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lzvlecek

V &lanku je opisan razsirjen algoritem za dologanje vsebnosti togk nad posplo&enimi mnogokotniki, ki poleg daljic vsebujejo tudi kroZne
loke. Algoritem uporablja klasiéno metodo sekanja Zarka. Razlika je v tem, da moramo testirati dve vrsti objektov. Nalogo opravimo
2 enostavnimi in uinkovitimi testi, ki nam hitro odgovorijo na vpraganje. Z uporabo ustreznih podatkovnih struktur nalogo resimo
zanesljivo in enostavno. Kljub razsiritvi deluje algoritem Se vedno v linearni ¢asovni zahtevnosti.

Abstract

Containment Test for Generalized Polygons

The paper describes an extended algarithm for solving the point-in-polygon problem. The polygon in this case consists of straight
edges and also of circular arcs. This represents a generalization of Reuleaux polygon. The algorithm uses the classical ray intersec-
tion method. The difference is that we have two types of geometric objects to test for intersections. Processing is done with simple
and efficient. tests, which quickly answer our question, Using the appropriate data structure, this task can be done safely and easily.
Despite the extension of the classical ray intersection method, the algorithm still runs in linear time complexity.

1 Uvod
Usehnostni test je eden osnovnih in pogosto uporabljanih al-
goritmov v racunalniski geometriji in njenih aplikacijah [3]. To

hiter in zanesljiv algoritem, ki bi poleg daljic ucin-
kovito obravnaval tudi krozne loke.

se posehej velja za racunalnisko grafiko, sisteme CAD/CAM
in GIS aplikacije.

Algoritem je odvisen od tipa mnogokotnikov, s ka-
terimi delamo:
1. mnogokotniki z ravnimi robovi,
2. mnogokotniki, ki vsebujejo tudi krozne loke.

ReSevanje problemov prvega tipa je laZje in hi-
trejSe. Vecinoma se tudi srecujemo s takSnimi mnogo-
kotniki. Posledica tega je, da so bile dosedanje ra-
ziskave usmerjene pretezno v to smer. Tako obstaja
precej dobrih algoritmov, ki reSujejo ta problem: me-
toda sekanja Zarka [4], [6], kodirani koordinatni sistem
[2], metoda trikotnikov [3], Swathova metoda [10],
algoritem na osnovi uniformne delitve ravnine [14].

Vsi ti algoritmi sprejmejo le mnogokotnike z ravni-
mi robovi. Mi pa se Zelimo osrediniti na posplosene
mnogokotnike, ki vsebujejo tudi kroZne loke. Resitev
za ta tip mnogokotnikov $e ni bila podana, zato smo
se odlodili, da skonstruiramo svoj algoritem. Za osno-
vo smo vzeli metodo sekanja Zarka. Dejstvo, da operi-
ramo s kroznimi loki, nekoliko spremeni in oteZi os-
novni vsebnostni test. NaSa Zelja je bila skonstruirati
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Glavno motivacijo so nam predstavljali problemi iz
geodezije, kjer se veckrat srecujejo s kroznimi loki. Re-
alen primer na sliki 1 ponazarja nas problem. To je pro-
blem onesnaZenja okolice cest z izpuSnimi plini. Pred-
stavljajmo si cesto, ki je ponazorjena s povezanimi
daljicami. Vedeli bi radi, kako se izpusni plini Sirijo v

Slika 1: Problem Sirjenja izpusnih plinov ponazorjen s pomocjo posploienega
mnogokotnika
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okolico ceste in kateri objekti in zgradbe so znotraj
onesnazenega podrodja. Za predstavitev tega proble-
ma potrebujemo kroZne loke, saj se plini Sirijo v vse
smeri enako. Na sliki 1 vidimo primer ceste in Sirjenja
plinov. Povezane daljice v sredini predstavljajo cesto.
Podrodje $irjenja izpusnih plinov je predstavljeno kot
mnogokotnik s kroznimi loki. Imamo majhne mno-
gokotnike za posamezne odseke ceste in en skupni
mnogokotnik za celo podrodje, ki smo ga dobili z zdru-
zevanjem manj$ih. To nam je omogodil algoritem za
tvorbo oértij [13].

