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Abstract

Let α(G) denote the cardinality of a maximum independent set, while µ(G) be the
size of a maximum matching in the graph G = (V,E). If α(G) + µ(G) = |V |, then
G is a König-Egerváry graph. If d1 ≤ d2 ≤ · · · ≤ dn is the degree sequence of G,
then the annihilation number a (G) of G is the largest integer k such that

∑k
i=1 di ≤

|E|. A set A ⊆ V satisfying
∑

v∈A deg(v) ≤ |E| is an annihilation set; if, in addition,
deg (x) +

∑
v∈A deg(v) > |E|, for every vertex x ∈ V (G) − A, then A is a maximal

annihilation set in G.
In 2011, Larson and Pepper conjectured that the following assertions are equivalent:

(i) α (G) = a (G);

(ii) G is a König-Egerváry graph and every maximum independent set is a maximal
annihilating set.

It turns out that the implication “(i) =⇒ (ii)” is correct.
In this paper, we show that the opposite direction is not valid, by providing a series of

generic counterexamples.
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1 Introduction
Throughout this paper G = (V,E) is a finite, undirected, loopless graph without multiple
edges, with vertex set V = V (G) of cardinality |V (G)| = n (G), and edge set E = E(G)
of size |E (G)| = m (G). If X ⊂ V (G), then G[X] is the subgraph of G induced by
X . By G − v we mean the subgraph G[V (G) − {v}], for v ∈ V (G). Kn,Km,n, Pn, Cn

denote respectively, the complete graph on n ≥ 1 vertices, the complete bipartite graph on
m,n ≥ 1 vertices, the path on n ≥ 1 vertices, and the cycle on n ≥ 3 vertices, respectively.

The disjoint union of the graphs G1, G2 is the graph G1 ∪G2 having the disjoint union
of V (G1), V (G2) as a vertex set, and the disjoint union of E(G1), E(G2) as an edge set.
In particular, nG denotes the disjoint union of n > 1 copies of the graph G.

A set S ⊆ V (G) is independent if no two vertices from S are adjacent, and by Ind(G)
we mean the family of all the independent sets of G. An independent set of maximum size
is a maximum independent set of G, and α(G) = max{|S| : S ∈ Ind(G)}. Let Ω(G)
denote the family of all maximum independent sets.

A matching in a graphG is a set of edgesM ⊆ E(G) such that no two edges ofM share
a common vertex. A matching of maximum cardinality µ(G) is a maximum matching, and
a perfect matching is one saturating all vertices of G.

It is known that bn (G) /2c + 1 ≤ α(G) + µ(G) ≤ n (G) ≤ α(G) + 2µ(G) hold for
every graph G [6]. If α(G) + µ(G) = n (G), then G is called a König-Egerváry graph
[11, 36]. For instance, each bipartite graph is a König-Egerváry graph [13, 20]. Various
properties of König-Egerváry graphs can be found in [3, 4, 5, 16, 17, 18, 21, 22, 23, 25, 26,
27, 28, 29, 30, 31, 35].

Let d1 ≤ d2 ≤ · · · ≤ dn be the degree sequence of a graph G. Pepper [33, 34] defined
the annihilation number of G, denoted a (G), to be the largest integer k such that the sum
of the first k terms of the degree sequence is at most half the sum of the degrees in the
sequence. In other words, a (G) is precisely the largest integer k such that

∑k
i=1 di ≤

m (G).
Clearly, a (G) = n (G) if and only if m (G) = 0. If m (G) = 1, then a (G) =

n (G) − 1. The converse is not true; e.g., the graph K1,p has a (K1,p) = m (K1,p) =
p = n (K1,p)− 1, while p may be greater than one.

For A ⊆ V (G), let deg(A) =
∑

v∈A deg(v). Every A ⊆ V (G) satisfying deg(A) ≤
m (G) is an annihilating set. Clearly, every independent set is annihilating. An annihilating
set A is maximal if deg(A ∪ {x}) > m (G), for every vertex x ∈ V (G) − A, and it is
maximum if |A| = a (G) [33]. For example, if G = Kp,q = (A,B,E) and p > q, then A
is a maximum annihilating set, while B is a maximal annihilating set.

