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Abstract

A step forward is made in a long standing Lovász problem regarding hamiltonicity of
vertex-transitive graphs by showing that every connected vertex-transitive graph of order a
product of two primes arising from the group action of the projective special linear group
PSL(2, q2) on cosets of its subgroup isomorphic to the projective general linear group
PGL(2, q) contains a Hamilton cycle.
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1 Introduction
In 1969, Lovász [20] asked if there exists a finite, connected vertex-transitive graph without
a Hamilton path, that is, a simple path going through all vertices of the graph. To this
date no such graph is known to exist. Intriguingly, with the exception of K2, only four
connected vertex-transitive graphs that do not have a Hamilton cycle are known to exist.
These four graphs are the Petersen graph, the Coxeter graph and the two graphs obtained
from them by replacing each vertex by a triangle. The fact that none of these four graphs
is a Cayley graph has led to a folklore conjecture that every Cayley graph is hamiltonian
(see [1, 8, 9, 11, 12, 16, 22, 32, 37] and the survey paper [6] for the current status of this
conjecture).

Coming back to the general class of vertex-transitive graphs, the existence of Hamilton
paths, and in some cases also Hamilton cycles, in connected vertex-transitive graphs has
been shown for graphs of particular orders, such as, kp, k ≤ 6, pj , j ≤ 5 and 2p2 (see
[5, 15, 17, 18, 23, 24, 26, 27, 38] and the survey paper [16]). (Throughout this paper p will
always denote a prime number.) Further, some partial results have been obtained for graphs
of order pq, q < p a prime [2, 25]. The main obstacle to obtaining a complete solution lies
in graphs with a primitive automorphism group having no imprimitive subgroup. It is the
object of this paper to move a step closer to resolving Lovász question for vertex-transitive
graphs of order a product of two primes by showing existence of Hamilton cycles in graphs
arising from the action of PSL(2, q2) on cosets of its subgroup isomorphic to PGL(2, q)
(see Theorem 3.2). The strategy used in the proof is introduced in Section 3. In the next
section we fix the terminology and notation, and gather same useful results and tools.

2 Terminology, notation and some useful results
2.1 Basic definitions and notation

Throughout this paper graphs are finite, simple and undirected, and groups are finite. Fur-
thermore, a multigraph is a generalization of a graph in which we allow multiedges and
loops. Given a graph X we let V (X) and E(X) be the vertex set and the edge set of X ,
respectively. For adjacent vertices u, v ∈ V (X) we write u ∼ v and denote the correspond-
ing edge by uv. Let U and W be disjoint subsets of V (X). The subgraph of X induced by
U will be denoted by X〈U〉. Similarly, we let X[U,W ] denote the bipartite subgraph of X
induced by the edges having one endvertex in U and the other endvertex in W .

Given a transitive group G acting on a set V , we say that a partition B of V is G-
invariant if the elements of G permute the parts, the socalled blocks of B, setwise. If the
trivial partitions {V } and {{v} : v ∈ V } are the only G-invariant partitions of V , then G
is primitive, and is imprimitive otherwise.

A graph X is vertex-transitive if its automorphism group, denoted by AutX , acts tran-
sitively on V (X). A vertex-transitive graph is said to be primitive if every transitive sub-
group of its automorphism group is primitive, and is said to be imprimitive otherwise.

A graph containing a Hamilton cycle will be sometimes referred as a hamiltonian graph.

2.2 Generalized orbital graphs

In this subsection we recall the orbital graph construction which is used throughout
the rest of the paper. A permutation group G on a set V induces the action of G on
V × V . The corresponding orbits are called orbitals. An orbital is said to be self-paired if
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it simultaneously contains or does not contain ordered pairs (x, y) and (y, x), for x, y ∈ V .
For an arbitrary union O of orbitals (having empty intersection with the diagonal D =
{(x, x) : x ∈ V }), the generalized orbital (di)graph X(V,O) of the action of G on V with
respect to O is a simple (di)graph with vertex set V and edge set O. (For simplicity rea-
sons we will refer to any such (di)graph as an orbital (di)graph of G.) It is an (undirected)
graph if and only ifO coincides with its symmetric closure, that is, O has the property that
(x, y) ∈ O implies (y, x) ∈ O. Further, the generalized orbital graph X(V,O) is said to
be a basic orbital graph if O is a single orbital or a union of a single orbital and its sym-
metric closure. Note that the orbital graph X(V,O) is vertex-transitive if and only if G is
transitive on V , that the diagonal D is always an orbital provided G acts transitively on V ,
and that its complement, V × V −D is an orbital if and only if G is doubly transitive.

