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Metodološki zvezki, Vol. 11, No. 1, 2014, 1-20

Symbolic Covariance Matrix for Interval-valued
Variables and its Application to Principal

Component Analysis: a Case Study

Katarina Košmelj1, Jennifer Le-Rademacher2 and Lynne Billard3

Abstract

In the last two decades, principal component analysis (PCA) was extended to
interval-valued data; several adaptations of the classical approach are known from
the literature. Our approach is based on the symbolic covariance matrix Cov for the
interval-valued variables proposed by Billard (2008). Its crucial advantage, when
compared to other approaches, is that it fully utilizes all the information in the data.
The symbolic covariance matrix can be decomposed into a within part CovW and
a between part CovB. We propose a further insight into the PCA results: the pro-
portion of variance explained due to the within information and the proportion of
variance explained due to the between information can be calculated. Additionally,
we suggest PCA on CovB and CovW to be done to obtain deeper insights into the
data under study.

In the case study presented, the information gain when performing PCA on the
intervals instead of the interval midpoints (conditionally the means) is about 45%. It
turns out that, for these data, the uniformity assumption over intervals does not hold
and so analysis of the data represented by histogram-valued variables is suggested.

1 Introduction

1.1 Principal component analysis for classical data
Principal component analysis (PCA) was first described by Pearson (1901) as an ana-
logue of the principal axes theorem in mechanics; it was later independently developed
and named by Harold Hotelling in the 1930s. It is a very popular exploratory tool in
classical multivariate data (see e.g., Chatfield and Collins, 1980; Johnson and Wichern,
2002). Its major objective is to reduce the dimension of the variable space: the origi-
nal p random variables X = (X1, X2, ..., Xp) are transformed into s random variables
Y = (Y1, Y2, ..., Ys), called Principal Components, where s � p, and the Y variables
are uncorrelated. This transformation is defined in such a way that the first principal
component (PC1) accounts for as much of the variability, i.e., variance, in the data as
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possible, and each succeeding component in turn has the highest variance possible, under
the constraint that it be orthogonal to (i.e., uncorrelated with) the preceding components.

The solution of the problem described above is given by the eigenvalues and eigen-
vectors of the covariance matrix of X1, X2, ..., Xp. Principal components are linear com-
binations of the original variables, defined by the eigenvectors of this covariance matrix.
From the basic linear algebra it follows: there are p eigenvalues ordered: λ1 ≥ λ2 ≥ ... ≥
λp ≥ 0; eigenvalues of the covariance matrix are the variances of the principal compo-
nents. The eigenvalues add up to the sum of the diagonal elements, i.e., to the trace of the
covariance matrix. This means that the sum of the variances of the principal components
is equal to the sum of the variances of the original variables. The i-th principal component
accounts for λi/

∑p
j=1 λj of the total variance in the original data. When the decision on

the reduced dimension s is taken, we calculate the proportion of variance accounted for
by the first s principal components,

∑s
j=1 λj/

∑p
j=1 λj .

As the covariance on standardized variables equals the correlation, therefore, in this
case, eigenvalues and eigenvectors of the correlation matrix are used. It is recommended
to perform PCA on standardized variables when the original variables are measured on
scales with different ranges.

1.2 Principal component analysis for symbolic data
In the second part of the 20th century, the need to analyze massive datasets emerged.
Symbolic data analysis started as a response to that demand; see Bock and Diday (2000),
Billard and Diday (2003, 2006), among others. Symbolic analytical methods are often
generalizations of their classical approach counterparts. A symbolic method should give
the same results as its classical counterpart when applied to classical data (Billard, 2011,
Le-Rademacher and Billard, 2012).

In the last two decades, PCA was adapted for symbolic data, first in the context of
interval-valued data. A number of approaches were proposed. Le-Rademacher and Bil-
lard (2012) give a short overview of its historical development; let us review them briefly.
Cazes et al. (1997) proposed the first adaptations of PCA known as the centers method
and the vertices method, see also Douzal-Chouakria et al. (2011); Zuccolotto (2007)
applied the vertices method to a dataset on job satisfaction; Lauro and Palumbo (2000)
introduced a Boolean matrix to account for the interdependency of the vertices, Palumbo
and Lauro (2003) and Lauro et al. (2008) proposed the midpoint-radii method treating in-
terval midpoints and interval midranges as two separate variables; Gioia and Lauro (2006)
proposed a PCA version based on an interval algebra approach.

Le-Rademacher and Billard (2012) describe these approaches in detail and discuss
their characteristics in the context of symbolic data analysis: namely, these approaches
fail in different ways to utilize the entire information included in the interval-valued data.

These deficiencies can be avoided when the symbolic covariance matrix Cov is used.
Its calculation in the interval setting was first presented in Billard (2008). The crucial
advantage of this symbolic covariance matrix is that it fully utilizes all the information in
the data; also it is shown that the symbolic covariance matrix can be decomposed into a
within part CovW and a between part CovB. Two papers on this topic (Le-Rademacher
and Billard, 2012 and Billard and Le-Rademacher, 2012) also provide a new approach
to constructing the observations in PC space allowing for a better visualization of the
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results. Le-Rademacher and Billard (2013a) propose an approach to construct histogram
values from the principal components of interval-valued observations. Le-Rademacher
(2008) and and Le-Rademacher and Billard (2013b) extend these ideas to histogram-
valued observations. In a different direction, Giordani and Kiers (2006) consider fuzzy
data, which is a different domain from symbolic data and so is outside the purview of
the present work. Likewise, a different domain is the PCA of time series data of Irpino
(2006).

1.3 Objective of this study

We want to compare PCA results obtained on different data types. To enable the compar-
ison of the results, the data were aggregated from the same dataset. For each observation
and each variable, we aggregated the data in two different ways:

• the mean value;

• the [min,max] interval which is based on the minimal and maximal value under
observation.

The main objective of this study is to find out what is the information gain when analyzing
the [min,max] interval instead of the mean value.

In the next section, some well known characteristics of interval-valued data are sum-
marized. Covariance in the interval setting will be illustrated and compared to the covari-
ance in the classical setting. For PCA on interval-valued variables, a simple measure of
the information gain will be introduced and additional PCA analyses will be suggested.
These approaches allow for a deeper insight into the dataset under study.

The third section presents a simple case study. It consists of seven meteorological
stations in Slovenia, they are described by seven variables, the data are from the 40 year-
period 1971-2010. The results of different PCA analyses will be presented and compared.
To facilitate the comparison of the results, the dataset is very small, however, the stations
are chosen according to subject-matter knowledge. The last section gives some conclu-
sions and suggestions for further work.

2 Interval-valued variables

Let us first note that an interval-valued random variable is just a standard random variable
but its values are intervals. Let X = (X1, X2, ..., Xp) be a p-dimensional random variable
taking values in Rp. Let Xj be an interval-valued random variable, its data exist for a
random sample of size n and is in the form Xij = [aij, bij], aij ≤ bij , i = 1, ..., n. In
the case aij = bij , for any i = 1, 2, ..., n, Xij has a classical value. Each observation
described by a p-dimensional interval-valued variable can be visualized as a hypercube in
Rp.
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2.1 Mean and variance
The mean and the variance for an interval-valued variable are based on the assumption
that the distribution of the values within each interval is uniform. They were first defined
by Bertrand and Goupil (2000). The sample variance of Xj is:

S2
j =

1

3n

n∑

i=1

(a2ij + aijbij + b2ij)−X
2

j , (2.1)

where the sample mean Xj is the average of the interval midpoints

Xj =
1

2n

n∑

i=1

(aij + bij). (2.2)

Billard (2008) showed that (2.1) can be rewritten as

S2
j =

1

3n

n∑

i=1

[(aij −Xj)
2 + (aij −Xj)(bij −Xj) + (bij −Xj)

2], (2.3)

and proved that the Total Sum of Squares SST can be decomposed into a within part
SSW and a between part SSB :

nS2
j = SSTj = SSWj + SSBj. (2.4)

The Within Sum of Squares SSW measures the internal variation and can be ex-
pressed as follows:

SSWj =
1

3

n∑

i=1

[(aij −
aij + bij

2
)2 + (aij −

aij + bij
2

)(bij −
aij + bij

2
) + (bij −

aij + bij
2

)2]

=
n∑

i=1

(bij − aij)
2

12
.

(2.5)

Thus, as expected, SSW is based on an implicit assumption that the distribution of values
within each observed interval is uniform, Xij ˜ U(aij, bij), i = 1, 2, ..., n. Other distri-
butions are also relevant; e.g., Billard (2008) presents the formulae for SSW and SST
when observations within each interval follow a triangular distribution.

The Between Sum of Squares SSB describes the between variation, i.e., the variation
of the interval midpoints:

SSBj =
n∑

i=1

(
aij + bij

2
−Xj)

2, (2.6)

and is independent of the distribution within the intervals.
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2.2 Covariance
Let Xj1 and Xj2 be two interval-valued random variables with pairwise observations:
Xj1 = [aij1 , bij1 ] and Xj2 = [aij2 , bij2 ] on a random sample of size n. The following
holds: aij ≤ bij , for j = j1, j2, and i = 1, 2, ..., n. Total Sum of Products SPT is
decomposed into two components, the Sum of Products Within, SPW , and the Sum of
Products Between, SPB; it is connected to the covariance Cov:

nCovj1j2 = SPTj1j2 = SPWj1j2 + SPBj1j2 . (2.7)

The Sum of Products Within SPW and Sum of Products Between SPB are related
to CovW and CovB, respectively, which are expressed as follows:

CovWj1j2 =
SSWj1j2

n
=

1

n

n∑

i=1

(bij1 − aij1)(bij2 − aij2)

12
, (2.8)

CovBj1j2 =
SSBj1j2

n
=

1

n

n∑

i=1

(
aij1 + bij1

2
−Xj1)(

aij2 + bij2
2

−Xj2). (2.9)

It may be interesting to notice that the entries of the CovW matrix are always positive,
their magnitudes depend on the ranges, Rij = bij − aij , j = j1, j2; the greater the ranges
of the two variables the greater is the entry of CovW . It should be pointed out that CovW
is not a true covariance matrix on the ranges; the terms for the true covariance matrix on
the ranges would be (Rij1 − Rj1)(Rij2 − Rj2). However, the CovW matrix incorporates
information on the size of the rectangles.

The entries of CovB are classical covariances (divided by n not by n − 1) on the
interval midpoints. When, instead of the intervals [a, b], PCA is performed on the interval
midpoints: [(a + b)/2, (a + b)/2], CovW is zero and Cov = CovB; in this case, the
symbolic PCA results are the same as for a classical PCA on the interval midpoints.

Billard (2008) showed that the covariance between two interval-valued variables Xj1

and Xj2 can be calculated directly, using the following expression:

Covj1j2 =
1

6n

n∑

i=1

[2 (aij1 −Xj1)(aij2 −Xj2) + (aij1 −Xj1)(bij2 −Xj2)

+ (bij1 −Xj1)(aij2 −Xj2) + 2 (bij1 −Xj1)(bij2 −Xj2)] (2.10)

Two special cases are easily checked: a) covariance of two identical variables equals
its variance; b) covariance of two classical variables equals the well known classical co-
variance.

Figure 1 gives some insight into the calculation of the covariance in the classical and
interval setting. Covariance in the classical setting is based on the position of the points,
in the interval setting it is based on the rectangles: the location of the midpoints de-
termines the between part, the size of the rectangles determines the within part, which
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Figure 1: Calculation of the covariance in the classical setting (upper part) is based on the
position of the points; in the interval setting (lower part) it is based on the rectangles:

position of the midpoints and size of the rectangles determine its value.
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is always positive. Covariance is calculated on the number of clear days (D.Clear) and
the number of cloudy days (D.Cloud) for seven meteorological stations (for details, see
next section). Figure 1 (upper part) illustrates the classical covariance, the position of
the points suggests that the covariance is negative, the same would be expected from the
subject-matter knowledge; the obtained value is Cov(D.Cloud,D.Clear) = −212.0.
However, the covariance in the interval setting is positive, Cov(D.Cloud,D.Clear) =
+202.2. This is due to a large within interval component CovW (D.Cloud,D.Clear) =
411.7, the between component is the same as classical covariance on the midpoints,
CovB(D.Cloud,D.Clear) = −212.0; see Figure 1 (lower part).

2.3 Principal component analysis in the context of interval-valued
data

A crucial advantage of the symbolic covariance matrix Cov is that it fully utilizes all the
information in the data. It can be decomposed into a within part CovW and a between
part CovB. This decomposition allows for a deeper insight into the PCA results from
the traces of these matrices. Since the trace of a matrix is a linear operator, the following
holds:

tr(Cov) = tr(CovW ) + tr(CovB). (2.11)

Hence, we can assess the proportion of variance explained due to the within infor-
mation and the proportion of variance explained due to the between information. The
information gain when performing PCA on the intervals instead of the interval midpoints
(conditionally the means) is due to the within information.

Additional PCA analysis can be done on CovB, these results are equivalent to the
classical PCA results on the interval midpoints. A PCA analysis can also be performed
on CovW ; the interpretation of these results may enlighten some of the aspects of the
within information.

3 A case study
We consider yearly data from the period 1971-2010 in Slovenia, data were collected by
Slovenian Environment Agency (http://meteo.arso.gov.si/met/sl/archive/), and are shown
in the Appendix. The following variables are taken into account: number of cold days
(D.Cold), number of warm days (D.Warm), number of days with storms (D.Storm), num-
ber of days with precipitations (D.Prec), number of days with snow cover (D.SnCov),
number of clear days (D.Clear), and number of cloudy days (D.Cloud). According to me-
teorological definitions, for a cold day the minimal daily air temperature is below 0 0C,
for a warm day the maximal daily temperature is above 25 0C; a clear day has under 20%
of cloudiness, a cloudy day has over 80%. Hence, D.Cold and D.Warm are based on the
same variable, i.e., air temperature, the same holds for D.Clear and D.Cloud which are
based on cloudiness.

For illustrative simplicity, only seven meteorological stations are chosen for this case
study. They are: Bilje (Bilje), Črnomelj (Crnom), Ljubljana (Ljubl), Maribor (Marib),
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Figure 2: Geographical position of seven meteorological stations under study: Bilje (Bilje),
Črnomelj (Crnom), Ljubljana (Ljubl), Maribor (Marib), Murska Sobota (MurSo),

Portorož-airport (Porto), and Rateče (Ratec); elevation (in meters) is pinned to each station.

Murska Sobota (MurSo), Portorož-airport (Porto), and Rateče (Ratec). Their location is
shown in Figure 2. Portorož-airport is situated at sea level (elevation 2 m), Rateče is
in the Alps (elevation 864 m), the other stations have elevation from 55 m to 299 m.
The dataset is slightly incomplete: data for Portorož-airport started in 1975, for Bilje,
Črnomelj, Maribor and Murska Sobota data for some years are inconsistently missing.

As already stated, we want to compare PCA results obtained on different data types
which were aggregated from the same dataset. For each station and each variable, we
aggregated the data in two different ways: the mean value and the [min,max] interval
which is based on the minimal and maximal values in the period under observation.

3.1 PCA on the Means

In Table 1, the classical covariance matrix calculated on the means is presented; the
sum of variances (3891.8) is given below the matrix. Dominant variances are as fol-
lows: V ar(D.SnCov) = 1449.4, V ar(D.Cold) = 1284.6; dominant covariances are:
Cov(D.SnCov,D.Cold) = 1232.5 (positive), Cov(D.SnCov,D.Warm) = −679.3
and Cov(D.Warm,D.Cold) = −558.2 (negative).

In Table 2, the PCA results are given. The first two principal components explain
about 92% of total variance, the first three around 97%. The loads for the first three prin-
cipal components are also presented; we shall interpret the first two principal components
only. For the first principal component (PC1) D.Cold and D.SnCov are dominant, for the
second principal component (PC2) D.Clear and D.Cloud show up. We can deduce that
PC1 is positively correlated with low air temperature and PC2 with the surplus of cloudy
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Table 1: Covariance matrix calculated on the means. The sum of the variances (in the table
in bold) is given below the matrix.

D.Cold D.Warm D.Storm D.Prec D.SnCov D.Clear D.Cloud
D.Cold 1284.6 -558.2 -182.0 308.1 1232.5 -262.3 204.8
D.Warm -558.2 356.7 45.1 -96.1 -679.3 70.1 -28.3
D.Storm -182.0 45.1 47.3 -29.3 -109.4 51.4 -29.5
D.Prec 308.1 -96.1 -29.3 212.9 337.8 -148.6 195.5
D.SnCov 1232.5 -679.3 -109.4 337.8 1449.4 -216.3 177.6
D.Clear -262.3 70.1 51.4 -148.6 -216.3 296.8 -212.0
D.Cloud 204.8 -28.3 -29.5 195.5 177.6 -212.0 244.1

Sum of variances = 3891.8

Table 2: PCA on the means, results for the first three principal components: cumulative
percentage of variance explained, principal component loads (dominant loads are in bold).