Theorem 1.1 ([33]). For every graph G,

a (G) ≥ max

{⌊
n (G)

2

⌋
, α (G)

}
.

For instance,

a (C7) = α (C7) =

⌊
n (C7)

2

⌋
, a

(
P5

)
= 3 > α

(
P5

)
=

⌊
n
(
P5

)
2

⌋
,

a (K2,3) = α (K2,3) >

⌊
n (K2,3)

2

⌋
, while a

(
C6

)
=

⌊
n
(
C6

)
2

⌋
> α

(
C6

)
.
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The relation between the annihilation number and various parameters of a graph were
studied in [1, 2, 7, 8, 9, 10, 12, 14, 15, 19, 32, 33].

Theorem 1.2 ([24]). For a graph G with a (G) ≥ n(G)
2 , α (G) = a (G) if and only if G is

a König-Egerváry graph and every S ∈ Ω(G) is a maximum annihilating set.

All the maximum independent sets of the cycle C5 are maximum annihilating. More-
over, a (C5) = α (C5). Nevertheless, C5 is not a König-Egerváry graph. In other words,
the condition a (G) ≥ n(G)

2 in Theorem 1.2 is necessary.
Actually, Larson and Pepper [24] proved a stronger result that reads as follows.

Theorem 1.3. Let G be a graph with a (G) ≥ n(G)
2 . Then the following are equivalent:

(i) α (G) = a (G);

(ii) G is a König-Egerváry graph and every S ∈ Ω(G) is a maximum annihilating set;

(iii) G is a König-Egerváry graph and some S ∈ Ω(G) is a maximum annihilating set.

Along these lines, it was conjectured that the impacts of maximum and maximal anni-
hilating sets are the same.

Conjecture 1.4 ([24]). LetG be a graph with a (G) ≥ n(G)
2 . Then the following assertions

are equivalent:

(i) α (G) = a (G);

(ii) G is a König-Egerváry graph and every S ∈ Ω(G) is a maximal annihilating set.

One can easily infer that every maximum annihilating set is also a maximal annihilating
set, since the sum of the a+ 1 smallest entries from the degree sequence D = (d1 ≤ d2 ≤
· · · ≤ dn) is greater than m (G), then the same is true for every a + 1 entries of D. Thus
the “(i) =⇒ (ii)” part of Conjecture 1.4 is valid, in accordance with Theorem 1.2.w w
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Figure 1: Non-König-Egerváry graphs with a (H1) = 3 and a (H2) = 2.

Consider the graphs from Figure 1. The graph H1 has a (H1) > α (H1) and none of
its maximum independent sets is a maximal or a maximum annihilating set. The graph H2

has a (H2) = α (H2) and each of its maximum independent sets is both a maximal and a
maximum annihilating set. Notice that a (H1) > n(H1)

2 , while a (H2) < n(H2)
2 .

Consider the graphs from Figure 2. The graph G1 has α (G1) = n(G1)
2 < a (G1) and

each of its maximum independent sets is neither a maximal nor a maximum annihilating
set. The graph G2 has a (G2) = α (G2) = n(G2)

2 , every of its maximum independent
sets is both a maximal and a maximum annihilating set, and it has a maximal independent
set that is a maximal non-maximum annihilating set, namely {u, v}. The graph G3 has
a (G3) = α (G3) > n(G3)

2 and every of its maximum independent sets is both a maximal
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Figure 2: König-Egerváry graphs with a (G1) = a (G3) = 4, a (G2) = 3, a (G4) = 6.

and a maximum annihilating set. The graph G4 has a (G4) > α (G4) > n(G4)
2 and none of

its maximum independent sets is a maximal or a maximum annihilating set.
In this paper we invalidate the “(ii) =⇒ (i)” part of Conjecture 1.4, by providing

some generic counterexamples. Let us notice that, if G is a König-Egerváry graph, and
H = qK1 ∪ G, then H inherits this property. Moreover, the relationship between the
independence numbers and annihilation numbers of G and H remains the same, because
α (H) = α (G) + q and a (H) = a (G) + q. Therefore, it is enough to construct only
connected counterexamples. Finally, we prove that Conjecture 1.4 is true for graphs with
independence number equal to three.