Every vertex-transitive (di)graph admitting a transitive group of automorphismsG with
the corresponding vertex stabilizer H can be constructed as an orbital (di)graph of the
action of the group G on the coset space G/H . The orbitals of the action of G on G/H are
in 1-1 correspondence with the orbits of the action of H on G/H , called suborbits of G.
A suborbit corresponding to a self-paired orbital is said to be self-paired. When presenting
the (generalized) orbital (di)graphX(G/H,O) with the corresponding (union) of suborbits
S the (di)graph X(G/H,O) is denoted by X(G,H,S).

2.3 Semiregular automorphisms and quotient (multi)graphs

Let m ≥ 1 and n ≥ 2 be integers. An automorphism ρ of a graph X is called (m,n)-
semiregular (in short, semiregular) if as a permutation on V (X) it has a cycle decomposi-
tion consisting of m cycles of length n. The question whether all vertex-transitive graphs
admit a semiregular automorphism is one of famous open problems in algebraic graph the-
ory (see, for example, [3, 4, 7, 10, 21]). Let P be the set of orbits of ρ, that is, the orbits of
the cyclic subgroup 〈ρ〉 generated by ρ. Let A,B ∈ P . By d(A) and d(A,B) we denote
the valency of X〈A〉 and X[A,B], respectively. (Note that the graph X[A,B] is regular.)
We let the quotient graph corresponding to P be the graph XP whose vertex set equals P
with A,B ∈ P adjacent if there exist vertices a ∈ A and b ∈ B, such that a ∼ b in X . We
let the quotient multigraph corresponding to ρ be the multigraph Xρ whose vertex set is P
and in which A,B ∈ P are joined by d(A,B) edges. Note that the quotient graph XP is
precisely the underlying graph of Xρ.

2.4 Useful number theory facts

For a prime power r a finite field of order r will be denoted by Fr, with the subscript
r being omitted whenever the order of the field is clear from the context. As usual, set
F ∗ = F \ {0}. Set S∗ = {a2 : a ∈ F ∗} and N∗ = F ∗ \ S∗. The elements of S∗ and N∗

will be called squares and non-squares, respectively. The following basic number-theoretic
results will be needed.

Proposition 2.1 ([35, Theorem 21.2]). Let F be a finite field of odd prime order p. Then
−1 ∈ S∗ if p ≡ 1 (mod 4), and −1 ∈ N∗ if p ≡ 3 (mod 4).

Proposition 2.2 ([35, Theorem 21.4]). Let F be a finite field of odd prime order p. Then
2 ∈ S∗ if p ≡ 1, 7 (mod 8), and 2 ∈ N∗ if p ≡ 3, 5 (mod 8).
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Proposition 2.3 ([29, p. 167]). Let F be a finite field of odd prime order p. Then

|(S∗ + 1) ∩ (−S∗)| =

{
(p− 5)/4, if p ≡ 1 (mod 4),

(p+ 1)/4, if p ≡ 3 (mod 4).

In particular, if p ≡ 1 (mod 4) then |S∗ ∩ (S∗ + 1)| = (p − 5)/4, |N∗ ∩ (N∗ + 1)| =
(p− 1)/4, and |S∗ ∩ (N∗ + 1)| = |S∗ ∩ (N∗ − 1)| = (p− 1)/4.

Using Proposition 2.3 the following result may be easily deduced.

Proposition 2.4. Let F be a finite field of odd prime order p. Then for any k ∈ F ∗, the
equation x2 + y2 = k has p − 1 solutions if p ≡ 1 (mod 4), and p + 1 solutions if
p ≡ 3 (mod 4).

3 Vertex-transitive graphs of order pq
Vertex-transitive graphs whose order is a product of two different odd primes p and q, where
p > q can be conveniently split into three mutually disjoint classes. The first class consists
of graphs admitting an imprimitive subgroup of automorphisms with blocks of size p – it
coincides with (q, p)-metacirculants [2]. The second class consists of graphs admitting an
imprimitive subgroup of automorphisms with blocks of size q but no imprimitive subgroup
of automorphisms with blocks of size p – it coincides with the class of socalled Fermat
graphs, which are certain q-fold covers of Kp where p is a Fermat prime [28]. The third
class consists of vertex-transitive graphs with no imprimitive subgroup of automorphisms.
Following [31, Theorem 2.1] the theorem below gives a complete classification of con-
nected vertex-transitive graphs of order pq (see also [33, 34]). We would like to remark,
however, that there is an additional family of primitive graphs of order 91 = 7 · 13 that
was not covered neither in [31] nor in [34]. This is due to a missing case in Liebeck-Saxl’s
table [19] of primitive group actions of degree mp, m < p. This missing case consists of
primitive groups of degree 91 = 7 · 13 with socle PSL(2, 13) acting on cosets of A4. In
the classification theorem below this missing case is included in Row 7 of Table 1.

Theorem 3.1 ([31, Theorem 2.1]). A connected vertex-transitive graph of order pq, where
p and q are odd primes and p > q, must be one of the following:

(i) a metacirculant,

(ii) a Fermat graph,

(iii) a generalized orbital graph associated with one of the groups in Table 1.

