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Abstract

We introduce the covering configuration induced by a regular weight defined on a co-
herent configuration. This construction generalizes the well-known equivalence of regular
two-graphs and antipodal double covers of complete graphs. It also recovers, as special
cases, the rank 6 association schemes connected with regular 3-graphs, and certain ex-
tended Q-bipartite doubles of cometric association schemes. We articulate sufficient con-
ditions on the parameters of a coherent configuration for it to arise as a covering configu-
ration.

Keywords: Association scheme, coherent configuration, regular weight, double cover, two-graph,
t-graph.
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1 Introduction
The Seidel matrix of a graph Γ may be viewed as a weight on the complete graph: edges of
Γ are weighted (−1) and non-edges (+1). If Γ is strongly regular with n = 2(2k−λ−µ),
it lies in the switching class of a regular two-graph and we call the weight, analogously,
regular on Kn. This condition on Γ is well known, and dates to 1977, in [25]. The same
year, the equivalence of regular two-graphs and antipodal double covers of complete graphs
was established in [26].

Martin, Muzychuk and Williford ([18]) defined the extended Q-bipartite double of a
cometric association scheme, extending the notion of the bipartite double of a distance
regular graph. This construction produces, as special cases, the antipodal double covers of
complete graphs from the strongly regular graphs affording regular two-graphs.

In recent work, Kalmanovich ([16]) has also generalized the regular two-graph result,
working from an unpublished draft of D. G. Higman’s ([9]) on regular 3-graphs. As defined
in [14], a t-graph weights the edges of Kn with elements of the group of roots of unity of
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order t, Ut. The regularity condition ensures that the matrix of edge weights has a quadratic
minimal polynomial. The work of Kalmanovich-Higman establishes the equivalence of
regular 3-graphs with cyclic antipodal 3-fold covers of Kn ([6]). Regular 3-graphs are
shown to give rise to certain rank 6 association schemes, and the necessary conditions
under which a rank 6 scheme arises in this way are given.

In this paper there are two main results. First, working with a regular weight with values
in Ut, defined on a coherent configuration (CC), we show that there is always a covering
configuration; that is, a CC constructed using a t-fold cover in a natural way, to convert
the weight into a CC of higher rank (by a factor of t). As special cases, we recover the
equivalence between regular two-graphs and antipodal double covers of complete graphs;
some extended Q-bipartite doubles of cometric schemes; the rank 6 schemes associated
with regular 3-graphs, and an extension of these to regular t-graphs.

A CC with a regular weight has two sets of parameters: the structure constants for
the weighted adjacency algebra, {βkij}, which lie in C or more specifically in the ring of
integers with a primitive tth root of unity adjoined, and the non-negative integers {βkij(ν)}
which count certain triangles with a specified weight. They are related by

βkij =
∑
ν∈Ut

νβkij(ν).

The weighted adjacency algebra is in general not a coherent algebra, and may in fact have a
coherent closure that is much higher in rank than the original CC. In the regular two-graph
case, for instance, it is precisely when the (−1) edges form an SRG that we get a minimal
closure: a natural fission of the edge set into (+1) and (−1) edges that yields a (rank 3)
association scheme. The covering configuration is the realization of a CC whose structure
constants are the βkij(ν). Some properties, namely homogeneity and commutativity of a
CC carry over to the covering configuration. Symmetry is preserved only if t = 2. Metric
and cometric properties are not.

The second main result of this paper is the articulation of sufficient conditions for a CC
to be the covering configuration of a regular weight.

In the final section, we describe a family of regular weights on the Hamming Scheme
H(n, 2) with values in U4, due to Ada Chan. These weights all fuse to regular 4-graphs,
providing an infinite family that may be of interest as complex Hadamard matrices. These
regular weights, and their fusions, admit covering configurations of ranks 4(n + 1) and 8
respectively, on 2n+2 points.

2 Preliminaries
In this section, we give the definitions that are essential to what follows. Much more can
be found in [17] and in the original developments of the area by Weisfeiler and Lehman in
[28] and by D. G. Higman in [11, 12], and [14].

2.1 Coherent configurations

Definition 2.1. Let {Ai}0≤i<r be a set of 01-matrices with rows and columns indexed by
a finite set X . Let I := {0, 1, . . . , r}. The linear spanA := 〈Ai〉C is a coherent algebra if:

(i)
∑
i∈I Ai = J , where J is the all-ones matrix,

(ii)
∑
i∈LAi = I , for some subset L ⊂ I,
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(iii) for each i there exists i∗ ∈ I such that ATi = Ai∗ ,

(iv) AiAj =
∑
pkijAk, pkij ∈ Z+.

