogo pomembnejse
je gibanje delca v polju sil, zlasti v elektrostaticnem polju znotraj
atomov. Energija delca v takem polju je vsota njegove kineti¢ne in
potencialne energije: E = G%/2m + W. Na podoben nacin kot pri
prostem delcu dobimo
ov h? 9°W (42.17)

ih— == — " + W)W
at 2m 9x? )

oziroma v treh dimenzijah (SCHRODINGER)

L ov h? (42.18)
ih—=—-—VU+Wnv.
at 2m

To je iskani kvantni gibalni zakon za ansambel delcev v
potencialnem polju, recimo za elektrone v mnozici vodikovih
atomov. Opisuje, kako se zacetni valovni paket ansambla
spreminja s ¢asom. Zakona nismo (deduktivno) izpeljali iz kakSnih
postulatov, ampak smo ga (induktivno) postavili z bolj ali manj
upravicenim posplosevanjem delnih spoznanj. Drugace tudi ne
gre: osnovnih zakonov pa¢ ne moremo izpeljati iz nicesar; ce bi



Tok verjetnosti

Stacionarna stanja

jih lahko, bi prenehali biti osnovni zakoni. Ali je pravkar
postavljeni zakon pravilen ali ne, pa bomo sodili na podlagi
njegovih napovedi oziroma posledic.

Ko se valovni paket giblje ali deformira, se v tockah prostora
spreminja tamkajSnja verjetnostna gostota. Sprememba gostote
zna$a ap/at = a/ot (P*W) = W*¥'¥ + w*P'. Casovni odvod ¥ izrazimo
iz gibalne enacbe in ¢asovni odvod ¥*' iz konjugirane gibalne
enacbe (zamenjamo ¥ — WU* ter i —» —i), pa dobimo dp/ot =
(h/2mi) (V2W*W — W*Y2W), Izraz v oklepaju zapiSemo kot
V- (U*VY — UVP*), Lokalna sprememba gostote je torej enaka
divergenci gostote toka

op (42.19)

—+V-j=0
ot 1

j= i (T'VY — WV ),
2mi

To je kontinuitetna enacba za verjetnost. Integracija po
prostornini pove [dp/atdV = [V -jdV. Leva stran je enaka
d/dt fpdV in desna [jdS. Z besedami: pretok verjetnosti skozi
zaprto ploskev je enak spremembi zaobjete verjetnosti. Tako tudi
mora biti, saj elektroni ne nastajajo in ne izginjajo. Posebej za
ravni val dobimo p = |A?| in j = |A?%|G/m, iz Cesar sledi j = pv.
Verjetnostna gostota in gostota verjetnostnega toka sta povezani
na enak nacin kot Stevilcna gostota in gostota Stevilcnega toka.
To seveda ni ni¢ ¢udnega, saj smo verjetnost lege posami¢nega
delca pravzaprav definirali kot Stevilcno gostoto v ansamblu
delcev.

42.7 Lastne funkcije energije

Poizkusimo poiskati pakete/stanja, v katerih je verjetnostna
gostota neodvisna od casa. Tedaj mora imeti valovna funkcija
obliko

U(x,t) = y(x) e ¢, (42.20)

saj je |exp (—iwt)|? = 1. Takim stanjem rec¢emo stacionarna stanja.
Ker je njihova frekvenca ostro dolocena, je takSna tudi njihova
energija E = hw. Zapisano valovno funkcijo vstavimo v kvantni
gibalni zakon (42.17) in dobimo

h? 9%y (42.21)

_ﬂ ﬁ+[W(X)—E]W=O

oziroma v treh dimenzijah (SCHRODINGER)

h? (42.22)
- — V2y+[W(r)-E]ly=0.
2m
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To je stacionarna valovna enacba. V njej nastopa poleg neznane
valovne funkcije tudi neznana energija. Enacba doloca, kakSne so
stacionarna stanja ansambla delcev v predpisanem potencialu.

Ni vsaka valovna funkcija, ki zadosca stacionarni valovni enacbi,
ze kar sprejemljiva. Njen verjetnostni pomen zahteva, da mora
biti enolicna, omejena in kvadratno integrabilna. Nadalje je prvi
odvod funkcije povezan z gibalno koli¢ino in drugi s kineti¢no
energijo, ki morata biti obe enoli¢ni in kon¢ni, zato mora biti
funkcija Se gladka, to je, ne sme imeti skokov ali lomov.

Prosti elektroni v curku imajo lahko kakrsnokoli energijo. Za
elektrone, zaprte v atomih, pa vemo, da imajo le diskretne
vrednosti energije. To nas navaja na naslednjo domnevo.
Stacionarna valovna enacba za vezani delec v danem potencialu
W(x) je podvrzena tako zahtevnim robnim pogojem, da ji
zadoScajo le izbrane energije E,, in njim ustrezajoCe izbrane
valovne funkcije y,(x). Poimenujemo jih lastne energije in lastne
funkcije energije. Drugac¢nemu potencialu pa ustreza drug nabor
lastnih energij in lastnih funkcij. Vezani elektron je torej lahko v
tem ali onem cistem stanju

U(x,t) = yu(x) e iEnt/h (42.23)

ali pa v kakrsnikoli linearni kombinaciji dveh ali vec¢ ¢istih stanj,
to je v mesanem stanju:

W(x,t) = D, CaWn(x) e iEnt/h (42.24)

Cisto stanje si razlagamo tako, da je vsak ansambelski elektron v
istem stanju, na primer y,, in ima isto energijo, namrec E;. Pod
mesanim stanjem pa razumemo, da je, na primer, nekaj
ansambelskih elektronov v stanju y; z energijo E; in nekaj v
stanju y, z energijo E,. Kakor torej posamicen elektron ni hkrati
na dveh mestih in nima hkrati dveh hitrosti, tako tudi nima hkrati
dveh energij. Ce bi ansambel lahko sestavili iz zaporednih
meritev istega elektrona v enakem mesanem stanju, bi dobili zdaj
tako, drugic¢ drugacno cisto stanje/energijo. MeSano stanje tudi ni
vec stacionarno, saj posamezne funkcije y,(x) ne nihajo sinhrono.
Verjetnostna gostota se zato s Casom spreminja - ansambelski
paket se deformira oziroma giblje.

Izracunajmo Se gostoto verjetnosti za meSano stanje. Ta znasSa
UHY = (3 cp¥ exp(iE t/h)wn*): G cmexp(—iExt/h) ), kar uredimo v

(42.25)
TP =D > ey, e EmEnh y kg

n m

Verjetnostna gostota paketa torej niha s frekvencami, ki so
podane z razlikami energij E,, — E, med Cistimi stanji. Nazorno si
predstavljamo, da je z verjetnostno gostoto elektrona v atomu
opisana tudi njegova gostota naboja. Potem vidimo: kakor niha



Ortogonalnost lastnih
funkcij

Razvoj po lastnih
funkcijah

gostota naboja, tako niha tudi izsevana svetloba. Crtasti sevalni
spektri naravno sledijo iz energijskih stanj paketa.

Dobro bi bilo Se raziskati, kaksni so produkti lastnih funkcij
Wn*ym. Za zaCetek naj bosta izbrani funkciji v, in y,, realni.
Vemo, da zadoScata isti stacionarni valovni enacbi

—h22mV2y, + Wy, = E,y, in —h22mV2y, + Wy, = Epym. Prvo
enacbo pomnozimo s y,, in drugo s y,, potem drugo enacbho
odstejemo od prve in dobljeno razliko integriramo po vsem
prostoru: —h22m [ (ymV2y, — v V2y,,) AV = (E,— Ep) [ Ymy,dV.
Levi integrand spremenimo v divergenco V(y,,Vy, — y,Vyp,).
Prostorninski integral divergence lahko spremenimo v integral po
objemajoci ploskvi. Na tej ploskvi, Ce je zelo dale¢, pa so valovne
funkcije enake nic, s tem pa postane nic tudi integral. Sledi, da je
tudi desna stran enacbe enaka nic¢. Ker je E, razlicen od E,,, mora
veljati [y, dV =0, ¢e n # m. ReCemo, da sta funkciji
ortogonalni. Na podoben nacin pokazemo, da ortogonalnost velja
tudi za kompleksne funkcije, pri Cemer

Jwp*y,dV=0,Cen=m. (42.26)

Ce torej zapisano gostoto ¥*¥ integriramo po vsem prostoru, so
integrali y,*y,, razlicni od ni¢ samo takrat, ko n = m. Zaradi
normiranosti je vsak enak ena. Tako ugotovimo

Dleal?=1. (42.27)

Verjetnosti se seStevajo. Zato je verjetnost, da paketu izmerimo
energijo E,, enaka

P(E,) = |cq|?, (42.28)
povprecje vseh razli¢nih izmerkov pa znaSa (E) =3 |c,|2Ep.

Sestavljanje ortogonalnih lastnih funkcij energije v mesano stanje
spominja na sestavljanje harmonicnih valov v njihovo
superpozicijo. Takoj se porodi misel, da je mozno tudi obratno:
morda lahko kakrsnokoli stanje ¥(x,0) razvijemo v utezeno vsoto
ortogonalnih lastnih funkcij energije, torej ¥(x,0) =3 chwn(x), pri
¢emer so koeficienti razvoja podani kot ¢, = [ y,*¥dV. Ce je to
res - in privzeli bomo, da je - potem lahko s primerno izbiro
koeficientov opisemo kakrsnokoli razporeditev delcev v prostoru
ob zaCetnem casu t = 0, nadaljni razvoj pa je enoli¢no dolocen kot
Y(x,t) =S coypn(x)eifnt’ Tezava je seveda v tem, da moramo
poznati lastne funkcije energije za aktualni potencial.

42.8 Sipanje na potencialni oviri

Do sedaj smo dolocili le valovne funkcije ansambla elektronov za
gibanje v prostoru, kjer ni bilo elektricnega potenciala; to so bili
ravni valovi oziroma njihove superpozicije. Ugotovitve veljajo v
nespremenjeni obliki tudi za gibanje v konstantnem potencialu.
Saj tam ne delujejo na delec nobene sile.
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Tuneliranje delca

Zdaj je napocil cas, da pogledamo, kaksne so valovne funkcije pri
gibanju elektronov v prostorsko spremenljivih poljih potenciala.
Loc¢imo dve kvalitativno razli¢ni vrsti gibanj: v prvem primeru
prileti elektron od zunaj na potencialno spremembo, recimo pri
vpadu na "rob" atoma, v drugem pa je elektron ujet znotraj
potencialne jame, recimo v "notranjosti" atoma. Govorimo o
sipanju in o vezanem gibanju elektrona.

Za obravnavo sipanja izberemo najpreprostejsi primer: vpad
elektrona na stopnicast potencialni klanec: na intervalu x <0
znasa W= 0, na intervalu x > 0 pa W= W,. Pricakujemo, da bomo
tako spoznali tipi¢ne lastnosti sipanja tudi na drugih, bolj
zapletenih potencialnih ovirah.

Slika 42.7 Vpad delcev na potencialno

M stopnico. Stopnica je nizja od kineti¢ne
I | energije delca. Na stopnici se nekaj delcev
odbije in nekaj se jih prepusti. (Thomas, D.)

1

Naj elektroni vpadajo na klanec z leve strani. Dopustimo
moznost, da se elektron na klancu odbije ali prepusti, kakor nas
uci svetloba. Za elektron - vpadni, odbiti ali prepusceni - je
mehanska energija, to je vsota njegove kineti¢ne in potencialne
energije, med letom vedno konstantna: G2/2m + W=E. Iz tega
sledi, kako je gibalna koli¢ina elektrona odvisna od potenciala, v
katerem se giblje: G =v(2m(E — W)). Podobno velja za valovni
vektor k = G/h: na levi strani znasa k; = V(2mE/h?) in na desni

ko =v(2m(E — W)/h?). Valovna funkcija na levi je vsota ravnega
vpadnega in ravnega odbitega vala: y; = exp (ik1x) + Rexp (—ikix).
Amplitudo vpadnega vala smo postavili na 1. Valovna funkcija na
desni pa pripada ravnemu prepusc¢enemu valu: y, = Texp (ikyx).
Na mestu potencialnega skoka pri x =0 morata biti leva in desna
valovna funkcija enaki: y; = y,. Prav tako morata biti enaka njuna
prva odvoda: ay1/dx = dy,/ax. V tadva pogoja vstavimo obe valovni
funkciji in dobimo dve enacbi za koeficienta R in T. Iz njiju
izraCunamo:

o kimka (42.29)
Ky + ks
2k,
Tkt kg

Verjetnost odboja znasa P, = |R|?. Ker se Stevilo elektronov
ohranja, znaSa verjetnost prepusta Py=1 —P;.

Z racunom smo pravzaprav zajeli dva primera: energija
vpadajocih elektronov je vecja od potencialnega skoka ali pa je
manjsa. V prvem primeru sta valovna vektorja na obeh straneh
realna, prav tako amplitudi R in T. Imamo odboj in prepustnost. V
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Neskoncna
potencialna jama

drugem primeru pa postane k; imaginaren. ZapiSemo

ko =v(2m(E — W)) = iv(2m(W — E)) =ik, s Cimer postane
prepuscena valovna funkcija y, = Texp (—kx). Ta hitro pojema z
razdaljo. Verjetnost odboja je v tem primeru P,=R*R =1 in
verjetnost prepusta P, =0.

Slika 42.8 Vpad delcev na potencialno
stopnico. Stopnica je viSja od kineti¢ne

I
| energije delca. Vsi delci se odbijejo, nekateri
E pa predtem tunelirajo v stopnico. (Thomas,
D.)
.

Elektroni se torej pri vpadu na potencialni klanec vedejo Cisto
drugace kot klasi¢ni delci. Klasi¢ni delci z dovolj energije se vsi
povzpnejo ¢ez klanec in nadaljujejo pot. Ce energije nimajo
dovolj, se pa vsi obrnejo nazaj Se pred vrhom. Kvantni delci pa se
deloma odbijejo, tudi ¢e imajo dovolj energije. Ce energije nimajo
dovolj, se pa kljub temu deloma povzpnejo preko vrha klanca in
se Sele od tam odbijejo. Recemo, da elektroni tunelirajo v
stopnico. Ce bi bila ta kratka, bi na drugi strani celo prisli ven in
nadaljevali pot.

42.9 Gibanje v potencialni jami

Najpreprostejsi primer vezanega gibanja je elektron v neskonc¢ni
potencialni jami: na intervalu [0, D] znasa W =0 in zunaj W = .

e oo Slika 42.9 Gibanje delca v neskon¢ni potencialni jami.
Vrisane so lastne valovne funkcije energije. (Anon)

) <

-ﬂ—l-—h—

Lastne valovne funkcije energije v jami so dolocene s stacionarno
valovno enacbo h%/2m y" + Ey = 0. To je dobro znana enacba

y" + w? y =0 s konstanto w? =2mE/h?%. Njene resitve so sin wx in
cos wx. Zahtevamo, da je y na robovih enaka ni¢. Ni namrec¢
mogoce, da bi delec imel kje neskoncno veliko potencialno
energijo. Pogoju na levem robu ustrezemo z izbiro funkcije sinus.
Pogoju na desnem robu pa ustrezemo s pogojem sin wD = 0, torej
wD=n/2,n=1,2,3...To seveda pomeni, da so lastne energije
delca

(42.30)

h? no
E.=—(—), n=1,2,3...
2m D
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in (nenormirane) lastne funkcije

nm (42.31)
Wn=SinBX. n=1,2,3...

Zdaj vidimo, kako racuni vodijo do diskretnih valovnih funkcij in
do diskretnih energij: tako, da moznim valovnim resitvam
predpiseme dolo¢ene robne pogoje. Enega izmed teh smo
pravkar spoznali: v podroc¢ju neskoncéno velike potencialne
energije mora biti valovna funkcija enaka nic.

Naj bo ansambel zaprtih delcev v kakSnem izmed ¢istih stanj, na
primer v osnovnem stanju n =1 z valovno funkcijo

W =sin (nx/D) exp (—iE t/h). Stanje ansambla je tedaj opisana z
verjetnostno gostoto |¥|? = |y;|? = sin? (mx/D) in se s ¢asom ne
spreminja. Mislimo si, da kakemu ansambelskemu delcu
izmerimo energijo na primeren nacin. Meritev bi pokazala E;.
Pravzaprav je res obratno: ¢e izmerimo E;, potem vemo, da je bil
delec v stanju y;.

|‘P|2 Slika 42.10 Verjetnostna gostota za delec v
potencialni jami. Prikazani sta gostoti v dveh
Cistih stanjih ¥ (modro) in ¥y (zeleno). V
Cistem stanju se gostota ne spreminja s

14
7N ¢asom.

VAVAN

razdalja T

Delci pa so seveda lahko tudi v meSanem stanju, recimo v takem
z valovno funkcijo ¥ = sin (r1x/D) exp (—iE t/h) +

sin (2mx/D) exp (—iE,t/h). To ni ve¢ lastna funkcija in verjetnostna
gostota |¥|? = sin? (x/D) + sin? (2nx/D) +

2sin (11x/D) sin(2mx/D) cos (E, — E1)t/h se zato s casom spreminja. V
ansamblu delcev v takem stanju bi izmerili posamic E; ali E; in
sicer v enakih relativnih delezih

[ |2 Slika 42.11 Verjetnostna gostota za delec v
potencialni jami. Prikazna je gostota v
=0 =T2 metanem stanju ¥ + ¥,. Gostota se s casom
periodi¢no spreminja.
14
razdalja n

Kaksna pa je gibalna koli¢ina delca v potencialni jami? Ker

E =G?/2m, sledi G =v(2mE). Vstavimo izraz za energijo in dobimo
G==xh(mn/D),n=1,2,... Vosnovnem stanju je G = * h(11/D). Pol
delcev v ansamblu se giblje v desno, pol v levo. Posamicen delec
torej ne miruje, ampak se giblje. OZja kot je jama, hitreje se v njej
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giblje. Gibanje je razmazano, kakor tudi mora biti: AxAG ~

Dhn/D = nh = h/2. Ce je ansambel delcev v vi§jem stanju, imajo
delci veéjo gibalno koli¢ino. Ce je v meSanem stanju, pa ima nekaj
delcev taksno, nekaj pa drugacno.

Ce ima potencialna jama konéno globino, priéakujemo, da
valovne funkcije na robovih niso ni¢, ampak da eksponentno
tunelirajo v steno. Saj nas to uci sipanje na visoki oviri. Pri tem se
morajo notranji sinusi rahlo deformirati, tako da se gladko
raztegnejo Cez robove v eksponentne repke. Temu ustrezno se
morajo prilagoditi tudi lastne energije. Brez racunanja smo torej
izdelali kvalitativno sliko valovnih funkcij v kon¢ni potencialni
jami.

Slika 42.12 Gibanje delca v kon¢ni potencialni jami.
Vrisane so lastne valovne funkcije energije. (Anon)

E

=
—

a

\

Spekuliramo lahko celo naprej. Vidimo namrec, da v potencialni
jami Stevilo n podaja Stevilo vozlis¢ valovne funkcije. Osnovno
stanje z najnizjo energijo odgovarja funkciji brez vozlis¢. Vsaka
naslednja reSitev pa ima za eno vecje stevilo vozliS¢. Privlacna je
misel, da to velja tudi za bolj sploSne potencialne jame, take, ki
imajo poSevne stene.

42.10 Harmonicni oscilator

Najpreprostejse "realisticno" vezano gibanje delca je tisto, ko ta
delec harmoni¢no niha pod vplivom elasti¢ne sile F = —kx. To silo
predstavimo s potencialom F = —aW/ax, torej

W =1/,kx? =1/;mw?x?. Pri tem je m masa delca in w njegova
frekvenca. Tako nihajo - po klasicni teoriji - atomi v molekulah in
kristalih. Koristno bi bilo, ¢e bi o tem gibanju kaj vec¢ vedeli. Za to
moramo resiti valovno enacbo

(42.32)

Preden se lotimo reSevanja, preoblikujmo enacbho v
brezdimenzijsko obliko. Opazimo, da ima koli¢ina m?w?/h?
dimenzijo (dolzina)~4, zato definiramo a = V(h/mw), ki ima
dimenzijo dolzine. Za neodvisno spremenljivko nato uvedemo

p =x/a. Energijo pa normiramo kot £ = 2E/hw. S tem se valovna
enacba polep$a v brezdimenzijsko obliko d?y/dp? = (p? — &)y (1).
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Osrednji polinom

Lastne energije

Lastne funkcije

Za velike vrednosti p velja (p? — €) » p? in enacba se poenostavi v
d2y/dp? = p2y. Poskusimo jo resiti z eksponentnim nastavkom

w = exp (Ap?/2). Vstavitev v enacbo pove A2 =1, torej A = + 1, zato
w =Aexp (0%/2) + Bexp (—p?/2). Prvi ¢len narasca v neskoncnost,
zato ni sprejemljiv in ga zavrzemo. ReSitev na celotnem obmodcju
zato iS¢emo z nastavkom y = s(p) exp (—p?/2). Ko ga vstavimo v
(1), dobimo d?s/dp?—2pds/dp+ (e —1)=0 (2).

Spomnimo se, da ima n-ta vzbujena valovna funkcija v jami n
vozliS¢, zato je smiselno iskati reSitev v obliki polinoma stopnje n,
torej s(p) = Eajpf. Ce ta nastavek vstavimo v (2), dobimo

SIG+ 1) +2)aj+2— (2j+ 1 —€)ajlp/ = 0. Vsak koeficient mora biti
enak ni¢, kar pomeni aj;, =[(2j + 1 —¢€)/(j + 1)(j + 2)]a;. To je
rekurzijska povezava iz poljubnih zacetnih g in a; za vse
naslednike. Vsi sodi a-ji so nasledniki g in vsi lihi a-ji so
nasledniki a;.

Rekurzijska veriga - soda ali liha - se mora ustaviti prij=n, to je,
vsi njeni nadaljnji ¢leni morajo biti enaki ni¢. To dosezemo z
zahtevo 2n+ 1 —e=0, iz Cesar sledi € =2n + 1 oziroma
(SCHRODINGER)

1 (42.33)
En=hw(n+5), n=0,1,2,3....

Delec v harmoni¢nem potencialu ima torej kvantizirane energije,
kakor tudi mora biti. V osnovnem stanju ima energijo Ey = hw/2.
Razmiki med energijskimi nivoji so enakomerni.

Dolociti moramo Se lastne funkcije. Iz vsega povedanega
povzamemo

n (42.34)
() =( >, app) e‘92/2=Hn(p) e‘PZ/Z, p =V(mw/h)x
j=0
2(G—n)

Qjyr=—————0qj.
TG nG+2)

Izradunajmo prvih nekaj (nenormiranih) lastnih funkcij! Ce je n
sod, postavimo ag = 1 in vse lihe koeficiente na ni¢. Ce je n lih,
postavimo a; =1 in vse sode koeficiente na ni¢. Tako dobimo, kot
primer

yo=e P12 (42.35)
yr=per °2,
Po potrebi funkcije Se normiramo. Polinom H, je stopnje n in

vsebuje samo sode ali samo lihe potence. Tem polinomom recemo
harmonic¢ni polinomi.
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E Slika 42.13 Lastne funkcije v
r ' harmoni¢nem oscilatorju. (Anon)

Vse, kar smo prej povedali o Cistih in mesSanih stanjih za delec v
pravokotni potencialni jami, velja z ustreznimi spremembami tudi
za delec v harmonicni jami.

42.11 Enoelektronski atom

PoiS¢imo sedaj energijske nivoje in lastne funkcije energije za
vodikov atom. Potencialna energija elektrona z nabojem
q = e/V(4megp) v elektrostaticnem polju jedra z nabojem g znasa
W(r) = —q?/r. Valovna enacba se zato glasi
—h? 2 42.36
vy -Ly=Ey. ( )
2m r
Operator V2 zapiSemo - na Ze znani nacin - v polarnih
koordinatah in dobimo
1 %y (42.37)

i) i)
2 (sin@ Xy ——— ¥,

109 Ay
)+ X X
rior  ar r?sin0 a0 a0 r?sin? 0 agp?

__(T'2

M Es Y=o
h2 P =

Enacba je strasljiva. Resitev iS¢emo v obliki produkta dveh
funkcij, od katerih je ena odvisna zgolj od radija in druga zgolj od
smeri

w(r,0,90) =R(NY(6,9). (42.38)

Zapisani produkt vstavimo v (42.37), izvleCemo "konstantne"
faktorje izpod odvajanj, mnozimo z r? in delimo z RY ter zapiSemo
radialne Clene na levi, krogelne pa na desni strani enacbe. Levi
del je odvisen le od r, desni le od 0 in ¢. Za vse toCke prostora sta
lahko medsebojno enaka le, Ce je vsak zase enak isti konstanti A,
torej

d dR 2mr? q> (42.39)
+ (E+—)R—AR=0
r

1 d . dy 1 d?%y
— —(sin@ — )+ ——-— +AY=0.

sin6 do d0 "~  sin?0 d¢?
Pridelali smo dve enacbi, radialno in krogelno. Slednja Se vedno
vsebuje dve spremenljivki, 6 in ¢. Potrebna je njena nadaljnja
loc¢itev. Ravnamo tako kot prej. Z nastavkom
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Resitev azimutne
enacbe

Resitev polarne
enacbe

Y(6,9) =0(0)2(p) (42.40)

razcepimo smerno enacbo v polarno in azimutno enacbo, pri
cemer vpeljemo konstanto B, in po majhni preureditvi dobimo

1 d de B (42.41)
— —(sinf — )+A — — =0

sin6 d6 do sin?0
20

— +B®=0.

dg?

Resiti moramo torej tri enacbe: radialno, polarno in azimutno.
Zacnimo z zadnjo, ki je najpreprostejSa. Njena reSitev je

@ = ¢y exp (img) + ¢, exp (—img), pricemer B = m2. "Greenwiski
meridian" atoma lahko postavimo kjerkoli, zato udobno izberemo
c, =0. Zahtevamo Se, da je azimutna funkcija enoli¢na, to je

@(0) = @(2m), zato mora biti m celo Stevilo. Torej
(nenormalizirano)

Op(p)=em? ,m=0,+1,+2,+£3.... (42.42)

Sledi polarna enacba. Vanjo vstavimo B = m?. Nato uvedemo novo
spremenljivko x = cos 0, s ¢Cimer prevedemo iskanje funkcije © (0)
na iskanje nove funkcije P(x):

6(0) = P(cos0) = P(x) . (42.43)

Diferencial d/d6 = dx/d6 -d/dx = —sin 6 d/dx pridela, ob uporabi
identitete sin?0 =1 —cos?6 = 1 — x?, enacbo

dzp dpP m? (42.44)

(1-x3)— —2x— + (A — YP=0.

dx? dx 1—x2
Zal koeficienti niso konstante, zato ne vidimo, kako bi enacbo
resili. Na sreco pa je resitev ze poznana (iz Studija stojnega
valovanja na krogelni opni, s katerim se mi nismo ukvarjali); to je
modificirana potenc¢na vrsta

* © (42.45)
P()=(1=xH)M2[ > ax¥+ 3 azs+1x¥+1]
j=0 j=0
G+m)G+m+1)—A (42.46)

AL TYFING YA

Pri neugodni vrednosti A lahko postane vrsta na definicijskem
intervalu x €[—1, 1] neomejena. Da se to ne zgodi, mora kakSen
koeficient pri rekurziji postati ni¢; potem postanejo tudi vsi
naslednji koeficienti enaki ni¢, vrsta postane polinom in
nevarnost je odpravljena. Vidimo, da koeficient aj;, postane nic,
ce j+m)(j+m+1)—A=0. To pa se zgodi, Ce za j+ m =1 velja
A =I(+1). Dovoljene vrednosti so torej

A=I11+1) ,1=0,1,2...in|m|=I. (42.47)



Resitev radialne
enacbe

Za izbrani I in m se torej vrsta P(x) okrajSa v polarni polinom
P;n(x). Prvih nekaj polinomov, izracunanih z rekurzijo iz ap=1 in
a, =1 se glasi (nenormalizirano)

Pyo(cosB) =1 (42.48)
Pyy(cosB)=cosb
Pi1(cosB) = —sinf.

Preostane Se radialna enacCba, v katero vstavimo A =1(l + 1).
Najprej jo poskuSamo poenostaviti. Vpeljemo novo odvisno in
novo neodvisno spremenljivko

u=rR (42.49)
p=kr, K=V(—-2mE/h?).

Ker je energija vezanega elektrona negativna, je podkorenski
izraz pozitiven. Na ta nacin se radialna enacba poenostavi v
obliko

d?u A II+1) (42.50)

—=[1-—+ Ju=0,

dp? P p?
pri cemer A = 2mq?/h?k. Nato pogledamo, kako se enacba vede
pri velikih in malih vrednostih p. Ko p— «, odpadeta Clena 1/p in
1/p? ter preostane u" = u. ReSitvi sta exp(p) in exp(—p). Prva gre v
neskonénost, zato obdrzimo le drugo. Ko p— 0, prevlada ¢len 1/p?
ter preostane u" =[I(I+1)/p?]u. To enacbo reSujemo s potencnim
nastavkom u = p%, kar pokaze s(s—1)=I(I+ 1), torej s=—Iin
s=1+1. Resitev p~! gre v neskonc¢nost, zato obdrzimo drugo, p*1.
Sedaj, ko poznamo obe limitni resitvi, ju faktoriziramo ven iz
sploS$ne resitve, to je, postavimo

u=ptle=ry(p). (42.51)

Vstavitev v radialno enacbo pokaze

2

d+v dv (42.52)
p— +2(+1-p)—+@A—-2(0+1)v=0.
dp? dp

Zapisano enacbo reSujemo z nastavkom

v(p) =D a0, (42.53)
kar privede - z nekaj racunanja - do koeficientne vsote, ki je
enaka ni¢. Zato mora biti vsak koeficientni ¢len enak nic, iz ¢esar
sledi rekurzija

2+1+1)—-2 (42.54)
a;.
G+DG+20+1) 7

djy1=

Vrsto spet odrezemo v polinom z zahtevo 2(j+1+1)—2A =0. To
pove, da mora veljati
A=2n, n=1,2,3...inl<n. (42.55)

Upostevajoc definicijo A neposredno sledi kvantizacija energije,
kakor tudi mora biti (SCHRODINGER):
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mq* (42.56)

S tem izrazom za energijo zapisemo p = kr kot p = r/nrg. IzpiSemo
tudi Ze lahko poljubno radialno funkcijo. Nekaj prvih
(nenormiranih) se glasi

-r (42.57)
Rig=exp —
s
R 1 r ) -r
=(1——)exp—
20 2rs p 2rs
r -r
Ry =— exp —.
s 27"]3

Zdruzitev delnih  Radialne, polarne in azimutalne delne resitve zdruzimo v celotne
resitev  1astne funkcije vodikovega atoma: yyum(r,0,¢) =
Ry(r)Ppyn(cosB)d,,(p). Kadar je to potrebno, izracunamo Se
normirno konstanto A preko pogoja 1/A = [ |y|?dV =
[ |w|?r*sin6drdgd6. Lastne funkcije so ostevilCene s kvantnimi
Stevili n, I in m. Ta Stevila, kot smo ugotovili, niso neodvisna.
Izbira n omejuje I in izbira I omejuje m. Ponovimo ugotovitev:

n=1,2,3... (42.58)
1=0,1,2...n-1
m=0,*1,+*2 .. =*[.

Navedena kvantna Stevila moc¢no spominjajo na kvantna Stevila
pri planetarnem modelu; to je tudi razlog, da smo jih enako
poimenovali. Pomembna pa je ena izjema: Stevilo I ne gre ve¢ od

1 do n, pa¢ pa od 0 do n— 1. To nas navaja na misel, da je vrtilna
koli¢ina atoma - ki jo Se nameravamo izracunati - v marsikaterem
stanju enaka nic.

Kvadrat valovne funkcije je verjetnostna gostota, da se elektron
znajde v kaksni tocki v okolici jedra. Nazorno si jo predstavljamo
kot oblak, ki ga gibajocCi se elektron zarisuje okoli jedra.

Slika 42.14 Atom vodika v razli¢nih lastnih

™ @ W ohiinnl 10, 20, 21, 30, 31, 32. Ta stanja
' m so oznacena kot 1s, 2s, 2p, 3s, 3p, 3d.
s 2 2 Prikazana je verjetnostna porazdelitev

elektronskega oblaka. Namesto po ostrih
e orbitah se giblje elektron znotraj
ﬁ' razmazanih orbital. (McQuarrie, 1983)

Izracunajmo Se povprecni radij elektronskega oblaka v osnovnem
(normiranem) stanju Rqo = (1/v(urg3) exp (—r/rg)! Velja

(r) = [ r|R10|?>dV. Substituiramo dV=r?drsin0dgd0 in
izracunamo (r)=3/2 - rg.


pict3c/orbital.jpg
pict3c/orbital.jpg
picref.htm

Lastne enacbe kolicin

Lastna enacba za
vrtilno koli¢ino

Velikost vrtilne
koli¢ine

Na enak nacin, kot smo obravnavali vodikov atom, lahko
obravnavamo tudi vodiku podobne atome, to je enoelektronske
atome v polju jedra z nabojem Zq. Naboj jedra vstopa v
obravnavo preko potencialne energije W= —Zq?/r. Kjerkoli torej v
obravnavi naletimo na g2, ga moramo nadomestiti z Zg2. Glavno
mesto, kjer se skriva g2, pa je v definiciji atomske dolzine

rg = h%2/mq?. Kjerkoli naletimo na rg, ga moramo zato nadomestiti
z rB/Z.

42.12 Vrtilna kolic¢ina

Ce ima valovna funkcija y obliko ravnega vala, se v njej skrivajo
elektroni z ostro dolo¢eno gibalno koli¢ino G in velja "lastna
enacha" —ihVy = Gy. Kadarkoli merimo, zmeraj dobimo enako
vrednost. Ce ima funkcija druga¢no obliko, pa imajo elektroni v
njej razmazano gibalno koli¢ino - enkrat izmerimo taksno, drugic
drugacno.

Podobno velja za kineti¢no energijo: elektrone z ostrimi
vrednostmi K = G%/2m najdemo le v ravnih valovih in ti zado$¢ajo
lastni enacbi [(—ihV)?/2m]y = Ky. Ravni valovi so torej lastne
funkcije tako gibalne koli¢ine kot kineti¢ne energije.

In podobno velja za energijo v potencialnem polju: ostre
vrednosti E = K+ W najdemo samo v taksSnih valovnih funkcijah,
ki zado$cCajo lastni enacbi [(ihV)%/2m + W]y = Ey. Za delec v
neskoncni potencialni jami, na primer, so to posamicni
harmonicni valovi.

Pri gibanju elektrona v treh dimenzijah, na primer v atomih, se
zakonu o ohranitvi energije pridruzi Se zakon o ohranitvi vrtilne
koli¢ine: r x G = L. Naravno je predpostaviti, da vrednosti vrtilne
koli¢ine in njim ustrezajocCe valovne funkcije doloc¢a lastna enacba

—ih(rx V)y=Ly. (42.59)

Enacbo hocemo zapisati v krogelnih koordinatah, da bo primerna

za obravnavo gibanja v centralnih potencialih. — Enacbo najprej

zapiSemo v komponentni obliki v kartezi¢nih koordinatah. Prva

komponenta se glasi L, = —ih(yd/dz — zd/dy) in ostali dve

podobno. — Nato zapiSemo kartezicne odvode s krogelnimi:

d/ox = ar/ax - d/or + 90/dx - 3/00 + a¢/ox - 3/dp in podobno za ostala

dva. — Sledi dejanski izracun odvodov ar/ax, a6/ax, a@/dx ter

podobno za ostale. — Potem vse skupaj zdruzimo, vstavimo

"manjkajoco" valovno funkcijo in dobimo enacbe za L,, L, in L,

kot funkcije krogelnih koordinat in odvodov nanje.

Velikost vrtilne koli¢ine dobimo kot L2 =L,2 4+ L,? + L,?, kar znese
1 dy 1 d%y L? (42.60)

d
— (sinf6 —) + —=——y.
sn6ds %30 ) T e dgr - R Y
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Njena navpi¢na
komponenta

Vodikov atom in
vrtilna koli¢ina

Sistem delcev

Veliko presenecenje! Dobili smo krogelno enacbo (42.39) s
konstanto A = L?/h?. Kot vemo, so resitve te enacbe - krogelne
funkcije Yy, = Pi(cos 0) expimeg - moZne le za celostevilske
vrednosti A =1(I+1) in celostevilske vrednosti |m| <1, zato mora
biti vrtilna koli¢ina takole kvantizirana:

L?=1(1+1)h?%1=0,1,2,3, ... (42.61)

Ista diferencialna enacba doloca tako smerno gostoto
elektronskega oblaka kot njegovo vrtilno koli¢ino zato, ker je tisti
del operatorja V2, ki vkljuCuje kote, sorazmeren z —L2/r?.

