HACQUETIA 8/2 • 2009, 129-146 DOI: 10.2478/v10028-009-0010-2 BIODIVERSITY CONSERVATION: GEOSYNPHYTOSOCIOLOGY AS A TOOL OF ANALYSIS AND MODELLING OF GRASSLAND SYSTEMS Andrea CATORCI*, Sabrina CESARETTI* & Renata GATTI* Abstract The study site is located along the Umbria-Marches Apennine (central Italy). Following a series of research topics, the aims and objectives of this paper are to present the tested process of forage resources modelling at a large scale in a pastoral system in order to define essential management and decision making aimed on biodiversity conservation. The analytical process is based on correlation between phytosociological and agro-zootechnical analysis. This approach allows one to extend any type of heterogeneous data, provided this is in any way correlated to the intrinsic characteristics of the plant community, can be interpolated to the whole polygon and therefore to all polygons referring to the same phytosociological unit. In terms of planning and application, the results of phytosociological modelling are much more useful when integrated in a database (GIS), in which the different information levels, based on hierarchical criteria, are simulated in multiple polygon segmentations. In particular, this method allows one to obtain a first general overview of the forage resource using the theoretical data linked to the phytosociological interpretation of the territory. Subsequently, this overview can be enhanced with actual quantitative data, offering also a qualitative dimension coming from the phytosociological aspects. Key words: Geosynphytosociological modelling, plant community, forage resource, carrying capacity, grazing management, biodiversity conservation. Izvleček Raziskovano območje se nahaja vzdolž Apeninov v območju Umbria-Marke (osrednja Italija). V članku so testirali modeliranje krmne vrednosti na velikem območju v travniškem sistemu in določitli ključne načine gospodarjenja in odločanja zaradi ohranjanja biodiverzitete. Analitični proces temelji na korelaciji med fitocenološko in agro-zootehniško analizo. Ta pristop omogoča uporabo katerihkoli heterogenih podatkov, če so ti v povezavi z bistvenimi lastnostmi rastlinske združbe in jih lahko posplošimo na celoten poligon združbe oziroma na vse poligone iste fitocenološke enote. S stališča načrtovanja in uporabnosti so rezultati fitocenološkega modeliranja uporabnejši, kadar jih vključimo v podatkovno bazo (GIS). V njej lahko simuliramo različne členitve v poligone s pomočjo različnih informacijskih nivojev, ki temeljijo na različnih hierarhičnih merilih. Metoda omogoča prvi splošni pregled krmnih vrednosti s pomočjo teoretičnih podatkov, povezanih s fitoce-nološko interpretacijo območja. Dodatno lahko ta pregled izboljšamo z dejanskimi kvantitativnimi podatki, s pritegnitvijo fitocenološkega vidika pa pridobimo tudi kvalitativno dimenzijo. Ključne besede: Geosinfitosociološko modeliranje, rastlinske združbe, krmna vrednost, nosilna kapaciteta, paša, ohranjanje biodiverzitete. 1. INTRODUCTION Grassland ecosystems represent a fundamental resource of plant species richness. For example, the Umbria-Marches Apennine (central Italy) occupy only 8 % of the Marches Region but contain 35 % of the total flora (Tardella et al. 2007). The need to conserve such plant biodiversity in these ecosystems is confronted with socio-economic issues and animal breeding systems which, * Department of Environmental Science, Section of Botany and Ecology, University of Camerino via Pontoni 5 - 62032 Camerino (MC) Italy. E-mail: andrea.catorci@unicam.it, sabrina.cesaretti@unicam.it, renata.gatti@unicam.it 129 HAcquETiA 8/2 • 2009, 129-146 as is the case of most European grassland systems, have experienced a significant decline in productive activities, as well as a substantial reduction of grazing. The result of this situation is a modification of plant communities, whether in terms of composition of the various phytocenoses or the landscape mosaic, by activation of the dynamic processes of substitution (Persson 1984, Francalancia et al. 1995, Bakker 1998, Pott 1998, Biondi 2001, Bona-nomi & Allegrezza 2004, Foglia et al. 2007). For this reason it is absolutely necessary to prepare an investigative framework aimed at planning biodiversity grazing management. However, this objective is difficult to achieve because within a certain bio-geographical area the composition and plant species richness of a pastoral landscape are correlated to multiple factors: a) the pattern of plant communities connected to a mosaic of environmental factors which act on a landscape scale, such as climate and geology (Ercole et al. 2005, Biondi et al. 2006, Cutini et al. 2007); b) the pattern of seasonal conditions, which are interrupted by topographic (exposure and slope) and pedo-logical variations (Miles 1985, Grime 2001, Miles 2004, Agnelli et al. 2008), which define the ecological space of each plant community; c) the micro pattern created by localised variations, mainly soil chemical and physical properties (differences in AWC, Nitrogen content, pH, etc.), which interfere with the differentiation of plants within the plant community (Filesi et al. 2004); d) the intensity of grazing, which acts on the plant population scale and in this case corresponds to the so-called intermediate disturbance level, which guarantees maximum plant species richness (Grime 1973) with regard to the site's environmental characteristics and its biogeographical history. Therefore, grasslands are complex ecosystems, which constitute numerous abiotic and biotic elements whose interactions vary in space and time (Tainton et al. 1996). In order to be fully understood, the multidimensional complexity of ecological grassland systems must be divided into organisational levels, each containing a few interacting unities. With this method the reciprocal relationships and the connectivity between the highest and the lowest organisational levels can be modelled (Tainton et al. 1996). This analytical process can only result from a hierarchical interpretation of the interacting factors of a territory in varying spatial-temporal intervals (King 1977, Allen & Starr 1982, O'Neill & King 1998, Blasi et al. 2000, Blasi et al. 2003). Furthermore, once the scale of analysis is changed, each element becomes part of a superior element, thus containing multiple systems of inferior rank (Farina 2001). In order to obtain applicable documents, the hierarchical levels that constitute an "ecological landscape" of a territory must be defined, both conceptually and spatially. In this regard, using the methods and concepts of dynamic-catenal phytosociology (Ozenda 1982, Géhu et al. 1991, Rivas-Martinez 2005) can be a useful basis, particularly if these data are expressed by means of phytosociological maps (Pedrotti 2004). This opportunity is inherent to the fact that the phytosociological modelling of the landscape of a territory is based on floristic, ecological, statistical and hierarchical criteria (Rivas Martinez 2005). This assumption makes it possible to map families of polygons within which physiognomic, floristic, dynamic and ecological characteristics are most likely to present a reduced variability. For this reason any data carried out from an experimental plot (e.g. productivity), provided this is in any way correlated to the intrinsic characteristics of the plant community (plant composition, architectonic structure, dynamic tendencies, bio-climatic properties, phenological