PC1 PC2 PC3

Cum.% of var. exp. 79.2 92.2 96.7
D.Cold 0.625 0.014 0.661
D.Warm -0.307 0.274 0.192
D.Storm -0.071 -0.057 -0.391
D.Prec 0.172 0.385 -0.322
D.SnCov 0.670 -0.218 -0.473
D.Clear -0.138 -0.598 -0.090
D.Cloud 0.113 0.607 -0.193

over clear days.
Figure 3 presents the seven stations in the space of PC1 by PC2. There is a positive

trend with low air temperature along PC1: Portorož-airport reveals few days with low
air temperature and snow cover, Rateče the opposite. This is consistent with the fact that
Portorož-airport is located near the Adriatic sea, Rateče is located in the Alps. There is a
positive trend in the surplus of cloudy over clear days along PC2; here, Portorož-airport
has the lowest surplus (it has more clear than cloudy days), Ljubljana and Črnomelj have
the highest (here, there are more cloudy than clear days).

3.2 Symbolic PCA on interval-valued variables

3.2.1 Symbolic covariance matrix and its decomposition

The symbolic covariance matrix Cov for the intervals is given in Table 3; also shown is
the decomposition into CovB and CovW . The term CovB is identical to the classical
covariance matrix on the interval midpoints. Values of CovW reflect the internal vari-
ability and are all positive. Consequently, the terms in Cov are always larger than the
corresponding terms in CovB; thus, there are fewer negative terms in Cov than in CovB.
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Figure 3: PCA on the means: presentation of seven stations in two-dimensional space of
PC1 by PC2; 92.2% of total variance is explained. PC1 reflects positive impact of low air

temperature, PC2 reflects positive impact of surplus of cloudy over clear days.

The sum of symbolic variances is 5754.2, the between component explains 3170 (55.1%),
and the remaining 2563.2 (44.9%) is due to the within component. In this case, we can
conclude that the gain in information, when we analyze the intervals instead of the inter-
val midpoints, is large, it is nearly 45%. Let us find out the corresponding impact on the
PCA results.

3.2.2 PCA on symbolic covariance matrix

Table 4 shows the PCA results based on the symbolic covariance matrix. The first two
principal components explain 86.4% of variance, the first three 95.1%. For PC1, the loads
for D.Cold and D.SnCov are dominant, for PC2 the dominant loads are D.Warm and
D.Clear (positive), for PC3 D.Clear (negative). Hence, the PC1 is positively correlated
with low air temperature, as in the PCA on the means; however, other results are different:
PC2 is positively correlated with D.Warm and D. Clear, PC3 is negatively correlated with
D.Clear.

Visualisation of these PCA results in two-dimensional space is based on the approach
presented in Le-Rademacher and Billard (2012). For each station, a 7-dimensional poly-
tope is obtained. Figure 4 (upper plot) presents the projection of these polytopes onto the
PC1 by PC2 plane. Considerable overlapping is presented. The plot shows that the vari-
ability in PC1 (D.Cold and D.SnCov) is dominant, for Rateče it is the greatest; however,
variability in PC2 (D.Warm and D.Clear) is comparable for all stations. Only two pairs of
stations do not overlap: Portorož-airport and Rateče, Bilje and Rateče. The polytopes for
two extreme stations, Portorož-airport and Rateče, are presented on Figure 4 (lower plot).
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Table 3: Covariance matrix Cov for interval-valued variables, variances are in bold; it is
decomposed into CovB and CovW (below). The respective sum of variances is presented

below the corresponding matrix.

Cov D.Cold D.Warm D.Storm D.Prec D.SnCov D.Clear D.Cloud
D.Cold 1363.7 -74.1 30.8 537.4 1313.6 105.0 630.2
D.Warm -74.1 720.3 224.4 262.1 -53.4 399.3 407.2
D.Storm 30.8 224.4 153.9 146.1 127.6 265.9 191.4
D.Prec 537.4 262.1 146.1 443.2 615.6 163.6 557.6
D.SnCov 1313.6 -53.4 127.6 615.6 1595.7 187.5 750.6
D.Clear 105.0 399.3 265.9 163.6 187.5 724.6 202.2
D.Cloud 630.2 407.2 191.4 557.6 750.6 202.2 752.9

Sum of variances = 5754.2

CovB D.Cold D.Warm D.Storm D.Prec D.SnCov D.Clear D.Cloud
D.Cold 1056.0 -435.8 -144.9 258.0 941.1 -233.8 251.5
D.Warm -435.8 286.8 19.2 -67.0 -482.5 8.8 -39.2
D.Storm -144.9 19.2 46.3 -18.4 -68.8 60.1 -24.8
D.Prec 258.0 -67.0 -18.4 183.1 282.0 -148.7 209.8
D.SnCov 941.1 -482.5 -68.8 282.0 997.7 -196.6 270.7
D.Clear -233.8 8.8 60.1 -148.7 -196.6 322.3 -209.5
D.Cloud 251.5 -39.2 -24.8 209.8 270.7 -209.5 278.9

Sum of between variances = 3171.0

CovW D.Cold D.Warm D.Storm D.Prec D.SnCov D.Clear D.Cloud
D.Cold 307.7 361.7 175.8 279.4 372.5 338.8 378.7
D.Warm 361.7 433.5 205.2 329.1 429.2 390.5 446.5
D.Storm 175.8 205.2 107.6 164.5 196.3 205.9 216.1
D.Prec 279.4 329.1 164.5 260.2 333.6 312.2 347.8
D.SnCov 372.5 429.2 196.3 333.6 598.0 384.1 479.9
D.Clear 338.8 390.5 205.9 312.2 384.1 402.2 411.7
D.Cloud 378.7 446.5 216.1 347.8 479.9 411.7 474.1

Sum of within variances = 2583.2
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Table 4: PCA on the intervals, results for the first three principal components: cumulative
percentage of variance explained, principal component loads (dominant loads are in bold).

PC1 PC2 PC3

Cum.% of var. exp. 62.0 86.4 95.1
D.Cold 0.569 -0.277 -0.102
D.Warm 0.081 0.663 0.279
D.Storm 0.079 0.261 -0.119
D.Prec 0.309 0.172 0.271
D.SnCov 0.636 -0.220 -0.180
D.Clear 0.127 0.512 -0.767
D.Cloud 0.384 0.275 0.452

From these plots, it is observed that the internal variability for Rateče is greater than it is
for Portorož-airport.

3.2.3 PCA on CovB and CovW

We proceed with PCA on CovB, this is identical to the classical PCA on the interval
midpoints, the results are in Table 5 (left) and are plotted in Figure 5 (upper plot); they
are consistent with the PCA results on the means.

SinceCovW depicts the within interval information, PCA onCovW allows an insight
into the variability within the interval variables, see Table 5 (right) and Figure 5 (lower
plot). In this case, the PC1 explains 93.2%, the PC2 explains additional 5.4%. The loads
for PC1 for all variables have similar magnitude, while for PC2 the dominant load is
D.SnCov; accordingly, PC1 is positively related to all the variables, PC2 is positively
related to D.SnCov. The scores are calculated using the midpoints. The stations are
located along the diagonal, from Portorož-airport at the lower end to Rateče at the upper
end, revealing the increase of interval variability from the lower to the upper end. This
result is consistent with the fact that Portorož-airport has tighter intervals, Rateče has
larger intervals.

3.2.4 Programs used

Algorithms for deriving the PCA results on the symbolic covariance matrix along with the
corresponding polytops are available at Le-Rademacher and Billard (2012, Supplemen-
tary material - online version). Their R script (R Core Team, 2013) was upgraded with
PCA on CovW and CovB and adapted for our case-study.

3.3 Other PCA approaches for interval-valued variables

Other PCA approaches on interval data are described in the literature. As stated before,
Le-Rademacher and Billard (2012) give a detailed insight into these methods. We shall
limit ourselves to only some of them.
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Figure 4: Projection of 7-dimensional polytopes onto 2-dimensional space of PC1 by PC2 ,
upper plot: for all 7 stations; lower plot: for Portorož-airport and Rateče. PC1 explains
62.0% of variance, it reflects the positive impact of D.Cold and D.SnCov; PC2 explains

24.4% of variance, it reflects the positive impact of D.Warm and D.Clear.
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Figure 5: Upper plot: PCA on CovB (this is identical to classical PCA on midpoints); PC1

reflects the positive impact of D.Cold and D. Sncov; PC2 reflects the surplus of D.Cloud
over D.Clear. Lower plot: PCA on CovW: PC1 reflects the positive impact of all variables;

PC2 the positive impact of D.SnCov.
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Table 5: PCA on the CovB (left), PCA on CovW (right); results for the first three principal
components: cumulative percentage of variance explained, principal component loads

(dominant loads are in bold).

PC1 PC2 PC3 PC1 PC2 PC3

Cum.% of var. exp. 75.9 91.5 96.8 93.2 98.6 99.7
D.Cold 0.642 -0.118 0.508 0.355 -0.126 0.118
D.Warm -0.286 0.376 0.175 0.416 -0.189 0.603
D.Thund -0.068 -0.050 -0.423 0.203 -0.221 -0.194
D.Prec 0.193 0.349 -0.348 0.324 -0.172 0.049
D.SnCov 0.630 -0.161 -0.363 0.454 0.847 -0.207
D.Clear -0.168 -0.627 -0.380 0.390 -0.391 -0.700
D.Cloud 0.198 0.549 -0.368 0.443 -0.018 0.221

3.3.1 Centers method

The centers method transforms the interval-valued matrix into a classical matrix of the
interval midpoints. The results of this method are given as a part of the PCA approach
on symbolic covariance matrix: see CovB in Table 3, PCA results in Table 5 (left) and
Figure 5 (upper plot). As already stated, in this approach the internal interval variance is
completely ignored.

3.3.2 Vertices method

In this approach, the vertices of the hyper-rectangles (instead of the interval midpoints)
are considered as the data-input. In our case, seven variables were taken into account;
therefore, there are 27 = 128 vertices. Thus, the dimension of the input matrix is n = 128,
p = 7; classical PCA is performed on this matrix.

Here, we do not present the covariance matrix. The sum of variances equals 10932.8,
which is approximately twice the value in the symbolic context (5754.2). Table 6 presents
the PCA results for the first three principal components. In this case, PC1 explains only
34.8% of the total variance; the first two principal components 51.3% and the first three
64.7%. For PC1, D.Cold and D.SnCov are dominant; PC2 is positively correlated with
D.Cloud and negatively with D.Clear (as in the PCA on the means or midpoints); for PC3

D.Warm and D.SnCov show up, surprisingly, both loads are positive.
We can summarize, that this approach is simple, it always works, but it fails to use all

the variation in the data. The results reflect that the data matrix is artificially inflated; the
vertices are treated as independent observations, this assumption is not sustainable. Our
results are consistent with Douzal-Chouakria et al. (2011), who showed that the variance
of the vertices in fact includes some but not all of the internal variation.

3.3.3 The midpoint-radii method

The midpoint-radii approach treats a single interval-valued variable as two variables: mid-
points and midranges. A PCA can be performed on either of them. This is similar to the
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Table 6: PCA on the vertices; results for the first three principal components: cumulative
percentage of variance explained, principal component loads (dominant loads are in bold).

PC1 PC2 PC3

Cum.% of var. exp. 34.8 51.3 64.7
D.Cold 0.525 0.037 -0.460
D.Warm -0.276 0.284 0.660
D.Thund -0.044 -0.024 0.041
D.Prec 0.151 0.181 -0.012
D.SnCov 0.750 -0.256 0.579
D.Clear -0.149 -0.514 0.111
D.Cloud 0.196 0.745 0.050

PCA on CovB and CovW ; the only difference is, that CovW is an uncentered covariance
matrix on the ranges.

To analyze the midpoint and the range data simultaneously, Palumbo and Lauro (2003)
propose to superimpose the PCs of the midrange onto the PCs on the midpoint and then
rotate the midrange PC axes to maximize the connection between the midpoints and the
midranges. It turns out the choice of rotation operator is subjective; the midpoints and the
midranges are treated as independent (see Lauro et al., 2008). Le-Rademacher and Billard
(2012) showed that the midpoint-radii approach is deficient and not working properly.
Due to these facts, we believe that this approach should be replaced by the PCA on the
symbolic covariance matrix; see the results given in Table 3 above, Table 4 and Figure 4.

4 Conclusions
A crucial advantage of the symbolic covariance matrix Cov is that it fully utilizes all the
information in the data. It can be decomposed into a within part CovW and a between
part CovB. In the interpretation of the Cov term, we should recognise that: it is the sum
of the classical covariance on the interval midpoints and a measure of variability (i.e., the
size) of the intervals. Therefore, the sign of CovB may be negative and the sign of Cov
positive. Figure 1 illustrates such a case.

However, this decomposition allows for a deeper insight into the interval-valued dataset:
from the traces of these matrices, the proportion of variance explained due to the within
information and the proportion of variance explained due to the between information can
be calculated. The information gain when performing PCA on the intervals instead of the
interval midpoints (conditionally the means) is due to the within information.

We can summarize the PCA approach on Cov as follows: the interpretation of the
PC should be the ”symbolic context”; visualization of the results using the projection
of the polytopes is suitable for lower dimensions of p and n, for higher dimensions the
plot can be unreadable. We suggest that separate PCA’s on both the CovB and the CovW
should be done additionally to allow for a deeper understanding of the between and within
information. The analysis of PCA results on CovB is straightforward, as in the classical
context on the interval midpoints. However, the PCA results on CovW are interpretable
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Figure 6: Histograms for D.Cold and D.SnCov for Portorož-airport and Rateče revealing
different types of distribution.

in the context of the size of the rectangles.
In the case study presented, the information gain when performing PCA on the inter-

vals instead of the interval midpoints (conditionally the means) is about 45%. For the PCA
results on Cov, it may be difficult to grasp the meaning of the PC2; however, the PCA
results obtained on CovB and CovW are consistent with the subject-matter knowledge.

There is an important assumption hidden in this analysis: the distribution of the val-
ues along each [min,max] interval should be uniform. This is often not the case, in
particular when data for meteorological variables over a longer period are under study;
for illustration, see some histograms of the raw data used herein in Figure 6. It is obvious
that the uniformity assumption does not hold. Therefore, it may be interesting to analyze
the histogram-valued variables and compare the results with the results obtained on the
interval-valued variables.
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A Appendix
The data used are yearly data from the period 1971-2010 for seven stations in Slovenia.
The following variables are taken into account: number of cold days (D.Cold), number of
warm days (D.Warm), number of days with storms (D.Storm), number of days with pre-
cipitations (D.Prec), number of days with snow cover (D.SnCov), number of clear days
(D.Clear), and number of cloudy days (D.Cloud). For each station, min and max values
are given for each variable under study.

D.Cold D.Warm D.Storm D.Prec D.SnCov D.Clear D.Cloud
Station min max min max min max min max min max min max min max
Bilje 38 96 67 125 9 63 97 160 0 12 10 114 67 133
Crnom 65 120 48 118 23 59 128 185 6 88 27 99 106 177
Ljubl 52 112 38 109 30 63 119 186 2 110 12 59 89 181
Marib 56 123 37 110 23 52 110 162 3 92 16 83 81 159
MurSo 77 131 33 109 18 47 107 154 0 85 29 77 79 155
Porto 1 67 34 125 37 71 88 143 0 13 68 128 56 124
Ratec 117 181 6 67 22 52 123 170 43 171 31 103 79 153
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Optimal Unbiased Estimates of P{X < Y } for
Some Families of Distributions

Marko Obradović, Milan Jovanović, Bojana Milošević1

Abstract

In reliability theory, one of the main problems is estimating parameter R =
P{X < Y }. In this paper we shall present UMVUEs for R in different cases i.e. for
different distributions of X and Y . Some of them are already existing and some are
original.

1 Introduction
In reliability theory the main parameter is the reliability of a system, and its estimation
is one of the main goals. The system fails if the applied stress X is greater than strength
Y , so R is a measure of system performance. In most cases this parameter is given as
R = P{X < Y }, although for some discrete cases the expression R = P{X ≤ Y } is
also considered.

The problem was first introduced by Birnbaum (1956). Since then numerous papers
have been published. Most of results are presented in (Kotz et al., 2003). The vast ma-
jority of papers presuppose independence of stress and strength variables, as well as that
they come from the same family of, in most cases continuous, distributions. There exists
a wide range of applications in engineering, military, medicine and psychology.

The unbiasedness of an estimator is a desired property especially when dealing with
relatively small sample sizes, where we cannot count on asymptotic unbiasedness. Since
in many cases most popular estimators are biased, it is often important to find the unique
minimum variance unbiased estimator (UMVUE).

