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Abstract

For a graph Γ, a positive integer s and a subgroup G ≤ Aut(Γ), we prove that G
is transitive on the set of s-arcs of Γ if and only if Γ has girth at least 2(s − 1) and G
is transitive on the set of (s − 1)-geodesics of its line graph. As applications, we first
classify 2-geodesic transitive graphs of valency 4 and girth 3, and determine which of them
are geodesic transitive. Secondly we prove that the only non-complete locally cyclic 2-
geodesic transitive graphs are the octahedron and the icosahedron.
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1 Introduction
A geodesic from a vertex u to a vertex v in a graph is a path of shortest length from u to
v. In the infinite setting geodesics play an important role, for example, in the classification
of infinite distance transitive graphs [11], and in studying locally finite graphs, see for
example, [17]. They are also used to model, in a finite network, the notion of visibility in
Euclidean space [22]. Here we study transitivity properties on geodesics in finite graphs.
Throughout this paper, we assume that all graphs are finite simple and undirected.

Let Γ be a connected graph with vertex set V (Γ), edge set E(Γ) and automorphism
group Aut(Γ). For a positive integer s, an s-arc of Γ is an (s+ 1)-tuple (v0, v1, . . . , vs) of
vertices such that vi, vi+1 are adjacent and vj−1 6= vj+1 for 0 ≤ i ≤ s− 1, 1 ≤ j ≤ s− 1;
it is an s-geodesic if in addition v0, vs are at distance s. For G ≤ Aut(Γ), Γ is said to
be (G, s)-arc transitive or (G, s)-geodesic transitive, if Γ contains an s-arc or s-geodesic,
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and G is transitive on the set of t-arcs or t-geodesics respectively for all t ≤ s. Moreover,
if G = Aut(Γ), then G is usually omitted in the previous notation. The study of (G, s)-arc
transitive graphs goes back to Tutte’s papers [18, 19] which showed that if Γ is a (G, s)-arc
transitive cubic graph then s ≤ 5. About twenty years later, relying on the classification of
finite simple groups, Weiss [21] proved that there are no (G, 8)-arc transitive graphs with
valency at least three. The family of s-arc transitive graphs has been studied extensively,
see [2, 9, 15, 16, 20]. Here we consider these properties for line graphs.

The line graph L(Γ) of a graph Γ is the graph whose vertices are the edges of Γ, with
two edges adjacent in L(Γ) if they have a vertex in common. Our first aim in the paper
is to investigate connections between the s-arc transitivity of a connected graph Γ and the
(s − 1)-geodesic transitivity of its line graph L(Γ) where s ≥ 2. A key ingredient in this
study is a collection of injective maps Ls, where Ls maps the s-arcs of Γ to certain s-tuples
of edges of Γ (vertices of L(Γ)) as defined in Definition 2.3. The major properties of Ls

are derived in Theorem 2.4 and the main consequence linking the symmetry of Γ and L(Γ)
is given in Theorem 1.1, which is proved in Subsection 2.2.

We denote by Γ(u) the set of vertices adjacent to the vertex u in Γ. If |Γ(u)| is indepen-
dent of u ∈ V (Γ), then Γ is said to be regular. The girth of Γ is the length of the shortest
cycle; the diameter diam(Γ) of Γ is the maximum distance between two vertices.

Theorem 1.1. Let Γ be a connected regular, non-complete graph of girth g and valency at
least 3. LetG ≤ Aut(Γ) and let s be a positive integer such that 2 ≤ s ≤ diam(L(Γ))+1.
Then G is transitive on the set of s-arcs of Γ if and only if s ≤ g/2 + 1 and G is transitive
on the set of (s− 1)-geodesics of L(Γ).

It follows from a deep theorem of Richard Weiss in [21] that if Γ is a connected s-arc
transitive graph of valency at least 3, then s ≤ 7. This observation yields the following
corollary, and its proof can be found in Subsection 2.2.

Corollary 1.2. Let Γ and g be as in Theorem 1.1 . Let s be a positive integer such that
2 ≤ s ≤ diam(L(Γ)) + 1. If L(Γ) is (s− 1)-geodesic transitive, then either 2 ≤ s ≤ 7 or
s > max{7, g/2 + 1}.