The existence of Hamilton cycles in graphs given in Theorem 3.1(i) and (ii) was proved,
respectively, in [2] and [25]. It is the aim of this paper to make the next step towards proving
the existence of Hamilton cycles in every connected vertex-transitive of order a product of
two primes with the exception of the Petersen graph, by showing existence of Hamilton
cycles in graphs arising from Row 5 of Table 1.

Theorem 3.2. Vertex-transitive graphs arising from the action of PSL(2, q2) on PGL(2, q)
given in Row 5 of Table 1 are hamiltonian.
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Table 1: Primitive groups of degree pq without imprimitive subgroups and with non-
isomorphic generalized orbital graphs.

Row socG (p, q) Action Comment

1 PΩε(2d, 2) (2d − ε, 2d−1 + ε) singular ε = +1 : d Fermat prime
1-spaces ε = −1 : d− 1 Mersenne prime

2 M22 (11, 7) see Atlas
3 A7 (7, 5) triples
4 PSL(2, 61) (61, 31) cosets of

A5

5 PSL(2, q2) ( q
2+1
2 , q) cosets of q ≥ 5

PGL(2, q)

6 PSL(2, p) (p, p+1
2 ) cosets of p ≡ 1 (mod 4)

Dp−1 p ≥ 13

7 PSL(2, 13) (13, 7) cosets of missing in [19]
A4

The existence of Hamilton cycles needs to be proved for all connected generalized or-
bital graphs arising from these actions. Recall that a generalized orbital graph is a union of
basic orbital graphs. Since the considered action is primitive and hence the corresponding
basic orbital graphs are connected, it suffices to prove the existence of Hamilton cycles
solely in basic orbital graphs of this action. This is done in Section 4. The method used is
for the most part based on the socalled lifting cycle technique [1, 16, 22]. Lifts of Hamilton
cycles from quotient graphs which themselves have a Hamilton cycle are always possible,
for example, when the quotienting is done relative to a semiregular automorphism of prime
order and when the corresponding quotient multigraph has two adjacent orbits joined by
a double edge contained in a Hamilton cycle. This double edge gives us the possibility to
conveniently “change direction” so as to get a walk in the quotient that lifts to a full cycle
above. By [21, Theorem 3.4] a vertex-transitive graph of order pq, q < p primes, contains
a (q, p)-semiregular automorphism. The lifting cycle technique, however, can only be ap-
plied provided appropriate Hamilton cycles can be found in the corresponding quotients. It
so happens that graphs arising from Row 5 of Table 1 also admit (p, q)-semiregular auto-
morphisms, and it is with respect to these automorphisms that the lifting cycle technique
is applied. In constructing Hamilton cycles, the corresponding quotients have proved to
be easier to work with than the quotients obtained from (q, p)-semiregular automorphisms.
Namely, as one would expect, it is precisely the existence of Hamilton cycles in the quo-
tients that represents the hardest obstacle one needs to overcome in order to assure the
existence of Hamilton cycles in the graphs in question. In this respect the well-known
Jackson theorem will be useful.

Proposition 3.3 (Jackson Theorem [13, Theorem 6]). Every 2-connected regular graph of
order n and valency at least n/3 contains a Hamilton cycle.

It will be useful to introduce the following terminology. Let X be a graph that admits
an (m,n)-semiregular automorphism ρ. Let P = {S1, S2, . . . , Sm} be the set of orbits
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of ρ, and let π : X → XP be the corresponding projection of X to its quotient XP . For
a (possibly closed) path W = Si1Si2 · · ·Sik in XP we let the lift of W be the set of all
paths in X that project to W . The proof of following lemma is straightforward and is just
a reformulation of [26, Lemma 5].

Lemma 3.4. Let X be a graph admitting an (m, p)-semiregular automorphism ρ, where
p is a prime. Let C be a cycle of length k in the quotient graph XP , where P is the set of
orbits of ρ. Then, the lift of C either contains a cycle of length kp or it consists of p disjoint
k-cycles. In the latter case we have d(S, S′) = 1 for every edge SS′ of C.

4 Actions of PSL(2, q2)

The following group-theoretic result due to Manning will be needed in the proof of Theo-
rem 3.2.

Proposition 4.1 ([36, Theorem 3.6’]). Let G be a transitive group on Ω and let H = Gα
for some α ∈ Ω. Suppose that K ≤ G and at least one G-conjugate of K is con-
tained in H . Suppose further that the set of G-conjugates of K which are contained in
H form t conjugacy classes under H with representatives K1,K2, . . . ,Kt. Then K fixes∑t
i=1 |NG(Ki) : NH(Ki)| points of Ω.

