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Abstract

We introduce the notion of a t-graph and prove that regular 3-graphs are equivalent to
cyclic antipodal 3-fold covers of a complete graph. This generalizes the equivalence of
regular two-graphs and Taylor graphs. As a consequence, an equivalence between cyclic
antipodal distance regular graphs of diameter 3 and certain rank 6 commutative association
schemes is proved. New examples of regular 3-graphs are presented.
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1 Introduction
This paper is mainly a clarification of [6] — a short draft written by Donald Higman in
1994, entitled “A note on regular 3-graphs”.

The considered generalization of two-graphs was introduced by D. G. Higman in [5].
As in the famous correspondence between two-graphs and switching classes of simple
graphs, t-graphs are interpreted as equivalence classes of an appropriate switching relation
defined on weights, which play the role of simple graphs.

In his note Higman uses certain association schemes to characterize regular 3-graphs
and to obtain feasibility conditions for their parameters. Specifically, he provides a graph
theoretic interpretation of a weight and from the resulted graph he constructs a rank 4
symmetric association scheme and a rank 6 fission of it. Furthermore, he proves that rank
6 schemes with parameters as in his construction are equivalent to regular 3-graphs.

During our redetermination of the structure constants of the rank 6 scheme an error
in [6] was detected, this miscalculation led Higman to a false restriction on the parameters
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of regular 3-graphs. Our first contribution is the correction of this mistake (see Subsec-
tion 5.2). The second contribution is a proof (see Section 4) that in the case of regular
3-graphs, the graph defined by a weight in its switching class is a distance regular cover
of the complete graph. Moreover, it is a cyclic antipodal distance regular (ADRG) 3-fold
cover of the complete graph in the sense of Godsil and Hensel in [2]. This provides a
further restriction on the parameters of regular 3-graphs.

Altogether, in Section 4 and in Section 5 we establish a one-to-one correspondence
between regular 3-graphs, cyclic ADRGs of diameter 3 and certain rank 6 association
schemes. As a consequence, we provide a new characterization of cyclic antipodal dis-
tance regular 3-fold covers of the complete graph in terms of association schemes.

To keep the length of this paper reasonable we did not include all necessary prelimi-
naries. In particular, we assume some knowledge of distance regular graphs, specifically,
antipodal distance regular graphs of diameter 3. Also, we assume the reader is familiar with
association schemes, in particular, the intersection algebra of an association scheme and its
character-multiplicity table. An interested reader may find a more comprehensive consid-
eration of all the diverse links exposed below as well as suggestions for further research
in [7].

2 Two-graphs and t-graphs
2.1 Two-graphs and regular two-graphs

Two-graphs have roots originating in diverse areas of combinatorics, geometry and group
theory, thus leading to different manifestations in the literature, such as: switching classes
of graphs, sets of equidistant points in elliptic geometry, sets of equiangular lines in Eu-
clidean geometry, binary maps of triples with vanishing coboundary, and double coverings
of complete graphs (see the celebrated survey [12]). Our focus will be on the last two in-
terpretations and the connection between them. We start with the classical definition and
the classical viewpoint of two-graphs as switching classes of simple graphs.

Let X be a set of n elements called vertices. For m ∈ N denote by X{m} the set of all
m-subsets of X .

Definition 2.1. A set ∆ ⊆ X{3} is a two-graph if every 4-subset of X contains an even
(∈ {0, 2, 4}) number of members of ∆.

Typically we use the notation (X,∆) for a two-graph, and call ∆ the set of odd triples.

Definition 2.2. A two-graph (X,∆) is called regular if every 2-subset {x, y} ∈ X{2} is
contained in the same number of triples from ∆.

The most famous view of two-graphs is related to a special equivalence relation that is
defined on the set of simple (undirected, no loops) graphs. First we remind the reader how
to get a two-graph from a graph:

Let Γ = (V,E) be a simple graph. The set of triples {u, v, w} of vertices, such that the
induced subgraph Γ|{u,v,w} has an odd number of edges, forms a two-graph.

Next, to define the equivalence relation we consider the operation of switching a graph
with respect to a set of vertices.

Definition 2.3. LetX ⊆ V be a subset of vertices of a simple graph Γ = (V,E). Switching
with respect toX means interchanging the adjacencies and non-adjacencies betweenX and
its complement V \X .
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As a more appropriate setting to work with the operation of switching, J. J. Seidel
proposed an alternative matrix representation of a simple graph:

Definition 2.4. The Seidel adjacency matrix S = (si,j) of a graph Γ = (V,E) is a
{0,−1, 1}-matrix having:

si,j =

 0 i = j,
−1 {i, j} ∈ E,
1 {i, j} /∈ E.

