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Imputation Algorithm Using Copulas

Ene Käärik 1

Abstract

In this paper the author demonstrates how the copulas approach can be used to
find algorithms for imputing dropouts in repeated measurements studies. One prob-
lem with repeated measurements is the knowledge that the data is described by joint
distribution. Copulas are used to create the joint distribution with given marginal
distributions. Knowing the joint distribution we can find the conditional distribu-
tion of the measurement at a specific time point, conditioned by past measurements,
and this will be essential for imputing missing values. Using Gaussian copulas, two
simple methods for imputation are presented. Compound symmetry and the case of
autoregressive dependencies are discussed. Effectiveness of the proposed approach
is tested via series of simulations and results showing that the imputation algorithms
based on copulas are appropriate for modelling dropouts.

1 Introduction

In repeated measurements study each unit is measured several times. In practice it is
common that some of them terminate prematurely before the end of the study.

Therefore, it may be necessary to substitute (impute) dropouts in the data. Those
dropouts themselves are sometimes of scientific interest, especially in case of small data
sets. Imputation is commonly applied to compensate for nonresponse in sample surveys
as well.

Rubin (1976), and Little and Rubin (1987) introduced a hierarchical classification of
missing data mechanisms (see, for example Diggle and Kenward, 1994; Little, 1995).
A dropout process is said to be (1) completely random (CRD), when dropout and mea-
surement processes are independent, (2) random (RD), when dropout process depends
on observed measurements, and (3) informative (ID), when dropout process additionally
depends on unobserved measurements.

Modelling dropouts is difficult procedure, because typically there is little information
in the data to identify dropouts, while modelling depends on the dropout process.
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We use the idea of imputing dropouts via conditional distributions. Therefore, we need
to know the joint distribution of repeated measurements. Copulas provide a convenient
way to present the joint distribution.

The term "copula" comes from Latin, and refers to connecting or joining together.
A copula is a function that joins a multivariate probability distribution to a collection of
univariate marginals, i.e. a copula is a multivariate probability distribution defined on the
n-dimensional unit cube [0, 1]n whose marginal distributions are uniform on the interval
[0, 1].

There are many different copulas. One of the simplest is the independence (or pro-
duct) copula. If the random variables are independent, then the copula function that links
their marginals is the product copula. Hence, in the case of CRD, it is possible to use the
product copula to model the joint distribution of measurement and dropout processes.

2 Notation and basic definitions
Let us introduce some notation.

Suppose that n units are sampled repeatedly over time. The aim is to measure each
unit m times, but due to dropouts some of them are measured at s ≤ m time points. In
general we have a sample of size n of measurements Xj (the time point is usually denoted
by j), and the data form a matrix X = {xij}, i = 1, . . . , n; j = 1, . . . ,m, where due to
dropouts some values are missing. For simplicity, we use notations without subscript for
the subject’s indicator i, usually the lowercase letter is used for subject who drops out,
and subscript denotes the time point.

In consequence we are going to observe continuous or discrete outcome variables
X1, . . . , Xm. Let k be the time point at which the dropping out process starts. We shall
consider a sequence of measurements up to k observations X1, X2, . . . , Xk and we can
assume that until the time point k − 1 we have complete data X1, X2, . . . , Xk−1. The
vector H = (X1, X2, . . . , Xk−1) is called the history of the measurements.

Suppose Xj has a marginal distribution Fj (j = 1, . . . , k). In our approach we assume
that the marginal distribution Fk belongs to the same family as the distributions of the
previous time points. In general, the distribution of the k-variate random vector X =
(X1, X2, . . . , Xk) is unknown. Often it is possible to determine a family of marginal
distributions, but there might not exist any known family of multivariate distributions
suitable to describe the joint distribution of the vector X . If the joint distribution of the
vector X is known, then the conditional distribution of Xk, conditioned by the history H ,
can be used to find the estimate of the missing value.

We will generate the joint distribution using copulas. Theoretical basis of the multi-
variate modelling using copulas is provided by Sklar (1959), showing that the k-dimensional
joint distribution function could be decomposed into its k marginal distributions as a cop-
ula, which completely describes the dependence between the k variables.

Using known marginal distributions F1(x1), . . . , Fk(xk) and a copula C, the function

C(F1(x1), . . . , Fk(xk)) = F (x1, . . . , xk)

defines a joint distribution function (see Nelsen, 1999).
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If the marginal distributions are continuous, then the copula C is unique for every
fixed F and equals to

C(u1, . . . , uk) = F (F−1
1 (u1), . . . , F

−1
k (uk)),

where F−1
1 , . . . , F−1

k are the quantile functions with given marginals, and u1, . . . , uk are
uniform [0, 1] variables.