A coherent algebra (CA), is homogeneous if |L| = 1; symmetric if i∗ = i for all i, and
commutative, clearly, if pkij = pkji for all i, j, k. The homogeneous CAs are (possibly
non-symmetric) association schemes. Commutative schemes which have the metric or
P-polynomial property are synonymous with distance-regular graphs (DRGs); those of
diameter 2 are the strongly regular graphs (SRGs). Some familiarity with these structures
is assumed. References for readers lacking this background are [1, 2, 4, 5, 19], and [27]. In
the association scheme literature, a rank r scheme is often referred to as an (r − 1)-class
scheme: ‘rank’ counts the trivial relation, while the number of ‘classes’ does not.

Every algebra of n by n matrices over C that is closed under transpose and entry-wise
multiplication, and contains both I and J is a coherent algebra, and as such it has a basis
of 01-matrices satisfying (i)–(iv). Each Ai in a CA is the adjacency matrix of a digraph Γi
with vertex setX , which is simple for i 6∈ L and a graph when i∗ = i. Viewing these graphs
as relations onX , define a coherent configuration (CC) to be a set of binary relations onX ,
indexed by I, with analogous properties to (i)–(iv) above. Denote it A := (X, {Ri}i∈I).

The constant pkij counts the number of i-j paths from a vertex x to a vertex z, given
that (x, z) ∈ Rk and this number is necessarily independent of the choice of edge in Γk. It
is convenient to denote each instance of an i-j path by a triangle (x, y, z) of type (i, j, k).
That is, (x, y, z) ∈ X3 is a triangle of type (i, j, k) if (x, y) ∈ Ri, (y, z) ∈ Rj , and
(x, z) ∈ Rk as indicated in Figure 1.
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Figure 1: Triangle (x, y, z) of type (i, j, k).

Define the intersection matrices Mj of a CC by Mj :=
(
pkij
)
, 0 ≤ i, k < r thus the

map
γ : Aj 7→Mj

is the right regular representation of A.
We treat CAs and CCs as equivalent structures and move freely between the notations

of matrices, relations, and graphs. As {Ai} forms the standard basis ofA, we refer to {Ri}
and {Γi} as the basic relations and basic graphs of A respectively.

2.2 Fusion and fission

A fusion is a merging of relations in a CC according to a partition of I. A fusion will be
deemed coherent if the resulting configuration is coherent. A coherent fission or refinement
is a partition of each basic relation such that the resulting set of relations forms a CC.
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The rank 2 CC represented by Kn is the minimum element in the lattice of all CCs on
a given vertex set X of size n ([12, Prop. 3]). The maximum element has rank n2, with the
full matrix algebra MX(C) as its coherent algebra.

2.3 Regular weights

Let U = Ut be the group of complex tth roots of unity, and fix a primitive root ζ as the
generator of U .

Definition 2.2. A weight with values in U is a 2-cochain ω : X2 → U . Viewed as a matrix,
a weight is Hermitian with unit diagonal.

The coboundary of ω is a function on triangles:

δω(x, y, z) := ω(y, z)ω(x, z)ω(x, y)

and we refer to this value as the weight of the triangle (x, y, z). Analogous to Seidel
switching on a graph, switching a weight ω at vertex xi by a factor of α ∈ U multiplies
the weight on (xi, y) edges by α and on (y, xi) edges by α for all y 6= xi. In matrix form,
this is a similarity transform by the diagonal matrix diag(1, 1, . . . , 1, α, 1, . . . , 1) with α in
position i. We refer to two weights as switching equivalent if one is obtained from the other
by some sequence of switches, and observe that δω is invariant under switching.

Definition 2.3. A t-graph is δω for some weight ω. It is regular if

|{y | δω(x, y, z) = α}|

is independent of x and z, for each value α ∈ U .

This is one of a number of natural generalizations of the regular two-graph ([9, 16, 22,
23, 24, 25]). Since a 2-cochain is equivalent to a weight on the edges of a complete graph,
the notion of regularity can be extended to weights on CAs.

The entry-wise product ω ◦ Ai gives a matrix with (x, y) entry equal to ω(x, y) where
(x, y) ∈ Ri. Denote this weighted adjacency matrix Aωi .

Definition 2.4 ([14]). A weight ω is regular on a CC if for (x, z) ∈ Rk the number of
triangles (x, y, z) of type (i, j, k) and weight α is independent of x and z. In this case, the
number of such triangles depends on i, j, k, and α and we denote this parameter βkij(α).

If ω is regular on A, then
∑
α β

k
ij(α) = pkij . By a straight-forward counting argument,

Aωi A
ω
j =

∑
k

βkijA
ω
k where βkij :=

∑
α∈U

αβkij(α)

thusAω := 〈Aωi 〉 is a self-adjoint matrix algebra containing I and we refer to the βkij as the
parameters or structure constants of the Aω . Note that this weighted adjacency algebra is
not necessarily closed under the entry-wise product, hence it is not, in general, a coherent
algebra. The weighted intersection matrices are defined in the obvious way,

Mj :=
(
βkij
)
, 0 ≤ i, k < r.

