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Abstract. This paper deals with a combined computer-aided numerical – analytical approach to calculation of the 

grounding. The electromagnetic theory on which the presented mathematical model is based is described. The 

model which is based on boundary element method, Aitken's δ2 algorithm and grounding potential non-

uniformity correction factors is explained in detail. A special attention is paid to the selection of an appropriate 

Green's function in the calculation of parameters of a large and complex grounding mesh for a homogeneous and 

a two-layer soil. Finally, the model is used to calculate the grounding mesh parameters of a real power substation 

with complex geometry.  
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Združeni numerično-analitični pristop za modeliranje 

ozemljitvenih mrež 

 

V prispevku obravnavamo združen numerično-analitičen 

pristop za izračun parametrov ozemljitvenih mrež z uporabo 

računalnika. Najprej je predstavljena elektromagnetna teorija, 

na kateri temelji predlagani matematični model. V 

nadaljevanju je podrobneje opisan matematični model za 

izračun parametrov ozemljitvenih mrež, ki temelji na 

Aitkenovem δ2  algoritmu z metodo končnih elementov in 

upoštevanju korekcijskih faktorjev ozemljitvenega potenciala 

zaradi nehomogenosti ozemljitve. Posebna pozornost je 

namenjena izboru ustrezne Greenove funkcije pri izračunu 

parametrov velikih in kompleksnih ozemljitvenih mrež pri 

homogeni in dvoslojni ozemljitvi. Predlagani matematični 

model smo uporabili za izračun parametrov ozemljitvenih 

mrež obstoječe transformatorske postaje s kompleksno 

geometrijo. 

1 INTRODUCTION 

Thanking into account safety, the most important 

element of power substations are the grounding systems. 

The primary role of a grounding system is to provide 

safety of personnel and integrity of equipment during 

faults [1]. This important function of the grounding 

systems is performed by conducting the fault current 

into the surrounding soil in which they are placed. In 

order to properly perform their function, the grounding 

systems should have a low resistance, thus limiting the 

potential values at the ground surface during the highest 

values of the fault currents and to keep a large enough 

value of fault current for the protection devices in power 

substations to react. To satisfy this, the grounding 

systems are designed in complex geometries consisting 

of a large number of horizontal, vertical and inclined 

uninsulated galvanically coupled conductors [2,3]. For 

large power substations, complex grounding meshes are 

mostly used as a grounding system [4].  

 To model grounding meshes, many authors have 

developed different analytical and numerical 

approaches. Nowadays analytical expressions are poorly 

represented in the literature because they are not able to 

give accurate results for most of the real cases. 

Inaccuracies of analytical models are usually caused by 

stratification of the soil in which a grounding system is 

placed as well as geometric factors. Therefore, 

numerical techniques are used to calculate the potential 

distribution around the grounding system. Numerical 

techniques that can be used for modeling the grounding 

system are the finite difference method (FDM), finite 

element method (FEM) [5-9], charge simulation method 

(CSM) [10-12], boundary element method (BEM) [13-

18] and hybrid combinations of these methods, like the 

FEM/BEM method [19]. The first two methods, FDM 

and FEM, are rarely used to calculate the current field 

generated by a grounding mesh because they require 

discretization of the entire domain (grounding mesh 

conductor and surrounding soil). Also, large differences 

in the size between subdomains that need to be 

discretized result in a large number of segments. All this 

leads to large matrix systems that need to be solved.  
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 The next two mentioned methods, CSM and BEM, 

unlike FDM and FEM, do not require discretization of 

the entire domain, but only the boundary surfaces. Also, 

these two methods do not need the infinite boundaries to 

be discretized. By applying an appropriate Green's 

function, the need for discretization of the boundary 

surface soil-air (earth surface) and boundaries between 

two soil layers is avoided, which ultimately leads to the 

need for discretization of only boundary area of the 

grounding system. The result is a significantly smaller 

matrix system compared to FDM and FEM. But because 

CSM and BEM take into account the mutual impact 

between segments, these matrices are completely filled, 

while in FDM and FEM the matrices are rarely filled. 

The major difference between the CSM and BEM 

method is the way of solving the integral equation that 

describes the distribution of the current field in the soil. 

In the CSM method, this integral is solved analytically, 

setting the point current source in the center of the 

grounding segment. This approach is very easy to 

implement, but its use is limited by the requirement for 

the discretization of the grounding system into a large 

number of elements [20]. This problem can be 

overcome by applying the BEM method in which the 

solution of the field integral equations is evaluated 

numerically. 