In this notation, if the graph Γ′ is obtained from Γ by switching with respect toX ⊆ V ,
then its Seidel adjacency matrix S′ is obtained from S via a similarity transformation by a
diagonal matrix having {−1, 1} on its diagonal. Explicitly:

S′ = DSD,

where Di,i = −1⇐⇒ i ∈ X .

As was implied above, switching is an equivalence relation on the set of all simple
graphs of order n sharing the same prescribed vertex set. Furthermore we note that switch-
ing equivalent graphs give rise to the same two-graph, and have the same Seidel spectrum,
thus allowing us to define the eigenvalues and their multiplicities of a two-graph. To sum
up we have:

Theorem 2.5. There is a 1-1 correspondence between two-graphs and switching classes
of graphs.

Theorem 2.6. A two-graph is regular if and only if it has two distinct (Seidel) eigenvalues
ρ1 > 0 > ρ2, such that ρ1ρ2 = 1− |X|.

The following is an alternative definition of a two-graph. We call it the cohomological
definition for reasons that will be clear soon.

Definition 2.7. Let U2 be the group of square roots of unity. A set ∆ ⊆ X{3} is a two-
graph if the function:

f : X{3} −→ U2

defined by
f(x) = −1⇐⇒ x ∈ ∆,

satisfies:
f({x, y, z}) · f({x, y, t}) · f({x, z, t}) · f({y, z, t}) = 1

for any {x, y, z, t} ∈ X{4}.

Functions satisfying the equation in the above definition are called 3-cocycles (see be-
low).

It is clear that the two definitions are equivalent. Furthermore, we may refer to either
(X,∆), ∆ or the function f as the two-graph.
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2.2 The connection with double covers of complete graphs

Two-graphs were originally introduced by Graham Higman to study 2-transitive represen-
tations of certain sporadic groups, in his description he used antipodal 2-fold covers of
complete graphs. In [16], Taylor and Levingston established a one-to-one correspondence
between two-graphs and antipodal 2-fold covers of complete graphs. This correspondence
will be described in a more general setting with all details in the next section. Meanwhile
we give an overview for the case of two-graphs.

Let Γ be a graph with n vertices in the switching class of the two-graph f and let SΓ

be the Seidel adjacency matrix of Γ. Then by inserting a 2× 2 matrix in the place of each
entry of SΓ according to the following rule:

0←→
(

0 0
0 0

)
1←→

(
1 0
0 1

)
− 1←→

(
0 1
1 0

)
we obtain a 2n×2n {0, 1}-matrix which is the usual adjacency matrix of the corresponding
2-fold cover of Kn. The converse construction is done in a similar manner: substituting
each 2 × 2 block of the adjacency matrix of a 2-fold cover of Kn (writing it in a suitable
ordering of the vertices) with an element of {0, 1,−1}.

A 2-fold cover of Kn, when it is also distance regular, is called a Taylor graph, these
are distance regular graphs with intersection array

{k, µ, 1; 1, µ, k} .

In the above mentioned correspondence, Taylor graphs correspond to regular two-
graphs. This will be a particular case of our more general result later on.

2.3 Generalizing two-graphs

Considering the cohomological definition of two-graphs, two very natural generalizations
arise:

• t-cocycles into U2

(functions f : X{t} −→ U2 with a similar property as for two-graphs);

• 3-cocycles into Ut
(functions f : X{3} −→ Ut, where Ut is the group of t-th roots of unity).

Historically, the first of these was indeed the first to be considered. The first appearance
of the term t-graph as a t-cocycle over U2 is due to D. Higman’s generalization (see [4])
of E. Shult’s graph extension theorem (see [13]). Other sources of this (design theoretical)
generalization can be found in Mielants [11] or in [1]. In this case, a regular t-graph is
a t-cocycle into U2 which is also a t-design. Here just few examples are known: regular
3-graphs on 8 and 12 points and a regular 5-graph on 12 points (see [10]). Our interest in
the current presentation is the second way to generalize two-graphs, i.e. 3-cocycles into Ut.
This direction was examined by D. Higman, and the main source of this is [5]. We begin
with introducing some very basic elements of cohomology theory, in which terms t-graphs
are defined.
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2.4 Some cohomology

Let X be a finite set with |X| = n. Let ζ be a primitive root of unity of order t, and let
Ut =< ζ > denote the cyclic group of tth roots of unity generated by ζ.