Izmed treh komponent vrtilne koli¢ine je najpreprosteje zapisana
"mavpicna" komponenta

d 42.62
—ih i =L,y. ( )
o0

Takoj vidimo, da ima resitev exp (im¢g), torej tudi katerokoli Y;,.
Neposredno sledi kvantizacija

L,=mh,m=0, x1,£2, ... | (42.63)

Pri izpeljavah se nismo naslanjali na nikakrSen potencial, zato
veljajo ugotovitve povsem splosno. Uporabne so povsod tam, kjer
se vrtilna koli¢ina ohranja, to pa je zagotovo v vodikovem atomu.

Kar smo ugotovili glede vrtilne koli¢ine, se deloma razlikuje od
napovedi planetarnega vodikovega modela. PrejSnja spoznanja
moramo popraviti takole.

Minimalna vrednost I znaSa 0 in ne 1. To pomeni, da je vrtilna
koli¢ina atoma v stanjih 100, 200 ... enaka ni¢. Ta stanja so
krogelno simetri¢na. Krogelno simetricen atom se "ne vrti".

Maksimalna vrednost I znaSa (n — 1) in ne n. To pomeni, je Stevilo
podstanj I, ki pripadajo stanju n, nespremenjeno, namrec n.

V stanju I ne velja L =1h, ampak L =v(I(I+1))h.

V stanju I je maksimalna velikost L, nekaj manjsa od L. To
pomeni, da se vektor vrtilne koli¢ine nikoli ne usmeri povsem
vzdolZ osi z.

42.13 Vecelektronski atomi

Doslej smo razvili valovni opis le za en elektron v polju jedra
(pravzaprav za ansambel enoelektronskih atomov). PosploSitev na
atome z vec elektroni je neposredna. Ansambel dvoelektronskih
atomov, na primer, opiSemo z valovno funkcijo

W(X1,Y1,21,X2,2,22) = y(1,2) . (42.64)

To je funkcija v konfiguracijskem prostoruz 2-3 =6
koordinatami. Prostorninski element znasa

dv= Xmd_yleldXZdyzd.Zz (4:265)

in ustrezna gostota verjetnosti



Valovna enacba
sistema

Simetri¢ne in
antisimetri¢ne
funkcije

dP ) (42.66)
— = 1wl
dav

Valovna funkcije je normirana: [ |¥|?dV = 1. Mutatis mutandis

velja povedano tudi za atome z ve¢ kot dvema elektronoma.

KinetiC¢na energija dvoelektronskega sistema je enaka vsoti
posamicnih kineti¢nih energij in potencialna energija sistema je
odvisna od leg vseh elektronov. Celotna energija je potem

E =K; +K;+ W(1,2). Valovna enacba se zato glasi

h2 h2 (42.67)
—[— V2 + —V2ly+W(1,2)y=Ey.
2m 2m

Ce med elektroni ni sil (pa so), je celotna potencialna energija
enaka vsoti posamic¢nih potencialnih energij v zunanjem polju:
W(1,2) =W(1) + W(2). Resitev postavimo v obliki produkta

w(1,2) =u(1)v(2). Valovna enacba postane vsota dveh clenov, ki je
enaka E. To je mogoce le, Ce je prvi ¢Clen enak konstanti E; in
drugi konstanti E,. Enacba se zato razcepi v dve enacbi

B2 (42.68)
——Vi2u+W()u=Eu
2m

hz
——V2v+WR)v=Eyv
2m

E=E1 +E2.

Ustrezna gostota verjetnosti pa je y*y = u*uv*v. Verjetnost, da en
elektron najdemo na mestu 1 in drugega na mestu 2 je enaka
produktu posamicnih verjetnosti.

Ce imata elektrona vzajemno enako potencialno energijo (in
imata jo), je valovna enacba simetri¢na glede na zamenjavo
koordinat prvega delca s koordinatami drugega, to je, ¢e je y(1,2)
resitev valovne enacbe, je resitev iste enacbe tudi y(2,1). Prav
tako je resSitev linearna kombinacija y=c1y(1,2) + cow(2,1). Z
izbiro koeficientov ¢, =c; =1 ali ¢, — ¢; = —1 dobimo reSitvi
w(1,2) + w(2,1) ter w(1,2) — w(2,1). Prvo reSitev imenujemo
simetri¢no, drugo antisimetriéno. Ce v prvi zamenjamo 1 z 2, se
valovna funkcija ne spremeni. Druga pa pri istem posegu
spremeni predznak. V obeh primerih se gostota verjetnosti ne
spremeni.

Elektroni so med seboj nerazlocljivi. Gostota verjetnosti se ne
sme spremeniti, ¢e kordinate enega zamenjamo s koordinatami
drugega. Racunsko gledano pripadajo eni energiji vse mogoce
linearne kombinacije obeh delnih resitev. Glede na to, kako
izberemo koeficienta c; in c;, pripade enemu ali drugemu
elektronu drugacna vloga. Vse kar je racunsko mozno, pa ni tudi
uresniceno. Privlacna je misel, da v naravi obstajajo le take
resitve, ki so simetri¢ne ali antisimetri¢ne. Oc¢itno je
antisimetri¢na funkcija v primeru u = v enaka nic: v istem stanju
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Lupinski model
atomov

ne more biti dveh elektronov. Spomnimo se na spin in na
izkljuCitveno nacelo [41.13]. Morda pa je to nacelo zgolj posledica
dejstva, da so valovne funkcije elektronov naravno
antisimetri¢ne? In zaradi uravnotezenosti: nemara so valovne
funkcije fotonov, ki jih zaenkrat ne poznamo, simetricne? V
podrobnejso raziskavo se ne bomo spuscali.

Izra¢unati natanc¢no valovno funkcijo za ansambel atomov z vec
kot enim elektronom je brezupno pocetje. Zlahka pa si ustvarimo
kvalitativno sliko o zgradbi takega atoma v osnovnem stanju. Za
jedro z nabojem Zq poznamo "enodel¢ne" valovne funkcije yp, in
ustrezne energije E(n), vrtilne koli¢ine L(I) ter komponente L,(m).
No, in v ta enodel¢na stanja po vrsti vstavljamo elektrone,
upostevajoc izkljucitveno nacelo. Pri tem privzamemo, da
vstavljeni elektroni ni¢ ne vplivajo drug na drugega. Prvi elektron
gre torej v y00 s spinom gor. Naslednji gre tudi tja, vendar s
spinom dol. Sledi zasedba w110, W11+1 in Y11-1 ter tako naprej.
Elektroni zapolnjujejo, po vrsti, lupine n=1,2... Znotraj vsake
lupine zapolnjujejo, po vrsti, podlupine[=0,1,2...n—1.In
znotraj vsake podlupine zapolnjujejo orbitale m=0,x1... £ 1.
Maksimalno $tevilo elektronov v posamicni lupini znasa 2n?, torej
2,8, 18, 32, 50 itd.

Vsaki razporeditvi elektronov - torej vsakemu atomu - pripade
ustrezajocCa konfiguracijska gostota, celotna energija, celotna
vrtilna koli€ina j in komponenta celotne vrtilne koli¢ine m;. V
polni podlupini je skupna vrtilna koli¢ina (vsota vseh orbitalnih in
spinskih) enaka nic¢, ker na vsak elektron pride drug elektron z
nasprotno konfuguracijo. Ko atom absorbira ali izseva foton, se
mu spremenita energija in vrtilna koli¢ina. Ce predpostavimo, da
ima foton spin 1, se zaradi ohranitve vrtilne koli¢ine spremeni
stanje atoma le za Aj==*1in Am;=0, = 1. ReCemo, da so to
izbirna pravila sevanja.

Pri planetarnem modelu atoma smo ugotovili [41.11], da
zaporedne kroznice vsebujejo 2, 8, 8, 18, 18 ... elektronov. Zdaj
pa pravimo, da so zasedbena Stevila lupin (ki prevzemajo vlogo
kroznic) 2, 8, 18, 32, 50 ... Kaj je torej prav? Pravzaprav oboje. V
tretji energijski lupini gredo res elektroni do 8, vendar s tem
lupina Se ni polna. Nekaj naslednjih elektronov gre nato v
spodnje orbitale lupine stiri, ki - tako sklepamo - so energijsko
nizje od visjih orbit v lupini tri. Potem pa dokoncajo zapolnjevanje
do 18 v lupini tri. Vse to kaZze, da je lupinski model atoma sicer
kvalitativno dober, mu pa Se precej manjka do kvantitativne
uporabnosti. Z boljSimi modeli se ne bomo ukvarjali. []
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Molekulske vezi

Vrtenje molekul

Kvantna statistika

Molekule - Molekularni plin - Kristali - Elektronski plin - Elektroni v
kovinah - Elektroni v kristalih - Polprevodniki - Zvezdna plazma -
Fotonski plin - Fotoni v votlini

43.1 Molekule

Atomi se zdruzujejo v molekule. Na podlagi doslej povedanega si
predstavljamo, da vezavo ustvarjajo le elektroni v zunanji lupini
atomov - valen¢ni elektroni. Notranje lupine atomov ostajajo pri
tem bolj ali manj nespremenjene. Mozna sta dva mejna primera.
Valencni elektroni dveh atomov se zberejo v vmesnem prostoru
med obema in s svojo privlacno silo zlepijo preostala pozitivna
iona, na primer (H*)--(H*). To je kovalentna vez. Ali pa valencni
elektroni enega atoma preidejo k drugemu atomu in ga povsem
obkrozijo, nakar se nastala iona privlacita, na primer (H*)(Cl").
To je ionska vez. Druge vezi so nekje vmes. Elektronski oblak
nastale molekule opisuje pripadajoca vecdelcna valovna funkcija.
Da bi jo - brez priblizkov - izra¢unali iz ustrezne valovne enacbe,
je nemogoce. Ukvarjanje s pribliznimi reSitvami pa je tezavno in
ga prepuscamo specialistom.

Molekule, sestavljene iz majhnega Stevila atomov, so bolj ali manj
toge. Togo telo, ki se vrti okoli izbrane teziS¢ne osi, ima vrtilno
koli¢ino L = Jw, pri Cemer je J vztrajnostni moment telesa glede
na aktualno vrtilno os. Kineti¢na energija vrtenja znasa E = /,Jw?.
Iz obeh enacb sledi E = L?/2]. Upostevamo, da je vrtilna koli¢ina
kvantizirana (42.61) in dobimo za energije rotatorja

h? (43.1)
E=—I(+1), 1=0,1,2,3...
2]

Vsako stanje z danim [ je Se (21 + 1)-krat degenerirano po
projekciji vrtilne kolicine.

Najpreprostej$e molekule so dvoatomne, na primer H, ali HCIL. Ce
sta atoma oddaljena za R in imata masi m; in m,, znasa njun
vztrajnostni moment pri vrtenju okrog katerekoli pravokotne
teziSéne osi J = uR?, u = mymy/(m, + m,). Predpostavimo, da so
mozni le taki sevalni prehodi (emisijski in absorpcijski) med
energijskimi stanji, da Al==*1. Pri skoku I+ 1 —1 se torej zmanjSa
energija rotatorja za AE = (h?/])l. Frekvence izsevanih ¢rt zato
linearno narascajo z I: emisijski spekter je Crtast in ekvidistanten.
Enako velja za absorpcijski spekter. Sevalne prehode pricakujemo
le pri polarnih molekulah, recimo pri HCI, ne pa tudi pri
nepolarnih, recimo H, (slednje namre¢ nimajo elektricnega
dipolnega momenta). Vrednost J ocenimo na (1 u)(1 A)2, kar
ustreza energijskim spremembam AE ~ 1073 eV oziroma valovnim
dolZinam A ~ 0,1 mm. Crte vrtilnega spektra zato pri¢akujemo v
mikrovalovnem podrocju.
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Vezi med atomi v molekuli niso povsem toge: atomi tudi nihajo
okoli ravnovesnih leg. Najpreprostejse je nihanje dvoatomne
molekule: v prvem priblizku je to kar harmonic¢no nihalo z
reducirano maso u v kvadratnem potencialu

U(r) = U(ry) + /2 k (r—rp)?. Lastne vrednosti takega oscilatorja ze
poznamo (42.33); to so

E=hwy(n+1/2), (43.2)

pri ¢emer wy? = k/p. Dovoljeni so prehodi iz vseh visjih v vsa niZja
stanja in obratno. Pri prehodu med sosednjima nivojema se
izseva/absorbira foton frekvence wy/2m. To je najnizja frekvenca.
Ostale frekvence so njeni celosteviléni mnogokratniki. Spektralne
Crte so torej ekvidistantne. Vrednost wy? ocenimo na
2-(1eV)/(1A)%2(1u), kar ustreza energijskim spremembam

AE ~ 0,1 eV oziroma valovnim dolZinam A ~ 10 um. Crte nihajnega
spektra torej pricakujemo v infrardecem obmocju.

Molekule hkrati nihajo in se vrtijo. Vsaka molekula je v nekem
stanju (n, I) in lahko skoci v viSje ali niZje nihajno stanje n+ m in
hkrati v vi§je ali nizje vrtilno stanje I + 1. Takemu prehodu ustreza
sprememba energije AE =+m-hV(k/u) £1-h?/J=+m-A+I[-B.
Posamicne molekule v plinu skacejo vsaka po svoje: vrsi se
mnozica razli¢nih preskokov. Faktor A je mnogo vecji od B, zato je
nastali spekter sestavljen iz loCenih paketov ¢rt. Sredisca paketov
so med seboj energijsko oddaljene za A, Crte v njih pa med seboj
za B.

B840
Frequency (Hz)

Slika 43.1 Vrtilno-nihajni spekter HCI za nihajni prehod iz osnovnega v prvo
vzbujeno stanje ter s so¢asnimi vrtilnimi prehodi. (HyperPhysics)

Meritve z infrardec¢im absorpcijskim spektrometrom potrdijo
predvidevanja. Se ve¢: iz izmerjenega sredi$¢a A prvega paketa
¢rt lahko izracunamo elasti¢no konstanto. In iz izmerjenih
razmikov B med ¢rtami v paketu lahko izraCunamo vztrajnostne
momente ter iz njih dolzine dvoatomnih molekul. Za HCI tako
izmerimo A =8,66-103Hz in B=0,06-10'3Hz. Iz tega
izraunamo k = 480 N/m in reducirani radij R = 1,3 A. Zaradi
velike razlike v masah obeh atomov je to kar dolzina molekule.

Pri vecatomnih molekulah so zadeve naceloma podobne, vendar
so podrobnosti precej bolj zapletene. Kljub temu uspemo v
mnogih primerih tudi zanje dolociti velikosti in oblike.
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43.2 Molekularni plin

Mnozico istovrstnih molekul v plinu opiSemo statisticno. Vsaka
molekula ima vec energijskih stanj - zaradi lege, translacije,
vrtenja, nihanja in notranje elektronske razporeditve. Statisti¢ni
opis pomeni, da povemo, kaksSna je porazdelitev molekul po
njihovih stanjih energije. Ali drugace receno: povemo verjetnost
P;, da je izbrana molekula v takem ali drugacnem stanju energije
E;. Porazdelitev ze poznamo (36.13): to je kanonicna porazdelitev

P;= 1 gie~EilkT (43.3)
VA

7= 2 gi e~ EilkT

Z g; smo oznacli Stevilo stanj, ki imajo vsa isto energijo E;.
Porazdelitev velja ob pogoju, da molekule med seboj le toliko
vplivajo, da se med njimi vzpostavi toplotno ravnovesje, sicer pa
je njihov medsebojna potencialna energija zanemarljiva. Zdaj pa
Se dodatno zahtevajmo, da je medsebojna razdalja molekul

[ ~ (V/IN)Y3 mnogo vecja od njihove termi¢ne valovne dolZine

A =h/mv. To je res pri normalnih pogojih, ko je razdalja okrog
10A in valovna dolZina okrog 0,1 A. Na ta nadin se valovni paketi
molekul ne pokrivajo in ne vplivajo drug na drugega. Rekli bomo,
da so takSne molekule razlocljive in da tvorijo klasicni plin.

Svoj ¢as smo na podlagi kanoni¢ne porazdelitve izracunali
prispevke energij translacije, nihanja in vrtenja molekul k
notranji energiji in specifi¢ni toploti plina [36.9]. Vendar takrat Se
nismo vedeli, da so vrtilne in nihajne energije molekul
kvantizirane, zato smo dobili rezultate, ki se niso ujemali s
poskusi. Ponovimo racun z novim znanjem!

Porazdelitev dvoatomnih molekul po energiji nihanja znasSa

P,= = exp (— hay n) (43.4)
Z kT
Z=exp/( ~hawo n).
kT

Energijo osnovnega stanja hwo/2 smo kar izpustili, ker samo
spremeni normalizacijsko konstanto Z. Ta konstanta ima obliko
geometrijske vrste > (exp x)?, kar znasa 1/(1—x), zato
1 43.5
7o . ( )
1 —exp (—hwy/kT)

Povprecna energija molekule je, kot vemo (36.15),
(E)=—(1/2)dZz/dB, B=1/KT. Odvajamo in dobimo

hw (43.6)
E)= =hwg(n).
exp (hwo/kT) -1

S faktorjem (n) smo definirali povpre¢no vzbujenost molekul. Ker
je hwy~ 0,1 eV in pri sobni temperaturi kT =0,025¢eV, je
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(n) = 0,02. To pomeni, da so skoraj vse molekule v osnovnem
stanju.

Notranja energija plina zaradi nihanja je U = N(E) in doprinos k
specificni toploti je cy=dU/dTm N. Pri visokih temperaturah

kT > hwg lahko eksponentno funkcijo razvijemo do linearnega
¢lena in dobimo (E) =kT, U= NKT in ¢y =k/m; = R¥/M. To je prav
toliko kot po klasi¢nem ekviparticijskem izreku za nihanje
dvoatomne molekule, ki ima dve prostostni stopnji. Je pa res, da
pri takih temperaturah (~ 5000 K) molekule Ze razpadajo.

Vrtenje dvoatomnih molekul obravnavamo podobno kot njihovo
nihanje. Porazdelitev po vrtilnih energijah znasa

2
P oy 1) exp (h2/2]) 1(1+1) (43.7)
z kT
h2/27) 1(1+1
Z=2(21+1)exp—%.

Vrste ne znamo eksplicitno izradunati. Ce pa molekule niso
prelahke in temperature ne prenizke, velja h?/2] < kT. Tedaj
proglasimo I za zvezno koli¢ino in vsoto aproksimiramo z
integralom Z = [ (21 + 1) exp —(h?%/2]) I(1 + 1)/kT dl. Upo$tevamo
d(I(I+ 1)) =d(I? +1)= (2] + 1)dl in integriramo:

2_] KT (43.8)
h2

7=
Iz Z na znani nacin izracunamo povprecno vrtilno energijo
molekule (E) = kT, notranjo energijo plina U= NKT in prispevek k
specifi¢ni toploti cy = k/m;. To je spet v skladu z ekviparticijskim
izrekom za dve prostostni stopnji vrtenja.

Porazdelitev dvoatomnih molekul po energijah nihanja, vrtenja in
translacije razlozi, zakaj in kako se spreminja specificna toplota
plinov s temperaturo. Pri nizkih temperaturah ni znatnega
nihanja in vrtenja molekul: k specifi¢ni toploti prispeva le
translacija 3/, k/m; na molekulo. Pri temperaturah nekaj sto
stopinj se vzbudijo vrtenja in prinesejo %/, k/m;. In pri nekaj tiso¢
stopinjah se vzbudijo $e nihanja ter prinesejo %/, k/m;.

¢ Slika 43.2
T T " Izmerjena/shematizirana

3 /ﬁ/ Graliation specifina toplota vodika. Vidni so
€ 77T v % prispevki translacije, vrtenja in
G2 #// Hotation nihanja. (Peter's Physics Pages)

e e o i Rtk Rk o s it ot aha DBt Shdh e Bt 8 3&
; |
Translation
0 1 I | I I I 1

] ]
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Temperature (K}
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43.3 Kristali

Atomi se vezejo tudi v kristale. Osnovna znacilnost kristalov je
periodi¢na razporeditev atomov. Predstavljamo si, da atomi s
sosedi tvorijo podobne vezi kot v molekulah: kovalentne, na
primer silicij, in ionske, na primer morska sol. S tem pa niso
iz¢rpani vsi primeri. V kovinskih kristalih, na primer bakru,
obstaja kovinska vez. Predstavljamo si jo kot skupno morje prosto
gibljivih elektronov, ki obliva reSetko pozitivnih ionov. Vodni
kristali pa nam kaZejo Se molekularno vez. Ta temelji na silah
med elektricnimi dipoli polarnih molekul.

Atome v kristalu si lahko predstavljamo kot izolirane oscilatorje,
ki nihajo neodvisno drug od drugega. Kaksna so energijska stanja
takega oscilatorja, ze vemo. To pomeni, da je porazdelitev atomov
po nihajnih energijah enaka kot pri dvoatomnem plinu. Edina
razlika je v tem, da vsak atom v kristalu niha v treh smereh in je
zato enakovreden trem linearnim oscilatorjem. Notranjo energijo
kristala zato kar prepisemo:

hw/kT (43.9)

U=3NKT o

Notranjo energijo odvajamo po temperaturi in delimo z maso, pa
dobimo specifi¢no toploto kristala (EINSTEIN)
k 6 ef'T (43.10)
cv=3— () 5y
my T (e9T—-1)>2
hw
0=—.
k
Vpeljali smo "kriticno" temperaturo 6. To je snovna konstanta, ki
opisuje jakost medatomnih vezi. Za vsak kristal jo dolo¢imo
eksperimentalno tako, da se graf cy(6) najbolje prilega
izmerjenim vrednostim. Za baker je to 340 K. Najvecjo vrednost
ima ogljik v diamantu: 1300 K.

8 . | Slika 43.3 Specifi¢na toplota
" L ! S diamanta. Ordinata:
. ' specifi¢na toplota,
' T 6 kcal/K = 3R. Abscisa: O/T,
®=1300K. (Einstein, 1906)
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1
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Natanc¢na merjenja pokazejo majhna sistematicna odstopanja
izmerkov in napovedi. To pripisujemo dejstvu, da v kristalu ne
obstajajo le nihanja atomov okrog ravnovesnih leg, ampak tudi
nihanja kristalne mreZe z razli¢nimi lastnimi frekvencami.
Preseneca nas pa tudi, da v kovinskih kristalih, kot kaze,
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elektronski plin ni¢ ne prispeva k toplotni kapaciteti. Saj imajo
elektroni vendarle translacijsko energijo in bi zato morali
prispevati 3/,Nk k toplotni kapaciteti, prav kakor enoatomni plin.
Kovinski kristal iz N atomov bi torej moral imeti toplotno
kapaciteto (3+3/2)Nk, ima pa zgolj 3Nk. To bomo morali v
nadaljevanju Se raziskati.

43.4 Elektronski plin

V kovinskih kristalih se "med atomi" gibljejo prosti elektroni.
Obravnavamo jih lahko kot elektronski plin. Na prvi pogled bi
zato zanje morala veljati kanoni¢na porazdelitev po elektronovih
energijskih nivojih. Vendar pa elektroni niso med seboj neodvisni,
saj ne moreta biti dva v istem stanju. To je posledica polcelega
spina elektronov. Rekli bomo, da tvorijo elektroni fermionski plin.
Osnovne predpostavke za veljavo kanonicne porazdelitve zato
niso izpolnjene. Izpeljati moramo drugo, fermionsko porazdelitev.

V elektronskem plinu naj bodo vsakemu elektronu na voljo
energijski nivoji E;. Nivo E; naj vsebuje N; elektronov. To je
zasedbeno stevilo nivoja. Nivo je razcepljen na g; razlocljivih
podnivojev; vsak ima isto energijo. Re¢emo, da je energijski nivo
degeneriran. V vsakem podnivoju je lahko samo en elektron. Za
nivo 1 velja: N; nerazlocljivih elektronov lahko razporedimo po g;
podnivojih na P; = g;!/N;!(g; — N1)! nacinov. Seveda mora biti

N < g;. Isto velja za nivo 2. Stevilo naé¢inov, da razporedimo
nabor vseh zasedbenih Stevil, pa je enako produktu nacinov, da
razporedimo vsak posamezen Nj:

B=H gi! (43.11)
i Nil(gi—Ny)!

Nadaljujemo tako, kot pri kanoni¢ni porazdelitvi. Poiskati hocemo
tisti nabor zasedbenih stevil Nj, ki maksimira (logaritem) B ob
pogojih 3 N;=N in 3 N;E; = E. ISCemo torej vezani ekstrem
sestavljene funkcije F(N;) =InB+ a(N—-3>N;)+ B(E -3 N;E;) z
neznanima konstantama a in 8. Uporabimo aproksimacijo

Inx! = xInx — x, odvajamo F po N;, postavimo odvod na nic¢ in
resimo po Nj, pa dobimo N; = gi/[exp(a + BE;) + 1]. Ocitno je

B =1/kT. Drugo konstanto zapiSemo kot a = — Ex/kT in dobimo
(FERMI)

_N; 1 (43.12)
fi= gi  eE—EPAT 41~

To je iskana porazdelitev. Pove, kaksSna je verjetnost f;, da je
stanje E; zasedeno. Ugotoviti moramo Se pomen parametra Er. Ta
je v sploSnem lahko odvisen od temperature. Pri poljubni
temperaturi za E = Er sledi f=1/2: Ef je torej energijski nivo, ki
je - pri dani temperaturi - natanko polovi¢no zaseden z elektroni.

eV s



Neboti¢niska
prispodoba

Ko gre temperatura proti nic¢, gre f - za E > Er - proti nic¢
oziroma - za E < E - proti ena. Torej je Ex(T =0) energija
najviSjega zasedenega stanja pri nicelni temperaturi. Rekli ji
bomo fermionska energija.

E Slika 43.4 Verjetnostna porazdelitev plina
elektronov po energijskih stanjih. (Anon)
___¥
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Fermionsko porazdelitev si nazorno predstavljamo takole.
Ekstravaganten arhitekt zgradi visok neboti¢nik z nadstropji
neenake visine. Vsa nadstropja ostevil¢i od spodaj navzgor. V
vsakem nadstropju je tak$no ali drugacno Stevilo stanovanj. V
neboti¢nik se nato vseljujejo ljudje od spodaj navzgor. V vsako
stanovanje sta spusceni le dve osebi - moski in zenska. Naselitev
v viSje nadstropje je mozna le, ko so vsa stanovanja v nizjem
nadstropju polno zasedena. Tako se neboti¢nik lepo zapolni do,
recimo, sedemdesetega nadstropja. ViSina tega nadstropja, to je
gladina "¢loveskega morja": pod njo so vsa nadstropja popolnoma
zasedena, nad njo so vsa nadstropja popolnoma prazna. Vec¢ kot je
ljudi v neboti¢niku, viSja je njihova gladina.

Tako je ponoci, ko je hladno in ljudje spijo. Ko se zdani in otopli,
zacno med nadstropji voziti dvigala. V eno dvigalo gre lahko le en
clovek. Dvigalo se lahko dvigne le za eno nadstropje in sicer le
tedaj, ¢e je v ciljnem nadstropju kaksno prosto ali polzasedeno
stanovanje. To pomeni, da se sprva povzpnejo le ljudje iz najbolj
zgornjih zasedenih nadstropij; s tem deloma zasedejo viSja
nadstropja in za sabo pustijo praznine v niZjih nadstropjih. Sele
kasneje pa se lahko povzpnejo tudi ljudje v nizjih nadstropjih.
Gladina ¢loveSkega morja postane "valovita".

Ce so energijski nivoji zelo gosti, zapisemo
dn g(E) (43.13)
== =g(E)AE).
dE exp(E—-Ep)/kT+1

S tem je definirana gostota energijskih stanj g(E). Delez
elektronov dn (v prostorninski enoti) na intervalu E + dE/2 je
enak tamkajsnji gostoti stanj g(E) krat verjetnosti f(E), da bo ta
interval zaseden. V neboti¢niski prispodobi: ne zanimajo nas vec
Stevila ljudi po nadstropjih, ampak delezi vseh ljudi po
100-metrskih odsekih neboti¢nika, kolikorkoli nadstropij Ze ti
vkljucujejo.
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43.5 Elektroni v kovinah

Pa izraCunajmo gostoto stanj za prevodne elektrone v kovini!
Elektrone si predstavljajmo kot delce v tridimenzionalni
neskonc¢no globoki potencialni jami. Naj ima jama obliko kocke z
robom a. Lastne funkcije in lastne energije iSCemo kot produkt
treh resitev za vsako dimenzijo posebej. Tako dobimo

w «sinn,a/a - sin nyn/a - sinn,m/a (1) in E = h?n%/8ma? = h?k?/2m
(2), pri ¢cemer n?=n,%+ n,? + n,. Ker so n,, n, in n, neodvisne
spremenljivke, ima sfera z radijem n povrsino s konstantno
energijo. Z vsako spremembo radija dn zajamemo NdE stanj v
lupini s prostornino 4mn?dn. Obravnavamo le lupino v enem
kvadrantu (1/8 celotne lupine), zato N = (11/2)n%(dn/dE) (3). Iz (2)
izrazimo n(E), izracunamo dn/dE in ga vstavimo v (3). Dobljeno
enacCbo delimo s prostornino a3 in dobimo

_4mem® (43.14)
g=—r5 — VE.

Zaradi izkljuc¢itvenega nacela smo dodali faktor 2. Gostota stanj
torej pocasi narasca z energijo.

Celotna populacija prostih elektronov na prostorninsko enoto
znasa n = [ gfdE. Pri temperaturi OK je potrebno integrirati le od
0 do Eg. Dobimo n(Eg), kar obrnemo v
h? 3n 43.15
Ep=_— ()%, (@515
2m 8u
Enacba je uporabna za izrac¢un fermionske energije, ¢e poznamo
gostoto prostih elektronov. Za baker, na primer, smo svoj ¢as ze
ugotovili n=8,5-10'?/mm?3, kar pomeni Er =7 eV.

Notranja energija fermionskega plina znasa W=V [ EgdE v mejah
med O in Ef, kar znese

3 (43.106)
W= ENEF

Povprecna energija vseh zasedenih stanj je torej 3/5 - Er.

Tlak plina izra¢unamo iz p = —aW/aV, W =3 fFE;. Pri poCasnem
stiskanju ostajajo delci v istih stanjih, zato se f'v vsoti ne
spreminja, torej p = — > foE;/dV. Energije enodel¢nih stanj so
E;=h%k?/2m = h?n%n?/2mL? = h?n%n?/2m-V=2/3, Odvajamo
0E;/oV =—2/3-E;/V in izracunamo p = 2/3-1/V -3 fE;, kar znese

2W 2 NEg (43.17)

To je enacCba stanja za fermionski plin. Tlak je odvisen le od
gostote in ni¢ od temperature: p « (N/V)°3. Celo pri T=0 je
razlicen od nic¢. Ko stiskamo elektrone, ki ne morejo biti hkrati na
istem mestu, se jim pac povecuje kineti¢na energija in s tem tlak.



Fermionska hitrost
elektronov

Energijski pasovi

Tlak elektronskega plina v kovini tudi preprecuje, da bi se
zmanjSala razdalja med ioni zaradi njihovega medsebojnega
privlaka. Stisljivost elektronskega plina se torej kaze kot
stisljivost kovin.

Energija elektronov v potencialni jami je kar njihova kineti¢na
energija. Za gladinske elektrone velja
L wvi=E,. (43.18)
2
S tem smo definirali fermionsko hitrost elektronov. Ta prevzame
vlogo standardne hitrosti v iz klasi¢nega plina. Za baker
izracunamo 1,6 - 103km/s. Hitrosti in energije v gostem
elektronskem plinu so torej mnogo vecje kot pri klasi¢nem plinu z
enako Stevilcno gostoto. To je posledica izkljuCitvenega nacela, ki
elektronom ne dovoli, da bi se svobodno kopicili v stanjih z
nizkimi energijami. Je pa res, da ima tako visoke hitrosti le nekaj
elektronov tik ob gladini.

Kako pa naj visoko energijo elektronskega plina uskladimo z
njegovo neznatno toplotno kapaciteto? Ko damo kovinski kristal v
toplotno kopel, prejema s trki energijske obroke kT ~ 0,025 ¢eV. Te
energije kristal ujame v nihanje atomov in v translacijo
elektronov. Vendar lahko samo neznatni del elektronov sprejme
tako energijo: tisti, ki leZijo na intervalu Er £ kT. Globlji elektroni
se pac¢ ne morejo dvigniti, ker nad sabo nimajo prostih mest.
Samo neznatni del dovedene toplote se torej porabi za segrevanje
elektronskega plina. Za veliko vec¢ino elektronov sploh ni¢ ne
pomeni, da so prisli v stik z zunanjim vroc¢im okoljem.

43.6 Elektroni v kristalih

Gostoto energijskih stanj elektronov v kovinah smo dolocili iz
predpostavke, da je kovinski kristal neskon¢na potencialna jama.
V resnici pa je ta "jama" rezultat skupnega vpliva vseh kristalovih
atomov. Nekovinski kristali imajo drugacne elektri¢ne lastnosti
(predvsem prevodnost) od kovinskih. Zato domnevamo, da je
gostota energijskih stanj, po katerih so fermionsko porazdeljeni
elektroni, pri njih drugac¢na. Kaksna neki je?

Razmi$ljamo takole. V izoliranih atomih se elektroni gibljejo v
orbitalah. Vsaka orbitala ima ostro dolo¢eno energijo. Ce se
atomi medsebojno priblizajo, se orbitale za¢no prekrivati -
zunanje bolj, notranje manj. Zaradi izklju¢itvenega nacela pa se
morajo istoenergijske orbitale pri tem razcepiti. To pomeni, da se
vsak energijski nivo atoma razcepi v gost energijski pas kristala.
V pasu je priblizno toliko nivojev kot je atomov v kristalu. Med
pasovi ostanejo vecji ali manjsi razmiki.
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Zasedenost pasov

Vpliv pasov

Slika 43.5 Nastanek

AN energijskih pasov. (Brophy,
\_._/ 1966)

valencni pas. Pas nad njim je povsem prazen; poimenujmo ga
prevodni pas. Razmik med vrhom valenc¢nega pasu in dnom
prevodnega pasu poimenujmo prepovedani pas.

E E E Slika 43.6 Prevodniki in
izolatorji. Energijski pasovi in
njihova zasedenost pri nizki
I‘Egnp — temperaturi. Razmiki med
T nivoji so narisani pretirano.
e (Anon)

lone

af s 1 5 [ e
metal insulator atoms

Pri visjih/sobnih temperaturah se nekaj elektronov z vrha polno
zasedenega valencnega pasu uspe preseliti na dno prevodnega
pasu. Cim oZji je prepovedani pas, tem ve¢ elektronov se uspe
preseliti. Pri tem izpraznijo enako Stevilo nivojev v valené¢nem
pasu.

Kaj sledi iz predpostavke o energijskih pasovih? Za nizke
temperature, ko je prevodni pas prazen, sklepamo takole.

Kristali, ki imajo valenc¢ni pas le delno zaseden, so dobri
elektri¢ne prevodniki: saj imajo valenc¢ni elektroni nad sabo
dovolj bliznjih nezasedenih energijskih nivojev, v katere jih lahko
napetost potisne, to je, elektronom zvisa kineti¢no energijo.
Kristali s polno zasedenim valen¢nim pasom so elektri¢ni
izolatorji: saj nad valen¢nimi elektroni ni ni¢ bliznjih nivojev za
prisilno gibanje.

Ce kristal obsevamo z vidnimi fotoni, jih lahko absorbirajo samo
tisti elektroni, ki imajo za 1,7-3,5 eV visjeleZzece prosto mesto. V
prevodnikih/kovinah je takih elektronov mnogo: kristal svetlobo
mocno absorbira. V izolatorjih, katerih prepovedani pas je Sirsi od
~ 3.5€eV, pa obsevani valenc¢ni elektroni ne dosezejo prevodnega
pasu. Kristal je prozoren; tak je diamant. Ce je prepovedani pas
0Zji, pa se svetloba z viSjo energijo lahko absorbira, z nizjo pac
ne. Kristal absorbira modri del spektra, prepusti pa rumenega.
Taks$no je zveplo. Ce kristal ni ¢ist, ampak vsebuje redke atome
primesi, se na njihovem mestu pojavijo dodatni nivoji v
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prepovedanem pasu in absorpcija svetlobe poteka temu ustrezno.
Od tod razne barve kristalov, recimo rdecega rubina ali modrega
safirja.

Pri viSjih/sobnih temperaturah se v izolatorjih nekaj elektronov
preseli iz valen¢nega v prevodni pas. To pomeni, da izolatorji
zacnejo zelo Sibko prevajati tok in zelo Sibko absorbirati svetlobo,
ki je prej niso. Visja kot je temperatura, bolj je to izrazito.

