GEOLOGIJA 45/2, 579–584, Ljubljana 2002 Vloga nezasi~ene cone v procesu napajanja kra{kega vodonosnika The role of the epikarst zone in karst aquifer recharge processes Branka TR^EK1 & Noel C. KROTHE2 1Geolo{ki zavod Slovenije, Dimi~eva 14, SI-1000 Ljubljana, Slovenia 2Indiana University, Department of Geological Sciences, 1001 East Tenth Street, IN 47405 Bloomington, USA Klju~ne besede: kra{ki vodonosnik, naravna sledila, nevihtni hidrogrami, epikra{ka cona, hidravli~no obna{anje Key words: karst aquifer, natural tracers, storm hydrographs, epikarst zone, hydraulic behaviour Kratka vsebina Predmet raziskave je {tudij nevihtnih hidrogramov dveh kra{kih izvirov, Orangeville Rise-a (USA, Indiana) in Hublja (SW Slovenia). Uporabili smo tri in {tiri komponentni tehniki razdelitve hidrogramov, ki sta temeljili na naravnih sledilih. Na obeh raziskovalnih obmo~jih so rezultati podobni in v skladu z aktualno raziskovalno hipotezo, ki predpostavlja, da pomemben del napajanja kra{kega vodonosnika izvira hitro in v koncentrirani obliki iz epikra{ke cone. Sinteza podatkov ka‘e, da lahko kra{ki izvir vsebuje med padavinskim dogodkom tudi do 50 % vode epikra{ke cone, ~esar ne smemo zanemariti pri za{~iti kra{kih podzemnih vodnih virov. Abstract The study of Orangeville Rise (USA, Indiana) and Hubelj (SW Slovenia) karst springs’ storm hydrographs was the principal theme of our research. We used three and four component hydrograph separation techniques that were based on natural tracers. The results are similar in both study areas. They are in agreement with actual research hypothesis where it is supposed that an important part of the karst aquifer’s recharge arrives, rapidly and in concentrated form, from the epikrarst zone. The synthesis of data demonstrates that epikarst water could occupy up to 50 % of the karst spring discharge during the precipitation event that should not be neglected in karst aquifer’s protection strategies. UVOD vodonosnika. Od tu izhaja raziskovalna problematika, ki se nana{a na {tudij toka in Kra{ki vodonosniki so pomemben vir ka- prenosa snovi (polutantov) v kra{kem vodo-kovostne podzemne vode tako v Indiani kot nosniku. v Sloveniji. Da bi zagotovili trajnostno gos- Prou~evali smo obna{anje mo~no zakra-podarjenje s kra{kimi vodnimi viri, je treba selih kra{kih vodonosnikov v zaledju izvirov prou~iti dejavnike, ki nadzirajo obna{anje Hubelj (JZ Slovenija) in Orangeville Rise (J 580 Indiana, ZDA). V preteklosti sta bili obmo~ji predmet ob{irnih geolo{kih, hidrogeolo{kih, hidrolo{kih in geokemijskih raziskav, ki so dale pomebne podatke, opozorile pa so tudi na ve~ odprtih vpra{anj, predvsem tista, ki se nana{ajo na hidrodinamiko (Basset, 1976; ^en~ur Curk, 2002; Duwelius in s o d . , 1995; H a b e , 1963; H a b i ~ , 1968; H a b i ~ , 1987; I q b a l in K r o t h e , 1995; J a -n e‘ in s o d . , 1997; K r a n j c , 1997; K r o t -h e in L i b r a , 1983; K r o t h e , 1998; L a k e y in Krothe, 1996; L e e in Krothe, 2001; Pezdi~ in sod., 1983-1985; Placer in ^ a r , 1974; S t i c h l e r in s o d . , 1997; S u n -dermann, 1968; Tr~ek in sod. 1998-2001; Urbanc, 1993; Wells in Krothe, 1989). Prou~evanje odziva izvirov in kra{kih vo-donosnikov na poletne nevihte je glavna tema {tudije. Uporabili smo posredno raziskovalno metodo – razdelitev nevihtnih hidro-gramov, ki je temeljila na naravnih sledilih v vzor~evanih vodah. Ker so