folia biologica et geologica 58/1, 115–123, ljubljana 2017 SILVER FIR (ABIES ALBA MILL.) ECTOMyCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH EKTOMIKORIZNI SIMBIONTI BELE JELKE (ABIES ALBA MILL.) NA NARAVNEM OBMOČJU RAZŠIRJENOSTI - PREGLED Tina UNUK1,* & Tine GREBENC1 http://dx.doi.org/10.3986/fbg0025 abStRact Silver fir (Abies alba Mill.) ectomycorrhiza across its areal – a review approach Silver fir is a long-living ecologically valuable and in- digenous conifer species. In temperate forests it is consid- ered as a ˝stabilization tree species .̋ Currently, knowledge of silver fir ectomycorrhiza community is manly based on morphological-anatomical description of ectomycorrhizal fungi and their fruiting bodies. Only recently few studies were published in which authors identified ectomycorrhizal symbionts of silver fir with an aid of molecular (DNA-based) markers. We analysed the silver fir ectomycorrhiza diversity and species richness from different geographic areas and stand types. From all together nine original studies we cal- culated average species richness as well as a Bray-Curtis similarity index. The highest species diversity was observed in studies where a combination of morphological-anatomi- cal and molecular approaches were used for identification. Bray-Curtis similarity index indicated highest dissimilarity of the southern sites comparing to other areas. We correlat- ed the observed outcome to differences in soil conditions, climate, and only basic identification approach. Keywords: Silver fir, ectomycorrhiza, literature review, community composition, site conditions, species diversity, species richness iZVleČeK ektomikorizni simbionti bele jelke (Abies alba Mill.) na naravnem območju razširjenosti – pregled Bela jelka je vednozelena drevesna vrsta, ki ima v nara- vnih gozdovih ekološko pomembno vlogo, saj velja za stabi- lizacijsko drevesno vrsto. Podatki o ektomikoriznih simbi- ontih bele jelke pretežno temeljijo na morfološko- anatomskih opisih ektomikoriznih gliv in njihovih trosnja- kov. Šele v zadnjih letih je bilo objavljenih nekaj študij, v katerih so avtorji združbo ektomikoriznih gliv bele jelke analizirali z molekularnimi pristopi. V preglednem članku smo analizirali rezultate pestrosti ektomikorize bele jelke z devet lokacij in preračunali povprečne vrednostmi vrstne pestrosti ter Bray-Curtisov indeks podobnosti združb. Največjo vrstno pestrost smo ugotovili za vzhodni del areala bele jelke. Poleg ugodnih rastiščnih razmer k temu predvid- oma doprinesejo tudi kombinacija uporabljenih metod za identifikacijo. Bray-Curtisov indeks podobnosti združb kaže, da med zastopanimi regijami znotraj areala (centralna, vzhodna in južna) po vrstni sestavi najbolj odstopajo rastišča v južnem arealu bele jelke. Odstopanja vrstne sestave lahko povežemo z razlikami v pH tal, s tipom tal in s toplejšo, za belo jelko manj primerno klimo. Ključne besede: bela jelka, ekomikoriza, pregledni članek, združba ektomikorize na jelki, rastišči pogoji, bogastvo vrst, vrstna pestrost 1 Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia. * email: tina.unuk@gozdis.si T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 116 folia biologica et geologica 58/1 – 2017 Although in recent years few studies, focusing on ecto- mycorrhizae of silver fir (Abies alba Mill.) have been published, little is known about ectomycorrhiza spe- cies richness of silver fir along its geographic areal. Sil- ver fir is a long-living conifer and the largest tree (up to 60 m) in the genus Abies in Europe. The distribution area is limited mainly to the mountainous regions of eastern, western, southern and central Europe (Figure 1) (Westergren et al. 2010). Silver fir is also an eco- logically valuable and indigenous tree species (Eber- hardt et al. 2000). It is considered as a ˝stabilization tree species” as well as a key tree species, without which maintenance of selection structure in forest communi- ties would be difficult (Klopčič et al. 2009). As most European forest tree