1.1 UMVUE of R
Let X = (X1, . . . , Xn1) and Y = (Y1, . . . , Yn2) be the samples from the distributions
of random variables X and Y . Then, using the following theorem we can construct
UMVUEs.

Theorem 1 If V (X,Y) is any unbiased estimator of parameter θ and T is a complete
sufficient statistic for θ, then E(V (X,Y)|T ) is the UMVUE of θ.

1Faculty of Mathematics, University of Belgrade, Studenski trg 16, Belgrade, Serbia; email addresses:
marcone@matf.bg.ac.rs, mjovanovic@matf.bg.ac.rs, bojana@matf.bg.ac.rs
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This theorem is the combination of Rao-Blackwell and Lehmann-Scheffé theorems.
Their proofs could be found in (Hogg et al., 2005).

However, in continuous case, the use of this theorem might not be technically conve-
nient. Therefore, the following theorems were proposed to help deriving the UMVUEs
(Kotz et al., 2003).

Theorem 2 Let θ0 ∈ Θ be an arbitrary value of θ and let T be a complete sufficient
statistic for θ. Denote by gθ0(t) and gθ0(t|X1 = x1, ..., Xk = xk, Y1 = y1, ..., Yk = yk)
the pdf of T and the conditional pdf of T for given Xj = xj, Yj = yj, j = 1, ..., k,
respectively. Then the UMV UE of joint pdf fθ(x1, ..., xk, y1, ..., yk) is of the form

f̂(x1, ..., xk, y1, ..., yk) =
k∏

j=1

fθ0(xj, yj)
gθ0(t|X1 = x1, ..., Xk = xk, Y1 = y1, ..., Yk = yk)

gθ0(t)
.

Theorem 3 The UMVUE of R is

R̂ =

∫ ∫
I(x < y)f̂(x, y)dxdy,

where f̂ is given in theorem 2 for k = 1.

2 Existing results

In this section we present a brief summary of existing results obtained for UMVUEs of R
for some distributions.

• Exponential distribution

Let X and Y be independent exponentially distributed random variables with den-
sities

fX(x;α) = αe−αx, x ≥ 0,

fY (y; β) = βe−βy, y ≥ 0,

where α and β are unknown positive parameters. The complete sufficient statistics

for α and β are TX =
n1∑
j=1

Xj and TY =
n2∑
j=1

Yj .

The UMVUE of R was derived by Tong (1974; 1977), and it is given by

R̂ =





n1−2∑
i=0

(−1)i Γ(n1)Γ(n2)
Γ(n1−i−1)Γ(n2+i+1)

(
TY
TX

)i+1

, if TY ≤ TX

n2−1∑
i=0

(−1)i Γ(n1)Γ(n2)
Γ(n1+i)Γ(n2−i)

(
TX
TY

)i
, if TY > TX .
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• Normal distribution

Let X and Y be normally distributed independent random variables with densities

fX(x;µ1, σ1) =
1√

2πσ2
1

e
− (x−µ1)2

2σ21 , x ∈ R,

fY (y;µ2, σ2) =
1√

2πσ2
2

e
− (y−µ2)2

2σ22 , y ∈ R,

where µ1, σ2
1 , µ2 and σ2

2 are unknown parameters. The complete sufficient statistics
for (µ1, σ2

1 , µ2, σ2
2) are (X̄, S2

X , Ȳ , S
2
Y ).

The UMVUE of R was derived by Downtown (1973) and it is given by

R̂ =

[
B

(
1

2
,
n1 − 2

2

)
B

(
1

2
,
n2 − 2

2

)]−1 ∫

Ω

(1− u2)
n1−4

2 (1− v2)
n2−4

2 dudv,

where B(a, b) is the beta function and

Ω =

{
(u, v)∈ [−1, 1]× [−1, 1]|− uSX(n1 − 1)√

n1

+v
SY (n2 − 1)√

n2

+(Ȳ − X̄) > 0

}
.

• Gamma distribution

Let X and Y be independent gamma distributed random variables with densities

fX(x;α1, σ1) =
xα1−1

Γ(α1)σα1
1

e
− x
σ1 , x ≥ 0,

fY (y;α2, σ2) =
yα2−1

Γ(α2)σα2
2

e
− y
σ2 , y ≥ 0,

where α1 and α2 are known integer values and σ1 and σ2 are unknown positive

parameters. The complete sufficient statistics for σ1 and σ2 are TX =
n1∑
j=1

Xj and

TY =
n2∑
j=1

Yj .

The UMVUE of R was derived by Constantine et al. (1986), and it is given by

R̂ =





1−
(n2−1)α2−1∑

k=0

B(α1+α2+k,(n1−1)α1)
B(α1,(n1−1)α1)B(α2,(n2−1)α2)

×
(

(n2−1)α2−1
k

) (−1)k

α2+k

(
TX
TY

)α2+k

, if TY ≤ TX
(n1−1)α1−1∑

k=0

B(α2+α1+k,(n2−1)α2)
B(α2,(n2−1)α2)B(α1,(n1−1)α1)

×
(

(n1−1)α1−1
k

) (−1)k

α1+k

(
TY
TX

)α1+k

, if TY > TX .
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• Gompertz distribution
Let X and Y be independent Gompertz distributed random variables with densities

fX(x; c, λ1) = λ1e
cxe

−λ1(ecx−1)
c , x > 0,

fY (y; c, λ2) = λ2e
cye

−λ2(ecy−1)
c , y > 0,

where c is a known positive value and λ1 and λ2 are unknown positive parameters. The
complete sufficient statisitcs for λ1 and λ2 are

WX =
1

c

n1∑

j=1

(ecXj − 1),WY =
1

c

n2∑

j=1

(ecYj − 1).

The UMVUE of R was derived by Saracoglu et al. (2009) and it is given by

R̂ =





1−
n2−1∑
k=0

(−1)k Γ(n1)Γ(n2)
Γ(n1+k)Γ(n2−k)

(
WX
WY

)k
, if WX < WY

n1−1∑
k=0

(−1)k Γ(n1)Γ(n2)
Γ(n1−k)Γ(n2+k)

(
WY
WX

)k
, if WX ≥WY .

• Generalized Pareto distribution

Let X and Y be independent random variables from generalized Pareto distribution with
densities

fX(x;α1, λ) = α1λ(1 + λx)−(α1+1), x > 0,

fY (y;α2, λ) = α2λ(1 + λy)−(α2+1), y > 0,

where λ is known positive value and α1 and α2 are unknown positive
parameters. The complete sufficient statistics for parameters α1 and α2 are

TX =
n1∑
j=1

ln(1 +Xj) and TY =
n2∑
j=1

ln(1 + Yj).

The UMVUE of R was derived by Rezaei et al. (2010), and it is given by

R̂ =





1−
n2−1∑
k=0

(−1)k Γ(n1)Γ(n2)
Γ(n1+k)Γ(n2−k)

(
TX
TY

)k
, if TX < TY

n1−1∑
k=0

(−1)k Γ(n1)Γ(n2)
Γ(n1−k)Γ(n2+k)

(
TY
TX

)k
, if TX ≥ TY .

• Poisson distribution

Let X and Y be independent Poisson distributed random variables with mass functions

P{X = x;λ1} =
e−λ1λx1
x!

, x = 0, 1, . . . ,

P{Y = y;λ2} =
e−λ2λy2
y!

, y = 0, 1, . . . ,

where λ1 and λ2 are unknown positive parameters. The complete sufficient statistics for λ1

and λ2 are TX =
n1∑
j=1

Xj and TY =
n2∑
j=1

Yj .
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The UMVUE of R was derived by Belyaev and Lumelskii (1988) and it is given by

R̂ =

min{TX ,TY −1}∑

x=0

(
TX
x

)
(n1 − 1)TX−x

nTX1


1−

x∑

y=0

(
TY
y

)
(n2 − 1)TY −y

nTY2


 .

• Negative binomial distribution

Let X and Y be indepent random variables from negative binomial distributions with mass
functions

P{X = x;m1, p1} =
(
m1 + x− 1

x

)
px1(1− p1)

m1 , x = 0, 1, . . . ,

P{Y = y;m2, p2} =
(
m2 + y − 1

y

)
py2(1− p2)

m2 , y = 0, 1, . . . ,

where m1 and m2 are known integer values and p1 and p2 are unknown probabilities. The

complete sufficient statistics for p1 and p2 are TX =
n1∑
j=1

Xj and TY =
n2∑
j=1

Yj .

The UMVUE of R was derived by Ivshin and Lumelskii (1995) and it is given by

R̂ =

min{TX ,TY −1}∑

x=0

TY∑

y=x+1

(
m1+x−1

x

)(TX−x+m1(n1−1)−1
Tx−x

)
(
m1n1+TX−1

TX

)
(
m2+y−1

y

)(TY −y+m2(n2−1)−1
Ty−y

)
(
m2n2+TY −1

TY

) .

3 New results
In this section we shall derive the UMVUE of R for some new distributions. The first
model is where stress and strength both have Weibull distribution with known but different
shape parameter and unknown rate parameters. As a special case we present the model
where stress has exponential and strength has Rayleigh distribution. An example with
real data for Weibull model is presented. In the second model, both stress and strength
have logarithmic distribution with unknown parameters.

3.1 Weibull model
Let X and Y be independent random variables from Weibull distribution with densities

fX(x;α1, σ1) = α1σ
α1
1 xα1−1e−(σ1x)α1 , x ≥ 0,

fY (y;α2, σ2) = α2σ
α2
2 yα2−1e−(σ2y)α2 , y ≥ 0.

The Weibull distribution is one of the most used distribution in modeling life data.
Many researchers have studied the reliability of Weibull model. Most of them did not
consider unbiased estimators (e.g. Kundu and Gupta, 2006), and recently the case with
common known shape parameter α has been studied in (Amiri et al., 2013).

We consider the case where shape parameters α1 and α2 are known positive values,
while rate parameters σ1 and σ2 are unknown positive parameters.
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The complete sufficient statistics for parameters σ1 and σ2 are TX =
n1∑
j=1

Xα1
j and

TY =
n2∑
j=1

Y α2
j . Since Xα1 and Y α2 have exponential distributions with rate parameters

σα1
1 and σα2

2 , both statistics have gamma distribution, i.e. TX has Γ(n1, σ
−α1
1 ) and TY has

Γ(n2, σ
−α2
2 ). Similarly, for k ≤ min(n1, n2), TX −

k∑
j=1

Xα1
j has Γ(n1 − k, σ−α1

1 ) and

TY −
k∑
j=1

Y α2
j has Γ(n2 − k, σ−α2

2 ). Using this and transformation of random variables

(X1, . . . , Xk,
n1∑

j=k+1

Xα1
j ) to (X1, . . . , Xk, TX) we get, for σ1 = 1,

g(tX |X1 = x1, ..., Xk = xk) =

(tX −
k∑
j=1

xα1
j )n1−k−1

Γ(n1 − k)
e
−(tX−

k∑
j=1

x
α1
j )

I{tX ≥
k∑

j=1

xα1
j }.

Using theorem 2, we get that

f̂(x1, ..., xk) = αk1

k∏

j=1

xα1−1
j

(tX −
k∑
j=1

xα1
j )n1−k−1Γ(n1)

tn1−1
X Γ(n1 − k)

I{tX ≥
k∑

j=1

xα1
j }.

For k = 1 we obtain that

f̂(x) = α1(n1 − 1)xα1−1 (tX − xα1)n1−2

(tX)n1−1
I{tX ≥ xα1}.

Analogously we get that

f̂(y) = α2(n2 − 1)yα2−1 (tY − yα2)n2−2

(tY )n2−1
I{tY ≥ yα2}.

Denote M = min{t
1
α1
X , t

1
α2
Y }. Using the independence of samples and the theorem 3,

we obtain

R̂ =

∞∫

0

∞∫

0

I{x < y}f̂(x)f̂(y)dxdy

=

M∫

0

α1(n1 − 1)(n2 − 1)xα1−1(tX − xα1)n1−2

tn1−1
X tn2−1

Y

dx

t
1
α2
Y∫

x

α2y
α2−1(tY − yα2)n2−2dy

=

M∫

0

α1(n1 − 1)xα1−1

tn1−1
X tn2−1

Y

(tX − xα1)n1−2(tY − xα2)n2−1dx.
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Now applying the binomial formula we obtain that the UMVUE of R is

R̂ =





n1−2∑
r=0

n2−1∑
s=0

(−1)r+sα1(n1−1)
α1(r+1)+α2s

(
n1−2
r

)(
n2−1
s

)T
α2s
α1
X

T sY
, if T

1
α1
X ≤ T

1
α2
Y

n1−2∑
r=0

n2−1∑
s=0

(−1)r+sα1(n1−1)
α1(r+1)+α2s

(
n1−2
r

)(
n2−1
s

)T
α1(r+1)
α2

Y

T r+1
X

, if T
1
α1
X > T

1
α2
Y .

(3.1)

3.1.1 Exponential-Rayleigh model

As a special case of Weibull model we have a model where X has exponential and Y has
Rayleigh distribution with densities

fX(x;α) = αe−αx, x ≥ 0,

fY (y; β) = 2β2ye−β
2y2 , y ≥ 0,

where α and β are unknown positive parameters. The complete sufficient statistics for α

and β are TX =
n1∑
j=1

Xj and TY =
n2∑
j=1

Y 2
j .

The UMVUE of R is

R̂ =





n1−2∑
r=0

n2−1∑
s=0

(−1)r+s(n1−1)
(r+1)+2s

(
n1−2
r

)(
n2−1
s

)
(
T 2
X

TY
)s, if TX ≤

√
TY

n1−2∑
r=0

n2−1∑
s=0

(−1)r+s(n1−1)
(r+1)+2s

(
n1−2
r

)(
n2−1
s

)
(
√
TY
TX

)r+1, if TX >
√
TY .

3.1.2 Numerical example

Here we present an example with real data. We wanted to compare daily wind speeds in
Rotterdam and Eindhoven. We obtained two samples of 30 randomly chosen daily wind
speeds (in 0.1 m/s) from the period of April 1st 2010 to April 1st 2014 taken from the
website of Royal Netherlands Meteorological Institute. The first sample is from Rotter-
dam and the second one is from Eindhoven:

Rotterdam (X): 48, 15, 27, 18, 40, 26, 84, 19, 35, 32, 55, 29, 45, 51, 47, 66, 38, 13,
39, 28, 50, 36, 15, 74, 53, 85, 18, 58, 18, 48.

Eindhoven (Y ): 44, 25, 43, 35, 20, 59, 25, 38, 26, 15, 37, 16, 35, 17, 34, 27, 40, 37,
33, 17, 51, 50, 33, 52, 25, 21, 34, 39, 23, 60.

It is well known that wind speed follows Weibull distribution. To check this we used
Kolmogorov-Smirnov test. Since this test requires that the parameters may not be esti-
mated from the testing sample, we estimated them beforehand using some other larger
samples from the same populations. We got that X follows Weibull distribution with
shape parameter α = 2.8 and rate parameter σ = 1/47 (Kolmogorov-Smirnov test statis-
tics is 0.157 and the p-value is greater than 0.1), while Y follows Weibull distribution
with shape parameter α = 2.6 and rate parameter σ = 1/41 (Kolmogorov-Smirnov test
statistics is 0.158 and the p-value is greater than 0.1).

Finally, using (3.1) we estimated the probability that the daily wind speed is lower in
Rotterdam than in Eindhoven to be r̂ = 0.32.
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3.2 Logarithmic distribution
Let X and Y be independent random variables from logarithmic distribution with mass
functions

P{X = x; p} =
−1

ln(1− p)
px

x
, x = 1, 2, ...

P{Y = y; q} =
−1

ln(1− q)
qy

y
, y = 1, 2, ...,

where p and q are unknown probabilities.
The logarithmic distribution has application in biology and ecology. It is often used

for modeling data linked to the number of species.

The complete sufficient statistics for p and q are TX =
n1∑
j=1

Xj and TY =
n2∑
j=1

Yj .

The sum of n independent random variables with logarithmic distributions with the same
parameter p has Stirling distribution of the first kind SDFK(n, p) (Johnson et al., 2005),
so TX has SDFK(n1, p) and TY has SDFK(n2, q) with the following mass functions

P{TX = x;n1, p} =
n1!|s(x, n1)|px
x!(− ln(1− p))n1

, x = n1, n1 + 1, ...,

P{TY = y;n2, q} =
n2!|s(y, n2)|qy
y!(− ln(1− q))n2

, y = n2, n2 + 1, ...,

where s(x, n) is Stirling number of the first kind.
An unbiased estimator for R is I{X1 < Y1}. Since

E(I{X1 < Y1}|TX = tX , TY = tY ) =
P{X1 < Y1, TX = tX , TY = tY }

P{TX = tX , TY = tY }

=

M∑
x=1

tY −n2+1∑
y=x+1

P{X1 = x}P{Y1 = y}P{
n1∑
k=2

Xk = tX − x}P{
n2∑
l=2

Yl = tY − y}

P{TX = tX}P{TY = tY }

=
M∑

x=1

tY −n2+1∑

y=x+1

tX !tY !|s(tX − x, n1 − 1)||s(tY − y, n2 − 1)|
n1n2(tX − x)!(tY − y)!xy|s(tX , n1)||s(tY , n2)| ,

where M = min{tX −n1 + 1, tY −n2}, using theorem 1 we get that the UMVUE of R is

R̂ =

min{TX−n1+1,TY −n2}∑

x=1

TY −n2+1∑

y=x+1

TX !TY !|s(TX − x, n1 − 1)||s(TY − y, n2 − 1)|
n1n2(TX − x)!(TY − y)!xy|s(TX , n1)||s(TY , n2)| .