If C and F1, . . . , Fk are differentiable, then the joint density f(x1, . . . , xk) correspond-
ing to the joint distribution F (x1, . . . , xk) can be written as a product of the marginal
densities and the copula density, and can be expressed as

f(x1, . . . , xk) = f1(x1) · . . . · fk(xk) · c(F1, . . . , Fk; R
∗), (2.1)

where R∗ is the matrix of dependence measures, fj(xj) is the density corresponding to
Fj, (j = 1, . . . , k), and the copula density c is defined as derivative of the copula.

In this paper we consider the Gaussian copula, which represents the dependencies
between univariate marginals, allowing any positive-definite correlation matrix R. As
the number of different dependence parameters in the case of the k-variate distribution
is k(k − 1)/2, some simple model structure describing the dependence matrix could be
used.

According to (2.1), we get the normal joint density

φN(x1, . . . , xk|R) = φ1(x1) · . . . · φ1(xk) · cN [Φ1(x1), . . . , Φ1(xk); R
∗], (2.2)

where cN is the multivariate normal copula density, Φ1 is the univariate standard normal
distribution function, and φ1 is its density.

For constructing a multivariate density we use the marginals F1(x1), . . . , Fk(xk) and
the copula density cN as a dependence function. Defining Yj = Φ−1

1 [Fj(Xj)], j =
1, . . . , k, we get the following formula for the copula density (Clemen and Reilly, 1999)

cN [Φ1(y1), . . . , Φ1(yk); R
∗] =

exp{−Y T (R−1 − I)Y/2}
|R|1/2

, (2.3)

where Y = (Y1, . . . , Yk) and I is the k × k identity matrix.
Thus, we obtain the joint density as follows

φN(x1, . . . , xk|R) = φ1(x1) · . . . · φ1(xk) ·
exp{−QT

k (R−1 − I)Qk/2}
|R|1/2

, (2.4)

where Qk = (Φ−1
1 [F1(x1)], . . . , Φ

−1
1 [Fk(xk)]).

3 Imputation
To present the formula for imputation we should find the conditional density for the vari-
able Xk (which includes dropout) using the history H (complete data).
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Taking into consideration the history, the correlation matrix of k measurements can
be partitioned as

R =

(
Rk−1 r
rT 1

)
,

where Rk−1 is the correlation matrix of the history H = (X1, . . . , Xk−1), and r =
(r1k, . . . , r(k−1)k)

T is the vector of correlations between the history and the time point
k (usually we mean Spearman’s correlations, otherwise we can use the arcsin-transfor-
mation to transform the Pearson correlations to the Spearman ones).

In particular, we focus on the following correlation structures:
(1) compound symmetry, where the correlations between all time points are equal,

rij = ρ, i, j = 1, . . . , k; and
(2) first order autoregressive, where the dependence between observations decreases

as the measurements get further in time, rij = ρ|j−i|, i, j = 1, . . . , k.
The correlation structure and ρ can be estimated by Rk−1.
However, there are many other possible correlation structures. We started our analy-

sis with these two structures because they are the most commonly used, the first corre-
sponds to the situation where the observations do not change over time, and the second
one corresponds to the situation, where the observations change over time according to
the wide-spread autoregressive model.

Hence, from to the definition of the joint density and partition of the correlation ma-
trix, we get the conditional density as follows (see Clemen and Reilly, 1999; Song, 2000)

f(yk|H; R∗) = φ1(yk) · exp{−1

2
[
(yk − rT R−1

k−1(y1, . . . , yk−1)
T )2

(1 − rT R−1
k−1r)

− y2
k]}

·(1 − rT R−1
k−1r)

−1/2. (3.1)

To impute the dropouts we should find the maximum likelihood estimate. It is easy to
see (Käärik, 2005) that when maximizing (3.1) with respect to yk, we get a general form
of imputation algorithm

ŷk = rT · R−1
k−1 · Y

∗
k−1, (3.2)

where Y ∗
k−1 = (y1, . . . , yk−1)

T is the vector of observations for the subject who drops out
at the time point k.

Formula (3.2) is the starting point for consequent algorithms, where we consider the
particular correlation structures.