Switching equivalent weights have identical parameters and therefore identical intersection
matrices.
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2.4 The fission induced by a weight

The weighted CC (A, ω) has a natural fission in whichRi is partitioned according to distinct
values of ω. Put

(Aαi )xy :=

{
1 if (Aωi )xy = α;

0 otherwise.

Some useful properties are:

1. Aαi ◦A
β
j = δi,jδα,βA

α
i ;

2. Ai =
∑
αA

α
i ;

3. Aωi =
∑
α αA

α
i .

Definition 2.5. (A, ω) has minimal closure if the fission {Aαi } forms a CC.

The terminology draws on the notion of the coherent closure of a set of matrices as the
smallest CA containing them (see [21, 28] for more). The coherent closure of (A, ω) is the
CC whose CA is the coherent closure of the matrix algebra Aω . Clearly∑

i∈L
A1
i = I

and the Aαi sum to J . Furthermore, by the Hermitian property of the weight,

(Aαi )
T

= Aαi∗

but the fission is not in general coherent and may in particular generate a matrix algebra of
dimension greater than rt.

A weighted CC may be represented in a natural way as a t-fold cover of the configura-
tion. The main goal of this work is to characterize regular weights on CCs in this way, and
to describe the construction of a CC of rank rt – the covering configuration – derived from
the cover.

Let U = Ut with generator ζ, let Γ be a graph or digraph with vertex set X , and ω
a weight on Γ. Following [14], we define the t-fold cover of Γ afforded by ω as follows.
The vertex set is X × {1, 2, . . . , t}. We abuse notation, denoting the t copies of each
vertex x by {x1, x2, . . . , xt}. Assign adjacencies by xi ∼ yj whenever x ∼ y in Γ and
ω(x, y) = ζi−j . The induced permutation of indices, i 7→ j determines a permutation σ of
U , namely ζk 7→ ζk+j−i which is simply multiplication by ζj−i. Let Zσ be the image of
σ ∈ U in the left regular representation of U as a multiplicative group. Then {Zσ | σ ∈ U}
is a cyclic group generated by Zζ and the element Zζk corresponds to the kth power of the
cycle (1, 2, . . . , t) on indices. Observe that

∑
σ∈U Zσ is the all-ones matrix J . Indeed, the

Zσ are the adjacency matrices of a cyclic group scheme on t points.

Example 2.6. We construct a weight with values in U3 on the cycle C3, a DRG of diame-
ter 3. The non-trivial basic graphs are shown in Figure 2. Define a weight ω by:

Aω1 =


α α

α α
α α

α α
α α

α α

 , Aω2 =


α α

α α
α α

α α
α α

α α

 ,
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Figure 2: Distance graphs of C3.

Aω3 =


1

1
1

1
1

1

 .
Working out the products, we see that

(Aω1 )2 = 2I +Aω2 ,

Aω1A
ω
2 = Aω2A

ω
1 = Aω1 + 2Aω3 ,

Aω1A
ω
3 = Aω3A

ω
1 = Aω2 ,

(Aω2 )2 = 2I +Aω2 ,

Aω2A
ω
3 = Aω3A

ω
2 = Aω1 ,

(Aω3 )2 = I,

and therefore the weighted intersection matrices are

Mω
1 =


1

2 0 1 0
0 1 0 2

1

 , Mω
2 =


1

0 1 0 2
2 0 1 0

1

 , Mω
3 =


1

1
1

1

 .
Note. Merging the non-trivial relations or, equivalently, summing Ai, i 6= 0, and also the
Aωi , we see that this weight fuses to a regular 3-graph.

3 Main theorem
Theorem 3.1. Let A= (X, {Ri}i∈I) be a coherent configuration of rank r on n := |X|
vertices and suppose ω is a regular weight on A with values in U = Ut. Then ω induces a
rank tr coherent configuration on tn vertices with relations given by∑

α∈U
Aαi ⊗ Zσα (i ∈ I, σ ∈ U)

and parameters {βkij(α)}.
Proof. Let T := {1, 2, . . . , t} and let Γi be one of the basic graphs in A. The t-fold cover
of Γi that is induced by ω has vertex set Y := X × T , and adjacency matrix∑

α∈U
Aαi ⊗ Zα.
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Motivated by this, and looking to define the matrices of a CA on Y , we put

Ci,σ :=
∑
α∈U

Aαi ⊗ Zσα, (3.1)

for i ∈ I and σ ∈ U , we claim that C := 〈Ci,σ〉C is the coherent algebra of a CC C.
We show that C satisfies (i)–(iv) of Definition 2.1. We have observed that

∑
σ∈U Zσ =

J . Since
∑
α∈U A

α
i = Ai for all i, and

∑
i∈I Ai = J , we see that∑

i∈I

∑
σ∈U

Ci,σ =
∑
i∈I

∑
σ∈U

∑
α∈U

Aαi ⊗ Zσα

=

(∑
i∈I

∑
α∈U

Aαi

)
⊗

(∑
σ∈U

Zσα

)

=

(∑
i∈I

Ai

)
⊗ Jt

= Jn ⊗ Jt
= Jnt.