Zamisel o energijskih pasovih torej kvalitativno lepo pojasni
elektri¢ne in opti¢ne lastnosti kristalov ter s tem okrepi
prepricanje o svoji pravilnosti.

43.7 Polprevodniki

Ce oznac¢imo elektri¢no upornost bakra z 1, znasa izmerjena
upornost dobrih izolatorjev, recimo keramike, okrog 1018,
Obstajajo tudi snovi, katerih upornost pri sobni temperaturi lezi
nekje vmes med tema mejama; poimenujemo jih polprevodnike.
Tak$na sta, na primer, silicij z upornostjo 10!! in germanij z
upornostjo 107. Oba sta Stirivalentna in se v kristale vezeta s
kovalentno vezjo.

Nosilci toka  Vsak elektron v prevodnem pasu polprevodnika je pustil za sabo
vrzel v valen¢nem pasu. Pod vplivom napetosti se elektroni v
prevodnem pasu gibljejo. V valen¢nem pasu pa se vrzeli
zapolnjujejo s sosednjimi elektroni. Videti je, kot da se vsaka
vrzel giblje in deluje kot nosilec toka z efektivnim nabojem +e in
efektivno maso m,. Tok v polprevodnikih je torej sestavljen iz
gibanja negativnih elektronov in nasprotnega gibanja pozitivnih
vrzeli. Skupna gostota toka znasa j =j, +j,, pri cemer j, = —enq(ve)
in jy = eny(vy).

Slika 43.7 Prevodniski elektroni in
vrzeli v siliciju. (Meadows, 1978)

Dopiranje s primesmi  Prevodnost silicija je mo¢no odvisna od necistoc, ki jih vsebuje.
Opazimo, da se zelo poveca, ¢e kristalu (pri kristaliziranju iz
raztopine) dodamo nakaj fosforja P, arzena As ali antimona Sb.
Vsi so petvalentni. Isto velja za bor B, aluminij Al in galij G; ti so
pa trivalentni. Re¢emo, da smo silicij dopirali. Ze dodatek
0,001 % necisto¢ poveca prevodnost za nekaj redov velikosti.
Kako si to razlagamo?
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lent bond Slika 43.8 Negativno dopirani silicij.
(Meadows, 1978)

! 'l Silicon ion

t+ Excess electron

i " Pentavalent
(- I | — atom
I gl

Petvalentnemu atomu, ki se vgradi v kristalno mrezo
Stirivalentnih atomov, postane en elektron "odvec". Ta elektron
preide v prevodni pas. Za sabo pa ne pusti vrzeli. To pomeni, da
se Stevilo negativnih nosilcev toka (elektronov) poveca, Stevilo
pozitivnih nosilcev (vrzeli) pa ostaja enako. Ze majhno $tevilo
dopiranih atomov/elektronov je za mnogo redov velikosti ve¢je od
prvotnega Stevila prevodniskih elektronov. Izdelali smo
polprevodnik tipa n. Vec¢inski nosilci toka v njem so elektroni.
Vrzeli so samo manjsinski nosilci. Polprevodnik je navzven
nevtralen.

Podobno je z dodajanjem trivalentnih atomov. Ena izmed sStirih
vezi, s katerimi se tak atom vgradi v okolico, ima vrzel. To
pomeni, da se je Stevilo vrzeli v valen¢nem pasu povecalo, Stevilo
elektronov v prevodnem pasu pa je ostalo enako. Izdelali smo
polprevodnik tipa p. Vecinski nosilci toka v njem so vrzeli,
manjsinski pa elektroni. Polprevodnik je navzven nevtralen.

Slika 43.9 Pozitivho dopirani silicij.
(Meadows, 1978)

Covalent bond
Silicon

ion
|'I I.I

I'

| | -Hole
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electron

Glavna znacilnost polprevodnikov ni v tem, da imajo "vmesno"
upornost, marvec v tem, da v njih hkrati prevajajo tok negativni
in pozitivni nosilci - elektroni in vrzeli. V ¢istih polprevodnikih je
obojih enako mnogo, v dopiranih pa moc¢no prevladujejo eni nad
drugimi. To lastnost polprevodnikov si bomo dobro zapomnili. Ko
bo ¢as, bomo poskusali raziskati moznosti za njeno tehnicno
uporabo.
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Slika 43.10 Tok skozi polprevodnik n (vecinski nosilci so elektroni) in
polprevodnik p (vecinski nosilci so vrzeli). (Meadows, 1978)

V Cistem polprevodniku narasca stevilo elektronov v prevodnem
pasu s temperaturo in tako narasca tudi prevodnost. V dopiranem
polprevodniku pa je Stevilo necisto¢ - in s tem Stevilo vecinskih
nosilcev toka - fiksirano, zato je prevodnost priblizno konstantna.
Manjsinski nosilci namre¢ ne prispevajo znatno k toku.

Kateri so vecinski nosilci toka v danem dopiranem
polprevodniku - elektroni ali vrzeli -, ugotovimo preko
magnetoelektricnega pojava [39.11], to je, z merjenjem precne
napetosti na njih, ko so postavljeni v magnetno polje.

43.8 Zvezdna plazma

Elektronski plin v kovinah je ujet znotraj trdne ionske mreZe. Ce
bi bila temperatura mnogo viSja, bi mreza razpadla na plin ionov.
Tedaj bi nastala plazma iz elektronskega in ionskega plina. Taka
mora biti snov v vroc¢ih zvezdah. Poglejmo plin iz elektronov na
ozadju plina iz protonov; s potrebnimi spremembami bo vse
povedano veljalo tudi za drugac¢ne plazme.

Elektronski plin je plin fermionov. Naj ima Stevilsko gostoto n in
temperaturo T. Ce je gostota dovolj nizka in temperatura ne
previsoka, je to kar idealni plin. Zanima nas, pri kateri gostoti in
temperaturi postane pomembno degeneriran in relativisticen.
Drugace rec¢eno: dolociti Zelimo obmocje veljavnosti za idealni
elektronski plin.

Degenerirana plazma  Kvantni pojavi postanejo pomembni, ko je termi¢na valovna
dolzina elektrona primerljiva z razdaljo med elektroni:
A =h/G=1/n'3. Za idealni plin velja (G%/2m)=3/2-kT in
G =V(G?) =V(3mkT), zato

h 1 (43.19)

— < )
Vv(3mkT) nl3

To je pogoj, da plin ni degeneriran. TakSen postane, Ce je T
prenizka ali n previsoka. Pri 10K, na primer, mora biti za
elektrone n < 103%mb3, to je, ionizirani vodikov plin mora imeti
gostoto p = nmy < 103kg/m3.
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Bozonska
porazdelitev

Relativisti¢ni pojavi postanejo pomemebni, ko sta kineti¢na in
fermionska energija elektrona primerljivi z njegovo lastno
energijo: kT =mc? in Er = mc?. Ker vemo, da
Er=(h?%/2m)(3n/8m)?/3, sledi

mc? (43.20)
T —
k
V8 mc
n<—(—)>3.
3m%2 h

To sta pogoja, da plin ni relativisticen. Za elektrone velja
T < 10K in n < 1035/m3 oziroma p < 10%kg/m3.

) Slika 43.11 Gostote in temperature, pri
nZ=l " \aterih je plin klasi¢en ali kvanten
L (degeneriran), ter meje, kjer postane
relativisticen. (Anon)

Relativistic

(&)

Vecina sveta je iz plazme. Taksne so zvezde, zgornje plasti
Zemljinega ozracja in elektroni v kovinah, iz katerih so nase
priprave. Zdaj vemo, kdaj jih lahko opisujemo z znanimi enacbami
za klasi¢ni ali kvantni plin in pri katerih temperaturah in gostotah
postaneta opisa neustrezna.

43.9 Fotonski plin

Tudi fotone v votlini, recimo v vroci peci, lahko obravnavamo kot
plin. Kaksna je njihova porazdelitev po energijskih nivojih? Fotoni
so med seboj nerazlocljivi, zato zanje ne velja kanoni¢na
porazdelitev. Tudi niso podlozni izklju¢itvenemu nacelu, zato
zanje ne velja niti fermionska porazdelitev. Porazdeljeni so po
svojstveni bozonski porazdelitvi. Dolo¢imo jo!

Poglejmo nivo 1, ki ima energijo E; in ga sestavlja g; podnivojev.
Predstavljamo si jih kot g; — 1 Skatlic, v katere razporejamo N;
kroglic. Moznih razporeditev je (N; + g; — 1)!. Toda kroglice so
nerazlocljive, zato je N;! razporeditev med seboj nerazlocljivih.
Podobno velja za (g; — 1)! razporeditev. Stevilo razli¢nih
porazdelitev torej znasa P; = (N1 + g1 — 1)!/N1!(g1 — 1)!. Podobno
velja za nivo 2 in preostale. Stevilo nacinov, da razporedimo
zasedbena stevila po vseh nivojih, pa je enako produktu nacinov,
da jih razporedimo po posameznih nivojih:

(Ni+gi—1)! (43.21)

Nil(gi—1)!

B=]]

Nadaljujemo tako kot pri fermionski in Se prej pri kanonic¢ni
porazdelitvi, ter dobimo (BOSE)
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Energijska stanja

Gostota energijskih
stanj

_Ni 1 (43.22)
fi= gi  eE—ERKT _1°

Na energijskem nivoju E; je N; fotonov. Konstanta Er je doloCena s
pogojem 3 f;=1. Porazdelitev je definirana le za E > Eg. Ker se
Stevilo fotonov ne ohranja, moramo postaviti Er = 0.

Slika 43.12 Bozonska porazdelitev (rdeca). Za
primerjavo sta dodani kanoni¢na (¢rna) in
fermionska (modra) porazdelitev.

f

Ce so energijski nivoji zelo gosti, zapiSemo
dN g(E) (43.23)
= o =9EfE).
dE exp(E/kT)-1

Stevilo fotonov dN z energijami na intervalu E + dE/2 je enako
tamkajsSnjemu Stevilu energijskih stanj g(E)dE krat zasedbeni
verjetnosti f(E). To velja za kakrSnokoli gostoto stanj. Glavni
problem je seveda dolocitev g(E) v okoliS¢inah, ki nas zanimajo.

43.10 Fotoni v votlini

PoiS¢imo gostoto energijskih stanj za fotonski plin, zaprt v votlini.
Predstavljajmo si, da je votlina neskonc¢no globoka potencialna
jama v obliki kocke s stranico L. Valovne dolzine fotonov pri
gibanju vzdolZ osi x morajo biti A =2L/n,, n,=1, 2, 3... in podobno
za ostali dve osi. Ker G = h/A, sledi G = (zth/L)n,
n=v(n?+ny?+n,?). Za fotone je E = Gc, zato E, = (nhc/L) n. To so
dovoljeni energijski nivoji za fotone v votlini. Poiskati moramo
gostoto teh nivojev.

Predstavljajmo si prostor z osmi n,, n, in n,. Vsaka tocka v tem
prostoru oznacuje neko vrednost n in s tem neko vrednost E,,.
Stevilo n je razdalja to¢ke iz izhodi$¢a. Stevilo stanj z energijo
med E in E + dE je doloCeno s Stevilom tock med n in n + dn. To je
prostornina oktanta krogelne lupine z radijem n in debelino dn,
torej 4/gnn?dn = 4/gn(L/uhc)3 E2dE. To je skorajda g(E)dE. Ampak
vsak foton ima dvoje polarizacijskih stanj, zato

B2 (43.24)

(E) = 8nVv
IE= hey
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tlak

Pri tem je V= L3 prostornina votline. Stevilo fotonov z energijo

E +dE/2 je AN/AE = g(E)f(E), gostota energije je dw = EdN/V,

torej
dw  8mo E3 (43.25)
dE - (hC)3 eE/kT_ 1

Upostevamo E = hv, pa dobimo (PLANCK)
dw 2hp3 1 (43.26)

dp c2 ehw/kT _1q :

To je porazdelitev gostote energije po frekvenci. Pri nizkih
frekvencah hv <« kT lahko eksponentno funkcijo razvijemo do
linearnega Clena in vidimo, da spekter narasc¢a kot v?, pri visokih
frekvencah pa eksponentno pojema.

Ustrezno porazdelitev po valovni dolzini dobimo kot
dw/dA = dw/dw - dw/dA, kar znese (PLANCK)

dw 2hc? 1 (43.27)
a= A5 ehc/AkT_]_'

e T Slika 43.13 Energijski
T=5500K - .
L spekter fotonov v votlini.
800 |- - (Anon)
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Fotonski tlak izracunamo podobno kot tlak elektronskega plina.
Za fotone velja p=—30E;/dV - n in E; = mhcn/L = nhen/VY3,

Izracunamo 9E;/dV =—1/3 - E;/V, tako da je
1w (43.28)
P=37v-

Tlak fotonov znasa le 1/3 gostote energije in ne 2/3, kakor pri
(nerelativisticnih) elektronih. Integracija (43.27) po vseh valovnih
dolzinah pokaze

p=aT! (43.29)
8mok*

a= )
15¢c3h3

To je enacCba stanja za fotonski plin. Tlak je odvisen le od
temperature: p « T4,
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Toplotno sevanje

Na namisljeno ploscico dS v votlini vpada iz smeri njene normale
iz prostorskega kota dQ2 moc¢ dP. Vpadajoca moc je neodvisna od
orientacije ploscice. Velja B = dP/dS,dQ = cw, torej

dB 2hcd 1 (43.30)
a= A5 ehc/AkT_l'

Iz vseh smeri polprostora pa na plosc¢ico vpada, kot vemo,

dj* dB (43.31)

daa da’
Kar vpada na namisljeno ploScico, jo na drugi strani tudi zapusca.
Ce torej v steno votline izvrtamo luknjico, vpada nanjo ravno
toliko energije, kot se jo na drugi strani izseva v polprostor.
Izpeljali smo izrek o toplotnem sevanju ¢rnega telesa, ki smo ga
svoj ¢as nasli eksperimentalno (27.9). Tedanji konstanti se
pokazeta kot ¢; = 2hc? in ¢, = he/k.

Integracija (43.31) in (43.30) po vseh valovnih dolzinah da ze
znani sevalni zakon in pokaze, od Cesa je odvisna tedanja sevalna
konstanta:

Jj*=0T* (43.32)
2mok4
o=
15¢2h3
40
a=—.
3c

Maksimum sevanja dobimo z odvajanjem (43.30) po valovni
dolzini, z izenacitvijo odvoda z ni¢ ter z resitvijo te enacbe.
Enacbo moramo resiti numeri¢no: z grobim tabeliranjem in nato z
razpolavljanjem nicelnega intervala:

b (43.33)
Amax = ;..
hc
b=
4.97k

Tako smo razlozili mnoge - do sedaj nerazumljive - toplotne
lastnosti plinov in kristalov; elektri¢ne lastnosti prevodnikov in
izolatorjev; ter svetlobne spektre plinov in trdnin. Obenem smo
nekaj eksperimentalnih konstant izrazili z osnovnimi
konstantami. Uspeh je sijajen. Hkrati se je odprlo nepregledno
polje za nadaljnje raziskave plinaste in kondenzirane snovi. In to
je pravi trenutek, da stvar predamo v roke specialistom. []

329


ch27.htm#eq9




44

Atomska jedra

Protoni in nevtroni

Atomska jedra

O jedrih - Stevci delcev - Megli¢na komora - Preletna dolzina -
Dinamika trkov - Trki alfa ob jedra - Odkritje nevtronov - Vezavna
energija - (Ne)stabilnost jeder - Razpadni mehanizmi - Statistika
razpadov - Trki nevtronov ob jedra - Razcep tezkih jeder - Zlivanje
lahkih jeder - Kozmicni zarki

44.1 O jedrih

Atomi so sestavljeni iz dveh delov: iz zunanjega elektronskega
ovoja in iz notranjega jedra. Zunanji del smo raziskali. Sedaj se
hocemo lotiti notranjega dela.

O jedrih marsikaj Ze vemo. Njihov premer je reda velikosti 10~%A,
to je 10%-krat manjsi od premera atomov [41.7]. Ce si jedro
predstavljamo kot nogometno Zogo, so elektroni muhe, ki
brencijo okrog nje na razdaljah do 1 km. Jedra nosijo pozitivne
naboje, ki so natancni celoSteviléni mnogokratniki osnovnega
naboja: od 1 pri vodiku do 92 pri uranu [41.7] Mase jeder so
neprimerno vecje od mase okolisnjih elektronov, ki znasajo po
1/1800 atomske masne enote [39.4]. Najlazje je jedro vodika, ki
ga imenujemo proton, in znaSa priblizno eno masno enoto.
Najtezje je jedro uranovega izotopa z 238 masnimi enotami.
Relativne mase Cistih izotopov so zelo blizu celim Stevilom.
Odmik od njih je manjsi od 0,1 [39.6].

Razli¢na atomska jedra oznacimo tako kot ustrezne atome: zX4.
Pri tem je Z Stevilo osnovnih nabojev (vrstno stevilo), A je
zaokrozeno Stevilo masnih enot (masno stevilo) in X je ime jedra.
Na primer: vodikovo jedro ozna¢imo kot {H! in uranovo jedro kot
92U?38, Masno $tevilo je zmeraj vecje od vrstnega Stevila.
Zapisovanje vrstnega Stevila ni nujno potrebno, ker je ze
doloceno s simbolom za element.

Skoraj celosteviléne mase jedrskih izotopov kar prosijo, da si
jedro XA predstavljamo kot skupek A vodikovih jeder - protonov.
Ker pa ima jedro le Z nabojev, mora biti A —Z = N protonov
nekako "nevtraliziranih". Kako je to mogoce?

Prva misel je tale: morda je v jedru vezanih toliko dodatnih
elektronov, da je naboj jedra pravi. Ker bi bili v tem primeru
elektroni omejeni na zelo majhen del prostora, bi moral biti
razsip njihovih hitrosti zelo velik. Recimo, da je premer jedra

10 fm. Valovna dolZzina vezanega elektrona mora biti zato manjsa
od A =10fm. Ustrezna gibalna koli¢ina znasa G = h/A in energija
E?=(Gc)? + (mc?)?. Ker Gc > mc?, dobimo E = Gc =124 MeV. Tako
energicni elektroni bi morali v hipu odleteti proc.

Druga misel je bolj radikalna: poleg protonov morda obstaja v
jedru Se ena vrsta delcev. Ti imajo (skoraj) enako maso kot
protoni, nimajo pa naboja. Recimo jim nevtroni. Ali zares
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Mocna sila

lonizacijska cev

obstajajo ali ne, na tej stopnji ne moremo vedeti. Vsekakor je
misel privlacna in ponuja resen izziv za potrditev ali zavrzbo. Kot
raziskovalci vemo: kdor bo zaznal nevtron, mu slava ne uide.
Obstoj nevtronov zato do nadaljnjega privzamemo kot obetavno
domnevo. Protone in - za sedaj domnevne - nevtrone
poimenujemo s skupnim imenom nukleone.

Slika 44.1 Atomsko jedro ogljika, kakor si ga
zamisljamo. Jedro je sestavljeno iz pozitivnih
protonov in nevtralnih nevtronov. (Morrison,

1994)

Kako hitro se nukleoni gibljejo v jedru? Tako hitro, kot razodevata
velikost jedra in nacelo nedolocenosti. Nacelo nedoloCenosti
zapiSemo kot 2rv = h/m, iz Cesar sledi v ~ 10*km/s, kar je
desetkrat manj od svetlobne hitrosti. Gibanje je nerelativisti¢no.

Protoni v jedru se med seboj odbijajo z elektri¢no silo. Da se jedro
ne razleti, mora zato med njegovimi nukleoni delovati neka
privlacna sila, ki nasprotuje elektri¢ni. Poimenujmo to silo mocna
sila. Oc¢itno mora sila delovati med pari proton-proton, proton-
nevtron in nevtron-nevtron. Kot vemo, je sipanje delcev alfa na
jedrih pokazalo, da ti delci zaznavajo elektricno silo vse do
razdalje ~ 10 fm od sredi$ca jedra in pri tem ne Cutijo vpliva
nobene druge sile. Moc¢na sila mora zato imeti kratek doseg,
morda okrog 1 fm. Od cCesa je odvisna, pa zaenkrat ne moremo
reci.

44.2 Stevci delcev

Atomska jedra smo odkrili z obstreljevanjem atomov z delci alfa.
PodrobnejSe raziskave jeder bomo vsekekor izvajali na podoben
nacin, torej z njihovim obstreljevanjem. Delce alfa, pa tudi delce
beta in gama smo do sedaj zaznavali kar s fotografsko plosco ali s
svetleCim zaslonom in mikroskopom. To je okorno in naporno za
nacrtovane raziskave. Pojavi se potreba po boljSih merilnikih teh
delcev. In potreba je mati iznajdb.

Prvo zamisel za merilnik delcev dobimo iz Ze znanega pojava, da
se nabit ploscati kondenzator pocasi razelektri, ¢e vanj postavimo
radioaktivni izvor [41.6]. Sevani delci namrec ionizirajo zrak med
elektrodama; s tem postane prevoden. Merilnik zato zgradimo kot
zaprto kovinsko (npr. aluminijasto) cev. Po sredini ima tanko
kovinsko zico. Med Zico in ohiSjem je priklju¢ena napetost.
Pozitivni prikljucek je na Zici. Elektricno polje med ohiSjem in
Zico je cilindri¢no in je zato ob zici zelo moc¢no. Cev je napolnjena
s plinom (npr. zrakom ali helijem). En konec cevi ima tanko okno
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Trije nacini dela

iz mice. Delci alfa in beta lahko prodrejo le skozi okno, ne pa tudi
skozi ohiSje. Delci gama lahko prodrejo od povsod. To je
ionizacijska cev (GEIGER).

metal geiger tube (V) Slika 44.2 Ionizacijska cev. Njen

min mica window 1ZN0Od je priklju¢en na ojacevalnik
in oscilograf/osciloskop. (Anon)

insulating
feed-thru

L cénLraI wire (+900V)
— - .

to amplifier ©oEas.

and counter

Hi-V source ] -

Ko nabit delec alfa ali beta prileti v cev, zaporedoma trka z atomi
plina in jih ionizira, dokler pac ima dovolj kineti¢ne energije.
Delec gama pa iz kakega atoma - predvsem v ohisju - izbije
elektron in pri tem preneha obstajati. Izbiti elektron nato ionizira
atome plina. Ustvarjeni ionski pari v elektricnem polju stecejo
vsak proti svoji elektrodi, lahki elektroni hitreje, tezki ioni
pocasneje. Elektroni vstopijo v pozitivno Zico, ioni pa se ob
negativnem ohiSju nevtralizirajo. Nastane kratek tokovni sunek,
ki traja vse dotlej, dokler je v cevi kaj nabitih nosilcev toka.
Tokovni sunek se na zunanjem uporniku odraza kot napetostni
sunek. Vsak vpadli delec, ki uspe tvoriti kaj ionskih parov, ustvari
svoj izhodni sunek. Zaporedje sunkov po potrebi ojacamo in ga
vodimo na oscilograf ali osciloskop.

Koliko ionskih parov ustvari vpadli delec? Toliko, kolikor znaSa
njegova kineti¢na energija, deljena s povprecno ionizacijsko
energijo atomov plina v cevi. Delec alfa nosi ~ 1 MeV energije,
ionizacijska energija valenc¢nega elektrona v atomu dusika ali
kisika znaSa ~ 10 eV, kar pomeni okrog 10° ionskih parov. Kaj se z
nastalimi elektroni in ioni zgodi, pa je odvisno od napetosti med
obema elektrodama.

10’ P —— Slika 44.3 Karakteristika tipicne
h ionizacijske cevi. Prikazano je
Stevilo na elektrodah zbranih
ionskih parov v odvisnosti od
delovne napetosti in sicer za dve
energijsko razli¢ni vrsti vpadajocih
delcev. (lowa State University).
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Scintilacijski Stevec

334

— Ce je delovna napetost pod nekaj deset voltov, se nastali
elektroni in ioni ve¢inoma rekombinirajo, preden uspejo priti vsak
na svojo elektrodo. Zica torej posrka manj elektronov, kakor jih je
bilo ustvarjenih. Vecja kot je napetost, vecji delez jih posrka.
Tokovni sunek od "istega" vpadlega delca zato narasca z delovno
napetostjo.

— Pri napetostih nad nekaj deset voltov Zica Ze posrka vse
nastale elektrone, preden se uspejo rekombinirati z ioni.
Nadaljnje vecanje napetosti ne vpliva na Stevilo posrkanih
elektronov. Tokovni sunek od "istega" vpadnega delca je zato
neodvisen od delovne napetosti in je kar enak ioniziranemu
naboju, ki ga je ta delec ustvaril. Re¢emo, da cev deluje kot
ionizacijska komora.

— Pri napetostih nad nekaj sto voltov se nastali elektroni v blizini
zice Ze tako mocno pospesijo, da ionizirajo druge atome; ob Zici
nastane plaz sekundarnih ionskih parov. Cev torej deluje kot
pomnoZevalka naboja. Zica posrka ve¢ elektronov, kakor jih je
prvotno nastalo. Cim vi$ja je napetost, tem mocnejsi plaz nastane.
Tokovni sunek od "istega" vpadnega delca torej narasca z delovno
napetostjo. Ugodno pa je, da je "ojaCani" naboj priblizno
sorazmeren s primarnim ioniziranim nabojem. Zato re¢emo, da
cev deluje kot ionizacijski proporcionalni Stevec.

— Blizu tisoc¢ voltov je meja, ko se sekundarni plaz elektronov
razsiri od blizine Zice preko celotne prostornine cevi. Nastali
tokovni sunki so vsi enaki, ne glede na to, kako energeticni delci
jih sproZijo. Saj predstavlja primarna ionizacija le majhen delez v
plazu. Recemo, da cev deluje kot ionizacijski stevec.

Ce je delcev malo, jih lahko sproti riSemo na oscilografu. Ce jih je
veliko, pa fotografiramo osciloskopov zaslon pri enkratnem
preletnem casu, recimo 0,1 sekunde, in nato na fotografiji v miru
prestejemo Stevilo sunkov. Ionizacijska cev zazna vecino vpadlih
delcev alfa in beta, ker je njena velikost (in vsebnost) primerljiva
z dosegom teh delcev. Delci gama pa imajo tako velik doseg, da
jih cev zazna le malo, morda okrog 1 %.

Druga zamisel je naslednja. Vemo, da elektroni in delci alfa
povzrocajo drobne bliske na zaslonu s kristalcki ZnS. Tam namrec
izbijajo elektrone iz valen¢nega v prevodni pas, nakar se ti
elektroni rekombinirajo z vrzelmi in pri tem izsevajo vidne fotone.
Kaj ko bi te fotone ujeli v fotopomnozevalko [40.2]? Tako bi
drobne bliske "spremenili" v resne elektricne sunke. Izumili smo
scintilacijski Stevec: zdruzbo "svetlecega" kristala in
fotopomnozevalke.
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Slika 44.4 Scintilacijski Stevec. Prikljucen je na triodo ojacevalnika. (Dresser
Atlas)

Poiskati je treba Se primerne kristale, ki izdatno sevajo vidne
fotone, ko jih zadenejo nabiti delci ali fotoni gama. Odkrijemo CsI
za nabite delce in Nal (z dodatkom talija) za fotone gama. Sunke
napetosti gledamo na priklju¢enem oscilografu ali osciloskopu.
Tak sunek je oster in je sorazmeren z energijo fotona, ki vpade na
katodo fotopomnozevalke. Scintilacijski Stevec je torej odlicen
merilnik, s katerim - po umerjanju - lahko dolocamo tako
energijo delcev kot njihovo pogostost.

44.3 Megli¢na komora

Na tretji detektor naletimo slucajno. Kot raziskovalci, ki jih
zanima nastanek oblakov, poskusamo ustvariti meglo v
laboratoriju. To nam uspe tako, da nasi¢eno vlazen zrak v
zaprtem cilindru z batom hitro razpnemo. Zrak s paro se ohladi
pod temperaturo rosiSca in prenasicena para se kondenzira v
kapljice. V prasnem zraku nastane lepa megla. Ce zrak pred tem
filtriramo, pa megla (pri enakem raztegu kot prej) ne nastane.

Ker smo Ze pri meritvah, poskusimo Se z vecjim raztegom in glej
presenecenje - kljub oCiSCenemu zraku se pri 1,25-kratnem
raztegu pojavijo redki kosmici megle! Na ¢em pa se zdaj para
kondenzira? Mogoce so to ioni, ki jih je v zraku vedno nekaj?
Domnevo preverimo tako, da zrak presvetlimo z rentgenskimi
zarki ali z uranovim sevanjem ter s tem ustvarimo dodatne ione.
Ustvarjena megla je sedaj mnogo gostejsa. Ko pa cilinder pred
raztegom postavimo v elektri¢no polje, ki ione potisne na stene,
megla ne nastane.

Takoj se pojavi naslednja misel: Ce tik pred ekspanzijo preleti
skozi cilinder ionizirajo¢ delec, recimo delec alfa, bo vzdolz svoje
poti ioniziral molekule zraka in na njih se bo kondenzirala para v
kapljice. Delec bo zarisal svojo pot! Izumili smo megli¢no komoro
(WILSON).
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movable piston 1 lon space Slika 44.5 Meglicna komora.
1

Nabiti delci v njej zarisujejo
svoje poti kot nize iz drobnih
kapljic. (Wilson, 1912/
priredba)

A
vacuum chamber

Za prakti¢no uporabo nadomestimo nerodni bat z izsesano
posodo in pipo. Ko pipo odpremo, se zrak iz cilindra raztegne v
posodo. Komoro postavimo v elektri¢no polje, ki odstrani vse
motece ione. Obdamo jo z dvema tuljavama, da v njej ustvarita
homogeno magnetno polje in ukrivljata poti delcev. Priklju¢imo Se
fotografsko kamero, ki ob vsaki ekspanziji samodejno posname
sliko.

Slika 44.6 Delci alfa v megli¢ni komori. Izvor
seva delce dveh energij, kar se vidi v njihovem
razlicnem dosegu. (Wilson, 1920+)

Komoro preizkusimo tako, da vanjo vstavimo koscek radioaktivne
snovi. Dobimo krasne slike zarkov alfa in beta. Sledi delcev alfa
so veliko bolj izrazite kot sledi delcev beta. Dolzina meglene poti
je odvisna od zacetne kineticne energije delca. Vecja kot je
energija, daljSa je pot. Poti se proti koncu debelijo, kar kaze na
to, da pocasnejsi delci mocneje ionizirajo atome. Ocitno je to
zato, ker dalj Casa letijo mimo njih.

Slika 44.7 Elektroni v megli¢ni komori. Ozka
ravna Crta pripada hitremu elektronu iz
radioaktivnega vira. Debele kratke ¢rte so zarisali
pocasni elektroni, ki so jih iz atomov zraka izbili
rentgenski zarki. (Wilson, 1920+)

Sledi fotonov gama zal ne vidimo, ampak vidimo sledi elektronov,
ki jih ti fotoni izbijejo iz atomov. Ob ionizaciji atoma namrec foton
izgine, izbiti elektron pa izleti iz atoma in na svoji poti ionizira
druge atome.
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Izguba energije

Doseg delca

44.4 Preletna dolzina

Delec alfa orje skozi elektronske ovoje atomov kot topovska
krogla skozi roj muh. Pri trku z elektronom izgubi le majhen del
svoje kineti¢ne energije in le neznatno spremeni svojo smer. Ko
potrosi vso energijo, se ustavi. Kako dolgo pot prepotuje?

Da bomo bolj splosni, obravnavajmo namesto delca alfa
kakrsenkoli tezek delec (alfa, proton ali poljuben ion) z maso m,
nabojem Ze in hitrostjo v. Izguba energije takega delca ob enem
trku z elektronom je sorazmerna s kvadratom gibalne koliCine,
prenesene na elektron: AK « G2. Ta gibalna koli¢ina je sorazmerna
s trajanjem trka: G «t in trajanje je obratno sorazmerno s
hitrostjo delca: t «x 1/v. Zato je povprecna izguba energije ob enem
trku AK « 1/v2. Ker je preneSena gibalna koli¢ina sorazmerna z
elektrostati¢no silo G x F, « Z, je zato AK « Z2. Na dolZinsko enoto
izgubljena energija pa je sorazmerna s prostorsko gostoto
elektronov: AK « n. Tako ugotovimo dK/dI « Z2n/v?2,

Snov z gostoto p naj bo sestavljena iz enakih atomov z maso m,,
vrstnim Stevilom Z, in masnim Stevilom A. Prostorska gostota
elektronov n se potem izraza s prostorsko gostoto atomov n,
takole: n =Z,n,. Velja p=man, =Au-n/Z,, torej n = (Z,/A)(1/u)p.
Razmerje Z,/A je za vse atome razen vodika priblizno enako veliko
(znasa 0,4-0,5), zato ga proglasimo za konstanto in velja

dK Z%p Z’mp (44.1)

Negativni predznak pove, da se energija zmanjsuje. Izguba
energije na dolzino poti je torej odvisna od dveh znacilnosti
delca - njegove hitrosti in naboja - in od dveh znacilnosti
okoliSnje snovi - njene gostote in povprecne ionizacijske energije
(skrite v sorazmernostni konstanti). Cim hitrejsi je delec, tem
manj energije izgubi na dolzinsko enoto in tem globlje prodre v
snov. Od dveh delcev z enako energijo in nabojem pa se tisti, ki
ima vecjo maso, prej ustavi.

Dolzina poti, ki jo delec z energijo K preleti, preden se ustavi,
zna$a R = (/X dK/(dK/dl), torej

(44.2)
Rou—.

Zp
Iz tega vidimo, da R « K2. Sorazmernostna konstanta je odvisna
od vrste delca in od vrste snovi. Dolo¢imo jo eksperimentalno.
Delce alfa z znano energijo (doloceno z magnetnim odklonom)
spus¢amo v megli¢no komoro, napolnjeno z zrakom pri
standardnih pogojih (ter vodno paro), in merimo dolzino
meglenih sledi. Med obema koli¢inama ugotovimo naslednjo
odvisnost:
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Ohranitveni zakoni

(44.3)

R
— =3,2(

)32
mm MeV

Eksponent 3/2 sicer ni enak pricakovanemu eksponentu 2, ampak
to nas ne sme prevec presenetiti, saj smo slednjega izracunali
zelo na grobo.
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Slika 44.8 Dolzina sledi delca alfa v zraku pri standardnih pogojih. Prikazani so
izmerki in prilegajocCe se krivulje za razlicne radioaktivne izvore z energijami
med 1 in 10 MeV. (Burcham, 1979)

Ce poznamo doseg delca v plinu z gostoto p;, ali poznamo doseg
tudi pri gostoti p,? Da, enacba (44.2) pove pR = const, torej
44 .4
R2 = & R1 . ( )
P2

S precej predrznosti upamo, da velja zapisana enacba celo za dve
razli¢ni snovi, na primer za plinasti zrak in za trdni aluminij.
Poskusi to v grobem potrdijo. Iz tega sklepamo, da so povprecne
ionizacijske energije elektronov v razli¢nih atomih priblizno
enake.

44.5 Dinamika trkov

Ko potuje delec alfa skozi plin in ionizira njegove atome, bo prej
ali slej trcil ob atomsko jedro - tako nas vsaj uci poskus z zlato
folijo, s katerim smo atomska jedra sploh odkrili. Ce jedro ni
pretezko, ga bo delec alfa pa¢ moral premakniti ali celo izbiti iz
elektronskega ovoja. Pricakujemo, da bo taksno golo jedro tudi
zarisalo svojo kondenzacijsko sled.

Ne glede na to, kaksne so sile med izstrelkom in jedrom,
pricakujemo, da ob njunem trku vendarle veljajo ohranitveni
zakoni gibanja: ohranitev energije, gibalne koli¢ine in vrtilne
koli¢ine. Pred trkom naj ima delec alfa gibalno koli¢ino m;v;. Po
trku se ta gibalna koli¢ina porazdeli na delec alfa m;v;' in na
jedro myv,'. Velja myvy = mqvy' + myv,'. To vektorsko enacbo
zapiSimo v komponentah. Iz risbe razberemo
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Mase in odbojni koti

Centralni trk

mivy =myv;' cos B, + myvy' cos B, (44.5)
0=myv;'sinB; — myvy'sinf,.

Od prvotne smeri je delec alfa odklonjen za kot 8, in jedro za kot
6,. Prva enacba pravi, da je prvotna gibalna koli¢ina delca alfa
enaka vsoti gibalnih koli¢in obeh delcev v prvotni smeri. Druga
enacba pa pravi, da se gibalne koli¢ine obeh delcev, pravokotne
na prvotno smer, iznicijo.

mV; A Slika 44.9 Trk delca z jedrom. Po trku
odletita delec in jedro vsak v svojo smer.