Note that in a graph, 1-arcs and 1-geodesics are the same, and are called arcs. For
graphs of girth at least 4, each 2-arc is a 2-geodesic so the sets of 2-arc transitive graphs
and 2-geodesic transitive graphs are the same. However, there are also 2-geodesic transitive
graphs of girth 3. For such a graph Γ, the subgraph [Γ(u)] induced on the set Γ(u) is vertex
transitive and contains edges. Moreover, if [Γ(u)] is complete, then so is Γ. A vertex
transitive, non-complete, non-empty graph must have at least 4 vertices and thus valency 4
is the first interesting case.

As an application of Theorem 1.1, we characterise connected non-complete 2-geodesic
transitive graphs of girth 3 and valency 4. In this case, [Γ(u)] ∼= C4 or 2K2 for each
u ∈ V (Γ). If Γ is s-geodesic transitive with s = diam(Γ), then Γ is called geodesic
transitive. A graph Γ is said to be distance transitive if its automorphism group is transitive
on the ordered pairs of vertices at any given distance.

Theorem 1.3. Let Γ be a connected non-complete graph of girth 3 and valency 4. Then Γ
is 2-geodesic transitive if and only if Γ is either L(K4) ∼= O or L(Σ) for a connected 3-arc
transitive cubic graph Σ.
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Moreover, Γ is geodesic transitive if and only if Γ = L(Σ) for a cubic distance tran-
sitive graph Σ, namely Σ = K4, K3,3, the Petersen graph, the Heawood graph or Tutte’s
8-cage.

Since there are infinitely many 3-arc transitive cubic graphs, there are therefore in-
finitely many 2-geodesic transitive graphs with girth 3 and valency 4. Theorem 1.3 is
proved in Section 3, and it provides a useful method for constructing 2-geodesic transitive
graphs of girth 3 and valency 4 which are not geodesic transitive, an example being the line
graph of a triple cover of Tutte’s 8-cage constructed in [14]. The line graphs mentioned in
the second part of Theorem 1.3 are precisely the distance transitive graphs of valency 4 and
girth 3 given, for example, in [4, Theorem 7.5.3 (i)].

A graph Γ is said to be locally cyclic if [Γ(u)] is a cycle for every vertex u. In particular,
the girth of a locally cyclic graph is 3. It was shown in [8, Theorem 1.1] that for 2-geodesic
transitive graphs Γ of girth 3, the subgraph [Γ(u)] is either a connected graph of diameter
2, or isomorphic to the disjoint union mKr of m copies of a complete graph Kr with
m ≥ 2, r ≥ 2. Thus one consequence of Theorem 1.3 is a classification of connected,
locally cyclic, 2-geodesic transitive graphs in Corollary 1.4: for [Γ(u)] ∼= Cn has diameter
2 only for valencies n = 4 or 5, and the valency 5, girth 3, 2-geodesic transitive graphs
were classified in [7]. Its proof can be found at the end of Section 3. We note that locally
cyclic graphs are important for studying embeddings of graphs in surfaces, see for example
[10, 12, 13].

Corollary 1.4. Let Γ be a connected, non-complete, locally cyclic graph. Then Γ is 2-
geodesic transitive if and only if Γ is the octahedron or the icosahedron.

2 Line graphs
We begin by citing a well-known result about line graphs.

Lemma 2.1. [1, p.1455] Let Γ be a connected graph. If Γ has at least 5 vertices, then
Aut(Γ) ∼= Aut(L(Γ)).

The subdivision graph S(Γ) of a graph Γ is the graph with vertex set V (Γ) ∪ E(Γ)
and edge set {{u, e}|u ∈ V (Γ), e ∈ E(Γ), u ∈ e}. The link between the diameters of
Γ and S(Γ) was determined in [6, Remark 3.1 (b)]: diam(S(Γ)) = 2 diam(Γ) + δ for
some δ ∈ {0, 1, 2}. Here, based on this result, we will show the connection between the
diameters of Γ and L(Γ) in the following lemma.