(3.2)

Hence C satisfies (i).
Let L ⊆ I be the unique set of indices such that

∑
i∈LAi = In. (Assume, without

loss of generality, that L = {0} if A is homogeneous.) We claim Int =
∑
i∈L Ci,1. Since

ω(x, x) = 1 for all x, Aαi = 0 if i ∈ L and α 6= 1. Consequently, i ∈ L implies Ai = A1
i .

Hence, ∑
i∈L

Ci,1 =
∑
i∈L

∑
α

Aαi ⊗ Zα

=
∑
i∈L

Ai ⊗ Z0

=

(∑
i∈L

Ai

)
⊗ It

= In ⊗ It = Int.

(3.3)

This proves that C satisfies (ii).
The transpose of M ⊗ N is MT ⊗ NT . Since ω(y, x) = ω(x, y), (Aαi )

T
= (Ai∗)α.

The transpose of a permutation matrix is its matrix inverse, hence ZTσ = Z−1σ = Zσ−1 .
Therefore,

CTi,σ =
∑
α

Aαi∗ ⊗ Z(σα)−1 =
∑
α

Aαi∗ ⊗ Zσα = Ci∗,σ

thus C satisfies (iii).
Finally, we obtain the structure constants as follows. We claim:(∑
α∈U

Aαi ⊗ Zσα

)∑
β∈U

Aβj ⊗ Zτβ

 =
∑
k∈I

∑
ν∈U

βkij(ν)
∑
γ∈U

(Aγk ⊗ Zστνγ) . (3.4)
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The left hand side of equation (3.4) is equal to∑
α,β∈U

(
Aαi A

β
j

)
⊗ (ZσαZτβ) =

∑
α,β∈U

Aαi A
β
j ⊗ Zσταβ

=
∑
µ∈U

∑
αβ=µ

Aαi A
β
j

⊗ Zστµ,
combining terms with the same second tensorand. We now consider the (x, z) entry of each
product Aαi A

β
j for a fixed (x, z) ∈ Rk, setting γ := ω(x, z). This equals the number of

triangles (x, y, z) of type (i, j, k) with weight αβγ. Since we are summing these products
over all α and β with αβ = µ, we account for all such triangles, and the number of these
is βkij(αβγ). Thus

∑
µ∈U

∑
αβ=µ

Aαi A
β
j

⊗ Zστµ =
∑
µ∈U

∑
γ∈U

∑
k∈I

βkij(µγ)Aγk

⊗ Zστµ
=
∑
µ∈U

∑
γ∈U

∑
k∈I

βkij(µγ) (Aγk ⊗ Zστµ) .

(3.5)

Next, observe that βkij(ν) occurs exactly t times, once for each γ with µ = νγ. Factor-
ing gives ∑

k∈I

∑
ν∈U

βkij(ν)
∑
γ∈U

Aγk ⊗ Zστνγ (3.6)

which proves the claim. Hence βkij(ν) is the coefficient of Ck,στν in the product Ci,σCj,τ .

Remark 3.2. If A is an association scheme, then L = {0}, and C0,1 = Int.

Remark 3.3. The following are clear from the proof of Theorem 3.1.

(i) C is homogeneous if and only if A is homogeneous.

(ii) C is symmetric if and only if A is symmetric and ω is real-valued, that is, t = 2. Ci1
is always symmetric if Ai is.

(iii) C is commutative if and only if A is commutative.

(iv) If the Aαi form a CC, then we are in the case of minimal closure, and C is a fusion of
a Kronecker product configuration.

(v) The parameter βkij(ν) in the proof of (iv) clearly does not depend on σ or τ . This
means that each parameter of C is duplicated t2 times:

pkστνiσ,jτ = pkνi1,j1 ∀σ, τ ∈ Ut.

4 Discussion and analysis
Example 4.1. This example relates to Γ = SRG(112, 30, 2, 10) which is known by many
names in the literature, including the collinearity graph of GQ(3, 9), O−(6, 3), and the
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first sub-constituent of the McLaughlin graph, McL1 to name just three. It has a strongly
regular decomposition into two Gewirtz graphs (SRG(56, 10, 0, 2)) [7].

Let A be the rank 3 scheme afforded by Γ. We construct a regular weight on A with
values in U2, making use of the decomposition. Let X1 and X2 be the two sets of 56
vertices. Define ω(x, y) for x 6= y to be −1 when x and y are in the same half of this
partition, and +1 otherwise. Note that ω restricted to either Gewirtz graph is a trivial
weight with matrix 2I − J .
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Figure 3: Strongly regular decomposition of SRG(112, 30, 2, 10).

