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Abstract
We study the transfer of two-dimensional Lennard-Jones solutes into the two-dimensional Lennard-Jones solvent.
Thermodynamic quantities associated with this process are calculated. For this purpose the Monte Carlo method in two
different ensembles, reflecting different thermodynamic restrictions, is utilized. The excess free enthalpy, excess
enthalpy (p,T), and excess free energy and excess internal energy (V,T) of the transfer of a solute into the solvent are
calculated. In addition to the Monte Carlo method the thermodynamic perturbation theory is applied to the same system.
The necessary expressions to calculate the transfer properties within the thermodynamic perturbation theory are
derived. The theoretical results are tested against the Monte Carlo computer simulations. Very good agreement between
the thermodynamic perturbation theory results and exact computer simulations is obtained. These results lend some
confidence into the thermodynamic perturbation theory and suggests its application to more realistic systems.
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1. Introduction

The two-dimensional, also called 2D, fluids had so
far received less theoretical attention as their three dimen-
sional counterpart.1–7 The reason is that they were in 
beginning considered as less interesting, supposedly not
being a good representation of real systems. However, if
molecules of a fluid are confined between the parallel
plates, separated for less than two molecular diameters,
then the system effectively behaves as two-dimensional.
Examples of such systems are monolayers adsorbed on
solid substrates,8 or surfactant adsorbed on an air/water in-
terface. The two-dimensional fluids are interesting per se;
one aspect of particular importance in their behavior is the
effect of low dimensionality on phase transitions.1, 10–12

Experimental studies13, 14 of the adsorption of krypton at
low pressures on exfoliated graphite and graphitized car-
bon black indicated that the adsorbed molecules in many
ways are qualitatively similar to the two-dimensional flu-
id. So on the one hand, two-dimensional fluids can be
considered as a simple representation of the liquid phase
adsorbed at a solid surface where the lateral interaction

prevail. On the other hand, two-dimensional fluids are 
often used as a coherency test for theories initially deve-
loped for the realistic three-dimensional (3D) systems. In
addition, the 2D models can often be much easier evalu-
ated numerically than their 3D counterparts.

The main reason for our interest in 2D systems lies
in fact that computer simulations are much less time con-
suming in two than in three dimensions.15–19 In past this
allowed us to study the thermodynamic properties (heat
capacity, for example), which could not be obtained in a
3D geometry with a sufficient degree of accuracy (for re-
view see20). However, the simulations are, even in case of
simple models, considerably more time consuming than
analytical theories and further development of numerical-
ly less intensive approaches is clearly warranted. The 2D
Lennard-Jones fluid can be used as a reference system for
calculations based on the two-dimensional model of 
water.17 This model, also called Mercedes-Benz model of
water, was originally proposed by Ben-Naim.21 and later
modified and extensively studied by Dill, Haymet and
others.15, 16 The model serves as simplified representation
of water and its behavior when in bulk (pure water) or in
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mixture with hydrophobic or polar solutes.15, 16 In this 
water representation each molecule is modeled as a disk
that interacts with other such waters through: i) a
Lennard-Jones (LJ) interaction, and ii) an orientation-de-
pendent hydrogen bonding interaction through three radi-
al arms arranged as in the Mercedes-Benz (MB) logo.
Despite of its simplicity the model correctly predicted
many experimental properties of pure water as also its role
in hydration.15, 16 This has proved that simplified models
can sometimes address the questions that cannot be ad-
dressed by the more realistic ones; the all-atom simula-
tions most often converge too slowly to provide reliable
results for thermodynamic properties of interest for solva-
tion. Hence, there is need for simplified models with 
fewer parameters, and which can be evaluated by the the-
ories that are numerically less demanding. Thermodyna-
mic perturbation theory is an example of such approach.

The interparticle pair potential which governs the
interaction between atoms and molecules can practically
always be divided into the repulsive and attractive part. At
high densities, i.e. in liquid regime, the properties of a flu-
id are largely determined by the geometrical factors asso-
ciated with efficient packing of particles. An idea of repre-
senting dense fluid as strongly repulsive particles moving
in the uniform attractive potential forms the basis of the
celebrated van der Waals equation.22 In dense fluids the
attractive forces, keeping the particles together, have rela-
tively weak influence on the structure of the system.
Accordingly, the attractive interaction can be represented
merely as a perturbation to the strongly repulsive force.
Such an approach shall only be useful if the reference sys-
tem can readily be calculated and, of course, with a suffi-
cient degree of accuracy. Solvation of non-polar solute in
the Mercedes-Benz water (2D Lennard-Jones disks with
hydrogen-bonding arms) has previously been studied by
Southall and Dill,16 using the Monte Carlo approach. The
Mercedes-Benz water, stripped off the hydrogen bonding
arms is just a 2D Lennard-Jones fluid. In order to effi-
ciently apply the thermodynamic perturbation theory to
this problem, we first need to have an accurate informa-
tion about the 2D Lennard-Jones mixture. This prompted
us to investigate the problem outlined below.