rhythms, etc.), can be applied to the whole polygon and therefore to all polygons referring to the same phy-tosociological unit. In addition, the syndynamic and geo-syndy-namic characterization of a territory indirectly allows the geographic defining of varying biocli-matic indices, i.e. stresses induced by cold and aridity (Cano et al. 1997), which have a considerable influence on certain important parameters of forage resources in a grassland system. This approach can therefore allow for the design of models aimed at representing pastures and their respective functions also in very large territories. Models have become powerful tools for translating the complexity of reality into meaningful concepts. They have the potential to supply substantial management support in the form of decision support models and expert systems (WallisDe Vries & Van de Koppel 1998). Different types of models may be put to different uses: explanatory models unravel the mechanism processes; predictive models yield quantitative predictions of future development after thorough validation; integrated functional models ease the difficult task of finding an optimal trade-off between generality and specificity 130 A. Catorci, S. Cesaretti & R. Gatti: Geosynphytosociology as a Tool of Analysis and Modelling of Grassland Systems in response to the manager's questions and under constraints of available knowledge and funding. The choice to review models is prompted by their capacity to synthesize the knowledge and experience, and to reach new insights. In terms of planning and application, the results of phytosociological modelling are much more useful when integrated in a Geographic Information System (GIS) database, in which the different information levels, based on hierarchical criteria, are simulated in multiple polygon segmentations (Blaschke 2001). Based on these scientific-cultural assumptions, the aims and objectives of this paper are to present the modelling process of forage resources in a large scale pastoral system in order to define essential management efforts aimed at biodiversity conservation. 2. MATERIALS AND METHODS 2.1 Conceptual Logics In order to carry out the management plan it is necessary to perform in-depth forage resource characterization and modelling (Hodgson & Hillius 1998). This entails a complex cognitive process, which is impossible to complete in one season. This process requires several years and thorough planning on deciding which data to collect and when. Therefore, a research plan must be created including the input of results into a database. The research presented here aims at underlining the path followed for the establishment of an exclusive database, as well as the various evaluated botanical-agronomical and ecological parameters. 2.2 Study Area The study site is located along the Apennine ridge that characterizes the interior of central Italy; the Umbria-Marches Apennine constitutes two parallel ridges with a NW-SE trend. Among these ridges, the western peaks reach altitudes of 1200 to 1500 metres, whereas most of the eastern peaks reach altitudes of 800 to 1200 metres. Towards the south, the two ridges merge with the Sibillini Mountain chain, not included in this study, whose peaks generally exceed 2000 metres in altitude. In terms of geology the Umbria-Marches Ap-ennine is characterised by predominantly calcareous lithotypes (Regione Marche 1991). The morphology of this mountain chain is characterised by steep slopes, cut by deep valleys, whereas the summits present weak slopes. In terms of pedology, the aforementioned geomorphological areas are differentiated by the presence of soil catenas (Cremaschi & Rodolfi 1991). These are characterised by the presence of less evolved and shallow soils found gradually moving from more conservative morphologies (flat surfaces) toward steeper morphologies or from northern to southern exposure (Pieruccini 2007). With regard to the bioclimatic area, the study is comprised within the following bioclimatic belts (Biondi et al. 1995, Orsomando et al. 1999, Catorci et al. 2007a): Upper Mesotemperate, Lower Supratemperate and Upper Supratem-perate. The principal bioclimatic characteristics of the aforementioned levels are summarised in Table 1. Table 1: Main bioclimatic characteristics of the study area Tabela 1: Glavne bioklimatske značilnosti preučevanega območja. Bioclimatic belt Altitudinal Average Average range m annual Annual P a.s.l. T °C mm N° of months with annual T<10 ° C N° of months Thermo-with tmin type <0 ° C Length of growing Drought Cold Ombro- mT_ mT_ period type stress N° stress N° (N° days months months with tmin >6 °C) Upper Mesotemperate 450- 1000 11 -13 850- 1100 5-6 1-2 Upper Mesotemperate Lower Humid 0 6-7 180- 210 Lower Supratemperate 1000 -1450 9- 11 1100- -1300 6-7 2-3 Lower Supratemperate Upper Humid 0 7-8 150- 180 Upper Supratemperate 1450 -1900 7- -9 1300 -1500 7-8 3-4 Upper Supratemperate Lower Iperhumid 0 8-9 120- 150 131 HACQÜETIA 8/2 • 2009, 115-128 2.3 Data collection For the purposes described in the introduction, the first step in the research plan was to characterise grassland vegetation using the phytosociological method (Braun-Blanquet 1931) combined with the most recent information on synphytoso-ciology and geosynphtosociology (Géhu & Ri-vas-Martinez 1981, Theurillat 1992, Biondi 1996, Biondi et al. 2004a). Geobotanical maps were used as guidelines (Pedrotti 2004). Subsequently, the distributions of the various syntaxa were modelled using numerous transects in the field and multivariate analyses (Podani 2001), Principle Component Analysis (PCA) in particular. Using ARCGIS 9.0, the Vegetation Map of grassland communities was created, which also allowed activation of the database. Following the guidelines of dynamic phy-tosociology, sigmeta (vegetation series) as well as geosigmeta (geoseries) (Rivas-Martinez 2005) (belonging to the different syntaxa) were identified and thus the management levels defined (isofunctional landscape cells) as described by Géhu (1988). The agronomical and zootechnical aspects of each studied phytosociological unit were associated with the following parameters, collected throughout a 3 year period: pastoral value (Toma-selli 1956, Delpech 1960, Daget & Poissonet 1969, Corrall & Fenlon 1978, Sarno et al. 1989, Bagella 2001, Cavallero et al. 2002, Roggero et al. 2002, Bagella & Roggero 2004); maximum and seasonal productivity (Floret & Le Floch 1983, Gratani et al. 1999); theoretical utilisation coefficient of phy-tomass (Gatti & Catorci 2005, Gatti et al. 2005); theoretical carrying capacity (Bittante et al. 1990, 1993); bromatological characterization (Grayson 1999, Sanchez Rodriguez et al. 2006). The required database was obtained partly from Gatti & Catorci (2007) and Gatti et al. (2007b/c), partly by collecting data in the field as an addition to data already published. The formula used to calculate the pastoral value is: n Pv = 0,2 x X CSP. x Is. 11 i = 1 where Pv is the pastoral value of the community; n is the number of species in the community; CSP; is the specific contribution of the presence of i species and Is; is its specific index. The productivity of the studied syntaxa was analysed by means of fortnightly grass cutting in permanent plots, excluding pastures for domestic animals; the seasonal productivity of each syntax-on was calculated in g/m2 of dry matter, adding the forage productivity at maximum vegetative development with that of successive