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Abstract

The existence of a regular, self-dual and self-Petrie-dual map of any given even valency
has been proved by D. Archdeacon, M. Conder and J. Širáň (2014). In this paper we extend
this result to any odd valency ≥ 5. This is done using algebraic number theory and maps
defined on the groups PSL(2, p) in the case of odd prime valency ≥ 5 and valency 9, and
using coverings for the remaining odd valencies.
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1 Introduction
In this paper we consider regular maps (that is, cellular embeddings of graphs on closed
surfaces) with the highest ‘level of symmetry’, which are, in addition, invariant under the
operators of duality and Petrie duality. Regular maps have been addressed in a number of
papers and we refer here to the latest survey [11] for a large number of details; here we just
sum up the essentials needed for our purposes.
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From an algebraic point of view, a regular mapM can be identified with a finite groupG
with three distinguished involutory generators x, y, z and relators (yz)k, (zx)` and (xy)2 so
that x and y commute; we will formally writeM = (G;x, y, z) to encapsulate the situation.
The pair (k, `) is the type of M , and we will assume throughout that k, ` ≥ 3; the type is
hyperbolic if 1/k + 1/` < 1/2. Geometrically and topologically, elements of G may be
identified with flags (which correspond to mutually incident vertex-edge-face triples) and
left cosets of the subgroups 〈x, y〉, 〈y, z〉 and 〈z, x〉 represent edges, vertices and faces of
the embedded graph, with incidence given by non-empty intersection of cosets. Moreover,
left multiplication by elements of G on the cosets induce map automorphisms of M and,
in fact, G is isomorphic to the (full) automorphism group Aut(M) of M . Conjugates of
x, y and z, respectively, induce automorphisms that locally act on M as reflections along
some edge, in some edge, and in an axis of some corner of M . Similarly, conjugates of
r = yz and s = zx represent rotations about vertices and face centres of the map; in
particular, every vertex has valency k and every face is bounded by a closed walk of length
`. The map M is orientable (meaning that its underlying surface is orientable) if and only
if G+ = 〈r, s〉 is a subgroup of G of index two, and non-orientable otherwise. Thus, in the
non-orientable case, the entire group G can be generated by the two rotations r and s only,
and the involutions x, y, z are then expressible in terms of r and s; in such a situation we
also write M = (G; r, s).

Every automorphism of a map, regarded as a permutation of flags that preserves inci-
dence along and across edges and within corners, is completely determined by its action
on a single flag. If the automorphism group is transitive (and hence regular) on flags, one
may identify the group with the flag set and arrive at the description outlined above. But
even then a map may still exhibit ‘external symmetries’ induced by invariance under the
operators of duality and Petrie-duality. The two operators are well known; informally, du-
ality interchanges the roles of vertices and faces, and the Petrie dual of a map is formed by
re-embedding its underlying graph so that the new faces are the left-right (‘zig-zag’) closed
walks in the original map. A map is self-dual or self-Petrie-dual if it is isomorphic to its
dual or Petrie dual, respectively. In the case of a regular map M = (G;x, y, z) as above,
it is also well known (cf. [11]) that M is self-dual if and only if the group G admits an
automorphism interchanging x with y and fixing z, and M is self-Petrie-dual if G has an
automorphism interchanging x with xy and fixing y and z. In [1], regular maps that are
both self-dual and self-Petrie-dual have been said to have trinity symmetry.

The natural question regarding the existence of regular maps with trinity symmetry for
any valency was raised more than four decades ago. In [15] it was suggested that the map
M = (G;x, y, z) for the group G = 〈x, y, z;x2, y2, z2, (xy)2, (yz)2n, (zx)2n, (xyz)2n,
(xzyzxyz)2〉 is a regular map with trinity symmetry, of valency 2n for every n ≥ 1. This
was eventually proved in [1] in a much more general form, including also invariance under
the so-called hole operators that represent additional levels of ‘external symmetries’ not
discussed here. However, the question remained almost completely open for odd-valent
regular maps with trinity symmetry, as pointed out by the third author at the 2017 BIRS
Workshop ‘Symmetries of Surfaces, Maps and Dessins’ [4, Part 4.7]. Note that such a map
must necessarily be non-orientable because of self-Petrie-duality with Petrie walks of odd
length. There is no such map of valency 3 since the only regular map of type (3, 3) is the
2-skeleton of a tetrahedron. At the time of publication of the report [4] the only two sets of
known examples of regular maps with trinity symmetry of odd valency k ≥ 5 were those
discovered computationally by M. Conder for 5 ≤ k ≤ 19 and the ones resulting from
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the work of G. Jones [7]. The method of Jones actually has potential to produce examples
for infinitely many odd values of k but in [7] explicit examples have been given only for
k = 15 (found also in [1] by a different method) and k = 455.