Let x = (x1, x2, . . . , xp) ∈ Xp. A function f : Xp −→ Ut is called a p-cochain if:

(i) f(x) = 1 (the identity element of Ut) for all x ∈ Xp such that xi = xj for some
1 ≤ i 6= j ≤ p,

(ii) if y results from x by interchanging xi and xj for some 1 ≤ i 6= j ≤ p then f(y) =
(f(x))−1.

The set of all p-cochains together with pointwise multiplication forms a group denoted by
Cp· (X,Ut). Define the coboundary operator:

δ : Cp· (X,Ut) −→ Cp+1
· (X,Ut)

by

δf(x) =

p∏
i=0

σi(f(x̂i))

where x̂i ∈ Xp is obtained from x ∈ Xp+1 by deleting the ith coordinate xi, and σ is the
inverse operation of Ut.

For e ∈ X and p ≥ 1 we have the group homomorphism

∆e : Cp· (X,Ut) −→ Cp−1
· (X,Ut)

defined by
∆ef(x) = f(e, x)

for x ∈ Xp−1.
Define the set of p-coboundaries:

Bp· (X,Ut) =
{
δf
∣∣ f ∈ Cp−1

· (X,Ut)
}
,

and the set of p-cocycles:

Zp· (X,Ut) = {f ∈ Cp· (X,Ut) | δf = 1} .

Here 1 is the identity cochain in Cp+1
· (X,Ut). It is routine to check that δ2f = 1 for any

(p − 1)-cochain f , and thus the coboundary of any (p − 1)-cochain is a p-cocycle. Two
(p−1)-cochains have the same p-cocycle as their coboundary if and only if their quotient is
a (p−1)-cocycle. Thus, p-cocycles correspond to cohomology classes of (p−1)-cochains,
as a generalization of Seidel switching we call the cohomology classes switching classes.

Along the considered generalization of two-graphs and regular two-graphs we define:

Definition 2.8. A t-graph is a 3-cocycle into Ut.

Definition 2.9. A t-graph is called regular if for every pair x, y ∈ X , the number of
z ∈ X \ {x, y} such that f(x, y, z) = α depends only on α ∈ Ut. This number is denoted
m(α).

It is easy to check that in case t = 2, the definition of a 3-cocycle into U2 is compatible
with the characterization given in Definition 2.7, and that the above definition of regularity
is compatible with Definition 2.2.
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2.5 Weights

According to Higman, a weight onX with values inUt is a 2-cochainw ∈ C2
· (X,Ut), from

this point onward we will call them simply weights. Thus t-graphs are the coboundaries of
weights. A weight w can be represented as a n× n matrix W with entries from Ut where:

(W )x,y = w(x, y).

Then W has 1 on its diagonal, and W ∗ = W , where W ∗ is obtained from W by
transposing and inverting each entry. We will investigate the matrix representation of a
weight with much more detail in the next section where we will focus on the case t = 3.

Another way to represent a weight is as an antipodal t-fold cover of Kn.

Definition 2.10. Let w : X2 −→ Ut be a weight on X . To each element x ∈ X we
associate t vertices x1, x2, ..., xt and define a graph Γw = (V,E) on the resulting set V of
t|X| vertices by

{xi, yj} ∈ E ⇐⇒ w(x, y) = ζj−i.

The resulting graph is a t-fold cover of the complete graphKn, and ifw(x, y) = ζi then
the set of edges between x1, x2, ..., xt and y1, y2, ..., yt forms a perfect matching which is
given by the ith power of the permutation matrix of (1, 2, ..., t). Permuting x1, x2, ..., xt
according to some power of the permutation (1, 2, ..., t) amounts to a change of w in its
switching class.

3 Regular 3-graphs
From now on we focus on the case t = 3. We will prove that the situation for regular
3-graphs generalizes the case of regular two-graphs. In particular, regular 3-graphs are in
1− 1 correspondence with regular (cyclic) (n, 3, c2)-covers.

3.1 Main conventions

Let w : X2 −→ U3 be a weight on X and |X| = n. The coboundary δw of w is a 3-graph
Φ ∈ Z3

. (X,U3) on X . Assume that Φ is regular. Recall that this means that for every pair
x, y of distinct elements of X and α ∈ U3, the number m(α) of z ∈ X \ {x, y} such that
Φ(x, y, z) = α is independent of the choice of x and y.

