

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 18 (2020) 359–369 https://doi.org/10.26493/1855-3974.1950.8bd (Also available at http://amc-journal.eu)

On an annihilation number conjecture*

Vadim E. Levit † 匝

Department of Computer Science, Ariel University, Ariel, Israel

Eugen Mandrescu 回

Department of Computer Science, Holon Institute of Technology, Holon, Israel

Received 13 March 2019, accepted 26 May 2020, published online 23 October 2020

Abstract

Let $\alpha(G)$ denote the cardinality of a maximum independent set, while $\mu(G)$ be the size of a maximum matching in the graph G = (V, E). If $\alpha(G) + \mu(G) = |V|$, then G is a König-Egerváry graph. If $d_1 \leq d_2 \leq \cdots \leq d_n$ is the degree sequence of G, then the annihilation number a(G) of G is the largest integer k such that $\sum_{i=1}^{k} d_i \leq |E|$. A set $A \subseteq V$ satisfying $\sum_{v \in A} \deg(v) \leq |E|$ is an annihilation set; if, in addition, $\deg(x) + \sum_{v \in A} \deg(v) > |E|$, for every vertex $x \in V(G) - A$, then A is a maximal annihilation set in G.

In 2011, Larson and Pepper conjectured that the following assertions are equivalent:

- (i) $\alpha(G) = \alpha(G);$
- (ii) G is a König-Egerváry graph and every maximum independent set is a maximal annihilating set.

It turns out that the implication "(i) \implies (ii)" is correct.

In this paper, we show that the opposite direction is not valid, by providing a series of generic counterexamples.

Keywords: Maximum independent set, maximum matching, König-Egerváry graph, annihilation set, annihilation number.

Math. Subj. Class. (2020): 05C69, 05C07

^{*}The authors express their thanks to the anonymous referees, who suggested a number of comments that led to a better exposition of the manuscript.

[†]Corresponding author.

E-mail addresses: levitv@ariel.ac.il (Vadim E. Levit), eugen_m@hit.ac.il (Eugen Mandrescu)

1 Introduction

Throughout this paper G = (V, E) is a finite, undirected, loopless graph without multiple edges, with vertex set V = V(G) of cardinality |V(G)| = n(G), and edge set E = E(G)of size |E(G)| = m(G). If $X \subset V(G)$, then G[X] is the subgraph of G induced by X. By G - v we mean the subgraph $G[V(G) - \{v\}]$, for $v \in V(G)$. $K_n, K_{m,n}, P_n, C_n$ denote respectively, the complete graph on $n \ge 1$ vertices, the complete bipartite graph on $m, n \ge 1$ vertices, the path on $n \ge 1$ vertices, and the cycle on $n \ge 3$ vertices, respectively.

The disjoint union of the graphs G_1, G_2 is the graph $G_1 \cup G_2$ having the disjoint union of $V(G_1), V(G_2)$ as a vertex set, and the disjoint union of $E(G_1), E(G_2)$ as an edge set. In particular, nG denotes the disjoint union of n > 1 copies of the graph G.

A set $S \subseteq V(G)$ is *independent* if no two vertices from S are adjacent, and by Ind(G) we mean the family of all the independent sets of G. An independent set of maximum size is a *maximum independent set* of G, and $\alpha(G) = \max\{|S| : S \in Ind(G)\}$. Let $\Omega(G)$ denote the family of all maximum independent sets.

A matching in a graph G is a set of edges $M \subseteq E(G)$ such that no two edges of M share a common vertex. A matching of maximum cardinality $\mu(G)$ is a maximum matching, and a perfect matching is one saturating all vertices of G.

It is known that $\lfloor n(G)/2 \rfloor + 1 \le \alpha(G) + \mu(G) \le n(G) \le \alpha(G) + 2\mu(G)$ hold for every graph G [6]. If $\alpha(G) + \mu(G) = n(G)$, then G is called a König-Egerváry graph [11, 36]. For instance, each bipartite graph is a König-Egerváry graph [13, 20]. Various properties of König-Egerváry graphs can be found in [3, 4, 5, 16, 17, 18, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35].

Let $d_1 \leq d_2 \leq \cdots \leq d_n$ be the degree sequence of a graph G. Pepper [33, 34] defined the annihilation number of G, denoted a(G), to be the largest integer k such that the sum of the first k terms of the degree sequence is at most half the sum of the degrees in the sequence. In other words, a(G) is precisely the largest integer k such that $\sum_{i=1}^k d_i \leq m(G)$.