Here we completely settle the problem by showing that for every odd k ≥ 5 there exists
a regular, self-dual and self-Petrie-dual map of valency k. Our strategy is to establish this
result first for every prime k ≥ 5 and for k = 9 by algebraic methods motivated by those
used in [8], and applied to more detailed results of [6] on regular maps defined on linear
fractional groups. We then extend this to non-prime odd values of k ≥ 5 by an analogue
of a covering tool from [1]. The paper is organised accordingly: in Sections 2 and 3 we
review results on regular self-dual and self-Petrie-dual maps on linear fractional groups
and develop the algebraic methods needed for our purposes, and in Section 4 we prove our
general result and make a few concluding remarks.

2 Regular maps on linear fractional groups
Classification of all orientably-regular maps with orientation-preserving automorphism
group isomorphic to PSL(2, q) or PGL(2, q) follows from [9] and can be found in a some-
what more explicit form in [10]; the latter was re-interpreted and extended to regular maps
(orientable or not) in [5]. Since we will be interested only in the special case of odd valency
and face length, we just reproduce the corresponding part of the classification result here
(the cases when one of the entries in the type of the map is even are more involved and we
refer to [8] for details).

Proposition 2.1. Let (k, `) 6= (5, 5) be a hyperbolic pair with both entries odd and let p
be an odd prime dividing neither k nor `. Let e = e(k, `) be the smallest positive integer
j such that 2n | (pj − εn) for each n ∈ {k, `} and some εn ∈ {+1,−1}, and let ξn be a
primitive 2n-th root of unity in GF(pe) if εn = 1 or in GF(p2e) if εn = −1. Further, let
D = ξ2k + ξ−2k + ξ2` + ξ−2` 6= 0 and let

R = ±
[
ξk 0
0 ξ−1k

]
and S = ±(ξk − ξ−1k )−1

[
−(ξ` + ξ−1` )ξ−1k −D

1 (ξ` + ξ−1` )ξk

]
be elements of PSL(2, pe) if εk = 1 and of PSL(2, p2e) otherwise. Then,

(a) the group Gk,` = 〈R,S〉 is isomorphic to PSL(2, pe), with R of order k and S of
order `;

(c) M = (Gk,`;R,S) is a regular map of type (k, `), which is non-orientable if and only
if −D is a square in GF(pe).

We note that if pe ≡ ±1 (mod 10), the group PSL(2, pe) contains (up to conjugacy)
two exceptional pairs R,S as above for (k, `) = (5, 5) with the property that 〈R,S〉 ∼= A5;
this case (omitted from [8, Theorem 2.2]) is addressed in [6]. However, this situation does
not apply in what follows.

Necessary and sufficient conditions for self-duality and self-Petrie-duality of the maps
M = (Gk,`;R,S) from Proposition 2.1 were established in [6]. As they are also quite
complex we present here only a simple sufficient condition appearing as Corollary 4.3 in
[6] which (in terms and notation of Proposition 2.1) can be re-stated as follows.

Proposition 2.2. Let k ≥ 5 be odd, and let p ≥ 5 be a prime not dividing k. Further, let
` = k and let ξ = ξk = ξ` be a primitive 2k-th root of unity in GF(pe) or in GF(p2e)
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for e = e(k, `) such that 3(ξ2 + ξ−2) + 2 = 0. Then, M = (Gk,`;R,S) is a (non-
orientable) self-dual and self-Petrie-dual regular map of valency k, with automorphism
group isomorphic to PSL(2, pe).