In the present contribution we study the thermody-
namic properties associated with transfer of 2D Lennard-
Jones solutes of different diameters into the Lennard-
Jones solvent. The quantities of interest, reflecting the 
nature of solute and solvent particles, are the excess ener-
gy and Helmholtz free energy of transfer in one case, or
enthalpy and Gibbs free enthalpy of transfer in the other,
depending on the external conditions, which dictate the
choice of the ensemble used in simulations. For this pur-
pose we applied the thermodynamic perturbation theory
as also the computer simulation techniques under N,V,T
(constant number of particles, volume, temperature) and
N,p,T (constant number of particles, pressure and temper-
ature) conditions. One aim of this paper is to test critically

an approximate, but computationally very efficient, ther-
modynamic perturbation theory for the 2D Lennard-Jones
fluid. Note that this contribution is merely the first step in
studying the thermodynamics of transfer of nonpolar
solutes from vacuum into the model water-like fluid. 

2. Monte Carlo Simulations

We studied the binary mixture composed of Len-
nard-Jones disks. The component 1, which is present in
large excess, was called solvent, and the component 2, so-
lute. The interaction potential was defined as 

(1)

where εij is the depth of the potential well and σij is the di-
mensionless contact parameter between particle of species
ith and jth. The standard Lorentz-Berthelot rules22 were 
assumed to be valid. The inter-particle distances rij were
scaled to the LJ contact parameter of the species number
one, σ11, to be dimensionless. While σ11 was fixed at val-
ue 1.0 during these calculations, the solute size parameter
σ22 was allowed to vary from 0.1 to 5.5. The Lennard-
Jones well-depths εij were assumed to be the same for all
the i – j interaction pairs, and equal to εij = ε = 1.0.

To obtain thermodynamic and structural properties
of the model solution the Monte Carlo method in the
N,P,T and N,V,T ensembles were applied. We used the
standard periodic boundary conditions in the minimum
image approximation. The simulations were performed on
a system of hundred (100) solvent and from one (1), up to
ten (10) solute particles. From our previous experience in
computer simulation of similar systems we trust that the
results presented in this paper show no dependence on the
size or shape of the simulation ’box’. 

Some necessary details of computer simulations are
given next. About 2 × 105 passes were usually needed for
the system to get equilibrated, while the following 106 – 
5 × 107 passes were utilized in the production runs, depen-
ding on the convergence rate. For solutes of bigger size
longer runs were needed to get the fully convergent 
results. Insertion method or, as also called, Widom’s test
particle method23 was used to calculate the thermodyna-
mic quantities associated with the transfer of a solute par-
ticle into pure solvent. The method can be considered as
an example of the free energy perturbation technique. A
solute particle is placed at random into the system (sol-
vent) and its hypothetical interactions with all the solvent
particles is computed. This value is used to calculate the
Boltzmann factor; in the N,V,T method it is the statistical
average of Boltzmann’s factors, which yields the excess
free energy of the transfer. Other thermodynamic quanti-
ties, associated with the process of introducing solute into
solvent (solvation thermodynamics), can be computed in a
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similar way. They are represented as configurational aver-
ages over the states generated during the computer simu-
lation.

In this manner, the excess free energy (or excess free
enthalpy) changes as also their appropriate derivatives can
be calculated in the selected ensemble. We calculated the
transfer excess free enthalpy ∆G and excess free energy
∆A using the formulas15, 24 where ψ is the interaction

(2)

(3)

energy of the inserted particle with the system and β =
1/kBT. As usually, T is the absolute temperature and kB
Boltzmann’s constant. The excess enthalpy ∆H, and 
excess energy ∆E of transfer are given by where HN is the 

(4)

(5)

enthalpy of the system of N particles and HN+1 = HN + ψ.
The excess entropies can be calculated as

(6)

(7)

3.  Thermodynamic Perturbation
Theory

The key quantity in the thermodynamic perturbation
approach is the Helmholtz free energy for the system of
interest. We have calculated this quantity using the infor-
mation about the hard-disk mixture; in other words, an
equivalent mixture of hard disks (HD), with the free ener-
gy AHD, was taken as the reference system. The Barker-
Henderson perturbation theory25, 26 was utilized to calcu-
late the Lennard-Jones free energy

