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Unsupervised learning of scene and object planar parts
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Abstract. In this work an adaptive method for accurate and robust grouping of local features belonging to planes
of interior scenes and object planar surfaces is presented. For arbitrary set of images acquired from different views,
the method organizes a huge number of local SIFT features to fill the gap between low-level vision (front end) and
high level vision, i.e. domain specific reasoning about geometric structures. The proposed method consists of
three steps: exploration, selection, and merging with verification. The exploration is a data driven technique that
proposes a set of hypothesis clusters. To select the final hypotheses a matrix of preferences is introduced. It
evaluates each of the hypothesis in terms of number of features, error of transformation, and feature duplications
and is applied in quadratic form in the process of maximization. Then, merging process combines the information
from multiple views to reduce the redundancy and to enrich the selected representations. The proposed method is
an example of unsupervised learning of planar parts of the scene and objects with planar surfaces.

Key words: unsupervised learning, visual learning, local descriptors, SIFT descriptor, feature grouping

Nenadzorovano ǔcenje prizora in planarnih objektov v njem

Povzetek. Metoda, predstavljena v̌clanku, je namenjena ne-
nadzorovanemu ǔcenju prizora oziroma planarnih delov objek-
tov, ki ga sestavlajo. Ǔcenje je izvedeno s poljubnim naborom
slik, zajetih iz razlǐcnih zornih kotov. Predlagani postopek je pri-
lagojen za nataňcno in robustno razvrščanje velikanskegǎstevila
lokalnih deskriptorjev SIFT v skupine, ki določajo posamezne
planarme dele v prizoru. Geometrijske enote, ki jih dobimo s
takim urejanjem nizkonivojskih značilk, so most med nizkim
oz. zaznavnim in visokim oz. vsebinskim nivojem razumevanja
vizualne informacije.

Metoda je sestavljena iz treh korakov: raziskovanja pros-
tora, izbire hipotez in zdrǔzevanja hipotez. Prvi korak, razisko-
vanje vizualne informacije, je podatkovno voden postopek, ki
zgradiširši nabor hipotez. Izbor hipotez je izveden s kvadratno
formo preferěcne matrike, ki ovrednoti hipoteze glede naštevilo
znǎcilnic in transformacijsko napako, pri tem se podvajanje
znǎcilnic penalizira. V zadnjem koraku združimo hipoteze, ki
so isti planarni del, izrǎcunan iz slik, zajetih iz različnih zornih
kotov. Tako se izognemo podvajanju hipotez in hkrati oboga-
timo predstavitev posameznega dela prizora. Eksperimentalni
rezultati potrjujejo uspěsnost metode za nenadzorovanno učenje
planarnih delov prizora in objektov.

Klju čne besede: nenadzorovano ǔcenje, vizualno ǔcenje,
lokalni deskriptorji, deskriptor SIFT, grupiranje značilnic.

1 Introduction

The use of local features is becoming increasingly popu-
lar for solving different vision tasks. Recently, the SIFT
descriptor has been proposed for describing distinctive
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scale-invariant features in images [7]. SIFT features can
be used to perform reliable matching between different
images of an object or scene. The invariance to image
translation, scaling, and rotation makes them appropriate
for stereo matching, tracking applications and also suit-
able for mobile robot localization. SIFT features are good
natural visual landmarks appropriate for tracking over a
long period of time from different views, e.g., in [10]
the authors propose to use SIFT features for building 3D
maps. Local descriptors have previously been used for
scene description [4]. In [11, 9] local descriptors are used
to extract objects from video clips but no 3D informa-
tion about the object is generated. On the other hand in
work of [6] 3D geometrical information is built about ob-
ject surfaces. 3D geometrical presentation is model from
range images.

In this work we present a method for accurate and
robust grouping of local features belonging to planes of
interior scenes such as walls, floor, and the planar sur-
faces of objects. In for example [2, 5, 8] features such as
line segments and junctions are selected for plane descrip-
tion. RANSAC algorithm is used to estimate transforma-
tion between images [13]. Here we experiment with SIFT
descriptors as they uniquely describe a particular part of
the scene. For an arbitrary set of images acquired from
different views, the method organizes a huge number of
local SIFT features to fill the gap between the low-level
vision (front end), i.e. outputs of various filtering op-
erations and high-level vision, i.e., domain-specific rea-
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Figure 1.Illustration of feature extraction. Each circle corresponds to a region described by the SIFT descriptor.

soning about geometric structures. The proposed method
consists of three steps: exploration, selection, and merg-
ing with verification. The exploration step is a data-driven
technique that proposes a set of hypothesis models from
which the selection step chooses the ones that explain the
data in accordance with a matrix of preferences. Since the
set of local features varies from view to view, the goal of
the merging process is to combine the information from
multiple views to reduce the redundancy and to enrich the
selected representations. As demonstrated by experimen-
tal results, the proposed method is an example of unsu-
pervised learning of planar parts of the scene and objects
with planar surfaces.