species, silver fir forms an ectomycorrhiza, a symbiosis with fungi from Ascomycota and Basidiomycota (Schirkonyer et al. 2013). Beside the exchange of nutrients and metabolites between symbiotic ectomycorrhizal fungi and plant host, formation of ectomycorrhizae on tree roots alters root growth (Smith & Read 2008) and protects them against root diseases, which increases the survival rate of silver fir seedlings (Schirkonyer et al. 2013). Currently ectomycorrhizal communities on silver fir remain poorly identified. Most silver fir ectomycor- rhiza descriptions were based on morphological and anatomical characteristics (Comandini et al. 2004, Pacioni et al. 2001, Cremer 2009) and characterized without the exact identification of fungal symbiont (Rudawska et al. 2016). In addition, some potential ec- tomycorrhiza fungi were connected to silver fir based on proximity of sporocarps occurrence (Lagana et al. 2000, 2002). Until now only few studies have been pub- lished in which authors had identified ectomycorrhiza on silver fir applying molecular (DNA-based) markers (Eberhardt et al. 2000, Cremer 2009, Wazny 2014, Schirkonyer et al. 2013, Rudawska et al. 2016, Wazny & Kowalski 2017). Ectomycorrhiza diversity and community struc- ture, tree age, rooting depth, soil characteristics, and other characteristics can be used as a prediction data for potentially altered tree responses in given environ- ments. To evaluate the significance of the ectomycor- rhiza community shifts, a base knowledge on the ecto- mycorrhiza diversity and community structure is re- quired. For this reason, we reviewed all published studies that focused ectomycorrhiza on silver fir to assess and analyse the species richness and its varia- tion on geographic gradient, and under generalized site conditions from the currently analysed locations. 1 INTRODUCTION 2 MATERIALS AND METHODS 2.1 collection of mycorrhizal occurrence data The review is based on published studies of ectomycor- rhiza on silver fir (Table 1) where at least the list of identified types of ectomycorrhiza and basic site char- acteristics such as soil pH, soil type, stand type and location of the study were given. Authors from reviewed studies have analysed ec- tomycorrhizal taxa either in pure adult natural silver fir stands, mixed stands with variable share of silver fir as well as from planted silver fir stands. Reviewed stands differ soil conditions, climatic condition, alti- tude and in tree species composition. Although most studies provided the stand characteristics, not all were readily available thus missing values for soil pH were gained either from online soil databases (soilgrids.org) or from other studies performed at the same study sites. Ectomycorrhiza studies on silver fir covered three general parts of the silver fir distribution areal in Eu- rope. The areal was also the rationale for grouping them into representative areas, namely southern, east- ern and central Europe. No studies were available for western part of its areal. The position of studied loca- tion in areal as well as silver fir distribution in Europe is given in Figure 1. 2.2 Data analyses From published papers the following variables have been extracted: number of ectomycorrhizal species of silver fir per study/site, basic soil characteristics (if given) such as soil pH and soil type, as well as type of stand in which ectomycorrhizal fungal of silver fir were analysed. To compare species richness between geographic areas, average species richness per geographic area was calculated (Atlas & Bartha 1981). To show similarity of communities among geographic areas we calculated a Bray-Curtis similarity index for species richness (Bray & Curtis 1957). T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 117folia biologica et geologica 58/1 – 2017 3.1 ectomycorrhizal fungal symbionts overview The review of published works on ectomycorrhiza on silver fir revealed nine studies where sufficient data and metadata were available, to be included in the