Lemma 2.2. Let Γ be a connected graph with |V (Γ)| ≥ 2. Then it holds diam(L(Γ)) =
diam(Γ) + x for some x ∈ {−1, 0, 1}. Moreover, all three values occur, for example, if
Γ = K3+x, then diam(L(Γ)) = diam(Γ) + x = 1 + x for each x.

Proof. Let d = diam(Γ), dl = diam(L(Γ)) and ds = diam(S(Γ)). Let (x0, x2, . . . , x2dl
)

be a dl-geodesic of L(Γ). Then by definition of L(Γ), each edge intersection x2i ∩ x2i+2

is a vertex v2i+1 of Γ and (x0, v1, x2, . . . , v2dl−1, x2dl
) is a 2dl-path in S(Γ). Suppose that

(x0, v1, x2, . . . , v2dl−1, x2dl
) is not a 2dl-geodesic of S(Γ). Then there is an r-geodesic

from x0 to x2dl
, say (y0, y1, y2, . . . , yr) with y0 = x0 and yr = x2dl

, such that r < 2dl.
Since both x0, x2dl

are in V (L(Γ)), it follows that r is even, and hence dL(Γ)(x0, x2dl
) =

r
2 < dl which contradicts the fact that (x0, x2, . . . , x2dl

) is a dl-geodesic of L(Γ). Thus
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(x0, v1, x2, . . . , v2dl−1, x2dl
) is a 2dl-geodesic in S(Γ). It follows from [6, Remark 3.1

(b)] that dl ≤ ds/2 ≤ d+ 1.
Now take a ds-geodesic (x0, x1, . . . , xds

) in S(Γ). If x0 ∈ E(Γ), then (x0, x2, x4, . . . ,
x2bds/2c) is a bds/2c-geodesic in L(Γ), so dl ≥ bds/2c ≥ d. Similarly we see that dl ≥ d
if xds

∈ E(Γ). Finally if both x0, xds
∈ V (Γ), then ds is even and dΓ(x0, xds

) = ds/2.
Moreover (x1, x3, . . . , xds−1) is a (ds−2

2 )-geodesic in L(Γ). By [6, Remark 3.1 (b)], ds =

2d, so dl ≥ ds−2
2 = d− 1.

2.1 The map Ls

Let Γ be a finite connected graph. For each integer s ≥ 2, we define a map from the set of
s-arcs of Γ to the set of s-tuples of V (L(Γ)).

Definition 2.3. Let a = (v0, v1, . . . , vs) be an s-arc of Γ where s ≥ 2, and for 0 ≤ i < s,
let ei := {vi, vi+1} ∈ E(Γ). Define Ls(a) := (e0, e1, . . . , es−1).

The following theorem gives some important properties of Ls.

Theorem 2.4. Let s ≥ 2, let Γ be a connected graph containing at least one s-arc, and let
Ls be as in Definition 2.3. Then the following statements hold.

(1) Ls is an injective map from the set of s-arcs of Γ to the set of (s− 1)-arcs of L(Γ).
Further, Ls is a bijection if and only if either s = 2, or s ≥ 3 and Γ ∼= Cm or Pn for some
m ≥ 3, n ≥ s.

(2) Ls maps s-geodesics of Γ to (s− 1)-geodesics of L(Γ).
(3) If s ≤ diam(L(Γ)) + 1, then the image Im(Ls) contains the set Gs−1 of all (s−1)-

geodesics of L(Γ). Moreover, Im(Ls) = Gs−1 if and only if girth(Γ) ≥ 2s− 2.
(4) Ls is Aut(Γ)-equivariant, that is, Ls(a)g = Ls(ag) for all g ∈ Aut(Γ) and all

s-arcs a of Γ.

Proof. (1) Let a = (v0, v1, . . . , vs) be an s-arc of Γ and let Ls(a) := (e0, e1, . . . , es−1)
with the ei as in Definition 2.3. Then each of the ei lies inE(Γ) = V (L(Γ)) and ek 6= ek+1

for 0 ≤ k ≤ s−2. Further, since vj 6= vj+1, vj+2 for 1 ≤ j ≤ s−2, we have ej−1 6= ej+1.
Thus Ls(a) is an (s− 1)-arc of L(Γ).