Drugo poglavje podaja nekaj osnovnih definicij,
uporabljenih v tem ¢lanku. Poglavje tri predstavlja glav-
no idejo algoritma. Cetrto poglavje obravnava robne
primere. Analizo algoritma podaja peto poglavije. V Ses-
tem poglavju so podani zakljucki in ugotovitve, Sed-
mo poglavje prikazuje relevantno literaturo.

2 Definicije

Posplodimo definicijo enostavnega mnogokotnika [7]:

Imamo n tock py py, ..., P, V ravnini. Pari tock pgp,,

PP o Puallo 50 povezani z daljicami ali kroZnimi loki.

Dolocajo enostaven posplosen mnogokotnik P,, ¢e

velja:

« sosednje daljice ali krozni loki se dotikajo v eni
sami skupni tockip;, 0 =i <n,

» nesosednje daljice nimajo skupnih tock.

Daljice (oznacene z ¢; na sliki 2) in krozni loki
(oznaceni z a;) s srediSci ¢; predstavljajo robove pos-
plodenega mnogokotnika, tocke v; pa robne tocke.
Zaporedje robov, ki deli ravnino v omejen in neome-
jen del, se imenuje zanka [7]. Vsak posplosen mno-
gokotnik ima natanko eno zanko. Prstan predstavlja

Slika 2: Posplosen mnogokotnik r
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luknjo znotraj mnogokotnika, Luknje so lahko tudi
vgnezdene in tvorijo hierarhijo. Zanka je protiurno
usmerjena, luknja pa sourno.

Poglejmo malo bliZe strukturo kroZnega loka a; na
sliki 3. Polmer je oznacen z r;. Kon¢ni tocki sta v;in v; ;.
Ti dve tocki dolocata tetivo. Ker je mnogokotnik orien-
tiran, nam ta tetiva predstavlja vektor (v;,;) in nam
pove tudi, na kateri strani tega vektorja lezi mnogokot-
nik. V primeru slike 3 lezi mnogokotnik na desni.

3 Algoritem

Za ugotavljanje, ali je neka toc¢ka znotraj ali zunaj
mnogokotnika, se uporablja metoda sekanja Zarka. 1z
tocke, ki jo testiram, posljemo Zarek in preverimo ko-
likokrat seka mnogokotnik. Za dolo¢itev vsebnosti
uporabimo liho-sodo pravilo. To pravi, da ¢e imamo
liho Stevilo preseci3é, je tocka znotraj mnogokotnika,
¢e jih je pa sodo Stevilo, je toc¢ka zunaj mnogokotni-
ka, Za lazje in hitrejSe raunanje je na$ Zarek vodora-
ven. Tako dobimo vodoraven poltrak. Usmerjenost le-
vo ali desno ni pomembna. Na sliki 4 vidimo primer
Zarka p iz tocke £, Ki je zunaj mnogokotnika P.

Zarek seka eno daljico in dva krozna loka. Krozni
lok a; je presekan na dveh mestih. To nam da §tiri pre-
secisca in liho-sodo pravilo pravi, da je v tem prime-
ru totka zunaj mnogokotnika.

Algoritem deluje v dveh korakih:

1. iskanje presecis¢ med ravnimi robovi mnogokotni-
ka in poltrakom,

2. dologanje presecis¢ med kroZnimi loki in poltra-
kom.

Prvi del algoritma je laZji, saj je test preseciséa med
vodoravnim poltrakom in daljico dobro poznan in ni

Slika 3: Definicija kroinega loka
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L

Slika 4: Metoda sekanja vodoravnega Zarka iz tocke ¢

zahteven. Dejanskega presedis¢a nam ni potrebno
racunati, ker nas zanima samo obstoj le-tega, ne pa
njegove koordinate.