Clearly, a(G) = n(G) if and only if m(G) = 0. If m(G) = 1, then a(G) = n(G) - 1. The converse is not true; e.g., the graph $K_{1,p}$ has $a(K_{1,p}) = m(K_{1,p}) = p = n(K_{1,p}) - 1$, while p may be greater than one.

For $A \subseteq V(G)$, let $\deg(A) = \sum_{v \in A} \deg(v)$. Every $A \subseteq V(G)$ satisfying $\deg(A) \leq m(G)$ is an *annihilating set*. Clearly, every independent set is annihilating. An annihilating set A is *maximal* if $\deg(A \cup \{x\}) > m(G)$, for every vertex $x \in V(G) - A$, and it is *maximum* if |A| = a(G) [33]. For example, if $G = K_{p,q} = (A, B, E)$ and p > q, then A is a maximum annihilating set, while B is a maximal annihilating set.

Theorem 1.1 ([33]). For every graph G,

$$a(G) \ge \max\left\{ \left\lfloor \frac{n(G)}{2} \right\rfloor, \alpha(G) \right\}.$$

For instance,

$$a(C_{7}) = \alpha(C_{7}) = \left\lfloor \frac{n(C_{7})}{2} \right\rfloor, \qquad a(\overline{P_{5}}) = 3 > \alpha(\overline{P_{5}}) = \left\lfloor \frac{n(\overline{P_{5}})}{2} \right\rfloor,$$
$$a(K_{2,3}) = \alpha(K_{2,3}) > \left\lfloor \frac{n(K_{2,3})}{2} \right\rfloor, \quad \text{while} \quad a(\overline{C_{6}}) = \left\lfloor \frac{n(\overline{C_{6}})}{2} \right\rfloor > \alpha(\overline{C_{6}}).$$

The relation between the annihilation number and various parameters of a graph were studied in [1, 2, 7, 8, 9, 10, 12, 14, 15, 19, 32, 33].

Theorem 1.2 ([24]). For a graph G with $a(G) \ge \frac{n(G)}{2}$, $\alpha(G) = a(G)$ if and only if G is a König-Egerváry graph and every $S \in \Omega(G)$ is a maximum annihilating set.

All the maximum independent sets of the cycle C_5 are maximum annihilating. Moreover, $a(C_5) = \alpha(C_5)$. Nevertheless, C_5 is not a König-Egerváry graph. In other words, the condition $a(G) \ge \frac{n(G)}{2}$ in Theorem 1.2 is necessary.

Actually, Larson and Pepper [24] proved a stronger result that reads as follows.

Theorem 1.3. Let G be a graph with $a(G) \ge \frac{n(G)}{2}$. Then the following are equivalent:

- (*i*) $\alpha(G) = a(G);$
- (ii) G is a König-Egerváry graph and every $S \in \Omega(G)$ is a maximum annihilating set;
- (iii) G is a König-Egerváry graph and some $S \in \Omega(G)$ is a maximum annihilating set.

Along these lines, it was conjectured that the impacts of maximum and maximal annihilating sets are the same.

Conjecture 1.4 ([24]). Let G be a graph with $a(G) \ge \frac{n(G)}{2}$. Then the following assertions are equivalent:

- (*i*) $\alpha(G) = a(G);$
- (ii) G is a König-Egerváry graph and every $S \in \Omega(G)$ is a maximal annihilating set.

One can easily infer that every maximum annihilating set is also a maximal annihilating set, since the sum of the a + 1 smallest entries from the degree sequence $D = (d_1 \le d_2 \le \cdots \le d_n)$ is greater than m(G), then the same is true for every a + 1 entries of D. Thus the "(i) \Longrightarrow (ii)" part of Conjecture 1.4 is valid, in accordance with Theorem 1.2.

Figure 1: Non-König-Egerváry graphs with $a(H_1) = 3$ and $a(H_2) = 2$.

Consider the graphs from Figure 1. The graph H_1 has $a(H_1) > \alpha(H_1)$ and none of its maximum independent sets is a maximal or a maximum annihilating set. The graph H_2 has $a(H_2) = \alpha(H_2)$ and each of its maximum independent sets is both a maximal and a maximum annihilating set. Notice that $a(H_1) > \frac{n(H_1)}{2}$, while $a(H_2) < \frac{n(H_2)}{2}$.