Let b = (u0, u1, . . . , us) and c = (w0, w1, . . . , ws) be two s-arcs of Γ. Then Ls(b) =
(f0, f1, . . . , fs−1) and Ls(c) = (g0, g1, . . . , gs−1) are two (s − 1)-arcs of L(Γ), where
fi = {ui, ui+1} and gi = {wi, wi+1} for 0 ≤ i < s. Suppose that Ls(b) = Ls(c). Then
fi = gi for each i ≥ 0, and hence fi ∩ fi+1 = gi ∩ gi+1, that is, ui+1 = wi+1 for each
0 ≤ i ≤ s− 2. So also u0 = w0 and us = ws, and hence b = c. Thus Ls is injective.

Now we prove the second part. Each arc of L(Γ) is of the form h = (e, f) where
e = {u0, u1} and f = {u1, u2} are distinct edges of Γ. Thus u0 6= u2, so k = (u0, u1, u2)
is a 2-arc of Γ and L2(k) = h. It follows that L2 is onto and hence is a bijection. If s ≥ 3
and Γ ∼= Cm or Pn for some m ≥ 3, n ≥ s, then L(Γ) ∼= Cm or Pn−1 respectively, and
hence for every (s−1)-arc x of L(Γ), we can find an s-arc y of Γ such that Ls(y) = x, that
is, Ls is onto. Thus Ls is a bijection. Conversely, suppose that Ls is onto, and that s ≥ 3.
Assume that some vertex u of Γ has valency greater than 2 and let e1 = {u, v1}, e2 =
{u, v2}, e3 = {u, v3} be distinct edges. Then x = (e1, e2, e3) is a 2-arc in L(Γ) and there
is no 3-arc y of Γ such that Ls(y) = x. In general, for s = 3a + b ≥ 4 with a ≥ 1 and
b ∈ {0, 1, 2}, we concatenate a copies of x to form an (s − 1)-arc of L(Γ): namely (xa)
if b = 0; (xa, e1) if b = 1; (xa, e1, e2) if b = 2. This (s− 1)-arc does not lie in the image
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of Ls. Thus each vertex of Γ has valency at most 2. If all vertices have valency 2 then
Γ ∼= Cm for some m ≥ 3, since Γ is connected. So suppose that some vertex u of Γ has
valency 1. Since Γ is connected and each other vertex has valency at most 2, it follows that
Γ ∼= Pn for some n ≥ s.

(2) Let a = (v0, . . . , vs) be an s-geodesic of Γ and let Ls(a) = (e0, . . . , es−1) as
above. If s = 2, then Ls(a) is a 1-arc, and hence a 1-geodesic of L(Γ). Suppose that
s ≥ 3 and Ls(a) is not an (s − 1)-geodesic. Then dL(Γ)(e0, es−1) = r < s − 1 and
there exists an r-geodesic r = (f0, f1, . . . , fr−1, fr) with f0 = e0 and fr = es−1. Since
s ≥ 3 and a is an s-geodesic, it follows that {v0, v1} ∩ {vs−1, vs} = ∅, that is, e0 and
es−1 are not adjacent in L(Γ). Thus r ≥ 2. Since r is an r-geodesic, it follows that the
consecutive edges fi−1, fi, fi+1 do not share a common vertex for any 1 ≤ i ≤ r − 1,
otherwise (f0, . . . , fi−1, fi+1, . . . , fr) would be a shorter path than r, which is impossible.
Hence we have fh = {uh, uh+1} for 0 ≤ h ≤ r. Then (u1, u2, . . . , ur) is an (r − 1)-path
in Γ, {u1} = e0 ∩ f1 ⊆ {v0, v1} and {ur} = fr−1 ∩ es−1 ⊆ {vs−1, vs}. It follows that
dΓ(v0, vs) ≤ dΓ(u1, ur) + 2 ≤ r + 1 < s, contradicting the fact that a is an s-geodesic.
Therefore, Ls(a) is an (s− 1)-geodesic of L(Γ).