Denote

a := m(1),

b := m(ζ) = m(ζ2).

We call (n, a, b) the parameters of the regular 3-graph Φ. We obtain the first restriction
on the parameters by simple counting. Fix two vertices x, y ∈ X , then:

|X \ {x, y}| = |{z ∈ X | Φ(x, y, z) = 1}|
+ |{z ∈ X | Φ(x, y, z) = ζ}|+

∣∣{z ∈ X ∣∣ Φ(x, y, z) = ζ2
}∣∣ .

Thus we have
n− 2 = a+ 2b.
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The corresponding graph Γw is a 3-fold cover of Kn with exactly 3 types of matchings
between fibres:

y

• y3

• y2

• y1

x

•x3

•x2

•x1

w(x, y) = 1

y

• y3

• y2

• y1

x

•x3

•x2

•x1

w(x, y) = ζ

y

• y3

• y2

• y1

x

•x3

•x2

•x1

w(x, y) = ζ2

Figure 1: Matchings between fibres of Γw

The following subsection serves to remind and fix notation about matrices over the
integral group ring, which is the setting in which we characterize regular 3-graphs.

3.2 Matrices over group rings

Let T be a finite group. The elements of the integral group ring Z[T ] are expressions of
the form ∑

g∈T
agg

where ag ∈ Z. The ring operations are:∑
g∈T

agg

+

∑
g∈T

bgg

 =
∑
g∈T

(ag + bg)g,∑
g∈T

agg

 ·(∑
h∈T

bhh

)
=
∑
g,h∈T

(ag · bh)gh.

Following the notation of Klin and Pech in [8], for a subset M ⊆ T define the simple
quantity M ∈ Z[T ]:

M =
∑
m∈M

1 ·m.

When M = {g} we will slightly abuse notation and write g instead of {g}. The
multiplicative identity of Z[T ] is 1 where 1 is the identity of T . The adjoint of

∑
g∈T

agg is

∑
g∈T

agg

∗ =
∑
g∈T

agg
−1.

The set of n × n matrices with entries from Z[T ] is denoted by Z[T ]n×n. This set to-
gether with usual addition and multiplication of matrices forms a ring with identity. More-
over, Z[T ]n×n forms a Z[T ]-module, and for a matrix A = (ai,j) ∈ Z[T ]n×n we can
define the adjoint A∗ ∈ Z[T ]n×n, where

(ai,j)
∗ = a∗j,i.
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Recall, that a matrix A is called self-adjoint if A = A∗.

3.3 Godsil-Hensel matrices

Let Γ be a connected cover of some graph ∆ and consider the group T of all automorphisms
of Γ that fix each fibre of Γ setwise. Then T acts semi-regularly on V (Γ) (cf. [2, Sec. 7]),
and in particular on each fibre of Γ. The group T is called the voltage group of Γ. If T acts
regularly on each fibre, then Γ is called a regular cover of ∆.

In [2] Godsil and Hensel studied regular covers in general and in particular gave a
characterization of regular antipodal distance regular covers of complete graphs. For this
purpose they defined certain matrices over the integral group ring Z[T ], that we will intro-
duce below in the notation used by Klin and Pech in [8].

Let A = (ai,j) ∈ Z[T ]n×n be a matrix such that ai,j ∈ ({g | g ∈ T} ∪ {0}), all
elements on the diagonal are equal to 0, and such that A is self-adjoint. Then to A we can
associate two graphs:

1) the underlying graph ∆A with vertex set V (∆A) = {1, . . . , n} and edge set E(∆A) =
{{i, j} | ai,j 6= 0},

2) the derived graph ΓA with vertex set V (ΓA) = {1, 2, . . . , n}×T and edge setE(ΓA) =
{{(i, g), (j, h)} | ai,j 6= 0, and g · ai,j = h}.

Such matrices, when defining connected covers with voltage group T , are called cover-
ing matrices. When ∆A is a complete graph Kn, and ΓA is an (n, r, c2)-cover of ∆A then
the matrix A is called the Godsil-Hensel matrix of the cover.

Theorem 3.1. Let T be a finite group and let A be a covering matrix of order n over
T . Then A is the Godsil-Hensel matrix of a regular antipodal (n, r, c2)-cover of Kn with
voltage group T if and only if

A2 = (n− 1)I + (n− 2− rc2)A+ c2T (J − I). (3.1)

4 Main results

Throughout this section we let Φ denote a regular 3-graph, w a weight such that δw =
Φ. Let Γw be the antipodal 3-fold cover of Kn defined by w and let W be the matrix
representation of w.