In Figure 3, a solid line indicates adjacency in Γ, a dotted line non-adjacency. This
weighted SRG has minimal closure, since the Aαi form a rank 5 scheme, in fact a strongly
regular design or SRD ([13]). Since ω(x, y) is determined by the parity of {x, y}∩X1, the
four non-trivial relations are given by the four combinations of attributes: adjacency/non-
adjacency, and this parity. There are many related configurations. For example, another
copy of the Gewirtz graph may be adjoined to construct an example of triality ([15]). These
112 vertices form the first subconstituent of the McLaughlin graph; the second subcon-
stituent also admits a strongly regular decomposition ([3]).

Some interesting properties of this example:

1. Minimal closure is rare (see [21]).

2. The SRD is cometric, but not metric, which is also rare.

3. The covering configuration C is also cometric, but not metric, having rank 6 on 224
points. This example arises as the Q-bipartite double of McL1 (see [18]).

The Gewirtz graph admits a non-trivial regular weight with values in U4, constructed
via a monomial representation of 2.L3(4) ([20]). The covering configuration is neither
metric nor cometric, has rank 12 on 224 vertices, and contains the doubled Gewirtz graph
(DRG[10, 9, 8, 2, 1; 1, 2, 8, 9, 10]) as a quotient.
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4.1 Intersection matrices

Lemma 4.2. The intersection matrices of C have the form Mjτ =
∑
ν∈Ut

Mν
j ⊗ Zτν where[

Mν
j

]
ik

:= βkij(ν).

Proof. We may assume the relations Ciσ are ordered lexicographically, that is first by i and
then by σ ∈ {1, ζ, . . . , ζt−1} so that the intersection matrix Mjτ has (i, k) block given by(
pkστνiσ,jτ

)
σ,στν

. By equation (3.6) this block has the value βkij(ν) in position (σ, στν) which

means that it has the form
∑
ν β

k
ij(ν)Zτν . Hence Mjτ is the required sum of Kronecker

products.

Lemma 4.3. Let ω be a regular weight on the cc A, and let ω̃ be an equivalent weight
obtained by switching ω by a factor of τ = ζl at vertex x. Further let C = (Y, {Ciσ}) and
C̃ = (Y, {C̃iσ}) be the covering configurations induced by ω and ω̃ respectively. Then C̃
is obtained from C by permuting {xi} according to the permutation (1, 2, . . . , t)l resulting
from multiplication by τ on U .

Proof. Suppose ω(x, y) = α. For some i and j, (x1, yj) ∈ Ci1 of C, thus α = ζj−1.
Now, ω̃(x, y) = τα by assumption, so we have (x1−l, yj) ∈ C̃i1. But this implies that C̃ is
obtained from C by the permutation x 7→ x1−l, which corresponds to multiplication by τ
on U .

4.2 Special cases

(i) If ω has minimal closure, C is a fusion of a tensor product of two CCs.

(ii) If ω is trivial in the sense that Aαi = 0 for all but one value of α, ω has minimal
closure, and C = Aω ⊗ Z.

(iii) If A has rank 2 (ω is regular on Kn), C is a t-fold cover of Kn. It is not necessarily
distance regular. This case encompasses the regular two-graphs (t = 2), and the
regular 3-graphs (t = 3) of Higman [9] and Kalmanovich [16].

(iv) If t = 2, A is a (symmetric) scheme, and Aω has minimal closure (say B, where
B = (X, {Bi})), then the covering configuration is isomorphic to the extended Q-
bipartite double of B, when it exists, if the rank of B is odd ([18, 3.1]). Existence
requires B to be cometric with an additional condition on the Krein parameters. For
even rank, the covering configuration has a fusion (merging just two classes) that
is isomorphic to the extended Q-bipartite double, provided that there is exactly one
class of A on which ω is constant. Note that a minimal closure of a weight with values
in U2 has even rank only when the weight is constant on an odd number of classes of
A. The isomorphism is M ⊗N 7→ N ⊗M on the Ciσ of the cover configuration.

4.2.1 Necessary conditions for a covering configuration

In the case of commutative CCs we extend [16, Prop. 5.4] in a natural way, as follows.
Let C = (X, {Ri}) be a commutative CC of rank tr such that the first t intersection

matrices have the form Mj = Ir ⊗ Zζj , for 0 ≤ j < t, and let U = 〈ζ〉 the group of roots
of unity of order t. Index the relations according to the r blocks of size t, so that

Ci,ζk = Rit+k
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and suppose that for any i, j, k and ν:

pkστνiσ,jτ = pkνi1,j1

for all σ and τ in U . We intend to show that under these conditions, C must arise as the
covering configuration of a regular weight on a quotient of C.