predhodne raziskave pokazale, da je dvo-komponentna tehnika razdelitve hidrogramov neu~inkovita za kra{ke izvire ( T r ~ e k in s o d . , 2001, L a -key in Krothe, 1996; Tr~ek in sod., 2002), je uporabljena v {tudiji tri in {tiri komponentna tehnika. Hidrogrami izvirov so razdeljeni na komponente 1) nove vode, 2) vode zgornje nezasi~ene cone ter 3) vode baznega toka . Uporabljena metoda je u~inkovita tehnika za prou~evanje hidravli~nih lastnosti kra- Sl. 1. Lega raziskovalnega obmo~ja Fig. 1. Location of the study area a) Branka Tr~ek & Noel Krothe ških vodonosnikov. Dala je značilne rezultate, ki omogočajo vpogled v procese napajanja, uskladiščenja in praznenja kraškega vodonosnika. RAZISKOVALNO OBMOČJE Kraška izvira a) Orangeville Rise, na jugu osrednje In-diane in b) Hubelj, v jugo-zahodni Sloveniji, predstavljata glavna iztoka iz dveh močno zakraselih kraških vodonosnikov (sl.l.). Pretok Orangeville Rise-a niha med 0.06 do 5.1 m3/s. Izvir napaja območje, ki obsega 125 km2, na njem pa pade letno povprečno 1140 mm padavin. Vodonosnik gradita dve enoti, Mitchell Plain in Crawford Upplad (si. 1.). Mitchell Plain v glavnem sestavlja apnenec srednje Mississipijske starosti, medtem ko se izmenjujejo v Crawford Uppland-u peščenjak, skrilavci in apnenec, ki pripadajo skupinama West Baden in Stephensport (Krothe, 1998). Pretok Hublja niha od 0.2 do 59 m3/s, medtem ko je njegov srednji pretok 3 m3/s.V zaledju izvira je visoka kraška planota Trnovski gozd, katere povprečna nadmorska višina je 900 m. Na tem območju pade povprečno 2450 mm padavin na leto. Napajalno območje izvira, ki ga gradi v glavnem jurski apnenenc (sl.l.), obsega 50-80 km2 (Trišič, 1997). a) v Sloveniji in b) v Indiani (ZDA) in Slovenia and b) in Indiana (USA) Vloga nezasi~ene cone v procesu napajanja kra{kega vodonosnika 581 METODE IN TEHNIKE Odziv obravnavanih kra{kih vodonosni-kov na poletne nevihte je bil prou~en s po-mo~jo tri in {tiri komponentne tehnike razdelitve hidrogramov Hublja in Orangeville Rise-a (Kendall in McDonell, 1998; Lee in Krothe, 2001; Le e in Krothe, 2002; Talarovich in Krothe, 1998; Tr -~ek, 2001; Tr~ek in sod. 2002). Hidro-grama izvirov sta bila razdeljena na naslednje komponente: a) novo vodo (padavine obravnavanih neviht), b) vodo zgornje nezasi~ene cone, ki se je s {tiri-komponentno tehniko nadalje razdelila na b1) talno vodo in b2) vodo epikra{ke cone, c) vodo baznega toka (vklju~uje vodo uskaldi{~eno v zasi~eni in spodnji nezasi~eni coni). Razdelitev hidrograma na n komponent zahteva uporabo (n-1) sledil. V {tudiji so uporabljeni podatke o izotopski sestavi kisika (d18O), vodika (d2H), ogljika (d13C) in ‘vepla (d34S) ter koncentracijah raztopljenega organskega in anorganskega ogljika (DOC in DIC) v vzorcih 1) padavin in 2) vode kra{kega sistema, ki se je vzor~evala a) v zgornji nezasi~eni coni oziroma v tleh in epi-kra{ki coni ter b) na izviru. ^asovnemu nihanju sestave naravnih sledil v padavinah je zado{~eno z uporabo metode nara{~ajo~ega tehtanega povpre~ja (McDonell in sod., 1990). Vzor~evanje je vklju~evalo dva dela: 1) dolgotrajno vzor~evanje v mese~nih oziroma tedenskih presledkih, za ugotavljanje osnovnih lastnosti vzor~evanih vod in 2) kratkotrajno podrobno vzor~evanje med padavinskim dogodkom, za prou~evanje hid-ravli~nih procesov v kra{kem vodonosniku. REZULTATI Reakcija izvira Orangeville Rise na nevihtno obdobje je bila podrobno