Let Fq2 = Fq(α), where α2 = θ for F ∗q = 〈θ〉. Let G = PSL(2, q2), where q ≥ 5
is an odd prime. For simplicity reasons we refer to the elements of G as matrices; this
should cause no confusion. Then G has two conjugacy classes of subgroups isomorphic
to PGL(2, q), with the corresponding representatives H and H ′. Since each element in
PGL(2, q2) \ PSL(2, q2) interchanges these two classes, it suffices to consider the action
of G on the set H of right cosets of H in G. The degree of this action is pq, where
p = (q2 + 1)/2. Without loss of generality let

H =

{
1√
|A|

A : A =

[
a b
c d

]
, a, b, c, d ∈ Fq

}
≤ G,

and

H ′ = Hg where g =

[
1 0
0 β

]
,

where β ∈ F ∗q2 \ (F ∗q2)2. Let

Q =

〈[
1 β
0 1

]〉
and Q1 =

〈[
1 1
0 1

]〉
.

Then Q ≤ H ′ and Q ∩H = 1. Moreover, we have the following result.

Lemma 4.2. The action of Q on H is semiregular. Furthermore, the action of its normal-
izer NG(Q) onH has q+1

2 orbits of length q and one orbit of length q2(q−1)
2 .

Proof. We first prove that the action of Q on H is semiregular. Suppose on the contrary
that there exists g ∈ G such that HgQ = Hg. Then HgQg−1 = H , and so gQg−1 ≤ H .
But this contradicts the choice of Q. Hence Q is semiregular onH.
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One can see that

N = NG(Q) =

{[
a b
0 a−1

]
: a ∈ 〈α〉, b ∈ Fq2

}
∼= Z2

q o Zq−1.

We now compute the orbits ofN in its action onH, by analyzing subgroups ofN conjugate
in G to subgroups of H . (Note that there is only one conjugacy class of subgroups in G
isomorphic to N .) Observe that a subgroup of N is isomorphic to one of the following
groups: Z2

q , Z2
q o Zq−1, Z2

q o Zl, where 2 ≤ l < q − 1, Zq , Zq o Zq−1, Zq o Zl, where
2 ≤ l < q − 1, and Zl, where l divides q − 1. Since Q is semiregular on H no subgroup
of N containing Q fixes a coset in H (that is, no subgroup of N containing Q is conjugate
to a subgroup of H). Further, there exists unique subgroup of order q2 in N , which clearly
contains Q, and so this subgroup cannot fix a coset in H as well. Therefore, we only need
to consider subgroups of N isomorphic to Zq o Zl and Zl, where l divides q − 1.

The group N contains q + 1 conjugacy classes of maximal subgroups isomorphic to
Zq oZq−1, which are divided into two G-conjugate subsets of equal size, with the respec-
tive representatives:

K =

{[
a b
0 a−1

]
: a ∈ 〈α〉, b ∈ Fq

}
and I =

{[
a bβ
0 a−1

]
: a ∈ 〈α〉, b ∈ Fq

}
,

where K is contained in H and I is not. Let Ki = Kg be a subgroup of N conjugate to
K. Since H has only one conjugacy class of subgroups isomorphic to K, we have t = 1
(for the meaning of t, see Proposition 4.1). Since NG(K) = NH(K) = K, it therefore
follows from Proposition 4.1 that Ki fixes only the coset Hg. In view of maximality of Ki

in N , the N -orbit of Hg on H is of length |N |/|Ki| = q. Since the G-conjugates of K in
N form q+1

2 different conjugacy classes inside N , we can conclude that N has q+1
2 orbits

of length q.
Let K0 be the subgroup of order q in K. Since |NG(K0) : NH(K0)| = |N : K| = q,

any Kg
0 ≤ N fixes q cosets, which form the N -orbit containing Hg (see the the previous

paragraph). Let K1 be a subgroup of K isomorphic to Zq o Zl, where l
∣∣ q − 1 and

l 6∈ {1, q − 1}. One may check that any Kg
1 ≤ N has the same fixed cosets as K (and so

it is a subgroup of a coset stabilizer in N ). Consequently N does not have orbits of length
q · q−1l for 1 ≤ l < q−1. Further, for any subgroupK2 ≤ K ofH isomorphic to Zl, where
l divides q − 1 and l ≥ 3, the fact that |NG(K2) : NH(K2)| = |Dq2−1 : D2(q−1)| = q+1

2 ,
implies thatK2 fixes q+1

2 cosets. These cosets are clearly contained in the above q+1
2 orbits

of N of length q, and consequently N does not have orbits of length q−1
l .