3.1 The case of compound symmetry
Assume that R has the constant correlation structure or so-called compound symmetry
structure. Then the vector of correlations between the history and time point k is r =
(ρ, . . . , ρ)T and the (k − 1) × (k − 1) correlation matrix for history has the following
structure

Rk−1 =


1 ρ . . . ρ
ρ 1 . . . ρ
... . . .
ρ ρ . . . 1

 .
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The inverse of this correlation matrix R−1
k−1 has a well-known simple form with equal

elements in the main diagonal and equal elements in the off-diagonal (see Rao, 1965).
Taking into account the whole history consisting of the (k − 1) measurements and

(3.2) in the case of compound symmetry, the following formula for imputation is valid
(Käärik, 2005):

ŷCS
k =

ρ

1 + (k − 2)ρ

k−1∑
j=1

yj, (3.3)

where y1, . . . , yk−1 are the observed values for the subject who dropped out at time point
k.

Hence, in the case of compound symmetry we use a weighted sum of past values for
an imputed value.

3.2 The case of autoregressive dependencies
Consider now the first order autoregressive correlation structure. Then the vector of cor-
relations between the history and time point k is r = (ρk−1, ρk−2 . . . , ρ)T . The (k − 1) ×
(k − 1) correlation matrix for history is the following

Rk−1 =


1 ρ ρ2 . . . ρk−2

ρ 1 ρ . . . ρk−3

...
...

... . . . ...
ρk−2 ρk−3 ρk−4 . . . 1

 .

The inverse of the correlation matrix R−1
k−1 is a three-diagonal matrix. The main prop-

erties of this type of three-diagonal matrices are well-known (see Kendall and Stuart,
1976; Raveh, 1985).

Let A be a matrix of order m with the autoregressive correlation structure, and B be a
three-diagonal matrix of order m. Then the inverse matrix A−1 = cB is a three-diagonal
matrix, where c = 1

ρ2−1
and

• bij = 0, if |i − j| > 1;

• b11 = bmm = −1 and bii = −(1 + ρ2), i = 2, . . . ,m − 1;

• bij = ρ, if |i − j| = 1.

So, the inverse matrix of the correlation matrix Rk−1 has following structure

R−1
k−1 =

1

ρ2 − 1
·



−1 ρ 0 . . . 0 0
ρ −(1 + ρ2) ρ . . . 0 0
0 ρ −(1 + ρ2) . . . 0 0
0 0 ρ . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . −(1 + ρ2) ρ
0 0 0 . . . ρ −1


.
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Using the matrix R−1
k−1 and (3.2) we get

yk = (ρk−1, ρk−2, . . . , ρ) · R−1
k−1 · (y1, . . . , yk−1)

T

= (ρk−1, ρk−2, . . . , ρ)· 1

ρ2 − 1
·



−1 ρ . . . 0 0
ρ −(1 + ρ2) . . . 0 0
0 ρ . . . 0 0
...

... . . . ...
...

0 0 . . . −(1 + ρ2) ρ
0 0 . . . ρ −1


·(y1, . . . , yk−1)

T .

Simplifying the last equation we obtain

ŷk = ρ · yk−1. (3.4)

Taking into account the general trend in data, we get the modified formula for impu-
tation

ŷAR
k = ρ

Sk

Sk−1

(yk−1 − Ȳk−1) + Ȳk, (3.5)

where yk−1 is the last observed value for the subject, Ȳk−1 and Ȳk are the mean values
of the time points k and k − 1, respectively, while Sk and Sk−1 are the corresponding
standard deviations. Basically, we use here a standardizing procedure and some kind of
simple regression predictor for imputed value.

4 Simulation study
The goal of the simulation study was to test the effectiveness of the imputation methods
(3.3) and (3.5) by comparison them with some well-known imputation methods in the
case of different missing data mechanisms and sample sizes.

The idea of the comparisons was to start with normally distributed data and then check
the robustness of the imputation methods by moving away from the normal distribution.
We performed two simulation studies: (1) using the standard normal distribution and (2)
using skewed distribution.

We have used the standardized absolute difference between the observed value and
the imputed value as a quality measure. First we generated a complete dataset and then a
dataset with dropouts using a fixed missing data mechanism from the complete set.

4.1 Generation of the complete data
In the first simulation study we generated a complete data matrix from a multivariate nor-
mal distribution using (1) a constant correlation structure, (2) an autoregressive correlation
structure with the correlation coefficients ρ = 0.5 and ρ = 0.7.

We generated data from 3-, 6- and 12-dimensional normal distributions with sample
sizes n = 10 and n = 20, assuming that the data represent repeated measurements. Due to
small sample sizes every value is important, hence we have to impute the missing values.
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The second simulation study was performed with skewed distributed marginals. Sup-
pose X = (X1, . . . , Xk) has the k-variate normal distribution. To get skewed marginals
Z1, . . . , Zk the data were transformed using the following rule

zij =


b1vj for maximum value vj = maxi xij,

b2xij, for every other positive value xij,

xij, otherwise.