Pri trku se lahko ohranja tudi kineti¢na energija; tedaj recemo,
da je trk elasticen. Kadar pa ni tako, pravimo, da je trk
neelasticen. Pri neelasticnem trku se nekaj zacetne kineti¢ne
energije pretvori v notranjo energijo produktov ali pa se nekaj
zaCetne notranje energije pretvori v kineti¢no energijo produktov.
Priroc¢no je vpeljati razliko kineti¢nih energij po in pred trkom:
Q=K'—K. Za elasticne trke je potem Q =0 in za neelasticne
Q=0.

Privzemimo, da je trk elasticen. Potem se mora ohranjati
kineti¢na energija

1 - 1 o 1 " (44.6)
5 myvi“ = E myvy “+ E mpvy <.

Iz enacb (44.5) in (44.6) odstranimo hitrosti ter dobimo
my sin 64 44.7)

mq B sin (61 + 07) '

Enacba omogoca, da iz izmerjenih kotov 6, in 6, izracunamo
maso udarjenega jedra. To je zelo prikladen nacin, da ugotovimo,
kaks$no jedro je udarec prejelo. Ce tréita dva enako tezka delca, je
mq = mjy in sledi 6, + 6, =1/2. Delca se torej razletita pod pravim
kotom.

Poseben primer je centralni trk. Tedaj 8; =0 in 6, =0 in iz (44.5)
ter (44.6) sledi

vy 2m, (44.8)

\% m1+m2'

Ce tréita enako teZka delca, je vy' =v. To pomeni, da se izstrelek
ustavi, tarca pa prevzame vso njegovo hitrost. Lazja tarca odleti
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Delci alfa in vodik

hitreje od izstrelka in tezja pocasneje. Vodikovo jedro, ki ga
centralno zadene delec alfa, tako odleti s hitrostjo v,'/v; =1,6. To
je tudi maksimalna hitrost, ki jo vodikovo jedro lahko dobi pri
takem trku. Dusikovo jedro, ki je tezje od delca alfa, pa odleti s
hitrostjo v,'/vi; =0,4.

44.6 Trki alfa ob jedra

Pa obstreljujmo najlazja jedra - vodikova - z delci alfa! V izsesano
cilindri¢no posodo namestimo radioaktivni izvor. Radioaktivni
zarki prehajajo skozi odprtino v steni in vpadajo na svetlec
zaslon, kjer opazujemo bliske z mikroskopom.

Slika 44.10 Priprava za obsevanje raznih plinov z delci alfa. t = dovod
preiskovanega plina, R = radioaktivni vir, a = srebrna folija, S = scintilacijski
zaslon, M = mikroskop. (Rutherford, 1919 / priredba)

S pre¢nim magnetnim poljem iz curka odstranimo Zarke beta.
Nato pred zaslon postavimo tanko srebrno folijo. Njeno debelino
izberemo tako, da na zaslonu ni vec bliskov (od delcev alfa).
Potem v posodo spustimo vodik. Na zaslonu se pojavijo bliski.
Sklepamo, da jih povzrocajo vodikova jedra, ki so jih iz atomov
vodika izbili delci alfa pri centralnih trkih (RUTHERFORD).

Trke delcev alfa z jedri vodika opazujemo tudi v megli¢ni komori.
Pri tem moramo biti potrpezljivi. Potrebnih je mnogo opazovanj,
da uspemo taksen trk fotografirati. Seveda lahko opazujemo tudi
trke z jedri kakega drugega plina. Zlasti lepo je opazovati helij:
tedaj sta masi izstrelkov in tarc¢ enaki in sipalni kot med njima
znaSa 90 °.

Slika 44.11 Vpad delcev alfa na vodik
(levo) in helij (desno). Delec alfa je po trku z
jedrom vodika (protonom) odklonjen za 8°
in proton za 68°. Kota povesta, da je
razmerje mas obeh delcev 4:1. Trk delca
alfa z jedrom helija pa kaze medsebojni kot
90°, saj sta oba delca enako tezka.
(Blackett, 1925 / priredba)
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Delci alfa in dusik

Delci alfa in berilij

Obstreljujejmo tudi druge pline in sicer natanko tako kot vodik.
Pri kisiku in ogljikovem dioksidu se za srebrno folijo (ki zaustavlja
delce alfa) na zaslonu ni¢ ne pokaze. Pri dusiku pa opazimo na
zaslonu bliske. Odklon z magnetnim poljem pokaze, da te bliske
povzrocajo hitri protoni. Od kod so se vzeli, ¢e pa v posodi ni
vodika, ampak je dusik? Domnevamo, da sta se delec alfa in jedro
dusika zlila v novo jedro, pri cemer je pro¢ odletel proton.
Ohranitev naboja in masnega Stevila pove, da mora biti nastalo
jedro kisik (RUTHERFORD):

20t + 7N =407 +pt. (44.9)

Domnevo preverimo in potrdimo v megli¢ni komori, ki jo
napolnimo z dusikom (in vodno paro).

Slika 44.12 Vpad delca alfa na dusik. Ta se
spremeni v kisik (debela kratka sled) in izseva
proton (dolga posevna sled). Potrebnih je vec
tiso¢ fotografij, da ujamemo taksSno pretvorbo.
(Blackett, 1925)

Tako smo prisli do presenetljive ugotovitve: atomska jedra - in s
tem atomi - se dajo spreminjati. To velja vsaj za spremembo
dusika v kisik. Pricakujemo, da podobno velja tudi za druge snovi.
Odkrili smo transmutacijo elementov.

44.7 Odkritje nevtronov

Sedaj Sele dobimo veselje do obstreljevanja razlicnih snovi z Zarki
alfa! Ko namesto plinastega vodika ali duSika obstreljujejemo
plosco iz berilija, zaznamo z ionizacijskim Stevcem redke sunke -
nekaj na minuto. Magnetno polje nanje ne vpliva. Ce med berilij
in Stevec postavimo svin¢eno plosco, se v njej skorajda ne
absorbirajo. Odkrili smo nevtralne, zelo prodorne "berilijeve"
zarke (BOTHE). So to morda iskani nevtroni?

Ta Pump

T Amplifier = Oscillograph

Po Source Be

Slika 44.13 Vpad delcev alfa na berilij. |1z berilija izhajajo nevtralni zarki, ki jih
zaznava ionizacijski stevec. (Chadwick, 1932)
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Masa nevtronov

Masni primanjkljaj

Vezavne energije

Ce so opaZeni delci res nevtroni, se mora v beriliju dogajati
naslednja reakcija:

204 +4Be’ - ¢Cl2+ on't. (44.10)

Raziskujo¢ absorpcijo postavimo na pot berilijevih Zarkov
namesto plosce iz svinca plosco iz parafina. Ionizacijski Stevec,
megli¢na celica in magnetno polje na nase veliko presenecenje
pokazejo, da iz parafina izletavajo Stevilni protoni (CHADWICK).
Parafin vsebuje - za razliko od svinca - lahke vodikove atome. To
nas utrjuje v misli, da so berilijevi zarki res nevtroni, ki trkajo z
jedri vodika, protoni.

Pri trku delca alfa z jedrom berilija se ohranja polna energija
MyC? + MyVo2/2 + MpeC? = McC? + Mcve?/2 + mpc? + mpvy?/2.
Privzamemo, da je kineti¢na energija nastalega ogljika precej
manjsa od kineti¢ne energije nastalega nevtrona, ker je njegova
masa precej vecja, in jo zanemarimo. Potem sledi m,c? =

(MVa?/2 + Mec? + mpec? — mec?)/(1 + vp2/2¢?). Na desni strani
poznamo energijo vpadajocih delcev alfa in vse mase (iz masnega
spektrometra), ne poznamo pa hitrosti nevtronov v,. Dolo¢imo jo
tako, da spustimo berilijeve nevtrone na vodik, da iz njega izbijejo
protone, potem pa z magnetnim odklonom dolo¢imo
(maksimalno) hitrost v, ¢elno udarjenih protonov. Ob
predpostavki, da je masa nevtronov blizu masi protonov, velja

Vn = Vp. Tako izmerimo myc? =940 MeV oziroma (CHADWICK)

m,=1,009u. (44.11)

Nevtron je torej od protona tezji za okrog 0,2 %.

44.8 Vezavna energija

Masa helijevega jedra znasa 4,002 (to je masa helijevega atoma z
dvema odStetima elektronoma), masa njegovih sestavnih delov -
dveh protonov in dveh nevtronov - pa 2-1,007 +2-1,009 =4,032.
Masa skupka vezanih nukleonov je torej manjSa od vsote mas
posamicnih, prostih nukleonov. Recemo, da ima jedro masni
primanjkljaj, v primeru helija 0,030 u, kar ustreza vezavni energiji
28 MeV. Ocitno je to energija, ki jo sistem nukleonov izgubi, ko se
poveze v jedro. Helijevo jedro ima za 28 MeV manj energije kot
njegovi stirje loceni nukleoni.

Kar velja za helij, velja tudi za druga jedra. Vsa kazejo masni
primanjkljaj. Zlahka ga doloc¢imo, ¢e le izmerimo njihove mase z
masnim spektrometrom. Vezavna energija jedra z masom, z Z
protoni in z A — Z nevtroni znasa

Epina = (Zmp + (A — Z)my, —m)c?. (44.12)

V takem jedru je posamicen nukleon vezan s povpre¢no vezavno
energijo



Evidenca jeder

_ Ebind (44.13)
==

B

Vezavna energija nukleona je pribliZzno enaka v vseh jedrih in
znasSa okrog 8 MeV, le pri najlazjih jedrih je nekoliko manjSa. Pri
vodiku je seveda enaka ni¢. Odvisnost B od A ima maksimum pri
zelezu; njegovi nukleoni so najmocneje povezani.
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Slika 44.14 Povprec¢na vezavna energija nukleona v razli¢nih jedrih. Energija je
izraCunana iz znanega Stevila protonov in nevtronov v jedru ter iz izmerjene
atomske mase v masnem spektrometru. (Anon)

Ce so jedra laZja od vsote mas svojih lo¢enih sestavin, kaj ne velja
isto tudi za atome? Kaj ne bi moral biti atom laZzji od vsote mas
svojega jedra in loCenih elektronov? Res je. Vendar je mocna sila,
ki veze nukleone, mnogo mocnejsa od elektri¢ne sile, ki veze
elektrone in jedra. Vezavne energije nukleonov v jedrih so zato
milijonkrat vecje kot vezavne energije elektronov v atomih. Temu
ustrezni so tudi masni primanjkljaji. Zato jih v jedrih lahko
izmerimo, v atomih pa tega ne moremo.

Obstoj masnega primanjkljaja in vezavne energije je sijajna
potrditev sorazmernosti med maso in energijo, ki smo jo odkrili v
teoriji relativnosti. S tem smo slednjo Se bolj ucvrstili.

44.9 (Ne)stabilnost jeder

Zdaj, ko poznamo sestavo jeder iz protonov in nevtronov,
poskusimo povezati radioaktivnost atomov z zgradbo njihovih
jeder. Saj ne more biti dvoma, da radioaktivni delci - alfa, beta in
gama - izhajajo iz jeder. Gotovo se morajo pri tem jedra
spremeniti. Rekli bomo, da razpadajo.

Atomska jedra so enoli¢no doloc¢ena s stevilom protonov in
nevtronov, ki jih vsebujejo. V naravi najdemo, kot vemo, jedra z 1
do 92 protoni in vsako od njih ima lahko ve¢ razli¢nih Stevil
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Dolina stabilnosti

Razpad alfa

nevtronov. Tako, na primer, najdemo ogljikove izotope C!?, ¢C13
in ¢C14. Prva dva sta stabilna, zadnji je radioaktiven. Drugih
izotopov ogljika ne najdemo. Podobno je s preostalimi jedri.
Stabilnih je okrog 250 vrst jeder; preostanek - vsaj 60 vrst - je
radioaktiven. Vsa znana jedra poimenujemo nuklide.
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Slika 44.15 Stabilna atomska jedra. Nestabilna jedra se tiscijo stabilnih in niso
prikazana. (University of Maryland)

Ugotovimo naslednje. Vsa jedra z A > 83 (bizmut) so nestabilna,
to je radioaktivna. Od lazjih pa so stabilna le taka, v katerih je
razmerje med Stevilom nevtronov in protonov zelo natanc¢no
zamejeno. Pri lahkih elementih je to razmerje enako 1, potem pa
se pocasi veca. Jedra, ki od tega razmerja rahlo odstopajo - imajo
premalo ali preve¢ nevtronov glede na Stevilo protonov - so
radioaktivna. Tistih, ki bi mo¢no odstopala, pa sploh ni.

Zanimivo je, da ima dve tretjini stabilnih jeder sodo Stevilo
protonov in hkrati sodo Stevilo nevtronov. Jeder sodo-liho ali liho-
sodo je za eno tretjino. Jeder liho-liho pa je zgolj nekaj.

44.10 Razpadni mehanizmi

Sedaj ho¢emo podrobneje raziskati mehanizme, ki so odgovorni
za radioaktivni razpad jeder.

Pri razpadu alfa (uran, radij) izleti iz jedra delec alfa. To pomeni,
da se zgodi naslednja jedrska reakcija:

ZXA —>Z_2YA_4 + 2(X4 . (44.14)

Iz elementa X nastane element Y. Predstavljamo si, da so nekateri
nukleoni v jedru Ze povezani v delce alfa (to je energijsko bolj
ugodno, kot ¢e bi bili loCeni). Tak delec alfa se giblje v
sestavljenem potencialnem polju mocne in elektri¢ne sile. To
polje je podobno krtini na travniku. V eni dimenziji se torej giblje
delec med dvema grebenoma. ViSina grebena je priblizno
tolik$na, kot je elektri¢ni potencial na robu jedra: U = Ze/R. Ker je
delec alfa vezan, mora biti njegova energija E manjSa od njegove
potencialne energije na vrhu grebena W= 2eU. Kako naj potem
sploh zapusti krtino? Tako, da skozi greben tunelira (GAMoOw). Ker
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Razpad beta

je jedro atoma kvantni sistem nukleonov, so energije delca alfa v
njem kvantizirane. Zato je tudi energijski spekter izsevanih
delcev alfa diskreten.

Vir)

Slika 44.16 Razpad alfa kot tuneliranje delca alfa skozi potencialni greben
okrog jedra. (University of Manchester)

Vemo, da valovna funkcija kvantnega delca po vpadu na visoko
potencialno stopnico eksponentno pojema in da njen kvadrat na
razdalji D znaSa P « exp —2DV (2m(W—E)/h?). Verjetnost, da bo
delec alfa prepuscen, je torej mocno odvisno od viSine in Sirine
stopnice. Seveda velja podobno tudi za greben krtine, ki ni
pravokoten.

Zakaj jedro lahko izvrze delec alfa, ne opazimo pa, da bi kdaj
samo od sebe izvrglo proton ali nevtron? Relativhe mase
sosednjih izotopov istega elementa se locijo med seboj za najvec
1,007. To je premalo za izsevanje nevtrona, pa tudi protona. Jedro
v osnovnem stanju torej ne more izvrec¢i posami¢nega nukleona.
Drugace je z delcem alfa, katerega masa je znatno manjsa od
vsote mas dveh protonov in nevtronov. Med tezkimi elementi je
precej primerov, kjer je razlika med maso zacetnega in kon¢nega
jedra vecja od mase delca alfa. Zato energijski zakon ne
nasprotuje razpadu.

Pri razpadu beta (5C!4, 4Bel?) izleti iz jedra elektron. To pomeni,
da se zgodi naslednja reakcija:

ZXA- 711 YA+ e + [Sekaj?]. (44.15)

Energijska bilanca za razpad jedra m; v jedro m, - brez [Se

kaj?] - je naslednja: m;c? = myc? + K, + mec? + K, torej

Ko =mjc? — myc? — mec? — K,. Odrivna kineti¢na energija jedra K,
je zanemarljiva v primerjavi s kineti¢no energijo elektrona. Tako
vidimo, da bi moral imeti izsevani elektron ostro vrednost K.
Pricakovali bi torej, da je energijski spekter elektronov diskreten.
Do podobnega sklepa pridemo, ¢e pomislimo, da prihajajo
elektroni iz kvantiziranega jedra. Vendar pa meritve temu
nasprotujejo: kot Ze vemo, je spekter zvezen [41.6]. Izleteli
elektron ima poljubno energijo med nic¢ in K. Kako naj si to
razlozimo?
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Sibka sila

Razpad gama

Ponuja se presentljiv izhod iz zagate: morda pa se poleg vsakega
elektrona izseva Se en lahek nevtralen delec, in sicer tako, da je
vsota energij obeh konstantna. Temu delcu recimo nevtrino v
(PAuULI). Njegova masa mora biti zelo majhna. Povsem mozno je,
da ima maso ni¢ in da se zato giblje s svetlobno hitrostjo. Ali tak
delec res obstaja, bomo morali seveda Se ugotoviti. Ker delec ni
nabit in ima maso (blizu) ni¢, bo to tezko, gotovo tezje od
odkrivanja nevtronov.

Kako si naj razlozimo izsev elektrona iz jedra, ¢e pa v njem ni
elektronov? Ena izmed mozZnosti je naslednja. Ko atom izseva
foton, to ne pomeni, da je bil foton pred tem Ze skrit v atomu.
Foton Sele nastane pri prehodu elektronskega oblaka iz viSjega
vzbujenega stanja v nizje. Lahko rec¢emo, da se fotoni pravzaprav
rojevajo iz sprememb elektricnega polja, ki krizema povezuje
elektrone in protone. Morda je tako tudi v jedru. Morda obstaja
med nukleoni polje sil, iz katerega se, ob spremembah, rojevajo
elektroni in nevtrini. Zaradi ohranitve naboja se morajo pri tem
spreminjati tudi nevtroni v protone.

Pretvorba nevtronov v protone se dogaja, kadar je na kupu
"prevec" nevtronov in "premalo" protonov. Blizu je misel, da
morda polje deluje tudi v obratni smeri: kadar je na kupu
"prevec" protonov in "premalo" nevtronov, se za¢nejo protoni
pretvarjati v nevtrone, pri cemer bi se morali zaradi ohranitve
naboja izsevati pozitivni elektroni oziroma pozitroni in nevtrini.
Na ta nacin kvalitativno razlozimo dolino stabilnosti in napovemo
Se en nov delec, ki morda obstaja.

Poleg treh dosedanjih sil - gravitacijske, elektricne in mocne -
torej morda obstaja v naravi Se Cetrta sila; poimenujmo jo Sibka
sila. Sila mora delovati krizem med nukleoni, elektroni in
nevtrini. Njen doseg mora biti kratek. Za razliko od drugih sil pa
Sibka sila delcev ne pospeSuje, ampak jih "ob dotikih" spreminja,
ustvarja in unicuje.

Nekatera jedra razpadajo z razpadom alfa, druga z razpadom

beta. Vecinoma se pri vsakem zgodi hkrati Se razpad gama, to je,
jedro izseva foton gama:

SXAS XA+ . (44.16)

Razlaga je hitro pri roki. Razpad alfa ali beta praviloma pusti
jedro v vzbujenem stanju. Jedro se nato povrne v osnovno stanje
in pri tem izseva foton gama. Zaradi kvantizacije jedrskih stanj
mora biti izsevani spekter diskreten. In takSen, kot vemo, tudi je.

44.11 Statistika razpadov

Ko atomi radioaktivno razpadajo, se Stevilo Se nerazpadlih
atomov manjsa. Kako?



Preostala jedra

Aktivnost vira

Predpostavimo, da je razpad slucajni dogodek in je neodvisen od
zunanjih okolis¢in. Verjetnost, da izbrano jedro razpade v kratki
Casovni enoti, je zato konstantna. To pomeni, da je delez jeder, ki
razpadejo v ¢asovni enoti, neodvisen od tega, koliko je Se
nerazpadlih jeder: —dN/Ndt =A. Enacbo integriramo in dobimo

N=Nye™2t, (44.17)
Stevilo nerazpadlih jeder se eksponentno zmanjsuje. V ¢asu
1 (44.18)
T=—
A

pade na vrednost 1/e = 37 %. ReCemo, da je to razpadni cas.
Namesto razpadnega Casa je bolj nazorno vpeljati razpolovni cas,
to je Cas, v katerem se Stevilo nerazpadlih jeder zmanj$a na
polovico: Ny/2 = Ngyexp —ATy,. Sledi povezava

Tip=tln2. (44.19)

100%

Amount remaining

T T Time

Slika 44.17 ZmanjSevanje Stevila Se nerazpadlih delcev s ¢asom. (University of
California)

Radioaktivni viri sevajo zarke bolj ali manj izdatno. Bolj kot vir
seva, ve¢ jeder v njem razpade v ¢asovni enoti. Stevilo razpadov
na ¢asovno enoto poimenujemo aktivnost vira:
A=— d—N- =AN=ANoe_At=Aoe_}‘t. (44.20)
dt
Aktivnost vira pojema eksponentno s ¢asom. Ce jo izmerimo (z
ionizacijskim Stevcem) ob nekaj razlicnih ¢asih in nariSemo
odvisnost InA/Aq od ¢asa, dobimo premico in iz nje razpadno
konstanto. Stevec sicer ne zajame vseh radioaktivno izsevanih
delcev, prestreze pa stalen odstotek. Vendar je to dovolj. Seveda
lahko na ta nacin merimo le tiste izvore, ki se jim aktivnost
znatno zmanjSuje s casom. TakSen, na primer, je izotop g4P0?10 v
poloniju, ki ga pridobimo iz uranove rude. Razpolovni ¢as ima
kratkih 138 dni. Izmerjena aktivnost je natan¢no eksponentna. S
tem potrdimo predpostavko, iz katere smo izhajali: radioaktivni
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Datiranje kamnin

razpadi so res slucajni in neodvisni od sosednjih atomov in
zunanjih okolis¢in, recimo temperature ali magnetnega polja.

Radiju ggRa?2% ali uranu ¢,U?38 se aktivnost s Casom spreminja
tako pocasi, da mu na opisani nacin ne moremo dolociti
razpolovnega Casa. Pomagamo si takole. Pridobiti moramo koSc¢ek
Cistega izotopa. V njem so vsa jedra Se nerazpadla. KoScek mase
m damo v ionizacijski Stevec in mu izmerimo aktivnost. Vemo, da
je v koscku Ng = m/m,, m; = M/N nerazpadlih jeder. Razpadno
konstanto izracunamo iz povezave A = AN,. S tem je doloc¢en tudi
razpolovni ¢as. Za radij dobimo 1600 let in za uran 4,5 - 10let.

Radioaktivne snovi s kratkim razpolovnim ¢asom v naravi sploh
ne bi smele obstajati, saj hitro izginevajo. Oc¢itno morajo vedno
znova nastajati. Ponuja se misel, da kratkozivi elementi morda
nastajajo iz dolgozivih. Natan¢neje receno: izvorni radioaktivni
element razpada v produkt, ki je tudi sam radioaktiven, in tako
naprej, vse do zadnjega ¢lena v razpadni verigi, ki je obstojen. Z
detektivskim eksperimentalnim delom uspemo v naravi res
odkriti vsaj dve taks$ni verigi. Prva se zaCne z uranom U238 in
konca s svincem Pb?%%, Vmes nastaja radij Ra?2%. Druga pa se
zacne s torijem Th?32 in konca s svincem Pb2%8,

Zamislimo si Cist kos radioaktivne snovi A z zelo dolgim
razpolovnim ¢asom. Z razpadanjem iz nje nastaja snov B. Njena
koli¢ina ne raste kar naprej, ampak razpada ter se prej ali slej
ustali pri vrednosti, ko je prav toliko razpade, kot jo nastane.
Podobno velja za snov C, ki nastaja iz B. KolikSen je razpolovni
Cas obeh snovi, pri tem ne igra vloge, le dosti krajsi mora biti od
razpolovnega casa prve snovi. Velja dN,/dt = dNg/dt = dNc/dt.
Zapisemo ApNj = AgNg = AcNg, vstavimo razpolovna ¢asa in
dobimo

Na N Nc (44.21)

Ta Tp Tc'
V ravnotezju je Steviléno razmerje snovi enako razmerjem
njihovih razpolovnih ¢asov. Dolgozive snovi je vec¢, kratkozive
manj. Relacija velja za vse Clene v razpadni verigi. Iz nje lahko
izraCunamo razpolovni ¢as ene snovi, ce poznamo razpolovni cas

druge snovi in njuno ravnotezno Stevilcno razmerje. To je zlasti
primerno za dolocanje dolgih razpolovnih ¢asov.

Zemeljska skorja je nastala in Se nastaja iz staljenih snovi v njeni
notranjosti. Pri ohladitvi se tvorijo razli¢ni minerali/kristali.
Nekateri so taksni, da ob strditvi vkljucijo vase uran, ne pa tudi
svinca. TakSen je, na primer, cirkon ZrSiOy, ki ima del
cirkonijevih atomov Zr nadomesc¢enih z uranovimi. Ko ¢as
mineva, ti razpadajo v svoje kon¢ne produkte: izotop U238 v Pb206
in izotop U23% v Pb207, Razpolovna ¢asa poznamo: 4,5 in 0,7
milijarde let. V kristalu pojema Stevilo istovrstnih uranovih



Velikost jedra

Tvorba izotopov

izotopov kot Ny = Nypexp —At, hkrati se pa povecuje stevilo
ustreznih svincevih atomov Np, = Nyo (1 — exp —At). Deljenje obeh
enacb pove t=(1/A)In (1 + Npp/Ny). Z meritvijo razmerja Np,/ Ny
je enoli¢no dolocena starost kristala. Tako dolocamo starost
razlicnih kamenin. Najstarejsi kristali, ki jih najdemo, so stari 4,0
milijarde let. Meteoriti, ki iz vesolja padajo na Zemljo, pa so Se
starejsi, okrog 4,5 milijarde let. Sklepamo, da je priblizno toliko
stara tudi Zemlja.

44.12 Trki nevtronov ob jedra

Nevtronov med letom skozi snov ne ovirata niti elektronski ovoj
atomov niti elektri¢no polje jeder. Zato se z lahkoto priblizajo
jedrom in z njimi trkajo, se od njih odbijajo ali v njih ponikajo ter
povzrocajo jedrske spremembe. To jih dela odli¢ne izstrelke za
raziskavo jeder. Dober vir nevtronov za poskuse Ze poznamo -
zmes zdrobljenega radijevega bromida in berilija, zaprto v
stekleni cevki.

Naj na plosco iz izbrane snovi v izbranem c¢asu vpade curek N
nevtronov. Verjetnost, da nevtron iz vpadajocega curka obtici v
snovi, znaSa P=N,0/S, pri Cemer je o absorpcijski presek jedra,
N, stevilo jeder vzdolz curka in S presek curka. Iz ploSce naj izide
N' nevtronov. To pomeni, da v plosc¢i obti¢i N — N' = (N,0/S)N
nevtronov. Stevilo jeder N, je dolo¢eno z maso obsevanega dela
plosce in z maso posamicnega jedra: N, =pS1/A u. To pomeni, da
znaSa presek jedra o = (Au/pl)(N — N')/N. Z meritvijo N in N' je
presek popolnoma dolocen. S tem je dolocen tudi absorpcijski
radij jedra: o =nr?. Zaradi kratkega dosega mocnih sil si ga lahko
predstavljamo kar kot geometrijski radij.

Dejanske meritve pokazejo, da velja povezava

r=ry,Al3 (44.22)
ro=1,2fm.

Jedro bakra Cu%%, na primer, ima polmer 5 fm. To je trikrat manj,
kot smo svoj cas dolo¢ili iz sipanja delcev alfa [41.7]. Delci alfa se
pac ne morejo priblizati jedrom tako moc¢no kot nevtroni.

Ker r¥« A in r3 « V, je A/V = const. Gostota vseh jeder je zato
priblizno enaka in je reda velikosti 108 ton/cm3. To je strasna
vrednost. Sklepamo tudi, da so nukleoni v jedrih prav tesno
nagneteni. Jedra so torej precej podobna kapljicam tekocine s
tesno nagnetenimi molekulami.

Jedro, ki ujame nevtron, se spremeni v svoj "visji" izotop.
Hvalevredno bi bilo sistemati¢no obsevati vse elemente in
pogledati, kaksne izotope lahko pridelamo. Pri tem Zelimo
dosegati ¢im vecji izplen. Pricakujemo, da bodo pocasnejsi
nevtroni, ki v blizini jeder preZivijo ve¢ ¢asa, bolj pogosto vstopali
vanje. TakSne pocCasne nevtrone dobimo, ¢e izvorne hitre
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nevtrone spustimo najprej skozi primerno snov, v kateri elasticno
trkajo z jedri in izgubljajo kineticno energijo. Potrebna je snov z
majhnim absorpcijskim in velikim sipalnim presekom. Dobro se
izkazeta voda in grafit.

Rezultati so pricakovani. Pridelamo veliko Stevilo lahkih izotopov,
ki jih v naravi najdemo redko ali sploh ne. Vsi imajo "prevec"
nevtronov, da bi bili stabilni, in so beta-radioaktivni. Nekaj
primerov: {H3, sC'4 in 15P32. Razpolovni ¢asi znasajo tipi¢no od
nekaj dni do nekaj tisoc let.

44.13 Razcep tezkih jeder

Pri obsevanju tezkega urana z nevtroni pa nas ¢aka presenecenje:
namesto visjih izotopov urana nastane mesanica razli¢nih srednje
tezkih elementov. Tega si ne moremo razlagati drugace, kot da se
od nevtrona zadeto uranovo jedro razcepi na dve priblizno enako
tezki jedri in Se na kakSen "odvecen" nevtron (HAHN). Nastala
jedra so radioaktivna in izsevajo elektrone ter zarke gama. Pojav
lahko celo opazimo v megli¢ni celici: iz obsevane uranove
ploscice vcasih izletita dva bleSceca zarka. Njuna ionizacijska
sled pravi, da nosita mnogo kineti¢ne energije.

Vezavna krivulja nukleonov v jedrih pravi naslednje. V tezkem
jedru je vsak nukleon vezan z energijo 7,5 MeV, v srednjetezZkem
jedru pa z 8,5 MeV. Pri cepitvi tezkega jedra se torej vezavna
energija nukleona poveca za 1 MeV, to je, vsak nukleon odda
okrog 1 MeV energije. V jedru urana je preko 200 nukleonov, zato
ob razcepu odda okrog 200 MeV energije. Ta energija se nalozi
vec¢inoma v kineti¢no energijo obeh fragmentnih jeder, deloma pa
tudi v kineti¢no energijo sproscenih nevtronov in izsevanih
elektronov ter fotonov gama.

Uran v naravi sestoji predvsem iz dveh izotopov ¢,U?38 (99 %) in
92U%35 (1 %). Podrobne raziskave pokazejo, da se izotop U%38 ob
zajetju nevtrona redko razcepi, ampak raje postane izotop ¢,U?39,
takoj dvakrat zaporedoma beta-razpade in postane plutonij
94Pu?39, Izotop U235 pa se razcepi pogosto, posebej Se s poCasnimi
nevtroni. Pri tem s Stevci tudi opazimo, da iz obsevanega vzorca
izstopa vecC nevtronov, kot jih vanj vstopa: na 1 (pocasni)
vstopajoc¢i nevtron pridejo kar 2-3 (hitri) izstopajoci. To nas
navede na naslednjo misel: ako zadenejo novorojeni nevtroni spet
ob uranovo jedro, lahko sprozijo nove cepitve. Pri tem izletijo
spet novi nevtroni in tako naprej. Namesto ene same cepitve
sprozimo torej celo verigo cepitev. Recemo, da smo sprozili
verizno reakcijo (FERMI).

Ce hot¢emo, da veriZna reakcija ne ugasne, moramo poskrbeti za
naslednje. Prvi¢, kepa urana mora biti dovolj velika, da nevtroni
prevec¢ ne uhajajo. In drugic, prepreciti moramo taksne reakcije,
pri katerih se jedra ne cepijo. Predvsem moramo prepreciti vpliv



Uranova bomba

jeder U238, ki pozirajo nevtrone (razen najhitrej$ih), ne da bi se
cepila.

oy gj 2 Slika 44.18 Verizna reakcija.
JJ '; . v .
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Ocitno velja naslednje. V "premajhni" kepi urana verizna reakcija
ugasne. V "preveliki" naraste preko vsake meje in kepa
eksplodira. Ravno pravsnja kepa pa vzdrzuje konstantno verigo
razpadov ter zagotavlja ravnovesje med proizvedeno in oddano
energijo. Odkrili smo princip za izdelavo uranove bombe in
uranove peci.

Iz samega naravnega urana se ne da narediti bombe, tudi ¢e ga
nakopi¢imo skupaj ve¢ ton. V njem je namrec izotopa U?38 toliko,
da prevec pridno poZira nevtrone in se verizna reakcija ne more
prav razviti. Naravni uran moramo zato obogatiti, to je, v njem
povecati delez izotopa U?3°, Postopek temelji na frakcionalni
difuziji in centrifugiranju uplinjenih uranovih soli (npr UFg) ter je
zapleten in drag. Privoscijo si ga lahko le tehnolosko razvite in
bogate drzave. Ko nam uspe v taki drzavi pridelati dovolj
primerno obogatenega urana, ga moramo seveda shraniti v
majhnih kosih na oddaljenih mestih. Sicer bi ga bilo na kupu
toliko, da bi naklju¢ni nevtroni iz okolice v njem takoj sprozili
unicujoco verizno reakcijo. Kakor pravijo tisti, ki se na to
spoznajo, zna$a kritiCna masa krogle iz Cistega U?3> komaj 15Kkg.

Bombo izdelamo iz dveh podkriticnih cilindrov vsaj 80-odstotno
obogatenega urana. En cilinder je votel in drugi se vanj prilega.
Cilindra sta nameScena v cevi na medsebojni razdalji ~ 2 metra.
Smodnikov naboj izstreli en cilinder v drugega. S tem presezeta
kriti¢cno maso in bomba eksplodira.

Slika 44.19 Eksplozija uranove
bombe nad HiroSimo. Bomba je pobila
preko 100000 ljudi in zravnala mesto
z zemljo. (Hiroshima Memorial Peace
Museum)
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Uranov reaktor

Uranov reaktor je ukrocena uranova bomba, v kateri
nadzorujemo nevtronski plaz, da bomba stalno "tli", namesto da
bi eksplodirala. Jedro reaktorja sestavimo iz kosov delno
obogatenega (5 %) urana. V jedro potisnemo palice iz snovi, ki
mocno absorbira nevtrone: grafita, kadmija ali bora. Bolj kot jih
potisnemo v jedro, ve¢ nevtronov absorbirajo in bolj dusijo
razpadni plaz. Tako uravnavamo hitrost razpadanja (FERMI). Skozi
jedro ¢rpamo vodo, ki se od razpadajoCega urana segreva in
spreminja v paro. Z njo gonimo parno turbino in nanjo priklopljen
elektri¢ni generator. Ko para opravi svoje delo, jo ohladimo, da se
kondenzira, in jo vodimo nazaj v reaktor. Voda hkrati sluzi kot
sredstvo, ki upocCasnuje nevtrone in s tem povecuje njihovo
razbijalno uspesnost.

Bolj kot je uran obogaten, manjse delovno jedro je potrebno.
Uporabimo lahko celo neobogateni uran, vendar moramo v tem
primeru njegove hitre nevtrone upocasnjevati s tezko vodo (tako,
ki vsebuje tezki vodik); navadna voda jih ne upocasni dovolj.
Namesto enega vodnega kroga lahko uporabimo tudi dva. V
prvem, ki je pod visokim pritiskom, vodo segrevamo nad 100 °C.
S tako segreto vodo pa potem uparjamo vodo v drugem, loCenem
vodnem krogu. Kon¢no moramo reaktor obdati Se s S¢itom iz
primerne snovi, da nevtroni, predvsem pa zarki gama, ne uhajajo
v okolico. Primerna sta navadni beton in svinec.

Containment Structure

Slika 44.20 Uranov reaktor. Pri nadzorovanem razcepu urana se sprosca
toplota. Ta segreva vodo v paro in slednja poganja parno turbino s priklju¢enim
elektri¢nim generatorjem. (US Nuclear Regulatory Commission)

Kilogram U?3% proizvede v reaktorju toliko energije kot sezig
3000 ton premoga! S tem dobimo v roke izjemno mocan in
zgoscen vir energije. Uranove reaktorje uspesno uporabimo za
pogon velikih elektrarn. Namestimo jih na ladje in podmornice.
Za avtomobile in letala pa so pretezki. Reaktorji sluzijo tudi kot
izdaten vir nevtronov, s katerimi lahko opravljamo nadaljnje
raziskave.