Drugi del algoritma je za nas zanimiv. Tu je bilo
treba sestaviti ustrezne teste, ki bi hitro in enostavno
dolocili obstoj presecis¢a med poltrakom in kroznim
lokom. Slika 5 prikazuje kroZni lok in poltrak, ki ga
seka v tockah d,.

Ugotoviti moramo, katera presecisca Stejejo (d;) in
katera ne (d,). Pomembno je, kako je kroZni lok pred-
stavljen. Potrebovali bomo vse podatke, omenjene v
definiciji.

V splodnem imamo dve moZni situaciji pri kroZnih
lokih:
= tocka je zunaj kroZnice,
= tocka je znotraj kroZnice.

V prvem primeru se lahko pojavita dve moZnosti.
Poltrak lahko seka ali pa ne seka tetive. Slika 5 kaze
primer, ko poltrak seka tetivo. V tem primeru takoj
brez nadaljnjih testov vemo, da imamo samo eno pre-
seCisCe. KroZnica je seveda presekana dvakrat, vendar
je eno izmed presecis¢ na “vidni”, eno pa na “nevid-
ni” strani.

Slika 5: Kroini lok a, je presekan v dveh mestih
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Tetiva je presekana, ko je Zarek p znotraj vodo-
ravnega pasu, omejenega s tockama v;in v (Ly < v,y
in L.y > v;, ..y ali obratno) in je toc¢ka t na desni strani
vektorja v;v; 4 (v;v;4 Xv;t > 0). Za ugotavljanje, na ka-
teri strani vektorja lezi dolo¢ena tocka, vedno uporab-
ljamo vektorski produkt, ker predstavlja hitrejsi test
kot dejansko racunanje presecisca.

V primeru, da poltrak ne seka tetive, nam to sploh
ne vpliva na rezultat, zato nam tega primera ni po-
trebno obravnavati. Poglejmo, zakaj.

Poltrak lahko Se vedno seka preostali del kroznega
loka ali pa se ga dotika. Treba bi bilo preveriti razda-
ljo od sredis¢a. Ce je ta vedja od polmera, nimamo pre-
secidca. Ce je ta manjsa kot polmer, potem imamo dve
preseciséi. Ce sta ti dve preseciséi na “vidni” strani (sli-
ka 6a), obe upostevamo, ¢e sta na “nevidni” strani (sli-
ka 6b), pa nobenega. V obeh primerih pa to ne spre-
meni rezultata. Nas zanima samo sodost oz. lihost
Stevila presedisé. Ce k rezultatu pristejemo 0 ali 2, bo
ostal enak. V primeru, da je razdalja enaka polmeru,
imamo dotikalis¢e, ¢esar pa nam ni treba upostevati,
saj dotikanje ne vpliva na rezultat.

Vidimo, da smo se elegantno izognili odvecnemu
testiranju in s tem pospesili algoritem.
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Slika Bb: Zarek seka »nevidni« del kroinega loka
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Podobne situacije imamo tudi v primeru, da je to¢-
ka t znotraj kroznice. To¢ka je lahko znotraj vodorav-
nega pasu, ki ga dolo¢ata kon¢ni tocki ali izven. V
primeru, da je znotraj, je $tevilo presetis¢ odvisno od
tega, na kateri strani se nahaja “vidni” del kroga. Ce
je levo od tetive, nimamo presedis¢ (slika 7a). To pa
zato, ker je potem na desni strani, torej tisti strani, v
katero gre poltrak, “nevidni” del kroga. Torej se v tem
primeru presecisce d; ne uposteva.

V nasprotnem primertu, ko je “vidni” del na desni
strani, imamo seveda eno presedice. Situacija je
popolnoma enaka, le da se preseciice d; zdaj nahaja
v “vidnem” delu kroga, ker sta “vidni” in “nevidni”
del zamenjana (slika 7b).