Consider the graphs from Figure 2. The graph G_1 has $\alpha(G_1) = \frac{n(G_1)}{2} < a(G_1)$ and each of its maximum independent sets is neither a maximal nor a maximum annihilating set. The graph G_2 has $a(G_2) = \alpha(G_2) = \frac{n(G_2)}{2}$, every of its maximum independent sets is both a maximal and a maximum annihilating set, and it has a maximal independent set that is a maximal non-maximum annihilating set, namely $\{u, v\}$. The graph G_3 has $a(G_3) = \alpha(G_3) > \frac{n(G_3)}{2}$ and every of its maximum independent sets is both a maximal

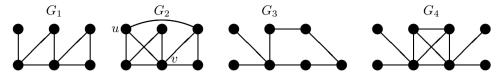


Figure 2: König-Egerváry graphs with $a(G_1) = a(G_3) = 4$, $a(G_2) = 3$, $a(G_4) = 6$.

and a maximum annihilating set. The graph G_4 has $a(G_4) > \alpha(G_4) > \frac{n(G_4)}{2}$ and none of its maximum independent sets is a maximal or a maximum annihilating set.

In this paper we invalidate the "(ii) \implies (i)" part of Conjecture 1.4, by providing some generic counterexamples. Let us notice that, if G is a König-Egerváry graph, and $H = qK_1 \cup G$, then H inherits this property. Moreover, the relationship between the independence numbers and annihilation numbers of G and H remains the same, because $\alpha(H) = \alpha(G) + q$ and $\alpha(H) = \alpha(G) + q$. Therefore, it is enough to construct only connected counterexamples. Finally, we prove that Conjecture 1.4 is true for graphs with independence number equal to three.

2 An infinite family of counterexamples

In what follows, we present a series of counterexamples to the opposite direction of Conjecture 1.4. All these graphs have unique maximum independent sets.

Lemma 2.1. The graph $H_k, k \ge 0$, from Figure 3 is a connected König-Egerváry graph that has a unique maximum independent set, namely, $S_k = \{x_k, \ldots, x_1, a_4, a_3, a_2, a_1\}$, where $H_0 = H_k - \{x_j, y_j : j = 1, 2, \ldots, k\}$ and $S_0 = \{a_4, a_3, a_2, a_1\}$.

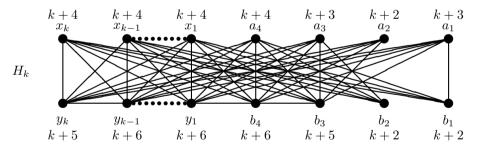


Figure 3: H_k is a König-Egerváry graph with $\alpha(H_k) = k + 4, k \ge 0$.

Proof. Notice that the graph H_k from Figure 3 can be defined as follows:

$$V(H_k) = V(K_{k+4,k+4}) = \{x_i, y_i : i = 1, \dots, k\} \cup \{a_1, a_2, a_3, a_4\} \cup \{b_1, b_2, b_3, b_4\}, E(H_k) = E(K_{k+4,k+4}) \cup \{y_k y_{k-1}, \dots, y_2 y_1, y_1 b_4, b_4 b_3\} - \{a_3 b_1, a_2 b_2, a_2 b_1, a_1 b_2\}.$$

Clearly, $S_k = \{x_k, \ldots, x_1, a_4, a_3, a_2, a_1\}$ is an independent set and

$$\{x_j y_j : j = 1, 2, \dots, k\} \cup \{a_4 b_4, a_3 b_2, a_3 b_3, a_1 b_1\}$$

is a perfect matching of H_k . Hence, we get

$$|V_k| = 2\mu(H_k) = |S_k| + \mu(H_k) \le \alpha(H_k) + \mu(H_k) \le |V_k|,$$

which implies $\alpha(H_k) + \mu(H_k) = |V_k|$, i.e., H_k is a König-Egerváry graph, and $\alpha(H_k) = k + 4 = |S_k|$. Let $L_k = H_k [X_k \cup Y_k], k \ge 1$, and $L_0 = H_k [A \cup B]$, where

$$X_k = \{x_j : j = 1, \dots, k\}, \qquad Y_k = \{y_j : j = 1, \dots, k\}, A = \{a_1, a_2, a_3, a_4\} \text{ and } B = \{b_1, b_2, b_3, b_4\}.$$

Since L_k has, on the one hand, $K_{k,k}$ as a subgraph, and, on the other hand,

$$y_k y_{k-1}, y_{k-1} y_{k-2}, \dots, y_2 y_1 \in E(L_k),$$

it follows that X_k is the unique maximum independent set of L_k .