re- view. Studies covered only central, eastern and south- ern part of the silver fir areal (Table 1, Figure 1). southern Europe 12 out of 18 different ectomycorrhiza taxa of silver fir were identified to a species level and the rest to a genus level. However, there were still 13 ectomycorrhiza fungal taxa that remained as unidenti- fied ectomycorrhiza. In central Europe, authors man- aged to identify 17 different ectomycorrhiza fungal taxa at a species level and 3 at a genus level. Figure 1: The location of reviewed stands and silver fir (Abies alba Mill.) distribution (source: EUFOR- GEN database). Slika 1: Lokacije analiziranih sestojev bele jelke (Abies alba Mill.) in območje razširjenosti bele jelke (vir: podatkovna baza EUFORGEN). 3 RESULTS table 1: Studies included in review. tabela 1: Študije vključene v pregled. geographic area Data Southern Europe Comandini et al. 2001 Lagana et al. 2002 Pacioni et al. 2006 Central Europe Schirkonyer et al. 2013 Cremer, 2009 Eastern Europe Wazny 2014 Rudawska et al. 2016 Wazny and Kowalski 2017 Kowalski 2008 The average number of different types of ectomy- corrhiza on silver fir was high, overall 85 different ec- tomycorrhizal types have been identified (Table 2). In eastern Europe 62 different ectomycorrhiza fungal taxa have been identified, however 5 ectomycorrhiza fungal taxa remained identified only at genus level. For table 2: Number of different identified ectomycorrhiza fungal taxa on silver fir and number of different identi- fied ectomycorrhiza taxa recorded per geographic area. tabela 2: Število različnih določenih ektomikoriznih glivnih taksonov bele jelke in število različnih določenih ekotmikoriznih glivnih taksonov zabeleženih po geografskih območjih. Overall number Southern Europe Eastern Europe Central Europe Unidentified species 85 18 62 20 13 By comparing emerging ectomycorrhiza fungal taxa among areas only few species were present at all areas, namely Byssocorticium atrovirens, Cenococcum geophilum and Laccaria amethystina. Southern Europe differed most in terms of ectomycorrhiza taxa diversi- ty while eastern and central Europe have much more species in common compared to southern Europe (Table 3). T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 118 folia biologica et geologica 58/1 – 2017 Fungal species Present at eastern Europe Present at southern Europe Present at central Europe Amanita rubescens + Amanita spissa + Amphinema byssoides + + Boletus edulis + + Boletus badius + Boletus pruinatus + + Byssocorticium atrovirens + + + Cantharellus sp. + Cenococcum geophilum + + + Clavulina cristata + + Clavulina rugosa + Cortinarius anomalus + Cortinarius casimiri + Cortinarius fulvescens + Cortinarius malachius + Cortinarius semisanguineus + Cortinarius sp. + Craterellus lutescens + Elaphomyces muricatus + Entoloma sp. + Genea sp. + + Geopora cervina + Hydnotrya bailii + Hydnotrya tulasnei + Hydnum repandum + Hydnum rufescens + Hygrophorus pudorinues + Hysterangium sp. + Imleria badia + Inocybe geophylla + Inocybe terrigena + Inocybe sp. + Laccaria amethystina + + + Laccaria laccata + Laccaria maritima + Lactarius aurantiacus + Lactarius camphoratus + Lactarius ichoratus + Lactarius intermedius + Lactarius lignyotus + Lactarius necator + Lactarius rufus + Lactarius salmonicolor + + Fungal species Present at eastern Europe Present at southern Europe Present at central Europe Lactarius scrobiculatus + Lactarius subericatus + Lactarius subdulcis + Lactarius sp. + Melanogaster variegatus + Meliniomyces variabilis + Mycena galopus + Paxillus involutus + + Phellodon niger + Piloderma byssinum + Piloderma fallax + Piloderma sp. + Pseudotomentella tristis + Russula amethystina + Russula cyanoxantha + Russula fellea + Russula integra + Russula nigricans + Russula ochroleuca + + Russula olivacea + Russula puellaris + Russula vesca + Russula xerampelina + Russula sp. + Scleroderma citrinum + Sebacina sp. + Thelephora terrestris + + Tomentella albomarginata + Tomentella botryoides + Tomentella ellisii + Tomentella stuposa + Tomentella sublilacina + Tomentella terrestris + Tomentella sp. + Tomentellopsis sp. + Tuber puberulum + Tuber sp. + Tricholoma bufonium + Tricholoma saponaceum + Tylopilus felleus + Tylospora asterophora + Tylospora fibrillosa + table 3: identified ectomycorrhiza fungal taxa in symbiosis with silver fir based on area their occurrence. + indicates present of the species in particular area. tabela 3: Določeni ektomikorizni glivni taksoni v simbiozi z belo jelko na podlagi njihovega območja pojavljanja. + označuje prisotnost vrste na posameznem območju. 