re-growth collected with the fortnightly grass cutting within the same plot. In order to determine the theoretical carrying capacity, the complex dry matter was transformed into theoretical forage units (FU/ha per year). According to Bittante et al. (1993) 1 kg of dry matter of natural polyphyletic grassland has an approximate nutritional value of 0.69 FU. This value is used as a basis to estimate the livestock units (LSU) that the pasture is able to sustain (theoretical carrying capacity, LSU/ha). The formula used is: LSU / ha = ( \ FU/ha anno 3000 ^ -x D 365 y x Cut x I 1 + - CRS,o, 1000 where D is the number of days of permanent grazing on the pasture (summer pasture), which is generally 150 days in the Apennines and Cut is the theoretical utilisation coefficient, calculated using the formula: Z CRS Js*0 Cut = i=1 CRS,. where CRS Is x 0 is the coefficient of specific presence of palatable plants (species with Is * 0) and CRS tot is the coefficient of specific presence of the plant communities, estimated on the basis of phytosociological data. With the calculated pastoral value, the productivity and theoretical carrying capacity of each plant community, the optimal class number (C) and their relative size were obtained based on N observations, according to the formula described by Sturges (1926). With the aim of obtaining data for zootechnical purposes, a bromatological analysis was carried out on the main syntaxa present in the study area using the method described by Weende and subsequent additions (Bittante et al. 1990). 132 A. Catorci, S. Cesaretti & R. Gatti: Geosynphytosociology as a Tool of Analysis and Modelling of Grassland Systems It is hereby possible to determine the chemical composition (moisture content, ash content, unrefined proteins, unrefined fats, unrefined cellulose, extracts lacking nitrogen), an essential step in nutritional assessment. This allows for characterization of the various nutritional substances as well as accurate definition of the system's carrying capacity. Finally, modelling of certain characteristics of forage resources was carried out using productivity data and bioclimatic characteristics. These characteristics were correlated to the different seasonal phases, such as determination of the peak in production for each syntaxon, presence and duration of a potential summer productivity stasis (senescence); duration of vegetative phase. 3. RESULTS 3.1 Geosynphytosociological characterization In this study, the grassland ecosystems represent a well defined phytosociological system. Geofor-mations, exposures and altitudinal gradients play an important role in defining the characteristics of the pastoral landscape. In particular, 14 syntaxa contained mainly within the alliances Phleo ambigui-Bromion erecti, Ranunculo-Nardion strictae and Seslerion apenni-nae have been detected (Biondi & Ballelli 1995, Baldoni et al. 1996, Allegrezza 2003, Biondi et al. 2004b, Biondi et al. 2005, Catorci et al. 2007b). The main ecological-spatial characteristics of these syntaxa are summarised in Table 3, whereas Table 2 shows their subdivision in the respective sigmeta and geosigmeta. Table 2: Subdivisions of the analysed syntaxa in their respective sigmeta and geosigmeta Tabela 2: Členitev obravnavanih sintaksonov ter njihovih sigmetov in geosigmetov. UPPER MESOTEMPERATE BELT GEOSIGMETUM Scutellaria columnae-Ostryo carpinifoliae violo reichenbachianae sigmetosum Brizo mediae-Brometum erecti cynosuretosum cristati (Northern slopes) Colchico lusitani-Cynosuretum cristati (Flat valleys) Cytiso sessilifolii-Querco pubescentis sigmetum Asperulo purpureae-Brometum erecti asperuletosum purpureae (Southern slopes) Asperulo purpureae-Brometum erecti onobrychidetosum viciifoliae (Southern slopes) Stipo apenninicolae-Seslerio juncifoliae seslerio juncifoliae sigmetosum Stipo apenninicolae-Seslerietum juncifoliae seslerietosum juncifoliae (Watershed) Carici sylvaticae-Quercetum cerridis Brizo mediae-Brometum erecti danthonietosum alpinae (Top) LOWER SUPRATEMPERATE BELT GEOSIGMETUM Lathyro veneti-Fago sylvaticae lathyro veneti sigmetosum Brizo mediae-Brometum erecti brizetosum mediae (Northern slopes) Brizo mediae-Brometum erecti pöetosum alpinae (Top) Brizo mediae-Brometum erecti festucetosum commutatae (Northern slopes) Colchico lusitani-Cynosuretum cristati (Flat valleys) Scutellario columnae-Ostryo carpinifoliae seslerio nitidae sigmetosum Potentillo cinereae-Brometum erecti potentilletosum cinereae (Southern slopes) Potentillo cinereae-Brometum erecti caricetosum humilis (Southern slopes) Seslerio nitidae-Brometum erecti (Southern slopes) Carici humilis-Seslerio apenninae sigmetum Carici humilis-Seslerietum apenninae (Watershed) HIGHER SUPRATEMPERATE BELT GEOSIGMETUM Cardamino kitaibelii-Fago sylvaticae sigmetum Filipendulo vulgaris-Trifolietum montani gentianelletosum columnae (Northern slopes) Carici humilis-Seslerio apenninae sigmetum Carici humilis-Seslerietum apenninae (Watershed) 133 Table 3: Main ecological-spatial characteristics of the named syntaxa Tabela 3: Glavne ekološko-prostorske značilnosti obravnavanih sintaksonov. Plant community Description of ecological characteristics Environmental data Floristic composition % Exp. Slope Altitude Festuco- Nardetea Molinio- Elyno- Rosmarinetea Others (:) (a.s.l.) Brometea strictae Arrhenatheretea Seslerietea officinalis, Thero- Brachypodietea Open turf community of southern and little steep slopes covered by lithoso-ils into Higher Mesotemperate Belt Aspemlo purpureae-Brometum erecti Biondi et Ballelli, 1981 asperuietosum purpureae .411egrezza 2003 corr. Aspemlo purpureae-Bmmetum Open turf community of southern and erecti onobiychidetosum viciifo- little steep slopes covered by lithoso-liae Catorci, Gatti et Ballelli 2007 ils into Higher Mesotemperate Belt Seslerio nitidae-Bmmetum erecti Open turf community of southern and Bruno in Bruno et Covarelli 1968 Brizo mediae-Brometum erecti brizetosum mediae Biondi, Allegrezza e/Zuccarello 2005 Brizo mediae-Brometum erecti cynosuretosum cristati Catorci, Gatti et Ballelli 2007 Brizo mediae-Brometum erecti poetosum alpinae Catorci, Gatti et Ballelli 2007 Brizo mediae-Brometum erecti festucetosum commutatae Catorci, Gatti et Ballelli 2007 Brizo mediae- Bmmetum erecti danthonietosum alpinae Ballelli, Castagnari, Catorci et Fortunati 2002 em. Colchico lusitani-Cynosuretum cristati Biondi, Ballelli, Allegrezza, Guitian et Taffetani 1986 very steep slopes covered by lithoso-ils into Higher Mesotemperate and Lower Supratemperate Belt Finn turf community of northern and little steep slopes or tops with soils deep into Higher Mesotemperate and Lower Supratemperate Belt Finn turf community of northern and little steep slopes or tops with deep soils into Higher Mesotemperate and Lower Supratemperate Belt Finn turf community of northern and little steep slopes or tops with deep soils into Higher Mesotemperate and Lower Supratemperate Belt Finn turf community of northern and little steep slopes or tops with deep soils into Higher Mesotemperate and Lower Supratemperate Belt Finn turf community of northern and little steep slopes or tops with deep soils into Higher Mesotemperate and Lower Supratemperate Belt Meadows of the flat bottom of small valleys with deep and devoid of carbonate soils into Higher Mesotemperate and Lower Supratemperate Belt SE-SW 20^15 550-900 SE-SW 20^15 550-900 87 84 0 30-50 800-1200 NE-NW 10^10 800-1200 65 Pl-N 0-10 800-1200 58 N 0-10 1200-1400 68 Pl-N 