opazovana 104 ure po nevihti, ki se je za~ela 4.10.1990. Takrat je v 40 minutah padlo 53 mm de‘ja, ki je povzro~il, da je narasel pretok izvira v 11 urah iz 0.3 m3/s (bazni tok) na 3.4 m3/s (sl. 2.). Štiri-komponentna razdelitev nevihtnega hidrograma, ki je predstavljena na sliki 2 (Lee in Krothe, 2001), ka‘e, da je v ~asu koncentracije hidrograma prevladovala v glavnem komponenta baznega toka. Maksimalna dele‘a nove vode in vode zgornje nezasi~ene cone sta se pojavila v izviru v ~asu recesije hidrograma. V opazovanem obdobju je izvir vseboval povpre~no 34 % vode baznega toka, 55.4 % vode zgornje nezasi-~ene cone (oziroma 52.3 % vode epikra{ke cone in 3.1 % talne vode) ter 10.6 % nove vode. Tri-komponentna razdelitev hidrograma Hublja na sliki 3 predstavlja odziv izvira na dva nevihtna cikla, 11.7.2000 in 12.7.2000. V prvem nevihtnem ciklu je padlo 63 mm padavin, v drugem pa 13 mm. Pomemben je Sl. 2. Štiri-komponentna razdelitev hidrograma izvira Orangeville Rise na osnovi naravnih sledil d2H, d13C, d34S in DIC (po L e e in K r o t h e , 2001) Fig. 2. Four-component hydrograph separation of the Orangeville Rise spring using d2H, d13C, d34S and DIC as tracers (after L e e and K r o t h e , 2001) 11-jul 12-jul 13-jul 14-jul čas SI. 3. Tri-komponentna razdelitev hidrograma izvira Hubelj na osnovi naravnih sledil d20 in DOC Fig. 3. Three-component hydrograph separation of the Hubelj spring using d2O and DOC as tracers 582 Branka Tr~ek & Noel Krothe predvsem prvi cikel, ki je povzro~il, da je pretok izvira narasel iz 0.6 na 24 m3/s. Maksimalen pretok je bil izmerjen 7 ur po za-~etku nevihte. Do takrat je tekla v izvir le stara voda, zatem pa tudi nova voda in voda zgornje nezasi~ene cone. V opazovanem obdobju so bili povpre~ni dele‘i komponent nove vode, vode zgornje nezasi~ene cone in baznega toka 15 %, 33 % in 52 %. Sinteza hidrogramov obeh izvirov ka‘e, da je napajala izvira v ~asu koncentracije hidrograma voda uskladi{~ena v kra{kih kanalih zasi~ene in spodnje nezasi~ene cone. V kon~ni fazi koncentracije in v za~etni fazi recesije hidrograma pa je napajal izvira preko omre‘ja kra{kih kanalov tudi hiter koncentriran tok, ki je vseboval komponenti nove vode in voda zgornje nezasi~ene cone. Ta tok smo poimenovali epitok. Zadnja faza recesije hidrograma je vezana na razpr{eno napajanje; izvira je napajala voda, ki je bila uskladi{~ena v slabo prepustnih blokih kamnin nezasi~ene in zasi~ene cone vodonosnika. vodonosnikov, ki jo odsevata a) hiter koncentriran tok po omre‘ju kra{kih kanalov v ~asu koncentracije hidrograma in v za~etni fazi recesije hidrograma ter b) relativno po-~asen razpr{en bazni tok v zadnji fazi recesije hidrograma. Podatki so zdru‘eni v konceptualnem modelu kra{kega vodonosnika, ki ga predstavlja slika 4. Rezultati so v skladu z aktualno raziskovalno hipotezo, ki predpostavlja, da pomemben delje napajanja kra{kega vodonosnika izvira hitro in v koncentrirani obliki iz epi-kra{ke cone (Mangin, 1975; Williams, 1983). Ta fenomen ima lahko pomembne posledice na tok in prenos snovi v kra{kem vodonosniku, kar moramo upo{tevati pri na-~rtovanju strategije monitoringa. The role of the epikarst zone in karst aquifer recharge processes SUMMARY RAZPRAVA IN SKLEPI Rezultati bilateralne {tudije opozarjajo na 1) batni efekt (nova voda je izpodrinila predhodno uskladi{~eno vodo iz vodonosnika) in 2) dvojnost procesov napajanja in praznenja