3.2 Stands characteristic and ectomycorrhizal fungal species richness All reviewed studies have analysed pure silver fir stands as well as mixed or planted stands. The south- ern Europe stands deviate from other areas mainly by the average pH values which are significantly higher, compared to eastern and central Europe (Table 3). As well as pH also soil type differed between reviewed areas, although for southern Europe we could not gain information from original papers about soil character- istics. The highest average species richness was calculat- ed for eastern Europe sites and the lowest for central European sites (Figure 2). High standard deviation within areas indicates high variability among sites and individual soil samples. T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 119folia biologica et geologica 58/1 – 2017 As average species richness, specifically a standard deviation calculated for individual areas showed high differences inside the same area, we compared species richness by a stand type (Table 4). Except in central Europe, pure (monospecific) silver fir stands showed To show similarity of communities among re- viewed geographic areas, Bray-Curtis similarity index was calculated. The highest species richness similarity was calculated among eastern and central Europe, while southern Europe differed more from eastern and from central Europe (Table 5). The result coincides with pattern of ectomycorrhizal fungal species occur- rence. table 4: generalised characteristics of reviewed stands. tabela 4: Splošne značilnosti analiziranih sestojev. Geographic generalized area Reviewed stand type Soil characteristics pH Eastern Europe pure silver fir and mixed stands acid brown 4.46 ± 0.4 Southern Europe natural and planted silver fir stands not specified 6.1 ± 1.13 Central Europe pure silver fir and mixed stands middle-red sandstone 4.28 ± 0.17 Figure 2: Average ectomycorrhiza fungal taxa richness analysed for eastern, southern and central Europe. Slika 2: Povprečna pestrost ektomikoriznih glivnih taksonov analiziranih za območje vzhodne, južne in osrednje Evrope. table 5: average species richness for stand type and geographic area. tabela 5: Povprečna vrstna pestrost po tipih sestojev in geografskih območjih. Stand type Av. spec.richn. Monospecific silver fir stands Mixed stands with silver fir Plantation silver fir stands Eastern Europe 33.5 26.7 20 Southern Europe 27 / 21 Central Europe 15 33 / table 6: bray-curtis similarity index for species richness. tabela 6: bray-curtisov indeks podobnosti za vrstno pestrost. Geographic areas Bray-Curtis similarity index Eastern & southern Europe 0.13 Eastern & central Europe 0.24 Southern & central Europe 0.16 higher species richness than mixed stands and planta- tion stands. In central Europe species richness in mixed stands with silver fir was higher compared to natural silver fir stands, where have been detected half less species compared to mixed stands. 