(3) Let 2 ≤ s ≤ diam(L(Γ)) + 1 and Gs−1 be the set of all (s− 1)-geodesics of L(Γ).
If s = 2, then by part (1), each 1-geodesic of L(Γ) lies in the image Im(L2), and hence
G1 ⊆ Im(L2). Now suppose inductively that 2 ≤ s ≤ diam(L(Γ)) and Gs−1 ⊆ Im(Ls).
Let e = (e0, e1, e2, . . . , es) be an s-geodesic of L(Γ). Then e′ = (e0, e1, e2, . . . , es−1)
is an (s − 1)-geodesic of L(Γ). Thus there exists an s-arc a of Γ such that Ls(a) = e′,
say a = (v0, v1, . . . , vs). Since es is adjacent to es−1 = {vs−1, vs} but not to es−2 =
{vs−2, vs−1} in L(Γ), it follows that es = {vs, x} where x /∈ {vs−2, vs−1}. Hence b =
(v0, v1, . . . , vs, x) is an (s + 1)-arc of Γ. Further, Ls+1(b) = e. Thus Im(Ls+1) contains
all s-geodesics of L(Γ), that is, Gs ⊆ Im(Ls+1). Hence the first part of (3) is proved by
induction.

Now we prove the second part. Suppose first that for every s-arc a of Γ, Ls(a) is an
(s − 1)-geodesic of L(Γ). Let g := girth(Γ). If s = 2, as g ≥ 3, then g ≥ 2s − 2. Now
let s ≥ 3. Assume that g ≤ 2s − 3. Then Γ has a g-cycle b = (u0, u1, u2, . . . , ug−1, ug)
with ug = u0. It follows that Lg(b) forms a g-cycle of L(Γ). Thus the sequence b′ =
(u0, u1, . . . , us) (where we take subscripts modulo g if necessary) is an s-arc of Γ and
Ls(b′) = (e0, e1, . . . , es−1) involves only the vertices of Ls(b). This implies that
dL(Γ)(e0, es−1) ≤ g

2 ≤
2s−3

2 < s− 1, that is, Ls(b′) is not an (s− 1)-geodesic, which is
a contradiction. Thus, g ≥ 2s− 2.

Conversely, suppose that g ≥ 2s − 2. Let a := (v0, v1, v2, . . . , vs) be an s-arc of
Γ. Then Ls(a) = (e0, e1, e2, . . . , es−1) is an (s − 1)-arc of L(Γ) by part (1). Let a′ :=
(v0, v1, v2, . . . , vs−1). Since g ≥ 2s − 2, it follows that a′ is an (s − 1)-geodesic, and
hence by (2), Ls−1(a′) = (e0, e1, e2, . . . , es−2) is an (s − 2)-geodesic of L(Γ). Thus
z = dL(Γ)(e0, es−1) satisfies s−3 ≤ z ≤ s−1. There is a z-geodesic from e0 to es−1, say
f = (e0, f1, f2, . . . , fz−1, es−1). Further, by the first part of (3), there is a (z + 1)-arc b =
(u0, u1, . . . , uz, uz+1) of Γ such that Lz+1(b) = f and we have e0 = {u0, u1} = {v0, v1}
and es−1 = {uz, uz+1} = {vs−1, vs}. There are 4 cases, in columns 2 and 3 of Table 1: in
each case there is a given nondegenerate closed walk x of length l(x) as in Table 1. Thus
l(x) ≥ g ≥ 2s− 2 and in each case l(x) ≤ s+ z − 1. It follows that z ≥ s− 1, and hence
z = s− 1. Thus Ls(a) = (e0, e1, e2, . . . , es−1) is an (s− 1)-geodesic of L(Γ).

(4) This property follows from the definition of Ls.
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Table 1: Four cases of x
Case (u0, u1) (uz, uz+1) x l(x)

1 (v0, v1) (vs−1, vs) (vs−1, vs−2, . . . , v2, v1, u2, . . . , s+ z − 3
uz−1, vs−1)

2 (v0, v1) (vs, vs−1) (vs, vs−1, . . . , v2, v1, u2, . . . , s+ z − 2
uz−1, vs)

3 (v1, v0) (vs−1, vs) (vs−1, vs−2, . . . , v2, v1, u1, u2, . . . , s+ z − 2
uz−1, vs−1)

4 (v1, v0) (vs, vs−1) (vs, vs−1, . . . , v2, v1, u1, u2, . . . , s+ z − 1
uz−1, vs)

Remark 2.5. (i) The map Ls is usually not surjective on the set of (s − 1)-arcs of L(Γ).
In the proof of Theorem 2.4 (1), we constructed an (s − 1)-arc of L(Γ) not in Im(Ls) for
any Γ with at least one vertex of valency at least 3.

