© Strojni{ki vestnik 48(2002)4,210-217 © Journal of Mechanical Engineering 48(2002)4,210-217 ISSN 0039-2480 ISSN 0039-2480 UDK 62-225.864:004.42:519.87 UDC 62-225.864:004.42:519.87 Izvirni znanstveni ~lanek (1.01) Original scientific paper (1.01) Ra~unsko re{evanje inverznega problema oblikovanja nadzvo~ne {obe A Numerical Solution to the Inverse Problem of Supersonic-Nozzle Design Vinko Martinis - Branimir Matija{evi} - @eljko Tukovi} Računsko oblikovanje nadzvočne sobe je občutljivo glede stabilnosti v področju nadzvočnega toka. Računski model, predstavljen v tem prispevku, se izogiba tej nestabilnosti z uvajanjem analitično določene porazdelitve tlaka na osi osnosimetrične nadzvočne sobe. Parametri toka v inverzno oblikovani sobi so preverjeni s programom FLUENT in prikazujejo enakomerno porazdelitev po prečnih prerezih vzdolž sobe. © 2002 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: šobe nadzvočne, oblikovanje šob, modeli računski, problemi inverzni) The numerical design of a nozzle is sensitive to stability in the region of supersonic flow. In the numerical algorithm presented in this paper the instability is avoided by the introduction of an analytically set pressure distribution on the axis of the axisymmetrical supersonic nozzle. The flow parameters of the inverse designed nozzle are checked by the application code FLUENT and they show a regular distribution on cross-sections along the nozzle. © 2002 Journal of Mechanical Engineering. All rights reserved. (Keywords: supersonic nozzle, nozzle design, numerical solutions, inverse problems) 0 UVOD Računski postopek oblikovanja nadzvočne šobe je še posebej občutljiv glede stabilnosti v področju nadzvočnega toka ([1] do [5]). Čeprav je uporaba računskih metod pogosta v praksi, le redko najdemo ustrezni algoritem v obliki uporabniškega programa za rešitev inverznega problema prenosa toplote in snovi. Problem je inverzen, ker je področje neznano [6]. V rešitvi, prikazani v tem prispevku, je v primeru osnosimetrične šobe določena izvirna analitična porazdelitev tlaka na osi simetrije. Izračun oblike šobe in parametrov toka je izveden po koračnem postopku po [7]. Začetni pogoj je izpeljan posebej. Parametri toka, v tako oblikovani šobi, so preverjeni z uporabo programa FLUENT. Dobljeni rezultati se dobro ujemajo. 1 OPIS MATEMATIČNEGA MODELA Poleg kontinuitetnih, gibalnih in energijskih enačb, ki popisujejo tok v šobi, uvedemo funkcijo toka «P z izrazom: 0 INTRODUCTION The numerical algorithm of supersonic-nozzle design is particularly sensitive to stability in the region of supersonic flow ([1] to [5]). Although the application of numerical methods is very common in practice it is very rarely possible to find an appropriate application code for the solution of the inverse heat- and mass-transfer problems. The problem is inverse because the domain is unknown [6]. In the solution presented in this paper, for the case of an axis-symmetrical nozzle, the original analytic pressure distribution on the axes of symmetry is defined. The numerical calculation of the nozzle form and the flow parameters were performed with the marching algorithm ac-cording to [7]. The initial condition was derived separately. The flow parameters in the nozzle designed in this way were checked for closed domain with the application code FLUENT and the results obtained correspond very well. 1 DESCRIPTION OF THE MATHEMATICAL MODEL In addition to equations of continuity, motion and energy, which describe the flow in the nozzle, the stream function >F is introduced with the expression: V

F= 0 lahko izberemo poljubno. Priporočeno je, da vzamemo b < 4. Pri manjšem b je sprememba tlaka v šobi počasnejša. V prejšnjih enačbah indeksi in in out označujejo vhodni oz. izhodni prerez šobe. The slope of the curve for x = 0 over coefficient b > 0 can be chosen arbitrarily. It is recommended that b < 4 is taken. For smaller b the pressure change in the nozzle is slower. In the previous equations the subscripts in and out denote the input, i.e. the output section of the nozzle. VBgfFMK stran 212 Martinis V. - Matija{evi} B. - Tukovi} @.: Ra~unsko re{evanje - A Numerical Solution Določenih pogojev p(x,0) na osi simetrije ne moremo neposredno upoštevati kot začetne pogoje. Vrednost neznank vzdolž tokovnice Y =Y1 izračunamo s povprečenjem njihovega razvoja v red oblike: The set conditions p(x,0) on the axis of sym-metry p(x,0) cannot be used directly as initial