The graph L_0 has A as a unique independent set, because

 $C_8 + b_3b_4 = (A \cup B, \{a_1b_4, b_4a_2, a_2b_3, b_3a_3, a_3b_2, b_2a_4, a_4b_1, b_1a_1, b_3b_4\})$

has A as a unique maximum independent set, and L_0 can be obtained from $C_8 + b_3b_4$ by adding a number of edges.

Since H_k can be obtained from the union of L_k and L_0 by adding some edges, and $S_k = X_k \cup A$ is independent in H_k , it follows that H_k has S_k as a unique maximum independent set.

Corollary 2.2. The graph G_k , $k \ge 0$, from Figure 4 is a connected König-Egerváry graph that has a unique independent set, namely, $S_k = \{x_i : i = 1, ..., k\} \cup \{a_i : i = 1, ..., 5\}$, where $G_0 = G_k - \{x_j, y_j : j = 1, 2, ..., k\}$ and $S_0 = \{a_i : i = 1, ..., 5\}$.

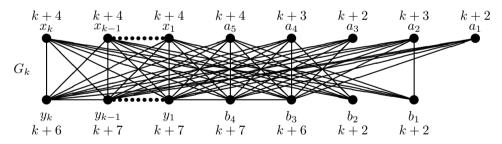


Figure 4: G_k is a König-Egerváry graph with $\alpha(G_k) = k + 5, k \ge 0$.

Proof. Notice that the graph G_k from Figure 4 can be defined as follows:

$$V(G_k) = V(K_{k+5,k+4})$$

= {x_i, y_i : i = 1,...,k} \cup {a₁, a₂, a₃, a₄, a₅} \cup {b₁, b₂, b₃, b₄},
 $E(G_k) = E(K_{k+4,k+4}) \cup$ {y_ky_{k-1},..., y₂y₁, y₁b₄, b₄b₃}
 $-$ {a₃b₂, a₃b₁, a₂b₂, a₁b₂, a₁b₁}.

According to Lemma 2.1, $G_k - a_1$ is a König-Egerváry graph with a unique maximum independent set, namely, $W_k = \{x_i : i = 1, ..., k\} \cup \{a_i : i = 1, ..., 4\}$. Since $S_k = W_k \cup \{a_1\}$ is an independent set and $\mu(G_k) = \mu(G_k - a_1) = k + 4$, it follows that G_k is a König-Egerváry graph and S_k is its unique maximum independent set.

Theorem 2.3. For every $k \ge 0$, there exists a connected non-bipartite König-Egerváry graph $H_k = (V_k, E_k)$, of order 2k + 8, satisfying the following:

- $a(H_k) > \frac{n(H_k)}{2} = \alpha(H_k),$
- each $S \in \Omega(H_k)$ is a maximal annihilating set.

Proof. Let $H_k = (V_k, E_k), k \ge 0$, be the graph from Figure 3 (in the bottom and the top lines are written the degrees of its vertices), where $H_0 = H_k - \{x_1, \ldots, x_k, y_1, \ldots, y_k\}$. Clearly, every H_k is non-bipartite.

By Lemma 2.1, each $H_k, k \ge 0$, is a König-Egerváry graph with a unique maximum independent set, namely, $S_k = \{x_k, \dots, x_1, a_4, a_3, a_2, a_1\}$, where $S_0 = \{a_4, a_3, a_2, a_1\}$.

Case 1. k = 0. Since $m(H_0) = 13$ and the degree sequence (2, 2, 2, 3, 3, 4, 5, 5), we infer that $a(H_0) = 5 > 4 = \alpha(H_0)$. In addition, deg $(S_0) = m(H_0) - 1$, i.e., each maximum independent set of H_0 is a maximal non-maximum annihilating set.