10-20 1200-1400 62 N 0-10 800-1200 56 N 0-10 800-1300 69 16 15 12 19 21 25 35 20 A. Catorci, S. Cesaretti & R. Gatti: Geosynphytosociology as a Tool of Analysis and Modelling of Grassland Systems »n ■t ■t t- m t- co »n VO m o o o o o o o o m m t- VO ,-H o o o o o o o o o o o m ^ ^ ^ ^ »n »n o »n 0\ »n »n »n m o o VID CD »n »n IS "2 r § •S a 5 » £ č id £ ' č a O g a o » i-J u ^ S ° it-!3 u « a O ~ S a o » i-J u ^ S S st-S s § 3 ! k 8 ^ ^ _ § -5 S p o — S1" ! o s va 13 o g-2 t^w m 15 'g 3 oq S .2 Š 1 PQ I I ■ - ■S IS e o o ß «s 'c o ■ä <3 <2 <3 g d ^ là Ü C S u ^ a lu 0 tS Š là ^ Ü 1 ^ 5 O u £ M J œ 3 -a m c a d O ^ u 3 0.S oj» r- P3 ■So m ■-B .2 5 .5 1S « tu 6 S S a °s u Ö ^ « -73 £ ' Č -T3 C . « J £ _ C M o • o ^ m m i C s o. "au & u u Ol^iS .sas "ô § m j» ^ 5 m £ o o iS £ Js O ta m ig § ff s == S < ^ ^ ^ äS Sä S S-S 5 t I £ -73 O § .S S s— Ü 2 -S ■ë o a u m o m -'S S ■ü g tu c S-^IS o i^ii 13.12 „ M ^ o W s ïï S ta ^ -!2 'jï IS Cl ;> U Carici humilis-Seslerietum apenninae 12,45 1 Stipo apenninicolae-Seslerietum 12,70 1 juncifoliae seslerietosum juncifoliae Seslerio nitidae-Brometum erecti 12,86 1 Potentillo cinereae-Brometum erecti 12,88 1 caricetosum humilis Potentillo cinereae-Brometum erecti 15,42 1 potentilletosum cinereae Brizo mediae-Brometum erecti 18,46 2 festucetosum commutatae Filipendulo vulgaris-Trifolietum 18,52 2 montani gentianelletosum columnae Asperulo purpureae-Brometum erecti 20,69 2 onobrychidetosum viciifoliae Brizo mediae-Brometum erecti 21,07 3 cynosuretosum cristati Brizo mediae-Brometum erecti 21,32 3 brizetosum mediae Asperulo purpureae-Brometum erecti 21,70 3 asperuletosum purpureae Brizo mediae-Brometum erecti 21,74 3 poetosum alpinae Brizo mediae-Brometum erecti 26,66 4 danthonietosum alpinae Colchico lusitani-Cynosuretum 33,04 5 cristati 135 Table 5: Productivity and relative reference classes for each syntaxon Tabela 5: Produktivnost in relativni referenčni razred za posamezni sintakson. PLANT COMMUNITY AVERAGE PRODUCTIVITY (dry matter) g/m2 AVERAGE TOTAL AVERAGE REGROWTH PRODUCTIVITY (dry (dry matter) g/m2 matter) g/m2 PRODUCTIVITY CLASSES year year year year Total 2003 2004 2005 2006 average Potentillo cinereae-Brometum erecti potentilletosum cinereae Potentillo cinereae-Brometum erecti caricetosum humilis Stipo apenninicolae-Seslerietum 107 65 juncifoliae seslerietosum juncifoliae Asperulo purpureae-Brometum erecti 85 79 asperuletosum purpure ae Brizo mediae-Brometum erecti 130 68 poetosum alpinae Asperulo purpureae-Brometum erecti 98 86 onobn'chidetosum viciifoliae Carici humilis-Seslerietum apenninae 137 69 Seslerio nitidae-Brometum erecti - - Brizo mediae-Brometum erecti 138 128 brizetosum mediae Brizo mediae-Brometum erecti 183 174 festucetosum commutatae Brizo mediae-Brometum erecti 178 223 cynosuretosum cristati Brizo mediae-Brometum erecti 247 182 danthonietosum alpinae Colchico lusitani-Cynosuretum 274 313 cristati Filipendulo vulgaris-Trifolietum 370 280 montani gentianelletosum columnae 85 87 99 116 123 150 205 243 42 67 58 107 47 125 200 196 275 42 67 86 77 99 94 88 116 128 177 200 236 316 301 325 10 20 20 30 10 20 30 30 50 40 40 50 60 50 52 87 106 107 109 114 118 146 178 217 240 286 361 375 A. Catorci, S. Cesaretti & R. Gatti: Geosynphytosociology as a Tool of Analysis and Modelling of Grassland Systems 3.2.2 Productivity 3.2.4 Bromatological composition The productivity results are shown in Table 5. Also here it is shown that productivity levels of the xeric plant communities found in summit areas are lower than those found on Southern slopes, as are the values of Northern mesophilic plant communities. These show lower productivity levels than the syntaxa typically found in flat areas of valleys or summits. 3.2.3 Theoretical utilisation coefficient The results obtained from the calculation of the theoretical utilisation coefficient (Cut) of each syntaxon are shown in Table 6. Table 6: Theoretical utilisation coefficient (means) for each syntaxon Tabela 6: Teoretični uporabni koeficient (povprečni) za posamezni sintakson. PLANT COMMUNITY Cu , Potentillo cinereae-Brometum erecti 0,40 caricetosum humilis Brizo mediae-Brometum erecti poetosum 0,42 alpinae Stipo apenninicolae-Seslerietum juncifoliae 0,48 seslerietosum juncifoliae Seslerio nitidae-Brometum erecti 0,50 Potentillo cinereae-Brometum erecti 0,51 potentilletosum cinereae Asperulo purpureae-Brometum erecti 0,52 asperuletosum purpureae Carici humilis-Seslerietum apenninae 0,53 Asperulo purpureae-Brometum erecti 0,56 onobrychidetosum viciifoliae Brizo mediae-Brometum erecti festucetosum 0,56 commutatae Brizo mediae-Brometum erecti 0,64 cynosuretosum cristati Brizo mediae-Brometum erecti brizetosum 0,65 mediae Brizo mediae-Brometum erecti 0,66 danthonietosum alpinae Colchico lusitani-Cynosuretum cristati 0,71 Filipendulo vulgaris-Trifolietum montani 0,76 gentianelletosum columnae Table 7 shows data from the bromatological analysis (chemical composition) of the main plant communities found in the study area. Table 7: Bromatological characterization Tabela 7: Bromatološke značilnosti (kemijska sestava). PLANT COMMUNITY Proteins % Lipides % ADF % % F Ashes % Brizo mediae-Brometum 10,0 1,75 30,2 53,75 6,8 erecti cynosuretosum cristati Brizo mediae-Brometum 11,8 3,70 37,0 49,3 6,50 erecti brizetosum mediae Brizo mediae-Brometum 11,6 1,73 33,0 55,6 6,67 erecti danthonietosum alpinae Filipendulo vulgaris-Trifo- 10,76 1,46 36,0 42,5 7,16 lietum montani Asperulo purpurea-Brome- 9,66 1,6 25,96 49,26 7,4 tum erecti onobrychide- tosum viciifoliae Brizo mediae-Brometum 10,3 1,5 - - 6,7 erecti festucetosum com- mutatate Colchico lusitani-Cynosu- 10,2 0,95 31,3 51,7 6,7 retum cristati Carici humilis-Seslerietum 9,5 1,9 34,05 62,6 4,65 apenninae Stipo apenninicolae-Sesle- 9,0 1,73 39,8 59,63 5,4 rietum juncifoliae sesle- rietosum juncifoliae Asperulo purpurea-Brome- 6,9 1,95 65,0 34,7 6,2 tum erecti asperuletosum purpureae 3.2.5 Carrying capacity The results for the carrying capacity (LSU/ha) of the studied plant communities are presented in Table 8. In general, these results maintain the same pattern of differentiation between the summit communities, slopes and plains, as previously described. 137 HAcquETiA 8/2 • 2009, 129-146 Table 8: Carrying capacity and relative reference classes for each syntaxon Tabela 8: Nosilna kapaciteta in relativni referenčni razred za posamezni sintakson. PLANT COMMUNITY S ^ ■s« ^ LJ "B uuu cU m Potentillo cinereae-Brometum 0,18 erecti potentilletosum cinereae Potentillo cinereae-Brometum 0,24 erecti caricetosum humilis Brizo mediae-Brometum erecti 0,27 poetosum alpinae Stipo apenninicolae-Seslerietum 0,37 juncifoliae seslerietosum juncifoliae Carici humilis-Seslerietum 0,40 apenninae Asperulo purpureae-Brometum 0,41 erecti asperuletosum purpureae Asperulo purpureae-Brometum 0,42 erecti onobrychidetosum viciifoliae Seslerio nitidae-Brometum erecti 0,48 Brizo mediae-Brometum erecti 0,77 festucetosum commutatae Brizo mediae-Brometum erecti 0,79 brizetosum mediae Brizo mediae-Brometum erecti 1,12 cynosuretosum cristati Brizo mediae-Brometum erecti 1,29 danthonietosum alpinae Colchico lusitani-Cynosuretum 1,71 cristati Filipendulo vulgaris-Trifolietum 1,95 montani gentianelletosum columnae the total surface of each polygon family (vegetation association or group of vegetation associations). As an example, relevant data for management purposes are shown in Table 9. This represents the total carrying capacity of the pastoral system of the Umbria-Marches Apennine (Mac-erata province only) subdivided into bioclimatic belts. Of course this process can be replicated for any territorial fraction within the pastoral system. Table 9: Total carrying capacity of the studied pastoral system (The total carrying capacity of the pastoral system of the Apennines in the Macerata province is between 84,200 and 135,450 sheep, according to the conversion of 1 LSU/ha into 6 adult ovines - Ronchi 1988). Tabela 9: Celotna nosilna kapaciteta obravnavanega pašnega sistema (celotna nosilna kapaciteta pašnega sistema Apeninov v provinci Macerata je glede na pretvorbo 1 LSU/ha v 6 odraslih ovc od 84,200 do 135,450 ovc; Ronchi, 1988). BIO-CLMATIC BELTS LSU/ha SOUTHERN SLOPES LSU/ha NORTHERN SLOPES LSU/ha FLAT AREAS TOTAL LSU/ha Upper 149 787 1840 2776 Mesotemperate 479 131 2576 4376 Lower 721 2893 3130 6744 Supratemperate 2323 4855 4382 11560 Upper 537 1989 1287 4515 Supra-temperate 1731 3338 1570 6639 Minimum 14035 Maximum 22575 3.2.6 Total carrying capacity of the pastoral system The database associated with the polygons of the phytosociological vegetation map allows for the combination of all data related to the agro-zootechnical characteristics of the polygons with 3.3 Characterization of the seasonal PRODUCTIVITY TRENDS The ability to correlate a syntaxon with a certain bioclimatic belt, and thus its particular thermo-pluviometric characteristics, allows for the modelling of a series of temporal attributes linked to the forage resource, which is essential in managing the system. 138 Table 10: Seasonal characteristics of annual productivity Tabela 10: Sezonske značilnosti letne produktivnosti. PLANT COMMUNITY VEGETATIVE PRODUC- INSTANT CARRYING SUMMER INSTANT CARRY- AVERAGE CARRY- PHASE TIVITY CAPACITY OF THE VEGETATIVE ING CAPACITY OF ING CAPACITY OF START PEAK VEGETATION STASIS SUMMER VEGETA- SUMMER VEGETA- Period MAXIMUM PERIOD TION MINIMUM TIVE STASIS Productivity LSU/ha Days LSU/ha LSU/ha Potentillo cinereae-Brometum erecti potentilletosum cinereae 1-15 may 01-15 june 42 g/m2 22,28 40-60 3,71 0,06 Potentillo cinereae-Brometum erecti caricetosum humilis 1-15 may 01-15 june 67 g/m2 28,21 40-60 5,90 0,10 Stipo apenninicolae-Seslerietum juncifoliae seslerietosum juncifoliae 15-30 april 15-30 june 86 g/m2 43,49 >60 7,08 0,08 Asperulo purpureae-Brometum erecti as-peruletosum purpure ae 15-30 april 15-30 may 77 g/m2 42,10 >60 11,48 0,13 Brizo mediae-Brometum erecti poetosum alpinae 15-30 may 01-15 july 99 g/m2 39,53 40-60 2,80 0,05 Asperulo purpureae-Brometum erecti onobn'chidetosum viciifoliae 15-30 april 15-30 may 94 g/m2 54,49 40-60 8,12 0,09 Carici humilis-Seslerietum apenninae 1-15 may 15-30 june 88 g/m2 47,31 40-60 11,29 0,19 Seslerio nitidae-Brometum erecti 1-15 may 01-15 june 116 g/m2 57,21 40-60 10,36 0,17 Brizo mediae-Brometum erecti brizeto-sum mediae 1-15 may 15-30 june 128 g/m2 92,90 <30 25,40 0,85 Brizo mediae-Brometum erecti festuceto-sum commutatae 15-30 may 01-15 july 177 g/m2 113,17 <30 17,90 0,60 Brizo mediae-Brometum erecti cynosure-tosum cristati 1-15 may 15-30 may 200 g/m2 143,99 30-45 20,16 0,45 Brizo mediae-Brometum erecti danthoni-e to sum alpinae 1-15 may 15-30 june 236 g/m2 175,22 30-45 25,99 0,58 Colchico lusitam-Cynosuretum cristati 1-15 may 15-30 june 301 g/m2 263,73 <30 36,80 1,23 Filipendulo vulgaris-Trifolietum montani gentianelletosum columnae 15-30 may 01-15 july 325 g/m2 256,19 <30 27,59 0,92 HACQÜETIA 8/2 • 2009, 115-128 3.3.1 Vegetative phase The vegetative phase, or rather the period in which phytomass is produced, represents a central element in determining the optimal duration for seasonal grazing. There are many direct and indirect methods to obtain these data. Indirect methods lead to preliminary estimates that can subsequently be optimised by using direct data. In the first case agronomical criteria can be used, which specify the onset of bacterial activity and of the subsequent capacity of the plants to fix nitrogen from the soil. A requirement for this is the existence of mean daily temperature > 10 °C or, alternatively, minimum daily temperatures > 6 °C (Conrad & Pollak 1950, Blasi 1994). The direct methods allow for the creation of productivity curves (Fig. 1), ideally integrating these studies with synphenological data. The start of the vegetative phase can be induced by anthesis of geophytes, immediately preceding or parallel to the vegetative phase of Poaceae and other taxonomic components of grassland (Catorci et al. 2006, Gatti et al. 2007a). Table 10 shows the mean onset of the grassland vegetative phase of the syntaxa within the study area. g/m2 Figure 1: Examples of productivity curves of the northern slopes (Brizo mediae-Brometum erecti brizetosum mediae) Slika 1: Primeri produktivnostnih krivulj na severnih pobočjih (Brizo mediae-Brometum erecti brizetosum mediae). 3.3.2 Period of maximum productivity and summer vegetative stasis The integration of the climatic analyses with the geo-synphytosociological aspects of the veg- etation allows one to relate the relative data to space both at the seasonal peak of productivity (with the relative theoretical carrying capacity) and during the phase of minimum productivity, or even the vegetative stasis due to a period of summer aridity stress. As before, it is also possible to evaluate the relative theoretical carrying capacity. The availability of these two sets of data represents an important element (together with the mean theoretical carrying capacity of the summer grazing period), for example in defining rotational stocking rates in a pastoral system. Also in this case it is possible to use indirect and direct methods. In the first case, for example, by verifying whether there is a period of summer aridity or not using the SDS index by Mi-trakos (1980, 1982). In the second case, by using data from syn-ecological studies or productivity curves. Table 10, cited above, shows these parameters for all syntaxa studied. 3.4 Other characteristics of pastoral systems 3.4.1 Combining productivity and pastoral values (phyto-pastoral value) The phytosociological pastoral value and agronomical productivity of a syntaxon express parameters that are not necessarily related to each other. In fact, a syntaxon with high productivity could consist mainly of unpalatable species, whereas a syntaxon with a high pastoral value could be characterised by low productivity. The combination of the two parameters (phyto-pas-toral value) is important because it allows one to obtain a comprehensive picture to be used in the design of maps (Cavallero et al. 2002). As shown in Table 11, the productivity classes and pastoral values were compared for each plant community. Using the mean of these values, the sizes of the corresponding intervals were calculated according to Sturges (1926), and each phytocenosis was attributed to its respective reference class with regard to the phyto-pastoral value. This method allows for a fast comparison of the various plant communities and is important especially in evaluation and management of large territories. 