4 DISCUSSION 4.1 Silver fir ectomycorrhiza has high diversity potential that remains underexploited Silver fir ectomycorrhiza is not among better studied topics, what is reflecting in results of the review. From nine studies a relative high number of ectomycorrhizal taxa per site was retrieved, indicating a high potential for ectomycorrhiza diversity in silver fir stands. A high po- tential for hidden ectomycorrhiza taxa diversity on silver fir is also indicated with high number of types of ecto- mycorrhiza that remained unknown or identified only at genus level either due to lack of recognizable features or due to an insufficient identification method. Both in- dicate a need to study additional silver fir sites along the species distribution gradient in particular areas, where Silver fir ectomycorrhiza was not studied yet. 4.2 the silver fir ectomycorrhiza community differs among areas In this review, published studies have been grouped into three general parts, which were further compared based on species occurrence, species richness, envi- ronmental propertied as well as based on ectomycor- rhizal species similarity. Bray-Curtis similarity index for species richness showed higher similarity between eastern and central T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 120 folia biologica et geologica 58/1 – 2017 Europe, compared to southern Europe, which stands out. This could be a consequence of different climatic and environmental condition, as southern Europe is more characterized by Mediterranean conditions while silver fir prefers relatively high elevated areas (above 500 m a.s.l.) and requires high moisture condi- tions throughout the year (Tinner et al. 2013). This all can put silver fir in permanent stress conditions and a selection toward more resistant / pioneer types of ecto- mycorrhiza among which we identified at least genera Cenococcum, Genea, Hysterangium and Tuber. Silver fir tolerates a wide variety of soil types with different nutrient content and alkalinity conditions (Ruosch et al. 2015) associated ectomycorrhiza com- munity reacts to differences among site soils as only three ectomycorrhizal species were present at all areas, namely B. atrovirens, C. geophilum and L. amethystina. Several other types of ectomycorrhiza were present at two areas – eastern Europe and central Europe, name- ly Genea sp., Clavulina cristata, Russula ochroleuca, Thelephora terrestris etc. which favour conditions as well as on stand types in common for eastern and cen- tral sites. These species can also be regarded as gener- alist as they occur at two different geographic areas. Species richness analysis showed the highest ecto- mycorrhizal species richness in eastern Europe and on lowest species richness in central Europe. This result could be a consequence of either lower sampling inten- sity in central Europe or either of insufficient ectomy- corrhizas identification. As the sampling intensity of studies was in general between four till six-week peri- od, we can assume that beside the differences in envi- ronmental properties, the identification method was the mainly reason for a large ectomycorrhizas species richness differences between geographic areas. Analy- sis success of ectomycorrhiza fungal diversity based on morphological descriptions is often low and only rare- ly allows sufficient identification of mycorrhizas at the fungal species level (Rudawska et al. 2016). Only for eastern Europe sites DNA-based identifi- cation approaches were used for ectomycorrhiza iden- tification thus we assume, that higher number of ecto- mycorrhiza fungal species is a result of combination of methods used for identification (Suz et al. 2008). The ectomycorrhiza species richness differ also be- tween stand types. The species richness was higher at natural pure fir stands compared to mixed stands and plantation fir stands. Although it is generally accepted that co-occurrence of different host tree species within a stand promotes ectomycorrhiza diversity at the local scale (Rudawska et al. 2016), the ectomycorrhiza com- munities can be highly diverse even in a mono-specific stands (Cremer 2009). Many studies have shown that relevant factors determining the composition of the ec- tomycorrhizal fungi are age of the associated host trees and stand history (PACIOni et al. 2001, Lagana et al. 2002). Cremer (2009) indicated that adult silver fir trees on average, host higher number of different ecto- mycorrhiza than juvenile trees suggesting an