2 An infinite family of counterexamples
In what follows, we present a series of counterexamples to the opposite direction of Con-
jecture 1.4. All these graphs have unique maximum independent sets.

Lemma 2.1. The graph Hk, k ≥ 0, from Figure 3 is a connected König-Egerváry graph
that has a unique maximum independent set, namely, Sk = {xk, . . . , x1, a4, a3, a2, a1},
where H0 = Hk − {xj , yj : j = 1, 2, . . . , k} and S0 = {a4, a3, a2, a1}.
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a1a2a3a4
k + 3k + 2k + 3k + 4

x1xk−1xk
k + 4k + 4k + 4

b1b2b3b4
k + 6 k + 5 k + 2 k + 2

y1yk−1
k + 6k + 6

yk
k + 5

Hk

Figure 3: Hk is a König-Egerváry graph with α (Hk) = k + 4, k ≥ 0.

Proof. Notice that the graph Hk from Figure 3 can be defined as follows:

V (Hk) = V (Kk+4,k+4) = {xi, yi : i = 1, . . . , k} ∪ {a1, a2, a3, a4} ∪ {b1, b2, b3, b4} ,
E (Hk) = E (Kk+4,k+4) ∪ {ykyk−1, . . . , y2y1, y1b4, b4b3} − {a3b1, a2b2, a2b1, a1b2} .

Clearly, Sk = {xk, . . . , x1, a4, a3, a2, a1} is an independent set and

{xjyj : j = 1, 2, ..., k} ∪ {a4b4, a3b2, a3b3, a1b1}

is a perfect matching of Hk. Hence, we get

|Vk| = 2µ (Hk) = |Sk|+ µ (Hk) ≤ α (Hk) + µ (Hk) ≤ |Vk| ,
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which implies α (Hk) +µ (Hk) = |Vk|, i.e., Hk is a König-Egerváry graph, and α (Hk) =
k + 4 = |Sk|.

Let Lk = Hk [Xk ∪ Yk] , k ≥ 1, and L0 = Hk [A ∪B], where

Xk = {xj : j = 1, . . . , k} , Yk = {yj : j = 1, . . . , k} ,
A = {a1, a2, a3, a4} and B = {b1, b2, b3, b4} .

Since Lk has, on the one hand, Kk,k as a subgraph, and, on the other hand,

ykyk−1, yk−1yk−2, . . . , y2y1 ∈ E (Lk) ,

it follows that Xk is the unique maximum independent set of Lk.
The graph L0 has A as a unique independent set, because

C8 + b3b4 = (A ∪B, {a1b4, b4a2, a2b3, b3a3, a3b2, b2a4, a4b1, b1a1, b3b4})

has A as a unique maximum independent set, and L0 can be obtained from C8 + b3b4 by
adding a number of edges.

Since Hk can be obtained from the union of Lk and L0 by adding some edges, and
Sk = Xk ∪ A is independent in Hk, it follows that Hk has Sk as a unique maximum
independent set.

Corollary 2.2. The graph Gk, k ≥ 0, from Figure 4 is a connected König-Egerváry graph
that has a unique independent set, namely, Sk = {xi : i = 1, . . . , k}∪{ai : i = 1, . . . , 5},
where G0 = Gk − {xj , yj : j = 1, 2, . . . , k} and S0 = {ai : i = 1, . . . , 5}.
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Figure 4: Gk is a König-Egerváry graph with α (Gk) = k + 5, k ≥ 0.

Proof. Notice that the graph Gk from Figure 4 can be defined as follows:

V (Gk) = V (Kk+5,k+4)

= {xi, yi : i = 1, . . . , k} ∪ {a1, a2, a3, a4, a5} ∪ {b1, b2, b3, b4} ,
E (Gk) = E (Kk+4,k+4) ∪ {ykyk−1, . . . , y2y1, y1b4, b4b3}

− {a3b2, a3b1, a2b2, a1b2, a1b1} .