140 A. Catorci, S. Cesaretti & R. Gatti: Geosynphytosociology as a Tool of Analysis and Modelling of Grassland Systems Table 11: Phyto-pastoral values of the studied syntaxa Tabela 11: Fito-pašne vrednosti obravnavanih sintaksonov. PLANT COMMUNITY PRODUCTIVITY PASTORAL VALUE PHYTO-PASTORAL CLASSES CLASSES CLASSES Potentillo cinereae-Brometum erecti 1 1 1 potentilletosum cinereae 1 1 Potentillo cinereae-Brometum erecti 1 1 1 caricetosum humilis 1 1 Stipo apenninicolae-Seslerietum juncifoliae 1 1 seslerietosum juncifoliae I 1 I Carici humilis-Seslerietum apenninae 1 1 1 Asperulo purpureae-Brometum erecti 2 onobrychidetosum viciifoliae 1 i 1 i Seslerio nitidae-Brometum erecti 1 1 Asperulo purpureae-Brometum erecti 3 2 asperuletosum purpureae 1 Brizo mediae-Brometum erecti poetosum 3 2 alpinae 1 1 Brizo mediae-Brometum erecti brizetosum 2 3 2 mediae Brizo mediae-Brometum erecti 3 2 2 festucetosum commutatae Brizo mediae-Brometum erecti 3 3 3 cynosuretosum cristati Brizo mediae-Brometum erecti 4 4 4 danthonietosum alpinae Filipendulo vulgaris-Trifolietum montani 5 2 4 gentianelletosum columnae Colchico lusitani-Cynosuretum cristati 5 5 5 3.4.2 Combining phyto-pastoral values with floristic values Knowledge of particular diversity present in a habitat or a certain territory is now considered a basic necessity in describing environmental systems (Ferrari, 2001). The adoption of appropriate strategies aimed at conserving this diversity must include knowledge and quantification of biodiversity. It is important to remember that there are several indices used to reach such a result. Using the phytosociological database from the Apennines in the Macerata province, a conservation and a rarity index were created, allowing comparison of different plant communities within a territory (Tardella et al. 2007). The results obtained from these analyses are shown in Table 12, in which it can be seen that certain xeric communities, such as Asperulo purpureae-Brometum erecti onobrychidetosum vicifoliae, Asperulo purpureae- Brometum erecti asperuletosum purpureae, Brizo me-diae-Brometum erecti festucetosum commutatae, Bri-zo mediae-Brometum erecti danthonietosum alpinae have a high rarity index, i.e. contain numerous species within their floristic composition exclusive of the syntaxon. In contrast, another group consisting of Brizo mediae-Brometum erecti brizeto-sum mediae, Brizo mediae-Brometum erecti poetosum alpinae, Brizo mediae-Brometum erecti festucetosum commutatae, Brizo mediae-Brometum erecti cyno-suretosum cristati and Filipendulo vulgaris-Trifoli-etum montani gentianelletosum columnae is characterised by a high conservation index value. Given that biodiversity conservation implies conservation of the entire mosaic of plant communities that characterise a territory, comparison of the aforementioned results combined with the phyto-pastoral value allows for the definition of certain priorities and critical points. 141 HACQÜETIA 8/2 • 2009, 115-128 Table 12: Conservation value of studied syntaxa (from Tardella & al. 2007). Tabela 12: Ohranitvene vrednosti obravnavanih sintaksonov (iz Tardella & al. 2007). FLORISTIC FLORISTIC PLANT COMMUNITY RARITY CONSERVATION INDEX INDEX VALUE Seslerio nitidae-Brometum erecti 0,68 3,90 Asperulo purpureae-Brometum erecti onobrychidetosum viciifoliae 0,92 14,30 Stipo apenninicolae-Seslerietum juncifoliae seslerietosum juncifoliae 0,83 19,44 Potentillo cinereae-Brometum erecti potentilletosum cinereae 0,88 26,04 Potentillo cinereae-Brometum erecti caricetosum humilis 0,88 26,04 Carici humilis-Seslerietum apenninae 0,75 29,57 Asperulo purpureae-Brometum erecti asperuletosum purpureae 0,92 14,30 Brizo mediae-Brometum erecti brizetosum mediae 0,89 72,60 Brizo mediae-Brometum erecti poetosum alpinae 0,80 72,60 Brizo mediae-Brometum erecti festucetosum commutatae 0,92 76,20 Brizo mediae-Brometum erecti cynosuretosum cristati 0,80 72,60 Brizo mediae-Brometum erecti danthonietosum alpinae 0,89 72,60 Filipendulo vulgaris-Trifolietum montani gentianelletosum columnae 0,71 42,39 Colchico lusitani-Cynosuretum cristati 0,80 3,75 For example, within the study area, Asperulo purpureae-Brometum erecti, has a high rarity index but a low phyto-pastoral value. On the one hand, this shows the importance of conserving these plant communities. On the other hand, given the low density of grazing animals, these plant communities are more likely to be abandoned, as they are less interesting for animal nutrition. With regard to management, it may be necessary to place economic priority on zootechnical development in order to sustain pasture on arid and less productive grasslands. In this way colonisation through shrubs and eliophilic trees can be avoided. 4. DISCUSSION As seen in the flow chart in Fig. 2, phytosociolog-ical analysis can be used to create models aimed at describing pastoral landscapes, their functions and their priorities. Following this procedure, phytosociological maps (basic and derived) can be created. Due to the spatial characterization of collected data this information can be applied to all homogeneous polygons in terms of phytosociology and correlated to the intrinsic floristic-structural characteristics of the studied association. This method allows one to proceed along two main conceptual pathways, defined as indirect and direct, respectively. The indirect method is based on phytosociologically derived ANIMAL RESOURCE DATABASE Figure 2: Grazing management decision making on the basis of the phytosociological analysis and modelling Slika 2: Odločanje o pašnem gospodarjenju na podlagi fito-sociološke analize in modeliranja. C \ GRAZING MANAGEMENT DECISION MAKING 142 A. Catorci, S. Cesaretti & R. Gatti: Geosynphytosociology as a Tool of Analysis and Modelling of Grassland Systems data (floristic significance, Vp e Cut), thus making it possible to calculate the theoretical carrying capacity and define a preliminary grazing management strategy. Using the direct procedure, by means of quantitative analysis of productivity parameters and bromatological characterization, a definition of the actual carrying capacity can be obtained. The correlation of these parameters with sea-sonality and the qualitative elements that result from the direct analysis enables a first definition of a management strategy for the pastoral system. Overlapping the results obtained from the analysis of the forage resource with those of the animal population, a first definition of the main strategies for grazing management can be obtained, an essential planning element for the conservation and maintenance of grassland ecosystems. 5. conclusions Modelling of forage resources and pastoral systems through an integrated approach has shown great potential in on-field application by combining landscape ecology, vegetation and agro-zootechnical sciences. These results are important in terms of biodiversity conservation and in defining the main strategies for pastoral systems management. Furthermore, this process has shown how the hierarchical organisation of a database enables, in such a long and complex process, the progressive gathering of knowledge, both in qualitative and quantitative terms. This process avoids long periods of research prior to making management decisions, followed by a more detailed management strategy based on improved knowledge. In particular, this method makes it posible to obtain a first general overview of the forage resource using the theoretical data linked to the phytosociologi-cal interpretation of the territory. Subsequently, this overview can be enhanced with actual quantitative data, offering also a qualitative dimension coming from the phytosociological aspects. 6. acknowledgement This study was developed within the project "Eco-compatible production and evaluation of typical products of the Marches Apennines" carried out with financial support from the Marches Region (Fund CIPE 2004). 