 The last method, FEM/BEM, is based on 

hybridization of the FEM and BEM methods. This 

method is organized so that the grounding system and 

the soil near the grounding system is solved with the 

FEM method, while the problem of the infinite 

boundaries and layered soil is solved with the BEM 

method. The problem of this method is the need to 

determinate the dimension of the FEM domain which 

can significantly affect the precision of calculation of 

the relevant parameter grounding [20].  

 In this paper, an approach based on the BEM method 

and non-uniformity potential correction factor is used to 

calculate the grounding mesh parameters. For the 

solution of the infinite series that appear in the case of 

modeling the grounding mesh in a multi-layer soil, the 

Aitken's δ2 algorithm is used. 

  

2 GROUNDING MESH CURRENT FIELD 

The Maxwell’s electromagnetic theory can be used to 

model the phenomenon of the fault current dissipation 

in the soil around a grounding mesh [13]. Calculation of 

the current and potential distribution of the grounding 

mesh comes down to the solution of the Laplace′s 

partial differential equation with the use of appropriate 

boundary conditions [21]. The Laplace′s partial 

differential equation can be obtained from Maxwell's 

equation:  

 

                                    0Ecurl                                (1) 

 

where E is the vector of the electric field. 

In stationary-current fields, the first Kirchhoff's law 

must be satisfied [22], which is in a differential form 

given as: 

 

                                     0σdiv                                (2) 

 

where σ is the vector of current density. 

The analytical relationship between electric potential 

φ at some point and electric field vector E is given as: 

 

                             gradE                       (3) 

In the case of a stationary-current field, calculation of 

distribution of the current density and potential is based 

on the assumption that the Ohm's law can be applied on 

the flow of the current in the soil. The potential and 

current are distributed so that the total Ohmic losses are 

reduced and distribution adjusted to the boundary 

conditions. From the above it follows that the vector 

density in a linear environment must meet the 

generalized version of the Ohm′s law: 

 

                           grad Eσ                     (4) 

 

where γ is the soil conductivity. 

Substituting equation (4) in relation to the first 

Kirchhoff's law in a differential form, the following is 

obtained: 

 

                         )(  graddivdiv σ                    (5) 

 

Assuming that the soil conductivity is a scalar value and 

by applying a standard vector identity: 

 

                               )(graddiv                          (6) 

 

By applying a standard vector identity on the equation 

(5), the Laplace′s partial differential equation is 

obtained, which has the form: 

 

                                       0                                   (7) 

 

The potential at any point of the soil can be obtained by 

solving the Laplace′s partial differential equation (7). In 

order to obtain a unique solution, it is necessary to use 

appropriate boundary conditions in addition to the 

Laplace′s partial differential equation. 

 

3 MATHEMATICAL MODEL 

As mentioned above, distribution of the grounding mesh 

potential is described by the Laplace′s partial 

differential equation. To solve the analyzed problem, it 

is necessary to introduce the Green's function as 

follows:  
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where ||p – q|| is the Euclidian′s distance between source 

point p and observation point q.  

By applying the Green′s symmetrical identity on both 

the Laplace′s partial differential equation (7) and 

Green′s function (8), the potential of any point of the 

domain can be calculated by using the following 

integral equation: 
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where ∂φ/∂n is a derivative of the potential in the 

direction of the outward normal vector, and ∂G/∂n is a 

derivative of the Green’s function in the direction of the 

outward normal vector, Γ is the surface of the grounding 

mesh conductors. 

 By applying an adequate Green′s function, the whole 

analysed system is characterized with only the 

Dirichlet′s boundary conditions. Therefore, one of the 

two planar integrals can be eliminated. Integral equation 

(9) now takes the following form [23]: 
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The following mathematical shift can be used: 
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where σ(p) is the unknown current density of source 

point p.  

Now, integral equation (10) can be written in the 

following form: 
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The above equation is the Fredholmʹs integral equation 

of the first kind. The Fredholmʹs integral equation and 

adequate boundary conditions are the basis for solving 

the stationary-current field of the grounding mesh. To 

solve this equation, the indirect boundary element 

method was applied. 

 

3.1 Boundary element method 

To solve integral field equation (12), the grounding 

mesh was discretized on boundary elements. As the 

length of the grounding mesh conductor is significantly 

larger than the cross-section, i.e. the ratio of the cross-

section/length is very small, so that the grounding 

conductors can be discretized with the 1D boundary 

elements. Also, after discretization of the grounding 

mesh conductors, transformation from the global to the 

local coordinate system is performed [23].  