Lemma 4.4. If j < t and pkij 6= 0, then k = i+ j (mod t); in particular, i and k lie in the
same block of Mj .

Proof. This follows from Mj = I ⊗ Zζj .

Observe that E := ∪t−1j=0Rj is a parabolic in the sense of [10]. Indeed, M0 = Irt
implies that R0 is the identity relation of C. Further, E is symmetric, since (x, y) ∈ Ri for
i < t implies that p0i∗i 6= 0, so i∗ is in the same block of Mi as 0. That is, (y, x) ∈ E.
Given (x, y) ∈ Ri and (y, z) ∈ Rj with 0 ≤ i, j < t, we see that (x, z) ∈ Rk for some
k < t, because k must lie in the same block of Mj as i, since all non-diagonal blocks are
zero. Hence, E is a transitive relation.

As a parabolic, E induces an equivalence relation on the indices: If there exist x, x′,
y, y′ ∈ X such that (x, x′) ∈ E, (y, y′) ∈ E, (x, y) ∈ Ri and (x′, y′) ∈ Rj , then
i ∼ j. Write [i] for the equivalence class of i. In addition, the parabolic affords a quotient
(homogeneous) configuration A := (X, {R[i]}) with an associated partition of the vertex
set X into fibres of size t. The fibre containing x is

[x] = {y | (x, y) ∈ E}.

We will henceforth suppress the bracket notation for fibres, writing x = {x1, x2, . . . xt}.
For j ∈ [0], Lemma 4.4 implies that pkkj = 0 for j 6= 0. But then Rk restricted to x× y

has valency at most 1. We conclude that the number of relations occurring between any
two fibres is t. We have: For k ∈ I and x ∈ X ,

|[k]| = |x| = t.

Denoting the graph of Rj by Γj , we have proved the following:

Lemma 4.5. For all j 6∈ [0], Γj is a t-fold cover of Γ[j].

Corollary 4.6. The natural partition of I according to blocks of Mj , for 0 ≤ j < t is the
same as that determined by the equivalence classes of the parabolic. That is,

[mt] = {mt,mt+ 1, . . . ,mt+ t− 1}.

Proof. Suppose j ∈ [i] so that there exist x1, x2, y1, y2 ∈ X with (x1, y1) ∈ Ri and
(x2, y2) ∈ Rj . Then, by the discussion above, (x1, y3) ∈ Rj for some y3 ∈ y and
therefore pjik 6= 0 for some k < t.

But then j = i+ k (mod t) by Lemma 4.4.

Recall thatC0,ζk = Rk for k < t,C0,σ has intersection matrix Ir⊗Zσ , andCm,1 = Rmt
for 0 ≤ m < r. Fix a fibre a (from here on), and order it so that (ai, ai+1) ∈ C0ζ , for each
i, with addition modulo t. This ensures that the perfect matching induced on a corresponds
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to the permutation (1, 2, . . . , t) on indices, which in turn corresponds to the permutation of
U induced by multiplication by ζ.

For each x ∈ X , (a, x) ∈ R[mt] for some m. Order x so that (aj , xj) ∈ Cm,1. In
what follows, we mix the notations regarding indexation of the relations of C. Where two
indices are given, we refer to Ci,σ as above; where one index is given we refer to the
original numbering of the relations.

Lemma 4.7. With notation as above, (xi, xi+1) ∈ C0,ζ for all x ∈ X .

Proof. For some σ, (xi, xi+1) ∈ C0,σ; (ai, xi+1) ∈ Rl for some l, and (ai, xi) ∈ Rm1 for
some m. Note that l ∈ [m]. Since ai, ai+1, and xi+1 form a triangle of type (0ζ,m1, l),

.............
.............
.............
.............
.............
.............
.............
.............
...............................................................................................................................................................................................................................

ai

ai+1

xi+1

0ζ m1

l
.............
.............
.............
.............
.............
.............
.............
.............
...............................................................................................................................................................................................................................

ai

xi

xi+1

m1 0ζ

l

Figure 4: Triangles (ai, ai+1, xi+1) and (ai, xi, xi+1).

we see that pl0ζ,m1 6= 0. Since C is commutative, Rl = Cmζ by Lemma 4.4. Now observe
that ai, xi, and xi+1 form a triangle of type (m1, 0σ,mζ), and therefore σ = ζ.

Next, following [16] we show that all matchings are cyclic.

Lemma 4.8. With notation as above, all matchings between fibres of C are cyclic.

Proof. Suppose that (xi, yj) ∈ Rk and (xi+1, yl) ∈ Rk. We must show that l = j + 1.
The triangle (xi, xi+1, yj) has type (1,m, k) for some m, indicating that pk1m 6= 0. As
in the previous lemma, this implies that k = m + 1. On the other hand, the triangle
(xi+1, yl−1, yl) has type (b, 1, k) for some b, hence k = b + 1. But then m = b, and by
Lemma 4.5, yl−1 = yj as desired.