In Slovenia and Indiana we have been working in same research problems referring to flow and solute (pollutant) transport mechanisms in a karst aquifer. The hydraulic behaviour of two highly karstified aquifers (Fig. 1.), a) in the catchment area of Hubelj spring in SW Slovenia and b) Oran- Sl. 4. Konceptualni model kra{kega vodonosnika s conami, v katerih je uskladi{~ena podzemna voda (prirejeno po Lakey in Krothe, 1996) Fig. 4. Conceptual model of a karst aquifer with storage zones of groudwater (modified after L ak ey and Krothe, 1996) Vloga nezasi~ene cone v procesu napajanja kra{kega vodonosnika 583 geville Rise spring in south central Indiana (USA) was studied. The discharge of Orangeville Rise ranges from 0.06 to 5.1 m3/s. Its catchment area, with the average annual precipitation of 1140 mm, has an areal extend of 125 km2. The catchment area of Hubelj spring occupies 50-80 km2. The average annual precipitation is 2450 mm in this region, while the Hubelj’s discharge varies from 0.2 to 59 m3/s. Its mean discharge is 3 m3/s. The principal theme of the bilateral research was the analyses of Hubelj’s and Orangeville Rise’s storm hydrographs. Three and four component hydrograph separation techniques ( K e n d a l l in M c D o n e l l , 1998; Lee in Krothe, 2001; Lee in Krothe, 2002; Talarovich in Krothe, 1998; Tr~ek, 2001; Tr~ek in sod. 2002) were applied. They based on natural tracers in sampled 1) precipitation and 2) karst system’s water (soil, epikarst and base flow water). The variations of oxygen (d18O), hydrogen (d2H), carbon (d13C) and sulfur (d34S) isotope composition and concentration of dissolved organic and anorganic carbon (DOC in DIC) enabled the separation of hydrographs into following components: a) new water (precipitation of the storm event), b) upper unsaturated zone water that was further divided into b1) soil water and b2) epikarst water with the four-component technique, c) base flow water (water that is stored in saturated and lower unsaturated zone). Figure 2 illustrates the four-component separation of the Orangeville Rise’s hydrograph over the period of 104 hours after the storm event on 4th of October 1990 when 53 mm of precipitation fell in 40 minutes. The proportions of new water, upper unsatur-ated water and base flow water were calculated as 10.6 %, 55.4 % and 34 %, respectively. The three-component separation of the Hubelj’s storm hydrograph over the period of 90 hours is presented in Figure 3. The event consisted of two storm cycles on 11th and 12th of July 2000 with a total precipitation amount of 76 mm. The most important cycle was the first one when 63 mm of precipitation fell in few hours. Over the observed period the average contributions of new water, upper unsaturated water and base flow water were 15 %, 33 % and 52 %, respectively. However, the first two components were combined into one component (48 %) that represents the fast flow through the conduit network that arrives from the epikarst zone. The results pointed out 1) the piston effect (new water displaced pre-stored water in the karst aquifer) and 2) duality of karst aquifer’s recharge and discharge processes that is reflected by a) the fast concentrated flow during the hydrograph concentration and initial recession and b) the relatively slow diffuse flow during hydrograph recession. The results are synthesized in a conceptual model of