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Izvleček
V članku je opisan razširjen algoritem za določanje vsebnosti točk nad posplošenimi mnogokotniki, ki poleg daljic vsebujejo tudi krožne 
loke. Algoritem uporablja klasično metodo sekanja žarka. Razlika je v tem, da moramo testirati dve vrsti objektov. Nalogo opravimo 
z enostavnimi in učinkovitimi testi, ki nam hitro odgovorijo na vprašanje. Z uporabo ustreznih podatkovnih struktur nalogo rešimo 
zanesljivo in enostavno. Kljub razširitvi deluje algoritem še vedno v linearni časovni zahtevnosti.

Abstract
Containment Test for Generalized Polygons
The paper describes an extended algorithm for solving the point-in-polygon problem. The polygon in this čase consists of straight 
edges and also of circular arcs. This represents a generalization of Reuleaux polygon. The algorithm uses the classical ray intersec- 
tion method. The difference is that we have two types of geometric objects to test for intersections. Processing is done with simple 
and efficient tests, vvhich quickly ansvver our guestion. Using the appropriate data structure, this task can be done safely and easily. 
Despite the extension of the classical ray intersection method, the algorithm stili runs in linear time complexity.

1 Uvod
Vsebnostni test je eden osnovnih in pogosto uporabljanih al­
goritmov v računalniški geometriji in njenih aplikacijah [9]. To 
še posebej velja za računalniško grafiko, sisteme CAD/CAM 
in GIS aplikacije.

Algoritem je odvisen od tipa mnogokotnikov, s ka­
terimi delamo:
1. mnogokotniki z ravnimi robovi,
2. mnogokotniki, ki vsebujejo tudi krožne loke.

Reševanje problemov prvega tipa je lažje in hi­
trejše. Večinoma se tudi srečujemo s takšnimi mnogo­
kotniki. Posledica tega je, da so bile dosedanje ra­
ziskave usmerjene pretežno v to smer. Tako obstaja 
precej dobrih algoritmov, ki rešujejo ta problem: me­
toda sekanja žarka [4], [6], kodirani koordinatni sistem 
[2], metoda trikotnikov [3], Svvathova metoda [10], 
algoritem na osnovi uniformne delitve ravnine [14].

Vsi ti algoritmi sprejmejo le mnogokotnike z ravni­
mi robovi. Mi pa se želimo osrediniti na posplošene 
mnogokotnike, ki vsebujejo tudi krožne loke. Rešitev 
za ta tip mnogokotnikov še ni bila podana, zato smo 
se odločili, da skonstruiramo svoj algoritem. Za osno­
vo smo vzeli metodo sekanja žarka. Dejstvo, da operi­
ramo s krožnimi loki, nekoliko spremeni in oteži os­
novni vsebnostni test. Naša želja je bila skonstruirati

hiter in zanesljiv algoritem, ki bi poleg daljic učin­
kovito obravnaval tudi krožne loke.

Glavno motivacijo so nam predstavljali problemi iz 
geodezije, kjer se večkrat srečujejo s krožnimi loki. Re­
alen primer na sliki 1 ponazarja naš problem. To je pro­
blem onesnaženja okolice cest z izpušnimi plini. Pred­
stavljajmo si cesto, ki je ponazorjena s povezanimi 
daljicami. Vedeli bi radi, kako se izpušni plini širijo v

Slika 1: Problem širjenja izpušnih plinov ponazorjen s pomočjo posplošenega 
mnogokotnika
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okolico ceste in kateri objekti in zgradbe so znotraj 
onesnaženega področja. Za predstavitev tega proble­
ma potrebujemo krožne loke, saj se plini širijo v vse 
smeri enako. Na sliki 1 vidimo primer ceste in širjenja 
plinov. Povezane daljice v sredini predstavljajo cesto. 
Področje širjenja izpušnih plinov je predstavljeno kot 
mnogokotnik s krožnimi loki. Imamo majhne mno- 
gokotnike za posamezne odseke ceste in en skupni 
mnogokotnik za celo področje, ki smo ga dobili z zdru­
ževanjem manjših. To nam je omogočil algoritem za 
tvorbo očrtij [13].

Drugo poglavje podaja nekaj osnovnih definicij, 
uporabljenih v tem članku. Poglavje tri predstavlja glav­
no idejo algoritma. Četrto poglavje obravnava robne 
primere. Analizo algoritma podaja peto poglavje. V šes­
tem poglavju so podani zaključki in ugotovitve. Sed­
mo poglavje prikazuje relevantno literaturo.

2 Definicije
Posplošimo definicijo enostavnega mnogokotnika [7]: 
Imamo n točk p g, pv ..., v ravnini. Pari točk p0pv 
p,p2,..., p„.iPo so povezani z daljicami ali krožnimi loki. 
Določajo enostaven posplošen mnogokotnik Pg, če 
velja:
. sosednje daljice ali krožni loki se dotikajo v eni

sami skupni točki p,-, 0 < i < n,
» nesosednje daljice nimajo skupnih točk.

Daljice (označene z e, na sliki 2) in krožni loki 
(označeni z «,) s središči c,- predstavljajo robove pos­
plošenega mnogokotnika, točke y, pa robne točke. 
Zaporedje robov, ki deli ravnino v omejen in neome­
jen del, se imenuje zanka [7]. Vsak posplošen mno­
gokotnik ima natanko eno zanko. Prstan predstavlja

a

Slika 2: Posplošen mnogokotnik Pf

luknjo znotraj mnogokotnika. Luknje so lahko tudi 
vgnezdene in tvorijo hierarhijo. Zanka je protiurno 
usmerjena, luknja pa sourno.