(8)

x1 = 1/( 1 + 2) is fraction of solvent, and x2 = 1–x1 the
fraction of solute molecules. Further ukl(r) is the Lennard-
Jones potential, and = 1 + 2 is the total number den-
sity of particles present. The parameter d12 is calculated as

(9)

where Dij isdefined with the following integral 

(10)

The pair distribution functions between particles of
species k and l forming the reference hard-disk mixture,
g0

kl(r), were obtained by solving the relevant Percus-
Yevick integral equation.22 To calculate the hard-disk term
of the Helmholtz free energy we integrated the equation
for reduced pressure Z HD

mix = p/ kBT as derived by Barrio
and Solana27 (see their Eq. 14 and Eq. 17)

(11)

to obtain

(12)

where η = π/4 Σi xi D
2
ii is the overall packing fraction,

and s is defined as

(13)

The parameter smix is calculated from the expression

(14)

The coefficient b in Eq. 12 is obtained with the help
of the formula

(15)

where CHD
mix is

(16)
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and coefficients aij are given by

(17)

(18)

Finally, the coefficient a21 was obtained from the
last expression simply by changing D11 to D22. 

Calculation of the free energy ALJ is merely a first
step in this theory. In what follows, the equations needed
to evaluate the transfer quantities will be derived. As sta-
ted before N1 is the number of solvent and N2 the number
of solute particles, T is the absolute temperature, and V
volume. In accordance with the standard terminology we
denote the free enthalpy by GLJ, energy by ELJ, and en-
thalpy as HLJ.

22

(19)

(20)

(21)

(22)

Transfer quantities can be calculated as changes in
properties caused by a solute particle introduced into the
large amount of pure solvent. The transfer free energy at
constant volume was obtained via the expression28

(23)

where dN
2 was set to one because we were calculating

transfer free energy for a single particle. The expression
for transfer energy at constant volume had a similar form

(24)

Note that dN2 was already set to 1. The transfer free
enthalpy and enthalpy had similar forms as the expressi-
ons given in Eq. (23) and Eq. (24), except that the deriva-
tives were taken at constant pressure, instead of at con-
stant volume. In the thermodynamic perturbation forma-
lism it was not convenient to calculate the derivatives at
constant pressure directly, that is why they had to be trans-

formed into derivatives at constant volume. It can be
shown, however, that the transfer free enthalpy at constant
pressure is equal to the equivalent free energy change 
obtained at constant volume.

(25)

For the transfer enthalpy at constant pressure the fol-
lowing formula was derived

(26)

where S is entropy of the mixture, calculated as

(27)

and V
–

2 is the volume per solute particle. The latter quanti-
ty was calculated as

(28)

In the expression above, χT is the isothermal com-
pressibility, which can be calculated as

(29)

All the quantities of interest, expressed above as 
derivatives with respect to the temperature, or number
densities of the first 1, or the second species 2, were
evaluated numerically. In this way calculated thermod-
ynamic quantities contained ideal contributions, which
had to be subtracted before the thermodynamic perturba-
tion results were compared with the corresponding com-
puter simulations. To our best knowledge the expressions
given above had not been presented before.

4. Numerical Results

Before presenting our numerical results we wish to dis-
cuss briefly earlier studies of similar systems. Scalise6, 7, 29

studied a binary mixture of the Lennard-Jones disks in or-
der to calculate the gas-liquid phase equilibrium. Both
Lennard-Jones species had the same size, which is why he
used a somewhat different type of the thermodynamic per-
turbation theory than ourselves. In fact, the method used
here is more general than the one used before. Scalise6, 7, 29

was interested in gas-liquid phase transition in the binary
mixture, and therefore he did not present any results being
of interest for understanding the solvation processes in
these mixtures.
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Monte Carlo calculations shown in the present paper
were performed for mixtures of hundred Lennard-Jones
disks representing solvent (σ11 = 1), and ten (10) Lennard-
Jones disks, called the solute. All the thermodynamic
quantities are given in the reduced units: temperature and
energy are normalized with respect to the Lennard-Jones
energy parameter εLJ(A* = A/εLJ, T* = kB *T/εLJ), and the
distances are scaled to the LJ contact parameter of the
species number one (solvent) σ11 (r* = r/σ11). The numer-
ical results presented in this paper apply to the reduced

pressure p* = 0.931 and reduced temperature T* = 2.0.
First in Figure 1 we display the results for the excess free
enthalpy of transfer of a solute molecule to the solvent as
a function of the solute size as given by the Lennard-Jones
size parameter σ22. The results from thermodynamic per-
turbation theory are drawn with the dashed line, while the
results from the Monte Carlo simulation in isothermal,
isobaric (P,T) ensemble are denoted by symbols. As we
see the excess free enthalpy of transfer is a monotonically
increasing function of the size of the Lennard-Jones
solute. This means that it is increasingly more difficult to
solvate the solute as it size increases. Transfer free en-
thalpy rises asymptotically as the second power of the
solute size, which is consistent with the results for the
analogous three dimensional system.30