Corollary 4.9. For all x ∈ X , (xi, xi+k) ∈ Rk, thus Rk induces on each fibre the perfect
matching corresponding to the kth power of the cycle (1, 2, . . . , t).

Proof. The result follows by Lemma 4.7 and induction (on k) applied to the triangles
(xi−k, xi, xi+1) .

Lemma 4.10. For x ∈ X , (ai, xi+k) ∈ Rmt+k for 0 ≤ k < t.

Proof. The case k = 0 holds by choice of ordering of x. Induction applied to the triangles
(ai, xi+k−1, xi+k) gives the desired result.

We now define a weight on A by means ofCi1. Let x, y ∈ X and suppose (x, y) ∈ R[j].
Then Cj,1 provides a cyclic matching between x and y corresponding to, say, α ∈ U . Set
ω(x, y) := α. Observe that ω(a, x) = 1 for all x.

The next lemma shows how to determine the weight of an edge in Γ[i] from any edge
in Γi.
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Lemma 4.11. If (xi, yj) ∈ Ckσ , then ω(x, y) = σζj−i.

Proof. Consider (xi, yj) ∈ Ck,σ . Let l be such that (xi, yl) ∈ Ck1 and note that the
triangle (xi, yl, yj) has type (k1, 0ζj−l, kσ). By Proposition 4.6, σ = ζj−l. This implies
that (xi, yl+m) ∈ Ck,ζm . We conclude that the matching between x and y in Ck,σ is ασ,
where α = ω(x, y).

We now prove the second main result which is the extension of [16, Prop. 5.4].

Theorem 4.12. Let C = (X, {Ri}) be a commutative CC of rank rt with the first t inter-
section matrices given by

Mj = Ir ⊗ Zζj 0 ≤ j < t,

where U = Ut = 〈ζ〉 is the group of roots of unity of order t. Label the relations according
to the blocking of Mj:

Ci,ζk := Rit+k 0 ≤ i < r, 0 ≤ k < t

and suppose that the CC parameters satisfy, for any i, j, k and ν:

pkστνiσ,jτ = pkνi1,j1

for all σ and τ in U . Then C arises as the covering configuration (in the sense of Theo-
rem 3.1) from a regular weight ω on the quotient scheme A = C/E.

Proof. From the discussion and lemmas above, what remains to be shown is that ω is
regular on the quotient configuration C = (X, {R[i]}). Let (x, z) ∈ R[k]. We consider
all y such that (x, y, z) has type (i, j, k) and weight ν. Let l be such that (x1, zl) ∈ Ckν .
If (x, y) ∈ R[i] and (y, z) ∈ R[j], then (x1, ym) ∈ Ci1 for some m, and this determines
(exactly one) τ with (ym, zl) ∈ Cjτ . By Lemma 4.11,

δω(x, y, z) = ω(x, y)ω(y, z)ω(x, z)

= ζm−1τζl−mνζ1−l

= τν

from which we see that triangles of weight ν occur exactly when τ = 1. These triangles
are counted by the parameter pkνi1,j1 which is independent of the choice of x1 and zl.

Note that in the proof above we are counting distinct y, and that for each y there
is exactly one ym as indicated. Thus we may use Ci1 without loss of generality, since
(x1, ym) ∈ Ciσ would yield the same result. In fact triangles of type (iσ, jτ, kν) will have
weight ν exactly when στ = 1, which is expected as in that case pkνiσ,jτ = pkνi1,j1

5 Examples
5.1 A rank 12 scheme on 18 points

The covering configuration of Example 2.6 has rank 12 (= 4 · 3) on 18 (= 6 · 3) points. It
is isomorphic to as18[88] on Hanaki and Izumi’s list ([8]).
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5.2 A family of CCs from regular weights on H(n, 2) with values in U4

This construction is due to Ada Chan (personal communication). We define a regular
weight on the Hamming Scheme H(n, 2) with values in U4 with generator i. Let t be

an indeterminate, and K the 2 by 2 matrix
[

0 1
−1 0

]
. Form (I + tK)⊗n, a polynomial

in t with coefficients in the ring of matrices M2,2(R)⊗n ' M2n,2n(R). Now let Aωk be
the coefficient of tk, scaled by a factor of ik ∈ U4. We claim this is a regular weight on
the Hamming scheme. Indeed, replacing i with 1 and K with J − I in this process yields
the adjacency matrices of the Hamming scheme, with the standard P-polynomial ordering.
Noting that K2 = −I it is straight-forward to see that Span(Aωk ) is coherent. For regular-
ity, we note that pkij is nonzero only when i + j + k is even, and this implies βkij(±i) = 0
for all i, j, k. Proposition 1 of [21] applies, and we conclude that ω is regular.