Ce pa je to¢ka zunaj tega pasu, so ugotovitve rav-
no nasprotne. Ce je “vidni” del na levi, imamo eno
presecisée (slika 8a), v nasprotnem primeru pa ni pre-
secisc (slika 8b).

S tem smo opisali vse moZne situacije, ki lahko
nastopijo pri testiranju kroznega loka. Dejanskega
testiranja je zelo malo. Povzemimo zdaj vse moznosti
na enem mestu (tabela 1):

Slika 7b: »Vidni« del kroinega loka je na desni
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Situacija §t. preseéiié
Totka je zunaj kroZnice

Poltrak seka tetivo +1
Totka je znotraj kroZnice

Totka je znotraj pasu tetive

*Vidni” del na desni strani +1

Totka je zunaj pasu tetive

*Vidni" del na levi strani +1

Tabela 1: Situacije pri testiranju

V primeru, da mnogokotnik vsebuje luknje, nam
to samih pravil za testiranje ne spremeni. Vse luknje
se hkrati z zanko upostevajo pri testiranju. Tako av-
tomati¢no dobimo pravilno stevilo presecisé.

4  Robni primeri

Obicajen robni primer se zgodi, ko je testna tocka f na
mnogokotniku. To je lahko daljica ali pa kroZni lok. Te
situacije enostavno odkrijemo in nam ne spremenijo
poteka algoritma. Ce je tocka na daljici, odkrijemo to
s pomodjo vektorskega produkta (v,r, xvv, = 0). Ce
je na kroznem loku, odkrijemo s pomocjo primerjave

@ ----- ity
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Slika Bb: ToEka t je zunaj pasu, »vidni= del je desno

INFORMATIKA 93

UPORABNA



Malej Gombosi: Ugotavljanje vsebnosti tock nad posplosenimi mnogokotniki

razdalje do sredii¢a kroznega loka d(c,,t,) = r; . Slika
9 prikazuje ta dva primera. Testna tocka (t,) je na dal-
jici, tocka (f,) pa na kroznem loku.

Shika 9: Testni tocki na robu mnogokotnika

Odvisno od potrebe aplikacije se tocka v takSnem
primeru doloci kot zunanja ali notranja.

Bolj zanimivi so primeri, ko gre Zarek skozi robno
tocko mnogokotnika. To so lahko robne tocke daljic ali
konc¢ne to¢ke kroznih lokov. Te primere prav tako
enostavno resimo. V primeru, da gre Zarek skozi rob-
no tocko daljice, preverimo poloZaja sosednjih robnih
tock. Slika 10 prikazuje situacijo.

V primeru, da sta sosednji to¢ki na nasprotnih stra-
neh Zarka (v in v5), vemo, da gre za presedisce (v,). Ce
pa sta sosednji toc¢ki na isti strani (v, in v;), imamo
samo dotik (v,). Ta dva primera enostavno lo¢imo s
pomocjo primerjave koordinat y sosednjih tock glede
na koordinato y Zarka.

Zadnji robni primer je primer, ko gre Zarek skozi
kon¢no to¢ko kroznega loka. Slika 11 kaZe dva prime-

v-

Slika 10: Zarek seka rohni toki daljice

94 uwrorasna INFORMATIKA

ra. Zarek p gre skozi to¢ko vy, Zarek q pa skozi tocko
v,. V prvem primeru imamo dotik, v drugem pa pre-
seCisce. Poglejmo, zakaj.

p
----------- R =
V-
q
. I I PR

Slika 11: Zarek seka konéne toéke kroinega loka

V primeru tocke v; vidimo, da se oba sosednja dela
mnogokotnika (rob v;v, in krozno lok 4;) nadaljujeta
na isti strani Zarka. V primeru tocke v, pa se sosednja
dela (rob v,v, in kroZni lok a;) nadaljujeta na razli¢nih
straneh Zarka.