According to Lemma 2.1, Gk − a1 is a König-Egerváry graph with a unique maximum
independent set, namely, Wk = {xi : i = 1, . . . , k} ∪ {ai : i = 1, . . . , 4}. Since Sk =
Wk ∪ {a1} is an independent set and µ (Gk) = µ (Gk − a1) = k+ 4, it follows that Gk is
a König-Egerváry graph and Sk is its unique maximum independent set.
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Theorem 2.3. For every k ≥ 0, there exists a connected non-bipartite König-Egerváry
graph Hk = (Vk, Ek), of order 2k + 8, satisfying the following:

• a (Hk) > n(Hk)
2 = α (Hk),

• each S ∈ Ω (Hk) is a maximal annihilating set.

Proof. Let Hk = (Vk, Ek), k ≥ 0, be the graph from Figure 3 (in the bottom and the top
lines are written the degrees of its vertices), where H0 = Hk − {x1, . . . , xk, y1, . . . , yk}.
Clearly, every Hk is non-bipartite.

By Lemma 2.1, each Hk, k ≥ 0, is a König-Egerváry graph with a unique maximum
independent set, namely, Sk = {xk, . . . , x1, a4, a3, a2, a1}, where S0 = {a4, a3, a2, a1}.

Case 1. k = 0. Since m (H0) = 13 and the degree sequence (2, 2, 2, 3, 3, 4, 5, 5), we infer
that a (H0) = 5 > 4 = α (H0). In addition, deg (S0) = m (H0)− 1, i.e., each maximum
independent set of H0 is a maximal non-maximum annihilating set.

Case 2. k ≥ 1. Clearly, Hk has m (Gk) = k2 + 9k + 13 and its degree sequence is

k + 2, k + 2, k + 2, k + 3, k + 3, k + 4, . . . , k + 4︸ ︷︷ ︸
k+1

, k + 5, k + 5, k + 6, . . . , k + 6︸ ︷︷ ︸
k

.

Since the sum of the first k + 6 degrees of the sequence satisfies

k2 + 10k + 16 > m (Hk) ,

we infer that the annihilation number a (Hk) ≤ k + 6. The sum 12 + 4 (x− 5) + kx
of the first x ≥ 5 degrees of the sequence satisfies 12 + 4 (x− 5) + kx ≤ m (Hk) for
x ≤ k2+9k+21

k+4 . This implies

a (Hk) =

⌊
k2 + 9k + 21

k + 4

⌋
= k + 5 > k + 4 = α (Hk) ,

i.e., Hk has no maximum annihilating set belonging to Ω (Hk). Since its unique maximum
independent set Sk = {a1, a2, a3, a4, x1, x2, . . . , xk} has

deg (Sk) = k2 + 8k + 12 < m (Hk) ,

while

deg (Sk) + min{deg (v) : v ∈ Vk − S} =
(
k2 + 8k + 12

)
+ (k + 2) > m (Hk) ,

we infer that Sk is a maximal annihilating set.

Theorem 2.4. For every k ≥ 0, there exists a connected non-bipartite König-Egerváry
graph Gk = (Vk, Ek), of order 2k + 9, satisfying the following:

• a (Gk) >
⌈
n(Gk)

2

⌉
= α (Gk),

• each S ∈ Ω (Gk) is a maximal annihilating set.
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Proof. Let Gk = (Vk, Ek), k ≥ 1, be the graph from Figure 4 (in the bottom and the top
lines are written the degrees of its vertices), and G0 = Gk − {x1, . . . , xk, y1, . . . , yk}.

Corollary 2.2 claims that Gk, k ≥ 0, is a König-Egerváry graph with a unique maxi-
mum independent set, namely Sk = {x1, . . . , xk, a1, . . . , a5} , k ≥ 1, and S0 = {a1, . . . ,
a5}.

Case 1. The non-bipartite König-Egerváry graph G0 has m (G0) = 15 and the degree
sequence (2, 2, 2, 2, 3, 3, 4, 6, 6). Hence, a (G0) = 6 > 5 = α (G0). In addition, Ω (G0) =
{S0}, and deg (S0) = 14, i.e., each maximum independent set of G0 is a maximal non-
maximum annihilating set.