4 Conclusion
In this paper we considered the unbiased estimation of the probability P{X < Y } when
X and Y are two independent random variables. Some known results of UMVUEs for R
for some distributions were listed. Two new cases were presented, namely Weibull model
with known but different shape parameters and unknown rate parameters and Logarithmic
model with unknown parameters. An example using real data was provided.
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Testing Two Theories for Generating Signed 
Networks Using Real Data 

Patrick Doreian1 and Andrej Mrvar2 

Abstract 

Multiple social p r o c e s s e s  gene ra te  soc ia l  n e t wo r k  st r u c t u r e s .  
We use re l a x e d  s t r u c t u r a l  balance, a generalization of classic structural 
balance, to facilitate a direct comparative test of two social psychological 
theories regarding network generation. One is structural balance theory. The 
other concerns differential popularity. These theories predict distinctive 
signed blockmodels. We use two well known empirical temporal signed data 
sets presenting an opportunity for comparing the two theories in terms of 
their predictions about blockmodel representations of these networks. The 
results provide strong support for differential popularity, differential 
disliking, and mutual disliking within a subset of actors. While there is 
evidence that structural balance was also operating, it seems the lesser process 
for the data used in these tests. We also examine the unequal distributions of 
receiving positive and negative ties. Both tend to become more unequal over 
time. Suggestions for future research are provided. 

1 Introduction 

Both social psychologists and social network analysts develop theories intended to 
help understand social processes in small social groups. To the extent that the 
former focus more on node-level (actor) characteristics while the latter are more 
attentive to the network structure as a whole, there is a tension between micro-level 
and macro-level phenomena (Robins and Kashima, 2008). Our focus here is on 
understanding processes that generate network structures. We provide comparative 
tests of two theories based on a simple assumption: social processes, if operative 
in small groups, leave traces of recognizable patterns of network ties. This 
comparative test is for signed networks. Our primary goal is disentangling the 
results from the operation of processes specified by two theories of social processes 
in groups. One is structural balance theory Heider (1946, 1958) The other concerns 
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differential popularity, a process described by Feld and Elsmore (1984) under 
which some group members receive more positive ties than others. The detailed 
predictions of the two theories differ. 

As Taylor (1970) notes, Heider was credited with the initial statement of 
structural balance theory. While we focus attention on the Heider variant of 
consistency theories, Newcomb (1961), Festinger (1957), Osgood and Tannenbaum 
(1955) and others (see Abelson et al., 1968) also formulated alternative consistency 
theories. We use Heider’s approach because Cartwright and Harary’s (1956) formal 
generalization of his theory laid fo rmal  foundations for analyzing signed social 
networks. 

Feld and Elsmore (1984) drew a critical response from Hallinan (1984) 
regarding rival processes accounting for the unequal distributions in the receipt of 
signed ties in a group. Both papers considered rival theories about group processes 
by using distributions of particular triples of ties among trios of actors in the 
network of actors in the group.  

 Rather than use distributions of triple types, we examine the overall structure 
of a network using blocks located in signed blockmodels. Briefly, a blockmodel of a 
network is a simultaneous partition of both the actors and their social ties. The 
clusters of actors are called positions3. Using blockmodels delineating network 
structure provides an direct description of a network’s overall structure. 

The rest of this paper is organized as follows. Section 2 outlines substantive 
issues and Section 3 describes our data and methods. Section 4 presents our results 
and we conclude with a summary and discussion in Section 5. 

2 Theories about processes that generate network 
structures 

2.1 Structural balance theory 

The intuitions of Heider's (1946) structural balance theory, formalized by Cartwright 
and Harary (1956), led to a sustained research effort of discerning the structure of 
signed networks (Doreian et al., 2005: Chapter 10). Key in this development was a 
remarkable ‘structure theorem’ coupling micro-processes (of actors forming and/or 
dropping signed ties) and the resulting macro-structure of the group. Signed ties are 
either positive (e.g. liking, loving, supporting) or negative (e.g. disliking, hating, 
opposing). For three actors, denoted by p, o and q, in a signed network, the poq 
triple is made up of the ties (p�q), (q�o) and (p�o). The sign of every triple is the 

                                                 
3   A formal statement can be found in Doreian et al. (2005). Ferligoj et al. (2011) contains a rigorous 
informal statement about positional analysis in terms of positions and roles. 
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product of its signed relations. A poq-triple is balanced if its sign is positive and 
imbalanced if the sign is negative4. There are four possible balanced triples and 
four imbalanced triples. A signed network is balanced if all of its poq-triples are 
balanced. Cartwright and Harary’s main theorem  states: the vertices of a balanced 
network can be partitioned into two positions where all of the positive ties are 
within positions and all of the negative ties are between members of different 
positions. This result links the micro-processes of tie formation and change within 
triads to a statement about the overall group structure for balanced networks. 
Davis (1967) noted human groups often have more than two mutually hostile 
subgroups. He generalized Cartwright and Harary’s result by reconsidering one 
part of Heider’s foundational statement: if all of the ties in a poq-triple were 
negative, the triple was imbalanced. Davis defined this all-negative triple as 
balanced. His result was: a ‘clusterable’ network5 has two or more positions where 
all the positive ties were within clusters and all of the negative ties were between 
actors in different positions. This also links micro-processes to the macro-structure 
of a group.   A signed network is k-balanced if it has the above partition structure. 
For k=2 it is Cartwright and Harary’s structure theorem. For k > 2 it is the 
generalization. 

Blockmodeling (see Breiger et al., 1975; Doreian et al., 2005) has techniques 
for partitioning network data into positions (containing actors) and blocks (of ties 
between positions). The location of an actor is the set of ties to and from all other 
actors in the group. These locations of actors are clustered to form the positions. 
For n actors, the n locations are partitioned into k positions with k is much smaller 
than n. A large network is reduced to a smaller image matrix with k positions and 
k2  blocks representing the essential network structure. Doreian and Mrvar (1996) 
noticed the theorems of Cartwright and Harary (1956) and Davis (1967) can be 
viewed as leading to statements of specific blockmodels. A positive block is one 
having only positive ties and null ties while a negative block has only negative ties 
and null ties. From the structure theorems, in a k-balanced network, the signed 
blockmodel has positive blocks on the main diagonal (top left to bottom right) and 
negative blocks off the main diagonal. If, for example, k=4 and structural balance 
is the only process operating, then the blockmodel implied by structural balance is 
simple to describe. The block pattern for four positions is: 

                                                 
4   This is expressed in folk aphorisms: “a friend of a friend is a friend”, “a friend of an enemy is 
an enemy”, “an enemy of a friend is an enemy” and “an enemy of an enemy is a friend”. These 
have simple cognitive structures. As Mower White (1979) notes, simple cognitive structures are 
more likely than complex structures to exhibit balance. Also, “it is now recognized that if 
sentiment is restricted to the two values of positive and negative, balance is a simple implication 
of ordinary deductive logic (Montoya and Insko, 2008: 494)”. 
5  To prove this theorem, Davis used the concept of a semiwalk, an alternating sequence of 
vertices and arcs where the direction of the arcs is irrelevant. For pairs of actors between whom 
there exist one or more semiwalks, the sign for each of these semiwalks is the product of the signs 
of the arcs in the semiwalk. These signs are positive or negative. He defined a network as 
‘clusterable’ if it had no semiwalks with a single negative arc. 
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   Positive   Negative  Negative  Negative 

   Negative  Positive   Negative  Negative 

   Negative  Negative  Positive   Negative 

   Negative  Negative  Negative  Positive 

 

We refer to these as ideal blocks by location, call this blockmodel the 
Structural Balance blockmodel, and label it the ‘SB Model’. 

Regardless of the number of positions, every blockmodel predicted by 
structural balance has this generic (ideal) SB Model form. The number of 
positions, k, has to be determined as a part of fitting blockmodels. Empirically, it 
is unreasonable to expect a perfect correspondence between an ideal structure and 
an empirical structure. If structural balance is appropriate we would anticipate the 
SB Model but with some inconsistencies compared to the ideal structure. 

Doreian and Mrvar (1996) took the form of the idealized blockmodels implied 
by structural   balance   and   proposed   a   partitioning   approach   for   
establishing   empirical blockmodel structure(s) of signed networks closest to the 
ideal form implied by the structural theorems. When empirical blockmodels do not 
fit exactly there are some inconsistencies between the empirical blockmodel and 
the ideal counterpart. These will take the form of some negative ties in positive 
blocks and some positive ties in negative blocks.  The former are termed negative 
inconsistencies, the latter are positive inconsistencies. For a binary network (where 
the ties are +1 or -1), the total number of positive inconsistencies is denoted by P 

and the total number of negative inconsistencies6 by N. A general measure of how 

poorly a blockmodel fits the data is given by Cf  = αN + (1 - α) P where7 0 < α < 1. 

With α = 0.5, the two types of inconsistencies are weighted equally, a convention 
we use here. In essence, Cf  is the line index of imbalance proposed by Harary et 
al. (1965: 348-350). Cf is a criterion function and the relocation clustering 
algorithm used by Doreian and Mrvar seeks optimal partition(s) minimizing this 
criterion function8. Structural balance implies an SB Model. 

2.2 Differential popularity 

In the main, social scientists collecting sociometric data focused on unsigned data 
with only positive ties. Undoubtedly, such data are easier to collect. Also, one 
rationale for making comparisons of the distribution of triples in unsigned 
                                                 
6   If a network has weighted ties then P and N, respectively, are the sums of positive and negative 
inconsistencies. 
7   For α=1, positive inconsistencies are ignored and negative inconsistencies are ignored for α=0. 
Neither extreme weighting is useful when both positive and negative ties exist. 
8   It is a local optimization method so finding the optimal partition(s) is not guaranteed. Brusco et 
al. (2011) established this algorithm has, thus far, identified all of the optimal partitions for 
signed networks up to 40 actors. 
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networks, as used by Feld and Elsmore (1984) and by Hallinan (1984), is based on 
arguments  of  Davis  and  Leinhardt  (1972)  where  signed  graphs  are  
‘converted’  to unsigned counterparts. Rather than focus on signed ties (positive, 
null, and negative), attention was focused on mutual (M), null (N) and asymmetric 
(A) ties. Identifying clusters of positively connected actors, such as those among 
the positions of signed networks, was treated as evidence of a tendency towards 
clustering. Comparisons were then made of the distributions of the 16 possible 
triples involving M, A, and N ties. However, as using unsigned data handicaps any 
examination of balance theoretic ideas about signed networks, these efforts 
labored under a serious constraint: negative ties were excluded9. Feld and Elsmore 
(1984) focused primarily on transitivity. If (p�o) and (o�q) are present in an 
unsigned network then, under transitivity, the (p�q) tie will be present also. 
Empirically, there is a tendency towards transitivity in most unsigned networks 
with transitivity has regarded as a fundamental network process (Holland and 
Leinhardt, 1972; Wasserman and Faust, 1994: 243-248).  Confirmation came with 
there being more transitive triples in a network than would be expected by chance. 
One  key  feature  of  Feld  and  Elsmore's  argument  is  that  some  of  the  
evidence  for transitivity might be due to the operation of a process of differential 
popularity10. They provided some evidence in the form of distributions of poq-
triples to support this claim. However, they were careful to not state differential 
popularity dominated transitivity.  They suggested it could be a plausible 
generating process, one also creating some transitivity. In neutral terminology, 
transitivity and differential popularity are often confounded in empirical networks. 
When only one of them is considered, some of the support for it as the generating 
process will be spurious. 

The idea of differential popularity extends straightforwardly to signed 
networks: some actors may be more popular and so receive more positive ties 
regardless of the presence of mutually hostile subgroups. If some members of a 
group are universally popular, then with k=4, the group structure, as a blockmodel, 
would be as follows if there were just two processes - structural balance and 
differential popularity – operating. An ideal blockmodel would look like: 

 
   Positive   Negative  Negative  Negative 

   Positive   Positive   Negative  Negative 

   Positive   Negative  Positive   Negative 

   Positive   Negative  Negative  Positive 

                                                 
9   We do not dispute the value of the highly productive work on triadic censuses for unsigned 
networks and their extension to exponential random graph models. But when structural balance is 
involved, we contend that both positive and negative ties must be included. 
10   For example, given p�o and o�q as positive ties, if p�q exists then it can be viewed as 
being consistent with transitivity. It is consistent also with structural balance in a positive triple. 
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Note the column of positive blocks on the left of this ideal blockmodel. Except 
for the top block, all of the positive blocks in the first column are inconsistent 
with structural balance (and are bolded for this reason). We call this ideal 
blockmodel a Structural Balance with Differential Popularity blockmodel and 
label it the SB_DP Model. If some additional actors are popular but not universally 
popular, an ideal blockmodel would look like: 
 

   Positive   Negative   Negative  Negative 

   Positive   Positive    Negative  Negative 

   Positive   Positive    Positive   Negative 

   Positive   Positive    Negative  Positive 

 

The additional bolded blocks (in the second column of blocks) are also 
inconsistent with structural balance but consistent with differential popularity. 
This blockmodel is a variant of the SB_DP Model. There may be less extreme 
configurations where only some blocks in the left hand column are positive. There 
could be other subgroups receiving positive ties from members of other positions. 
These can be accommodated. For now, we focus on the SB_DP Model in our 
comparative tests. 

Discriminating between these two theories can be done in a direct fashion. If 
structural balance operates, then the SB Model is appropriate. Further, if 
differential popularity is not operative, the SB Model would fit the data and not 
the SB_DP Model. But if the SB_DP Model is identified empirically, greater 
credibility is given to differential popularity. The partitioning algorithm of 
Doreian and Mrvar (1996) is useless for this comparative test: a SB Model is the 
only fitted blockmodel. However, thinking in terms of relaxing structural balance 
(Doreian and Mrvar, 2009) led to the creation of an algorithm appropriate for 
distinguishing these two models. 

2.3 Relaxed structural balance 

In responding to Feld and Elsmore (1984), Hallinan (1984) argued at least five 
substantive processes could generate transitivity in unsigned networks: differential 
expansiveness; reciprocity; differential popularity; clustering and cognitive 
(structural) balance. Although we do not focus on transitivity and consider signed 
networks, we accept the point of analyses of network data requiring recognition, 
and consideration, of multiple processes. Incorporating them for signed networks, 
when considering balance theoretic ideas, requires a generalization of structural 
balance. Reciprocal positive ties can be accommodated easily to the extent that 
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they occur among within actors in the same position. But, if there is positive 
reciprocity between pairs of actors in different positions, this creates problems for 
structural balance: positive inconsistencies contribute to Cf. If this involves 
multiple pairs in two positions there will be corresponding positive blocks above 
and below the main diagonal. If there is reciprocation of negative ties between 
actors in different positions this will be consistent with structural balance. 
However, we need to consider subsets of actors who, as individuals, are mutually 
hostile towards each other. Their presence also contradicts structural balance 
because this implies a negative diagonal block11. If we add mutual dislike at the 
actor level for a set of actors – a “nest of vipers” in the colorful terminology of 
Hummert et al. (1990) – to differential popularity and structural balance then we 
would expect a structure approximating the following blockmodel: 

 
   Positive   Negative  Negative  Negative 

   Positive   Positive   Negative  Negative 

   Positive   Negative  Positive   Negative 

   Positive   Negative  Negative  Negative 

 
Locating the diagonal negative block on the bottom right of the blockmodel 

appears arbitrary. But if there is a differential popularity process then it is 
reasonable to anticipate differential disliking implies negative ties are concentrated 
actors other than popular actors12. This is represented by a column of off-diagonal 
negative blocks on the right of this blockmodel. Further, if those that are more 
disliked also tend to dislike each other this implies a diagonal negative block. To 
capture this, we locate (and bold) a diagonal negative block at the bottom right 
hand side while recognizing that there could be more than one such block and they 
could appear anywhere on the diagonal. The column of off-diagonal negative 
blocks on the right is consistent with both structural balance and differential 
dislike. The negative diagonal block is inconsistent with structural balance. We 
call this a Structural Balance with Differential Popularity and Mutual Dislike 
blockmodel and denote it as an SB_DP_MD Model. 