 In this paper, geometry and current density on one 

1D boundary element is approximated with the second-

order polynomial as follows: 
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The used 1D boundary elements for discretization of the 

grounding mesh in the global and local coordinate 

system are shown in Fig. 1. Shape functions ψi(ξ) of the 

second-order polynomial approximation are shown in 

Fig. 2. 
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Figure 1. 1D boundary element used for discretization of the 

grounding mesh. 

 

 
Figure 2. Shape function for the second-order polynomial 

approximation. 
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After geometry discretization and coordinate system 

transformation, the collocation method at the point is 

applied on the integral field equation. After applying the 

collocation method at the point, integral equation (12) 

can be written as: 
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where σei is the current density on the i-th collocation 

point of the e-th boundary element and detJ(ξ) is the 

determinate of the Jacobean matrix. 

 By applying the Gauss- Legendre’s quadrature rule, 

the above equation can be written as an algebraic 

equation: 
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where ng is the number of the Gauss-Legendre’s 

integration points and wm is the m-th weighting 

coefficient. 

 Finally, the above equation can be written in the 

following matrix form [16]: 

 

                                        R                            (16) 

 

where [R] is the square matrix whose dimensions are ncp 

x ncp, while {σ} and {φ} are vectors of unknown current 

densities and potentials with dimensions ncp x 1, 

respectively. Therefore, the number of the unknown 

variables is 2∙ncp, where ncp is the number of collocation 

points on whole segments of the grounding mesh and is 

equal to 3∙ne. Assuming that all conductors of the 

grounding mesh are on the same potential the number of 

the unknown variables is significantly reduced. With 

this assumption, the number of the unknown variables is 

reduced to ncp + 1. Therefore, it is necessary to add an 

additional equation to provide a unique solution. As the 

resistance of the grounding conductors is significantly 

lower than the resistance of the surrounding soil, it is 

permissible to assume that the entire fault current that 

enters the grounding mesh dissipates into the 

surrounding soil. This can mathematically be written in 

the following form: 
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where IF is the fault current that enters into the 

grounding mesh, Ie
 is part of the fault current on the e-th 

boundary element and le
i is the calculated length in the 

i-th collocation point of the e-th boundary element. 

Then, matrix equation (16) can be written in the 

following form [24]: 
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where φG is the electric potential of the grounding mesh. 

Two most important parameters to determine when 

designing any grounding mesh are the grounding mesh 

resistance and potential distribution on the earth surface 

[25]. When the current densities of each collocation 

point and potential of grounding mesh are known, the 

grounding resistance of the analyzed grounding mesh 

can be easily determined using the following relation: 
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When the current densities of all boundary elements are 

known, the potential distribution on the earth surface 

can be calculated. As the potential on the earth surface 

varies from one point to another matrix equation (18) 

needs to be modified. The matrix equation to calculate 

the potential distribution on the earth surface can be 

written in the following form: 
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where [Rʹ] is the matrix whose elements are calculated 

with the Green′s function that is suitable to calculate the 

potential on the earth surface. The dimensions of this 

matrix are np x ncp where np is number of the points on 

the earth surface in which the potential needs to be 

determined. Vector {φp} is the vector of unknown 

potentials on the earth surface. 

 From the calculated values of the potential on the 

earth surface, the touch voltage and step voltage can be 

determined according to the definitions of the touch and 

step voltage given in IEEE Std. 80-2000 [26], by using 

the following equations [27]: 
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where Ut is the touch voltage, Us is the step voltage and 

φm is the maximum value of the potential of the metal 

parts of power substations during a fault. 

 

3.1.1 Multi-layer soil model  

To model a grounding mesh, an adequate soil model 

should be assumed. The Green′s function given by 

relation (8) is valid only for the case when the 

grounding mesh is placed in an infinite medium. 

Though not possible in practice, the Green′s function 

can be used for a deeply buried grounding mesh in a 

homogeneous soil. As the grounding mesh is very 

seldom buried to a depth such that the soil can be 

computed as an infinite medium and the fact that the 

soil is almost always layered, the Green′s function given 

by relation (8) is rarely used. Therefore, to model a 

grounding mesh buried low in a homogeneous soil, the 

following Green′s function should be used: 
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where ||p′1 – q|| is the Euclidian′s distance between the 

image of source point p′1 and observation point q. In 

notation p′1, index 1 represents the order of the image. 