6. references Agnelli, A., Allegrezza, M., Biondi, E., Cocco, S., Corti, G. & Pirchio, F. 2008: Pedogenesi e pae-saggio vegetale: il ruolo dell'esposizione. Fito-sociologia 45 (1): 23-28. Allegrezza, M. 2003: Vegetazione e paesaggio vegetale della dorsale del Monte San Vicino (Appennino centrale). Fitosociologia 40 (1) Suppl. 1: 3-118. Allen, T.H.F. & Starr, T.B. 1982: Hierarchy, Perspectives for Ecological Complexity. The University of Chicago Press, Chicago, 310 pp. Bagella, S. 2001: Valore pastorale delle associa-zioni vegetali: un esempio di applicazione nell'Appennino Uumbro-Marchigiano (Italia). Fitosociologia 38 (1): 153-165. Bagella, S. & Roggero, P.P., 2004: Analisi spazio-temporale della produzione di praterie secon-darie nell'Appennino Umbro-Marchigiano (Italia). Inf. Bot. Ital. 35 (2): 309-320. Baldoni, M.A., Ballelli, S., Biondi, E., Catorci, A. & Orsomando, E. 1996: Studio fitosociologico delle formazioni prative del Monte Subasio (Appennino Umbro-Marchigiano). Doc. Phy-tosoc. XVI: 427-448. Bakker, J. P. 1998: The impact of grazing on plant communities. In: WallisDevries, M.F., Bakker, J.P. & Van Wieren, S.E (eds): Grazing Conservation Management. Kluwer Academic Publishers, London, pp. 137-184. Biondi, E., 1996: L'analisi fitosociologica nello studio integrato del paesaggio. Avances en Fitosociologia: 13-22. Biondi, E. 2001: Paesaggio vegetale e potenzialità pastorali. In: Atti del 36 simposio internazio-nale di zootecnia "Prodotti di origine animale: qualità e valorizzazione del territorio". Porto-novo (Ancona) 27 aprile 2001, 1: 5-22, Greppi & En. eds. Biondi, E. & Ballelli, S. 1995: Le praterie del Monte Coscerno e Monte Civitella (Appennino Umbro-Marchigiano- Italia centrale). Fitosociologia 30:91-121. Biondi, E., Allegrezza, M. & Zuccarello, V. 2005: Syntaxonomic revision of the Apennine grassland belonging to Brometalia erecti, and an analysis of their relationships with the xerophi- 143 Hacquetia 8/2 • 2009, 129-146 lous vegetation of Rosmarinetea officinalis. Phy-tocoenologia 35 (1): 129-163. Biondi, E., Baldoni, M.A. & Talamonti, M.C. 1995: Il fitoclima delle Marche. In: Atti del convegno "Salvaguardia e gestione dei beni ambientali nelle Marche" (Ancona, 8-9 aprile 1991). Ancona, Accademia di scienze, lettere ed arti: 21-70. Biondi, E., Casavecchia, S. & Guerra, V. 2006: Analysis of vegetation diversity in relation to the geomorphological characteristics in the Salento coasts (Apulia-Italy). Fitosociologia 43 (1): 25-38. Biondi, E., Feoli, F. & Zuccarello, V. 2004a: Modelling Environmental Responses of Plant Associations: A Review of Some Critical Concepts in Vegetation Study. Critical Reviews in Plant Sciences 23 (2): 149-156. Biondi, E., Pinzi, M. & Gubellini, L. 2004b: Vege-tazione e paesaggio vegetale del Massiccio del Monte Cucco (Appennino centrale, Dorsale Umbro-Marchigiana). Fitosociologia 41(2) Suppl. 1: 3-81. Bittante, G., Andrighetto, I. & Ramanzin, M., 1990: Fondamenti di zootecnia. Miglioramen-to genetico, nutrizione e alimentazione. Livia-na Editrice, Padova. 244-293. Bittante, G., Andrighetto, I. & Ramanzin, M. 1993: Tecniche di produzione animale. Livia-na Editrice, Padova, 490 pp. Blaschka, T. 2001: Multiskalare bildanalyse zur umsetzung des Patch-matrix-konzepts in der landschaftsplanung. Naturschtz und landschaftsplanung 2/3: 84-89. Blasi, C. 1994: Fitoclimatologia del Lazio. Fitosociologia 27: 151-175. Blasi, C., Smiraglia, D. & Carranza, M.L. 2003: Analisi multitemporale del paesaggio e classi-ficazione gerarchica del territorio: il caso dei Monti Lepini (Italia centrale). Inf. Bot. Ital. 35 (1): 31-40. Blasi, C., Carranza, M., Frondoni, R. & Rosati, L. 2000: Ecosystem classification and mapping: a proposal for Italian landscape. Applied Vegetation Science 3: 233-242. Bonanomi, G. & Allegrezza, M. 2004: Effetti della colonizzazione di Brachypodium rupestre (Host) Roemer et Schultes sulla diversità di alcune fitocenosi erbacee dell'Appennino centrale. Fitosociologia 41 (2): 51-69. Braun-Blanquet, J. 1931: Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer Verlag, Wien. Cano, E., Garria-Fuentes, A., Torres, J.A., Sala-zar, C., Melendo, M., Pinto-Gomes, C. & Val-le, F. 1997: Phytosociologie appliquée à la planification agricole. Colloques Phytosociologi-ques XXVII: 1007-1022. Catorci, A., Cesaretti, S. & Marchetti, P. (eds.) 2007a: Vocazionalità del territorio della Co-munità Montana di Camerino per la produ-zione di biomasse solide agro-forestali ad uso energetico. L'uomo e l'ambiente 47. Tipogra-fia Arte Lito, Camerino, 75 pp. Catorci, A., Gatti, R. & Ballelli, S. 2007b: Studio fitosociologico della vegetazione delle prate-rie montane dell'Appennino maceratese. In: Catorci, A. & Gatti, R. (eds.): Le praterie montane dell'Appennino maceratese. Braun-Blan-quetia 42: 101-144. Catorci, A., Gatti, R. & Vitanzi, A. 2006: Relationship between phenology and above-ground phytomass in a grassland community in central Italy. In: Gafta, D. & Akeroyd, J.R. (eds.): Nature conservation. Concepts and Practice. Sprinter, pp. 309-327. Cavallero, A., Rivoira, G. & Talamucci, P., 2002: Pascoli. In: Baldoni, R. & Giardini, L. (eds.): Coltivazioni erbacee-foraggere e tappeti erbo-si. Patron editore, Bologna, pp. 239-294. Conrad, V. & Pollak, L. W. 1950: Methods in climatology. Harvard University Press. Cambridge, 459 pp. Corrall, A.J. & Fenlon, J.S. 1978: A comparative method for describing the seasonal distribution of production from grasses. Journal of Agricultural Science 91: 61-67. Cremaschi, M. & Rodolfi, G. 1991: Il suolo. Roma, La Nuova Italia Scientifica Editrice, 267 pp. Cutini, M, Catorci, A., Gatti, R., Paura, B. & Acosta, A. 2007: Analisi delle relazioni tra parametri geomorfologici e comnità prative in ambiente montano (Appennino umbro-marchi-giano). In: Catorci, A. & Gatti, R. (eds.): Le praterie montane dell'Appennino maceratese. Braun-Blanquetia 42: 159-164. Daget, Ph. & Poissonet, T. 1969: Analyse phytolo-gique des prairies. INRA, Montpellier Document 48. Delpech, R. 1960: Critères de jugement de la valeur agronomique des prairies. Fourrages 4: 83-98. Ercole, S., Acosta, A. & Blasi, C. 2005: Parametri ambientali e vegetazione: analisi quantitativa di variabili ambientali nell'ambito di uno 104 A. Catorci, S. Cesaretti & R. Gatti: Geosynphytosociology as a Tool of Analysis and Modelling of Grassland Systems studio fitosociologico. Inform. Bot. Ital. 37: 494-495. Farina, A. 2001: Ecologia del paesaggio. Principi, metodi ed applicazioni. UTET Libreria, Torino, 673 pp. Ferrari, C. 2001: Biodiversità dall'analisi alla ge-stione. Zanichelli, 144 pp. Filasi, L., Acosta, A., Bottini, D., Dowgiallo, G. & Blasi, C. 2004: Le comunità vegetali del pro-motorio del Circeo in relazione al suolo. In: Amato, M., Migliozzi, A. & Mazzoleni, S.: Il sistema suolo vegetazione. Liguori Editore, pp. 253-262. Floret, C. & Le Floch, E. 1983: Phytomasse et production végétale en Tunisie présaharienne. Acta Oecol./Oecol. Plant. 