Case 2. $k \ge 1$. Clearly, H_k has $m(G_k) = k^2 + 9k + 13$ and its degree sequence is

$$k+2, k+2, k+2, k+3, k+3, \underbrace{k+4, \dots, k+4}_{k+1}, k+5, k+5, \underbrace{k+6, \dots, k+6}_{k}.$$

Since the sum of the first k + 6 degrees of the sequence satisfies

$$k^2 + 10k + 16 > m(H_k),$$

we infer that the annihilation number $a(H_k) \leq k+6$. The sum 12 + 4(x-5) + kxof the first $x \geq 5$ degrees of the sequence satisfies $12 + 4(x-5) + kx \leq m(H_k)$ for $x \leq \frac{k^2 + 9k + 21}{k+4}$. This implies

$$a(H_k) = \left\lfloor \frac{k^2 + 9k + 21}{k+4} \right\rfloor = k+5 > k+4 = \alpha(H_k),$$

i.e., H_k has no maximum annihilating set belonging to $\Omega(H_k)$. Since its unique maximum independent set $S_k = \{a_1, a_2, a_3, a_4, x_1, x_2, \dots, x_k\}$ has

$$\deg(S_k) = k^2 + 8k + 12 < m(H_k),$$

while

$$\deg(S_k) + \min\{\deg(v) : v \in V_k - S\} = (k^2 + 8k + 12) + (k+2) > m(H_k),$$

we infer that S_k is a maximal annihilating set.

Theorem 2.4. For every $k \ge 0$, there exists a connected non-bipartite König-Egerváry graph $G_k = (V_k, E_k)$, of order 2k + 9, satisfying the following:

- $a(G_k) > \left\lceil \frac{n(G_k)}{2} \right\rceil = \alpha(G_k),$
- each $S \in \Omega(G_k)$ is a maximal annihilating set.

Proof. Let $G_k = (V_k, E_k), k \ge 1$, be the graph from Figure 4 (in the bottom and the top lines are written the degrees of its vertices), and $G_0 = G_k - \{x_1, \ldots, x_k, y_1, \ldots, y_k\}$.

Corollary 2.2 claims that $G_k, k \ge 0$, is a König-Egerváry graph with a unique maximum independent set, namely $S_k = \{x_1, \ldots, x_k, a_1, \ldots, a_5\}, k \ge 1$, and $S_0 = \{a_1, \ldots, a_5\}$.

Case 1. The non-bipartite König-Egerváry graph G_0 has $m(G_0) = 15$ and the degree sequence (2, 2, 2, 2, 3, 3, 4, 6, 6). Hence, $a(G_0) = 6 > 5 = \alpha(G_0)$. In addition, $\Omega(G_0) = \{S_0\}$, and deg $(S_0) = 14$, i.e., each maximum independent set of G_0 is a maximal non-maximum annihilating set.

Case 2. $k \ge 1$. Clearly, G_k has $m(G_k) = k^2 + 10k + 15$ and its degree sequence is $k+2, k+2, k+2, k+3, k+3, k+4, \dots, k+4, k+6, k+6, k+7, \dots, k+7$

$$k + 2, k + 2, k + 2, k + 2, k + 3, k + 3, \underbrace{k + 4, \dots, k + 4}_{k+1}, k + 0, k + 0, \underbrace{k + 1, \dots, k + 1}_{k}.$$

Since the sum of the first k + 7 degrees of the sequence satisfies

$$k^2 + 11k + 18 > m(G_k),$$

we infer that the annihilation number $a(G_k) \leq k+6$. The sum 14 + 4(x-5) + kxof the first $x \geq 6$ degrees of the sequence satisfies $14 + 4(x-6) + kx \leq m(G_k)$ for $x \leq \frac{k^2 + 10k + 25}{k+4}$. This implies

$$a(G_k) = \left\lfloor \frac{k^2 + 10k + 25}{k+4} \right\rfloor = k + 6 > k + 5 = \alpha(G_k),$$

i.e., G_k has no maximum annihilating set belonging to $\Omega(G_k)$. Since its unique maximum independent set S_k has

$$\deg(S_k) = k^2 + 9k + 14 < m(G_k),$$

while

$$\deg(S_k) + \min\{\deg(v) : v \in V_k - S_k\} = (k^2 + 9k + 14) + (k+2) > m(G_k),$$

we infer that S_k is a maximal annihilating set.

3 Conclusions

If G is a König-Egerváry graph with $\alpha(G) \in \{1, 2\}$, then $\alpha(G) = a(G)$ and each maximum independent set is maximal annihilating, since the list of such König-Egerváry graphs reads as follows:

$$\{K_1, K_2, K_1 \cup K_1, K_1 \cup K_2, K_2 \cup K_2, P_3, P_4, C_4, K_3 + e, K_4 - e\}.$$

Consequently, Conjecture 1.4 is correct for König-Egerváry graphs with $\alpha(G) \leq 2$.