We have therefore shown that the only other possible stabilizers are Z2 and Z1. Since
|H| = q(q2 + 1)/2 and since the length of an orbit of N onH with coset stabilizer isomor-
phic to Z2 or to Z1 equals, respectively, q

2(q−1)
2 and q2(q − 1), we have

q(q2 + 1)

2
= q

q + 1

2
+ a

q2(q − 1)

2
+ bq2(q − 1), (4.1)

where a is the number of orbits of N on H with coset stabilizer isomorphic to Z2 and b is
the number of orbits of N on H on which N acts regularly. The equation (4.1) simplifies
to q2 = q+aq(q−1)+2bq(q−1), which clearly has a = 1 and b = 0 as the only possible
solution. This completes the proof of Lemma 4.2.
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Lemma 4.2 will play an essential part in our construction of Hamilton cycles in basic
orbital graphs arising from the action of PSL(2, q2) on cosets of PGL(2, q) given in Row 5
of Table 1. The strategy goes as follows. Let X be such an orbital graph. By Lemma 4.2,
the action of the normalizer N = NG(Q) on the quotient graph XQ with respect to the
orbits Q of a semiregular subgroup Q consists of one large orbit of length q(q − 1)/2 and
(q + 1)/2 isolated fixed points. We will show the existence of a Hamilton cycle in X by
first showing that the subgraph of XQ induced on the large orbit has at most two connected
components and that each component contains a Hamilton cycle with double edges in the
corresponding quotient multigraph. If there is only one component then its Hamilton cycle
is modified to a Hamilton cycle in XQ by choosing in an arbitrary manner (q+ 1)/2 edges
and replacing them by 2-paths having as central vertices the (q+ 1)/2 isolated fixed points
of N in XQ. By Lemma 3.4, this cycle lifts to a Hamilton cycle in X . Such 2-paths indeed
exist because every isolated fixed point has to be adjacent to every vertex in the large orbit
(see Lemma 4.5). If the subgraph of XQ induced on the large orbit has two components
with corresponding Hamilton cycles C0 and C1, then a Hamilton cycle in X is constructed
by first constructing a Hamilton cycle in XQ in the following way. We use two isolated
fixed points to modify these two cycles C0 and C1 into a cycle of length q2(q−1)/2+2 by
replacing an edge in C0 and an edge in C1 by two 2-paths each having one endvertex in C0

and the other in C1, whereas the central vertices are the above two isolated fixed points. In
order to produce the desired Hamilton cycle in XQ the remaining isolated fixed points are
attached to this cycle in the same manner as in the case of one component. By Lemma 3.4,
this cycle lifts to a Hamilton cycle in X . Formal proofs are given in Propositions 4.7
and 4.8.

It follows from the previous paragraph that we only need to prove that the subgraph of
XQ induced on the large orbit ofN contains a Hamilton cycle with at least one double edge
in the corresponding multigraph or two components each of which contains a Hamilton
cycle with double edges in the corresponding multigraph. For this purpose we now proceed
with the analysis of the structure of basic orbital graphs (and corresponding suborbits)
arising from the action of PSL(2, q2) on cosets of PGL(2, q) given in Row 5 of Table 1.
We apply the approach taken in [34] where the computation of suborbits is done using
the fact that PSL(2, q2) ∼= PΩ−(4, q) and that the action of PSL(2, q2) on the cosets of
PGL(2, q) is equivalent to the induced action of PΩ−(4, q) on nonsingular 1-dimensional
vector subspaces 〈v〉 such that Q(v) = 1, where Q is the associated quadratic form. For
the sake of completeness, we give a more detailed description of this action together with a
short explanation of the isomorphism PSL(2, q2) ∼= PΩ−(4, q) (see [14, p. 45] for details).

Let φ ∈ Aut(Fq2) be the Frobenius automorphism of Fq2 defined by the rule φ(a) =
aq , a ∈ Fq2 . (Note that φ is an involution.) Let W = 〈w1,w2〉 = F 2

q2 be a natural
SL(2, q2)-module. Then SL(2, q2) acts on W in a natural way. In particular, the action of

g =

[
a b
c d

]
∈ SL(2, q2) on W is given by

w1g = aw1 + bw2,

w2g = cw1 + dw2.

Let W be an SL(2, q2)-module with the underlying space W and the action of SL(2, q2)
defined by the rule w ∗ g = wgφ, where g = (aij) ∈ SL(2, q2) and gφ = (φ(aij)ij) =
(aqij). One can now see that the action · : W ⊗W × SL(2, q2) → W ⊗W defined by the
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rule
(w ⊗w′) · g = wg ⊗w′ ∗ g = wg ⊗w′gφ

is an action of SL(2, q2) on the 4-dimensional space W ⊗W (that is, on a tensor product
of W and W ). The kernel of this action equals Z(SL(2, q2)), and thus this is in fact a
4-dimensional representation of G = PSL(2, q2) (an embedding of G into GL(4, q2)).
Further, the set B = {v1,v2,v3,v4}, where v1 = w1 ⊗ w1, v2 = w2 ⊗ w2, v3 =
w1 ⊗w2 + w2 ⊗w1, v4 = α(w1 ⊗w2 −w2 ⊗w1), is a basis for W ⊗W over Fq2 .