the karst aquifer in Figure 4. They are in agreement with actual research hypothesis supposing that an important part of the karst aquifer’s recharge arrives, rapidly and in concentrated form, from the epikrarst zone. The data demonstrate that epikarst water could occupy up to 50 % of the karst spring discharge during the precipitation event that should not be neglected in karst aquifer’s protection strategies. LITERATURA B a s s e t , J.L. 1976: Hydrogeology and geochemistry of the upper Losr river drainage basin, indiana.- Nat. Speil. Soc. Bull., 38, 79-87. ^en~ur Curk, B. 2002: Tok in prenos snovi v kamnini s kra{ko in razpoklinsko poroznostjo. Doktorska disertacija.- Univerza v Ljubljani, 253 str., Ljubljana. D u w e l i u s , J.A., Bassett, J.L. & Keith, J.H. 1995: Application of fluorescent dye tracing techniques for delineating sinkhole drainage routes, Highway 37 improvement project Lawrence County, indiana. – In: Beck, B.F. (Ed.), Karst GeoHazards, 227-233. H a b e , F. 1963: Hidrolo{ki problemi severnega roba Piv{ke kotline. – V zborniku predavanj tretjega jugoslovanskega speleolo{kega kongresa, 77-84, Sarajevo. H a b i ~ , P. 1968: Kra{ki svet med Idrijco in Vipavo. Prispevek k poznavanju kra{kega reliefa. – SAZU, 243 str., Ljubljana. H a b i ~ , P. 1987: Sledilni poskusi na razvodju med Ljubljanico, Idrijco in Vipavo. – Acta Car-sologica, 16, 105-118, Ljubljana. I q b a l , M.Z. & K r o t h e , N.C. 1995: Infiltration mechanisms related to agricultural waste transport through the soil mantle to karst aquifers of southern Indiana, USA. – J. Hydrol., 164, 171-192. J a n e ‘ , J., ^ a r , J., H a b i ~ , P. & P o d o b n i k , R. 1997: Vodno bogastvo Visokega krasa. Ranljivost kra{ke podzemne vode Banj{ic, Trnovskega 584 Branka Tr~ek & Noel Krothe gozda, Nanosa in Hru{ice. – Geologija d.o.o, 167 str., Idrija. K e n d a l l , C. & M c D o n e l l , J.J. 1998: Isotope tracers in catchment hydrology. – Elsevier:, 722 str., Amsterdam. K r a n j c , A. 1997: 7th International Symposium on Water Tracing. Field guide of karst in Slovenia. – Acta Carsologica, 26/1, 1- 98, Ljubljana. K r o t h e , N.C. & Libra, R.D. 1983: Sulfur isotopes and hydrochemical variations of spring waters of southern Indiana, USA. – J. Hydrol., 81, 267-283. Krothe, N.C. 1998: Comparison of oxygen and hydrogen isotope hydrograph separations from two perennial karst springs, Mitchell Plain-Crawford Upland, Indiana, USA. In: Proc. 9th Internat. Symp. Water Rock Interactions. – Balkema, 247-250, Rotterdam. Lakey, B. L. & Krothe, N.C. 1996: Stable isotope variations of storm discharge from a perennial karst spring, Indiana. – Water Resouur. Res., 32, 721-731. Lee, E.S. & Krothe, N.C. 2001: A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. – Chem. Geol. 179, 129-143. M a n g i n , A. 1975: Contribution a l’étude hydrodinamique des aquiferes karstiques. DES thesis. – Ann. Speleol., 29/3, 282-332, Paris. M c D o n n e l l , J.J., B o n e l l , M., S t e w a r t , M.K. & P e a r c e , A.J. 1990: Deuterium variations in storm rainfall: Implications for stream hydrograph separation. – Water Resources Research, 26/3, 455-458. P e z d i ~ , J., D o l e n e c , T., K r a m e r , V. & W e i s s , S. 1983: Temeljne hidrogeolo{ke raziskave: Poro~ilo o delu za leto 1983 v raziskovalnem projektu Študij izotopske sestave kra{kih vod. – In{titut Jo‘ef Stefan, 49 str., Ljubljana. P