Lemma 4.1. Let Φ be a regular 3-graph and let w be a weight with δw = Φ. Then W
satisfies:

W 2 = nI +
(
(a+ 2)1 + bζ, ζ2

)
(W − I) (4.1)

= nI + (a+ 2− b)1(W − I) + bU3(J − I). (4.2)
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Proof. We calculate (W 2)x,y . For x = y we have:

(W 2)x,x =
∑
z∈X

(W )x,z · (W )z,x

=
∑
z∈X

w(x, z) · w(z, x)

=
∑
z∈X

w(x, z) · w(x, z)−1

=
∑
z∈X

1 = n1.

For x 6= y we have:

(W 2)x,y =
∑
z∈X

(W )x,z · (W )z,y

=
∑
z∈X

w(x, z) · w(z, y)

=
∑
z∈X

δw(y, x, z) · w(x, y)

=

(∑
z∈X

δw(y, x, z)

)
· w(x, y)

=
(
(m(1) + 2)1 +m(ζ)ζ +m(ζ2)ζ2

)
· w(x, y)

= ((a+ 2)1 + bζ, ζ2) · w(x, y).

Summing up we get Equation (4.1).
Using:

bζ, ζ2(W − I) = bU3J − bU3I − b1(W − I)

we get Equation (4.2).

Proposition 4.2. Every regular 3-graph with parameters (n, a, b) defines a cyclic (n, 3, b)-
cover.

Proof. We prove that the matrix C = W − I is the Godsil-Hensel matrix of the cyclic
cover Γw. We use Equation (4.2) to prove that C satisfies the condition of Theorem 3.1.

C2 = (W − I)2 = W 2 − 2W + I

= W 2 − 2(W − I)− I
= nI + ((a+ 2)1 + bζ, ζ2)(W − I)− 2(W − I)− I
= (n− 1)I + (a1 + bζ, ζ2)(W − I)

= (n− 1)I + (a− b)1(W − I) + bU3(J − I)

= (n− 1)I + (a− b)1C + bU3(J − I).

Plugging in the values
c2 = b, a1 = a, r = 3

we obtain Equation (3.1) in Theorem 3.1.
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The converse is proved similarly:

Proposition 4.3. Every cyclic (n, 3, c2)-cover defines a regular 3-graph with parameters
(n, a1, c2).

Proof. Let A be the Godsil-Hensel matrix of a cyclic (n, 3, c2)-cover. We show that W =
A+ I is the matrix representation of a weight w in the switching class of a regular 3-graph.
We have:

W 2 = (A+ I)2 = A2 + 2A+ I

= (n− 1)I + (n− 2− rc2)A+ c2T (J − I) + 2A+ I

= nI + (n− rc2)A+ c2T (J − I)

= nI + (n− rc2)(W − I) + c2T (J − I).

For the values
b = c2, a = a1, r = 3

W satisfies Equation (4.2) in Lemma 4.1.

To complete the picture we prove:

Proposition 4.4. There is a 1 − 1 correspondence between regular 3-graphs and cyclic
(n, 3, c2)-covers.

Proof. Let w and w′ be weights into U3. All that needs to be shown is:

δw = δw′ ⇐⇒ Γw ∼= Γw′ .

As was explained after Definition 2.10, the switching of a weightw is interpreted as a cyclic
permutation within the fibres of the corresponding cover Γw, thus switching equivalent
weights yield isomorphic covers. The converse is straightforward.

As a consequence, using Theorem 9.2 of Godsil and Hensel in [2], we obtain a restric-
tion on the parameter set of a regular 3-graph.

Corollary 4.5. If (n, a, b) are the parameters of a regular 3-graph then 3|n.

Proof. Since Γw is a cyclic (n, 3, b)-cover, then by Theorem 9.2 in [2] we have 3|n.