To deal with these and other potential complications - including mediation - 
Doreian and Mrvar (2009) proposed ‘relaxed structural balance’ as a more general 
model for signed networks.  Having only positive blocks and negative blocks was 
retained. However, they were allowed to appear anywhere in a blockmodel. 
Relaxed structural balance is a formal generalization of the structural balance. The 
criterion function, Cf, as described above and the relocation algorithm were 
retained for fitting relaxed structural balance models to network data. All that 
                                                 
11   This pattern is present in Figure 2 and this prompted the notion of diagonal negative blocks. 
12  One mechanism is disliked attributes of some actors take time to be recognized more widely in 
a group. 
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changed under relaxed structural balance is the potential locations of the signed 
blocks. Relaxed structural balance permits the statement of another set of ideal 
blockmodels. 

In partial summary, the first two primary substantive hypotheses are stated in a 
comparative form. 

Hypothesis 1 If differential popularity operates for positive ties, there will be 
a column of positive blocks for the more popular actors and this tendency will 
increase through time13. If structural balance dominates differential popularity then 
there will be no positive off-diagonal blocks in a column corresponding to 
universally popular actors. Nor would there be positive off-diagonal blocks for 
other popular actors. 

Hypothesis 2 If differential dislike is operative, there will be a column of 
negative blocks for the more disliked actors and this tendency will increase though 
time. In particular, there will be at least one diagonal negative block. If structural 
balance dominates then there will be no diagonal negative blocks. 

Heider’s theory is essentially dynamic with actors striving to reduce 
inconsistencies. This is expressed as a tendency towards balance over time. 
Indeed, data for examining Heider’s theory must be temporal. However, all 
Heider’s imbalanced triples can be balanced in three ways. Alas, Heider was silent 
on how balance is achieved. It requires complex temporal processes in human 
groups (Hummon and Doreian, 2003).   If differential popularity and differential 
dislike accumulate over time, this suggests: 

Hypothesis 3 Increasing tendencies of differential popularity and differential 
dislike will create greater inequality on the receipt of both positive and negative 
ties over time. 

The idea of moving towards certain structural forms stems from Heider's 
notion of tendencies towards balance being extended to relaxed structural balance. 
The concentration of both positive and negative ties (Hypothesis 3) could be the 
result of two social mechanisms. One is an individual level process where 
attributes making people popular (liked) or unpopular (disliked) are recognized 
more over time. The other is found in the idea of actors achieving consistency of 
views of people as driven by balance. Of course, this leaves open the issue of 
which of these processes are operative or the extent to which they are both 
operative. The data at our disposal do not permit an exploration of this issue.  
Even so, relaxed structural balance incorporates additional processes beyond 
structural balance. 

The tests that we propose are facilitated by using the same criterion function 
for all fitted models. Relaxed structural balance models have structural balance as 
a special case. If structural balance dominates all other processes then the SB 

                                                 
13  We allow less extreme versions with some actors more popular but not universally popular as 
shown in the one variant of the SB_DP Model. Positive valued actor attributes may also take time 
to be perceived widely. 
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Model will be identified implying structural balance is the generating process. But 
if both structural balance and differential popularity are operating without mutual 
dislike then a variant of the SB_DP Model will fit the signed data better. And if 
there is also mutual dislike in subgroups, the SB_DP_MD Model will fit. If any of 
the more general models within relaxed structural balance fit, there is evidence 
against structural balance being the sole, or even the main, generating process. 
Classic structural balance and relaxed structural balance partitions are rivals to be 
evaluated comparatively. They can be compared through their blockmodel 
signatures. 

3 Data and methods 

Brusco et al. (2011), based on Leik and Meeker (1975), argue it is more fruitful to 
have substance, data, and model (with the methods it implies) form a coherent 
whole. We achieve this here within the rubric of balance theoretic ideas. The  SB  
Model  and  relaxed  structural  balance (RSB) models  can  be evaluated 
comparatively. Group trajectories towards balance, if they exist, need not imply 
strictly monotonic change in the level of imbalance. But there will be some overall 
movement in this direction over time. Given this empirical claim of Heider, it is 
necessary to examine signed structures over time using blockmodel structures. 
Given substance drove the hypotheses and the methods of relaxed structural 
balance are fully consistent with this, the coherence of Leik and Meeker’s 
substance-method-data triple is preserved. 

Alas, there are few signed networks over enough time points to test Heider's 
theory. We know of only two such data sets. One is Newcomb’s (1961) data as 
recorded by Nordlie (1957). The other comes from Sampson’s (1968) study of 
trainee monks in a monastery. Neither data set is ideal. Newcomb collected 
network data from 17 students in a pseudo-fraternity. In partial exchange for room 
and board, these previously unacquainted students provided sociometric data for 15 
time points over a semester. The strength of Newcomb’s study is the network 
formation process started from an initial state of no network ties. The recorded data 
were in the form of ranks with each actor ranking all of the other actors in terms of 
liking. Doreian et al. (1996) recoded these recorded ranked sociometric ties into a 
signed form. With this recoding, they established reciprocity, transitivity and 
structural balance had different time scales. The top four ranks were converted to 
+1 and the bottom three ranks were recoded to -1. The remaining ties were recoded 
as zero14. We use their (four positive ties and three negative ties) coding scheme 
here. Of course, as noted by Hallinan (1984) drawing on the arguments of Holland 

                                                 
14  Their reasons for this coding and the formal methods for establishing it are found in their 
article. With regard to structural balance, other recoding options in terms of the number of 
positive and negative ties were tried without leading to substantively different results. 
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and Leinhardt (1973), there are problems with fixed choice designs. However, as 
we want our results to be comparable with prior analyses of the Newcomb data 
we used this coding.  

Doreian et al. (1996) computed the imbalance over time for the recoded 
Newcomb data and showed a general decline over time. While this decline was not 
strictly monotonic, there was enough support for Heider's empirical hypothesis15. 
However, if the relaxed structural balance model is a better model, one that allows 
for multiple  processes,  then  imbalance  for  relaxed structural balance will 
decline over time. More importantly, imbalance will be lower at each time point 
than for structural balance. To examine Hypothesis 3, we use Theil's (1967: 92) 
entropy index, as a measure of inequality, for receiving positive and negative ties 
at each time point. 

The criterion function Cf can be viewed as merely descriptive and lacking tests 
of its utility for partitions established when using it. To address this, we use 
quadratic assignment regression, QAP, as formulated by Dekker et al. (2007) and 
implemented in Borgatti et al. (2002), to make statistical assessments of 
established signed blockmodels. The ideal blockmodels specify (by locations) the 
presence of positive and negative blocks. Given an established blockmodel (with 
inconsistencies), we can define the ‘fitted’ blockmodel that corresponds to the 
empirical blockmodel. In the following panel we show, on the left, a hypothetical 
pair of positive and negative blocks with some (bolded) inconsistencies.  The 
c orresponding pair of ‘predictions’ implied by the blocks in an ideal blockmodel16 
are on the right. 

 
A positive block (with inconsistencies) The corresponding fitted positive block 

  

0 -1 1 1 0 0 -1 0 
 

1 1 0 1 -1 0 1 -1 
 

0 0 1 1 0 0 1 1 
 

1 0 0 0 1 1 0 1 
 

1 0 -1 0 0 0 0 -1 

0 1 1 1 0 0 1 0 
 

1 1 0 1 1 0 1 1 
 

0 0 1 1 0 0 1 1 
 

1 0 0 0 1 1 0 1 
 

1 0 1 0 0 0 0 1 

 

 

                                                 
15 We emphasize the term ‘enough support’. In a follow-up study using the Newcomb data, 
Doreian and Krackhardt (2001) showed that the incidence of two of the imbalanced triples 
increased over time while the number of two of the balanced triples declined over time. 
16  Borgatti and Everett (1999) propose using Pearsonian correlations in a similar fashion but with 
a crucial difference. Their ideal blocks are either complete or null. The latter are unproblematic 
but we differ here by ‘predicting’ only the implied value of a tie when there is an empirical tie in 
the data. 
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A negative block (with inconsistencies) The corresponding fitted negative block 

-1 0 1 –1 0 0 0 -1  
 

1 -1 0 0 0 -1 -1 1 
 

-1 0 -1 0 0 0 -1 -1 
 

0 0 -1 1 1 -1 -1 0 
 

-1 0 1 0 0 -1 0 0 

-1 0 -1 -1 0 0 0 -1 
 

-1 -1 0 0 0 -1 -1 -1 
 

-1 0 -1 0 0 0 -1 -1 
 

0 0 -1 -1 -1 -1 -1 0 
 

-1 0 -1 0 0 -1 0 0 

 

An empirical network with blocks and the fitted blockmodel can be compared 
by using QAP to assess the fit. QAP is used to ‘compare’ two whole matrix arrays 
to examine the extent to which they are the same or consistent with each other. In 
these analyses, the fitted blockmodel is used to predict the empirical data. If the 
correlations between the two are significant, the fitted blockmodel passes a test in 
terms of empirical adequacy. However, if the fit is poor, the blockmodel fails.  It is 
possible also to compare the fitted blockmodel with a random partition as a 
secondary way of assessing the adequacy of its fit. We did this using the Adjusted 
Rand Index (ARI) and evaluative criteria put forth by Steinley (2004). He argues 
ARI values above 0.9 indicate an excellent correspondence in the composition of a 
pair of partitions; values above 0.8 suggest an acceptable correspondence and 
values below 0.8 are unacceptable. 

Another potential problem with blockmodeling is finding multiple optimal 
partitions for a given value of k. If all have the same block structure, and attention 
is focused solely on the block structure, this is not a huge problem. But, if there 
are multiple ‘best’ partitions, having different block structures, this is a serious 
problem. A third potential problem is the presence of null blocks: they must be 
identified. For structural equivalence, only two block types are possible: complete 
blocks and null blocks. Differential penalties can be imposed on the two types of 
inconsistencies (ones in null blocks and null ties in complete blocks). Doreian et 
al. (2004), for partitioning two-mode data, imposed a heavy penalty on the former 
inconsistency to ensure null blocks appeared as fully null blocks17.  

For the Newcomb data, there are null blocks. Specifying a null block helps 
eliminate multiple equally well fitting partitions under relaxed balance. We used 
the algorithm of Doreian and Mrvar (2009) as implemented in pajek (Batagelj and 
Mrvar, 1998) for each time point in an inductive fashion with one null block 
specified. Having identified the ‘best’ partition structures for k=4 inductively, we 
then, for each time point, pre-specified its delineated block structure in a deductive 

                                                 
17    They used pre-specification but here only the presence of a null block was allowed. 
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fashion (with many repetitions) to make sure there were no additional partitions 
with the identified partition structure18. 

When comparing relaxed structural balance with structural balance we thought 
differential popularity would be important and, perhaps, dominate structural 
balance. The comparisons had to be fair. A crucial difference exists in the 
behavior  of  Cf as  the  number  of  clusters (k)  increases  fot structural  balance  
and  relaxed  structural  balance.  For the former, the curve of the criterion 
function, Cf, when plotted against k, has a U-shape with a guaranteed minimum 
value (Doreian et al., 2005: Theorem 10.6). In contrast, for relaxed structural 
balance, Cf decreases monotonically with k (Doreian and Mrvar, 2009: Theorem 
4). We chose k=4 primarily because the ‘best’ structural balance results were for 
this value of k. Increasing  the value of  k  beyond  4 has two implications:  i) 
values of  Cf  increase for structural balance while they decrease for relaxed 
structural balance. This creates a bias favoring the latter for higher values of k. For 
a fair comparative test we used the same value of k for relaxed structural balance 
and structural balance. If anything, this favored structural balance. At most time 
points, the optimal partition for structural balance occurs for k=4 in the Newcomb 
data. For the Sampson data, it is k=3 at all three time points. We then compared 
the fitted models with each other19.  

 4 Empirical results 

4.1 Using the Newcomb data 

Figure 1 shows the criterion function values for k=4 over time for structural and 
relaxed balance. Both trajectories decrease overall. The values of the criterion 
function for relaxed balance are always lower than for structural balance, implying 
the RSB model fits the data better than the SB model. While this has little surprise 
value, it emphasizes limitations to structural balance. For each time point, we 
computed the ARI for pairs of partitions obtained from the two models. They 
ranged from 0.073 to 0.689. For each time point, the partitions obtained from the 
two approaches are not the same. Most often, they are not even close.  

                                                 
18  In fitting blockmodels to signed networks where null blocks are specified, the criterion 
function Cf = αN + (1 – α)P was modified by including a term for the null block that ensured that 
the null block would be as large as possible. (Small null blocks were penalized relative to larger 
null blocks so larger null blocks were identified.) 
19   For Sampson data we consider also k=4 for relaxed structural balance. 
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Figure 1: Inconsistency counts for the Structural Balance and the Relaxed Structural Balance 
models: Newcomb data. 

 

There are additional issues in fitting blockmodels to network data meriting 
attention. The first concerns the predictive value of the fitted blockmodels. We 
computed the correlation, for the 15 time points labeled t1 through t15, between 
these QAP correlations and the value of the criterion function, Cf. The value of 
this correlation is -0.959 (p < .0001) indicating an very close correspondence 
between the two set of values. Table 1 provides the numerical values and the QAP 
correlations for both relaxed structural balance and structural balance. The QAP 
correlations in Table 1, using a permutation test, act as a close proxy for a 
permutation test for the criterion function. The p-values20 for the QAP correlations 
are all less than 0.001.  The  values  for  structural  balance  have  a  similar  
temporal  pattern  but  the correlation between the QAP correlations and the 
criterion function is slightly less. Even so,  the  lower  QAP  correlations  for  
structural  balance  suggest  poorer  predictive performances consistent with the 
values of the criterion function for the two rival models.  

 
 

                                                 
20   Most correlations are ‘significant’ which may be an inherent feature of QAP. However, our use of 
QAP is driven primarily by a need to compare the results from using relaxed structural balance and 
structural balance. It is unlikely that a bias towards significance affects the comparative results 
differently. Also there are non-significant QAP estimates in the results we report. 
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Table 1: QAP correlations and criterion function values: empirical and fitted 
blockmodels: Newcomb data. 

T RSB QAP 
Correlations* 

RSB Criterion Function 
Values (Cf) 

SB QAP 
Correlations* 

SB Criterion Function 
Values (Cf) 

t1 0.679 9.5 0.499 15.5 
t2 0.740 8.0 0.502 15.0 
t3 0.779 6.5 0.588 12.5 
t4 0.752 8.0 0.598 12.5 
t5 0.810 6.0 0.579 13.0 
t6 0.754 5.0 0.511 11.0 
t7 0.911 3.0 0.633 11.0 
t8 0.881 3.5 0.619 11.5 
t9 0.865 4.0 0.633 11.0 
t10 0.860 4.5 0.617 11.5 
t11 0.899 3.0 0.674 10.0 
t12 0.898 3.0 0.669 10.0 
t13 0.881 3.5 0.671 10.0 
t14 0.932 2.0 0.687  9.5 
t15 0.915 2.5 0.669 10.0 
 
RSB Relaxed Structural Balance; SB Structural Balance 
* All p-values < 0.001. The correlation between QAP correlations and Cf is -0.959 for RSB and -
0.858 for SB. 
 
Table 2 presents the results of using QAP regressions comparing the predictive 

values of RSB and SB. Reading from the right, it appears both the fitted SB and 
the fitted RSB blockmodels have some predictive value. Further, the predictive 
value for each, roughly, increases through time. However, when the fitted SB 
blockmodel is included as a predictor with the fitted RSB blockmodel it seldom 
increases the predictive value of the QAP regression. Of course, when two 
predictors are correlated there is no unique partition of the variance explained 
between them. However, we note the following additional items in Table 2: i) the  
estimated  intercept  is  near  zero  for  each  time  point;  ii)  the  unstandardized 
coefficients   are  such   that   the  coefficients   for  RSB  are   always   larger  
than  the corresponding coefficients for SB21; iii) over time, the unstandardized 
coefficient for SB declines while the unstandardized coefficients for RSB increase; 
and iv) at each time point, the standardized coefficient for RSB is larger than the 
standardized coefficient for SB indicating it as the more potent predictor. In short, 
the fitted RSB blockmodel has superior predictive value than the fitted SB 
blockmodel. 

                                                 
21 The two fitted blockmodels have the same density so there is not an issue of different 

scales inflating one coefficient relative to the other. 
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Table 2: QAP Regressions comparing Relaxed Structural Balance and Structural Balance: 
Newcomb data. 