Since G fixes the 4-dimensional space V = spanFq
(B) over Fq it can be viewed as

a subgroup of GL(4, q). A non-degenerate symplectic form f of W and W defined by
f(w1,w2) = −f(w2,w1) = 1 and f(w1,w1) = f(w2,w2) = 0 is fixed by SL(2, q2). It
follows that G fixes a non-degenerate symmetric bilinear form of W ⊗W defined by the
rule

(w′1 ⊗w′2,w
′′
1 ⊗w′′2 ) = f(w′1,w

′′
1 )f(w′2,w

′′
2 ).

Then we have

((vi,vj))4×4 =


0 1 0 0
1 0 0 0
0 0 −2 0
0 0 0 2θ

 ,

and so for x =
∑4
i=1 xivi ∈ V and y =

∑4
i=1 yivi ∈ V the symmetric form (x,y) and

the associated quadratic form Q are given by the rules

(x,y) = x2y1 + x1y2 − 2x3y3 + 2θx4y4 and

Q(x) =
1

2
(x,x) = x1x2 − x23 + θx24.

By computation it follows that Q has q2 + 1 singular 1-dimensional subspaces of V . As
for the remaining q(q2 + 1) nonsingular 1-dimensional subspaces, G has two orbits {〈v〉 :
Q(v) = 1,v ∈ V } and {〈v〉 : Q(v) ∈ F ∗q \ S∗,v ∈ V }. Since these two representations
of G are equivalent, we set Ω to be the first of these two orbits. Then the action of G on
H is equivalent to the action of G on Ω. By comparing their orders, we get PSL(2, q2) ∼=
PΩ−(4, q). The following result characterizing suborbits of the action ofG on the cosets of
PGL(2, q) in the context of the action of PΩ−(4, q) on Ω was proved in [34] (see also [30]).

Proposition 4.3 ([34, Lemma 4.1]). For any 〈v〉 ∈ Ω where Q(v) = 1, the nontrivial
suborbits of the action of G on Ω (that is, the orbits of G〈v〉) are the sets S±λ = {〈x〉 ∈
Ω : (x,v) = ±2λ,Q(x) = 1}, where λ ∈ Fq , and

(i) |S0| = q(q∓1)
2 for q ≡ ±1 (mod 4);

(ii) |S±1| = q2 − 1;

(iii) |S±λ| = q(q + 1) for λ2 − 1 ∈ N∗;

(iv) |S±λ| = q(q − 1) for λ2 − 1 ∈ S∗.

Moreover, all the suborbits are self-paired.
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Let X = X(G,H,Sλ) be the basic orbital graph associated with Sλ, and take

ρ =

[
1 1
0 1

]
∈ G.

For k ∈ Fq we have

v1ρ
k = v1 + k2v2 + kv3,

v2ρ
k = v2,

v3ρ
k = 2kv2 + v3,

v4ρ
k = v4,

and so ρk maps the vector x =
∑4
i=1 xivi ∈ V to

xρk = x1v1 + (k2x1 + x2 + 2kx3)v2 + (kx1 + x3)v3 + x4v4.

Identifying x with (x1, x2, x3, x4) we have xρk = (x1, k
2x1 + x2 + 2kx3, kx1 + x3, x4).

One can check that for k 6= 0 we have 〈xρk〉 6= 〈x〉, and thus ρ is (p, q)-semiregular. Let
Q = 〈ρ〉, and letQ be the set of orbits of Q. These orbits will be referred to as blocks. The
set Ω decomposes into two subsets each of which is a union of blocks from Q:

I = 〈(0, 0, x3, x4)〉Q = {〈(0, 2kx3, x3, x4)〉 : k ∈ Fq},
where − x23 + θx24 = 1.

L = 〈(x1, x2, 0, x4)〉Q = {〈(x1, k2x1 + x2, kx1, x4)〉 : k ∈ Fq},
where x1 6= 0 and x1x2 + θx24 = 1.

Note that the subset I contains q(q+1)
2 vertices which form q+1

2 blocks, and the subset L
contains q2(q−1)

2 vertices which form q(q−1)
2 blocks. By IQ and LQ, we denote, respec-

tively, the set of blocks in I and L; that is, Q = IQ ∪ LQ.

Remark 4.4. Recall that

N = NG(Q) =

〈[
a b
0 a−1

]
: a ∈ 〈α〉, b ∈ Fq2

〉
.

One may check directly that IQ consists precisely of the orbits of N of length q and that L
is the orbit of N of length q2(q−1)

2 .

In the next lemma we observe that X〈L〉 and X〈L〉Q are vertex-transitive and show
that the bipartite subgraph of XQ induced by IQ and LQ is a complete bipartite graph.

Lemma 4.5. With the above notation, the following hold:

(i) The induced subgraphX〈L〉 and the quotient graphX〈L〉Q are both vertex-transitive.