The condition 3(ξ2+ξ−2)+2 = 0 is equivalent to 3(ξ+ξ−1)2 = 4 and for its fulfilment
it is necessary that 3 be a square in GF(pe), p ≥ 5. For e = 1, this holds if and only if
p ≡ ±1 (mod 12), and it is always the case if e ≥ 2. But we can say more. Namely,
the element ζ = ξ2 in Proposition 2.2 is a primitive k-th root of unity in F = GF(pe)
or F = GF(p2e), and the condition 3(ζ + ζ−1) + 2 = 0 represents a quadratic equation
in the prime field Fp of F ; it also says that ζ + ζ−1 ∈ Fp. The last fact is equivalent to
(ζ + ζ−1)p = ζ + ζ−1, which reduces to (ζp−1 − 1)(ζp+1 − 1) = 0 in F . It follows that
either ζ ∈ Fp and p ≡ 1 (mod 2k), or ζ lies in a quadratic extension of Fp and p ≡ −1
(mod 2k), and in both cases we have e = 1 (recall that k is assumed to be odd). The bulk
of Proposition 2.2 may now be restated in a form more suitable for our future use.

Corollary 2.3. Let k ≥ 5 be odd. Assume that there exists a prime p ≥ 5 such that
p ≡ ±1 (mod 2k) and p ≡ ±1 (mod 12), and a primitive k-th root of unity ζ in a finite
field of order p or p2 with the property that 3(ζ + ζ−1) + 2 = 0. Then, there exists a
non-orientable self-dual and self-Petrie-dual regular map of valency k with automorphism
group PSL(2, p).

3 Algebraic preliminaries
For any k ≥ 3, let α be a primitive complex k-th root of unity; its minimal polynomial
is the k-th cyclotomic polynomial. Let h = α + α−1 and let K = Q(h) be the field
obtained by adjoining h to the rationals. It is known [13, Proposition 2.16] that the ring O
of algebraic integers of K is Z(h). We will focus on the algebraic integer g = 3h+ 2 ∈ O.
Observe that g 6= 0, for otherwise α would be a root of a quadratic polynomial over Z,
contrary to k ≥ 3.

Recall that the norm N(y) of an element y ∈ O is defined as the product
∏
t σt(y),

where σt denotes the injective homomorphism O → C into the field of complex numbers,
uniquely determined by σt(α) = αt, and t ranges over all integers between 1 and (k−1)/2
that are relatively prime to k. It is well known thatN(y) is an integer for any y ∈ O, which
is a consequence of the invariance of N(y) under the endomorphisms σt.

For the norm of our element g ∈ O we thus have N(g) =
∏
t(3σt(h) + 2), the product

being taken over all t between 1 and (k − 1)/2, coprime to k. The ϕ(k)/2 images σt(h)
appearing in this product are precisely the roots of the minimal polynomial Ψ(x) of degree
ϕ(k)/2 for h = α+ α−1, see e.g. [8]. So, if Ψ(x) =

∏
t(x− σt(h)) =

∑
j ajx

j where j
ranges from 0 to ϕ(k)/2, then the integral coefficients aj will also appear in the expansion
of the above product. More precisely, letting r = ϕ(k)/2 and u = −2/3, one has

N(g) =
∏
t

(3σt(h) + 2) = (−3)r
∏
t

(u− σt(h))

= (−3)r
r∑
j=0

aju
j =

r∑
j=0

(−3)r−j2jaj .
(3.1)

Let us consider what happens when we look at (3.1) modulo 9. Up to the last two terms
all the remaining ones are a multiple of 9 and so, noting that ar = 1, we have

N(g) ≡ 2r − 3 · 2r−1ar−1 (mod 9). (3.2)
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We will show that if k ≥ 5 and k is a prime, then the norm N(g) is not equal to ±1,
which means that g is then not a unit of the ring O. Indeed, let k ≥ 5 be a prime, so that
r = ϕ(k)/2 = (k − 1)/2. By [12] we then also have ar−1 = 1, and the congruence (3.2)
becomes

N(g) ≡ 2(k−1)/2 − 3 · 2(k−3)/2 ≡ −2(k−3)/2 (mod 9).

It is easy to check that 2j ≡ ±1 (mod 9) for a positive integer j if and only if j is a multiple
of 3. This means that if k is prime, the norm N(g) can be congruent to ±1 (mod 9) only
if (k− 3)/2 is a multiple of 3, giving a contradiction if k ≥ 5. Further, from (3.1) with the
help of ar = 1 and a0 = ±1 [12] it follows that if k ≥ 5 is a prime, then N(g) is divisible
neither by 2 nor by 3. We thus have:

Lemma 3.1. If k ≥ 5 is a prime, then N(g) 6= ±1; in particular, the non-zero element
g ∈ O is not a unit of the ring O. Moreover, for every prime factor p of N(g) one has
p ≥ 5. 2

Consider now the field K ′ = Q(α), an extension of K of degree two. Let O′ be the
ring of algebraic integers of K ′; it is well known [13, Theorem 2.6] that O′ = Z(α), and,
of course, [O′ : O] = 2. The (integral) norm N ′(z) of any z ∈ O′ is now the product∏
t σt(z) taken over all injective homomorphism σt : O′ → C given by σt(α) = αt for t

between 1 and k − 1 coprime to k, and again one has N ′(z) ∈ Z. The two norms, N on O
and N ′ on O′, are related by N ′(y) = (N(y))2 for each y ∈ O.