5 Higman’s note: clarification and corrections
5.1 Regular 3-graphs and association schemes

Higman’s first step in [6] is to define Γw = (V,E), an antipodal 3-fold cover of Kn,
with fibre set X . He then constructs a rank 4 symmetric association scheme from Γw, this
association scheme is (in a different ordering than the one that appears in [6]) the metric
association scheme of the ADRG Γw. Higman’s key observation is the fact that this rank
4 association scheme admits a rank 6 fission by orienting all the non-edges of Γw. We
present this construction.
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Construction 5.1. Define:

R0 = IdV ,

R1 =
{(
xi, xi+1 (mod 3)

) ∣∣ i = 1, 2, 3, x ∈ X
}
,

R2 =
{(
xi, xi+2 (mod 3)

) ∣∣ i = 1, 2, 3, x ∈ X
}
,

R3 = E,

R4 =
{

(xi, yj)
∣∣ i = 1, 2, 3, {xi+1 (mod 3), yj} ∈ E

}
,

R5 =
{

(xi, yj)
∣∣ i = 1, 2, 3, {xi+2 (mod 3), yj} ∈ E

}
.

Remark 5.2. Notice that the relations R1, R2, R4, R5 are anti-symmetric, R1 = Rt2 and
R4 = Rt5; Also S1 = R1 ∪ R2 is the “distance 3” relation and S3 = R4 ∪ R5 is the
“distance 2” relation with respect to Γw = (V,E).

Proposition 5.3 (Higman). A6 (Γ) :=
(
V, {Ri}5i=0

)
is an association scheme.

Proof. We calculate the intersection matrices of A6 (Γ). For example, we compute p4
44:

let (xi, yj) ∈ R4 and suppose w(xi, yj) = ζ (we may assume so due to switching), thus
j = i + 1 (mod 3). We count the number of zk ∈ V such that (xi, zk) ∈ R4 and
(zk, yj) ∈ R4: there are 3 types of z ∈ X which contain such a zk:

• k = i =⇒ w(x, z) = ζ2

w(z, y) = ζ
=⇒ δw(x, y, z) = ζ · ζ · ζ2 = ζ,

• k = i+ 1 (mod 3) =⇒ w(x, z) = 1
w(z, y) = 1

=⇒ δw(x, y, z) = ζ · 1 · 1 = ζ,

• k = i− 1 (mod 3) =⇒ w(x, z) = ζ
w(z, y) = ζ2 =⇒ δw(x, y, z) = ζ · ζ2 · ζ = ζ.

Thus δw(x, y, z) = ζ ⇐⇒ z is one of the above 3 types, hence p4
44 = b.

In the same manner we obtain the intersection matrices {Bi}5i=0:

B0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, B1 =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

, B2 =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

,

B3 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

n− 1 0 0 a b b
0 n− 1 0 b a b
0 0 n− 1 b b a

, B4 =


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 n− 1 0 b a b
0 0 n− 1 b b a

n− 1 0 0 a b b

,

B5 =


0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 n− 1 b b a

n− 1 0 0 a b b
0 n− 1 0 b a b

.
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It turns out that the existence of such a rank 6 association scheme is a sufficient condi-
tion:

Proposition 5.4 (Higman). Every rank 6 association scheme with parameters as in the
construction ofA6(Γw) arises from a regular 3-graph.

Proof. Let (V, {Ri}5i=0) be an association scheme with parameters (and notation) as in
Construction 5.1. Define T = R0 ∪ R1 ∪ R2, then T is an equivalence relation on V with
equivalence classes of size 3. Denote X = V/T . We give a labeling of the elements of V
as a 3-fold cover of K|X|, and then we verify that in this cover we only have matchings of
the 3 types shown in Figure 1. Let a ∈ X be any fibre, and label its elements by a1, a2, a3

so that (a1, a2) ∈ R1. Then (
ai, ai+1 (mod 3)

)
∈ R1

for i = 1, 2, 3. We now label the elements of each fibre x 6= a in X by x1, x2, x3 so that

(ai, xi) ∈ R3

for i = 1, 2, 3. To prove that (V,R3) is a 3-fold cover of K|X| with matchings of the 3
permitted types, we prove two things:

(1) (xi, xi+1 (mod 3)) ∈ R1 for all x ∈ X and i = 1, 2, 3,

(2) there is no matching such that (xi, yj) ∈ R3 and (xj , yi) ∈ R3, where i 6= j.

Proof of (1): Assume that (xi, xi+1) ∈ R2. Let k be such that (ai, xi+1) ∈ Rk. Then
we have:

(xi, ai) ∈ R3, (xi, xi+1) ∈ R2, (xi+1, ai) ∈ Rk′ .

Therefore:
p3

2k′ 6= 0.