Ko se uranovo gorivo potros$i, ostanejo za njim razni stranski
produkti, ki so radioaktivni, recimo cezij Cs!37, stroncij St°° in
plutonij Pu?3. Da njihovo sevanje ne bi Skodovalo ljudem,
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Zlivanje vodika

Vodikova bomba

moramo vso to zlindro zapreti v primerne zabojnike in jih
zakopati globoko pod zemljo. Potem pa ¢akamo, da razpade v
konc¢ne, neradioaktivne produkte.

44.14 Zlivanje lahkih jeder

Vezavna energija nukleona v zmerno tezkem jedru je vecja od
vezavne energije nukleona v lahkem jedru: v devteriju znasSa

1 MeV, v triciju 3MeV in v heliju 7 MeV. Ce se torej uspeta zliti
dve lahki jedri, se bo pri tem sprostila energija v okolico.
Zamislimo si, da se lahko spojita devterij in tricij v helij:

H?2+ H3-He*+n!. (44.23)

Da se razdre devterij v dva nukleona, je potrebno

2+-1MeV =2 MeV energije; da se razdre tricij v tri nukleone, je
potrebno 3 -3 MeV =9 MeV; in ko se zdruzijo Stirje nukleoni v
helij, se sprosti 4 -7 MeV =28 MeV energije. Pri reakciji se torej
sprosti (28 —9 —2) MeV =17 MeV energije. Ker sodeluje 5
nukleonov, se na en nukleon sprosti dobre 3 MeV energije. To je
trikrat ve¢ kot pri cepitvi uranovih jeder.

2@ GH Slika 44.21 Zlivanje lahkih jeder. Prikazano je zlitje
\ / devterija in tricija v helij (in nevtron). Spros¢ena energija

se porazdeli med produkte v obratnem sorazmerju z

njihovimi masami. (Anon)
“He + 3.5 MeV

n + 14.1 MeV

Da se jedri devterija in tricija sploh lahko zdruzita, morata
najprej premagati medsebojno elektri¢no odbojno silo.
Privzemimo, da se morata jedri priblizati na r=10fm, da ju
zagrabi mocna sila. Na tej razdalji znasa njuna odbojna
potencialna energija W = q%/r= 0,14 MeV. Posamic¢no jedro mora
torej imeti 0,07 MeV kineti¢ne energije, da mu uspe preboj. To
ustreza temperaturi 5 - 108 kelvinov. Ker pa ima porazdelitev
jeder po hitrosti svoj rep, jedra pa ovire premagujejo tudi s
tuneliranjem, je potrebna temperatura lahko nekaj nizja, morda
okrog 107 kelvinov.

Nasli smo teoreti¢no pot za izdelavo vodikove bombe: to je zmes
devterija in tricija, ki jo hitro in moc¢no segrejemo, da eksplodira.
Za segretje uporabimo kar uranovo bombo. Devterija je v oceanih
vecC kot dovolj. Tricija pa v naravi ni (je radioaktiven z razplovno
dobo 12 let). Vendar ga - na nesreco - lahko delamo z reakcijo
Li® + n - He* + H3. Ker se pri eksploziji uranove bombe sprosc¢ajo
nevtroni, zaloge tricija zato ne potrebujemo, ampak uporabimo
kar litij, iz katerega tricij spotoma nastane. Zal se recept pokaze
za uspesnega in ¢lovestvo pridobi Se eno smrtonosno orozje.
Vodikova bomba je kar stokrat mocnejsSa od uranove.
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Nadzorovano zlivanje jeder pa nam zaenkrat ne uspeva. Glavni
oviri sta dve: segrevanje goriva in njegova hramba. V posStev
pride predvsem hramba v magnetnem polju. Tukaj se pokaze,
kako velika je pravzaprav razlika med poznavanjem principa,
kako naj kaj naredimo, in razvojem tehnologije, ki naj ta princip
izkoriSca. Brez dvoma nam bo nekoc¢ uspelo. Tedaj bomo dobili
neomejen in Cist vir jedrske energije za vse svoje potrebe.
Takoreko¢ bomo kurili vodo in pri tem ne bomo proizvajali
nobenih radioaktivnih ostankov.

44.15 Kozmicni zarki

Ionizacijski Stevec kaze redke sunke - nekaj na minuto - tudi
tedaj, ko v blizini ni nobenega radioaktivnega izvora. Recemo, da
zaznava sevanje ozadja. Od kod prihaja to sevanje? Domnevamo,
da iz radioaktivnih snovi v Zemlji in - kot primesi - v ozracju. To
pomeni, da bi z viSino moralo sevanje zaradi absorpcije in
redcCenja pojemati. Meritve na gorah in v balonih pa presenetljivo
pokazejo, da sevanje z viSino celo narasc¢a. Na desetih kilometrih
je ionizacija v merilnikih desetkrat vecje kot na morski gladini.
Sklepamo, da prihaja dodatno sevanje iz izvorov izven Zemlje. To
sevanje poimenujemo kozmicni Zarki.

Kozmicni zarki so sicer redki, a izredno prodorni. Balonske
meritve na viSini 30 km kazejo, da so tam zarki sestavljeni
vecCinoma iz protonov in delcev alfa. Njihove energije imajo
tipicno vrednost 1-10 GeV. To je primarno kozmi¢no sevanje. Kje
nastaja in kaj ga tako pospesi, bo treba Se raziskati. Primarno
sevanje pri preletu skozi ozracje spotoma ionizira atome in
razbija njihova jedra. Do tal tako prispe pisana mesSanica
protonov, nevtronov, elektronov, fotonov gama in Se ¢esa. To je
sekundarno kozmicno sevanje. Njegova intenzivnost, merjena v
talni opazovalnici, je enaka podnevi in ponoci. Neodvisna je tudi
od letnega Casa. Kozmic¢ni zarki prihajajo torej izotropno iz
daljnih globin vesolja. Je pa intenzivnost sekundarnega sevanja
odvisna od zemljepisne Sirine opazovalnice: na polu je za 10 %
vecja kot na ekvatorju. Zemlja je pa¢ magnet in s svojim
magnetnim poljem usmerja poti nabitih delcev, predvsem lahkih
elektronov, proti poloma.

Nevtroni v sekundarnem kozmi¢nem sevanju trkajo ob dusikova
jedra in jih spreminjajo v radioaktivna ogljikova jedra:

sN14 + n— ;N5 - §C!* + p. Nastali ogljik se veZe s kisikom v
ogljikov dioksid. V njem beta-razpada z razpadnim ¢asom 5700
let:

¢Cl4= N4+e+v. (44.24)

Ob vsakem c¢asu je v ozracju precej izotopa C!2 in nekaj malega
izotopa C!4, oboje v molekulah ogljikovega dioksida. Rastline
"jedo" ogljikov dioksid in zivali jedo rastline. Tkiva zivih bitij zato



Odkritje pozitrona

vsebujejo oba ogljikova izotopa v prav takSnem razmerju kot v
ozracju. Vnos ogljikovega dioksida preneha, ko bitje umre in
postane fosil. Izotop C!? v fosilu ostaja, izotop C'4 pa radioaktivno
razpada. Relativna koncentracija C'4/C'? v fosilu se zato
eksponentno zmanjSuje s ¢casom. Z njenim merjenjem lahko
doloc¢imo starost fosila, ¢e seveda poznamo koncentracijo v
ozradGju, ko je bil fosil Se ziv. V prvem priblizku privzamemo, da je
ta koncentracija kar enaka danasnji, to je, da sta sestava ozracja
in obsevanje s kozmic¢ni zarki konstantna. Merimo z masnim
spektrometrom. Alternativno lahko merimo aktivnost C!* v fosilu
(4) in v "tedanjem" ozracju (Ag). Velja A =Agyexp —At, iz Cesar
sledi t=(1/A)In(Ay/A). Z opisanim organskim datiranjem fosilov
doloc¢imo starost lesenih izdelkov ali kosti nasih prednikov do
kakih 30 tisoc¢ let nazaj.

Pri raziskovanju absorpcije kozmicnih delcev v svinc¢eni ploSci
znotraj meglene komore naletimo na presenecenje: zaznamo sled
delca z enako maso kot pri elektronu, vendar z nasprotno
ukrivljenim tirom, torej s pozitivhim nabojem. Kaze, da smo
odkrili pozitron, ki smo ga - ne prav prepricljivo - napovedali iz
delovanja Sibke sile (ANDERSON).

Slika 44.22 Pozitron (pozitivni elektron)
pri preletu skozi svineno plosco. Pred
plosco je hitrejsi (63 MeV) in za njo
pocasnejsi (23 MeV), kar se odraza v vedji
ukrivljenosti tira. S tem je dolo¢ena smer
gibanja in zato tudi predznak naboja.
(Anderson, 1933)

Nadaljnja opazovanja pokaZzejo, da zaznani pozitron nemudoma
naleti na kak okoli$nji elektron (saj se medsebojno privlacita), pri
cemer oba izgineta, rodita pa se dva fotona gama. Recemo, da sta
se elektron in pozitron anihilirala. Pri tem se energija ohranja.
Kineti¢na in masna energija obeh snovnih delcev se pretvorita v
energijo nastalih fotonow.

Morda je mozen tudi obratni pojav, da se iz fotona gama rodi par
elektron-pozitron? Seveda mora imeti foton gama dovolj energije,
vsaj dvakrat ve¢ od masne energije elektrona, torej vsaj 1 MeV.
Opazovanja v meglicni celici to domnevo potrdijo: energicni foton
gama ob vpadu na atomsko jedro vcasih res rodi elektronski
dvojcek. Brez prisotnosti jedra pri tem ne gre, saj se drugace ne
moreta ohraniti gibalna koli¢ina in energija.
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Delci in antidelci

Slika 44.23 Nastanek para elektron - pozitron ob
vpadu fotona gama z energijo 5,7 MeV na svin¢eno
plosco z debelino 0,5mm. (Anon)

Elektron in pozitron sta v vseh pogledih enaka, razlikujeta se le v
predznaku naboja. Rekli bomo, da je pozitron antidelec elektrona.
Z enako pravico lahko tudi recemo, da je elektron antidelec
pozitrona. Seveda se takoj pojavi drzna misel: Ce Ze ima elektron
svoj antidelec, zakaj ga ne bi imel tudi proton? Ali torej v naravi
res obstajajo antiprotoni, to je protoni z negativnim nabojem? Z
obstoje¢imi pripomocki jih v kozmic¢nih zarkih ne uspemo zaznati.
Si pa dovolimo divjo spekulacijo: atomi na Zemlji in v njeni okolici
so sestavljeni iz protonov, elektronov in nevtronov. Morda pa se v
kaksnem zakotnem koticku vesolja potikajo antiatomi, sestavljeni
iz antiprotonov, antielektronov in antinevtronov? TakSna antisnov
bi sevala enako kot obicajna snov. Ob stiku pa bi se antisnov in
snov anihilirali. Morda pa kaj takega le obstaja? []
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45 Zvezde in vesolje

O zvezdah - Spektralni razredi - Zvezdni diagram - Rojevanje
zvezd - Zrela doba zvezd - Staranje in smrt zvezd - Galaksija in
galaksije - Sirjenje vesolja - Siritveni model - Napovedi modela -
Zgodnje vesolje

45.1 O zvezdah

Pri raziskovanju ¢edalje manjSih sestavnih delcev snovi smo
dospeli do atomskih jeder in do njihovih nukleonov. Cas je, da
raziskave usmerimo v nasprotno smer, proti ¢edalje vecjim
zgradbam - zvezdam in njihovim zdruzbam. Bistveno vlogo pri
tem imajo opazovalni instrumenti, daljnogledi. Za bliZznja telesa
zadostujejo "navadni” daljnogledi, za oddaljena pa potrebujemo
ogromne priprave.

' Slika 45.1 Daljnogled na Mt. Palomariju.
Njegovo zrcalo ima premer 5 metrov.
Daljnogled je tako velik, da lahko sedi
opazovalec kar v njem. (Palomar
Observatory)

Lastnosti Sonca O zvezdah marsikaj ze vemo. Najbolj seveda poznamo najblizjo
zvezdo, Sonce. Izmerili smo Ze njegovo oddaljenost d, od Zemlje
[27.2], polmer Ry [27.2], maso Mg [19.11], izsev Py [27.7] in
povrsinsko temperaturo T [27.9]:

do=150-10%km (45.1)
Ro=700-103km

Mo =2,0-103kg

Po=3,8-1026W

To=5800K.

Z maso in polmerom je dolo¢ena povprecna gostota Sonca

Po =Mo/(411/3)R3 = 1,4 g/cm3. To je priblizno gostota tekocCe vode
na Zemlji. V srediScu je gostota seveda vecja in na povrsini
manjSa. Z radiometri¢nim datiranjem meteoritov [44.11] pa je
dolocena Se priblizna starost Osoncja in s tem Sonca
to=4,5-10%]et.
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Slika 45.2 Sonce. Fotografija z rumenim
filtrom. Zrnata povrsina izdaja konvektivne
celice. Na robu so vidni plinasti izbruhi -
protuberance. (NASA)

Merjenje zvezd  Izmed vse mnoZice zvezd, ki jih vidimo z daljnogledi, jih je samo
neznaten deleZ takih, ki so dovolj blizu, da kazejo letno paralakso.
Daljnogledi lahko izmerijo paralakse, ki so vecje od 0,17, kar
pomeni oddaljenosti do 10 pc oziroma do 30 svetlobnih let. Takih
je nekaj sto zvezd. Tudi tem zvezdam lahko izmerimo skoraj vse
lastnosti, ki smo jih izmerili Soncu. Razdaljo, kot receno,
doloc¢imo s paralakso [27.12]. Temperaturo dolo¢imo iz valovne
dolzine spektrovega maksimuma [27.8] ali iz razlike magnitud
skozi moder in rumen filter. Izsev dolo¢imo iz bolometri¢ne
magnitude in oddaljenosti [27.13], radij pa iz izseva in
temperature [27.13]. NajteZje je dolocCiti maso: zvezda mora biti
opti¢no razlocljivo dvozvezdje in izmeriti mu moramo obhodni ¢as
[34.13]. Starosti pa zaenkrat ne znamo ugotoviti.

Kot vneti raziskovalci se lotimo teZzaskega dela in z veliko
potrpezljivostjo sestavimo katalog zvezd z nastetimi izmerki.
Poleg tega za vsako obravnavano zvezdo posnamemo Se njen
spekter. Vse to je nujna osnova za nadaljnje delo.

45.2 Spektralni razredi

Klasifikacija spektrov  Najprej se lotimo posnetih spektrov. Opazimo, da jih lahko
razvrstimo v taksSno zaporedje, da se istoleZzne spektralne Crte
gladko spreminjajo od spektra do spektra. Celotno zaporedje zato
razdelimo v priro¢no sStevilo spektralnih razredov in za vsakega
izberemo reprezentativni spekter.

' Mmoo w o Slika 45.3 Spektralni razredi zvezd od O do
l M. Vsakemu razredu je dodan Se podrazred
2 | kot Stevilka. Sonce je zvezda tipa G. (Harvard
,'f; I l F Center for Astrophysics)
|
|
|

Razrede poimenujemo s ¢rkami O, B, A, F, G, K in M. Cudni vrstni
red ¢rk odraza dejstvo, da smo prvo zaporedje, ki smo ga uspeli
sestaviti, poimenovali po abecednem redu; potem pa smo spektre
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bolje prerazporedili, pri cemer smo prvotne ¢rke ohranili.
Kakorkoli Ze: z uvedbo poimenovanih razredov si moc¢no olajSamo
nadaljnje delo. Zapomnimo pa si jih kot stavek "Oh, Be A Fine
Girl, Kiss Me!".

Temperatura in K vsakemu spektru pripiSemo Se njegovo temperaturo. Vidimo, da
spektri  t5 praviloma naras¢a od M (3000K) proti O (30 000K). Ce kje ni
tako, zaporedje spektrov ustrezno spremenimo. Dokonc¢ana
klasifikacija zvezd po spektrih je torej ekvivalentna klasifikaciji po
narascajocCi oziroma padajocCi temperaturi. Od sedaj naprej bomo
zato obravnavali oznake od O do M kar kot okrajSave za ustrezne
temperature.

Tabela 45.1 Razredi in povrSinska temperatura zvezd.

Tip  Te(103 K) barva
0 > 30 modra
B 10 — 30

A 7,5 - 10 bela
F 6 —7,5

G 5-6 rumena
K 3,5-5 oranzna
M < 3,5 rdeca

45.3 Zvezdni diagram

Temperatura in izsev Ko pregledujemo izseve zvezd, opazimo, da imajo zvezde z viSjo
vecjo absolutno magnitudo (HERTZSPRUNG). Zato nariSemo
ustrezen zvezdni diagram: porazdelitev zvezd po temperaturi in
absolutni magnitudi (RUSSELL).

Slika 45.4 Zvezdni diagram bliznjih zvezd. Na

o | f Tt abscisi so spektralni razredi (torej temperature)
in na ordinati absolutne magnitude (torej izsevi).
°1 Temperatura naras¢a od desne proti levi, izsev
E : narasca od spodaj navzgor. Obe skali sta

N 'l logaritemski. Zvezde na diagonali tvorijo glavno
; vejo diagrama. (Russell, 1914)

Zvezdni diagram takoj pokaze, da zvezde nimajo vseh mogocih
kombinacij temperature in izseva, ampak da tvorijo veje in otoke.
Velika vecina zvezd, preko 80 %, tvori glavno vejo: pri njih obstaja
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tesna povezava med temperaturo in izsevom. Cim vi$ja je
temperatura zvezde, tem vecji je njen izsev. Priblizno velja

P o T8, (45.2)
Ker P =4nR?- oTx* « R?Tg4, sledi z izenacitvijo obeh izsevov
R o Tg2. (45.3)

Bolj vroce zvezde torej nimajo samo vecjega izseva, ampak tudi
veclji polmer. Na spodnjem delu veje so torej hladne, rdece in
majhne zvezde z majhnim izsevom. To so rdece pritlikavke.
Njihova temperatura znasa 1/2 Sonceve in radij (1/2)?>=1/4
Soncevega. Na vrhu veje so vro¢e, modre in velike zvezde z
velikim izsevom. To so modre orjakinje. Njihova temperatura je
5-kratnik Sonceve in njihov radij 52 = 25-kratnik Soncevega.
Sonce je nekje na sredini. Poleg glavne veje obstajata Se dva
otoka. Desno zgoraj so hladne rdece zvezde z velikim izsevom in
velikim polmerom ~ 100 R. To so rdece orjakinje. Levo spodaj pa
so vroce bele zvezde z majhnim izsevom in majhnim polmerom
~ 1/100 R,; to so bele pritlikavke.

Izsev zvezd je torej povezan z njihovo temperaturo. Zanimivo bi
bilo pogledati, ali je morda izsev povezan tudi z maso zvezd. Za
malostevilne izmerjene mase zato nariSemo ustrezen diagram.

Slika 45.5 Odvisnost izseva L zvezde od njene mase M.
Krizci oznacujejo meritve v opti¢no razlocljivih
dvozvezdjih. Druge oznake pomenijo spektroskopsko in
Se kako drugace razlocljiva dvozvezdja. (Anon)

Diagram pokaze naslednjo priblizno povezavo:

PoM?, (45.4)
Izenacitev (45.4) in (45.2) pove

Tg « M2 (45.5)
in (45.5) z upostevanjem (45.3) Se

RoaM. (45.6)

Povprec¢na gostota zvezde (p) = M/(411/3)R3 ~ M/R3 pa z
upostevanjem (45.6) pove
1 (45.7)
(p) Y

Kaze, da so izsev, temperatura, radij in gostota zvezde doloceni
kar z enim samim parametrom - z maso zvezde. Glavna veja na
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zvezde
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paralaksa

Prileganje glavne veje

zvezdnem diagramu je torej masna veja. Na njej Zivijo zvezde
razlicnih mas. Desno spodaj so lahke in goste, levo zgoraj tezke in
redke zvezde. Mase segajo od 0,1 do 100 Soncevih mas. Zvezda z
desetkratno maso Sonca ima, v grobem, 10*-kratni izsev,

1012 = 3-kratno temperaturo povrsja, 10-kratni radij in
1/10%2=0,01-kratno gostoto. Tak$na je, na primer, modra orjakinja
Spika.

Zvezda nenehno seva energijo in ko bo iz¢rpale svoj energijski
vir - kakrSenkoli pac Ze je - bo ugasnila. Prav tako ni od nekdaj
sevala. Kar nam kaZe sevalni diagram, je torej trenutni ¢asovni
pogled na mnozico sevajocih zvezd razli¢nih starosti. Kakor
pogled na ljudi pokaze otroke, odrasle in starcke, tako pogled na
zvezde pokaze mlade, zrele in stare zvezde. Kjer je v sevalnem
diagramu najvec¢ zvezd, tam prezivljajo najvec casa. Populacija
zvezd torej - v povprecju - prezivi najvec ¢asa na glavni veji.
Spodnji del veje je gostejSi: zrela doba lahkih zvezd je dolga.
Zgornji del je redek: zrela doba tezkih zvezd je kratka. Kako
poteka zivljenje zvezde pa je vprasanje, ki se mu hocemo posvetiti
v nadaljevanju.

Zvezdni diagram omogoca, da dolo¢imo oddaljenost vseh onih
zvezd, ki so izven dosega paralakticnih meritev. Taki zvezdi
najprej izmerimo magnitudo. Potem ji posnamemo spekter ali ji
izmerimo temperaturo; s tem jo umestimo v enega izmed
spektralnih razredov. S podrobnim pogledom na spekter je
mogoce izkljuciti zvezdo, ki lezi izven glavne veje. Nato
predpostavimo, da lezi zvezda na glavni veji in iz zvezdnega
diagrama odcitamo, kakSen je njen izsev. Iz izseva in magnitude
pa izracunamo oddaljenost. Napaka pri dolocitvi izseva je okrog
AM = + 1, zato je oddaljenost nenatanc¢na za faktor 1025 ~ 2. To
sicer ni bogve kako dobro, a je neprimerno bolje kot nic.

Slika 45.6 Krogelna kopica M13. Spektroskopska
paralaksa njenih zvezd razodeva, da je kopica od nas
oddaljena 25 tiso¢ svetlobnih let. (Palomar
Observatory)

S spektroskopsko paralakso ne dolocamo le oddaljenosti
posamicnih zvezd, ampak se lotimo tudi zvezdnih kopic. Za vsako
izbrano zvezdo v kopici izmerimo magnitudo in temperaturo.
Tako dobimo zvezdni diagram za zvezde v kopici. Ordinatna os
tega diagrama je obelezena v navideznih magnitudah. Ker pa so
vse zvezde v kopici priblizno enako oddaljene od nas, se
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Kriticna masa

navidezne magnitude razlikujejo od absolutnih zgolj za aditivno
konstanto. Zvezdni diagram kopice zato polozimo na zvezdni
diagram za bliznje zvezde (z absolutnimi magnitudami po
ordinati). Premikamo ga vzdolz ordinatne osi, da se glavni veji
pokrijeta. S tem je dolocCena aditivna konstanta med obema
skalama in z njo oddaljenost kopice. Tako, na primer, ugotovimo,
da je znamenita kopica M13 oddaljena 25 - 103 svetlobnih let.

45.4 Rojevanje zvezd

SevajocCa zvezda je vroca plinasta krogla, ki jo lastna gravitacija
stiska navznoter in jo segreva, sesedanje pa ji preprecuje
gradient pritiska navzven. Pritisk povzrocajo vrvec¢i masni delci
(molekule, atomi, ioni, gola jedra, elektroni) in fotoni. Naravna je
misel, da zvezda nastane iz redkega, ogromnega in hladnega
oblaka plina (od koderkoli se je pac vzel) pod vplivom lastne
gravitacije.

Zamislimo si velik plinast oblak iz vodikovih molekul, atomov ali
ionov in elektronov. Oblak naj bo homogen in kroglast z radijem
R, maso M in gostoto p. Poglejmo, kaj se dogaja z masno lupino
dm pri radiju ry, ko na zacetku miruje. Ta lupina objema notranjo
maso my in pada s pospeskom g = kmy/r?. Notranja masa ostaja
namrec znotraj padajoce lupine, saj tudi sama pada. Kineti¢na
energija lupine se pri padanju veca, potencialna pa zmanjsuje.
Ohranitev energije pove 1/, (dr/dt)2 — k mo/r= —K my/ro. Cas
padanja lupine do srediSca znasa te.n = r,J° (dt/dr) dr. Odvod dt/dr
vzamemo iz ohranitve energije in po integraciji dobimo

tean = (12 1p3/8Kmp) /2. Razmerje my/ry3 izrazimo z zaCetno gostoto
ter dobimo cas skrcitve

30 iz, (45.8)
32kp

tran = (

V tem Casu bi se (katerakoli!) oblac¢na lupina popolnoma skr¢ila,
Ce se kineti¢na energija lupin ne bi pretvarjala v termi¢no gibanje
njihovih delcev. To pa se seveda pri kré¢enju prej ali slej zacne
dogajati. Tedaj se pojavi notranji pritisk, ki gravitacijsko stiskanje
upocasnjuje.

Zanimivo je, da Cas skrc¢itve ni odvisen od velikosti oblaka in od
mase plinskih delcev, ampak samo od zacetne gostote. Velik oblak
se skrci enako hitro kot majhen oblak, e le imata enako gostoto.
Brez notranjega pritiska bi se Sonce z gostoto 1 g/cm?3 skréilo v
1/2 ure! Oblak z maso Sonca in polmerom 1 svetlobno leto
(kolikor je tipi¢na razdalja med zvezdami v blizini Sonca) pa bi se
skrcil v nekaj milijonih let.

Plinski oblak se zacne kr¢iti le, ¢e privlacnih gravitacijskih sil ne
prevpijejo odbojne sile zaradi notranjega pritiska. Oblak je
gravitacijsko vezan, Ce je njegova gravitacijska potencialna



Hidrostati¢no
ravnovesje

energija absolutno vecja kot notranja kineti¢na energija delcev.
Masa oblaka znotraj radija r znaSa

r (45.9)
M,= [ p4nridr.
0

Potencialna energija oblaka je vsota potencialnih energij vseh
lupin dm = p4nr?dr v polju notranje mase:
KM, KM? (45.10)

Eg=-— dm~—- —.
G r R

Notranja energija je vsota kineti¢nih energij vseh delcev
N=M/m:

3M (45.11)

Iz pogoja |Eg| = Et sledi (JEANS)
3kT (45.12)
Mj=——R.
2Km
Oblak radija R in temperature T se zac¢ne krciti, Ce njegova masa
presega mejno vrednost M;. Namesto te kriticne mase lahko
vpeljemo kriti¢no gostoto krcenja p; ~ Mj/R3, kar vodi do pogoja

L T (45.13)
Pr= e oxm

Oblak z maso M se zacne krciti, Ce je njegova gostota vecja od
kriticne pj. Za krCenje potrebno maso M ima lahko redek, a dovolj
velik oblak oziroma majhen, a dovolj gost oblak. Velik oblak se
zacne krciti ze pri majhni gostoti. Ko se dovolj skrci, mu pa
gostota toliko naraste, da se lahko za¢nejo neodvisno krciti
posamicni deli oblaka. Zacetni oblak se razcepi v mnogo delov -
protozvezd, ki se nato zgosScujejo naprej.

Protozvezda se praviloma krc¢i dovolj pocasi, da jo lahko v vsakem
trenutku obravnavamo, kot da je v hidrostaticnem ravnovesju. Na
razdalji r od srediSc¢a protozvezde si mislimo radialni snovni
cilinder s plosc¢ino S, viSino dr in maso dm = pSdr. Na cilinder
deluje navzdol teza kdmM,/r%. Ce obstaja razlika pritiskov dp na
vrhu in dnu cilindra, deluje nanj sila Sdp. V ravnovesju sta sili
nasprotno enaki, zato dobimo

@_ KM, p (45.14)
dr r2

To je hidrostaticna enacba za zvezdo. Negativni predznak pove,
da pritisk narasca z globino. Enacba omogoca, da ocenimo
njegovo velikost p. v srediS¢u protozvezde. Postavimo

dp/dr~ pJ/R, M,/ r* ~ M/R? in p ~ M/R3 ter dobimo
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Segrevanje pri
stiskanju

Pogoj za prizig

Soncu

KM? (45.15)
R%

Pc~

Pri kréenju se protozvezda segreva. Plinska enacba, zapisana za
sredisce, pove p. = (p./m)kT.. Izenacimo jo z enacbo (45.15). Radij
R izrazimo preko aproksimacije p. ~ (p) ~ M/R3 in dobimo

kT, =kmM?3(p)1/3 (45.16)

Ko se protozvezda mase M stiska, se ji gostota {p) vecCa in s tem
se ji viSa tudi temperatura. Molekule disociirajo, atomi se
ionizirajo in nastala meSanica zacne Cedalje izdatneje sevati
fotone. Stiskanje se lahko koncCa na dva nacina. Prvic:
temperatura dovolj naraste, da se zacno vodikova jedra -

protoni - zlivati v teZja jedra in pri tem sproscati energijo. To se
ocitno zgodi tedaj, Ce je masa M dovolj velika. Zvezda je rojena.
In drugic: Ce je masa premajhna, pa se - preden temperatura
dovolj naraste - gostota Ze toliko poveca, da postanejo elektroni
degenerirani. Plin degeneriranih elektronov pa se, kot vemo
[43.5], pod obremenitvijo ne segreva, ampak zgolj upira s tlakom
p « p°3. Protozvezda tako izgubi vir toplote, se s sevanjem nadalje
ohlaja in cedalje bolj temni. Postati zvezda ji ni uspelo.

Koliksna je kriti¢na vZigna masa zvezde? — Elektron s kineticno
energijo K = kT ima gibalno koli¢ino G = (m¢kT)'/? in valovno
dolzino A = h/G = h/(m.kT)'2. Elektronski plin postane
degeneriran, ko razdalja med elektroni postane primerljiva z
njihovo valovno dolzino. Kriti¢na gostota torej znasa (p) = m/A3.
To gostoto vstavimo v (45.16) in po preurejanju dobimo

K2m®Bm, (45.17)
2 e a3
KT, = 3 M43,

Enacba podaja temperaturo, ki jo doseze protozvezda z maso M,
Ce se prej ne prizgejo fuzijske reakcije. Kakor smo svoj Cas
ocenili, se te prizgejo pri T~ 107K [44.14]. Za to je potrebna vsaj
masa M ~ 0,1 M,. Nasli smo razlago, zakaj ni lazjih zvezd.

45.5 Zrela doba zvezd

Zivljenje zvezd, ki v sredi$¢u kurijo vodik, na primer sedanjega
Sonca, tudi obravnavamo kot hidrostaticno v vsakem trenutku.

Iz enacbe hidrostatike (45.15) ocenimo pritisk v sredini zvezde.
Za Sonce dobimo p; ~ KMy%/Ro* ~ 1010%bar.

Pritisk v sredisc¢u zvezde je vsota pritiska masnih delcev in
fotonov: p; = Pgas + Praa, torej KM?/R* = nkT. + 40/3c- T .
Privzemimo, da je masni plin popolnoma ioniziran vodik, to je
plazma iz protonov in elektronov. Enacba stanja za idealen
dvokomponentni plin je pgas = nkT. = p./m - kT, pri Cemer

m = (nymy + npmy)/n. Za ionizirani vodik je ne=n,=n/2 in

me < My, zato m=my/2. Upostevamo $e p. ~ M/R3 in izracunamo
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za Sonce T, ~ 107 K. Pri tej temperaturi zna$a razmerje pritiskov
fotonov in masnih delcev praq/ Pgas ~ 1073. Pritisk fotonov je zato
zanemarljiv. Ves protiupor gravitacijskemu pritisku nudijo masni
delci. Temperaturi 107 K ustreza energija 1keV. Elektroni
postanejo znatno relativisticni Sele pri 100 keV, protoni pa Sele
pri 103-krat vi$ji energiji. Plazma v Soncu je torej nerelativisti¢na.

Ocenili smo temperaturo in pritisk v Soncu. Kaksne pa so te
vrednosti v drugih zvezdah?

Ker je p. x M?/R* = MM /R3R = M(p)/R in hkrati p; « (p)TL,
izenacenje obeh izrazov pove

M (45.18)
T, E .

Desetkrat tezja zvezda enakega radija bi morala imeti desetkrat
vecjo srediS¢no temperaturo. Ker pa velja R « M, je desetkrat
tezja zvezda ponavadi tudi desetkrat vecja, zato ima priblizno
enako srediS¢no temperaturo.

Ostaneta Se deleZa plinskega im masnega pritiska. V razmerje
Prad/Pgas * Tc(p) T & Tc3/(M/R3) vstavimo (45.18), pa dobimo

Pad 1 1o (45.19)

Pgas
Cim bolj masivna je zvezda, tem pomembnejsi je v njej tlak
fotonov. Pri 100-krat tezji zvezdi od Sonca je tlak fotonov Ze
10-krat vecji od tlaka masnih delcev.

Zvezda ima gravitacijsko energijo Eg = — [ (kM,/r)p4nur?dr. V
izrazu kM,p/r prepoznamo gradient hidrostati¢nega pritiska
rdp/dr, zato Eg = [ r(dp/dr) 4ur?dr. Integral preoblikujemo per
partes z uvedbo u = 4nr? in dv = (dp/dr)dr in dobimo

Eg=—12n [ pradr. (45.20)

Gravitacijski pritisk p je uravnovesen s pritiskom masnega in
fotonskega plina, tadva pa sta povezana z gostoto energije plina.
Za masni plin znasa gostota energije w = (3/2)p in notranja
energija Et= [ (3/2)p4nr?dr. Primerjava s (45.20) takoj pove

Eg (45.21)

Ep=——2
T 2

Za fotonski plin pa velja w=3p in
ET=_EG- (4522)

Celotna energija zvezde znasa E,; = ET+ Eg in njena vezavna
energija je —E.. Za masni plin je torej vezavna energija enaka
termicni Et. Za fotonski plin pa je enaka 0. To pomeni, da je taka
zvezda na meji med vezano in nevezano, z drugo besedo, je
hidrostati¢no nestabilna. Kakrsnakoli majhna sprememba v
zvezdi povzroci, da zvezda razpade. Tako smo razlozili, zakaj v
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naravi ni zvezd z masami nad 100 Sonceve: zato, ker v njih
prevladuje fotonski tlak in so neobstojne.

Ko se zvezda stisne iz neskoncnosti na R, pridobi toplotno
energijo Er~ kM?/2R. Z izsevom P se te energije znebi v ¢asu

t ~ E1/P. Za Sonce to znese 107 let. S sedanjim konstantnim
izsevom Sonce ne bi moglo svetiti ve¢ kot toliko ¢asa. Vemo pa,
da je Sonce staro okrog 4,5- 109 let [44.11]. Vemo tudi, da se v
zadnji milijardi let njegov izsev ni bistveno spreminjal. To nam
povedo radioaktivno datirane kamnine s fosili alg, podobnih
danasnjim, ki uspevajo le v ozkem temperaturnem obmodju.
Gravitacijski rezervoar energije torej ne zadoSca za sevanje
zvezd. Potreben je jedrski vir energije.

Da lahko v zvezdi stecCejo jedrske reakcije, mora biti njena
sredi$Cna temperatura dovolj visoka. Ocenjena temperatura 107 K
za srediSce Sonca je Ze kar pravega reda velikosti. Pri njej se
protoni Ze lahko zlivajo v tezja jedra in spro$cajo energijo ter s
tem ohranjajo zvezdo vroco in sevajocCo. Veriga jedrskih reakcij se
mora zaceti s protoni (ker smo privzeli, da drugih jeder ni na
voljo) in se koncati vsaj z devterijevimi ali helijevimi jedri. O¢itno
se mora pri tem nekaj protonov spremeniti v nevtrone.

Ustrezna se zdi naslednja veriga reakcij: — Ob trku dveh
protonov se eden zaradi Sibke sile spremeni v nevtron, pozitron
in nevtrino (potrebnih je vsaj 1.8 MeV energije). Nastane jedro
devterija (sprosti se 2.2 MeV energije). Pozitron se takoj anihilira
z najblizjim elektronom. — Ob trku devterija in protona nastane
jedro helija ,He3. — Dve jedri ,He? se zlijeta v ;He?, pri cemer
odletita pro¢ dva protona.

nastaneta dve helijevi jedri. Nastaneta tudi dva
pozitrona, ki se takoj anihilirata z dvema bliznima
elektronoma; dva nevtrina, ki pobegneta; in dva fotona
gama. (Anon)

‘Hﬂ?‘H ‘Hi?‘H Slika 45.7 Zlivanje vodika v helij. 1z &tirih protonov
Q “{\v Q/‘){ v

Konc¢ni rezultat je zlitje Stirih protonov v helijevo jedro, pri Cemer
odletita dva pozitrona in dva nevtrina:

4p - He* +2e* +2v (45.23)

Masni primanjkljaj helijevega jedra pove, da se sprosti
4-7=28MeV energije. Anihilacija prinese dodatna
4-0,5=2MeV, skupaj 30 MeV. Majhen delez tega odnesejo
nevtrini. To je protonski fuzijski cikel. Privzeli bomo, da zares
poteka v sredicah zvezd, kjer je temperatura dovolj visoka.


pict3c/star-fusion.gif
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Prenos energije

Ko zagori vodik v zvezdi, postane ta fuzijski reaktor. Kaj ji
preprecuje, da ne eksplodira kot vodikova bomba? Naj se hitrost
fuzije poveca. Potem se zgodi tole: temperatura se poveca; pritisk
se poveca; sredica se razpne; gostota in temperatura se
zmanj$ata; hitrost fuzije se zmanjsa. Ce se hitrost fuzije zmanjsa,
pa velja nasprotno. Obstaja torej negativna povratna zveza, ki
skrbi za to, da ne nastane eksplozija.