e z d i ~ , J., D o l e n e c , T., K r a m e r , V. & U r b a n c , J. 1984a: Temeljne hidrogeolo{ke raziskave: Poro~ilo o delu za leto 1984 v raziskovalnem projektu Študij izotopske sestave kra{kih vod. – In{titut Jo‘ef Stefan, 50 str., Ljubljana. P e z d i ~ , J., L e s k o v { e k - Š e f m a n , H., D o -l e n e c , T. & U r b a n c , J. 1984b: Isotopic study of karst water: Final report on research contract No. 2845/RB. – In{titut Jo‘ef Stefan, 47 str., Ljubljana. P e z d i ~ , J., D o l e n e c , T., K r a m e r , V. & U r b a n c , J. 1985: Temeljne hidrogeolo{ke raziskave: Poro~ilo programskega sklopa za raziskovalni projekt Študij izotopske sestave kra{kih vod. – In{titut Jo‘ef Stefan, 41 str., Ljubljana. P e z d i ~ , J., L o j e n , S., B a r b i n a , V., Q u a -r i n , L. & U r b a n c , J. 1996: Isotopic research on groundwater in the basin of Natisone river (NE Italy). In: Proceedings of the symposium on isotopes in water resources management. – IAEA, 209-214,Vienna. P l a c e r , L, & ^ a r , J. 1974: Problem podzemeljske razvodnice Trnovskega gozda, Kri‘ne gore in ^rnovr{ke planote. – Acta Carsologica, 6, 79-93, Ljubljana. S t i c h l e r , W., T r i m b o r n , P., M a l o s z e w -s k i , P., R a n k , D., P a p e s c h , W. & R e i c h e r t , B. 1997: Environmental isotope investigations. In: Karst hydrogeologica linvestigations in south-western Slovenia. – Acta carsologica, 26/1, 213-236, Ljubljana. Sundermann, J.A. 1968: Geology and mineral resources of Washington Country, Indiana. – Indiana Geol. Surv. Bull. 39. Tr~ek, B. & Urbanc, J. 1998: An example of application of carbon isotope composition as natural tracer in karst aquifer investigations. In: IV Isotope Workshop of the European Society for Isotope Research, Portoro‘, July 1-4. – Rudarsko-metalur{ki zbornik, 45/1-2, 183-186, Ljubljana. T r ~ e k , B., V e s e l i ~ , M. & U r b a n c , J. 1999: The suitability of carbon isotope composition as natural tracer in karst aquifer investigations. In: Papers Presented at International Workshop on Groundwater Pollution in Karst: Preserving Water Quality in Karst Systems. – Acta Carsologica, 153-161, Ljubljana. T r ~ e k , B., C a r , M. & V e s e l i ~ , M. 2000: The use of isotopic, hydrogeochemical and ground-penetrating radar investigations in the study of the unsaturated zone of the karst aquifer. – Ru-darsko-metalur{ki zbornik, 47/3-4, 335-344, Ljubljana. T r ~ e k , B., P e z d i ~ , J., V e s e l i ~ , M. & S t i -c h l e r , W. 2001: Changes in d18O composition of the Hubelj spring under different hydrogeological conditions. In: Proceedings of the Conference on New Approaches Characterizing Groundwater Flow. – Balkema Publishers, 207-211, Lisse. T r ~ e k , B. 2001: Spremljanje prenosa snovi v nezasi~eni coni kra{kega vodonosnika z naravnimi sledili. Doktorska disretacija. – Univerza v Ljubljani, 125 str., Ljubljana. T r ~ e k , B., K r o t h e , N.C., V e s e l i ~ , M. & P e z d i ~ , J. 2002: Comparison of d18O variation of storm discharge from Slovene and American karst springs. – Rudarsko-metalur{ki zbornik , 49/1, 131-140, Ljubljana. T r i { i ~ , N. 1997: Hydrology. In: Karst hydro-geological investigations in south-western Slovenia. – Acta Carsologica, 26/1, 19-30, Ljubljana. W i l l i a m s , P.W. 1983: The role of the subcutaneous zone in karst hydrology. – Journal of Hydrology, 61, 45-67.