Examining column 3 in the matrix B2, we deduce that k′ = 4, which means that k = 5.
Also, we have:

(ai, xi+1) ∈ Rk, (ai, ai+1) ∈ R1, (ai+1, xi+1) ∈ R3.

This implies that:
pk13 6= 0.

Examining row 3 in the matrix B1, we deduce that k = 4, which is a contradiction.
Proof of (2): Assume that (xi, yj) ∈ R3 and (xj , yi) ∈ R3 for some i 6= j. Let k be

such that (xi, yi) ∈ Rk. W.l.o.g we may assume that j = i+ 1 (mod 3). Then we have:

(xi, yi) ∈ Rk, (xi, xi+1) ∈ R1, (xi+1, yi) ∈ R3.

Therefore:
pk13 6= 0.

Examining row 3 in the matrix B1 we see k = 4. Also, we have:

(yi, xi) ∈ Rk′ , (yi, yi+1) ∈ R1, (yi+1, xi) ∈ R3.
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Thus we obtain:
pk
′

13 6= 0,

which implies that k′ = 4 and k = 5, a contradiction.
It follows that all the matchings of the graph (V,R3) are of the 3 types shown in Fig-

ure 1, and we can define a weight w on X by w(x, x) = 1 and w(x, y) = 1, ζ or ζ2 for
x 6= y according to as the matching is of the first, second or third type. It is straightforward
to verify that δw is regular.

5.2 Characterization and feasibility conditions

We now sum up the results of the previous sections with our characterization of regular 3-
graphs. Notice that the equivalence of (ii) and (iii) is a characterization of cyclic (n, 3, c2)-
covers in terms of association schemes.

Corollary 5.5. Let Γ be an antipodal 3-fold cover of Kn. The following are equivalent:

(i) Γ defines a regular 3-graph with parameters (n, a, b);

(ii) Γ is a cyclic (n, 3, b)-cover;

(iii) A6(Γ) is an association scheme.

Using this characterization we would like to obtain feasibility restrictions on the pa-
rameters (n, a, b) of regular 3-graphs. We begin by calculating the character-multiplicity
tables ofA4(Γw) andA6(Γw). We used the well-known computer software Mathematica
to calculate these tables, the program code is presented in [7].

The character-multiplicity table ofA4(Γw) is:
1 2 n− 1 2(n− 1)
1 2 −1 −2
1 −1 α −α
1 −1 β −β




1
n− 1
z1

z2

 .
Here:

• α and β are the roots of x2 − (a− b)x− (n− 1) = 0,

• z1 = 2nβ
β−α ,

• z2 = 2n− z1 = 2nα
α−β .

If z1 = z2 = n then we have α = −β, and α, β = ±
√
n− 1.

Otherwise, z2 − z1 is a non-zero integer, and we have:

z2 − z1 = 2n

(
α

α− β
− β

β − α

)
= 2n

(
α+ β

α− β

)
.

This means that α − β =
√

(a− b)2 + 4(n− 1) is rational, i.e. (a − b)2 + 4(n − 1) is a
square, which implies that α and β are rational algebraic integers, and thus are integers.
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The character-multiplicity table ofA6(Γw) is:
1 1 1 n− 1 n− 1 n− 1
1 ζ ζ2 α αζ αζ2

1 ζ2 ζ α αζ2 αζ
1 1 1 −1 −1 −1
1 ζ ζ2 β βζ βζ2

1 ζ2 ζ β βζ2 βζ




1

z1/2
z1/2
n− 1
z2/2
z2/2

 .

Here:

• αζ and αζ2 are the roots of x2 + αx+ α2 = 0,

• βζ and βζ2 are the roots of x2 + βx+ β2 = 0.

Remark 5.6. In Higman’s note appeared the equations:

• x2 − αx+
(

3(n−1)
2 + α2

)
= 0,

• x2 − βx+
(

3(n−1)
2 + β2

)
= 0,

which led him to the false conclusion that nmust be odd. These equations are the result of a
miscalculation of the intersection matrices B3 and B5 ofA6(Γw) (compare these matrices
from our paper with those from the note [6]).

Summing up all the considered restrictions we obtain:

Proposition 5.7. Necessary conditions for the set (n, a, b) of parameters of a regular 3-
graph are:

(i) n = a+ 2b+ 2,

(ii) 3|n,

(iii) The roots α and β of the equation x2 − (a− b)x− (n− 1) = 0 are integers,

(iv) α− β divides nα.