Let G be a disconnected König-Egerváry graph with $\alpha(G) = 3$.

• If $\alpha(G) = a(G)$, then

$$G \in \left\{ \begin{array}{c} 3K_1, 2K_1 \cup K_2, K_1 \cup 2K_2, 3K_2, K_1 \cup P_3, K_1 \cup P_4, \\ K_1 \cup C_4, K_1 \cup (K_3 + e), K_1 \cup (K_4 - e), K_2 \cup P_3, K_2 \cup C_4 \end{array} \right\},$$

while every $S \in \Omega(G)$ is a maximal annihilating set.

Figure 5: $G_1 = K_3 + e$ and $G_2 = K_4 - e$.

If α (G) < a (G), then G ∈ {K₂ ∪ P₄, K₂ ∪ (K₃ + e), K₂ ∪ (K₄ − e)}, while for every such G, there exists a maximum independent set, which is a not a maximal annihilating set. Moreover, for K₂ ∪ (K₃ + e) and K₂ ∪ (K₄ − e) all maximum independent sets are not maximal annihilating.

Thus Conjecture 1.4 is true for disconnected König-Egerváry graphs with $\alpha(G) = 3$. We have already mentioned in Introduction that the "(i) \implies (ii)" part of Conjecture 1.4 is true.

Proposition 3.1. Let G be a graph with $a(G) \ge \frac{n(G)}{2}$. If G is a connected König-Egerváry graph with $\alpha(G) = 3$, and every $S \in \Omega(G)$ is a maximal annihilating set, then $\alpha(G) = a(G)$.

Proof. In Figure 6 we present all connected König-Egerváry graphs with $\alpha(G) = 3$ having $n(G) \in \{4, 5\}$. For these graphs $\alpha(G) = a(G)$, which means that Conjecture 1.4 is true.

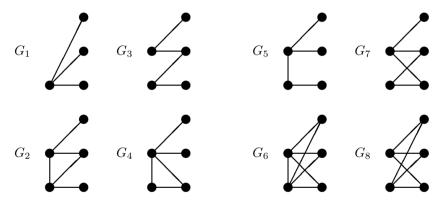


Figure 6: König-Egerváry graphs with $\alpha(G) = 3 = \alpha(G)$ and $n(G) \le 5$.

Now, we may assume that n(G) = 6, since $\alpha(G) \ge \mu(G)$ holds for each König-Egerváry graph.

Let $d_1 \leq d_2 \leq \cdots \leq d_6$ be the degree sequence of G.

It is known that $\alpha(G) \leq a(G)$ (Theorem 1.1). Thus we have only three cases with $3 = \alpha(G) < a(G)$ to cover, namely, $a(G) \in \{4, 5, 6\}$.

Case 1. a(G) = 4. Then, by definition, $d_1 + d_2 + d_3 + d_4 \le m(G) \le d_5 + d_6$ and $d_1 + d_2 + d_3 + d_4 + d_5 > m(G) > d_6$.

Let q be the number of edges in G joining the vertices v_5, v_6 with the vertices v_1, v_2, v_3, v_4 . At least two vertices from the set $\{v_1, v_2, v_3, v_4\}$ must be joined by an edge, otherwise, $\alpha(G) \ge 4 > 3$. Assume that $v_3v_4 \in E(G)$. Hence, $v_5v_6 \in E(G)$, otherwise,

$$d_5 + d_6 = q < q + 2 \le d_1 + d_2 + d_3 + d_4,$$

in contradiction with $d_1 + d_2 + d_3 + d_4 \le d_5 + d_6$. Similarly, there are no more edges but v_3v_4 joining vertices from the set $\{v_1, v_2, v_3, v_4\}$, otherwise

$$d_5 + d_6 = q + 2 < q + 4 \le d_1 + d_2 + d_3 + d_4,$$

in contradiction with $d_1 + d_2 + d_3 + d_4 \le d_5 + d_6$. Therefore, $\{v_1, v_2, v_3\}$ is a maximum independent set of G, since $\alpha(G) = 3$. On the other hand, $\{v_1, v_2, v_3\}$ is not a maximal annihilating set, because $d_1 + d_2 + d_3 + d_4 \le m(G)$.