We will keep assuming that k ≥ 5 is an odd prime, and we let p ≥ 5 be an arbitrary
prime divisor of N(g), which exists by Lemma 3.1. We continue by considering the ideal
〈g, p〉 of O′ = Z(α) generated by the elements g and p.

Lemma 3.2. If k ≥ 5 is a prime and if p ≥ 5 is a prime divisor of N(g), the ideal 〈g, p〉 is
proper in the ring O′.

Proof. Suppose that 〈g, p〉 = O′, which means that 1 = Ag + Bp for some A,B ∈ O′.
Clearly A 6= 0, for otherwise 1 = N ′(B)N ′(p) = N ′(B)pk−1 and so N ′(B) would not
be an integer. Now, 1 = N ′(1) = N ′(Ag +Bp) =

∏
σ σ(Ag +Bp), where the product is

being taken over all the ϕ(k) = k − 1 embeddings σ : O′ → C. Expansion of this product
gives N ′(Ag + Bp) = N ′(A)N ′(g) + cp for some c ∈ O′. Thus, cp ∈ Z and so either
c ∈ Z or c = ±1/p. As p is a divisor ofN ′(g) = (N(g))2 andN ′(A) is a non-zero integer,
in either case it follows that N ′(Ag +Bp) 6= 1, a contradiction.

By Lemma 3.2, the ideal 〈g, p〉 is contained in some maximal ideal J = Jp of the
ring O′. Since O′ is a Dedekind domain, the ideal J has finite index in O′ and so O′/J
is a finite field F of characteristic p, that is, F ∼= GF(pm) for some m ≥ 1. Recalling
our assumption of primality of k we show that the (multiplicative) order of the element
α = α + J in the field F = O′/J is equal to k. Indeed, suppose this is not the case.
Then, because of primality of k, the order of α in F would have to be one, meaning that
α = 1 in F . But then, since the element g = g + J is equal to zero in F , we would have
0 = g = 3(α + α −1) + 2 = 8 in F , a contradiction as p is odd. Observe also that k 6= p
since no element in F has multiplicative order p.

This way we have constructed a finite field F of characteristic p containing a primitive
k-th root α of unity such that 3(α+α −1)+2 = 0. We now invoke the analysis immediately
preceding Corollary 2.3 in Section 2, which fully applies to our situation. As the result we
conclude that F is the prime field Fp if and only if α ∈ Fp for p ≡ 1 (mod 2k); otherwise
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F is a quadratic extension of Fp for p ≡ −1 (mod 2k). In both cases we have p ≡ ±1
(mod 12) because 3 has to be a square in Fp. Summing up, we have proved:

Proposition 3.3. Let k ≥ 5 be an odd prime and let α be a primitive complex k-th root
of unity. Further, let g = 3(α + α−1) + 2 and let N(g) be the norm of g in the ring
Z(α). Then, N(g) /∈ {0,±1}, every prime divisor p of N(g) satisfies p ≥ 5, and p ≡ ±1
(mod 2k) and p ≡ ±1 (mod 12), and for every such p there is a finite field F of order p
or p2 containing a primitive k-th root α of 1 such that g = 3(α+ α −1) + 2 = 0 in F . 2

4 The main result
To obtain a restricted version of our main result for prime valencies at least five we just
need to put the pieces together. Indeed, taking ζ = α in Proposition 3.3 and combining it
with Proposition 2.2 and Corollary 2.3 immediately gives:

Theorem 4.1. For every odd prime k ≥ 5 there exists a prime p ≡ ±1 (mod 2k) and
p ≡ ±1 (mod 12) such that PSL(2, p) is the automorphism group of a (non-orientable)
regular, self-dual and self-Petrie-dual map of valency k. 2

We know that there is no 3-valent regular map with trinity symmetry, but there is one of
valency 32 that can be constructed by the machinery of Section 2 as follows. The element
2 is a primitive 9-th root of unity mod 73, and so is ζ = 24 and its multiplicative inverse
ζ−1 = 25, with ζ and ζ−1 satisfying the condition 3(ζ + ζ−1) + 2 = 0 (mod 73). By
Proposition 2.2 the group PSL(2, 73) carries a self-dual and self-Petrie-dual regular map
of valency 9.