4 (18) 2: 133-152. Foglia, M., Sparvoli, D. & Catorci, A. 2007: Ana-lisi multitemporale dell'uso del suolo della dorsale appenninica marchigiana nel XIX e XX secolo. In: Catorci A, Gatti R. (eds.): Le praterie montane dell'Appennino maceratese. Braun-Blanquetia 42: 47-72. Francalancia, C., Galli, P. & Paradisi, L. 1995: Va-riazioni nella composizione floristica dei prati a Cynosurus cristatus L. delle alte Valli di Taz-za e di Fematre (Appennino Marchigiano) in rapporto alle pratiche colturali. Fitosociologia 29 (1): 89-94. Gatti, R. & Catorci, A. 2005: Contributo alla caratterizzazione dei pascoli alto-collinari dell'Appennino Umbro-Marchigiano a fini zootezcnici (Prati di Gagliole e Monti Rogedano-Puro). Progetto Docup ob. 2 "Rete didattica, Natura, Ambiente, Territorio dell' Appennino umbro-marchigiano". Regione Marche, Aula Verde Valleremita, CEA Valle dei Grilli e dell'Elce, Dip. di Botanica ed Ecologia, Unicam. Arti Grafiche Gentile, Fabriano, 52 pp. Gatti, R. & Catorci, A. 2007: Prima caratterizza-zione dei pascoli montani dell'Appennino ma-ceratese ai fini zootecnici. In: Catorci A, Gatti R. (eds.): Le praterie montane dell'Appennino maceratese. Braun-Blanquetia 42: 267-272. Gatti, R., Carotenuto, L. & Catorci, A. 2007a: Sin-fenologia di alcuni syntaxa prativi dell'Appen-nino umbro-marchigiano (Italia centrale). In: Catorci A, Gatti R. (eds.): Le praterie montane dell'Appennino maceratese. Braun-Blan-quetia 42: 179-202. Gatti, R., Galliano, A. & Catorci, A. 2007b: Valore pastorale delle praterie montane dell'Appennino maceratese. In: Catorci A, Gatti R. (eds.): Le praterie montane dell'Appennino maceratese. Braun-Blanquetia 42: 247-253. Gatti, R., Vitanzi, A., Cesaretti, S. & Catorci, A. 2007c: Contributo alla quantificazione della fitomassa epigea di alcuni pascoli dell'Appen-nino umbro-marchigiano (Italia centrale). In: Catorci A, Gatti R. (eds.): Le praterie montane dell'Appennino maceratese. Braun-Blan-quetia 42: 255-266. Gatti, R., Carotenuto, L., Vitanzi, A., Pieruccini, P. & Catorci, A. 2005: Plant biodiversity conservation and sustainable grazing in mountain grasslands: a case study in Umbria-Marche Apennines (Central Italy). Ecologia: Atti del Congres-so Nazionale della Società Italiana di Ecologia (S.It.E.), Torino 12-14 settembre 2005. Géhu, J.M. 1988: Sur la notion de cellules paysageres isofunctionnelles. Colloques Phytoso-ciologiques. Géhu, J.M. & Rivas-Martinez S., 1981: Notions fondamentales de phytosociologie. Ber. Int. Simp. Int. Vereinigung Vegetationsk: 5-33. Géhu, J.M., Bouzille, J.B., Bioret, F., Godeau, M., Botineau, M., Clement, B., Touffet, J. & Lahondere, C. 1991: Approche paysagere sym-phytosociologique des marais littoraux du centre-ouest de la France. Colloques phytoso-ciologique. Phytosociologie et paysages, XVII : 109-127. Gratani, L., Rossi, A., Crescente, M.F. & Frattaro-li, A.R. 1999: Ecologia dei pascoli di Campo Imperatore (Gran Sasso d'Italia) e Carta della biomassa vegetale. Braun-Blanquetia 16: 227247. Grayson, B. 1999: The agricultural perspective. In: Crofts, A. & Jefferson R.G.: The lowland grassland management handbook. English Nature/The wildlife trusts of the Royal Society for Nature Conservation, London, chapter 4: 1-37 pp. Grime, J.P. 1973: Competitive exclusion in herbaceous vegetation. Nature 242: 344-347. Grime, J.P. 2001: Plant strategies, Vegetation Processes and Ecosystem Properties. John Wiley and Sons Ltd, London, 417 pp. Hodgson, J. & Illius, A.W. 1998: The Ecology and Management of Grazing Systems. CAB International, Wallingford, 480 pp. King, A.W. 1977: Hierarchy Theory: A guide to system structure for wildlife biologists. In: Bissonette, A. (eds.): Wildlife and Landscape Ecology. Effects of Pattern and Scale. Springer, New York, pp. 1717-1725. 145 HACQÜETIA 8/2 • 2009, 115-128 Miles, J. 1985: The pedogenic effects of different species and vegetation types and the implications of succession. Journal of soil science 36: 571-584. Miles, J. 2004: Le dinamiche delle relazioni suo-lo-vegetazione negli ecosistemi naturali. In: Amato, M., Migliozzi, A. & Mazzoleni, S.: Il sistema suolo vegetazione. Liguori Editore, pp. 125-136. Mitrakos, K. 1980: A theory for Mediterranean plant life. Acta Oecologica/Oecologia Planta-rum, 1(15), 3: 245-252. Mitrakos, K. 1982: Winter low temperatures in mediterranean-type ecosystems. Ecologia Mediterranea, VIII (1-2): 95-102. O'Neill, RV. & King, A. W. 1988: Homage to St. Michael: or, Why are there so many books on scale? In: Tereson, D.L. & Parker, V.T. (eds): Ecological Scale. Theory and Applications. Columbia University Press, New York, pp. 3-15. Orsomando, E., Catorci, A., Pitzalis, M. & Rapo-ni, M. 1999: Carta fitoclimatica dell'Umbria (scala 1: 200.000). Regione dell'Umbria. Area Assetto del Territorio e P.U.T., Dip. di Botanica ed Ecologia, Univ. di Camerino. Ist. di Ecolo-gia Agraria, Univ. di Perugia. S.El.Ca. Firenze. Ozenda, P. 1982: Les Végétaux dans la biosphere. Doin Editeurs, Paris, France, 431 pp. Pedrotti, F. 2004: Cartografia geobotanica. Pitagora Editrice Bologna. S.El.C.A., Firenze, 236 pp. Persson, S. 1984: Vegetation development after the exclusion of grazing cattle in a meadow area in the south of Sweden. Vegetatio, 55: 65-92. Pieruccini, P. 2007: Suoli e geomorfologia delle praterie montane nell'Appennino Umbro-Marchigiano. In: Catorci, A. & Gatti, R. (eds.): Le praterie montane dell'Appennino macera-tese. Braun-Blanquetia 42: 19-36. Podani, J. 2001: Syntax 2000 Computer program for data analysis in ecology and systematics. Budapest. Pott, R. 1998: Effects of human interference on the landscape with special reference to the role of grazing livestock. In: WallisDevries, M.F., Bakker, J.P. & Van Wieren, S.E (eds.): Grazing Conservation Management. Kluwer Academic Publishers, London, pp. 107-134. Redecker, B., Finck, P., Härdtle, W., Riecken, U. & Schröder, E. 2002: Pasture Landscapes and Nature Conservation. Springer-Verlag Berlin, 435 pp. Regione Marche, 1991: L'ambiente fisico delle Marche. Geologia Geomorfologia Idrogeolo-gia. Giunta Regionale. Assessorato Urbanisti-ca e Ambiente, Ancona, 255 pp. Rivas-Martinez, S. 2005: Avances en Geobotani-ca. http://www.globalbioclimatics.org Roggero, P. P., Bagella, S. & Farina, R. 2002: Un archivio dati di Indici specifici per la valuta-zione integrata del valore pastorale. Rivista di Agronomia 36 (2): 149-156. Ronchi, B. 1988: Zootecnica nelle regioni di mon-tagna. Athene editrice, Roma, 221 pp. Sânchez Rodriguez, E., Amor Morales, Ä. & La-dero Älvarez, M., 2006: Estudio fitosociologi-co y bromatologico de los pastizales con inte-rés ganadero en la provincia de Salamanca (Espana). Studia Botanica 25: 9-61. Sarno, R., Talamucci, P., Cavallero, A. & Stringi, L. (eds.) 1989: Distribuzione della produzione dei pascoli in ambienti marginali italiani. Guida alla valutazione della produttività. Progetto Finalizzato CNR-IPRA Aree Marginali, Palermo, pp.175. Sturges, H. 1926: The choice of a class-interval. Journal of American Statistical Associations 21 (153): 65-66. Tainton, N. M., Morris, C. D. & Hardy, M. B. 1996: Complexity and stability in grazing systems. In: Hodgson, J. & Illius, A. W. (eds.). The Ecology and Management of Grazing Systems. Cab International, UK, pp. 275-299. Tardella, F.M, Ballelli, S., Gatti, R. & Catorci, A. 2007: Diversità floristica delle praterie montane dell'Appennino maceratese. In: Catorci, A. & Gatti, R. (eds.): Le praterie montane dell'Appennino maceratese. Braun-Blanquetia 42:145-158. Theurrilat, J.P. 1992: L'analyse du paysage végétal en symphytocoenologie: ses niveaux et leurs domains spatiaux. Bull. Ecol. 23 (1-2): 83-92. Tomaselli, R. 1956: Introduzione allo studio della fitosociologia. Industria Poligrafica Lombar-da, Milano, 319 pp. WallisDeVries, M.F & Van de Koppel, J. 1998: The role of scientific models. In: WallisDeVries M.F., Bakker J.P., Van Wieren S.E.. (eds.): Grazing Conservation Management. Kluwer Academic Publishers, London, pp. 321-340. Recieved 5. 2. 2009 Revision recieved 19. 8. 2009 Accepted 28. 8. 2009 146