Za koliko ¢asa pa zadosca vodik kot gorivo? Energija, ki jo izseva
zvezda v zivljenju, je enaka vsoti energij, ki jo izsevajo vsi njeni
protoni pri zlitju v tezka jedra: Pt = (M/my) - (8 MeV). Za Sonce
sledi t = 10! let. Goriva za dosedanje Zivljenje Sonca (101 let) in
za njegovo prihodnost je torej ve¢ kot dovolj. Ker Pt « M in P « M*
(45.3), velja

1 (45.24)
o — .
M3
Tezje zvezde Zivijo manj casa. Zvezda z maso 10 Soncevih zivi
103-krat manj ¢asa, to je, okoli 100 milijonov let. Odkar obstaja
Sonce, se je lahko rodilo in umrlo Ze mnogo generacij tezjih

zvezd.

Energija, ki se proizvaja v sredici zvezde, teCe navzven na dva
glavna nac¢ina. — Prvi nacin temelji na slu¢ajnem termi¢nem
gibanju posamic¢nih delcev. Delci se gibljejo, trkajo in prenasajo
energijo iz vro¢ih v hladne plasti. Ce so delci fotoni, govorimo o
difuziji sevanja: sredica seva fotone gama, ki pa med potjo do
povrsine izgubljajo energijo in zvezdo zapustijo vecinoma kot
vidni fotoni. Ce so delci elektroni in ioni, pa govorimo o difuziji
toplote oziroma o prevajanju toplote. — Drugi nacin temelji na
kolektivnem gibanju masnih delcev: mehurji vrocega plina se
dvigajo, mehurji hladnega plina pa spuscajo. Govorimo o
konvekciji toplote. Konvekcija se pri¢ne, Ce je temperaturni
gradient dovolj velik. Stvar je podobna kot pri prenosu toplote v
zemeljskem ozracju.

Slika 45.8 Prerez skozi Sonce. V sredini gori
vodik v helij. Nastala toplota se Siri navzven z
difuzijo svetlobe in s konvekcijo. Relativhe
velikosti sredice, prevodne plasti in
konvektivne plasti so ilustrativne. (Australia
Telescope National Facility)

Za stacionarno stanje pove energijski zakon tole: v lupino z
radijem r in debelino dr prihaja energijski tok P(r), iz nje pa
izhaja tok P(r+ dr), povecan za energijo, ki se v ¢asovni enoti
proizvede v lupini. Velja torej
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Rdece orjakinje

dP 45.25
— =¢gpdnr?, ( )
dr

pri Cemer je € fuzijska enegija, ki se proizvaja na masno in
casovno enoto. Kolik$na je ta energija, zlasti kako je odvisna od
temperature, gostote in sestave zvezdne snovi, to pa je vprasanje,
ki se ga ne bomo lotili.

Stacionarni energijski tok implicira stacionarni temperaturni
gradient. Difuzija svetlobe in toplote se pokorava difuzijski enacbi
j=—AdT/dr, pri cemer je A povprecni difuzijski koeficient
elektronov, ionov in fotonov. Upos$tevamo P = 4mr?-j in dobimo
dT P (45.26)
dr  4mr?a’

To je enacba za difuzijski prenos energije. Koliko delci - elektroni,
ioni ali fotoni - prispevajo k difuziji, to je, kako je difuzijski
koeficient odvisen od temperature, gostote in sestave zvezdne
snovi, pa je prav tako vprasanje, ki se ga ne bomo lotili.

Ostane Se konvekcija. Pri radiju r vladajo temperatura T, pritisk p
in gostota p, pri radiju r+drpa T+ AT, p+ Ap in p+ Ap. Zaradi

p = pT velja Ap = Ap/p — AT/T. Poglejmo mehur plina pri r. Njegova
temperatura, pritisk in gostota so enaki vrednostim v okolici. Naj
se mehur adiabatno dvigne za dr. Na novi visini dobi pritisk
p+dp=p+ Ap (pritisk se namrec izenaci z okoliSnjim),
temperaturo T+ dT in gostoto p + dp. Pri adiabatni spremembi
velja pxpY, y=cp/cy= (1 + 2/f), to je dp/p = ydp/p. Ce postane
dvignjeni mehur redkejsi od okolice, bo zacutil neto vzgon iz se
bo zacel dvigati. Pogoj za konvekcijo je torej dp < Ap oziroma
(1/y)dp/p < Ap/p — AT/T oziroma AT/T < (1 — 1/y)Ap/p. Drugace
receno: temperaturni gradient v konvektivni plasti zvezde znasa

dT_ y—1 Tdp (45.27)

dr y pdr
Ce se kje pojavijo vedji temperaturni gradienti, jih konvekcija
ucinkovito zgladi v konvektivnega.

45.6 Staranje in smrt zvezd

Zvezda na glavni veji nenehno seziga vodik v helij. Seziganje
poteka v sredis¢u zvezde. Prej ali slej pride cas, ko se porabi ves
tamkajsnji vodik. V zvezdi tako nastane vroca inertna sredica iz
helijevega pepela. S tem presahne centralni fuzijski vir energije,
ki vzdrzuje notranji pritisk in preprecuje zvezdi gravitacijsko
sesedanje. Nastala helijeva sredica se zato zacne krciti in se pri
tem segreva.

Zaradi gravitacijskega sesedanja in segrevanja helijeve sredice se
segreje tanka okoliSnja plast vodika in se prizge. Sedaj gori vodik
v tej plasti in nastajajoc¢i helijev pepel pada na inertno helijevo



sredico. Ta sa seveda nadalje krci in segreva. Zaradi ne povsem
jasnih vzrokov se zunanje plasti zvezde pri tem mocno napihnejo.
Gravitacijski stisk helijeve sredice in gorenje vodikove plasti
povecata izsev; radialni razteg pa zmanjSa povrsinsko
temperaturo: zvezda zapusti svoje mesto na glavni veji in postane
rdeca orjakinja z inertno, kolapsirajoco helijevo sredico in goreco
vodikovo plastjo.

Hydrogen shell Slika 45.9 Prerez skozi rdeco orjakinjo z
Expanding source , Ly . . .
outer : inert hotiurm TASELS kolapsirajoco helijevo sredico in
layers core goreco plastjo vodika. (University of Alberta)

Kolaps sredice poteka, dokler se ne zgodi eno od dvojega. — Ce
je masa zvezde majhna, se sredica, preden se segreje do vziga, Ze
toliko stisne, da postanejo elektroni v njej degenerirani ter
ustavijo nadaljnje kréenje in segrevanje. Goreca plast vodika pa
se pocasi prezira skozi zunanji negoreci vodik in sproti odlaga
nastajajoci helijev pepel na helijevo lupino. — Ce je masa zvezde
vecja, pa se helijeva sredica segreje do vZiga, Se preden se pojavi
degeneracija. Helij zacne goreti v ogljik (tri helijeva jedra ravno
zadoscajo za tvorbo enega ogljikovega). Ko zgori ves helij v
sredici, tam nastane inertna ogljikova sredica in zgodba se
ponovi: sredica se gravitacijsko stiska in segreva, obdana z
gorecima plastema heljja in vodika. Odvisno od mase postane
sredica elektronsko degenerirana ali pa se prizge.

Ce je masa zvezde zelo velika, zaporedoma nastajajo in se
prizigajo vedno tezja jedra. Zvezda postaja podobna cebuli s
cedalje vec¢ plastmi: v vsaki plasti gori po ena znacilna zvrst jeder.
Postopek se praviloma ustavi, ko se snov v najbolj notranji sredici
tako stisne in zgosti, da postanejo njeni elektroni degenerirani.
Kdaj je to, doloca masa zvezde. Najkasneje pa se postopek
zaporednega priziganja ustavi, ko nastane Zelezo. Kot vemo,
fuzija zelezovih jeder v Se teZja jedra ne sprosca energije, ampak
jo porablja. Zvezda je porabila vse fuzijsko gorivo.

Slika 45.10 Razpad rdece orjakinje v belo
pritlikavko in planetarno meglico. Meglica je
krogelna in bezi navzven. V njenem srediscu
je bela pritlikavka. (Palomar Observatory)
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supernove

Vsako naslednje gorenje traja hitreje (ker je temperatura visja) in
spros¢a manj energije (ker se vezavna energija nukleona Cedalje
manj povecuje s tezo jeder). Prizigi tudi povzrocijo pritiskovne
sunke, ki razpenjajo zunanje plasti zvezde in jih (ker je pri velikih
razdaljah gravitacija manjsa) odpihnejo v prostor kot planetarno
meglico. Od rdece velikanke preostane le gosta sredica, podprta
z degeneriranim elektronskim plinom - bela pritlikavka. Odvisno
od zacCetne mase je bela pritlikavka sestavljena iz helija; ogljika in
kisika; ali Se tezjih jeder. Najtezje bele pritlikavke so iz Zeleza.

Bela pritlikavka ima radij R, maso M, Stevilo elektronov N in
Stevilo elektronov na prostorninsko enoto n. Gravitacijska
energija na masno enoto znasa E5 ~ kM/R, kinetiCna energija
elektronov na masno enoto pa Ex = (N/M)G2/2m. Elektroni so
degenerirani: za vsakega velja AXAG ~ h. Aproksimiramo

G ~ AG ~ h/Ax, Ax ~ 1/n'/3 in n ~ N/R3 ter vse skupaj vstavimo v
izraz za kineti¢no energijo. V ravnovesju sta gravitacijska in
kineti¢na energija (Ce se ne menimo za faktor dva) enaki.
Izenacimo ju in dobimo R ~ (N/M)53h2/2mxM?'/3. Razmerje N/M je
odvisno od sestave plazme; Ce je plazma popolnoma ioniziran
vodik, pride en degeneriran elektron na maso enega protona,
torej N/M = 1/m,. Vidimo, da velja

1 (45.28)
o« ——
M3

Cim bolj masivna je pritlikavka, tem manjsi radij ima!
Potemtakem bi morala zelo masivna pritlikavka imeti izredno
majhen radij. Vendar: ¢im manjsi je radij, v tem manjsi prostor so
zaprti elektroni in tem hitrejsi zato postajajo. UposStevati moramo,
da prej ali slej postanejo relativisticni; tedaj velja Ex = Gc. Ko
spet, kot zgoraj, izenaCimo Ey in Ey, se R pokrajsa in dobimo

N . hc (45.29)
- 2 3/2
M (M) ( K )32

Ko se hitrost elektronov bliza svetlobni hitrosti, se masa
pritlikavke priblizuje mejni masi M. Nobena pritlikavka torej ne
more biti masivnej$a od te zgornje mase pritlikavk. Ce bi bila
masivnejSa, je degenerirani elektronski plin ne bi mogel ve¢
podpirati in bi kolapsirala. Za popolnoma ioniziran vodik
izracunamo M ~ 2M,. Seveda te Stevilske vrednosti ne smemo
jemati prevec resno, ker smo racunali zelo na grobo. Vendar pa
kaze, da smo res zadeli pravi red velikosti, saj v naravi ne
najdemo pritlikavk z maso nad 1,5 Sonceve.

Bele prtlikavke nastanejo iz tistih jeder rdecih orjakinj, ki so lazja
od 1,5 Sonceve mase. Kaj pa, Ce je taksno jedro masivnejse?
Potem se seveda tudi gravitacijsko krci, vendar ga degenerirani
elektronski plin ne more zaustaviti in se krci ter segreva naprej.
Predvidevamo, da se pod ogromnim pritiskom protoni in elektroni



Crne luknje

v plazmi zlijejo v nevtrone. Nastali nevtronski plin tudi postane
prej ali slej degeneriran in zaustavi nadaljnje krcenje. Ker so
nevtroni 103-krat tezji od elektronov, se to zgodi pri 103-krat
manj$ih polmerih oziroma pri 10%-krat vecji gostoti snovi kot v
belih pritlikavkah. Nastane nevtronska zvezda.

Slika 45.11 Leta 1054 se je na nebu
nenadoma pojavila nova svetla zvezda in bila
z golim o¢esom vidna nekaj mesecev. Po
~900 letih je na tistem mestu vidna

meglica - ostanek eksplozije supernove.
Znotraj meglice se skriva nevtronska vezda.
(Palomar Observatory)

Jedro rdece superorjakinje kolapsira v nevtronsko zvezdo mnogo
siloviteje kot jedro rdece orjakinje v belo pritlikavko. Spros¢ena
energija v obliki sevanja in udarnega vala je ogromna: zvezda
eksplodira in zasveti kot supernova. Zunanji deli odletijo v
prostor in ga obogatijo z vsemi elementi, ki so nastali v zvezdi
med njenim Zivljenjem in v ¢asu njene eksplozije. V eksploziji
nastanejo tudi elementi, tezji od zeleza. Iz teh ostankov se
kasneje rojevajo nove zvezde, vklju¢no s svojimi planeti in z
zivimi bitji na njih. Upravi¢eno lahko recemo, da smo ljudje
sestavljeni iz zvezdnega pepela.

Kaj pa tako masivna jedra v rdecih superorjakinjah, ki jih pri
gravitacijskem krc¢enju niti pritisk degeneriranih nevtronov ne
uspe zaustaviti? Ni druge: takSna jedra se nadalje krcijo in ne
vemo, kaj bi jih sploh lahko zaustavilo. Skr¢ijo se v tocko. To
pomeni, da je ubezna hitrost z njih v2 = 2kM/R neskonéna.
Svetlobna hitrost vsekakor ni dovolj za pobeg. Sklepamo, da zato
tudi svetloba ne more zapustiti take gravitacijske singularnosti.
RecCemo, da je to ¢rna luknja.

Tako. Izdelali smo teorijo o rojstvu, Zivljenju in smrti zvezd.
Teorija je vecinoma kvalitativna, vendar lepo pojasnjuje opazene
in izmerjene lastnosti zvezd. Kot vsaka dobra teorija poskrbi tudi
za konkretne napovedi, recimo obstoj nevtronskih zvezd in ¢rnih
lukenj. Teh napovedi z obstojecimi opti¢nimi daljnogledi (Se) ne
moremo eksperimentalno preveriti. Raziskovalnih ciljev in dela
nam torej ne bo zmanjkalo.

Stellar evolution

‘ Slika 45.12 Razvoj zvezd od rojstva
e do smrti. Zivljenska pot in konéna
7 usoda zvezde sta popolnoma doloceni
Z njeno maso ob rojstvu.
(Encyclopedia Britannica)
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Kefeide

Umeritev kefeid

45.7 Galaksija in galaksije

Med zvezdami na nebu so nekatere, ki se jim sij periodi¢no
spreminja. Nihajni Casi znaSajo od nekaj ur do nekaj let. Vzroki so
lahko raznovrstni, na primer nihanje radija. Naj bo vzrok
kakrsenkoli - spremenljive zvezde so ocitno nekaj posebnega in
zato jih hocemo podrobneje raziskati.

Prva stopnja raziskave je fotografiranje izbranega dela neba v
kratkih ¢asovnih presledkih, recimo vsak dan. Sledi pregled slik,
lociranje spremenljivih zvezd in doloc¢itev njihove temperature,
magnitude in periode. Pri tem opazimo, da precej spremenljivih
zvezd lezi - kot kaze - znotraj zvezdne meglice Mali Magellanov
oblak. Te zvezde so torej od nas priblizno enako oddaljene. Ko
pregledujemo njihove izmerke, opazimo, da imajo svetlejse
zvezde daljSo periodo in temnejSe zvezde krajSo. NariSemo
ustrezen diagram in iz njega razberemo odvisnost: logaritem
periode - med 1 in 100 dnevi - je sorazmeren z navidezno
magnitudo (LEAWITT). Vse te spremenljive zvezde imajo priblizno
enako temperaturo 6000 K. Kaze, da gre za zvezde "iste vrste".
Poimenujmo jih kefeide.

00 02 04 06 0B 10 12 14 16 18 20 22 Slika 45.13 Perioda in izsev kefeid v Malem

i Magellanovem oblaku. Na abscisi je perioda (v
" 2| logaritmu dnevov) in na ordinati izsev (v
” # navideznih magnitudah). Vsaka kefeida je
3 Y / 3| predstavljena z maksimumom (zgornja ¢rta) in
/'y minimumom (spodnja ¢rta) izseva. Razlike
“ A T “|  med obema zna$ajo priblizno 1 magnitudo.
" k}&/‘;fgﬂ 5| (Leawitt, 1912)
/1
16 r [ 16
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Ker so vse kefeide v Magellanovem oblaku enako oddaljene od
nas, velja opazena soodvisnost pravzaprav za njihove absolutne
magnitude. Vendar so, Zal, Magellanove kefeide izven dosega
paralakti¢nih meritev: tako jim absolutnih magnitud ne moremo
dolociti. Zato pa lahko to naredimo za kak$no dovolj bliznjo
kefeido, Ce jo le uspemo najti! Da gre za kefeido, odlo¢imo kar na
podlagi njene periode in temperature, ki morata biti "ustrezni".
Zal takih kefeid ne najdemo. Odkrijemo pa nekaj kefeid v kopici
M13, ki smo ji Zze dolocili oddaljenost [45.3]. S tem smo problem
resili: za kefeido v M13 poznamo oddaljenost, magnitudo in
periodo. 1z oddaljenosti in magnitude dolo¢imo absolutno
magnitudo. K njej pripada izmerjena perioda. S tem je kefeidni
diagram absolutno kalibriran (SHAPLEY). PrilegajoCa premica za
povprecne absolutne magnitude se glasi
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Galakti¢ni disk

P (45.30)
M=—-alg—-b

dan
a=2.4
b=1.7

Kefeide so torej svetle zvezde z izsevi med 300 in 40 000 izsevi
Sonca. V zvezdnem diagramu leZijo izven glavne veje, priblizno
nad Soncem.

Kefeida s svojo periodo razodeva svoj absolutni izsev. S tem
postane odlicen - in mocan - vesoljski svetilnik. Z meritvijo
magnitude in periode je namrec njena oddaljenost popolnoma
dolocena. Tako, na primer, izracunamo, da je Mali Magellanov
oblak oddaljen od nas za kaks$nih 150 - 103 svetlobnih let. Ne
smemo pa pozabiti, da pri merjenju magnitude nagaja absorpcija
v plinskih oblakih v medzvezdnem prostoru. Verjetno so
izmerjene premajhne magnitude in zato so oddaljenosti
precenjene.

Na nebu je polno kroglastih kopic. V vecini najdemo in izmerimo
kefeide. S tem ugotovimo tudi njihovo oddaljenost. Opazimo, da

je Stevilo kopic "nad" in "pod" ravnino Mlec¢ne ceste je pribliZzno

enako. Zato nariSemo porazdelitev kopic glede na to ravnino.

i 2 lnem twew ™ Glika 45.14 Razporeditev zvezdnih kopic
' okrog Sonca. Osrednji pas je dolo¢en z
hises ' ravnino Mlecne ceste. Sonce je oznaceno z
. rdecim krizcem. Kopice tvorijo kroglast "halo"
a0 |——— : okrog splos¢enega diska zvezd - Galaksije.

Razdalje so v parsekih in so dvakrat
precenjene glede na kasnejSe meritve.
(Shapley, 1918)

—30,000

Iz risbe razberemo, da tvorijo kopice kroglast sistem, ki je
centriran glede na neko tocko v osrednji ravnini. Ta sistem
razodeva, da je Mlecna cesta pravzaprav vidni del velikega diska
zvezd - Galaksije - in da leZi Sonce priblizno v osrednji ravnini
diska, vendar izven njegovega srediSca. Premer diska ocenimo na
80 kpc in oddaljenost Sonca iz srediS¢a na 20 kpc (SHAPLEY).
IzboljSane meritve pokaZzejo, da so te razdalje dvakrat
precenjene: premer znasa okrog 100 - 103 svetlobnih let in
debelina 1/10 tega. Mali Magellanov oblak lezi torej izven
Galaksije, vendar v njeni neposredni blizini.

Koliko zvezd je v Galaksiji? Razdalja do Soncu najblizje zvezde je
nekaj ¢ez 31ly. Predpostavimo, da je to tudi povprec¢na razdalja
med zvezdami, to je, da znasSa Stevilska gostota zvezd

N/V ~1/(101y)3. Prostornina galakti¢nega diska znaSa
V~(10°ly)?-10%ly. Mnozenje obeh koli¢in pove N ~ 1011,
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Bliznja galaksija

Mnozica galaksij

Krogelne kopice niso edine zdruzbe zvezd, ki jih najdemo na
nebu. Posebej markantne so spiralne meglice, recimo najvedja,
znamenita M31. Z daljnogledom premera 5 metrov (!) uspemo v
njej izmeriti nekaj kefeid. Tako izmerimo oddaljenost te meglice
od nas: 2106 svetlobnih let. Njen kotni premer znasa okrog 3
stopinje (!), zato ima premer okrog 100 - 103 svetlobnih let
(HUBBLE). Meglica M31 je torej priblizno tako velika kot nasa
Galaksija in lezi za kaks$nih 20 svojih premerov proc¢. Ostale
spiralne meglice so videti manjse. Sklepamo, da lezijo bolj dalec.
Recemo, da so vse to galaksije. Nasa Galaksija je samo ena izmed
mnogih. Ce bi jo lahko pogledali od zunaj, bi bila verjetno
podobna vsem ostalim.

Slika 45.15 Najblizja galaksija M31 v
ozvezdju Andromede. Od nas je
oddaljena 2 milijona svetlobnih let.
Njen premer znasa 100 tisoc
svetlobnih let. (Palomar Observatory)

Kako dale¢ so druge galaksije? Kefeide v galaksijah uspemo
meriti vse do razdalje kakSnih 10 milijonov svetlobnih let. Potem
postanejo za nase daljnoglede presSibke, predvsem zaradi svetlosti
ozracja. Tako izmerimo razdalje le za kaksnih 100 najblizjih
galaksij. Naprej ne gre vec. Na sreCo pa pri merjenjih opazimo,
da ima posebna vrsta supernov, ki ob¢asno izbruhnejo v nasi in
bliznjih galaksijah, priblizno enako absolutno magnitudo:
neverjetnih —19! To pomeni, da sevajo kot 10(19+4.6)2.5 1010
Sonc! Te supernove prepoznamo po znacilnem narascanju in
pojemanju sija. Z njimi sezemo 100-krat dalje kot s kefeidami,
torej do 1 milijarde svetlobnih let! V nasi galaksiji smo zabelezili
3 supernove v 1000 letih (leta 1054, 1572 in 1604). Priblizno tako
pogosto - 1 supernova na galaksijo na 100 let - se pojavljajo tudi
drugod.

Slika 45.16 Gruca oddaljenih galaksij. Od
bliznjih zvezd se locijo po elipti¢ni in difuzni
obliki. (Palomar Observatory)

Koliko galaksij vidimo? Razdalja do prve galaksije znaSa okrog
1 Mpc. Vzamemo, da je to povprecna razdalja med galaksijami.
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Njihova Stevilska gostota je zato N/V ~ 1/(1 Mpc)3. Z daljnogledi
vidimo do razdalje 103 Mpc, torej prostornino V ~ (103 Mpc)3.
MnozZenje obeh koli¢in pove Stevilo vidnih galaksij N ~ 10°. To
pomeni, da se v vidnem dosegu (sedanjih) daljnogledov pojavi 10°
supernov v 100 letih oziroma 1 supernova vsako sekundo!

45.8 Sirjenje vesolja

Beg galaksij  Kako se galaksije gibljejo? Svoj ¢as smo merili radialne hitrosti
bliznjih zvezd s frekven¢nim zamikom njihovih spektralnih ¢rt. Na
enak nacin [35.8] izmerimo sedaj radialne hitrosti galaksij.
Dozivimo hudo presenecenje: vse galaksije - razen najblizjih - se
oddaljujejo od nas in bolj kot so oddaljene, hitreje bezZijo!

Slika 45.17 Beg galaksij. Vse galaksije bezijo
= pro¢ od nas. Cim bolj so oddaljene, tem

. oo hitreje bezijo. Prijetno je videti, da so enote za
KR~ hitrost napacne, namrec kilometri in ne
kilometri na sekundo. (Hubble, 1929)

ey
W
W

oePaRsEcs. 22108 PARSECS

Graf pokaze, da velja sorazmernost med hitrostjo bezanja v in
oddaljenostjo r (HUBBLE):

v=Hyr. (45.31)

To je Siritveni zakon. Sorazmernostni koeficient Hy poimenujemo
siritveni parameter. Prve meritve galaksij kazejo
Hy=500kms~!/Mpc; kasnejSe, bolj natanc¢ne, vkljuCujocCe bolj
oddaljene galaksije, pa pravijo Hy =~ 70 kms~!/Mpc.

Kako si naj to razlagamo? Kaj je res nasa Galaksija nekaj
posebnega, da se vse ostale gibljejo pro¢ od nje? Kaj pa bi videl
opazovalec v kaksni drugi galaksiji? Kratek razmislek pove:
natanko isto, vse galaksije bi bezale pro¢ od njega.

Veliki pok Iz bega galaksij sklepamo naslednje. Ker se galaksije med seboj
oddaljujejo, so morale biti véasih bolj skupaj. Ce v mislih
obrnemo tok Casa, se zacnejo galaksije stekati nazaj k nam.
Dvakrat bolj oddaljena galaksija se giblje z dvakrat vecjo
hitrostjo, zato bi za vrnitev potrebovala enak Cas. Vse galaksije,
na kakrsnikoli oddaljenosti od nas so pac, bi se zato vrnile k nam
hkrati. Celotno vesolje bi se torej skrcilo v naso tocko. Seveda to
velja za vsako toCko: vesolje bi se skrcilo vanjo. Pravzaprav bi se
vse te opazovalne tocke skrcile v skupno tocko. Sklepamo torej,
da ima vesolje svoj zaCetek, ko je bilo majhno in zgoSceno in zato
vroce, tako kot pri gravitacijskem kolapsu plinskega oblaka v
zvezdo. Vesolje se je torej, kot kaze, zacelo z eksplozijo, z velikim
pokom. Takrat je nastala snov, kakrSnakoli je pac ze bila, in
svetloba, ki jo je zacCela snov sevati. Od tedaj naprej se snov in
svetloba Sirita, pri cemer se oblikujejo galaksije, kakrSsne danes
vidimo v bliznji in daljni okolici. Hitrost Sirjenja snovi opisuje
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Vidno obzorje

Siritveni parameter. Njegova reciproc¢na vrednost 1/H, ima
dimenzijo ¢asa in karakterizira Cas Sirjenja, to je starost vesolja
to:
1 (45.32)
to~—.
H,
Vesolje je torej staro to~ 14 - 10°let. Ocenjeni Stevilski rezultat je
ugoden, saj je precej daljSi od domnevne starosti Sonca. Sonce
pac ne more biti starejSe od vesolja.

Ce hitrost galaksij res naras¢a z oddaljenostjo linearno, mora prej
ali slej preseci svetlobno hitrost in "izginiti". Toda - ali je to sploh
mozno? Kaj ni res, da nobeno telo ne more potovati hitreje od
svetlobe? Zagato odpravimo z naslednjo izjemno drzno domnevo.
Res je: nobeno snovno telo ne more potovati hitreje od svetlobe v
lokalnem delu prostora; kaj pa, Ce se prostor Siri? Meja svetlobne
hitrosti potem Se vedno velja lokalno. Se pa lahko dva razlicna
dela prostora med seboj oddaljujeta, in to s poljubno veliko
hitrostjo. Oddaljene galaksije potem pravzaprav ne beZijo od nas,
ampak jih s sabo nosi Sireci se prostor. Kar vidimo kot beg
galaksij, je torej Sirjenje prostora, ki nosi galaksije s seboj.

Ko pravimo, da se vesoljski prostor razteza, s tem ne mislimo, da
se vecajo tudi atomi, ali naSe telo, ali Zemlja, ali Son¢ni sistem ali
Galaksija. Vse to so telesa, ki jih drzijo skupaj mocne sile, in na
katere povprecna, zglajena gravitacija vesolja nima zaznavnega
vpliva. Skupna lastnost nastetih sistemov je, da predstavljajo
podrocja z velikim odstopanjem masne gostote od povprecja
preko vec¢ deset megaparsekov.

Od svetlobe, ki pada v nase oc¢i, nobena ni starejSa od starosti
vesolja. Tudi z najmoc¢nejSimi daljnogledi ne moremo videti
starejSe svetlobe, ker je pac ni. Doseg, do kamor vidimo, je torej
omejen. Recemo, da je to nasSe vidno obzorje. Na prvi pogled se
zdi, da je vidno obzorje tako dale¢, kolikor prepotuje svetloba v
Casu od velikega poka do danes, torej ryis = cto=14-10°ly. Vendar
se je v tem cCasu telo, ki je to svetlobo izsevalo, odmaknilo od nas
zaradi Sirjenja prostora. Vidno obzorje je zato ustrezno vedje.
Ocenimo ga takole. V Casu ty, ki ga potrebuje svetloba od izseva
do vpada v oko, se izvor od razdalje ry odmakne za dodatno
razdaljo s ~ v(ro)tg ~ (Horo)/Hg ~ ro. Vidno obzorje torej znasa

rvis ~ 2¢to. Cim starejse je vesolje, tem vecje je vidno obzorje. To
velja za vsakega opazovalca: vsak ima svoje vidno obzozrje. Kaj
se skriva za njim, pa mora vec¢no ostati nevidno.

45.9 Siritveni model

Sirjenje vesolja ho¢emo zdaj zajeti v eno ali ve¢ enacb.
Privzamemo, da je vesolje homogeno (na skali nekaj deset
megaparsekov) in izotropno. To pomeni, da lahko za sredisce



Skalirna enacba

izberemo katerokoli njegovo tocko, recimo kar nasSo Galaksijo.
Poglejmo majhen prostorninski element - delec - z maso m na
razdalji r od tega srediSc¢a. Zaradi nazornosti si bomo namesto
delca predstavljali kar razmazano galaksijo.

Na galaksijo deluje gravitacijska sila mase v zaobjeti krogli:

F =&gM,m/r*> = 4nkprm/3. Galaksija ima potencialno energijo
W = —kM,m/r in kineti¢no energijo K =mr'?/2 (torej ne sme biti
prehitra). Vsota obeh energij je konstantna: (1/2)mr'? —
(411/3)kpr’m = E. Konstanta E je v sploSnem razli¢na za razli¢ne
razdalje. Zapisana enacba opisuje spreminjanje razdalje med
dvema galaksijama: izhodiS¢no in obravnavano. Ker je vesolje
homogeno, velja enacba za poljubni dve galaksiji. To nam
omogoca, da vpeljemo so-bezni koordinatni sistem, ki se giblje
skupaj s prostorom. Ker je Sirjenje linearno, sta fizi¢na razdalja r
in so-bezna razdalja R med dvema poljubnima galaksijama
povezani takole:

r=a®R. (45.33)

Enacba opisuje so-bezno mrezo vektorjev R, ki se Siri skupaj s
prostorom. Galaksije ostajajo, po definiciji, v fiksnih tockah te
mreze. Koli¢ino a(t) poimenujemo skalirni faktor vesolja. Odvisen
je le od casa. Pove nam, kako fizicne razdalje med galaksijami
narascajo s casom.

@Q‘

Enacbo (45.33) vstavimo v energijsko enacbo, upoStevamo R'=0
in dobimo skalirno enacbo (FRIDMAN)

(a_‘ 2= 8nx B k_02 (45.34)

a’ " 3 P

pri cemer smo vpeljali okrajSavo k = —2E/mc?R?. Faktor ¢? smo
pritaknili zato, da polepSamo enote: [k]=1/m?. Koli¢ina k mora
biti neodvisna od R, ker so taki vsi ostali ¢leni v enacbi. 1z tega
sledi E « R?. Ker je E za izbrano galaksijo konstanta in ker je R
zanjo fiksiran, je k kar navadna konstanta. KakSen je njen pomen?
Ocitno je vezana na vezavno energijo vesolja. Nic¢elni, pozitivni in
negativni vezavni energiji ustrezajo vrednosti konstante k=0,
k>0 in k <0. Rekli bomo, da imamo opravka z gravitacijsko
uravnovesenim (ravnim), gravitacijsko nevezanim (odprtim) ali
gravitacijsko vezanim (zaprtim) vesoljem. Kaksno je naSe vesolje,
bomo morali v nadaljevanju Se ugotoviti.

Slika 45.18 So-bezna koordinatna mreza na
balonu. Mreza se Siri skupaj z opno balona.
"Galaksije" ostajajo v fiksnih tockah te mreze.
(Bianchi, 2010)
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premik

Sestavine vesolja

Skalirna enacba opisuje, kako se skalirni faktor a spreminja s
Ccasom, ¢e poznamo gostoto vesolja p(t). KaksSna pa je gostota
vesolja kot funkcija ¢asa? Krogelna prostornina vesoljske
"tekocCine" V = (411/3)a® vsebuje energijo E = mc? = (4n/3)a3pc?. Pri
adiabatnem raztegu te prostornine velja dE + pdV =0. Izraza za E
in V odvajamo po ¢asu in vstavimo, pa dobimo gostotno enacbo
(FRIDMAN)

' 45.35
p+35p+2)=0. (45.35)
a C

Zdaj torej vemo, kako se spreminja gostota, vendar le, ¢ce vemo
Se, kaks$na je enac¢ba stanja p = p(p). Ce to enacbo poznamo,
potem gostotna enacba in skalirna enacba enolicno dolocata
Sirjenje vesolja.
Hitrost bezanja galaksij v = dr/dt zapiSemo kot (|r'|/|r|)r,
upostevamo r=aR in dejstvo, da je odvod so-beznih koordinat
enak ni¢. Potem iz Siritvenega zakona v = Hr sledi

a' (45.36)

’

H=—
a
skalirna enacba pa dobi alternativno obliko
2
H2 = 8uk B ki (45.37)
3 a?
Siritveni parameter se torej spreminja s ¢asom. Njegovo vrednost
ob danasnjem Casu ty oznacujemo kot Hy.

Dve galaksiji naj bosta oddaljeni za dr. Potem se medsebojno
razmikata z relativno hitrostjo dv=Hdr=(a'/a)dr. Svetloba, ki
odpotuje iz ene galaksije in prispe v drugo, ima spremenjeno
valovno dolZzino: dA/A = dv/c. Potovalni ¢as znasa dt =dr/c. Ko
zlozimo vse skupaj, dobimo dA/A = da/a oziroma

Axa. (45.38)

Ko se prostor $iri, se valovna dolzina svetlobe v njem veca.
Predstavljamo si, da prostor razteguje svetlobne valove. S tem
svetloba dozivlja rdec¢i premik. Rdeci premik svetlobe je torej
posledica relativne hitrosti oddajnika in sprejemnika, pri cemer je
njuna relativna hitrost posledica Sirjenja prostora. Ugotovitev
smo izpeljali za dve bliznji toc¢ki. Privzeli bomo, da velja tudi za
velike razdalje.

45.10 Napovedi modela

Ce ho¢emo ugotoviti, kaj napovedujeta skalirna in gostotna
enaCba, moramo poznati povezavo med masno gostoto in
pritiskom sestavin vesolja. H gostoti p in pritisku p prispevata
tako snov kot svetloba. Danasnje vesolje je "plin" iz pocasnih
masnih delcev (galaksij, atomov v medgalakticnem prostoru) in



Ravno, masno
dominirano vesolje

Ravno, sevalno
dominirano vesolje

Odprto in zaprto
vesolje

relativisticnega sevanja (fotonov in nevtrinov). Plin je redek in
hladen, zato je pritisk v njem majhen in postavimo p = 0. Zgodnje
vesolje pa je bilo gost in vroc¢ plin iz osnovnih delcev. Kot vemo iz
sredic zvezd, v takem plinu prevladuje pritisk zaradi radiacije;
zato postavimo p = w/3 = pc?/3. Zapisali smo dva mejna primera
za vesolje. Rekli bomo, da sta to masno dominirano in sevalno
dominirano vesolje.