condi-tions. The values of the unknowns on the stream line Y = Y1 are calculated by means of their development in series of the form: NN f(x,Y) = Yjfn(x)Yn +YXfn'(x)Yn (17), kjer je f (x, Y1) = r, p, v, r in n na Y = Y 1, ki je blizu osi simetrije. Posamezno odvisnost spremenljivke za osnosimetrično šobo dobimo: a) Iz enačbe (2) izhaja: where f (x,Y1) = r, p, v, r and n on Y = Y1, which is close to the axis of symmetry. The single dependence of the variable for the axisymmetrical nozzle is obtained as follows. a) From equation (2): — dY rur— = 1 8Y (18). Za spremenljivke r, u, r vzamemo red f (r), f(u), f( r): For variables r, u, r the order f (r), f(u), f( r) is taken: 1 N /N (19). n=0 2Y n=0 n=0 Po množenju se izenačijo koeficienti z enakimi After multiplication, the coefficients with eksponenti spremenljivke Y na levi strani s svojimi equal exponents of variable Y on the left-hand side dvojniki na desni strani. Dobimo r in r . are equalised with their counterparts on the right- hand side, and r and r are obtained. b) Iz enačbe (1) dobimo koeficienta p in p na b) The coefficients pn and p are obtained in a simi- podoben način. c) Iz enačbe (3) izhaja: od koder določimo koeficienta v in v . d) Iz enačbe (4) določimo rn in rn . n’ e) Nazadnje iz enačbe (5) izhaja: lar way from equation (1). c) From equation (3) follows: dr dx (20), du ru------- rv dY dY gdY from where the coefficients v and v are determined. d) From equation (4) rn and rn are determined. e) Finally, from equation (5) follows: dv 1 dp Na osi simetrije je Y = 0, v = 0, v0 = 0. Iz enačbe (4) r0 = p01/k in iz enačbe (5) izhaja: On the axis of symmetry Y = 0, v = 0, v0 = 0. From equation (4) r0 = p01/k and from equation (5) follows: du dv 1 dp ru------- r v-----=------— dY dY gdY Posebej dobimo: rn(x) = 0 , pn’(x) = 0, vn(x) = 0, rn(x) = 0 in u n’ = 0. Glede na to so: Specially obtained are: rn(x) = 0, pn’(x) = 0, vn(x) = 0, rn(x) = 0 and un’ = 0. Accordingly: N Posamezni koeficienti so: r(x) = Y1Žr:(x)Y1n+r0 n=0 N p(x)=Yupn(x)Y1n n=0 N v(x) = Y1Yjv'n(x)Y1n N r(x) = Z rn (x)Y1n n=0 N u(x) = YJun(x)Y1n The particular coefficients are: (21). gnn^nwiRaieKE 02-4 stran 213 |^BSSIrlMlGC Martinis V. - Matija{evi} B. - Tukovi} @.: Ra~unsko re{evanje - A Numerical Solution 2 1/ \u0r0 J , 1 / u1 r1 4 \u0 r0 r0 dx 1 1dv[- 1 r/ x dr' p1 = -k~i— r0 dx p2 =-k~;— - p1—, 2 r, ox 2 r, Ox , or' or/ v1 = u1 0 + u0 1 dx dx (22). k +1 2 k-1k p0 2 ----------p1 -— kr0u0 2 u0 y r0 = Pk r1 = p1 r0 kp0 Izračun koeficientov začnemo z znanim p(x,0) iz enačbe (14). Koeficienti za dvoizmerno šobo so drugačni, dobimo pa jih na podoben način. Prehod na realne parametre za določene robne pogoje na vhodu in izhodu je preprost. Na opisani način dobljene krivulje Y = konst. (Y1=0,001 kot začetni pogoj in z iterativnim postopkom Y2= 0,005, Y3= 0,01 in Y4= 0,015) so prikazane sliki 1. V koordinatnem sistemu x, r za Y = 0,015 smo izračunali parametre u, v, r in r po enačbah (6) in (7) za tlak p, določen po enačbi (14). Prikazani so na sliki 2. The calculation of the coefficients starts with the known p(x,0) from equation (14). The coefficients for a two-dimensional nozzle are different, and they are obtained in a similar way. The transition to the real parameters for the set boundary conditions on the input and output is simple. In the described manner the obtained curves Y = const. (Y1= 0.001 as initial condition and by the iterative procedure Y2= 0.005, Y3= 0.01 and Y4= 0.015) are presented in Figure 1. In the coordinate system x, r for Y= 0.015 the parameters u, v, r and r were calculated by equations (6) and (7) for the set pressure p according to equation (14) and they are presented in Figure 2. Sl. 1. Polmeri sobe za Y = konst, dobljeni z opisano metodo Fig. 1. The nozzle radii for Y = const. obtained by the described method VBgfFMK stran 214 Martinis V. - Matija{evi} B. - Tukovi} @.: Ra~unsko re{evanje - A Numerical Solution Sl. 2. Normirani parametri u, v, r in r za Y = 0,015 Fig. 2. The normalised parameters u, v, r and r for Y= 0,015 = 0.1 M = 0.2 M = 1.0 M = 2.0 M =2.1 777 W\\\ ta" -1.5 -0.5 0.5 1.5 Sl.3. Profil šobe in krivulje enakih hitrosti (Machovih števil) Fig. 3. The profile of the nozzle and the curves of constant velocities (i.e. of Mach numbers) Na sliki 3 so za določene mejne pogoje in začetni pogoj prikazani profil šobe in krivulje enakih hitrosti (oz. Machovih števil). S slike 2 vidimo, da so vse spremenljivke nespremenljive za -2