 
T. Variable Unstandardized Standardized    p-value 

Coefficient      Coefficient 
R2 R2 

(for RSB) 
R2 

(for SB) 

t1 Intercept 0.051   0.000     - 
SB 0.134   0.133     0.0140 
RSB 0.596   0.598     0.0005  

0.47  0.46 0.25 

t2 Intercept 0.015   0.000     - 
SB 0.201   0.202     0.0005 
RSB 0.651   0.646     0.0005  

0.58  0.55 0.25 

t3 Intercept 0.013   0.000     - 
SB 0.208   0.209     0.0005  
RSB 0.662   0.659     0.0005  

0.64  0.61 0.35 

t4 Intercept 0.042   0.000     - 
SB 0.285   0.284     0.0005 
RSB 0.610   0.604     0.0005  

0.62  0.57 0.36 

t5 Intercept 0.041   0.000     - 
SB 0.089   0.089     0.0265  
RSB 0.753   0.752     0.0005  

0.66  0.66 0.34 

t6 Intercept 0.010   0.000     - 
SB 0.085   0.085     0.0365  
RSB 0.704   0.702     0.0005  

0.57  0.57 0.26 

t7 Intercept -0.008   0.000     - 
SB 0.076   0.077     0.0100 
RSB 0.868   0.861     0.0005  

0.83  0.83 0.40 

t8 Intercept 0.004   0.000     - 
SB 0.051   0.051     0.0880  
RSB 0.848   0.847     0.0005  

0.78  0.78 0.38 

t9 Intercept -0.020   0.000     - 
SB 0.172   0.173     0.0005  
RSB 0.767   0.761     0.0005  

0.77  0.75 0.40 

t10 Intercept 0.028   0.000     - 
SB 0.108   0.108     0.0040 
RSB 0.792   0.791     0.0005  

0.75  0.74 0.38 

t11 Intercept 0.021   0.000     - 
SB 0.022   0.022     0.2289  
RSB 0.881   0.883     0.0005  

0.81  0.81 0.45 

t12 Intercept -0.026   0.000     - 
SB -0.069  -0.069     0.0475 
RSB 0.957   0.952     0.0005  

0.81  0.81 0.45 

t13 Intercept 0.006   0.000     - 
SB 0.071   0.071     0.0440  
RSB 0.831   0.830     0.0005  

0.78  0.78 0.45 

t14 Intercept -0.004   0.000     - 
SB 0.084   0.085     0.0060  
RSB 0.876   0.874     0.0005  

0.87  0.87 0.47 

t15 Intercept -0.000   0.000     - 
SB 0.020   0.020     0.1964 
RSB 0.902   0.901     0.0005  

0.84  0.84 0.45 
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The blockmodels for each time point are in Table 3 in three panels. The first 
row in each box gives the specific time point. The second row shows whether the 
partition reported was unique. A unique partition for 13 of the 15 time points was 
returned. For one time point (t8) there are two partitions. In each case, the block 
structure is the same and the partitions differ only by a ‘floater’ moving between a 
pair of clusters22. For t12, there were multiple partitions but one stands out23. The 
third row gives the value of the criterion function for α = 0.5 (the  inconsistency 
count is double the criterion function values reported in Figure 1). The final row in 
each cell gives the block structure where P, N and O denote, respectively, positive, 
negative and null blocks. 

Table 3: Signed block structures over 15 time points: Newcomb data*. 

 

t 1 t 2 t 3 t 4 t 5 

          
Unique Unique Unique Unique Unique 

Χ(P)=9.5  Χ(P)=8.0  Χ(P)=6.5  Χ(P)=8.0  Χ(P)=6.0  

PPNN 
PONN 
PNPN 
PNNP 

PNPN  
PPNN  
PNNP  
NPPO 

PNPN 
PPNN 
PNNP 
NPPO 

POPN 
PPNP 
PNPN 
PPNN 

PNPN 
PPNN 
PPNN 
PNON 

t 6 t 7 t 8 t 9 t 10 

          
Unique Unique Two Unique Unique 

Χ(P)=5  Χ(P)=3.0  Χ(P)=3.5  Χ(P)=4.0  Χ(P)=4.5  

PPON 
PNPN 
PPPN 
PPNN 

POPN  
PPNN  
PPPN  
PPNN 

PPPN  
PNPN  
PPON  
PPNN 

PPPN 
PPNN 
PNON 
PPPN 

PNPN 
OPPN 
PPNN 
PNNN 

t 11 t 12 t 13 t 14 t 15 

Unique Unique** Unique Unique Unique 

Χ(P)=3.0  Χ(P)=3.0  Χ(P)=3.5  Χ(P)=2.0  Χ(P)=2.5  

PPPN 
PPON 
PNPN 
PPNN 

PPNN 
PPNN 
PNOP 
PNPN 

PPNN 
POPN 
PPNN 
PNNN 

PPNN 
PNNN 
PONN 
PNPN 

PPPN 
PPON 
PNPN 
PNNN 

 

*P denotes a positive block, N denotes a negative block and O denotes a null block. 
** See footnote 15 for an explanation of this. 

                                                 
22  The value of the ARI measure is 0.845 which is in the acceptable range specified by Steinley 
(2004). 
23   For t12, it was necessary to specify two null blocks to have a unique solution. One of the identified 
null blocks contained a negative tie. We treated it (the third block in the first row) as a negative block. 
While there were multiple partitions using one specified null block, one is shown in Table 1. 
Specifying a second null block suggests a way of choosing a partition from the multiple equally well 
fitting partitions. 
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We examined the delineated signed blockmodel at each time point. We note 
that, especially towards the end of the process, the composition of the positions in 
terms of membership is quite stable. There are members of positions remaining 
firmly in place while a few do move between positions in transitions. We note also 
that the sizes of positions do not change abruptly in each transition.  Illustrating 
the different partitions for structural balance and relaxed structural balance we 
show their unique partitions at t14 for k=4 in Figure 2. We chose this time point 
because it is near the end of the network evolution and the criterion functions are 
lowest at t14 for both models: each structure is closest to its ideal structure. The 
black squares represent positive ties with negative ties represented by grey 
diamonds. The SB partition is in the top panel. The RSB partition is in the bottom 
panel. The number of inconsistencies for structural balance is 19 while the 
corresponding number is 4 for relaxed balance. The reason for the sharp drop in 
the number of inconsistencies is clear. Structural balance struggles with the large 
number of off-diagonal positive ties. Also, the structural balance partition is 
unsatisfactory because it returns a partition with one large cluster, one pair, and 
two singletons. It misses the mutually hostile  subgroup  completely  because  
negative  blocks  cannot  appear  on  the  main diagonal.  The RSB partition 
returns an optimal partition with clusters of size 9, 3, 3 and 2. Many of the positive 
off-diagonal blocks are part of a coherent structure instead of contributing 
inconsistencies under structural balance. In short, the SB_DP_MD model fits these 
(t14) data far better than the SB model. 

It is apparent  from  Table  3  that  none  of  the  fitted  RSB blockmodels 
conform to the SB Model. From Figure 1, the SB Model fares less well than a 
relaxed structural balance model, consistent with results shown in Table 2. 
Structural balance cannot be viewed as the sole generating process for these data. 
It may not be the dominant process. We next interpret the results in Table 3. 

Differential popularity and Hypothesis 1 are considered first. The top left 
block is positive for all time points, a result consistent with both structural balance 
and differential popularity. The column of positive blocks in the left hand column 
is present for 12 of the 15 time points, including the last 5 leading to the final 
evolved structure. For t2 and t3, a negative off-diagonal block appears in this 
column. Even so, there are still two positive off-diagonal blocks. There is one null 
block with two positive blocks in the first column at t10. This pattern provides 
overwhelming support for the presence of differential popularity (Hypothesis 1) 
and overwhelming support  for  Feld  and  Elsmore's  (1984)  arguments  for  it  as  
a  generative  process. Hypothesis 1 is resolved in favor of the SB_DP model. A 
column of positive blocks appears early and is present for most time points. This 
feature is stable with decreasing inconsistencies.  
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Figure 2: Structural Balance and Relaxed Balance partitions at t14 (Newcomb data). 

Next, we consider Hypothesis 2. For differential dislike, including mutual 
dislike, the column of negative blocks on the right first appears at t5. It was not 
there at the outset and emerged over time. It persisted through all subsequent time 
points.  The  bottom  right  (diagonal)  negative  block  reveals  a subgroup with 
mutual dislike. This also contradicts structural balance. However, negative off-
diagonal blocks in this column are consistent with structural balance and 
differential dislike. Features of the SB_DP_MD Model are evident at multiple time 
points. Hypothesis 2 is resolved in favor of the SB_DP_MD model.  There is 
evidence of differential popularity emerging earlier with a shorter time scale than 
differential dislike. 

The signs of the blocks in the middle two columns for each of the fitted signed 
blockmodels have been treated as having secondary interest. Yet, for structural 
balance theory, additional positive blocks off the main diagonal and negative 
blocks on it provides further contradictory evidence. For eight time points there is 
one negative block on the main diagonal and for six there are two such negative 
blocks. There is strong evidence for differential popularity - in both a universal 
and less universal sense – as well as mutual dislike within a set of actors. These  
features    are  disentangled  from  balance  processes  because  they leave 
observable traces inconsistent with that theory. Consistent with Hallinan's (1984) 
observation, structural features suggest the operation of multiple processes. Some 
cannot be completely distinguished by looking solely at blocks. However, there is 
some further evidence in favor of differential dislike. 

The ideas of differential popularity and differential dislike imply that both 
positive and negative ties are concentrated on some actors but not on others. A 
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natural way of considering this is by examining inequality in the receipt of these 
ties. Our third hypothesis claims that this inequality will increase over time. Figure 
3 shows the values of the Theil entropy index over time24. Very similar results hold 
when the coefficient of variation (standard deviation/mean) or the Gini coefficient 
is used. The inequality for receiving negative ties increases over the first 7 time 
points, shows some oscillation for the next three time points, followed by a 
downwards drift, and then  some  more  oscillation  with  increasing  values.  The 
over-time movement of inequality for the receipt of positive ties is quite different. 
It is flat over the first four time points, increases from t4 through t7, drops, and 
then oscillates while increasing.  The inequality in the receipt of negative ties is 
always much higher than for the receipt of positive ties after t1. The third 
hypothesis is strongly supported for received negative ties while, at best, it is 
supported for the receipt of positive ties from t4 through t7 and only weakly 
supported after t7. The greater concentration of negative ties over time suggests 
that differential dislike generates more of the column of negative blocks than 
structural balance. 
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Figure 3: Inequalities in receiving positive and negative ties: Newcomb data. 

                                                 
24   The results in Figure 3 are not due to having 4 positive ties and 3 negative ties from each 
actor. The trajectory of the Theil index, when using only 3 positive ties, is close to the trajectory 
of the index for 4 positive ties. 
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4.2 Using the Sampson Data 

Sampson’s (1968) data has three time points (labeled in the literature as T2, T3, 

and T4. Sampson collected data for an earlier time point25(T1). He collected signed 
data on four relations: affect, esteem, influence, and sanction. Each took an 
apparent metric form with three ranked positive and three ranked negative ties. 
The sanction relation is problematic because some trainee monks refused to 
provide data (or claimed they sanctioned no-one). Doreian (2008) argued for using 
a multi-indicator approach for multiple relations. We do this here.  We summed 
the binarized26 affect, esteem and influence relations. The valued signed relation is 
the number of ties with a specific sign between pairs of actors. From prior analyses 
(Sampson, 1968; Breiger et al., 1975; Doreian and Mrvar, 1996), we know there 
are k=3 clusters of monks. Figure 4 shows three trajectories for the criterion 
function. Two are for SB and RSB for k=3. We compare these first. The trajectory 
of the criterion function for relaxed structural balance for k=4 has additional 
interest value regarding differential popularity. 

 

10
20

30
40

50
C

ou
nt

 o
f I

nc
on

si
st

en
ci

es

2 3 4
Time

Balance k=3 Relaxed Balance k=3
Relaxed Balance k=4

Number of Inconsistencies: Sampson Data

 

Figure 4: Inconsistency counts for the Structural Balance and the Relaxed Structural Balance 
models: Sampson data. 

 

                                                 
25   The T1 data were for a different set of monks. Some of them departed before T2. Those who 
remained were joined by a group on new trainee monks at T2. 
26  This was done because summing the ranks seems problematic with regard to measurement. The 
value of Cronbach’s α for the three time points considered here are 0.795 (T2), 0.777 (T3) and 0. 
849 (T4), suggesting these three network relations are very consistent from a measurement point 
of view. Also, the comparisons of random partitions of the Sampson data into the same number of 
positions with the relaxed balance theoretic partitions, that value of the ARI ranges between -0.06 
through -0.02 over the partitions reported in Table 3. 
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Both trajectories for k=3 decline over time. The values of the criterion 
function for RSB are smaller than for SB. However, this evidence is modest: the 
declines for the RSB are small. For the last time point, the two values of the 
criterion function are close. The value of the criterion function for the RSB model 
for k=4 declines from the first time point to the second but rises slightly at the 
third time point27. The values of the QAP correlations for k=3 are: 0.708 (T2); 
0.687 (T3) and 0.737 (T4). And for k=4 they are: 0.760 (T2); 0.871 (T3) and 0.816 
(T4). For all these QAP correlations p<0.001 confirming the descriptive values for 
the criterion function, Cf, are noteworthy. 

 

Table 4: Signed block structures over 3 time points: Sampson data*. 

Structural balance (k=3) 
 

T2 
Unique 
Χ(P)=23 
PNN 
NPN  
NNP 

T3 
Unique 
Χ(P)=20 
PNN 
NPN  
NNP 

T4 
Unique 
Χ(P)= 16 
PNN 
NPN  
NNP 

 
Relaxed balance (k=3) 
 

T2 
Unique 
X(P)= 17 
PNN 
PPN 
NNP 

T3 
Unique 
X(P) =15.5 
PNN 
PPN 
NNP 

T4 
Unique 
X(P) = 14.5 
PNN 
PPN 
NNP 

 
Relaxed balance (k=4) 
 

T2 
Unique 
X(P)= 13 
PNNN 
PPNN 
PNPP 
NNPP 

T3 
Unique 
X(P) =8.5 
PNPN 
PPNN 
PNPP 
NNPP 

T4 
Unique 
X(P) = 10 
PPNP 
PPNN 
PPPN 
PNNP 

*P denotes a positive block, N denotes a negative block, O denotes a null block 

                                                 
27  One problem with Sampson’s data is the small number of time points. Also, the data collection, in 
contrast to Newcomb’s data, did not start from a null network. 
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Table 4 presents the corresponding signed blockmodels for the three time 
points. For k=3, there are no large differences between the two blockmodels. The 
blockmodel for structural balance must be the SB model. For RSB, the same 
blockmodel existed at each time point with just one difference from the SB model: 
for all time points, one positive off-diagonal block is in the first column of blocks. 
In terms of Hypothesis 1, only a modest version of the SB_DP is present at each 
time point. Even so, it provided slightly better fits. Table 5 reports QAP 
regressions for the Sampson data. The top panel concerns the k=3 partitions. The 
RSB effect dominates SB only for T2, consistent with the larger difference in the 
values of the criterion function at this time point in Table 3. In terms of 
Hypothesis 2, there is no for a SB_DP_MD model given the absence of a negative 
diagonal block. The off-diagonal negative blocks are consistent with both 
structural balance and differential dislike. 

 

Table 5: QAP Regressions comparing Relaxed Structural Balance and Structural Balance: 
Sampson data. 

A: Three positions (k=3) 
 

T Variable Unstandardized   Standardized  p-value 
Coefficient         Coefficient 

R2 R2 
 ( RSB) 

R2 
(SB) 

T2 Intercept 0.111    0.000    - 
SB 0.040    0.039     0.2324  
RSB 0.782    0.782     0.0005  

0.67  0.67 0.53 

T3 Intercept 0.107    0.000     - 
SB 0.174    0.173     0.0075  
RSB 0.672    0.672    0.0005  

0.67  0.66 0.53 

T4 Intercept 0.057    0.000    - 
SB 0.356    0.355     0.0005  
RSB 0.556    0.556     0.0005  

0.77  0.73 0.68 

 
RSB Relaxed Structural Balance; SB Structural Balance 

 
 

B: Four positions (k=4) RSB only 
 

Time Variable     Unstandardized Standardized p-value 
     Coefficient Coefficient 

R2
 

T2 Intercept   0.031 0.000 - 
RSB   0.858 0.859 0.0005  

0.74 

T3 Intercept   -0.001 0.000 - 
RSB   0.889 0.889 0.0005  

0.79 

T4 Intercept   -0.045 0.000 - 
RSB   0.903 0.902 0.0005  

0.81 

                

The lowest panel of Table 4 displays the blockmodel structure for relaxed 
balance with k=4. The evidence in these blockmodels is stronger for a SB_DP 
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model fitting the Sampson data because of the presence of more off-diagonal 
positive blocks. At the last time point, T4, there is a full column of positive blocks 
in the RSB blockmodel as well as other off-diagonal positive blocks. While 
structural balance works well for the Sampson data for k=3, for k=4 there is 
stronger evidence in favor of the SB_DP model. The corresponding results for 
prediction using only the RSB fitted blockmodel for the k=4 are provided in the 
lower panel of Table 5. This fitted blockmodel is a potent predictor of the signed 
relation for all three time points. 