The constants are equal b1 = 10 and b2 = 5. Thus, we get the transformed data Zj =
(z1j, . . . , znj), (j = 1, . . . , k), which are extended to the positive direction.

4.2 Generation and imputation of the dropouts

The dropouts occur at the last time points Xk, k = 3, 6, 12, and we examine three cases
of missing mechanism: CRD, RD and ID.

We delete the observation according to the definitions of the CRD, RD and ID denoted
before. Two methods of imputation based on formulas (3.3) and (3.5) were used.

In both simulation studies the methods of imputation were compared with two well-
known methods:

1. Imputation by formula (3.3) versus imputation by linear prediction, where the ob-
servation at the last time point was modelled using previous time points Xk =
β0 + β1X1 + . . . + βk−1Xk−1.

2. Imputation by (3.5) versus imputation using the LOCF -method (Last Observation
Carried Forward ) 2.

4.3 Experimental design

In both simulation studies we generated 3 × 2 × 2 × 3 = 36 different data sets: k =
3, 6, 12 (data from 3-, 6-, 12-dimensional normal distribution), n = 10, 20 (small sample
sizes), ρ = 0.5, ρ = 0.7 and 3 missingness mechanisms (CRD, RD and ID). For each
combination formed by the above simulation factors, 500 runs were performed.

4.4 Calculations

To analyze the obtained results, the average absolute bias was calculated as average dif-
ference between observed values and imputed values. Results were presented in units of
standard deviation of given marginals.

Let wk be the observed value for the subject who drops out at time point k (i. e.
wk = xk or wk = zk according to the simulation study), wkv be the corresponding imputed
value using (3.3) or (3.5) (i.e. wkv = ŷCS

k or wkv = ŷAR
k , respectively) and wkp be the

2When the main interest is the outcome at endpoint of the study (for example in clinical trials), the
LOCF is the most frequently used approach for dealing with missing values in continuous variables.
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corresponding imputed value using well-known rules (linear prediction or LOCF ). The
standardized biases are calculated as follows

SB1 =
wk − wkv

Sk

, SB2 =
wk − wkp

Sk

,

where Sk is the standard deviation of observed values at last time point k.
Mean biases B1 as the average bias for (3.3) or (3.5), and B2 as the average bias

for linear prediction or LOCF rules, were calculated by averaging absolute values of
standardized biases SB1 and SB2 over 500 runs.

The average standard deviations of biases were calculated over 500 runs and denoted
S1 and S2, respectively.

4.5 Results

To estimate the effectiveness of new imputation rules, we compare the mean biases B1

versus B2, and standard deviations S1 versus S2.
In the case of compound symmetry in both simulation studies, the results show the

advantage of (3.3) compared to the linear regression (see Table 1).

Table 1: Results of two simulation studies in the case of compound symmetry.

I CRD RD ID
B1 0.0247 0.0414 1.5109
B2 0.0485 0.0961 1.7835
S1 0.6895 0.7897 1.0236
S2 1.0945 1.5627 2.0957
II CRD RD ID
B1 0.0245 0.1173 1.8994
B2 0.0870 0.3035 2.0685
S1 0.6918 0.8216 1.0243
S2 1.4107 2.0112 2.0647

We can see that in all cases the new formula (3.3) gives better results: it has smaller
bias and is more stable compared to the imputation using the linear regression (B1 <
B2, S1 < S2). Of course in the case of ID both methods perform not well; nevertheless,
the new one gives smaller bias here too. In the case of informative dropouts, the bias is
greater than in the case of random or completely random dropouts, as is usual.

In Table 2 we see the results of the simulation studies in the case of the first order autore-
gressive correlation structure.
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Table 2: Results of two simulation studies in the case of autoregressive dependencies.

I CRD RD ID
B1 0.0199 0.0629 2.1261
B2 0.0213 0.1787 1.0929
S1 0.8296 0.8528 0.9599
S2 0.8776 0.8959 1.4408
II CRD RD ID
B1 0.0426 0.0597 2.6449
B2 0.0870 0.3035 2.0685
S1 0.6918 0.8216 1.0243
S2 0.8776 0.8959 1.4408

Again, the new method (3.5) is more stable (S1 < S2 in all cases). In case of CRD and
RD, the new method gives smaller bias compared to the LOCF -method (B1 < B2 in the
first two columns).

Formula (3.5) did not work well when we had informative dropout. In this case the
bias was larger if compared to the LOCF -method, but standard deviations were smaller
(B1 > B2, S1 < S2 in the last column).