In practical situations, a homogenous soil is very rarely 

encountered. It is often composed of multiple layers of 

different electrical conductivities. In such situations, it 

is convenient to apply a multi-layer soil model with 

horizontal change of the soil conductivity. In the case of 

a two-layer soil, the Green′s functions have the shape of 

an infinite sum. The grounding mesh can be positioned 

in any layer of a horizontally layered soil, so it is 

necessary to consider two possible scenarios. If source 

point p and observation point q are both in the upper 

layer of a two-layer soil, then the Green′s function takes 

the form [28-30]: 
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For the case when both a source point p and observation 

point q are placed in a lower layer of a two-layer soil, 

the Green′s function takes the form [28,29]: 
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where n is number of summands to consider in the 

evaluation of the series of the Green′s function until 

convergence is achieved [30], and i is the order of the 

source image. In relations (24, 25), coefficient β is the 

reflection factor given by: 
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where γ1 is the soil conductivity of the upper layer and 

γ2 is the soil conductivity of the lower layer.  

 From equation (14), it can be noted that to calculate 

the elements of both expanded matrices [R] in equation 

(18) and [R′] in equation (20), the soil conductivity is 

needed. In a two-layer soil model, to calculate the 

elements of these matrices, the electrical soil 

conductivity of the layer in which the source point 

(grounding mesh) is placed is used. 

3.2 Grounding mesh potential non-uniformity 

correction factor  

It can be noted from the Green′s functions for the two-

layer soil model that infinite series appear. These 

infinite series can affect the speed of calculation of the 

grounding mesh parameters. For the case when the 

grounding mesh is placed in the upper layer of a two-

layer soil, the infinite series can be avoided by using 

non–uniformity correction factors given in [31, 32]. In 

this case, the grounding mesh potential is calculated by 

using only the Green′s function given in relation (23) 

and soil conductivity of the upper layer. On the 

calculated value of the grounding mesh potential, the 

following relation is applied: 

 

                      )(),( 11/221  GGC M                 (27) 

 

where φGC (γ1, γ2) is a corrected value of the potential of 

the grounding mesh placed in a two-layer soil and M1/2 

is equal to: 
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and x is equal to: 
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where A is the surface of the grounding mesh and h is 

the thickness of the upper layer of the soil. In some 

situations, a two-layer soil model can be sufficient and a 

three-layer soil model must be used. In case of a three-

layer soil model, more complex Green′s functions must 

be adopted [33]. If the grounding mesh is placed in the 

first layer or in the second layer of a three-layer soil, 

these complex procedures can be avoided in a similar 

way as previously by using the non-uniformity 

correction factors for a three-layer soil model. For the 

case when the grounding mesh is placed in the first 

layer, the previously given procedure can be used, while 

if grounding mesh is placed in the second layer, the 

Green′s functions (25) must be used to calculate the 

grounding mesh potentials. Then, for both cases, the 

corrected value of the potential of the grounding mesh 

can be calculated as follows: 

 

                ),(),,( 212/3321  GGC M           (30) 

 

where: 
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and in this case, x is equal to: 
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where h1 is the thickness of the first layer of the soil and 

h2 is the thickness of the second layer of a three-layer 

soil. 

 After calculating the corrected value of the grounding 

mesh potential, the corrected value of the current 

density for all collocation points must be calculated by 

using relation (18). From these corrected values of the 

current densities both the grounding resistance and the 

potential on the earth surface can be calculated by using 

relations (19) and (20) and finally the touch and step 

voltage from relations (21) and (22).    

 A flow chart of the grounding mesh parameters 

calculation procedure is shown in Fig. 3. 

 

 
Definition of the input parameters (fault 

curent, soil model, soil conductivity, 

geometry)

Geometry discretization

Analysis of segment position and choice 

of Green′s function(s)

Calculation of collocation point current 

densities

Grounding system 

potential correction?

Correction of the grounding system 

potential

Calculation of the grounding resistance, 

touch and step voltages

Yes

No

Calculation of grounding system 

potential

Figure 3. Flow chart of the calculation procedure. 

 

3.3 Aitken's δ2 Algorithm  

It can be noted form the Green′s functions for the two-

layer soil model that infinite series appear, thus 

significantly affecting the speed of calculation of the 

grounding mesh parameters. To accelerate the 

convergence of the infinite series, different acceleration 

algorithms are proposed in the literature such as Euler – 

Maclaurin′s summation formula [30], Wynn′s ε method 

[34] and Aitken′s δ2 algorithm [15, 34]. In this paper, 

the Aitkenʹs δ2 algorithm is used for convergence 

acceleration of the infinite series that appear in the 

Green′s functions for a two-layer soil model. The 

iterative procedure of the Aitkenʹs δ2 algorithm used in 

this paper can be written in the following form: 
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where k is the number of iterations, n is the number of 

element in the series and f is the element of the series. 