Figure 5 shows the structural balance partitions of the Sampson data for each 
time point. They are consistent with prior analyses with three clusters of actors: 
The Young Turks (John Bosco, Gregory, Mark, Winfrid, Hugh, Boniface and 
Albert); the Loyal Opposition (Peter, Bonaventure, Berthold, Ambrose, Victor, 
Romauld, Louis and Amand), and the Outcasts (Basil, Elias and Simplicius) were 
identified by Sampson (1968). There are some minor differences with Ambrose 
being in the Young Turk cluster at T3 and Amand joining the Outcasts28 at T4.  

 
 

 
 

Figure 5: Structural Balance Partitions for the Sampson data at each time point. 

       

Figure 6 shows the relaxed balance model as fitted for each time point with k = 
4. For T2, the Loyal Opposition has been split into two clusters. Four of their 
members (Bonaventure, Berthold, Ambrose and Romuald) send mainly positive 
ties to members of the Young Turks, a feature obscured in the structural balance 
partition. Consistent with structural balance, they send positive ties to others in the 
Loyal Opposition and negative ties to those in the Outcasts. The two partitions at 
T3 differ only in the location of Albert, again with positive blocks off the main 
diagonal. At T4, Bonaventure and Ambrose form a single cluster, receiving 
positive ties from members of the other three clusters. They also have reciprocated 

                                                 
28   Doreian and Mrvar (1996) had Amand with the Outcasts at all three time points. 



54 Patrick Doreian and Andrej Mrvar 

positive ties. This column of positive blocks supports the Sampson data 
conforming to the SB_DP model at T4. 
 

 
 

Figure 6: Relaxed Balance Blockmodels for the Sampson data at each time point (k = 4). 

 
Figure 7 shows plots of inequality in the receipt of positive and negative ties. 

Consistent with the Newcomb data results, inequality of the receipt of negative 
ties increases across all time points.  The pattern for inequality in the receipt of 
positive ties differs. From T2 to T3, it drops slightly before a sharp increase 
between T3 and T4. The highest value for each index is at T4 providing support for 
Hypothesis 3 for the receipt of negative ties but only partial support for the receipt 
of positive ties. 
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Figure 7: Inequalities in receiving positive and negative ties: Sampson data. 

5 Summary and discussion 

As multiple processes generate social relations among human actors, it is 
problematic to commit to examining only one process. The relevant processes 
include structural balance, differential popularity, differential dislike, and mutual 
hostility within subgroups larger than dyads. When processes operate they leave 
traces as structural features of networks. Our attempt to disentangle the results of 
these processes focused on the structure of the network as represented by locations 
of positive and negative block types in blockmodels. We used the generalized 
blockmodel of relaxed structural balance (Doreian and Mrvar, 2009) to fit 
blockmodels to signed networks. We found strong support for the operation of 
differential popularity in a column of off-diagonal positive blocks with the 
Newcomb data.  Some actors in were universally popular, contrary to structural 
balance. Evidence was found also of subgroups of mutually hostile actors with 
persistent negative blocks on the main diagonal of the image matrix, also 
contradictory of structural balance.  

The persistent presence of a column of off-diagonal negative blocks is 
consistent with both structural balance and differential dislike. By considering the 
increased concentration of negative blocks over time on a subset of actors, we 
infer that differential dislike contributes more than structural balance even though 
the results of these processes could not be disentangled completely. The results 
were less clear for the Sampson data where the structural balance model fared less 
badly than in the Newcomb data. There was some modest evidence for a weaker 
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form of a model with differential popularity. Only at the last time point, in a model 
with four positions, was differential popularity more evident. 

As a summary, in Newcomb’s data, relaxed structural balance partitions 
provide strong support for the operation of differential capturing structural 
features at odds with structural balance. The increased concentration of negative 
ties on some actors suggests differential dislike is either a more potent process 
than structural balance or is an unrecognized component of it. The evidence for 
such outcomes was not as clear with Sampson’s data. Yet there was support for the 
hypothesis regarding inequalities in receiving negative ties. 

There are some caveats concerning our results because the data we used are not 
ideal. The recoding of Newcomb’s data, used by others before us imposes the 
equivalent of a fixed choice design and is, at most, only an approximation of 
satisfactory temporal signed network data. Sampson also adopted a fixed choice 
design for the data he collected. Neither Newcomb’s nor Sampson’s data have 
systematic information regarding actor attributes. This imposes another limitation. 
Increasing concentration of receiving both positive and negative ties could rest on 
clearer perceptions of actor attributes and the accumulation of network processes. 
Without information on actor attributes and the recognition of this information by 
actors when forming and breaking signed ties these two processes cannot be 
disentangled. Some implications of these limitations are clear.  

First, better over time network data for signed (and unsigned) networks in 
small groups are needed. Second, as networks and actors co-evolve, we need actor 
attribute data and (changing) actor perceptions of each other. Third, an adequate 
theory of network change requires reconsidering Heider's (1946) distinction 
between signed social relations and unit formation relations to incorporate both 
when studying actor and network co-evolution29. Using only structural (network) 
data is not enough. Even so, we have shown that network processes can be 
disentangled to some extent by delineating the structural traces that their operation 
leaves behind. This allowed for some comparative testing of theories about 
generating structures.  

Such an approach can be made more fruitful by embedding signed 
blockmodeling in a richer substantive framework with more complete data. Here, 
we have written about tie formation without being attentive to the micro-processes 
involved for pairs of actors. Montoya and Insko (2008) analyze reciprocity in 
terms  of  affective,  cognitive,  and  behavioral  elements.  Wojciszke et al. (2009) 
examine different mechanisms generating like-dislike and respect-disrespect 
relations. However these mechanisms operate, they will be constrained to some 
extent by the macro structure of the group within which they operate. It suggests 
also that a more general account will emerge from combining these different 
approaches. 

                                                 
29  White (1979) notes empirical evaluations of balance theory differ according to whether poq-
triples or pox-triples (with unit formation ties) are used. 



Testing Two Theories for Generating Signed Networks Using Real Data 57 

 

 

Another item meriting attention comes from the differences between the two 
sites where Newcomb and Sampson collected their data. The students in the 
pseudo-fraternity of Newcomb had potential relations and contacts outside their 
residential hall. In contrast, the trainee monks were largely cut off from the outside 
world. Such differences could make a difference in the macro network structures 
formed (Doreian and Conti, 2012). In terms of substance, theories of how 
relational tie formation is dependent on the context within which  relations  are  
formed  are  needed  for  a  better  account  of the processes of network formation 
and the resulting network structures.   

Another very promising approach to social networks are exponential random 
graph models (ergms). It would seem useful to explicitly couple the micro-process 
generation of network structure represented in the use of dynamic exponential 
random graph models with the kind of block modeling approach used here. We 
think that coupling the ergm approach to block modeling is an step. The simplest 
way of doing this is to incorporate block structures as a covariate. Doreian and 
Conti (2012) provide an example where both estimated ergm parameters and a 
blockmodel covariate were significant. A much deeper approach is to develop an 
ergm and a blockmodel simultaneously.     

We provide a different take on two classical data sets by using signed 
blockmodeling to comparatively assess two theories about the generation of 
structure. However, we are mindful that these data sets are unique and imply some 
problems with regard to generalization, especially to larger networks. Balance 
theoretic ideas were formed in the study of small networks but it is reasonable to 
anticipate their extension to larger signed networks where overall network density 
tends to be lower. This raises the issue of whether density could affect the use of 
relaxed structural balance and structural balance. We think this would not affect 
our methods, especially if fixed choice designs are avoided. However, this remains 
an empirical issue. In terms of formal analysis, Abell and Ludwig (2009) have 
launched a program of research based on simulation studies of balance processes 
in larger signed networks Their simulated networks are very dense and, while they 
are useful for studying the operation of balance processes, it is not clear that there 
is a direct extension to empirical signed networks.  

If areas of differential density exist in large signed networks, then the 
empirical study of large ‘patchy’ signed networks could benefit from the kinds of 
community detection methods developed by Traag and Bruggeman (2009) for 
signed networks. We provide a methodological comparison of this algorithm with 
RSB in the Appendix A. For the Newcomb data, the results are mixed but point to 
the RSB approach as more useful. The criterion functions implied by the two 
algorithms are different and it may be useful in future work to try and combine 
them in some fashion. Having diagonal blocks with dense positive lines seems 
important provided that this does not destroy the block structures identified here. 
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Appendix A 

Another approach to partitioning networks exists within the community detection 
literature.  Community detection and blockmodeling are two methods for 
partitioning social networks developed separately but with obvious parallels. In 
order to compare them, the algorithm of Traag and Bruggeman (2009), devised 
specifically for signed networks, is best placed for this. It has been implemented in 
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pajek (Batagelj and Mrvar, 1998). The algorithm is based on an adaptation of 
modularity (Newman, 2006; Leicht and Newman, 2008) and maximizes positive 
and minimizes negative lines within diagonal blocks while it minimizes positive 
and maximizes negative lines in off-diagonal blocks. In using this approach, we 
obtained higher values of the modularity index for partitions having a high density 
of positive and low density of negative lines inside clusters and a high density of 
negative and low density of positive lines between clusters.  

We note that partitioning signed networks using relaxed structural balance 
(RSB) is driven by substance concerning the dynamics of relations in small groups 
while community detection is driven more by the observation that communities 
have denser positive ties and sparser (or even no) negative ties within them 
compared to the ties to the rest of the network. It is useful for partitioning large 
networks. It is reasonable to compare them. 

This comparison is purely methodological and takes the following form: i) 
produce the best partitions using the Traag and Bruggeman algorithm; ii) establish 
the corresponding RSB partitions (with the same values of k); iii) create the 
implied fitted matrix arrays for both; iv) establish how well they predict the actual 
data; and v) compare the two partitions in relation to each other. The results are 
shown in Table A.1: the first column lists time points; the second column has the 
number of positions (clusters) obtained by the community detection (CD) 
algorithm and used also for the corresponding RSB partitions; the third column 
has the variance explained by the community detection partitions; the fourth 
column has the variance explained by the RSB partitions; and the final column has 
a direct comparison of the pairs of fitted partitions. The comparison is made solely 
in terms of the number of clusters determined CD and defers to these values of k. 
The result is straightforward: at each time point the variance explained by the RSB 
approach is larger than the variance explained by community detection. However, 
for four time points the differences are trivially small and a reasonable conclusion 
is that the two partitions perform equally well in predicting the empirical relational 
arrays for these time points. Thereafter, in contrast, the differences are more 
substantial and sometimes the differences are large. We note that the correlations 
between the two fitted arrays are particularly high for t4 and t7. The variation of R2 
across the time points has more to do with the number of clusters: other things 
equal, using more positions leads to explaining more variance in the array of 
signed ties. Given that there are only 17 data points, even using 5 or 6 positions 
seems excessive. Using k = 4 for all time points, as done in the paper, seems 
preferable both in terms of substance and for uniform comparisons. 

For the primary substantive concerns considered here, the results of using the 
signed community detection approach are mixed. For five time points (t2, t3, t4, t5, 
and t10) there is no column of positive blocks. However, for the remaining times 
points, there is as least one column of positive blocks. This provides support for 
the SB_DP Model. Using this community detection algorithm permits a 
comparative test precluded by classical structural balance.  For all time points, 
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there are no diagonal negative blocks in the blockmodels obtained by the 
community detection approach: The presence of such blocks is missed and 
precluded the delineation (and examination) of the SB_DP_MD Model. We return 
to Leik and Meeker’s point: coherence between substance, method, and data is 
important. The substantively driven RSB approach has this coherence while the 
community detection approach used here does not. 

 

    Table A.1: Comparing the predictive value of two partitions. 

Time 

Point 

k R2 

 (CD) 

R2  

(RSB) 

R2  

(CD_RSB) 

t1 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

t9 

t10 

t11 

t12 

t13 

t14 

t15 

3 

3 

3 

3 

3 

5 

6 

5 

4 

4 

5 

5 

4 

5

4 

0.27 

0.32 

0.35 

0.42 

0.30 

0.38 

0.81 

0.51 

0.28 

0.29 

0.66 

0.66 

0.64 

0.75 

0.42 

0.33 

0.35 

0.41 

0.46 

0.53 

0.57 

0.93 

0.90 

0.75 

0.74 

0.90 

0.90 

0.78 

0.90 

0.84 

0.22 

0.28 

0.50 

0.86 

0.34 

0.53 

0.87 

0.48 

0.30 

0.30 

0.64 

0.69 

0.64 

0.72 

0.40 

     

   CD - Community detection, RSB - Relaxed Structural Balance 

Appendix B 

All of the data analyses were done using three programs. The temporal plots in 
Figures 1, 3 and 4 were drawn using STATA. The fitting of blockmodels was done 
using Pajek (Batagelj and Mrvar, 1998) using pre-specified models. The 
commands for this are explained in the Pajek manual. The QAP regressions were 
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done by using UCINET (Borgatti et al., 2002). The Pajek files for doing this were 
imported into UCINET. Again, using QAP is documented in the manual for this 
suite of programs. 
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Abstract 

 In this paper we study the different methods for estimation of the 
parameters of the Weibull distribution. These methods are compared in 
terms of their fits using the mean square error (MSE) and the Kolmogorov-
Smirnov (KS) criteria to select the best method. Goodness-of-fit tests show 
that the Weibull distribution is a good fit to the squared returns series of 
weekly stock prices of Cornerstone Insurance PLC. Results show that the 
mean rank (MR) is the best method among the methods in the graphical 
and analytical procedures. Numerical simulation studies carried out show 
that the maximum likelihood estimation method (MLE) significantly 
outperformed other methods.   

 

1 Introduction 

The Weibull Distribution has been widely studied since its introduction in 1951 
by Professor Wallodi Weibull (Weibull, 1951). These studies range from parameter 
estimation; see for example, Mann et al. (1974), Johnson et al. (1994) and Al-
Fawzan (2000) to diverse applications in reliability engineering especially in Tang 
(2004) and lifetime analysis in Lawless (1982, 2003). The popularity of the 
distribution is attributable to the fact that it provides a useful description for many 
different kinds of data, especially in emerging areas such as wind speed and finance 
(stock prices and actuarial data) in addition to its traditional engineering 
applications. 
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Engineers and statisticians relied mainly on probability plots, referred to as 
graphical procedure, to analyze life data prior to the advent of desktop computers 
and reliability analysis software became available. We discuss the three methods; 
the mean rank (MR), the median rank (MDR) and the symmetric cumulative 
distribution function (SCDF) in Section 2. Also in Section 2 we review three 
methods in the objective analytical procedure; the maximum likelihood estimation 
(MLE), the method of moments (MOM) and the least squares method (LSM). These 
methods are compared in Section 3, using the mean square error (MSE) and the 
maximum likelihood (LLH) criteria. 
 

2  Methods for parameter estimation 

Let 1 2, ,..., Ns s s  be a random sample of size N from a population. Define 

( )1ln ,t t tr s s−=  ( ),tr ∈ −∞ ∞  as returns of the stock prices (say), { }0:t ts s> . Let  

�� = ��
�
∈ �

� be hereinafter referred to as the squared returns.   
 

2.1 The Weibull distribution  

The general form of a three-parameter Weibull probability density function (pdf) 
is given by 

 ( )
1

exp , , 0; , 0t tx x
f x x

β βυ υβ υ α β
α α α

−  − −    = − ≥ >    
     

 (2.1) 

where; tx  is the data vector at time t; β  is the shape parameter; α is the scale 

parameter that indicates the spread of the distribution of sampled data and υ  is the 
location parameter. The Weibull probability density function satisfies the following 
properties: 

a) If  0 1, fβ< < is decreasing with ( ) as 0 .f x x +→ ∞ →    

b) If 1, fβ =  is decreasing with ( ) 1 as 0 .f x x +→ →  

c) If 1, fβ > at first increases and then decreases, with a maximum 

value at the mode ( )1
1 1 .x

βα β= −   

d) For all  0β > , ( ) 0 as .f x x→ → ∞  

The cumulative distribution function (cdf) of the Weibull distribution is 
mathematically given as: 

 ( ) 1 exp .t
t

x
F x

υ
α

 −  = − −  
  

 (2.2) 
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In case of 0υ = , the pdf in (2.1) reduces to (2.3)  

 ( )
1

exp , 0; , 0

0,

t t

t

x x
x

f x

otherwise

β ββ α β
α α α

−        − ≥ >      =        



 (2.3) 

with a corresponding cdf  as 

 ( ) 1 exp
, 0

0,

t

t

x

F x x

otherwise

β

α
    − −   = ≥    



 (2.4) 

Cheng and Chen (1988) observed that the distribution interpolates between the 

exponential distribution ( )1β = and Raleigh distribution( )2β = . The mean and variance 

of the Weibull distribution are ( ) ( )1 1E X α β= Γ +  and 

( ) ( ) ( )2 21 2 1 1V X α β β = Γ + − Γ +   respectively, where ( )nΓ  is a gamma function 

evaluated at n.  
 