(ii) Theorem 2.4 (1) and (3) imply that, for each (s − 1)-geodesic e of L(Γ), there is
a unique s-arc a of Γ such that Ls(a) = e. The s-arc a is not always an s-geodesic. For
example, if Γ has girth 3 and (v0, v1, v2, v0) is a 3-cycle, then a = (v0, v1, v2) is not a
2-geodesic but L2(a) is the 1-geodesic (e0, e1) where e0 = {v0, v1} and e1 = {v1, v2}.

2.2 Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Let Γ be a connected, regular, non-complete graph of girth g
and valency at least 3. Then in particular |V (Γ)| ≥ 5, and by Lemma 2.1, Aut(Γ) ∼=
Aut(L(Γ)). Let G ≤ Aut(Γ) and let 2 ≤ s ≤ diam(L(Γ)) + 1.

Suppose first thatG is transitive on the set of s-arcs of Γ. Then by [3, Proposition 17.2],
s ≤ g/2 + 1. Since s − 1 ≤ diam(L(Γ)), it follows that L(Γ) has (s − 1)-geodesics and
by Theorem 2.4 (3), Im(Ls) is the set of (s − 1)-geodesics of L(Γ). On the other hand,
by Theorem 2.4 (4), G acts transitively on Im(Ls), and hence G is transitive on the set of
(s− 1)-geodesics of L(Γ).

Conversely, suppose that s ≤ g/2 + 1 and G is transitive on the (s − 1)-geodesics of
L(Γ). Then by the last assertion of Theorem 2.4 (3), Im(Ls) is the set of (s−1)-geodesics,
and since Ls is injective, it follows from Theorem 2.4 (1) and (4) that G is transitive on the
set of s-arcs of Γ. �

Proof of Corollary 1.2. Let Γ, g, s be as in Theorem 1.1. Assume that Aut(Γ) is transitive
on the (s − 1)-geodesics of L(Γ). If s > 7, then by [21], Aut(Γ) is not transitive on the
s-arcs of Γ and so by Theorem 1.1, s > g

2 + 1. �

3 2-geodesic transitive graphs that are locally cyclic or locally 2K2

In this section, we prove Theorem 1.3. The proof uses the notion of a clique graph. A
maximum clique of a graph Γ is a clique (complete subgraph) which is not contained in a
larger clique. The clique graph C(Γ) of Γ is the graph with vertices the maximum cliques
of Γ, and two maximum cliques are adjacent if and only if they have at least one common
vertex in Γ.
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Proof of Theorem 1.3. Let Γ be a connected non-complete graph of girth 3 and valency 4,
and let A = Aut(Γ) and v ∈ V (Γ). Suppose first that Γ is 2-geodesic transitive. Then Γ
is arc transitive, and so Av is transitive on Γ(v). Since Γ is non-complete of girth 3, [Γ(v)]
is neither complete nor edgeless, and so, as discussed before the statement of Theorem
1.3, [Γ(v)] = C4 or 2K2. If [Γ(v)] ∼= C4, then it is easy to see that Γ ∼= O (or see [4,
p.5] or [5]). So we may assume that [Γ(v)] ∼= 2K2. It follows from [8, Theorem 1.4]
that Γ is isomorphic to the clique graph C(Σ) of a connected graph Σ such that, for each
u ∈ V (Σ), the induced subgraph [Σ(u)] ∼= 3K1, that is to say, Σ is a cubic graph of girth
at least 4 and C(Σ) is in this case the line graph L(Σ). Moreover, [8, Theorem 1.4] gives
that Σ ∼= C(Γ). A cubic graph with girth at least 4 has |V (Σ)| ≥ 5, so by Lemma 2.1,
A ∼= Aut(Σ). Now we apply Theorem 1.1 to the graph Σ of girth g ≥ 4. Since Γ = L(Σ)
is 2-geodesic transitive and 3 ≤ g/2 + 1, it follows from Theorem 1.1 that Σ is 3-arc
transitive. Therefore, Γ is the line graph of a 3-arc transitive cubic graph.