Masno enacbo p' = 3(a'/a)p =0 zapiSemo v obliki

(1/a®)d/dt(pa®) = 0 in nadalje d/dt(pa3) = 0. To pomeni, da je pa3
konstanta oziroma p « 1/a3. Nismo preseneceni, saj pricakujemo,
da gostota pada obratno sorazmerno s prostornino vesolja. Ce z
0Pp o0znacimo gostoto ob sedanjem Casu tg, ko a(ty) =1, velja

p = polad. To gostoto vstavimo v skalirno enacbo (45.34),
upostevajo¢ k =0, in dobimo a'? = (8nkpy/3) - (1/a). Enacbo
poskusamo reSiti z nastavkom a « t4. Leva stran je odvisna od
t24-2 in desna od t~49. Obe strani se morata ujemati, kar se zgodi
za q =2/3. Zato a « t*/3 oziroma

= Ly (45.39)
to

o
p(t)="3.
a

Vesolje se torej vecno razteza, pri Cemer se Siritveni parameter s
Casom zmanjSuje: H = a'/a = 2/3t. Za danasnji cas velja
to=(2/3)(1/Hp) =9 - 10%1et. Po modelu ocenjena starost vesolja je
torej nekaj manjSa od prvotne ocene na podlagi nespremenljivega
Siritvenega parametra. Je pa Se vedno dovolj velika, da nas ne
skrbi prevec.

Z upostevanjem p = pc?/3 se gostotna enacba glasi
p'=4(a'/a)p =0. ReSujemo jo prav tako kot predhodno, pri cemer
je a® nadomes$cen z a*. Dobimo p « 1/a* in nadalje Se
t 45.40
at)=(—)? ( :
to

Po
p(t) = e

Sevalno dominirano vesolje se Siri poCasneje kot masno
dominirano, in sicer zaradi vpliva tlaka. Torej ne smemo o tlaku
misliti kot o neCem, kar vesolje razpihuje. Saj bi bil za to
potreben pritiskov gradient, ki pa ga v vesolju ne najdemo. Je pa
res, da pri razpenjanju pritisk opravlja delo, kar se kaze v
dodatnem manjSanju gostote.

Kaj pa, Ce vesolje ni ravno, to je, ¢e k # 0? Privzemimo, da je
vesolje masno dominirano, kar velja za njegovo celotno dobo,
razen za zacCetek.
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Kriti¢na gostota

Prasevanje

Ce je v skalirni enac¢bi (45.37) k <0, sta oba ¢lena na desni
pozitivna in H =a'/a bo vedno vedji od nic¢: vesolje se ne bo nikoli
nehalo $iriti. Z nara$¢anjem a pada ¢len kc?/a? pocasneje kot ¢len
z p « 1/a3 ter prej ali slej postane dominanten. Skalirna enacba
dobi zato obliko (a'/a)? = —kc?/a? in po krajSanju a « t. Hitrost
postane konstantna: vesolje se Siri enakomerno.

Ce k >0, postane razlika obeh &lenov na desni strani po
dolo¢enem cCasu enaka ni¢. To pomeni, da se Sirjenje ustavi. Ker
gravitacijska privlacnost ostaja, pa se mora vesolje zacCeti krciti.
Kolaps je prav tak kot Siritev, vendar v nasprotni smeri. Vesolje se
skrc¢i v vroco tocko.

Slika 45.19 Razvoj vesolja, odvisen od
a masne gostote. Gostota je podana z
(AR > razmerjem Q med aktualno in kriti¢no
gostoto. Prazno vesolje Q = 0; odprto vesolje
Q< 1; ravno vesolje Q =1; zaprto vesolje
Q>1. (Anon)

AVERAGE DISTANCE
BETWEEN GALAXIES

[ e

Siritev vesolja je zelo podobna metu kamna v vi$ino. Ce ga
vrzemo navzgor z veliko hitrostjo, ga Zemljina gravitacija ne bo
mogla ustaviti in kamen bo odletel pro¢ z enakomerno hitrostjo.
Ce ga vrzemo z majhno hitrostjo, ga bo gravitacija ustavila in
vrnila na tla. Vmes pa je ubezna hitrost, s katero kamen ravno Se
ubezi gravitaciji in se ustavi v neskonc¢nosti.

V skalirni enacbi (45.37) obstaja za dano vrednost H takSna
vrednost p, ki "dela" vesolje ravno, torej k = 0. To je kriticna
gostota

3H? (45.41)
Pe= 8mK
Ker se H spreminja s ¢asom, se ustrezno spreminja tudi kriticna
gostota. Za sedanjo vrednost Hy izraCunamo iz (45.41)
pc~ 10726kg/m3 ~ 10 m, /m3. Na prvi pogled je to zelo majhna
vrednost: po en nukleon na medsebojni razdalji en Cevelj.
ZapiSemo pa jo lahko tudi v obliki p; ~ 10! My/(Mpc)3. To pa ni
vec videti tako majhno: tipi¢na galaksija na tipi¢ni medsebojni
razdalji galaksij! KaZe, da dejanska gostota vesolja ne more biti
dalec od kriti¢ne.

Kaksna je gostota vesolja (upostevajo¢ zvezde, rjave pritlikavke,
medgalakti¢ne oblake plina, fotone, nevtrine in morda Se kaj), je
zaenkrat odprto vpraSanje. Radi bi ze videli, da bi bila enaka
kriti¢ni gostoti. Zavedati pa se moramo, da vesolju ni mar za nase
Zelje in upe. Na koncu vedno odloc¢ijo meritve.

45.11 Zgodnje vesolje

Raziskave vesolja dobijo novo oporo z naslednjim nepricakovanim
odkritjem. Kot radijski inZenirji preu¢ujemo Sirjenje mikrovalov in
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pri tem uporabljamo veliko sprejemno anteno ter zelo obcutljiv
sprejemnik za 7-centimetrske valove. Da bi lahko zaznali Sibke
energije, poskuSamo odstraniti vse druge motece vire. Med
drugim tudi hladimo sprejemnik s teko¢im helijem, da zmanjSamo
njegov notranji termic¢ni Sum. Kljub vsem naporom pa Se vedno
zaznavamo nekaksno sevanje. To sevanje prihaja enakomerno iz
vseh delov neba in ni odvisno od dneva in noci ter od letnih ¢asov.
Kaze, da prihaja iz globin vesolja. Poimenujemo ga sevanje ozadja
ali prasevanje (PENZIAS).

Slika 45.20 Antena, s katero je bilo odkrito
prasevanje. (NASA)

Merjenja pri razlicnih valovnih dolzinah razkrijejo, da ima
prasevanje spekter ¢rnega telesa s temperaturo T= 3 K. To
ustreza valovni dolzini A x 1/T = 1 mm. Gostota energije znasa

w =40T?*/3c in ustrezajoca gostota mase p = w/c? = 10730kg/m3.
To je za stiri rede velikosti manj od kriti¢cne mase. Masa
prasevanja ne igra nobene vloge pri Sirjenju danasnjega vesolja.

Ko se vesolje razteza, se z njim razteza tudi valovna dolzina

prasevanja: A « a. Ob upostevanju A « 1/T sledi
Ta 1 . (45.42)

a

Pri Sirjenju se torej prasevanje oziroma prazen vesoljski prostor,

vsebujoc prasevanje, ohlaja kar obratno sorazmerno s svojo

velikostjo. Danes, ko je vesolje veliko a =1, ima temperaturo

To = 3 K. Tisockrat vi§jo temperaturo T=3-103K je imelo, ko je

bilo tisoc¢krat manjSe: a=1073. To se je zgodilo ob ¢asu

t/to=a3?~1075, torej 1075ty ~ 10°let po velikem poku.

Ko govorimo o temperaturi vesolja, mislimo na temperaturo
praznega prostora, vsebujoCega prasevanje. Vemo pa, da so
zvezde vrocCe in da temu ustrezno sevajo. V vesolju je torej vec
sestavin - zvezde, medzvezdni plin, svetloba, nevtrini in morda Se
kaj - in vsaka ima svojo temperaturo. Med seboj so v slabem
toplotnem stiku. Vesolje, kot ga vidimo danes, ni v toplotnem
ravnovesju, ko bi bila temperatura v njem povsod enaka.

Dovolj dale¢ nazaj v Casu je bila temperatura vesolja tako visoka,
da v njem niso mogli obstajati danasnji atomi, pa tudi ne njihova
jedra: termic¢no gibanje je bilo tako silovito, da so bila jedra in
atomi razdrobljeni na sestavne dele. Takratna snov je bila zato
mesanica prostih protonov, nevtronov, elektronov, nevtrinov in
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Kaj nas ¢aka

fotonov. Vsi so vplivali drug na drugega. Kaj je bilo pred to
mesanico, na tej stopnji spoznavanja narave ne vemo.

Ko se je zaradi raztezanja vesolja temperatura znizala, so se
zaceli protoni in nevtroni zdruzevati v jedra. To se je zgodilo
tedaj, ko je energija delcev padla znatno pod vezavno energijo
nukleonov v jedrih, recimo na okrog E ~ 1 MeV. Tej energiji
ustreza temperatura T = E/k ~ 10!'9K. Tedanji skalirni faktor je
znaSal a = (3K)/T ~ 10719, Starost vesolja (predpostavimo masno
dominiranega) pa je znaSala t = toa3/? ~ 103 sekund. Vesolje je bilo
torej mesanica jeder (vecinoma vodika, devterija in helija, morda
Se kaj drugega), elektronov, nevtrinov in fotonov. V tej plazmi so
Svigali fotoni sem in tja in se sipali na elektri¢no nabitih jedrih in
elektronih. Zaradi sipanja je bila prosta pot fotonov kratka:
vesolje je bilo neprozorno za svetlobo.

Ko je energija delcev padla znatno pod vezavno energijo
elektronov v danasnih atomih, recimo na okrog E ~ 1 eV, so jedra
zagrabila in si prisvojila proste elektrone in nastali so prvi atomi.
Na enak nacin kot zgoraj izracunamo tedanjo temperaturo

T ~ 10*K, skalirni faktor a ~ 10~% in starost vesolja
(predpostavimo masno dominiranega) t ~ 10°let. Prostih
elektronov je zmanjkalo in s tem je prenehalo sipanje fotonov na
njih. Fotonom se je odprla prosta pot za nemoteno gibanje. Snov
je postala prozorna za svetlobo. Rodilo se je prasevanje s
temperaturo ~ 10%K, to je, z valovno dolZino ~ 103A. Do danes se
je sevanje ustrezno ohladilo in raztegnilo. Snov pa se je
gravitacijsko zdruzila v galaksije, zvezde in planete.

Vesolju je bilo torej potrebnih nekaj minut, da je naredilo prva
jedra; nekaj stotisocC let, da je naredilo prve atome in nekaj
milijard let, da je naredilo galaksije, zvezde, planete in nas same.
Kaj se je dogajalo v prvih minutah vesolja, (Se) ne vemo. Kaj je
bilo "pred" tem, tudi ne. Morda ne bomo nikoli mogli ugotoviti.
Tudi daljna prihodnost nam je bolj ali manj neznana. Vesolje, kot
ga poznamo, pa se bo gotovo Sirilo Se milijarde let. Potem bodo
zvezde pocasi ugasnile in vesolje bo postalo temno in mrtvo
pokopalisce snovi. Ali pa se bo morda Sirjenje ustavilo, obrnilo in
konéalo v novem vroc¢em velikem poku. Zivljenje ¢loveskega rodu,
kaj Sele zivljenje Cloveskega posameznika, se pokazeta neznatna
v primerjavi s trajanjem in razvojem vesolja. TolaZi nas lahko
zavest, da smo kljub svoji neznatnosti le uspeli spoznati zgradbo
dobrsnega dela sveta in odkriti marsikatere zakone, po katerih se
ravna. Mnogo raziskovalnega dela nas pa Se ¢aka. Imamo svoj
Cas; izkoristimo ga. [
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Predzadnji vrhovi

Razvoj znanosti, poustvarjen v pricujoci knjigi, je dosegel stopnjo,
ko smo - tako kaze - spoznali zgradbo in osnovne zakonitosti
sveta povsod, razen v njegovih najbolj skrajnih podrocjih: v
notranjosti in blizini nukleonov, v notranjosti in blizini ¢rnih
lukenj ter v najbolj zgodnjem in najbolj oddaljenem vesolju. S tem
knjigo zakljucujemo. Povzpeli smo se na vse "predzadnje" vrhove,
kar jih je do danes osvojilo ¢lovestvo. V oblakih pa se kazejo
omenimo, kaj je bilo pri plezanju nanje Ze narejenega in kaksna je
pricakovana pot navzgor.

Racunalniki

Raziskave polprevodnikov prinesejo nepricakovano odkritje
polprevodniske diode in polprevodniske triode - transistorja
(SHOCKLEY). Ta dva polprevodniSka elementa delujeta (skoraj)
tako, kot njuna vakuumska prednika. Sta pa mnogo manjsa in
robustnejsa, zato ju prav hitro in povsod zamenjata. Zamenjata
tudi dosedanjo kristalno diodo in refleksne ter (Sibke)
dvovotlinske klistrone v mikrovalovnih napravah.

Majhnost polprevodniskih elementov omogoci, da sestavljamo
cedalje bolj gosta in zapletena vezja za opravljanje najrazlicnejsih
opravil. Posebej uporabna se pokazejo vezja za obdelavo
digitalnih signalov, to je taksnih, ki so sestavljeni iz zaporedja
dveh vrst impulzov: visokih in nizkih/nicelnih. Tako sestavimo
Stevec impulzov s segmentnim zaslonom, digitalno uro, analogno-
digitalni pretvornik, digitalno-analogni pretvornik, ro¢ni
kalkulator z zaslonom iz tekocih kristalov in - krono vsega -
namizni racunalnik s tipkovnico, misko in matri¢nim zaslonom.

Racunalnik je najbolj zapletena in vsestranska priprava, kar jih je
doslej naredil ¢lovek. Je stroj za obdelavo informacij: digitalno
kodiranih sStevil, besedil, slik, zvoka, videa in Se kaj. Z njim
dobimo v roke sanjsko orodje za pisanje, risanje in racunanje, za
zajem, obdelavo in prikaz merskih podatkov, za krmiljenje
merilnikov in drugih naprav ter Se za mnogo drugega.
Medsebojna povezava racunalnikov v svetovno omrezje pa
omogoca hipni dostop do nepreglednega morja informacij ter
hipno komuniciranje preko vseh prostorskih meja. Posebej se
razmahne komunikacija preko mikrovalov in mnozice mobilnih

383



Racunalniska
numerika

ReSevanje osnovnih

384

enacb

Princip najmanjse
akcije

osebnih telefonov ter talnih postaj kratkega dosega. Po pravici
lahko recemo, da je z racunalnikom clovestvo stopilo v novo dobo.

Numeric¢na analiza

Racunsko orodje znanosti je matematika - ukvarjanje s Stevili,
funkcijami in enacbami. V principu lahko vse to delamo s
svinénikom na papirju. Ce je ratunanje preobseZno, in v
zapletenih primerih je vedno tako, pa pride prakti¢no v postev le
racunalnik. Ta v sekundi opravi toliko osnovnih racunskih
operacij, kolikor bi jih ¢lovek s svinénikom in papirjem v milijon
letih.

Primeri za numeric¢no uporabo racunalnika so naslednji:
statisticna obdelava nepreglednih mnozic izmerkov - izracun
porazdelitev, povprecij, standardnih deviacij, korelacijskih
koeficientov, regresijskih parametrov in drugo; izracun in
tabeliranje funkcij, podanih z vrsto ali integralom; izracun
harmonicnih spektrov funkcij; reSevanje poljubnih enachb;
resevanje sistemov linearnih enacb - izracun inverzne matrike,
lastnih vrednosti in lastnih vektorjev; in resSevanje navadnih ter
parcialnih diferencialnih enacb iz podanih zacetnih in/ali robnih
pogojev.

Vsi glavni zakoni narave, kakor smo jih spoznali, imajo obliko
diferencialnih enacb. Njihovo reSevanje je zato osnovnega
pomena. Tako, na primer, lahko izra¢unamo gibanje planetov
okoli Sonca, vklju¢no z vsemi njihovimi medsebojnimi vplivi
(gibalna enacba); prevajanje toplote po snovi (difuzijska enacba);
stati¢na elektri¢na in magnetna polja okoli nabojev in tokov
(potencialna enacba); stojne akusti¢ne in elektromagnetne valove
v notranjosti resonatorjev (amplitudna enacba); valovne funkcije
in lastne energije elektronov v razlicnih potencialih (kvantna
amplitudna enacba); stacionarna notranja stanja in razvoj zvezd;
in Se mnogo drugega.

Analiticna mehanika

Pot, ki jo pod vplivom konservativne sile ubere delec iz izbrane
zacCetne tocCke, je doloCena z zacCetno hitrostjo in z gibalno enacbo.
Scasoma prispe delec v neko "konc¢no" tocko. Namesto da je
ubrana pot doloCena z zacetno lego in zacetno hitrostjo, je morda
dolocCena tudi z zacetno in konc¢no lego? Med obema tockama si
namrec¢ lahko mislimo mnogo poti. Katera od njih je prava?
Ugotovimo, da je prava tista pot, vzdolz katere je razlika med
kineti¢no in potencialno energijo, integrirana po ¢asu, najmanjSa.
Drugace receno, prava pot je tista, za katero ima akcija

S =1/ (K— W) dt ekstrem (HAMILTON). Integrand poimenujemo
akcijska energija L. = K — W. Kar velja za eno tocko in kartezi¢ne
koordinate, velja tudi za poljuben sistem tock in za njegove
posplosene koordinate g; - razdalje med deli sistema, kote, ki
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dolocajo orientacijo, itd. UpoStevati moramo le celotno kineti¢no
in celotno potencialno energijo sistema.

Kako izrac¢unamo ekstremalno pot? Ugotovimo, da mora akcijska
energija zadoscati naslednjim enacbam druge stopnje
(LAGRANGE): d/dt (dL/aq;') — oL/daq; = 0. To so posplosene enacbe
gibanja. Ce vanje vstavimo specifi¢ni L, ki opisuje preuc¢evani
sistem, dobimo sistem diferencialnih enacb za g;(t), ki ga potem
resujemo kakor vemo in znamo.

PosplosSene enacbe lahko tudi zapiSemo kot sistem dvakrat toliko
enacb prve stopnje za posploSene koordinate g; in posplosene
impulze p;=4dL/aq;'. To so kanonicne enacbe gibanja (HAMILTON):
dg;/dt = 0H/ap;, dp;/dt = —aH/dq;, H= K+ W. V njih namesto
akcijske energije nastopa polna energija, ki je enaka vsoti
kineti¢ne in potencialne energije sistema.

Gibanje sistema masnih tock lahko torej opiSemo na vec
enakopravnih nacinov: z akcijskim integralom oziroma z
vektorskimi, posploSenimi ali kanoni¢nimi diferencialnimi
enacbami. Eno sledi iz drugega. Izberemo tisti nacin, ki je za dani
problem najbolj primeren.

Ce je ¢as homogen, mora biti akcijska energija sistema neodvisna
od Casa. Iz tega sledi, da se ohranja energija zaprtega sistema.
Ce je prostor homogen, mora biti akcijska energija
nespremenjena za majhen premik; iz tega sledi, da se ohranja
gibalna koli¢ina zaprtega sistema. In Ce je prostor izotropen,
mora biti akcijska energija nespremenjena za majhen zasuk;
sledi, da se ohranja vrtilna koli¢ina zaprtega sistema. Veliki
ohranitveni zakoni se tako pokaZzejo kot posledica homogenosti
Casa in homogenosti ter izotropnosti prostora (NOETHER).

Mehanika zvezne snovi

Gibanje kontinua opiSemo tako, da za vsak njegov snovni del
povemo, kam se pomakne v ¢asu. Ali pa za vsako prostorsko
tocko povemo, kaksSna je tamkajsnja hitrost snovi. Spremembo
gibanja v kratkem Casu zato podamo na dva nacina: s
substancialnimi odvodi dv/dt ali z lokalnimi odvodi av/at. Med
obojimi velja advekcijska povezava dv/dt =av/ot + (v-V)v .

Sile, ki delujejo na snovne dele kontinua, so dveh vrst:
prostorninsko porazdeljene (kot npr. teza) f in povrsinsko
porazdeljene (sile ob dotiku). Za vsako ploskev dS, Ki si jo
zamislimo v snovi, moramo vedeti, s kaksno silo dF deluje levi del
na desnega in obratno: dF = o0 dS. Matrika devetih koeficientov oy
je (simetri¢ni) napetostni tenzor. Gibalni zakon za del snovi se
potem glasi pdv/dt = f+ divo. Zapisani zakon lahko uporabimo za
izraCun gibanja Sele, ko poznamo napetostni tenzor za
preucevano snov. To nam uspe za dve vrsti snovi: za prozno snov
in za viskozno stisljivo tekocino.
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Za prozno snov tako izpeljemo enacbo gibanja pd?u/ot? =
f+GV?u+ (K+ G/3)V(Vu), vsebujoco proznostni in strizni modul
(CAUCHY / NAVIER). To je valovna enacba. Z njo izracunamo
deformacije in lastna nihanja "lepih" teles, na primer upogib
nosilca, zasuk gredi, nihanje krozne opne, nihanje gumijaste zoge
in podobno. Iz nje tudi izpeljemo enacbi za hitrost longitudinalnih
in transverzalnih valov v neomejeni snovi. Obojni valovi nastajajo
pri potresih. Z merjenjem casa potresnih sunkov na vec
opazovalnicah izracunavamo zariS¢a potresov. Ker se
transverzalni valovi ne Sirijo skozi tekocCine, ugotovimo, da ima
Zemlja pod trdno skorjo teko¢ plasc.

Za viskozno stisljivo tekocino pa izpeljemo gibalno enacbo
pdv/dt= f—Vp+nV>v+ (T +n/3) V(Vv), vsebujoco strizno in
dilatacijsko viskoznost (NAVIER / STOKES). Enacbo lahko
poenostavimo za primer neviskozne in/ali nestisljive tekocine. Iz
nje tudi izpeljemo enacbi za zvo¢ne in gravitacijske valove.

Posebej zanimiv kontinuum jo zemeljsko ozracje. To je suh zrak s
primesmi vodne pare, oblacnih kapljic in padavinskih delcev. Vse
skupaj opiSemo z zapletenim sistemom enacb. Osnovo tvorijo
enacbe za suh zrak: hidrodinamic¢na gibalna enacba, energijska
enacbha, kontinuitetna enacba in enacba stanja. Dodane so Se
razne enacbe za primesi. UpoStevamo tudi sistemske sile zaradi
vrtenja Zemlje, soncno obsevanje in hribovitost. Zacetne pogoje v
ozracCju dolo¢imo iz mnozice meritev, nadaljnji razvoj pa
izraCunamo z racunalnikom. Tako uspesno napovedujemo vreme
za nekaj dni vnaprej. ResSitev sistema enacb je zelo obcutljiva na
majhne spremembe v zacetnih pogojih (LORENZ), zato bolj
dolgoroc¢nih napovedi (zaenkrat) ne zmoremo izdelovati.

Analiticna termodinamika

Termodinamicni sistem, na primer posoda s plinom, je v
ravnovesju popolnoma opisan z enacbo stanja. Ta enacba
povezuje temperaturo, pritisk, prostornino in Se kaj, Ce je sistem
bolj zamotan. Stanje sistema se lahko spreminja. Prehod iz
zaCetnega v kon¢no stanje je "reverzibilen" ali ne. Reverzibilen je
tak prehod, katerega nazaj zavrten posnetek je realisticen.
Izotermno ali adiabatno stiskanje sistema je reverzibilno.
Prevajanje toplote, difuzija in gorenje pa to nisto.

Posebej zanimive so take spremembe, po katerih se sistem vrne v
zacCetno stanje. To so krozne spremembe. Tudi te so lahko
reverzibilne ali ne. Odkrijemo, da za krozno reverzibilno
spremembo velja § dQyey/T =0 (CARNOT). Vsota dovedenih in
odvedenih toplot, utezenih s pripadajo¢imi temperaturami, je
enaka nic¢. To pomeni, da za reverzibilen prehod iz enega stanja v
drugega velja [dQue/T=S;—S;. S tem je definirana entropija S
sistema relativno na poljubno izbrano stanje. Entropija je funkcija
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stanja. Kakrsenkoli prehod med dvema stanjema - reverzibilena li
ne - je povezan s spremembo entropije. Ta sprememba je natanko
tolikSna kot pri reverzibilnem prehodu. Entropija je aditivna in se
ne ohranja. V izoliranem sistemu narasca, dokler sistem ne
doseZe notranjega ravnovesja. Ce sistem ni izoliran, pa se
njegova entropija seveda lahko zmanjSa, vendar se pri tem
poveca entropija okolice. Skupna entropija sistema in okolice se
poveca. To je entropijski zakon (CLAUSIUS).

Z vpeljano entropijo se energijski zakon zapiSe v obliki

dU =TdS — pdV oziroma v kateri izmed ekvivalentnih oblik: za
entalpijo dH = TdS + Vdp, prosto energijo dF = —SdT — pdV ter
prosto entalpijo dG = —SdT + Vdp. To so diferencialne enacbe za
termodinamicne potenciale. S parcialnimi odvodi potencialov po
pripadajocih spremenljivkah so doloCene preostale
termodinamicne spremenljivke. Za sistem v ravnovesju imajo
potenciali minimalne vrednosti. Zapisane enacbe veljajo - s
potrebnimi dopolnitvami - tudi za ve¢fazne, veCkomponentne in
celo za kemic¢no reagirajocCe sisteme (GiBBS). Omogocajo nam, da
izracunamo, kolikSen delovni izplen prinasSajo razne krozne
spremembe in kakSne so ravnotezne konstante raznih snovnih
pretvorb. Tako med drugim ugotovimo, da znasa maksimalni
izkoristek toplotnega stroja n=AT/T in da so ravnovesja v
dvofaznem sistemu (para in voda, voda in led) opisana z enacbo
dp/dT = H/AV.

Do sedaj smo statisti¢no opisovali mnozico enakih, vendar
preprostih sistemov - atomov, molekul, elektronov in fotonov.
Sedaj opis razsirimo na mnozico enakih, vendar poljubnih
sistemov. Tak sistem je, na primer, zaprta posoda z vodo in paro.
Sistem, sestavljen iz N delcev, opiSemo v principu s 3N
posplosenimi koordinatami g; in s 3N posplosenimi impulzi p; ter
ga predstavimo kot tocko v 6N faznem prostoru. Nato si
zamislimo neskon¢no mnogo takih sistemov (ali obravnavani
sistem v neskon¢no mnogo trenutkih) v toplotni kopeli in
raziSCemo, kako so njihove "toCke" porazdeljene po faznem
prostoru. Ugotovimo, da je porazdelitev prav taka, kot pri
preprostih sistemih, namrec¢ kanoni¢na (GIBBS):

P;=(1/Z) exp (—E;/kT). Pri tem je P; delez sistemov, ki so v
energijskem stanju E;, Z pa je normalizacijska konstanta -
particijska funkcija. Termodinamicni potenciali se izrazajo preko
njenih odvodov. Tudi za entropijo najdemo statisticno razlago
(BOLTZMANN). Sorazmerna je logaritmu Stevila mikrostanj Q, ki
sestavljajo aktualno energijsko stanje sistema: S=kIlnQ.V
termodinami¢nem ravnovesju je ogromna vecina sistemov v
tistem makrostanju, ki je sestavljeno iz najve¢ mikrostanj, zato je
tedaj entropija najvecja.

387



388

Cetverna lega

Cetverni vektorji

Cetverna
elektrodinamika

Stirirazsezni svet

Ugotovili smo, da niti casovni presledki niti dolzine v svetu niso
enake, ¢e jih merimo v razli¢nih inercialnih sistemih. Pri sedlanju
iz enega sistema v drugega se Casi in lege med seboj prepletajo:
transformacija lege vsebuje Cas in transformacija casa vsebuje
lego. Cas in lega igrata formalno enakopravno vlogo. Zato na svet
pogledamo (MINKOWSKI) kot na stirirazsezni prostor, katerega
tocke - dogodke - predstavimo s Stirimi koordinatami: tremi
prostorskimi in eno ¢asovno (Casom, pomnozenim s svetlobno
hitrostjo). Taksno Cetverico poimenujemo cetverno lego:

x; = (ct, x,y, z). Njena kvadratna norma x; - x; = (ct)? — x? — y? — 22 je
invarianta, to je, v vsakem inercialnem sistemu je enaka.
Transformacijo ¢etverne lege iz enega v drug inercialni sistem
opiSemo z ustrezno transformacijsko matriko: x;' = L;jx;. Podvojeni
indeks, tukaj in zanaprej, pomeni sesStevanje po njem.

Gibanje delca predstavimo s krivuljo - Zivljenjsko ¢rto - v
prostoru-casu, pri cemer kot parameter sluzi Cas, ki ga kaze ura
na delcu, to je njegov lastni ¢as 7. Kratek premik vzdolz
zivljenjske Crte se zapiSe kot ds? = (cd1)? = (cdt)? — dx? — dy? — dz2.
Odvod cetverne lege po lastnem casu, ki je skalar, poimenujemo
Cetverno hitrost. Ko jo pomnozimo z maso delca, pa dobimo
cetverno gibalno koli¢ino. Njena ohranitev vsebuje zdruzeni
zakon o ohranitvi gibalne koli¢ine in energije. Odvod Cetverne
gibalne koli¢ine po lastnem casu pa je Cetverna sila. V njej se
skriva relativisti¢no popravljeni trirazsezni gibalni zakon. Vsi
nasteti ¢etverci se transformirajo enako - z isto matriko - kot
Cetverna lega. Njihove norme so invariantne.

Za Stirirazsezni svet priredimo Se enacbe za elektri¢ni naboj, tok
in elektromagnetno polje. Vpeljemo Cetverni gradientni operator,
cetverno gostoto toka (ki vsebuje gostoto naboja in gostoto toka)
ter Cetverni potencial (ki vsebuje skalarni in vektorski potencial).
Stara kontinuitetna enacba za naboj se potem zapiSe kot ¢cetverna
divergenca Cetverne gostote toka. Iz gostote toka gibalne koli¢ine
in iz gostote energijskega toka sestavimo Cetverni napetostni
tenzor. Kontinuitetni enacbi za gibalno koli¢ino in energijo se
potem zapiSeta v eni sapi kot Cetverni gradient Cetvernega
napetostnega tenzorja. Konc¢no Se iz komponent elektri¢ne in
magnetne poljske jakosti sestavimo cetverno poljsko jakost.
Osnovne Stiri enacbe polja se potem zapisejo kot dve enacbhi za
cetverno polje. Vsi vpeljani Cetverci se transformirajo kot
Cetverna lega, Cetverni tenzorji pa kot tenzorski produkt dveh
Cetvercev. V vseh inercialnih sistemih imajo vse "Cetverne"
enacbe enako obliko.
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V teznem polju, kakor smo ga opisali s teznim zakonom oziroma s
tezno potencialno enacbo, se vplivi Sirijo neskon¢no hitro. To je v
nasprotju s teorijo relativnosti. Teorijo gravitacije je zato
potrebno ustrezno nadgraditi (EINSTEIN).

Osnovna zamisel je naslednja: gravitacijsko polje ni ni¢ drugega
kot deformacija inercialnega, to je "ravnega" prostora-Casa.
Kaksna je deformacija, dolocCa prisotna snov. Delec se med dvema
tockama giblje po najkrajsi poti, geodetki. Dobesedno prosto
pada. Z gibanjem delcev se pa seveda spremeni dotedanja
porazdelitev snovi ter s tem dotedanja deformacija prostora-casa.
Prostor ni ni¢ ve¢ nekaj locenega od snovi, ampak postane ena od
"snovnih" sestavin sveta. Nakaj, kar se upogiba, krivi in valuje.
Nismo ujeti v nevidno togo ogrodje: potopljeni smo v nekakSnem
orjaskem gibkem mehkuzcu. Pri roki je nazorna predstava.
Prozno opno napnemo na okvir in nanjo tu in tam polozimo
razli¢no tezke kamne. Opna se pod njimi usloc¢i. Po opni
zazenemo kroglico in ta se giblje tako, kakor ji velevajo krivine.

StirirazseZni prostor-¢as opiSemo s poljubnimi krivoértnimi
koordinatami x'. Kratek premik v tem prostoru se zapiSe kot
ds? = g;;dx!d¥. To je metricna enacba ali krajSe metrika.
Koeficienti g;; sestavljajo metricni tenzor in opisujejo, kako je
prostor deformiran. Ce te koeficiente poznamo, so geodetke
popolnoma dolocene z geodetskimi ena¢bami d2x¥/d72 —
I'*;-dxi/dt-dx¥/dt = 0.V izrazih I'%; so skriti metri¢ni koeficienti in
njihovi odvodi. Masni delci, kot receno, sledijo geodetkam.
Geodetske enacbe so torej enacbe gibanja, v katerih koeficienti
I'*; prevzamejo vlogo gravitacijske sile. Tudi fotoni sledijo
geodetkam, le da te ne morejo biti opisane parametricno z
lastnim ¢asom, saj je zanje enak nic.

Lokalno deformacijo prostora-Casa opisuje krivinski tenzor R;;. To
je posplositev krivinskega radija pri dvorazseznih ploskvah.
Komponente krivinskega tenzorja so na zamotan nacin izrazene z
lokalnimi diferenciali geodetk. Vsota tega tenzorja in (s skalarno
ukrivljenostjo pomnoZenega) metricnega tenzorja je sorazmerna z
napetostnim tenzorjem, katerega komponente vsebujejo
porazdelitev in pretoke mase, energije, gibalne koli¢ine in
pritiska po prostoru-¢asu: R;;— !/, R gi; = k/8mc* - Tj;.
Sorazmernostni koeficient vsebuje znano gravitacijsko konstanto.
Zapisana tenzorska enacba - ki je sestavljena iz desetih razlicnih
enach, ker so nastopajoci tenzorji simetri¢ni - prevzame vlogo
stare potencialne enacbe. Slednja je tudi mejni primer, ko je
gibanje pocasno in ukrivljenost majhna, to je, ko je polje Sibko.

Resevanje relativisticne gravitacijske enacbe pomeni, da za dani
napetostni tenzor iSCemo ustrezajocCi metricni tenzor, torej
metricne koeficiente. Ce je napetostni tenzor enak ni¢, dobimo
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ravno metriko. Izracun nam uspe tudi v dveh pomembnih
primerih: za srediSc¢e neskoncno velike homogene krogle
(FRIDMAN) in za okolico stacionarne krogle (SCHWARZSCHILD).
Tako dobimo "vesoljsko" metriko in "zvezdno" metriko. Iz prve
sledi opis raztezajoCega se vesolja; ujema se s tistim, ki ga ze
poznamo. Iz druge pa izpeljemo, kolikSen je radij obzorja okrog
¢rne luknje. Svetloba, ujeta znotraj tega obzorja, ne more ubezati
preko njega. Crne luknje so nevidne.

V vsaki toc¢ki ukrivljenega prostora-Casa si lahko mislimo prosto
padajo¢ predmet, recimo zaprto kabino. Na kabino vezan
koordinatni sistem je lokalno inercialen: vsi pojavi v njem so prav
taki, kakor bi bili v enakomerno se gibajoCem sistemu - z izjemo
gravitacije, ki cudezno izgine. Zato vse enacbe, ki veljajo v
"zaresnih" inercialnih sistemih, veljajo v enaki obliki tudi v
lokalnih inercialnih sistemih.

Ali je teorija pravilna ali ne, preverimo preko njenih napovedi.
Teorija med drugim napove naslednje. — Merkur, kot Soncu
najblizji planet, se giblje po elipsi, katere perihelij se pocasi

vrti. — Svetloba se pri letu mimo Sonca rahlo odkloni. — Ure
(seveda ne tiste na tezno nihalo) tecejo v teznem polju
pocasneje. — Svetloba, izsevana iz atomov v teznem polju, je
rdecCe premaknjena. — Obstajajo tezni valovi. Vse to res opazimo
in kvantitativno potrdimo. Vendar pa so v teh in drugih
"normalnih" okoliS¢inah posledice teorije tako majhne, da jih
vecCinoma ni treba upostevati.

Raziskave vesolja

Razvoj polprevodniskih naprav prinese tudi nov svetlobni senzor:
kvadratno "fotomatriko" iz drobcenih fotodiod. V hipu zamenja
dosedanjo fotografsko plosco v fotoaparatih in astronomskih
daljnogledih. Za krmiljenje, zajem in obdelavo izmerkov seveda
poskrbijo racunalniki. Posebni motorji prilagajajo obliko
sestavljenih zrcal tako, da zmanjSujejo motnje iz ozracja in
poskrbijo za ostre slike.