Proof. Item (i) appears in the beginning of Section 3. Item (ii) is Corollary 4.5. Item (iii)
comes from the latter analysis of the character-multiplicity table of A4(Γw), and (iv) is
just the integrality of the multiplicity z2

2 = nα
α−β ofA6(Γw).

These feasibility conditions provide a list of just 64 feasible parameter sets with n ≤
1000. We refer to [7] for the complete list and details about known constructions for some
of them.

5.3 The symplectic example

D. G. Higman provided an infinite family of regular 3-graphs which is described briefly
below.

In [5], Higman considers a more general cohomological setting, and presents several
group theoretic examples of regular 3-cocycles (here cochains are functions into a monoid
with the appropriate conditions). These examples are mainly extensions of examples by
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D. E. Taylor in [15]. We mention one of them. In this example, we consider weights with
values in the additive group of the field GF (q), thus we will use additive notation: C2

+

instead of C2
· , δ+ instead of δ· etc.

Let V be a 2m-dimensional vector space over GF (q). Let B be a non-degenerate
alternating bilinear form on V . Then B ∈ C2

+(V,GF (q)) is a weight on V with values in
GF (q). In case q is a prime, this 3-cocycle is a q-graph. To see that in this case Φ = δ+B
is a regular q-graph we consider the symplectic group Sp(2m, q). It acts transitively on
the non-zero vectors of V , thus the subgroup H := V Sp(2m, q) of the affine group on
V acts 2-transitively on the vectors of V . The coboundary Φ = δ+B is invariant under
translations and is therefore invariant under the action of H on V . This provides an infinite
family of regular q-graphs for every prime q.

6 New constructions

The equivalence of regular 3-graphs with parameters (n, a, b) and cyclic (n, 3, b)-covers
provides a rich source of new examples of regular 3-graphs.

In their recent paper [8], Klin and Pech present a construction of cyclic (m2, 3, m
2

3 )-
covers from generalized Hadamard matrices of orderm over the cyclic group of order 3; the
set of such matrices is denoted by gH(U3,m). Their method takes as input any generalized
Hadamard matrix H ∈ gH(U3,m) and produces a so-called skew generalized Hadamard
matrix W ∈ gH(U3,m

2) of order m2; such matrices correspond to cyclic (m2, 3, m
2

3 )-
covers, this is the Godsil-Hensel matrix of the cover.

We used classifications of generalized Hadamard matrices with suitable parameters
(see [3], [9] and [14]) to construct all the corresponding non-isomorphic cyclic covers
using the Klin-Pech method, which provide different regular 3-graphs. A summary of our
new constructions of regular 3-graphs:

• 1 new example with parameters (36, 10, 12),

• 1 new example with parameters (45, 19, 12) (exceptional),

• 1 new example with parameters (81, 25, 27),

• 1 new example with parameters (144, 46, 48),

• 28 new examples with parameters (324, 106, 108).

For the complete list of feasible parameter sets with n ≤ 1000, and details about the
above examples see [7].

7 Extension to regular t-graphs with t ≥ 4

The theory outlined in this paper can be extended to regular t-graphs with any t ≥ 4 only if
we impose certain restrictions on the parameters of the regular t-graph. For example, when
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t is odd, the parameters of a regular t-graph are:

n,

m(1),

m(ζ) = m(ζt−1),

...

m(ζ
t−1/2) = m(ζ

t+1/2).

A graph Γw defined by a regular t-graph will be distance regular only if most parameters
of the regular t-graph are equal. Explicitly, in the case that t is odd we demand:

m(ζ) = m(ζ2) = · · · = m(ζ
t−1/2).

In this case, these will also be cyclic covers since for any t we have

CSt
(Ct) ∼= Ct.

Here we use the notation Ct ≤ St for the cyclic group Ct = 〈(1, 2, . . . , t)〉.
Higman’s theory also extends to regular t-graphs with t ≥ 4 in the case of equal pa-

rameters (as described above). The construction of A4(Γw) is exactly the same, and it has
a rank 2t refinement which completely determines the weight w (analogously to A6(Γw)
in the case of regular 3-graphs). Thus, the extension of our theory to t ≥ 4 is described
schematically in Figure 2:

Regular
t-graph

with equal
parameters

ks +3

_g

�'

(n, t, c2)-cover with
cyclic matchingsKS

��

+3 The metric association
scheme of the cover

u}
Association scheme
with 2t− 1 classes

and particular
parameters

Figure 2: Extension to t ≥ 4
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