5 Casouna zahteunost

Ceprav je algoritem razsirjena verzija klasi¢nega al-
goritma sekanja Zarka, ostaja ¢asovna zahtevnost ena-
ka. Algoritem torej deluje v linearnem casu O(n), kjer
je n skupno Stevilo mnogokotnikovih elementov (da-
ljic in kroznih lokov).

V vseh delih algoritma smo uporabili samo eno-
stavne racunske operacije, kot sta vektorski produkt
in bounding-box test [1]. Na ta nacin se izognemo tez-
jim rac¢unskim operacijam, saj ti dve zahtevata samo
celotevilsko mnoZenje in seStevanje.

Pri testiranju kroznih lokov imamo podobno situ-
acijo. Za ugotavljanje, ali je tocka znotraj kroZnice,
rabimo le razdaljo tocke od sredidca. Dolo¢anije, ali je
tocka znotraj vodoravnega pasu tetive, reSimo s pri-
merjavo koordinat y, stran tetive, na kateri se nahaja
tocka, pa spet ugotovimo z vektorskim produktom.

Poglejmo $e meritve ¢asa algoritma. Uporabili smo
PC Pentium Celeron 300Mhz s 128Kb predpomnilni-
ka in 384Mb pomnilnika. Algoritem je bil implemen-
tiran v Visual C+ + na Windows 2000. Algoritem smo
testirali na mnogokotniku, sestavljenem iz 2848 daljic
in 3334 kroznih lokov (slika 12). V tabeli 2 so podani
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¢asi algoritma za razli¢na Stevila testnih to¢k. Skupni  jic in ¢as za testiranje kroZnih lokov. Slika 13 kazZe
¢as algoritma je razdeljen tudi na ¢as za testiranje dal-  grafi¢no predstavitev meritev casa.

Slika 12: Testni mnogoketnik
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Slika 13: Graf porabljenega €asa CPE
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5t. toik Cas daljic Cas kr. lokov Skupni éas
1000 0,30 0,33 0,63
2000 0,59 0,66 1.25
4000 1,18 1.32 2,50
8000 2,40 2,66 5,06
4,75 5,35 101

16000

Tabela 2: Meritve tasa CPE [s]

Ugotovili smo tudi, da je razmerje med ¢asom,
porabljenim za testiranje daljic in kroZnih lokov 1,1.
To pomeni, da zahtevajo kroZni loki okoli 10 % vec
procesorskega casa. Iz teh rezultatov lahko sklepamo,
da so testi kroZnih lokov udinkoviti, saj se skoraj ena-
kovredno kosajo s testiranjem daljic.

6 Sklep
Predstavili smo razgirjen algoritem za dolo¢anje vseb-
nosti tock v posplosenih mnogokotnikih, ki vsebuje-
jo tudi krozne loke. Tak3ni primeri se najdejo pred-
vsem v GIS in CAD/CAM sistemih, kjer obstajajo zelo
veliki posploSeni mnogokotniki. Algoritem je sestav-
lien tako, da z uporabo preprostih nezahtevnih ra¢un-
skih operacij hitro in uc¢inkovito resi problem.

Algoritem testira vse daljice in kroZne loke na pre-
sedisde z vodoravnim Zarkom. Posebej za kroZne loke
smo skonstruirali teste za dolocitev presecisca. Ti se
razlikujejo od testov za daljice, vendar so Se vedno
dovolj hitri.

Z analizo algoritma ugotovimo, da kljub razsiritvi
e vedno deluje v linearni ¢asovni zahtevnosti O(n). To
prikazujejo tudi meritve porabljenega casa.

Posplodeni mnogokotniki predstavljajo teZjo nalo-
go z vsebnostnim testom. Zaradi njihove uporabnosti,
predvsem v podrocju geodezije, smo skonstruirali ta al-
goritem in pokazali, da je mogoce problem resiti eno-
stavno in ucinkovito.
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