Case 2. k ≥ 1. Clearly, Gk has m (Gk) = k2 + 10k + 15 and its degree sequence is

k + 2, k + 2, k + 2, k + 2, k + 3, k + 3, k + 4, . . . , k + 4︸ ︷︷ ︸
k+1

, k + 6, k + 6, k + 7, . . . , k + 7︸ ︷︷ ︸
k

.

Since the sum of the first k + 7 degrees of the sequence satisfies

k2 + 11k + 18 > m (Gk) ,

we infer that the annihilation number a (Gk) ≤ k + 6. The sum 14 + 4 (x− 5) + kx
of the first x ≥ 6 degrees of the sequence satisfies 14 + 4 (x− 6) + kx ≤ m (Gk) for
x ≤ k2+10k+25

k+4 . This implies

a (Gk) =

⌊
k2 + 10k + 25

k + 4

⌋
= k + 6 > k + 5 = α (Gk) ,

i.e., Gk has no maximum annihilating set belonging to Ω (Gk). Since its unique maximum
independent set Sk has

deg (Sk) = k2 + 9k + 14 < m (Gk) ,

while

deg (Sk) + min{deg (v) : v ∈ Vk − Sk} =
(
k2 + 9k + 14

)
+ (k + 2) > m (Gk) ,

we infer that Sk is a maximal annihilating set.

3 Conclusions
If G is a König-Egerváry graph with α (G) ∈ {1, 2}, then α (G) = a (G) and each maxi-
mum independent set is maximal annihilating, since the list of such König-Egerváry graphs
reads as follows:

{K1,K2,K1 ∪K1,K1 ∪K2,K2 ∪K2, P3, P4, C4,K3 + e,K4 − e} .

Consequently, Conjecture 1.4 is correct for König-Egerváry graphs with α (G) ≤ 2.
Let G be a disconnected König-Egerváry graph with α (G) = 3.

• If α (G) = a (G), then

G ∈
{

3K1, 2K1 ∪K2,K1 ∪ 2K2, 3K2,K1 ∪ P3,K1 ∪ P4,
K1 ∪ C4,K1 ∪ (K3 + e) ,K1 ∪ (K4 − e) ,K2 ∪ P3,K2 ∪ C4

}
,

while every S ∈ Ω (G) is a maximal annihilating set.
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Figure 5: G1 = K3 + e and G2 = K4 − e.

• If α (G) < a (G), then G ∈ {K2 ∪ P4,K2 ∪ (K3 + e) ,K2 ∪ (K4 − e)}, while for
every such G, there exists a maximum independent set, which is a not a maximal
annihilating set. Moreover, for K2 ∪ (K3 + e) and K2 ∪ (K4 − e) all maximum
independent sets are not maximal annihilating.

Thus Conjecture 1.4 is true for disconnected König-Egerváry graphs with α (G) = 3.
We have already mentioned in Introduction that the “(i) =⇒ (ii)” part of Conjecture 1.4

is true.

Proposition 3.1. LetG be a graph with a (G) ≥ n(G)
2 . IfG is a connected König-Egerváry

graph with α (G) = 3, and every S ∈ Ω(G) is a maximal annihilating set, then α (G) =
a (G).

Proof. In Figure 6 we present all connected König-Egerváry graphs with α (G) = 3 having
n(G) ∈ {4, 5}. For these graphs α (G) = a (G), which means that Conjecture 1.4 is true.
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Figure 6: König-Egerváry graphs with α (G) = 3 = a (G) and n(G) ≤ 5.

Now, we may assume that n(G) = 6, since α (G) ≥ µ (G) holds for each König-
Egerváry graph.

Let d1 ≤ d2 ≤ · · · ≤ d6 be the degree sequence of G.
It is known that α (G) ≤ a (G) (Theorem 1.1). Thus we have only three cases with

3 = α (G) < a (G) to cover, namely, a (G) ∈ {4, 5, 6}.