(ii) For 〈x〉Q ∈ IQ and 〈y〉Q ∈ LQ we have

d(〈x〉Q, 〈y〉Q) =

{
1, if λ = 0,

2, if λ 6= 0.
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Proof. By Remark 4.4, N is transitive on L, and so the induced subgraph X〈L〉 and the
quotient graph X〈L〉Q are both vertex transitive, and thus (i) holds.

To prove (ii), take two arbitrary blocks 〈x〉Q ∈ IQ where x = (0, 0, x3, x4) and
〈y〉Q ∈ LQ where y = (y1, y2, 0, y4). Then y1 6= 0 and x3 6= 0, and 〈x〉 ∼ 〈yρk〉 if and
only if

(x,yρk) = ((0, 0, x3, x4), (y1, k
2y1 + y2, ky1, y4)) = ±2λ,

that is, if and only if

−2x3ky1 + 2θx4y4 = ±2λ. (4.2)

From (4.2) we get that k = θx4y4∓λ
x3y1

and so for given 〈x〉 and 〈y〉we have a unique solution
for k if λ = 0 and two solutions if λ 6= 0. It follows that for 〈x〉Q ∈ IQ and 〈y〉Q ∈ LQ
we have d(〈x〉Q, 〈y〉Q) = 1 or 2, depending on whether λ = 0 or λ 6= 0, completing part
(ii) of Lemma 4.5.

In what follows, we divide the proof into two cases depending on whether λ = 0 or
λ 6= 0.

4.1 Case S0

Let

ε =

{
2, if q ≡ 1, 3 (mod 8),

0, if q ≡ 5, 7 (mod 8).

The following lemma gives us the number of edges inside a block and between two
blocks from LQ for the orbital graph X(G,H,S0).

Lemma 4.6. Let X = X(G,H,S0). Then for 〈x〉Q ∈ LQ the following hold:

(i) d(〈x〉Q) = ε,

(ii) d(〈x〉Q, 〈y〉Q) = 1 for q+1
2 blocks 〈y〉Q ∈ LQ,

(iii) d(〈x〉Q, 〈y〉Q) = 2 for 1
4 (q2−3q−2(ε+ 1)) blocks 〈y〉Q ∈ LQ if q ≡ 1 (mod 4),

and for 1
4 (q2 − q − 2(ε+ 1)) blocks 〈y〉Q ∈ LQ if q ≡ 3 (mod 4).

Proof. Fix a block 〈x〉Q ∈ LQ where x = (1, 1, 0, 0). For any 〈y〉Q ∈ LQ, where
y = (y1, y2, 0, y4) with y1 6= 0, we have 〈x〉 ∼ 〈y〉ρk if and only if (k2 + 1)y1 + y2 = 0,
and therefore, since y1y2 + θy24 = 1, if and only if

k2 = −y−21 + θ(y−11 y4)2 − 1. (4.3)

It follows from (4.3) that 〈x〉 is adjacent to one vertex in the block 〈y〉Q ∈ LQ if k = 0
and to two vertices in this block if k 6= 0. Clearly, k = 0 if and only if

θy24 = 1 + y21 . (4.4)

Proposition 2.4 implies that (4.4) has q+1 solutions for (y1, y4), and therefore since 〈y〉 =
〈−y〉 we have a total of q+1

2 choices for 〈y〉. This implies that d(〈x〉Q, 〈y〉Q) = 1 for q+1
2

blocks 〈y〉Q ∈ LQ, proving part (ii).
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To prove part (i), take y = ±x = ±(1, 1, 0, 0). Then, by (4.3), there are edges inside
the block 〈x〉Q if and only if k2 = −2. This equation has solutions if and only if q ≡
1, 3 (mod 8) (see Propositions 2.1 and 2.2), and thus the induced subgraph X〈〈x〉Q〉 is a
q-cycle for q ≡ 1, 3 (mod 8) and a totally disconnected graph qK1 if q ≡ 5, 7 (mod 8).

Finally, to prove part (iii) let m be the number of blocks 〈y〉Q ∈ LQ for which
d(〈x〉Q, 〈y〉Q) = 2. Suppose first that q ≡ 1 (mod 4). Then, combining together the
facts that X is of valency 1

2q(q− 1), that d(〈x〉Q) = ε and that 〈x〉 is adjacent to 1
2 (q+ 1)

vertices in the set I and to exactly one vertex from q+1
2 blocks in LQ, we have

m =
1

2

(
1

2
q(q − 1)− q + 1

2
− q + 1

2
− ε
)

=
1

4
(q2 − 3q − 2(1 + ε)).

Suppose now that q ≡ 3 (mod 4). Then, replacing the valency of X in the above
computation with 1

2q(q + 1) we obtain, as desired, that m = 1
4 (q2 − q − 2(1 + ε)).

We are now ready to prove existence of a Hamilton cycle in X(G,H,S0).

Proposition 4.7. The graph X = X(G,H,S0) is hamiltonian.