increase of the ectomycorrhiza species richness over time. In case of other conifers, a rapid increase was shown in species richness and sporocarp productivity during first 30-40 years of the stand and a more gradual de- crease to a constant level afterwards (Comandini et al. 2004). This explains observations where the individual tree increased its ectomycorrhiza community richness in time by allowing multi-mycorrhization of its ex- pending root systems (Cremer 2009). Lack of some silver fir ectomycorrhizal fungi in analysed stands could be also a result of unfavourable site characteris- tics such as pH, litter and soil quality, climate, etc. (Ru- dawska et al. 2016). This explains the higher ectomy- corrhiza species richness at natural fir stands com- pared to planted sites supporting the idea to focus di- versity studies on either more natural or combination of natural and planted sites (Lagana et al. 2002). 4.3 Specialists versus generalist ectomycorrhiza species on silver fir At all investigated silver fir stands, Cenococcum ge- ophilum was present in most soil samples. The species is known to be one of the most widely distributed ecto- mycorrhizal fungal species in various ectomycorrhiza forests (Hrenko et al. 2009). Predominance of C. ge- ophilum can indicate thick organic layer or high fluc- tuations of soil temperature and moisture content as it is regarded as stress tolerant species and can persist as ectomycorrhiza up to 10 times longer compared to other ectomycorrhiza species (Lobuglio 1999). In such conditions, C. geophilum is a highly competitive ectomycorrhizal fungus. Similar Tomentella stuposa can be regarded as common ectomycorrhiza symbiont of silver fir with long list of ectomycorrhiza plant part- ners (Cremer 2009, Wazny 2014). Among silver fir specialist ectomycorrhizal fungi is Lactarius salmonicolor (Pillukat 1996). This ecto- mycorrhiza was found at silver fir stands in southern and eastern Europe, but was not recorded in central Europe. Other species that exhibit some level of silver fir preference are also L. albocarneus, L. intermedius and Russula spp. (Rudawska et al. 2016). From men- tioned Lactarius species, only L. intermedius has been identified in southern Europe. Absence of other silver fir-specialist ectomycorrhizal fungi in southern Eu- T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 121folia biologica et geologica 58/1 – 2017 rope can be a result of distinct climate and soil condi- tions or of an insufficient (e.g. only ectomycorrhiza morphology-based) identification. The occurrence of several other species and be re- lated to the area or forest type characteristics. Laccaria amethystina was also found in ectomycorrhiza with silver fir occurring regardless to the age of the stand, although it was previously regarded as an early stage ectomycorrhizal species (Cremer 2009). Occurrence of Clavulina cristata at stands in eastern and central Europe may indicate at high concentrations of Ca- and Mg-cations in the soil, as high cation concentrations positively affected the development of C. cristata in spruce and beech stands (Wazny 2014). CONCLUSSIONS All together nine studies were conducted focusing the ectomycorrhiza of silver fir. Observed differences in silver fir stands between analysed areas (eastern, southern and central Europe) reflect some of the gen- eral site characteristics while the strong bias cannot be excluded and likely related to insufficient sampling ef- fort and use of identification approaches and sampling strategies with poor discriminative power. POVZETEK Bela jelka je vednozelena drevesna vrsta iz rodu Abies, katere območje razširjenosti je omejeno na vzhodno, zahodno, južno ter centralno Evropo. Tako kot večina evropskih drevesnih vrst, tvori tudi bela jelka ektomi- korizno simbiozo z več vrstami gliv. Mikorizna simbi- oza je stalen simbiotski odnos med korenino rastline in glivo, pri katerem prihaja do dvosmernega pretoka hranil. Do sedaj je bilo objavljenih le nekaj študij v ka- teri so avtorji