Case 1. a (G) = 4. Then, by definition, d1 + d2 + d3 + d4 ≤ m (G) ≤ d5 + d6 and
d1 + d2 + d3 + d4 + d5 > m (G) > d6.

Let q be the number of edges in G joining the vertices v5, v6 with the vertices v1, v2,
v3, v4. At least two vertices from the set {v1, v2, v3, v4} must be joined by an edge, other-
wise, α (G) ≥ 4 > 3. Assume that v3v4 ∈ E (G). Hence, v5v6 ∈ E (G), otherwise,

d5 + d6 = q < q + 2 ≤ d1 + d2 + d3 + d4,
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in contradiction with d1 + d2 + d3 + d4 ≤ d5 + d6. Similarly, there are no more edges but
v3v4 joining vertices from the set {v1, v2, v3, v4}, otherwise

d5 + d6 = q + 2 < q + 4 ≤ d1 + d2 + d3 + d4,

in contradiction with d1 + d2 + d3 + d4 ≤ d5 + d6. Therefore, {v1, v2, v3} is a maximum
independent set of G, since α (G) = 3. On the other hand, {v1, v2, v3} is not a maximal
annihilating set, because d1 + d2 + d3 + d4 ≤ m (G).

Case 2. a (G) = 5. By definition, it follows that d1 + d2 + d3 + d4 + d5 ≤ m (G) ≤
d6. Hence, the set {v1, v2, v3, v4, v5} is independent, in contradiction with the fact that
α (G) = 3.

Case 3. a (G) = 6. This means that G has no edges, which is not possible, because
α (G) = 3.

To complete the picture, Theorems 2.3 and 2.4 present various counterexamples to the
“(ii) =⇒ (i)” part of Conjecture 1.4 for every independence number greater than three. Our
intuition tells us that the real obstacle for the “(i) =⇒ (ii)” part Conjecture 1.4 not to be
true is the size of the annihilation number. It motivates the following.

Conjecture 3.2. If G is a König-Egerváry graph with a (G) ≥ 3
4n (G), and every S ∈

Ω(G) is a maximal annihilating set, then α (G) = a (G).
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subgraphs and the König-Egerváry property, Discrete Appl. Math. 161 (2013), 2380–2388,
doi:10.1016/j.dam.2013.04.020.

[6] E. Boros, M. C. Golumbic and V. E. Levit, On the number of vertices belonging to all maximum
stable sets of a graph, Discrete Appl. Math. 124 (2002), 17–25, doi:10.1016/s0166-218x(01)
00327-4.

[7] C. Bujtás and M. Jakovac, Relating the total domination number and the annihilation number
of cactus graphs and block graphs, Ars Math. Contemp. 16 (2019), 183–202, doi:10.26493/
1855-3974.1378.11d.

https://orcid.org/0000-0002-4190-7050
https://orcid.org/0000-0003-3533-9728
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/471
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/471


368 Ars Math. Contemp. 18 (2020) 359–369

[8] N. Dehgardi, S. Norouzian and S. M. Sheikholeslami, Bounding the domination number of a
tree in terms of its annihilation number, Trans. Comb. 2 (2013), 9–16, doi:10.22108/toc.2013.
2652.

[9] N. Dehgardi, S. M. Sheikholeslami and A. Khodkar, Bounding the rainbow domination number
of a tree in terms of its annihilation number, Trans. Comb. 2 (2013), 21–32, doi:10.22108/toc.
2013.3051.

[10] N. Dehgardi, S. M. Sheikholeslami and A. Khodkar, Bounding the paired-domination num-
ber of a tree in terms of its annihilation number, Filomat 28 (2014), 523–529, doi:10.2298/
fil1403523d.

[11] R. W. Deming, Independence numbers of graphs—an extension of the Koenig-Egervary theo-
rem, Discrete Math. 27 (1979), 23–33, doi:10.1016/0012-365x(79)90066-9.

[12] W. J. Desormeaux, T. W. Haynes and M. A. Henning, Relating the annihilation number and the
total domination number of a tree, Discrete Appl. Math. 161 (2013), 349–354, doi:10.1016/j.
dam.2012.09.006.
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