Case 2. a(G) = 5. By definition, it follows that $d_1 + d_2 + d_3 + d_4 + d_5 \le m(G) \le d_6$. Hence, the set $\{v_1, v_2, v_3, v_4, v_5\}$ is independent, in contradiction with the fact that $\alpha(G) = 3$.

Case 3. a(G) = 6. This means that G has no edges, which is not possible, because $\alpha(G) = 3$.

To complete the picture, Theorems 2.3 and 2.4 present various counterexamples to the "(ii) \implies (i)" part of Conjecture 1.4 for every independence number greater than three. Our intuition tells us that the real obstacle for the "(i) \implies (ii)" part Conjecture 1.4 not to be true is the size of the annihilation number. It motivates the following.

Conjecture 3.2. If G is a König-Egerváry graph with $a(G) \ge \frac{3}{4}n(G)$, and every $S \in \Omega(G)$ is a maximal annihilating set, then $\alpha(G) = a(G)$.

ORCID iDs

Vadim E. Levit ^b https://orcid.org/0000-0002-4190-7050 Eugen Mandrescu ^b https://orcid.org/0000-0003-3533-9728

References

- J. Amjadi, An upper bound on the double domination number of trees, *Kragujevac J. Math.* 39 (2015), 133–139, doi:10.5937/kgjmath1502133a.
- H. Aram, R. Khoeilar, S. M. Sheikholeslami and L. Volkmann, Relating the annihilation number and the Roman domination number, *Acta Math. Univ. Comenian. (N.S.)* 87 (2018), 1–13, http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/471.
- [3] I. Beckenbach and R. Borndörfer, Hall's and König's theorem in graphs and hypergraphs, *Discrete Math.* 341 (2018), 2753–2761, doi:10.1016/j.disc.2018.06.013.
- [4] A. Bhattacharya, A. Mondal and T. S. Murthy, Problems on matchings and independent sets of a graph, *Discrete Math.* **341** (2018), 1561–1572, doi:10.1016/j.disc.2018.02.021.
- [5] F. Bonomo, M. C. Dourado, G. Durán, L. Faria, L. N. Grippo and M. D. Safe, Forbidden subgraphs and the König-Egerváry property, *Discrete Appl. Math.* 161 (2013), 2380–2388, doi:10.1016/j.dam.2013.04.020.
- [6] E. Boros, M. C. Golumbic and V. E. Levit, On the number of vertices belonging to all maximum stable sets of a graph, *Discrete Appl. Math.* **124** (2002), 17–25, doi:10.1016/s0166-218x(01) 00327-4.
- [7] C. Bujtás and M. Jakovac, Relating the total domination number and the annihilation number of cactus graphs and block graphs, *Ars Math. Contemp.* 16 (2019), 183–202, doi:10.26493/ 1855-3974.1378.11d.