2 Step 1: Exploration

Given a set of descriptors of local patches of an interior
scene, the goal is to group them into clusters in accor-
dance with some geometric property or a model. Here we
examine the planar surfaces.

Let us assume that we have a set of imagesI =
{I1, I2, ...IN} of a particular interior scene. The first step
of our approach is detection of DoG points and compu-
tation of SIFT descriptor for each local region [7] (Fig-
ure1). Next, for each pair of images,{(Ii, Ij)|i < j, i =
1, . . . , N−1, j = 2, . . . , N}, a set of matching features is
determined. The matches are obtained on the basis of the
Euclidean distance between SIFT descriptors. Each SIFT
feature in imageIi is compared to all SIFT features in im-
ageIj . The feature has a match if the Euclidean distance
to the closest SIFT feature is at least four times shorter
than the Euclidean distance to the next closest SIFT fea-
ture. LetSij denote a set of SIFT features ofIi having a
match inIj (Figure2).

Now, the task is to find inSij the features that be-
long to planar parts of the scene and to group them in
accordance with the plane they belong to. For this pur-
pose we apply a plane-to-plane homography [3]. The

Figure 2.The best matches fromSij .

computation of the plane-to-plane homography requires
at least four features in two images of the same plane. For
a larger set of points the system is over-determined and
the plane-to-plane homography is estimated by a homo-
geneous estimation method. A reliable solution requires
to start the process of plane searching with a large set of
small SIFT feature clusters, i.e. the initial hypotheses.
The features ofSij , here represented by their coordinates,
{f t

i ; f
t
i = (xt

i, y
t
i), t = 1, 2, . . . , |Sij |}, are clustered by

the k-means clustering algorithm. The algorithm is per-
formed several times, each time starting with different ar-
bitrarily initial sets of cluster centers. The valuek denotes
the number of clusters obtained by one iteration and de-
pends on the number of features|Sij |. In the experiments
thek was set tok = max{round(|Sij |/30), 3}.

The obtained clusters of features define a set of ini-
tial hypothesesHij = {H1

ij , H2
ij , . . . ,H

n
ij}. For each

hypothesisH l
ij a plane to plane homographyP l

ij from Ii

to Ij is computed by applying the RANSAC algorithm
(Algorithm 1). If the algorithm fails to find a solution,
the proportions of features denoted byD andK are de-
creased by a factor 0.95 and the RANSAC is proceeded
again.

Next, the coordinates of all matching features ofSij

are transformed to imageIj in accordance with trans-
formation P l

ij . Displacement errorsd(f t
j , f

t
i P

l
ij); t =
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1, 2, . . . , |Sij | are computed as Euclidean distances. All
features with a displacement error below a pre-specified
tolerance are included in the hypothesis (Figure3). Note
that features of the initial hypothesis can also be excluded
from the hypothesis. Then, a plane-to-plane homography
is recomputed and new features are included in the hy-
pothesis. The process is stopped when there are no fea-
tures that can be added to the hypothesis.

Algorithm 1 Random Sample Consensus Algorithm.

Assume:

The parameters are estimated fromD data items.

There areT data items in total. (In our experiments

D = 0.7× T .)

Tolerancet corresponds to the distance of maximal al-

lowable displacement between features in a matching pair

when transformed to the same image plane and is set to 1

pixel.

1. SelectD data items at random.

2. Estimate parametersp.

3. Find how many data items ofT fit the model with

parametersp within a tolerancet. Call thisK.

4. If K is big enough, exit with success. (In our exper-

imentsK = 0.8× T .)

5. Repeat steps from 1 to 4L times. (In our experi-

mentsL=100.)

6. Fail if you get here.

3 Step 2: Selection

A redundant set of clusters results in many ‘overlapping’
hypotheses. To reduce the redundancy and to keep the
hypotheses that efficiently group the data, a matrix of
preferenceQ is introduced. It is preferred to have a
hypothesis with a large number of features and small
error-of-transformation encoded in diagonal elements of
Q. The off-diagonal terms encode the interaction be-
tween the hypotheses. Duplication of features in different
hypotheses is penalized. We consider only pairwise
overlaps of the hypotheses. Selection of the hypotheses
is performed by maximization of an objective function of
quadratic formhQhT [12]. h is a binary vector of length
n and denotes a set of selected hypotheses. A value 1 at
positioni indicates the presence of thei-th hypothesis and
0 its absence.Q is an × n symmetric matrix. The ele-
ments ofQ are defined asqcc = K1|Zc| − K2ξc,c;
and qcr = −K1|Zc∩Zr|+K2ξc,r

2 ; c 6= r. |Zc|
is the number of features in thec-th hypoth-
esis Hc

ij , i.e., |Zc| = sum(Hc
ij). ξc,r, so

called the error-of-transformation, is defined as
max(

∑
f∈|Zc∩Zr| d(f, fP c

ij)
2,

∑
f∈|Zc∩Zr| d(f, fP r

ij)
2).