Based on Theorem 4.1 and the above remark we are now in position to prove a full
version of our main result. As alluded to in the Introduction (Section 1), this will be done
with the help of coverings, and more specifically using a non-orientable analogue of Theo-
rem 2.1 of [1]. We state it here in a restricted version sufficient for our purpose.

Theorem 4.2. If there is a non-orientable regular map of odd valency d ≥ 5 with trinity
symmetry and with automorphism group G, then for any odd integer n ≥ 3 there is a
non-orientable regular map of degree nd with trinity symmetry and automorphism group
isomorphic to (Zn)1+|G|/4 oG.

Sketch of a proof. As indicated, this result was proved in [1, Theorem 2.1] for orientable
maps (and, in this category, in a much more general setting that included also external
symmetries induced by hole operators). The parts of the proof in [1] that refer to regularity,
self-duality and self-Petrie-duality apply almost word-by-word to the non-orientable case
and we thus give only a sketch of the arguments here. We will assume familiarity with the
theory of lifts of maps by corner voltage assignments as explained e.g. in [1, 2, 3]; a corner
of a regular map M = (G;x, y, z) is any 2-subset of the form {g, gz} for g ∈ G.

Now let M = (G;x, y, z) be a regular map as in the statement. For odd n ≥ 3 let
H = Z|G|/2n be the space of all |G|/2-tuples with entries from Zn and let E be the set
of unit vectors (those with exactly one non-zero coordinate, equal to 1) in H . Define
a corner voltage assignment σ on flags of M – that is, on the elements of G – in the
group H by assigning the |G|/2 two-element subsets {ε,−ε} for ε ∈ E to the |G|/2
corners {g, gz} for g ∈ G in an arbitrary one-to-one fashion. By arguments in the proof
of Theorem 2.1 in [1] that do not depend on orientability, the lift of the map M of type
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(d, d) by the voltage assignment σ has n−1+|G|/4 components, each isomorphic to a regular
map Mσ = (Gσ;xσ, yσ, zσ) of type (nd, nd) for the group Gσ = (Zn)1+|G|/4 o G and
suitable involutory generators xσ, yσ, zσ of Gσ . Moreover, by the reasoning in the same
proof (again applying also to non-orientable maps), trinity symmetry of M implies trinity
symmetry of Mσ . Note that both M and Mσ are non-orientable as their Petrie walks (of
length d and nd) have odd length.

Collecting our findings we arrive at the main result of this paper as a consequence of
Theorem 4.1 and the remark following it, both in combination with Theorem 4.2.

Theorem 4.3. For every odd d ≥ 5 there exists a regular, self-dual and self-Petrie-dual
map of valency d. 2

A few remarks are in order. The reader may have observed that if the conclusion of
Proposition 3.3 in Section 3 was valid for all odd k ≥ 5 (and not just for prime k ≥ 5),
we would have a proof of our main result that would be independent on coverings and the
resulting regular maps with trinity symmetry would have automorphism group isomorphic
to PSL(2, p) for suitable primes depending on k. Research in this direction is currently
being undertaken by the first two authors of this paper. Here we include a table of the
first few values of N(g) for odd k between 5 and 29, with Φ(n) standing for the prime
factorisation of n; observe that all the primes p in the prime factorization of |N(g)| satisfy
p ≡ ±1 (mod 2k) and p ≡ ±1 (mod 12):

k N(g) Φ(|N(g)|)
5 −11 prime
7 −13 prime
9 −73 prime

11 +263 prime
13 −131 prime
15 −239 prime
17 −4079 prime
19 +15503 37× 419

21 +5209 prime
23 −4093 prime
25 +56149 prime
27 −16417 prime
29 +3161869 59× 53591

As noted earlier, existence of the regular maps for the first eight entries in this table was
discovered by M. Conder, who also found such maps of valency 7 and 17 for the Janko
simple groups J2 and J3.

We conclude by noting that a strategy for proving Theorem 4.3 was also outlined by
S. Wilson [14] by reducing the problem to a number-theoretic question related to Cheby-
shev polynomials over finite fields.
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