analizirali pestrost ektomikoriznih sim- biontov bele jelke. Trenutno, znanje o ektomikorizah bele jelke povečini temelji na morfološko-anatomskih opisih ektomikoriznih gliv in njihovih trosnjakov. V zadnjih letih je bilo objavljenih tudi nekaj študij, v ka- terih so avtorji za identifikacijo ektomikoriznih gliv- nih vrst uporabili tudi analize molekularnih marker- jev. V članku smo povzeli rezultate objavljenih študij in z analizami vrstne pestrosti in podobnosti združb, med seboj primerjali posamezna geografska območja ter tipe sestojev. Največja vrstna pestrost ektomikoriznih simbion- tov bele jelke je bila ugotovljena za območje vzhodne Evrope, medtem ko je južna Evropa najmanj vrstno pestra glede na število vrst ektomikoriz bele jelke. Ugotovljena razlika je najverjetneje posledica izbire identifikacijskih metod, saj so samo na območju vzho- dne Evrope, avtorji študij za identifikacijo ektomikori- znih gliv bele jelke uporabili tudi molekularne metode identifikacije – analize molekularnih markerjev. Vrstna pestrost se razlikuje tudi med posamezni- mi analiziranimi tipi sestojev. V naravnih sestojih bele jelke je vrstna pestrost ektomikoriznih gliv večja v pri- merjavi z umetnimi oz. mešanimi sestoji. Zraven sta- rosti sestojev so najverjetnejši vzroki za ugotovljeno razliko neugodni okoljski dejavniki. Pri primerjavi prisotnosti ektomikoriznih glivnih simbiontov na posameznem geografskem območju smo ugotovili, da se v vseh analiziranih sestojih poja- vljajo nekateri generalisti, kot npr. B. atrovirens, C. ge- ophilum in L. amethystine. Kljub prisotnosti nekaterih generalistov, se v analiziranih sestojih bele jelke poja- vljajo tudi vrste, ki preferirajo sestoje bele jelke, Lacta- rius salmonicolor, Lactarius intermedius ipd. Na podla- gi prisotnosti nekaterih ektomikroiznih glivnih vrst lahko ocenimo tudi starost sestojev ter lastnosti tal. Skupaj smo analizirali devet objavljenih študij, v katerih so se avtorji osredotočili na analize pestrosti ektomikoriznih gliv bele jelke. Ugotovljene razlike so zraven vpliva različnih lastnosti sestojev, najverjetneje rezultat uporabe identifikacijskih metod, kot tudi raz- ličnih metod ter časovne dinamike vzorčenja, katerih so se v svojih študijah poslužili avtorji. T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 122 folia biologica et geologica 58/1 – 2017 7 REFERENCES - LITERATURA Atlas, R. & R. Bartha, 1981: Introduction to microbiology. Boston. Bray, J. R. & J. T. Curtis, 1957: An ordination of upland forest communities of southern Wisconsin. Ecological Monographs (Washington) 27(4): 325-349. http://dx.doi.org/10.2307/1942268 Comandini, O., I. Haug, A. C. Rinaldi & T. W. Kuyper, 2004: Uniting Tricholoma sulphureum and T. bufonium. Mycological Research (London) 108(10): 1162-1171. https://doi.org/10.1017/S095375620400084X Cremer, E., K. Donges, S. Liepelt, K. H. Rexer, G. G. Vendramin, I. Leyer, G. Kost & B. Ziegenhagen, 2009: Ontogenetic and genotypic effects of silver fir (Abies alba Mill.) on associated ectomycorrhizal communities. In: Cremer, E. (ed): Population genetics of silver fir (Abies alba) in the Northern Black Forest-preconditions for the recolonization of wind throw areas and associated ectomycorrhizal communities. Phillipps-Universität Mar- burg, Biologie (Marburg, pp. 62-83). Eberhardt, U., F. Oberwinkler, A. Verbeken, A. C. Rinaldi, G. Pacioni & O. Comandin, 2000: Lactarius ectomycorrhizae on Abies alba: morphological description, molecular characterization, and taxonomic remarks. Mycologia (Oxfordshire) 92(5): 860-873. https://doi.org/10.2307/3761582 Euforgen database, 2017. EUFORGEN Secretariat. Rim. http://www.euforgen.org/forest-genetic-resources/poplars-clones-database/ Hrenko, M., B. Štupar, T. Grebenc & H. Kraigher, 2009: Mycobioindication method simplified : Sclerotia of Cenoco- ccum geophilum Fr. as indicators of stress in forest soils. V: Himmelbauer, M. (Ed.): Short paper abstracts : 7th ISRR Symposium root research and applications. Institute of Hydraulics and Rural Water