2.2 Estimation procedures  

2.2.1   Graphical procedure 

 
If both sides of the cdf in (2.4) are transformed by ln(1/ (1 ))x− , we get 

 ( )
1

ln
1

i

i

x

F x

β

α
   =    −     

so that 

 ( )
1

ln ln ln ln .
1 i

i

x
F x

β β α
  

= −   −   
 (2.5)                                 

Here, ix  actually represents the order statistics (1) (2) ( )... .nx x x< < <     

If we let ( )( )( )ln ln 1 1 iY F x = −  , ln iX x=  and lnc β α= − , then (2.5) represents a 

simple linear regression function corresponding to 

 .Y X cβ= +  (2.6) 

The unbiased estimate of α , the scale parameter, is calculated as 

 ˆ exp
cα
β

  = −  
  

 (2.7) 
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where c is the intercept of the linear regression (2.6). 

Thus, we perform the estimation of α and β  using the following methods of 

estimation in Table 1.   

Table 1: Methods of estimation by graphical procedure 
 

 

 

 

 

We plot iY , which is a function of ( ),iF x  versus ( ln( ))i iX x= , using the following  

procedure: 

a) Rank the data { }ix in ascending order of magnitude; 

b) Estimate ( )iF x of the i th rank order; and 

c) Plot iY versus iX . 

This plot produces a straight line from which we obtain ˆ ˆ and β α  (see (2.6) and (2.7)). 

 

 2.2.2   Analytical procedure 

 
 Maximum Likelihood Estimation (MLE) 

The method of maximum likelihood estimation is a commonly used procedure for 

estimating parameters, see, e.g., Cohen (1965) and Harter and Moore (1965). Let 

1 2, ,..., nx x x  be a random sample of size n drawn from a population with probability 

density function ( ),f x λ  where ( ),λ β α= is an unknown vector of parameters, so that 

the likelihood function is defined by 

 ( ) ( )
1

, ,
n

t
i

L f f xα β λ
=

= = ∏  (2.8) 

The maximum likelihood of ( ),λ β α= , maximizes L  or equivalently, the 

logarithm of L when 

 
ln

0,
L

λ
∂ =

∂
 (2.9) 

Method ( )iF x                      

Mean Rank ( )1i n +  

Median Rank ( ) ( )0.3 0.4i n− +  

Symmetric CDF ( )0.5i n−  
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see, for example, Mood et al (1974). Consider the Weibull pdf given in equation (2.3), 

its likelihood function is given as: 

       ( )
1

1 2
1

, ,..., ; , exp
n

t t
n

t

x x
L x x x

β βββ α
α α α

−

=

     = −     
      

∏  

        ( )1

1 1

exp .
n n n n

t t
t

t t

x x
x

β β
ββ

α α α

−
−

= =

     = −     
      

∑ ∑  (2.10) 

Taking the natural logarithm of both sides yields 

 ( ) ( )1

1 1

ln ln 1 ln
n n

t
t

t t

x
L n x

β
ββ β α

α α
−

= =

  = + − − −   
   

∑ ∑  (2.11) 

and differentiating (2.11) partially w.r.t β  and α  in turn and equating to zero, we 

obtain the estimating equations as follows 

 
1 1

1
ln ln ln 0

n n

t t t
t t

n
L x x xβ

β β α= =

∂ = + − =
∂ ∑ ∑  (2.12) 

and 

 
2

1

1
ln 0.

n

t
t

n
L xβ

α α α =

∂ = − + =
∂ ∑  (2.13) 

From (2.13) we obtain an estimator of α  as     

 
ˆ

1

1
ˆ

n

mle t
t

x
n

βα
=

= ∑  (2.14) 

and on substitution of (2.14) in (2.12) we obtain  

 1

1
1

ln1 1
ln 0

n
n

tt
t n

t tt

x x
x

n x

β

ββ
=

=
=

+ − =∑
∑

∑
 (2.15) 

which may be solved to obtain the estimate of β  using Newton-Raphson method or 

any other numerical procedure because (2.15) does not have a closed form solution. 

When ˆ
mleβ  is obtained, the value of α̂  follows from (2.14). 

   

Method of Moments (MOM) 

The second procedure we consider here is the MOM which is also commonly 

used in parameter estimation. Let 1 2, ,..., nx x x  represent a set of data for which we 

seek an unbiased estimator for the kth moment. Such an estimator is generally given 

by  
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1

1
ˆ

n
k

k t
t

m x
n =

= ∑  (2.16) 

where ˆ km is the estimate of kth moment. For the Weibull distribution given in 

(2.3), the kth moment is given by 

 
1

1

k

k k

kβ
µ

α β

−
  = Γ +   

   
 (2.17) 

where Γ  is as defined in subsection 2.1. From (2.17), we can find the 1st and 2nd 
moments about zero as follows 

 

1

1 1

1 1
ˆ ˆ 1m

β
µ

α β
  = = Γ +   

   
 (2.18) 

and 

 

2 2

2 2
2

1 2 1
ˆ ˆ ˆ 1 1m

β
µ σ

α β β
     = + = Γ + − Γ +      

       
 (2.19) 

When we divide the square of 1m̂ by 2m̂ , we get an expression which is a function 

of only β , 

 
2

2 2

1 1
1 1

ˆ

ˆ ˆ 2
1

β βµ
σ µ

β

   Γ + Γ +   
   =

+  Γ + 
 

 (2.20) 

where ( ) ( ) ( )( )22 2

1

1
ˆ ˆ,  and letting 1

n

t t t t
t

E X x E X E X Z
n

µ σ β
=

= = = − =∑  (2.19) is 

easily transformed in order to estimate β  so that the scale parameter                                                                        

momα  can be estimated with the following relation 

 
1ˆ ˆ 1momα µ
β

 = Γ + 
 

. (2.21) 

The Least Squares Method (LSM) 

 The Least Squares method is commonly applied in engineering and 

mathematics problems that are often not thought of as an estimation problem. We 

assume that there is a linear relationship between two variables. Assume a dataset 

that constitute a pair ( ),t tx y ( ) ( ) ( )1 1 2 2, , , ,..., ,n nx y x y x y=  were obtained and plotted. 

The least squares principle minimizes the vertical distance between the data points 
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and the straight line fitted to the data, the best fitting line to this data is the straight 

line: t ty xα β= +  such that 

 ( ) ( )2

1

; ,
n

t t
t

Q x y xα β α β
=

= − −∑  

To obtain the estimators of  and α β  we differentiate Q w.r.t  and α β . Equating 

to zero subsequently yields the following system of equations: 

 ( )2

1

2
n

t t
t

Q
y xα β

α =

∂ = − − −
∂ ∑   (2.22) 

and 

 ( )2

1

2 0
n

t t t
t

Q
y x xα β

β =

∂ = − − − =
∂ ∑  (2.23) 

Expanding and solving equations (2.21) and (2.22) simultaneously, we have 

 
( )22

ˆ n xy x y

n x x
β

−
=

−
∑ ∑ ∑
∑ ∑

 (2.24) 

and 

 ˆ ˆ ;     exp
ˆ
c

c y xβ α
β

 
= − = − 

 
 (2.25) 

where ˆˆ  and α β are the unbiased estimators of  and α β respectively. 

  

3    Method assessment and selection 

3.1      Comparison of estimation methods 

   The Mean Squared Error (MSE) criterion is given by 

        ( ) ( )
2

1

1 ˆ
n

i i
i

MSE F x F x
n =

 = − ∑     (3.1) 

where ( )ˆ
iF x  is obtained by substituting the estimates of  and α β  (for each 

method) in (2.4) while ( ) /iF x i n=  is the empirical distribution function. The 

method with the minimum mean squared error ( )minMSE  becomes the best method 

for the estimation of Weibull parameters among the candidate methods.  
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3.2    Goodness-of-fit tests  

 Goodness-of-fit test procedures are intended to detect the existence of a 
significant difference between the observed (empirical) frequency of occurrence of an 
item and the theoretical (hypothesized) pattern of occurrence of that item. Here, we 
assume that the Weibull distribution is a good fit to the given dataset; otherwise, this 
assumption is nullified if, for this test, the computed statistic is greater or equal to a 
defined critical value. 

  
Kolmogorov–Smirnov test 

The Kolmogorov-Smirnov test is used to decide if a sample comes from a 
population with specific distribution. It is based upon a comparison between the 
empirical distribution function (ECDF) and the theoretical one defined as 

( ) ( ),
x

F x f y dyθ
∞

= ∫  where ( ),f x θ  is the pdf of the Weibull distribution. Given n 

ordered data points 1 2, ,..., ,nX X X  the ECDF is defined as ( ) ( )iF X N i n=  where 

( )N i  is the number of points less the iX  ( iX  are ordered from smallest to highest value). 

The test statistic used is  

( ) ( )
1

ˆSupn i i
i n

D F x F x
≤ ≤

= − .                                                  (3.2) 

The statistic nD  converges to zero almost surely as n → ∞ . 

4 Implementation  

4.1 Data 

  The data used for this study is the weekly stock prices (N = 100 weeks) collected 
from Cornerstone Insurance Company PLC, a public liability company listed in the 
Nigerian Stock Exchange (Appendix I). The squared returns, r2, earlier defined in 
Section 2 are a measure of volatility in the stock prices and are multiplied by 100 
without loss of generality. In Figure 1 we present a graphic relationship between the 
weekly stock prices and its squared returns. We perform the estimation of the parameters 
using the R software for the graphical and analytical procedures with 100r2 as the 
dataset and r is now of length n. R is a language and environment for statistical 
computing and graphics (from the R Foundation for Statistical Computing (2013)) ran 
on the Platform: i386-w64-mingw32/i386 (32-bit). 
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   Figure 1: Plot showing relationship between Weekly Stock Prices and its Squared 
Returns*100      

4.2 Simulation study 

We carry out a numerical simulation study in order to investigate the behavior of 
the shape and scale parameters of the Weibull distribution. In the simulation experiment 
we set the Weibull distribution on the random variable X with shape parameter 

0.54β =  with the aim of mimicking the squared returns ( )2100 .r  For the Weibull 

distribution on X , generate independently and identically distributed random sample 

( )1 2, ,..., nx x x  of size n  (= 25, 50, 75, 100, 125, 150, 175, 200). Compute the mean of 

this sample and replicate this process N times to obtain a series. For each series of size 
n , estimate  and β α  using the methods described in Section 2, the MSE and the 

Kolmogorov-Smirnov (KS) statistic. This sequence is of the form 

( ) ( ) ( )1,..., 1 1 11 2
mean ,..., ,mean ,..., ,...,mean ,...,N n n n N

X x x x x x x∗ ∗ ∗ ∗ ∗ ∗ ∗= , 10000N =  times; and is 

accomplished in R for Windows 2013 by the replicate function: 

( )( )( )replicate , mean rweibull , shape 0.54N n = .  

We remark here that the least squares method (LSM) is related to the graphical 
procedure in the estimation of Weibull parameters through (2.6), where 

( )( )( )ln ln 1 1 iY F x = −   is dependent upon the particular graphical method (e.g., 

( ) ( )1iF x i n= +  for the mean rank) and ln iX x= ; see also equations (2.7) and (2.25). 
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4.3   Results and Discussion 

All computations and simulations in this investigation were done in R version 3.0.0. 
We relied on the functions fitdist() and fitdistr() respectively from R packages 
fitdistrplus and MASS (see, e.g., Delignette-Muller et al (2013) and Ripley (2013) 
respectively) for maximum likelihood estimation of the parameters and plots while 
codes were developed for the other methods. Results for the graphical procedure (MR, 
MDR and SCDF) were verified using the approach in Dorner (1999) on Microsoft Excel 
2013. The R code used for this study is available from the first author on request.  

Estimates of the parameters based upon both the graphical and theoretical 
procedures described in Section 2.2 are presented in Table 2. The shape parameter β  
lies within the interval (0, 1) which implies, as indicated in Section 2.1, that the function 
(irrespective of the method) decreases exponentially. We ranked the performance of the 
methods based on the least MSE criterion. In comparison, the Mean Rank (MR) method 
has the least MSE (3.88x10-03) and at the same time has the least Dn (0.0563) making it 
the best among the five methods under study (graphical and analytical procedures) for 
this particular dataset. The Maximum Likelihood Estimation (MLE) method is, however, 
superior to Method of Moments in the analytical procedure. From these results the best 
estimate for the shape and scale parameters are respectively ( ) ( )ˆ ˆ, 0.5325,0.4539β α =  

based on our dataset. 
 

  The visual assessments of fit are shown in the histogram (Figure 2(a)) overlaid with 
the Weibull densities generated from the different methods and in the empirical 
cumulative distribution function plot of Figure 2(b). The MOM is clearly different from 
other methods given their MSEs but this difference is not very clear in Figure 2.   
However, simulation results show (Table 3) that the MLE performed best 86% of the 
time when the ni simulations are run 10,000 times. Similar result was obtained when the KS 
goodness-of-fit test was conducted to test the adequacy of the Weibull distribution in fitting the 
simulation data. 

 
 
 
 
 
 
 
Table 2: Summary of results and comparison of methods for Weibull parameter estimation 

 

Procedure  Method                                         α̂        β̂    MSE        KS 

Graphical 
   MR 0.4539 0.5325 3.88x10-03 0.0563 

MDR 0.4494 0.5452 4.21x10-03 0.0615 
SCDF 0.4461 0.5553 4.49x10-03 0.0656 

Analytical 
MLE 0.4563 0.5421 6.59x10-03      0.0617 
MOM 0.5244 0.6026 1.18x10-01 0.1055 
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Table 3 Simulation results (based on 10,000 iterations) 
  Method 
n Measure MR MDR SCDF MLE MOM 

25 
MSE 3.5726 3.5815 3.5837 1.2557 1.6770 
KS 0.0600 0.0600 0.0601 0.0501 0.9821 

50 
MSE 4.6281 4.6323 4.6282 1.4930 3.5122 

KS 0.0681 0.0682 0.0683 0.0540 0.9596 

75 
MSE 4.9234 4.9502 4.9407 1.5438 4.2108 

KS 0.0683 0.0684 0.0684 0.0563 0.9741 

100 
MSE 4.8839 4.9119 4.8985 1.3216 4.4869 

KS 0.0653 0.0654 0.0654 0.0587 0.0964 

125 
MSE 5.2496 5.2389 5.2598 1.4261 4.9398 
KS 0.0750 0.0750 0.0751 0.0590 0.9600 

150 
MSE 5.4266 5.4118 5.4341 1.4671 5.2043 
KS 0.0672 0.0671 0.0673 0.0604 0.9665 

175 
MSE 6.4067 6.3872 6.4096 1.7235 6.0586 
KS 0.0726 0.0726 0.0726 0.0657 0.9720 

200 
MSE 5.1548 5.1831 1.3525 1.4170 5.0833 

KS 0.0674 0.0675 0.0818 0.0614 0.9816 
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Figure 2: Fit of different methods (a) Density and Histogram (b) ECDF 
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 5     Conclusion  

The performances of five methods in the estimation of the parameters of the 
Weibull distribution were compared in this study. The MR was selected as the best 
method that gives the best estimates of the two-parameter model for square returns 
dataset, while the MLE is preferred over the MOM for the analytical procedure. 
These decisions were based on the minimum MSE criterion. When these methods 
were compared based upon simulation results, the maximum likelihood estimate 
method showed superiority over other methods. The least squares method (LSM), 
we remark, is also known as the rank regression method (RRM) because the 
estimation of the parameters of the Weibull distribution is dependent upon 
regressing some form of log and rank transformations of a given dataset according 
to the rank plotting position.  
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Appendix  

 
 

Table A1: Weekly stock prices (read row-wise) 
  1.03 1.06 0.99 1.03 0.99 0.95 0.96 0.98 0.93 1.05 

0.92 0.99 0.97 0.96 0.91 0.94 0.97 0.99 1.15 1.27 
1.46 1.83 2.31 2.49 2.73 2.70 2.52 2.49 2.76 3.00 
3.18 3.88 3.84 3.79 3.76 3.75 3.89 4.04 4.70 4.34 
4.55 4.20 4.19 4.12 4.13 3.77 3.25 3.14 3.12 2.82 
3.24 3.44 3.50 3.64 3.72 3.68 3.41 3.24 3.26 3.42 
3.38 4.02 4.21 4.23 4.04 4.11 4.28 4.84 4.46 4.87 
5.00 5.91 7.36 7.34 7.23 7.19 6.79 6.03 5.97 5.69 
6.42 6.23 5.86 5.46 4.71 4.32 4.79 4.62 4.54 4.22 
4.28 4.08 3.95 4.16 3.50 3.65 3.22 3.50 3.97 2.96 
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