S tako izboljsanimi daljnogledi - s premeri do 10 metrov - uspemo
izmeriti paralakse zvezd do razdalje 300 svetlobnih let in
katalogizirati preko 100 000 zvezd. S tem mocno zgostimo
dosedanje zvezdne diagrame. Z dolgim Casom ekspozicije pa
sezemo do galaksij na oddaljenosti 10 - 10° svetlobnih let, to je,
skoraj na rob (ali na zaCetek) vidnega vesolja. V vidnem vesolju
nastejemo 100 milijard galaksij. Samo v nasi Galaksiji nastejemo
kaksnih 100 milijard zvezd. Okrog mnogih bliznjih zvezd zaznamo
celo planete. Okrog nekaterih jat ali kopic galaksij pa opazimo
tudi gravitacijski odklon svetlobe iz zadaj lezecih izvorov: kazejo
se kot veckratne slike izvora.



Radijski teleskopi

Temna masa

Temna energija

Sateliti in sonde

Poleg vidnih daljnogledov zgradimo tudi radijske teleskope.
Najvecji ima premer antene 300 metrov in lezi v mrtvem
vulkanskem kraterju. "Usmerjamo" ga s premikanjem fokalnega
sprejemnika. Z radijskimi teleskopi odkrijemo pulzarje, ki jih
prepoznamo kot hitro se vrtece nevtronske zvezde, in kvazarje, ki
so verjetno ogromne ¢rne luknje v srediS¢u mladih (oddaljenih)
galaksij, pozirajoce okoliSnje zvezde. Radijski teleskop uporabimo
tudi kot radar in z njim zelo natanc¢no izmerimo oddaljenosti do
Lune in do najblizjih planetov.

Pri raziskovanju pa nas cakajo tudi presenecenja. Zvezde na robu
galaksij krozijo hitreje, kakor bi smele, ¢e bi na njih delovalo
skupno gravitacijsko polje galaksije, ocenjeno iz Stevila in mas
vsebujocih zvezd. Zdi se, kakor da je vsaka galaksija ujeta v
kroglo iz nekakSne temne snovi, ki ne seva (OSTRIKER). Te snovi je
nekajkrat ve¢ kot navadne snovi. Kaj naj bi bila, ne vemo.

Oddaljene supernove so manj svetle, kakor bi morale biti pri
oddaljenosti, izracunani iz rde¢ega zamika njihove svetlobe. To
pomeni, da se vesolje danes Siri hitreje kot nekoc¢. Kaze, da v
vesolju obstaja nekaksSna temna energija, enakomerno
porazdeljena, ki vesolje pospeseno napihuje. Kaj naj bi se skrivalo
za vsem tem, ne vemo. Morda so celo meritve napacne. K celotni
masi vesolja naj bi temna energija prispevala 70 %, temna snov
25 %, vidna snov pa zgolj okrog 5 %. Vesolje je kot morje ponoci,
ko vidimo le bele pene na valovih.

Vesolja pa ne opazujemo zgolj z Zemlje, ampak vanj tudi
vstopimo. — V tirnico okoli Zemlje izstrelimo umetne satelite in
nanje postavimo daljnoglede. Tako so povsem izven obmocja
ozracnih motenj, zaznavajo pa lahko tudi zarke gama, ki jih
ozracje sicer moc¢no absorbira. — Vidne in infrardece kamere na
satelitih usmerimo proti Zemlji, da sporocajo lego in gibanje
vremenskih sistemov v njenem ozrac¢ju. — MreZa posebnih
satelitov z atomskimi urami na krovu posilja na Zemljo ¢asovne
signale, sprejemniki na Zemlji pa iz njih izracunavajo svojo
zemljepisno lego na 1” (30 m) natanc¢no. Pri tem morajo
upostevati vpliv gibanja in teZnega polja na tek ur. Kopenska,
morska in zra¢na navigacija postanejo otrocje lahke. — Na Mesec
posljemo rakete z ljudmi in jih tudi varno vrnemo. — Sonde na
daljinsko krmiljenje in z mnozico raznih merilnikov pa posljemo v
orbite okrog Venere, Marsa in drugih planetov. Na Veneri in
Marsu tudi pristanejo in raziskujejo okolico, izmerke in slike pa
posiljajo na Zemljo. Za izracunavanje poti v teznih poljih ni treba
upostevati relativnosti. — Energijo za delovanje satelitov in sond
zagotavljajo radioaktivni viri in polprevodniske sonc¢ne celice.
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Vektorji stanja

Kvantni prostor

Posplosene baze

Kvantni prostor stanj

Stanje kvantnega sistema, recimo delca v potencialni jami, smo
opisali s kompleksno valovno funkcijo ¥(x). Zaradi preglednosti
privzamemo, da so koordinate x celoSteviléne. Na valovno
funkcijo ¥(i) lahko potem pogledamo kot na zaporedje amplitud
{¥(1),¥(2)...} ={c1,c...}. Zaporedje {c;} je "vektor" s koncno
ali neskon¢no mnogo kompleksnimi komponentami. Po zgledu
navadnih vektorjev v tridimenzionalnem skalarnem polju
vpeljemo kvantne vektorje v mnogodimenzionalnem
kompleksnem polju (DIRAC): |S) =3 c;|i). Bazni vektor |i) je
stolpec, ki ima i-to komponento enako 1, vse druge pa 0. Njegovo
transponirano (in konjugirano) obliko - vrstico - ozna¢imo kot
(i| = |i)t. Produkt baznega "bra" vektorja z njegovim "ket"
vektorjem je enak 1, z drugimi ket vektorji pa 0. Zato velja

(i|S) = c; = W(i).

Stanje kvantnega sistema si torej lahko nazorno predstavljamo
kot vektor |S) v namisljenem kvantnem prostoru. Ta prostor je
napet na konc¢no ali neskon¢no mnogo baznih vektorjev |i). Vsak
ima dolzino 1. Vsi so pravokotni drug na drugega. Projekcije |S)
na bazne vektorje so kompleksna Stevila c; - verjetnostne
amplitude za razlicna bazna stanja, v katerih moremo sistem najti
ob merjenju. Stevilo vektorjevih komponent je enako Stevilu
baznih stanj. Prehod iz diskretnih na zvezni nabor baznih
vektorjev je formalno urejen z vpeljavo delta funkcij in njihovih
integralov. V zvezni limiti velja ¥(x) = (x|S). Posplositev na
vecdelCne sisteme je neposredna.

Namesto s funkcijo ¥(x) lahko opiSemo sistem - v istem stanju - s
funkcijo @(G). Velja vse povedano, le bazni vektorji so sedaj
drugi: namesto "lokacijskih" so "gibalni". Zato je ugodno
razmis$ljati o vektorju stanja neodvisno od tega, na katere bazne
vektorje je projiciran. Postuliramo naslednje (DIRAC). — Stanje
sistema je popolnoma opisano z vektorjem stanja |S) v kvantnem
prostoru. — Vsaka opazljivka A, recimo lega delca, ima v tem
kvantnem prostoru razpet svoj nabor baznih vektorjev |a), na
katerega je aktualni vektor stanja projiciran: |S) =3 c4|a). Ko
merimo A, najdemo sistem v enem izmed baznih stanj |a) in
izmerimo mu ustrezajoCo vrednost a. — Bazne vektorje |a)
opazljivke A in njihove pripadajoce vrednosti a doloca enacbha
Ala) = a|a), pri Cemer je A za to spremenljivko merodajen
operator. — Povprecna vrednost spremenljivke, izmerjena v
mnogo meritvah, znasa (A) =3 a|cy|?. — Vektor stanja se v ¢asu
spreminja po gibalnem zakonu ihd/dt|S) = H|S), pri cemer je H
energijski operator. Pravzaprav so to stare, Ze znane enacbe,
zapisane na "nepopoln" nac¢in. Ce jih mnoZimo s konkretnimi
baznimi vektorji, recimo z (x|, dobimo "popolne" enacbe v
ustreznih koordinatah.



Mnogotirna pot

Kvantna polja

Za gibanje klasicnega delca velja princip najmanjse akcije.
Domnevamo, da velja nekaj podobnega tudi za gibanje kvantnega
delca. Da se pojavi interferenca, pa morajo razlicne poti med
seboj nekako sodelovati. Tako postuliramo (FEYNMAN): ko se delec
giblje iz stanja |x;,t1) v stanje |x,t;), ne ubere enega dolocenega
tira, ampak "socCasno" ubere vse mogoce tire x(t), ki povezujejo
obe tocki. Prispevek posamicnega tira je eksponencial, katerega
(imaginarna) faza je klasi¢na akcija (normirana na kvantno
konstanto) za doti¢ni tir. Celotni prispevek od vseh tirov je
amplituda verjetnosti za prehod: (xy,tz|x1,t1) = > exp (iS/h).
Nazorno to pomeni, da je delec opremljen s puscico enotne
dolzine, ki se vzdolz tira vrti. V konc¢ni tocki seStejemo puscice
vseh tirov v skupno puscico. Njen kvadrat je verjetnost, da se tam
delec pojavi. Prehod iz diskretnih na zvezni nabor tirov je
formalno urejen z vpeljavo mnogotirnih integralov. Dejansko
racunanje je obsezno in zamotano.

Opisana formulacija kvantnega gibanja je nazorno zelo
zadovoljujoca. Ker ne vemo, po kateri poti se delec giblje, pac
sestejemo vse poti. Delec med gibanjem takoreko¢ preizkusa
oziroma "voha" vse moZne poti. Ce je zaprt v jami, delec
raziskuje, kaj je zunaj nje in se odlo¢i, ali bo tuneliral ali ne. Ce
Cepi na vrhu potencialnega hriba, pa ugotovi, da je v okolici
potencialna energija nizja, in se odloci, da pade.

Kar smo ugotovili za gibanje iz ene tocke v drugo, velja tudi za
gibanje iz mnozice zacetnih tock v mnozico kon¢nih tock. To
pomeni, da s tem pravzaprav raCunamo ¢asovni razvoj valovne
funkcije. Tako definirana valovna funkcija in njen razvoj
zadoScata kvantni gibalni enacbi. Posplositev na vec¢ delcev je
neposredna. Mnogotirni opis kvantnih sistemov je torej
enakovreden valovnemu opisu.

Kvantna elektrodinamika

Kvantna mehanika opisuje gibanje lahkih pocasnih delcev, ki ne
izginjajo in ne nastajajo in med katerimi delujejo konservativne
sile, podane s potencialom. Ko jo uporabimo za opis atomov,
predpostavljamo, da se elektroni v njih gibljejo nerelativisti¢no,
kar ni povsem res. Poleg tega je kvantizirano le gibanje
elektronov, elektromagnetno polje sil med njimi pa je opisano
klasi¢no, z elektricnim potencialom. To ne zadostuje, da bi opisali
vsa dogajanja v atomih, zlasti ne tista, pri katerih se rojevajo in
umirajo fotoni. Izsevanje in absorpcija svetlobe v atomih (in
prostih elektronih) sta pa¢ podrocji, ki sta kvantni mehaniki tuja,
in smo jih v njenem okviru tudi obravnavali kot tujka.

Iz povedanega izhaja, da bi bilo zazeljeno kvantno mehaniko
nekako razsiriti, da bo zajela tako relativisticne elektrone kot
fotone. To nam uspe: zgradimo novo teorijo - kvantno
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elektrodinamiko. V njej nastopajo tako delci snovi - elektroni in
pozitroni (antielektroni) - kot tudi delci elektromagnetnega

polja - fotoni. Oboji so opisani s kvantnimi polji, ki medsebojno
vplivajo druga na drugo. Elektroni in pozitroni torej niso vec
opisani kot posamicni delci, pa¢ pa so predstavljeni kot vzbujena
stanja v kvantiziranem elektronsko-pozitronskem polju. Osnovna
enacba kvantne elektrodinamike ima podobno obliko kot osnovna
enacba kvantne mehanike; namesto "stare" valovne funkcije, ki je
odvisna od koordinat elektronov, vsebuje "novo" valovno funkcijo,
ki je odvisna od zasedbenih Stevil del¢nih stanj. Energijski
operator v enacbi pa je temu ustrezno prilagojen.

V kvantni elektrodinamiki se elektromagnetna sila med elektri¢cno
nabitimi snovnimi delci kaze kot izmenjava virtualnih fotonov -
tako kratkozivih fotonov, da jih ne moremo zaznati. Nabiti delci
nenehno izsevajo in absorbirajo virtualne fotone in tako vplivajo
drug na drugega. Tipi¢ni pojav, ki ga postavljena teorija opisuje,
je sipanje: elektrona na elektronu, elektrona na pozitronu, fotona
na elektronu in podobno. Dana je, na primer, zacetna
konfiguracija dveh elektronov; kaksna je verjetnost za katerokoli
konc¢no konfiguracijo? Najlazje jo izracunamo po prilagojeni
metodi mnogotirnih poti iz zacetne v vsako kon¢no konfiguracijo.
Pri tem moramo vkljuciti najrazlicenjSa izsevanja in absorpcije
virtualnih fotonov. Brez racunalnika ne gre. Podobno racunamo
tudi gibanje hitrih elektronov v elektri¢nih poljih atomov in
sorodne probleme. Racuni se povsem ujemajo z eksperimenti.

Osnovni delci in polja

Izboljsani detektorji delcev, podprti z racunalniki, omogocijo
izvedbo takih poskusov, ki smo jih doslej imeli zgolj za miselne ali
celo za nemogoce. Tako uspe, na primer, interferenc¢ni poskus s
posamicnimi elektroni na dveh rezah.

Obstreljevanje atomskih jeder z "naravnimi" izstrelki - predvsem
z "radioaktivnimi" delci alfa in nevtroni - se hitro pokaze za
nezadostno. Nimamo dovolj nadzora nad energijami teh delcev in
zelimo si tudi vecjih energij. Zato zgradimo pospeSevalnike za
"umetne" izstrelke, zlasti elektrone in protone (LAWRENCE).
Pospesujemo jih z elektricnimi polji - enkrat vzdolZ ravnih stez ali
vecCkrat vzdolz kroznih stez, pri cemer za ukrivljanje poskrbijo
magnetna polja. Uspe nam zgraditi krozno stezo z obsegom
30km in doseci energijo protonov preko 1TeV, torej za faktor 106
vecjo od radioaktivnih delcev alfa! Seveda za zajem in obdelavo
izmerkov spet poskrbijo racunalniki.

Izsledki poskusov so osupljivi. Poleg protonov, nevtronov,
elektronov, pozitronov, nevtrinov in fotonov - do sedaj poznanih
delcev - odkrijemo Se nekaj sto drugih, lahkih in tezkih. Vecina je
zelo kratkozivih. Vse te delce uspemo (GELL-MANN) sistemizirati



Sistemizacija delcev

Poenotenje treh sil

Velika teorija vsega

kot sestavljene iz dobrih dveh ducatov osnovnih delcev - delcev
snovi in delcev interakcijskih polj med njimi. Zgledujemo se po
kvantni elektrodinamiki. Snovni delci izsevajo ali absorbirajo
delce polja in tako vplivajo drug na drugega.

Osnovni delci snovi imajo polcel spin in spadajo v dve druzini:
leptone in kvarke. Med leptone Stejemo: elektron, mion in tauon
ter elektronski, mionski in tauonski nevtrino. Med kvarke pa
Stejemo delce u(p), d(own), s(trange), c(charm), b(ottom) in t(op).
K vsakemu delcu obstaja Se njegov antidelec, ki ima nekatere
nasprotne lastnosti.

Osnovni delci polj imajo cel spin. Moc¢no polje, ki deluje med
kvarki, sestavljajo gluoni, in sicer osem njih. Sibko polje, ki deluje
med vsemi delci, prenasajo Sibki bozoni, troje njih. Obe polji
imata kratek doseg. Elektromagnetno polje med delci z
elektricnim nabojem pa prenasajo, kot ze vemo, fotoni.

Kvark ima elektri¢ni naboj £1/3 ali £2/3 ter barvni naboj, ki je
lahko rdec, zelen ali moder. Anti-kvarki imajo barvni naboj anti-
rdec, anti-zelen ali anti-moder. Prosti kvarki ne obstajajo.
Obstajajo le vezani; med drugim tvorijo protone in nevtrone.
Proton je sestavljen iz treh kvarkov tako, da je njegov elektricni
naboj enak 1 in barvni naboj bel (rde¢ + zelen + moder).
Podobno velja za nevtron.

Kvarki se veZejo v protone in nevtrone preko gluonov. Vsak gluon
izmed osmih nosi po en barvni naboj in anti-naboj, recimo moder
in anti-zelen. Preostanek mocne sile navzven se kaze kot jedrska
sila, ki veZe protone in nevtrone med seboj. Moc¢na sila deluje

celo med gluoni samimi, saj izsevajo in absorbirajo druge gluone.

Tako imamo zgrajene kvantne teorije polj za elektromagnetno,
mocno in Sibko silo. Vse te teorije so v skladu s posebno
relativnostjo. Deloma je izdelana Se poenotena teorija vseh treh
sil. Ta teorija pravi, da so sile odvisne od temperature (energije)
delcev. MocCna sila, na primer, z energijo pojema. Pri
temperaturah, kakrsne so vladale na samem zacetku velikega
poka, naj bi postale vse tri sile med seboj nerazlocljive. Ko se je
vesolje Sirilo in ohlajalo, pa so se tudi sile zacCele razlikovati.
Sibka in elektromagnetna sila sta Ze uspe$no zdruZeni. Mo¢na
sila na to Se caka.

Kvantni ¢as-prostor

Kaj pa sila, ki jo je Clovestvo spoznalo najprej: gravitacija oziroma
ukrivljen prostor-cas, kakor smo jo ze prepoznali? Ali je tudi ona
kvantizirana v hipoteti¢ne gravitone?

V primerjavi z ostalimi tremi osnovnimi silami je gravitacija tako
Sibka, da ne igra nobene vloge v atomih in jedrih. Pomembna
postane le v ekstremnih podrocjih: v notranjosti ¢rnih lukenj in v
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zgodnjem, gostem vesolju. S tem se pojavi tudi delovna potreba
po njeni kvantizaciji. Se moc¢nej$e gonilo za to pa je stremljenje
po poenotenem opisu vseh stirih sil, to je k izdelavi "velike teorije
vsega". Ta teorija naj bi kvantizirala ukrivljeni prostor-cas in
mase delcev ter zaobjela vse sStiri znane sile in morda Se kaksno
neznano.

Pot do velike teorije vsega ni znana. Nekateri raziskovalci
izhajajo iz obstojecih kvantnih teorij polj in jih poskusSajo
prilagoditi, da bi vkljucili Se gravitacijo. Tezava pri tem je, da
izhodiSc¢ne teorije polj temeljijo na ozadju ravnega prostora-casa.
Drugi pa raje izhajajo iz sploSne relativnosti in poskusajo
kvantizirati njene enacbe, nato pa vkljuciti Se preostale sile, ¢e bo
Slo. Zdi se, da je ta pristop boljsi. Kaksnih posebnih uspehov do
sedaj pa Se ni.

Zadnja meja

Ali bo kdaj izdelana velika teorija vsega, ne vemo. Lepo bi jo Ze
bilo imeti. Vendar na poti do nje stojijo visoke, morda
nepremostljive ovire: matemati¢ne in eksperimentalne. Do sedaj
je bilo ¢lovestvo pri napredovanju Se vedno uspesno. Upajmo, da
bo tako tudi tokrat.

Danes se zdi, da so trenutne ovire napredka matematicne, in te
verjetno niso nepremostljive. V okviru svojih omejitev bo cloveski
razum Ze na$el nacin, kako jih odpraviti. Se zmeraj je bilo tako. S
tem bi uspesno in poenoteno, vsaj v principu, opisali vse, kar je v
naravi opazenega. Mnogo bolj resne so pricakovane
eksperimentalne ovire. Sodobne meritve postajajo tako tezke in
merilne naprave tako drage, da se zdi, kot da Ze trkamo ob
eksperimentalno mejo. Tudi ¢e bi kon¢no teorijo le uspeli izdelati,
se kaj lahko zgodi, da njenih napovedi (recimo gravitonov) ne bi
mogli izmeriti. Prav tako nikoli ne bi mogli biti gotovi, da izven
koncne teorije ni nicesar vec, kar bi ji lahko oporekalo (tudi ¢e bi
teorija sama tako trdila). Morda je takSna moznost Se najbolj
verjetna.

Kakor vse kaze, bodo v prihodnje ¢edalje vecjo vlogo igrali
racunalniski izracuni in simulacije izsekov sveta. Morda pri tem
ne bo treba vec¢ resevati poznanih enacb gibanja, ampak
preigravati nekaj preprostih pravil, kakor pri Sahu, ki bi se jim
pokoravali sestavni delci sveta pri medsebojni igri gibanja.
Racunalniki pa bi morali biti dovolj hitri, da bi po teh pravilih
lahko uspesno racunali. Konec koncev lahko tudi na vesolje
pogledamo kot na orjaski racunalnik, ki s svojimi sestavnimi deli
"racuna" in "kaze" rezultate, ne da bi reseval kakrsnekoli enacbe.
Do takih pravil in do takih racunalnikov pa Se ni vidne, kaj Sele
speljane poti. ]
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koncentracija 23.9
kondenzacija 4.2
kondenzator 24.3
influencni 25.3
ploscati 25.1
konjska moc¢ 9.8
konservativno polje 32.5
konvekcija toplote 22.16
v atmosferi 22.16
v dimniku 22.16
konvektivni oblaki 22.16
kot generatorji toka 25.3
koordinate, cilindri¢ne 29.1, 32.7
koordinate, kartezi¢ne 18.8, 29.1, 31.1
koordinate, polarne 18.8
koordinate, sfericne 29.1, 32.8
koordinatni sistem 18.5, 19.6
korelacijski koeficient 33.10
koreni 6.4, 15.3
kositer 4.6
kot 7.2, 8.4
kotna hitrost 18.8, 34.1
kotna minuta 7.2
kotna sekunda 12.9
kotna stopinja 7.2
kotni pospesek 34.1
kotomer 7.2
kovarianca 33.10
kovine 4.6
kozmicni zarki 44.15
krhkost 20.3
kristali 4.6
mrezna razdalja 41.3
mrezna zgradba 43.3
nihanje atomov 43.3
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kristalizacija 23.9
kriticna temperatura 22.9
kriti¢ni tlak 22.9
krivulje
dolzinski element 31.7
elementarne 31.2-5
krivinski radij 31.8
opis z enacbo 31.1
tangenta 31.8
ukrivljenost 31.8
vektorski opis 31.6
krog
obseg 8.4
razni izreki 8.4
kronometer 7.5
krozna konstanta 8.4, 17.4, 28.7
kulminacija 3.1
kulminacijska visina 7.3
kvadrant 7.2
kvadratna enacba 14.6
kvadratna funkcija 14.6
kvadratni zakon upora 20.9
kvantna amplitudna enacba 42.7
kvantna konstanta 41.1
kvantna stanja,
Cista 42.7
meSana 42.7
kvantni gibalni zakon 42.6
kvantni oscilator 42.10
kvantni rotator 43.1

laminarni tok 20.6
lastna energija 35.12
lastne amplitude 42.7
lastne energije 42.7
ledisce 22.2
lega 1.5, 34.1
lepenje 19.5
les 1.2
letne dobe 3.4
leto 7.1
civilno 7.1
linearna enacba 14.6
linearna funkcija 14.6
linearna regresija 33.15
linearni zakon upora 20.7
liter 8.10
lo¢evanje zmesi 4.1
loCljivost
daljnogleda 27.3, 38.14
mikroskopa 27.3
logaritemska funkcija 15.5
logaritemsko rac¢unalo 13.7
logaritmi 13.4-6
lom elektromagnetnega valovanja
38.12, 38.13
lom svetlobe 12.3

lomni koli¢nik 12.3, 38.10, 38.11,
39.12

lomni zakon 12.3, 21.6, 38.12

lupa 12.7

magnetna cirkulacija 37.7
magnetna deklinacija 24.5
magnetna energija 25.10

gostota 25.10, 38.5
magnetna konstanta 25.7
magnetna polarizacija 37.10
magnetna poljska jakost 25.4, 37.6

polja tokov 37.6

tokovodnika 37.6
magnetna sila 25.4
magnetna sonda 39.11
magnetna susceptibilnost 37.10
magnetne snovi 24.4
magnetni dipol 24.4, 37.9
magnetni model snovi 24.4
magnetni moment 37.9
magnetni navor 25.4
magnetni potencial 37.8
magnetni pretok 25.5, 37.7
magnetni ucinek toka 24.8
magnetnica 24.5
magnetno polje 25.4

silnice 25.4
magnetoelektri¢ni pojav 39.11
magnetofon 40.10
magnetoskop 40.10
magnetostati¢ni zakon 37.6
masa 19.2

gostota 19.2

tezka 19.3

vztrajna 19.3
masa in energija 35.12, 35.13
masni primanjkljaj jedra 44.8
masni tok 20.6
masno sredisce 34.2
matrike 29.8-9

in lastni vektorji 29.13-14

racunanje z njimi 29.10-12
medatomske vezi 43.1

ionska 43.1

kovalentna 43.1

kovinska 43.3

molekulska 43.3
medenina 4.6
megli¢na kamera 44.3
mehanic¢ni ekvivalent toplote 22.6
meja natezne trdnosti 20.3
meja proznosti 20.3
menzura 8.10
merske napake 33.12

absolutna 33.12

intervalna ocena 33.13
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ocena 33.12
relativna 33.12
Sirjenje 33.12
znacilna mesta 6.2
mesana svetloba 12.4
Mesec 3.5, 12.10
masa 19.12
oddaljenost 8.12, 40.13
tezni pospesek 19.10
velikost 8.12
mesec 7.1
metacenter 10.8
metan 11.4
meter (palica) 8.1, 8.11
meter 8.1, 8.11
mikrofon 26.10
mikroorganizmi 12.7, 12.8
mikroskop 12.8
mikrovalovi 40.12
milja 8.1
milo 4.7
minerali 4.6
minuta 7.5
mm Hg 10.3
moc 9.8
mocna (jedrska) sila 44.1
modri premik svetlobe 35.8
molekule 11.1
dolzina vezi 43.1
medsebojna razdalja v plinih 36.1
nihanje 43.1, 43.2
povprecna hitrost 36.2
povprecna prosta pot 36.11
relativha masa 23.3
velikost 23.6, 36.3
vrtenje 43.1, 43.2
vrtilno-nihajni spektri 43.1
morska milja 8.11
motor z notranjim izgorevanjem
glej eksplozijski motor
mrki 3.6, 8.13

nacelo nedolocenosti 42.5
naelektritev s trenjem 24.1
nafta 11.6
namagnetenje snovi 24.4
naocniki 12.6
napetostni most 24.9
natrij 11.8, 23.4
natrijev klorid (morska sol) 11.8
navor 9.7

notranji 34.4

teze 9.7

zunanji 34.4
navpicnica 1.5
nebesna os 3.5
nebesna telesa 3.5

nebesni ekvator 7.4
nebesni pol 3.5
nebesni poldnevnik 7.4
nebesno gibanje
Meseca 3.5
planetov 3.5
Sonca 3.1, 3.5
zvezd 3.5
nevtralizacija 11.5
nevtrino 44.10
nevtroni 44.1, 44.7
masa 44.7
newton 19.2
nihajni krog, elektri¢ni 25.11
nihalo na spiralno vzmet 7.5
nihalo, balisti¢no 34.3
nihalo, nitno 7.5
nihalo, tezno 7.5
nihanje
amplituda 18.7
frekvenca 18.7
krozna frekvenca 18.7
lastna frekvenca 34.10
nihajni ¢as 18.7
perioda, glej nihajni cas
nihanje, duseno 34.10
nihanje, harmonic¢no 18.7, 34.10
nihanje, tezno 7.5, 18.7, 19.4
nihanje, vzbujeno 34.10
nihanje, vzbujeno z dusenjem 34.10
nihanje, vzmetno 19.4
normalna porazdelitev 33.7
notranja energija 22.6, 36.9
nukleoni 44.1
nuklidi 44.9

obratna sorazmernost 14.4

obrestni ra¢un 6.5, 6.6

obzorni krog 3.4

odboj elektromagnetnega valovanja
38.12, 38.13

odboj svetlobe 12.2

odboj zvoka 21.8

odbojni zakon 12.2, 21.5, 38.12

odbojnost 27.10, 38.12-13

odklonska sila 19.7

odvod funkcije 16.1
elementarni odvodi 16.3
pravila odvajanja 16.4, 16.5
parcialni odvodi 30.4

ogljik 4.4
ogljik-14 44.15

ogljikovi oksidi 11.3, 11.5

ohm 24.10

ojacevalec 40.3
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oko 12.6
kratkovidnost in daljnovidnost
12.6
oksidacija 11.2, 23.11
opazovalni sistem 19.6, 35.4
orbitalna hitrost 18.9
orbitalni ¢as
siderski 18.10
sinodski 18.10
in sredis¢na masa 34.13
orbitalni tiri 34.13
orbitalni zakon 18.9, 19.11, 34.13
orbitiranje dvozvezdja 34.13
orbitiranje planetov in satelitov
18.9-10
oscilator 40.5
osciloskop 40.4
osmoza 23.10
osmozni tlak 23.10
osnovni naboj 24.7, 36.3, 36.10, 39.7
osvetljenost 27.6
ozracje 1.3
naelektrenost 25.3
pritisk 10.3, 22.4
sestava 11.2
temperatura 22.3

paralaksa 8.6
planetov 27.12
zvezd 27.12
paralelogramsko pravilo 9.6
paramagnetna snov 37.10
parcialne diferencialne enacbe 36.12
parna turbina 26.1
parni stroj 22.13
parsek 27.12
pepelika 4.7
permeabilnost 25.7, 39.10
permutacije 33.1
piezoelektri¢ni pojav 39.1, 40.5
pilotski valovi 42.1
piscali 21.8
planetarni model atomov 41.11-13
planetarni model vodikovega atoma
41.9-10
planeti 3.5, 12.10
periode 18.10
polosi 18.10, 40.13
lune 12.10
plavanje 10.8
plimovanje 19.12
plimske sile 19.12
plin 1.3
idealni 36.1
plinska enac¢ba 22.4, 36.1
plinska konstanta 22.4, 23.8
plinski adiabatni zakon 22.8

plinski gorilnik 11.3
plinski izobarni zakon 22.4
plinski izohorni zakon 22.2
plinski izotermni zakon 20.4
ploscina 8.9
ploscina pod krivuljo 17.5
plosc¢ine elementarnih likov 8.9
plosc¢inski integral 30.10
ploskve
elementarne 31.9
krivulje na ploskvi 31.11
normala 31.12
opis z enacbo 31.1
ploscinski element 31.11
ukrivljenost 31.12
vektorski opis 31.10
podaljSanje ¢asa 35.6
podobni trikotniki 8.2
polarizacija pri odboju 27.5
polarizacija svetlobe 27.5
polarizacijska prizma 27.5
polarizacijski kot 27.5, 38.12
polarizacijski zakon 27.5
polje in krivo¢rtne koordinate 32.6
cilindricne 32.7
sferi¢ne 32.8
polna energija 35.12
relativisti¢na transformacija 35.13
polprevodniki 43.7
popolni odboj svetlobe 12.3
porazdelitev delcev po hitrosti 36.4
porazdelitev delcev po legi 36.3
porazdelitev po faznem prostoru 36.7
posevni met 18.5-6
posevni trikotnik 8.7
izrek o vsoti kotov 8.7
kosinusni izrek 8.7
sinusni izrek 8.7
poskusi in izidi 33.2
potencna funkcija 14.5
potencne vrste 15.3
potence 6.1, 6.3, 13.3, 28.4
potencialna enacba 37.3, 37.8
potencialna enacba, homogena 37.3
potencialna energija 20.1, 21.14,
34.12
povprecje vzor¢nih povprecij 33.11
povprecna vrednost 33.8
povrsina 8.9
povrsine elementarnih teles 8.9
povrsinska napetost 20.10
pozitron 44.15
pravokotni trikotnik
hipotenuzni izrek 8.3
kotna razmerja 8.5
preizkusanje domnev 33.14
premik 34.1
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premo enakomerno drsenje 18.1
premog 4.4
pretakanje tekocine po cevi 20.7
pretok polja 32.3
prevajanje toplote 22.18, 36.11, 36.13
prevodniki in izolatorji 24.1
prevodniski elektroni 39.11
princip elementarnih valov 21.4
princip relativnosti 35.3
princip superpozicije 42.7
prisilna hitrost 36.14
projekcija, ekvatorska valjna
konformna 31.16
projekcija, polarna stereografska
31.15
projekcija, stoz¢na konformna 31.17
projekcije, geografske 31.14, 31.18
prosti pad 18.3-4
prosto razpenjanje plina 22.8
prostornina 8.10
prostornina vrtenine 17.5
prostornine elementarnih teles 8.10
prostorninski integral 30.11
prostorninski tok 20.6
prostorski kot 21.14
prostostne stopnje 36.8
protoni 44.1, 44.6
masa 44.6
proznostna energija 20.1
proznostni modul 20.2
proznostni zakon 19.4, 20.1
psihrometer 22.12

radar 40.13

radij 41.6

radijski valovi 38.8

radio 40.6-8

radioaktivno datiranje 44.11, 44.15

radioaktivnost 41.6

radiosonda 40.11

raketna enacba 34.3

ravni val delcev 42.4

ravno elektromagnetno valovanje
38.3, 38.5

ravnotezje reakcij 23.12, 36.10
ravnotezna konstanta 23.12,
36.10

ravnovesje tekocine 10.2

ravnovesje telesa 9.1, 9.5-7

razcep spektralnih ¢rt v elektri¢cnem
polju 41.14

razcep spektralnih ¢rt v magnetnem
polju 41.14

razcepljenost spektralnih ¢rt 41.14

razkrajanje snovi 11.1

razpad alfa 44.10

razpad beta 44.10

razpad gama 44.10
razpadanje jeder 44.9
razpadni ¢as 44.11
razpolovna debelina 27.10
razpolovni ¢as 44.11
razprsenost lege in hitrosti 42.4
razprsilna leca 12.5
raztopine 4.1, 23.9
koncentracija 23.9
razvoj funkcije v harmoni¢no vrsto
28.6
elementarni razvoji 28.7
razvoj funkcije v potenc¢no vrsto 16.6
elementarni razvoji 16.7
rdeci premik svetlobe 35.8
reakcijska sila curka 34.3
redukcija 23.11
reflektor 12.9, 45.1
refraktor 12.9
rektascenzija zvezd 7.8
relativisti¢ne transformacije gibanja
¢asa 19.6, 35.5
hitrosti 19.6, 35.7
lege 19.6, 35.5
pospeska 19.6
relativisti¢ne transformacije
nabojev in tokov 37.11
polj 37.12-13
relativisti¢ni gibalni zakon 35.11
relativnost elektri¢ne in magnetne sile
37.11
relativnost gibanja 19.6
relativnost so¢asnosti 35.6
rentgenska cev 41.2
rentgenska svetloba 41.2
rentgenski spekter 41.3
rentgenski zarki 41.2
resonanca 21.8, 34.10, 40.5
rosis¢e 22.11
rotor polja 32.4
rotorski izrek 32.4
rude 4.6
oksidne 4.6
sulfidne 4.6

scintilacijsk Stevec 44.2
segrevanje plina 22.1

izobarno 22.4

izohorno 22.2
segrevanje

z delom 22.6

z elektri¢nim tokom 24.9

s svetlobnim tokom 27.6
sekunda 7.5
sence 3.2, 7.4,8.2
sestavljanje hitrosti 18.2
sestavljanje premikov 18.2
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sestavljena le¢a 12.5
sevalna konstanta 27.8
sevalna vréna konstanta 27.8
sevalni spektralni konstanti 27.8
sezigna toplota 22.10
specifi¢na 22.10
sferic¢ni trikotniki 31.13
hipotenuzni izrek 31.13
kosinusni izrek 31.13
sinusni izrek 31.13
sila 9.1
nasprotna 9.1
notranja 34.2
prijemalisce 9.7
rezultanta 9.5, 9.6
rocica 9.7
zunanja 34.2
sila curka 34.3
silicij 40.12, 43.3
sinusoida 15.8

sipanje delca na potencialni oviri 42.8

sipanje delcev alfa na jedrih 41.7
skalarna polja 32.1
skrajSanje dolzin 35.6
sluc¢ajne spremenljivke 33.2
slusalke 26.10
smerni odvod 32.2
smodnik 11.7
snovi 1.2
soda 4.7
solarna konstanta 27.6
soliter 11.7
solna kislina 11.5
solsticij 3.4
sonar 40.14
Sonce 3.1, 12.10
gostota toka na Zemljo 27.6
izsev 27.7,45.1
magnetno polje 41.14
masa 19.11, 45.1
oddaljenost 8.12, 27.2, 45.1
starost 44.11, 45.1
temperatura povrsja 27.9, 45.1
velikost 8.12, 45.1
sorazmernost 14.3
sorazmernost mase in teze 19.2
spajanje snovi 11.1
spekter zvoka 21.14
spektralne ¢rte 27.4
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