Proof. Let X〈L〉′ be the graph obtained from X〈L〉 by deleting the edges between any
two blocks B1, B2 ∈ LQ for which d(B1, B2) = 1 (see Lemma 4.6(ii)). By Lemma 4.5,
X〈L〉Q is vertex-transitive, and consequently one can see that also X〈L〉′Q is vertex-
transitive.

If q ≡ 1 (mod 4) then Lemma 4.6(iii) implies that X〈L〉′Q is of valency m = 1
4 (q2 −

3q− 2(1 + ε)). If, however, q ≡ 3 (mod 4) then Lemma 4.6(iii) implies that X〈L〉′Q is of
valencym = 1

4 (q2−q−2(1+ε)). If q = 5 then ε = 0 andm = 1
4 (q2−3q−2(1+ε)) = 2.

If q ≥ 7 then using the facts that q2 − 7q − 6(1 + ε) ≥ 0 for q ≡ 1 (mod 4) and that
q2 − q − 6(1 + ε) ≥ 0 for q ≡ 3 (mod 4) one can see that

m =
1

4
(q2 − (2± 1)q − 2(1 + ε)) ≥ 1

3

q(q − 1)

2
=

1

3
|LQ|.

Suppose first that X〈L〉′Q is connected. If q = 5, then X〈L〉′Q is just a cycle C. For
q ≥ 7, by Proposition 3.3, X〈L〉′Q admits a Hamilton cycle, say C again. Clearly C is
also a Hamilton cycle of X〈L〉Q. Form C a Hamilton cycle in XQ can be constructed
by choosing arbitrarily (q + 1)/2 edges and replacing them by 2-paths having as central
vertices the (q + 1)/2 isolated fixed points of N in XQ. By Lemma 3.4, this lifts to a
Hamilton cycle in X .

Next, suppose that X〈L〉′Q is disconnected. For q = 5, since X〈L〉′Q is a vertex tran-
sitive graph of order 10 and degree 2, it must be a union of two 5-cycles. For q ≥ 7, since
m ≥ 1

3 |LQ|, it follows that X〈L〉′Q has just two components. By Proposition 3.3, each
component admits a Hamilton cycle. Take a respective Hamilton path for each component,
say U = U1U2 · · ·Ul, and U ′ = U ′1U

′
2 · · ·U ′l , where l = q(q−1)

4 . Choose any two isolated
fixed points W1 and W2 and construct the cycle D = W1UW2U ′W1. Choose arbitrarily
(q + 1)/2 − 2 edges in U ∪ U ′ and replace them by 2-paths having as central vertices the
remaining (q+1)/2−2 isolated fixed points. Then we get a Hamilton cycle inXQ, which,
by Lemma 3.4, lifts to a Hamilton cycle in X .
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4.2 Case Sλ with λ 6= 0

Proposition 4.8. The graph X = X(G,H,S±λ), where λ 6= 0, is hamiltonian.

Proof. As in the proof of Lemma 4.6, fix a block 〈x〉Q ∈ LQ where x = (1, 1, 0, 0). For
any 〈y〉Q ∈ LQ where y = (y1, y2, 0, y4) with y1 6= 0, we have yρk = (y1, k

2y1 +
y2, ky1, y4), and so 〈x〉 ∼ 〈yρk〉 if and only if (k2 + 1)y1 + y2 = ±2λ, which implies,
since y1y2 + θy24 = 1, that k2 = ±2λy−11 − y

−2
1 + θ(y−11 y4)2− 1. It follows that there are

at most four solutions for k. Hence each vertex in L is adjacent to at most four vertices in
each block from LQ (including the block containing this vertex).

Let m be the valency of X〈L〉Q. Since, by Proposition 4.3, the valency of X is, re-
spectively, q2 − 1, q2 − q and q2 + q, we get that m ≥ 1

3 |LP | =
1
3
q(q−1)

2 provided

m ≥ 1

4
((q2 − j)− (q + 1)− 4) =

1

4
(q2 − q − j − 5) ≥ 1

3

q(q − 1)

2
,

where j ∈ {1, q,−q} for q ≥ 7 and j ∈ {1,−q} for q = 5. One can check that this
inequality holds for all q ≥ 5. We can therefore conclude that X〈L〉Q, which is vertex-
transitive by Lemma 4.5, has at most two connected components. The rest of the argument
follows word by word from the argument given in the proof of Proposition 4.7, since, by
Lemma 4.5, d(〈x〉Q, 〈y〉Q) = 2, for any 〈x〉Q ∈ IQ and 〈y〉Q ∈ LQ.

5 Proof of Theorem 3.2
Proof of Theorem 3.2. Let X be a connected vertex-transitive graph of order pq, where q
and p = (q2+1)/2 are primes, arising the action given in Row 5 of Table 1. As explained in
Section 3, we can assume that X is a basic orbital graph arising from a group action given
in Row 5 of Table 1, and thus it admits a Hamilton cycle by Propositions 4.7 and 4.8.
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