For example, if calculations are carried out with the 

Green's function (25), the n-th element of the series has 

the form: 
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The procedure iterates until a sufficient accuracy is 

achieved. This procedure was done individually for 

every interaction for the case when the Green′s function 

with infinite series was used. 

 

4 MODEL APPLICATION 

In order to show a practical application of the presented 

mathematical model, calculations of the potential 

distribution on the earth surface, touch and step voltage 

were performed on a real power substation grounding 

mesh. Calculations were performed on the grounding 

mesh of the Sidi Rached (60/30 kV) power substation. 

Geometry of the analyzed grounding mesh with the 

dimension (red lines) and the profile lines (blue lines) 

for the plot of step and touch voltage is given in Fig. 4. 

Other relevant input parameters required for the 

calculations are given in Table 1. 

  
Figure 4. Geometry of the analyzed grounding mesh. 

Table 1. Input parameters for calculation. 

Parameter  Value 

Expected fault current:            18.9 (kA) 

First layer soil conductivity:                                   0.014 (S/m) 

Second layer soil conductivity:                               1.58 (S/m) 

Third layer soil conductivity:                                  1.67 (S/m) 

Thickness of the soil first layer:                      0.36 (m) 

Thickness of the soil second layer:                      9.46 (m) 

The depth of the grounding mesh:                                             0.99 (m) 

Duration of the fault current:                                         0,35 (s) 

Conductivity of the crush rock on the surface:              3.3 10-4 (S/m) 

Thickness of the crush rock on the surface:                   0,12 (m) 

Human body mass:                                                  70 (kg) 

Frequency:                                                           50 (Hz) 

 

Results of calculating of the potential distribution on the 

earth surface are given in Fig. 5.  

 
Figure 5. Geometry of the analyzed grounding mesh. 

 

As seen from the calculated potential distribution on the 

earth surface, the highest values of the potential are at 

areas around the center of the grounding mesh, the 

maximum value of the potential is below 800 (V). The 

highest potential gradients are at the edges and outside 

the grounding mesh. This is an indication that in these 

areas, are high values of the touch and step voltage. In 

order to see whether these values are above the 

allowable limits, distribution of touch and step voltage 

should be calculated.  

 Distribution of the touch and step voltage is shown in 

Figs. 6 and 7, respectively.  

 

 
Figure 6. Touch voltage distribution on the earth surface. 

 

 
Figure 7. Step voltage distribution on the earth surface. 

 

In Figs. 8 and 9, a comparison is given of the touch and 

step voltage values for the profile lines outlined in the 

Fig. 5 and permissible values for the touch and step 

voltage are given.    
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Figure 8. Distribution of the touch voltage along the profile 

lines. 

 
Figure 9. Distribution of the step voltage along the profile 

lines. 

 

From the results given in the Figs. 8 and 9, it is clearly 

visible that the values of the touch and step voltage are 

significantly below the limit values. Therefore, it can be 

concluded that the given geometry of the grounding 

mesh satisfies the safety criteria in the analyzed power 

substation.  

 

5 CONCLUSION 

To calculate the grounding mesh parameters, because of 

their important role for the safety of the staff and 

equipment of power substations, very accurate and 

precise methods should be used. In this paper, 

mathematical model is presented based on a 

combination of the boundary element method and non-

uniformity correction factor to be used in calculation of 

the parameters of a grounding mesh placed in a 

homogeneous or stratified soil (two and three-layered 

soil). The model can be used for most cases that can be 

encountered in practice.  

 The model is organized so as to use that best 

characteristics of each of the two methods. The 

boundary element method is used to calculate the 

grounding mesh in a homogeneous soil and the non-

uniformity correction factor is then used to correct the 

grounding mesh potential and current density of all 

colocation points on the grounding mesh. Because of 

the lack of an adequate non-uniformity correction factor 

for the case when the grounding mesh is placed in a 

second layer of a two or three-layer soil, the boundary 

element method is used to calculate the parameters of a 

grounding mesh in a two-layer soil and the grounding 

mesh potential can be corrected if necessary (i.e. in case 

of a three-layer soil). In this case, in the mathematical 

model, infinite series exists. To minimize the time 

needed to calculate the grounding mesh parameters, the 

Aitken's δ2 algorithm is used.  
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