Management (Vienna, p. 116). Klopčič, M., K. Jerina & A. Bončina, 2009: Long-term changes of structure and tree species composition in Dina- ric uneven-aged forests: are red deer an important factor? European Journal of Forest Research (Berlin) 129(3): 277-288. https://doi.org/10.1007/s10342-009-0325-z Kowalski, S., 2008: Mycorrhizaef of the European silver fir (Abies alba Mill.) seedlings from natural and artificial regeneration in forests of the Karkonosze National Park. In: Barzdajn, W. & A. Raj (eds): Silver fir in the Karko- nosze National Park. Karkonoski National Park (Jelenia Góra, 175–212 pp.). Lagana, A., E. Salerini, C. Barluzzi, C. Perini & V. De Dominicis, 2000: Mycocoenology in Abies alba Miller woods of central-southern Tuscany (Italy). Acta societatis Botanicorum Poloniae (Varšava) 69(4): 293-298. https://doi.org/10.5586/asbp.2000.039 Lagana, A., C. Angioli, S. Loppi, E. Salerini, C. Perini, C. Barluzzi & V. De Dominicis, 2002: Periodicity, fluctuations and successions of macrofungi in fir forests (Abies alba Miller) in Tuscany, Italy. Forest Ecology and Management (Amsterdam) 169(3): 187-202. https://doi.org/10.1016/S0378-1127(01)00672-7 Lobuglio, K. F., 1999: Cenococcum. In: Cairney J. W. G & S. M. Chambers (eds.): Ectomycorrhizal fungi: key gene- ra in profile. Springer-Verlag Berlin. (Berlin, 287–309 pp.). https://doi.org/10.1007/978-3-662-06827-4 Pacioni, G., O. Comandini & A. C. Rinaldi, 2001: An assessment of below-ground ectomycorrhizal diversity of Abies alba miller in central Italy. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology (Firenze) 135(3): 337-350. https://doi.org/10.1080/11263500112331350960 Pillukat, A., 1996: Lactarius salmonicolor R. Heim &Leclair + Abies alba Mill. Descr Ectomyc (Schwäbisch Gmünd) 2: 59–64. https://doi.org/10.2307/3761582 Rudawska, M., M. Pietras, I. Smutek, P. Strzelisnki & T. Leski, 2016: Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza (Berlin) 26(1): 57-65. https://doi.org/10.1007/ s00572-015-0646-3 Ruosch, M., R. Spahni , F. Joos, P. D. Henne, W.O. Van der Knaap & W. Tinner, 2015: Past and future evolu- tion of Abies alba forests in Europe – comparison of a dynamic vegetation model with paleo data and observati- ons. Global Change Biology (Switzerland) 22: 727-740. https://doi.org/10.1111/gcb.13075 Schirkonyer, U., C. Bauer & G. M. Rothe, 2013: Ectomycorrhizal diversity at five different tree species in forests of the Taunus Mountains in Central Germany. Open Journal of Ecology (Berlin) 3(1): 66-81. https://doi. org/10.4236/oje.2013.31009 Smith, S. E. & D. J. Read, 2008: Mycorrhizal Symbiosis. London. Suz, L. M., A. M. Azul, M. H. Morris, C. S. Bledsoe & M. P. Martin, 2008: Morphotyping and Molecular Me- thods to Characterize Ectomycorrhizal Roots and Hyphae in Soil. In: Nautiyal C. S. & P. Dion (Eds.): Molecular Mechanisms of Plant and Microbe Coexistence. Heidelberg: Springer Berlin Heidelberg. (Berlin, 437-474 pp.). https://doi.org/10.1007/978-3-540-75575-3 T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 123folia biologica et geologica 58/1 – 2017 Tinner, W., D. Colombaroli, O. Heiri, P. D. Henne, M. Seitnacher, J. Untenecker, E. Vescovi, J. R. M. Allern, G. Carro, M. Conedera, F. Joos, A. F. Lotter, J. Luterbacher, S. Sanartin & V. Valsecchi, 2013: The past ecology of Abies alba provides new perspectives on future responsesn of silver fir forests to global warming. Ecological Monographs (Washington) 83(4): 419-439. https://doi.org/10.1890/12-2231.1 Wazny, R., 2014: Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Annals of Forest Science (Paris) 71(7): 801-810. https://doi. org/10.1007/s13595-014-0378-0 Wazny, R. & S. Kowalski, 2017: Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stan- ds and larch forecrops. Trees (Berlin): 1-11. https://doi.org/10.1007/s00468-016-1518-y Westergren, M., A. Poljanec & H. Kraigher, 2010: Tehnične smernice za ohranjanje in rabo genskih virov : bela jelka : Abies alba : Sloveenija. Gozdarski vestnik (Ljubljana) 68 (10): 491-494.