The constantsK1 and K2 are the weights determined
experimentally. (In our experimentsK1 = 4 and
K2 = 1.)

To maximize the objective functionhQhT , we use
the tabu search [1]. Vectorh that maximizes the objective
function represents the final selection. Figure4 depicts
the hypotheses selected by the proposed approach. Note
that each of them describes one plane.

3.1 Hypothesis rejection

Due to small differences in camera locations for some ac-
quired image pairs,(Ii, Ij), the computed plane-to-plane
homography lacks the sensitivity and therefore groups to-
gether SIFT features which do not lie on the same plane.
See for example Figure5. To refuse such hypotheses,
the rejection process is applied to give the final set of
hypotheses. For each hypothesisHk

ij we find all image
pairs that contain matches relevant to the hypothesis. The
plane-to-plane homography is determined for each such
image pair. If for at least one image pair the plane to
plane homography does not satisfy most of the matches,
the hypothesisHk

ij is removed from further consideration.

4 Step 3: Merging

Selections on pairs of images{(Ii, Ij)|i < j, i =
1, . . . , N − 1, j = 2, . . . , N} end up with a set of final
hypothesesH = {H1, . . . , Hm}. Each hypothesis deter-
mines a cluster of SIFT features. A SIFT feature is repre-
sented as a structure of feature coordinates(x, y), a SIFT
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(a)

(b)

Figure 3. (a) Initial hypothesis. (b) The hypothesis is enlarged by adding all the features that satisfy the prespecified tolerance of
plane-to-plane homographyP .

vector, and a weight which determines the importance of
the feature. At the beginning all the weights are set to 1.

In I, there are images representing the same parts of
the scene acquired from different locations and viewing
directions. Hence, multiple hypotheses can determine the
same parts of the scene. To reduce the redundancy and to
enrich the final representation, we apply a merging pro-
cess toH.

SIFT descriptors are highly distinctive local parts of
the scene, therefore even a small number of SIFT features
uniquely determines the particular part of the scene. If
in Hi and Hj there exists a subset of common match-
ing features, the hypotheses are candidates for merging.
It is still possible thatHi andHj describe two different
planar parts or different parts of a slightly bending sur-
face. To filter out such cases, features in both hypotheses
are examined in the following way. First, we divide the
features ofHi andHj in three subsets:A = Hi ∩ Hj ,
B = Hi \Hj , andC = Hj \Hi. Next, we find all image
pairs that contain matches from all the three above deter-
mined subsets. We require at least one match from each
subset to do the merging. By applying a plane-to-plane
homography to each such image pair we test if the match-
ing features from subsetsA,B, andC lie on the same
plane. If for all such image pairs the test is positive, we
mergeHi andHj . Features of both hypotheses are trans-
formed to the same image, the weights of featuresHi and
Hj weights are summed and all the SIFT descriptors are
kept. The process of merging is repeated (also on newly

generated hypotheses) until there is no pair of hypothe-
ses with a sufficient number of matching features. The
weights of features give us information about feature sta-
bility. Features with high weights are more stable while
features with low weights are very likely to be outliers.

The reader has to keep in mind that the merged hy-
potheses are still only hypotheses. By acquiring new im-
ages of the scene new information is obtained and the re-
jection of a hypothesis is still possible.

5 Experiments

Results are presented for two experiments. In the first ex-
periment the scene is fixed. In the second the configura-
tion of objects in the scene is different for the acquired set
of images. In both experiments we deal with gray images
of resolution640× 480.

In the first experiment the feature clustering was ge-
nerated from 15 images leading to 86 final hypotheses.
After the process of merging we end up with 8 different
planes (Fig.6).

In the second experiment 10 different images were ac-
quired. The process ends up with 54 hypotheses (Fig.7).
Some hypotheses of feature clusters of the same plane
were not merged due to the sparse nature of SIFT fea-
tures and insufficient number of the acquired images. The
hypotheses are built from different images, showing the
same planar part from angels where some parts are un-
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(a) Hypothesis 1 (front site of the printer)

(b) Hypothesis 2 (wall newspaper)

(c) Hypothesis 3 (coat hanger)

Figure 4.Final set of hypotheses. Each of the selected hypothe-

sis represents one plane.

Figure 5.Refused hypothesis.

seen or occluded by objects. Consequently also the re-
sults can show the location of features belonging to one
cluster, even though the planar part is unseen or occluded
by other objects.

6 Conclusion

In this work we present a method for clustering the
SIFT features belonging to planar surfaces. The clus-
ters obtained through the phases of exploration, selec-
tion and merging can be used as initial structures for
building higher-level scene representations. The proposed
method represents unsupervised learning of objects with

planar parts as demonstrated by the second experiment.
The weights attached to the SIFT descriptors can also
be exploited to detect changes in the interior scene, e.g.
changes on the wall newspaper, a coat hanger, and would
together with the time parameter allow for continuous
long-time learning.
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