- [8] N. Dehgardi, S. Norouzian and S. M. Sheikholeslami, Bounding the domination number of a tree in terms of its annihilation number, *Trans. Comb.* 2 (2013), 9–16, doi:10.22108/toc.2013. 2652.
- [9] N. Dehgardi, S. M. Sheikholeslami and A. Khodkar, Bounding the rainbow domination number of a tree in terms of its annihilation number, *Trans. Comb.* 2 (2013), 21–32, doi:10.22108/toc. 2013.3051.
- [10] N. Dehgardi, S. M. Sheikholeslami and A. Khodkar, Bounding the paired-domination number of a tree in terms of its annihilation number, *Filomat* 28 (2014), 523–529, doi:10.2298/ fil1403523d.
- [11] R. W. Deming, Independence numbers of graphs—an extension of the Koenig-Egervary theorem, *Discrete Math.* 27 (1979), 23–33, doi:10.1016/0012-365x(79)90066-9.
- [12] W. J. Desormeaux, T. W. Haynes and M. A. Henning, Relating the annihilation number and the total domination number of a tree, *Discrete Appl. Math.* **161** (2013), 349–354, doi:10.1016/j. dam.2012.09.006.
- [13] E. Egerváry, On combinatorial properties of matrices (in Hungarian), *Mat. Lapok* 38 (1931), 16–28.
- [14] M. Gentner, M. A. Henning and D. Rautenbach, Smallest domination number and largest independence number of graphs and forests with given degree sequence, *J. Graph Theory* 88 (2018), 131–145, doi:10.1002/jgt.22189.
- [15] M. Jakovac, Relating the annihilation number and the 2-domination number of block graphs, *Discrete Appl. Math.* 260 (2019), 178–187, doi:10.1016/j.dam.2019.01.020.
- [16] A. Jarden, V. E. Levit and E. Mandrescu, Two more characterizations of König-Egerváry graphs, *Discrete Appl. Math.* 231 (2017), 175–180, doi:10.1016/j.dam.2016.05.012.
- [17] A. Jarden, V. E. Levit and E. Mandrescu, Critical and maximum independent sets of a graph, *Discrete Appl. Math.* 247 (2018), 127–134, doi:10.1016/j.dam.2018.03.058.
- [18] A. Jarden, V. E. Levit and E. Mandrescu, Monotonic properties of collections of maximum independent sets of a graph, *Order* 36 (2019), 199–207, doi:10.1007/s11083-018-9461-8.
- [19] D. A. Jaumea and G. Molina, Maximum and minimum nullity of a tree degree sequence, 2018, arXiv:1806.02399 [math.CO].
- [20] D. König, Graphen und Matrizen, Mat. Lapok 38 (1931), 116–119.
- [21] E. Korach, T. Nguyen and B. Peis, Subgraph characterization of red/blue-split graph and König Egerváry graphs, in: *Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms*, ACM, New York, 2006 pp. 842–850, doi:10.1145/1109557.1109650, held in Miami, FL, January 22 – 24, 2006.
- [22] C. E. Larson, A note on critical independence reductions, Bull. Inst. Combin. Appl. 51 (2007), 34–46.
- [23] C. E. Larson, The critical independence number and an independence decomposition, *European J. Combin.* **32** (2011), 294–300, doi:10.1016/j.ejc.2010.10.004.
- [24] C. E. Larson and R. Pepper, Graphs with equal independence and annihilation numbers, *Electron. J. Combin.* 18 (2011), #P180 (9 pages), doi:10.37236/667.
- [25] V. E. Levit and E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, *Discrete Appl. Math.* **117** (2002), 149–161, doi:10.1016/s0166-218x(01)00183-4.
- [26] V. E. Levit and E. Mandrescu, On α^+ -stable König-Egerváry graphs, *Discrete Math.* **263** (2003), 179–190, doi:10.1016/s0012-365x(02)00528-9.

- [27] V. E. Levit and E. Mandrescu, Critical independent sets and König-Egerváry graphs, *Graphs Combin.* 28 (2012), 243–250, doi:10.1007/s00373-011-1037-y.
- [28] V. E. Levit and E. Mandrescu, Vertices belonging to all critical sets of a graph, SIAM J. Discrete Math. 26 (2012), 399–403, doi:10.1137/110823560.
- [29] V. E. Levit and E. Mandrescu, On maximum matchings in König-Egerváry graphs, *Discrete Appl. Math.* **161** (2013), 1635–1638, doi:10.1016/j.dam.2013.01.005.
- [30] V. E. Levit and E. Mandrescu, A set and collection lemma, *Electron. J. Combin.* 21 (2014), #P1.40 (8 pages), doi:10.37236/2514.
- [31] V. E. Levit and E. Mandrescu, On König-Egerváry collections of maximum critical independent sets, Art Discrete Appl. Math. 2 (2019), #P1.02 (9 pages), doi:10.26493/2590-9770.1261.9a0.
- [32] W. Ning, M. Lu and K. Wang, Bounding the locating-total domination number of a tree in terms of its annihilation number, *Discuss. Math. Graph Theory* **39** (2019), 31–40, doi:10.7151/ dmgt.2063.
- [33] R. D. Pepper, *Binding Independence*, Ph.D. thesis, University of Houston, 2004, https://www.proquest.com/docview/305196562.
- [34] R. D. Pepper, On the annihilation number of a graph, in: V. Zafiris, M. Benavides, K. Gao, S. Hashemi, K. Jegdić, G. A. Kouzaev, P. Simeonov, L. Vlădăreanu and C. Vobach (eds.), *AMATH'09: Proceedings of the 15th American Conference on Applied Mathematics*, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, 2009 pp. 217–220.
- [35] T. Short, On some conjectures concerning critical independent sets of a graph, *Electron. J. Combin.* 23 (2016), #P2.43 (10 pages), doi:10.37236/5580.
- [36] F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number, J. Comb. Theory Ser. B 27 (1979), 228–229, doi:10.1016/0095-8956(79)90085-6.