The covering configuration induced by this weight is a rank 4(n + 1) CC on 2n+2

vertices. There is a fusion to regular 4-graph, which is easily seen: replace t by i, setting

ω̃ := (I + iK)⊗n,

then verify directly that ω̃2 = 2nω̃ thus ω̃ is the matrix of a regular 4-graph. The covering
configuration of ω̃ has rank 8 and is symmetric, but not necessarily distance regular.

For n = 2, the weight is given by:

Aω1 =


0 i i 0
−i 0 0 i
−i 0 0 i
0 −i −i 0

 and Aω2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .
The rank 12 covering configuration has color matrix (

∑
iAi) below.

0 1 2 3 7 4 5 6 7 4 5 6 8 9 10 11
3 0 1 2 6 7 4 5 6 7 4 5 11 8 9 10
2 3 0 1 5 6 7 4 5 6 7 4 10 11 8 9
1 2 3 0 4 5 6 7 4 5 6 7 9 10 11 8
5 6 7 4 0 1 2 3 10 11 8 9 7 4 5 6
4 5 6 7 3 0 1 2 9 10 11 8 6 7 4 5
7 4 5 6 2 3 0 1 8 9 10 11 5 6 7 4
6 7 4 5 1 2 3 0 11 8 9 10 4 5 6 7
5 6 7 4 10 11 8 9 0 1 2 3 7 4 5 6
4 5 6 7 9 10 11 8 3 0 1 2 6 7 4 5
7 4 5 6 8 9 10 11 2 3 0 1 5 6 7 4
6 7 4 5 11 8 9 10 1 2 3 0 4 5 6 7
8 9 10 11 5 6 7 4 5 6 7 4 0 1 2 3
11 8 9 10 4 5 6 7 4 5 6 7 3 0 1 2
10 11 8 9 7 4 5 6 7 4 5 6 2 3 0 1
9 10 11 8 6 7 4 5 6 7 4 5 1 2 3 0


The regular 4-graph ω̃ := I +Aω1 +Aω2 satisfies ω̃2 = 4I . The covering configuration

of ω̃ has rank 8 and may also be obtained through fusion of the rank 12 above.
In summary, this construction gives regular weights with values in U4 on the Hamming

Schemes H(n, 2). These have rank n+ 1 on 2n vertices. The covering configurations thus
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have rank 4(n+1) on 2n+2 vertices. These weights fuse to regular 4-graphs always, and the
covering configurations of those have rank 8. In examples constructed to date, the covering
configurations are not metric, nor are their symmetrizations, and they are not cometric.

5.3 CCs afforded by groups

A CC may have relations determined by the orbitals of a group G acting on a set X , in
which the centralizer algebra of the natural permutation representation is the coherent al-
gebra A. In this case, a regular weight may exist such that Aω is the centralizer algebra
of a monomial representation of G, induced from a linear representation of a point stabi-
lizer ([14]).

For example, the rank 3 scheme containing the Petersen graph is afforded by the action
of A5 on 2-sets from {1, 2, 3, 4, 5}. The stabilizer of {1, 2} is a group H ' S3, contain-
ing A := 〈3, 4, 5〉 as a subgroup of index 2. This index determines that the monomial
representation will afford a weight with values in U2. Defining the linear representation

φ : H → C2 by φ(g) =

{
1 g ∈ A,
−1 g 6∈ A,

the induced representation M := φ
∣∣G
H

is a monomial representation of G. The M(g) for
g ∈ G are signed permutation matrices. The centralizer algebra ofM ,Aω , defines a regular
weight on the Petersen graph.

This construction can be done in general when the point stabilizer H has a normal
subgroup A of index t, such that H/A ' Ct. The monomial representation induced may
or may not afford a nontrivial regular weight on the underlying CC.

In this example, the covering configuration C is a rank 6 scheme on 20 points, in fact
the unique (antipodal, non-bipartite) distance-regular graph DRG{3, 2, 1, 1, 1; 1, 1, 1, 2, 3},
that is the dodecahedron graph. (It is not the bipartite double of the Petersen graph, which
is DRG{3, 2, 2, 1, 1; 1, 1, 2, 2, 3}.)

We obtain a permutation representation from M , via

M(g) 7→M+(g)⊗ Z1 +M−(g)⊗ Z2

where M+, M−, Z1 and Z2 are defined as in Section 2. It is natural to ask whether C is
the centralizer algebra of this permutation representation. In fact, C is properly contained
in this centralizer algebra. It affords a CC with valencies 1, 1, 3, 3, 3, 3, 3, 3 which has a
fusion to C. The group affording C is A5 × C2, an extension of our group G by the cyclic
C2, the latter generated by the even permutation interchanging each x1 and x2. This is of
course the symmetry group of the dodecahedron and is not isomorphic to S5.
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