Next in Figure 2, the excess enthalpy of the transfer
is shown; notation is the same as for Fig. 1 above. This
quantity is positive and it gets larger as the size of the
solute increases. So the excess enthalpy does not favor
the transfer, and neither does the excess entropy. The lat-
ter quantity is shown in Figure 3 to make the thermody-
namic description of the transfer process complete. From
the figures shown so far we can conclude that the ther-
modynamic perturbation theory as used here yields 
excellent agreement with the machine calculations. An

advantage of the computer simulations is that they also
provide the various distribution function, but since they
were not much of the interest for the present study they
are not shown here. In the next figures (Figures 4 to 6) the
excess free energy and excess energy of transfer are pre-
sented. These calculations apply to fluid densities having
the same pressure as those presented in Figure 1. Again
the results from thermodynamic perturbation theory are
drawn with dashed line and the results from the Monte
Carlo simulation in isothermal, isochoric ensemble (V,T)

are denoted by symbols. The agreement between the two,
very different methods of calculation, as they are TPT
and MC, is excellent again. Notable difference from the
P,T results is connected with the excess internal energy of
transfer shown in Figure 5. This quantity is namely nega-
tive in sign, in contrast to the excess enthalpy presented
in Figure 3.
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Figure 1: The excess free enthalpy of transfer as a function of the
solute size σ*22 at T* = 2.0 and P* = 0.931. The Monte Carlo results
at constant pressure are presented by symbols, and the TPT calcula-
tions by the dashed line.
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Figure 2: The excess enthalpy of transfer as a function of the solute
size at T* = 2.0 and P* = 0.931. Notation as for Fig. 1.
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Figure 3: The excess entropy of transfer (actually T*∆S) as a func-
tion of the solute size at T* = 2.0 and P* = 0.931. Notation as for
Fig. 1. 



A brief discussion of these results in view of the, 
so-called, scaled particle theory31–33 (SPT) seem to be ap-
propriate here. In the scaled particle theory the free en-
thalpy of transfer is related to the work spent to form a
cavity in solvent, needed to accommodate the solute parti-
cle. This work is (asymptotically) dependent on volume of
the solute molecule. In case of mixture of disks, transfer
free enthalpy should accordingly be proportional to the
square of the solute size: ∝ σ2

22. In Figure 8 we plotted the
excess free enthalpy of transfer divided by the square of
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To complement the thermodynamic characterization
given above we also calculated dependence of the partial
molar volumes of both components as a function of the
solute size. We presented the thermodynamic perturbation
theory results in Figure 7. Molar volume of the solvent is
presented with the solid line and the one of solute with the
dashed line. 
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Figure 4: The excess free energy of transfer as a function of the
solute size at T* = 2.0. The Monte Carlo results at constant volume
are presented by symbols, and the TPT calculations by dashed line.
Calculations were performed for densities with pressure equal to
P* = 0.931.
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Figure 5: The excess energy of transfer as a function of the solute
size at T* = 2.0 and P* = 0.931. Notation as for Fig. 4.
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Figure 6: The excess entropy of transfer as a function of solute size
at T* = 2.0 and P* = 0.931. Notation as for Fig. 4.
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Figure 7: Partial molar volumes of solvent (solid line) and solute
(dashed line) as a function of the solute size at T* = 2.0 and P* =
0.931.
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Figure 8: The excess free enthalpy of transfer divided by the
square of solute Lennard-Jones size parameter (σ*22) as a function of
the solute size; T* = 2.0 and P* = 0.931. The Monte Carlo results at
constant pressure are presented by symbols, and the TPT calcula-
tions by the continuous line.
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Povzetek
V ~lanku je predstavljena solvatacija Lennard-Jonesovih diskov v Lennard-Jonesovem topilu. S pomo~jo Monte Carlo
simulacije pri konstantnem tlaku in volumnu smo izra~unali termodinami~ne koli~ine vnosa topljenca v topilo. Prese`-
no prosto energijo, prosto entalpijo, energijo, entalpijo in entropijo smo izra~unali tudi s pomo~jo termodinami~ne per-
turbacijske teorije in jih primerjali s vrednostmi, ki smo jih dobili pri simulaciji. Ujemanje med obema na~inoma ra~u-
nanja je dobro.