Conversely, if Γ ∼= O, then it is 2-geodesic transitive, and hence is geodesic transitive
as diam(O) = 2. If Γ = L(Σ) where Σ is a 3-arc transitive cubic graph, then by Theorem
1.1 applied to Σ with s = 3, L(Σ) is 2-geodesic transitive. This proves the first assertion
of Theorem 1.3.

To prove the second assertion, suppose first that Γ is geodesic transitive. Then Γ is
distance transitive, and so by Theorems 7.5.2 and 7.5.3 (i) of [4], Γ is one of the following
graphs: O = L(K4), H(2, 3) = L(K3,3), or the line graph of the Petersen graph, the
Heawood graph or Tutte’s 8-cage. We complete the proof by showing that all these graphs
are geodesic transitive. As noted above, O is geodesic transitive; by [7, Proposition 3.2],
H(2, 3) is geodesic transitive. It remains to consider the last three graphs.

Let Σ be the Petersen graph and Γ = L(Σ). Then Σ is 3-arc transitive, and it follows
from Theorem 1.1 that Γ is 2-geodesic transitive. By [4, Theorem 7.5.3 (i)], diam(Γ) = 3
and |Γ(w)∩Γ3(u)| = 1 for each 2-geodesic (u, v, w) of Γ. Thus Γ is 3-geodesic transitive,
and hence is geodesic transitive.

Let Σ1 be the Heawood graph and Σ2 be Tutte’s 8-cage. Then Σ1 is 4-arc transitive and
Σ2 is 5-arc transitive, and hence by Theorem 1.1, L(Σ1) is 3-geodesic transitive and L(Σ2)
is 4-geodesic transitive. By [4, Theorem 7.5.3 (i)], diam(L(Σ1)) = 3 and diam(L(Σ2)) =
4, and hence both L(Σ1) and L(Σ2) are geodesic transitive. �

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. Let Γ be a connected non-complete locally cyclic graph. If Γ is
2-geodesic transitive, then it is regular of valency n say. As discussed in the introduction,
n = 4 or 5. If n = 4, then we proved in Theorem 1.3, that Γ is isomorphic to the octahedron
and that the octahedron is indeed 2-geodesic transitive. If n = 5, then by [7, Theorem 1.2],
Γ is isomorphic to the icosahedron, and this graph is 2-geodesic transitive. �
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[13] A. Malnič and R. Nedela, K-Minimal triangulations of surfaces, Acta Math. Univ. Comenianae
LXIV 1 (1995), 57–76.

[14] M. J. Morton, Classification of 4 and 5-arc transitive cubic graphs of small girth, J. Austral.
Math. Soc. A 50 (1991), 138–149.

[15] C. E. Praeger, An O’Nan Scott theorem for finite quasiprimitive permutation groups and an
application to 2-arc transitive graphs, J. London Math. Soc. 47 (1993), 227–239.

[16] C. E. Praeger, On a reduction theorem for finite, bipartite, 2-arc transitive graphs, Australas. J.
Combin. 7 (1993) 21–36.

[17] C. Thomassen and W. Woess, Vertex-transitive graphs and accessibility, J. Combin. Theory Ser.
B 58 (1993), 248–268.

[18] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459–474.

[19] W. T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621–624.

[20] R. Weiss, s-transitive graphs, Algebraic methods in graph theory, Vol. I, II, (Szeged, 1978),
Colloq. Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam-New York, (1981), 827–847.

[21] R. Weiss, The non-existence of 8-transitive graphs, Combinatorica 1 (1981), 309–311.

[22] A. Y. Wu and A. Rosenfeld, Geodesic visibility in graphs, J. Information Sciences 108 (1998),
5–12.

http://arxiv.org/abs/1110.2235

	Introduction
	Line graphs
	The map Ls
	Proofs of Theorem 1.1 and Corollary 1.2

	2-geodesic transitive graphs that are locally cyclic or locally 2K2