5 Illustration
The data from PWC1703 study were carried out as an example for modelling dropouts.
Fifteen athletes (Estonian skiing team) performed seven consecutive workloads on a bicy-
cle ergometer and the average heart rate was recorded in every step. So we had repeated
measurements at seven time points X1, . . . , X7, and we supposed one observation was
missing for some reason at the last time point. Heart rate data for the subject who dropped
out were 91, 94, 107, 118, 129, 137 beats per minute and the last value was missing (the
observed value was 148 bpm).

For imputing the dropout, we had to follow certain rules due to the above derived
Gaussian copula based approach.

1. Estimation of marginal distributions.
We used the Kolmogorov-Smirnov and Anderson-Darling tests for normality, and,
as usual, small samples almost passed the normality test, thus we did not reject
the normality assumption. The means and standard deviations were calculated for
every time point and summarized in Table 3.

Table 3: Means and standard deviations of heart rate in PWC170 test.

X1 X2 X3 X4 X5 X6 X7

Mean 92.9 99.3 109.5 120 131.7 144.4 152.5
Std Deviation 11.41 12.20 12.27 12.46 13.95 13.55 14.07

n 15 15 15 15 15 15 14

3Physical Working Capacity (PWC170) test: the workload at a heart rate of 170 beats per minute (bpm)
is used to estimate aerobic fitness in athletes.
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2. Estimation of the correlation structure of data.
Of course in solving practical tasks it is difficult to specify the correct correlation
structure. Many methods allow the specification of a ’working’ correlation ma-
trix that is intended to approximate the true correlation matrix. In our correlation
matrix of the data, the correlations decreased monotonically over time, so the nat-
ural choice was autoregressive correlation structure. Calculation of the ’working’
correlation matrix gave us the Pearson correlation coefficient r = 0.88 and the
Spearman’s ρ = 0.87.

3. Estimation of the missing value using formula (3.5)

ŷAR
k = ρ

Sk

Sk−1

(yk−1 − Ȳk−1) + Ȳk = 0.87
14.07

13.55
(137 − 144.4) + 152.5 = 145.8

If we use the LOCF -method we get the imputed value 137 bpm, which is much more
biased.

As illustrated by this example, our imputation strategy allows us to get presumptive
results for practical use.

6 Discussion
In this paper we have introduced the analysis of incomplete repeated measurements using
Gaussian copula, and derived two expressions for imputing dropouts.

These algorithms require determination of the correlation structure, which can be es-
timated from history of measurements.

In general, in both simulation studies the results showed that the imputation algorithms
based on the copula approach are quite appropriate for modelling dropouts.

• The bias is smaller in the case of CRD and RD.

• Standard deviations are more stable.

• The formula (3.3) could be used for small data sets with several repeated measure-
ments (k > n), when linear prediction does not work.

• The formula (3.5) contains more information about data than the LOCF-method.

It is clear that in the case of informative dropouts we do not get good results because
the dropout process is not random, and without supplementary information we cannot
expect good results.
Thus, the new approach has essential advantages and therefore could have widespread
implementation in practice.

1. Normality of marginals is not necessary. Furthermore, the marginals may have
different distributions. The normalizing transformation will be used.

2. The simplicity of formulas (3.3) and (3.5) for calculation.
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3. Effectiveness, especially in the case of of small sample size n relative to the number
of measurements (time points) k.

Certainly the Gaussian copula is not the only use of this approach. Multivariate nor-
mal distribution and linear correlation form the basis for most models used to model
dependence. Even though this distribution has a wide range of dependence structures it
is quite seldom suitable for modeling real data. Linear correlation is a natural measure of
dependence in the context of normal distribution.

The parametric class of copulas named Archimedean copulas (see Nelsen,1998; Gen-
est, 1987; Genest and Rivest, 1993) has attracted particular interest, since its elements
have a number of properties which make them simple to use. Members of the Archimedean
copula class are constructed by a continuous, strictly decreasing and convex function,
which is called the generator of the copula. Different choices of the generator yield sev-
eral important families of copulas. For example, the Frank’s copula with one parameter,
which statistical properties are given in (Genest, 1987). Vandenhende and Lambert (2002)
used Frank’s copula to model the dependence between dropout and responses. We plan
to explore these ideas more thoroughly later.

Copulas provide a natural approach to handle dependencies between repeated mea-
surements. They are not difficult to apply, while being reliable in many situations where
the correlation structure is known.
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[6] Käärik, E. (2005): Handling dropouts by copulas. WSEAS Transactions on Biology
and Biomedicine, 1, 2, 93–97.



120 Ene Käärik
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