Poglejmo malo bliže strukturo krožnega loka a, na 
sliki 3. Polmer je označen z rr Končni točki sta v, in vi+1. 
Ti dve točki določata tetivo. Ker je mnogokotnik orien­
tiran, nam ta tetiva predstavlja vektor (u,u,+?) in nam 
pove tudi, na kateri strani tega vektorja leži mnogokot­
nik. V primeru slike 3 leži mnogokotnik na desni.

3 Algoritem
Za ugotavljanje, ali je neka točka znotraj ali zunaj 
mnogokotnika, se uporablja metoda sekanja žarka. Iz 
točke, ki jo testiram, pošljemo žarek in preverimo ko­
likokrat seka mnogokotnik. Za določitev vsebnosti 
uporabimo liho-sodo pravilo. To pravi, da če imamo 
liho število presečišč, je točka znotraj mnogokotnika, 
če jih je pa sodo število, je točka zunaj mnogokotni­
ka. Za lažje in hitrejše računanje je naš žarek vodora­
ven. Tako dobimo vodoraven poltrak. Usmerjenost le­
vo ali desno ni pomembna. Na sliki 4 vidimo primer 
žarka p iz točke t, ki je zunaj mnogokotnika P.

Žarek seka eno daljico in dva krožna loka. Krožni 
lok at je presekan na dveh mestih. To nam da štiri pre­
sečišča in liho-sodo pravilo pravi, da je v tem prime­
ru točka zunaj mnogokotnika.

Algoritem deluje v dveh korakih:
1. iskanje presečišč med ravnimi robovi mnogokotni­

ka in poltrakom,
2. določanje presečišč med krožnimi loki in poltra­

kom.
Prvi del algoritma je lažji, saj je test presečišča med 

vodoravnim poltrakom in daljico dobro poznan in ni

Slika 3: Definicija krožnega loka
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Slika 4: Metoda sekanja vodoravnega žarka iz točke t

zahteven. Dejanskega presečišča nam ni potrebno 
računati, ker nas zanima samo obstoj le-tega, ne pa 
njegove koordinate.

Drugi del algoritma je za nas zanimiv. Tu je bilo 
treba sestaviti ustrezne teste, ki bi hitro in enostavno 
določili obstoj presečišča med poltrakom in krožnim 
lokom. Slika 5 prikazuje krožni lok in poltrak, ki ga 
seka v točkah dt.

Ugotoviti moramo, katera presečišča štejejo (d,) in 
katera ne (d2). Pomembno je, kako je krožni lok pred­
stavljen. Potrebovali bomo vse podatke, omenjene v 
definiciji.

V splošnem imamo dve možni situaciji pri krožnih 
lokih:
. točka je zunaj krožnice,
■ točka je znotraj krožnice.

V prvem primeru se lahko pojavita dve možnosti. 
Poltrak lahko seka ali pa ne seka tetive. Slika 5 kaže 
primer, ko poltrak seka tetivo. V tem primeru takoj 
brez nadaljnjih testov vemo, da imamo samo eno pre­
sečišče. Krožnica je seveda presekana dvakrat, vendar 
je eno izmed presečišč na "vidni", eno pa na "nevid­
ni" strani.

Slika 5: Krožni lok a, je presekan v dveh mestih

Tetiva je presekana, ko je žarek p znotraj vodo­
ravnega pasu, omejenega s točkama v j in vi+7 (t.y < u,.y 
in t.y > vi+1.y ali obratno) in je točka t na desni strani 
vektorja u,u/+1 (v,v(.+1 xv,-Z > 0). Za ugotavljanje, na ka­
teri strani vektorja leži določena točka, vedno uporab­
ljamo vektorski produkt, ker predstavlja hitrejši test 
kot dejansko računanje presečišča.

V primeru, da poltrak ne seka tetive, nam to sploh 
ne vpliva na rezultat, zato nam tega primera ni po­
trebno obravnavati. Poglejmo, zakaj.

Poltrak lahko še vedno seka preostali del krožnega 
loka ali pa se ga dotika. Treba bi bilo preveriti razda­
ljo od središča. Če je ta večja od polmera, nimamo pre­
sečišča. Če je ta manjša kot polmer, potem imamo dve 
presečišči. Če sta ti dve presečišči na "vidni" strani (sli­
ka 6a), obe upoštevamo, če sta na "nevidni" strani (sli­
ka 6b), pa nobenega. V obeh primerih pa to ne spre­
meni rezultata. Nas zanima samo sodost oz. lihost 
števila presečišč. Če k rezultatu prištejemo 0 ali 2, bo 
ostal enak. V primeru, da je razdalja enaka polmeru, 
imamo dotikališče, česar pa nam ni treba upoštevati, 
saj dotikanje ne vpliva na rezultat.

Vidimo, da smo se elegantno izognili odvečnemu 
testiranju in s tem pospešili algoritem.

V

Slika 6a: Žarek seka »vidni« del krožnega loka

d d

Slika 6b: Žarek seka »nevidni« del krožnega loka
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Podobne situacije imamo tudi v primeru, da je toč­
ka t znotraj krožnice. Točka je lahko znotraj vodorav­
nega pasu, ki ga določata končni točki ali izven. V 
primeru, da je znotraj, je število presečišč odvisno od 
tega, na kateri strani se nahaja "vidni" del kroga. Če 
je levo od tetive, nimamo presečišč (slika 7a). To pa 
zato, ker je potem na desni strani, torej tisti strani, v 
katero gre poltrak, "nevidni" del kroga. Torej se v tem 
primeru presečišče ne upošteva.

V nasprotnem primeru, ko je "vidni" del na desni 
strani, imamo seveda eno presečišče. Situacija je 
popolnoma enaka, le da se presečišče d, zdaj nahaja 
v "vidnem" delu kroga, ker sta "vidni" in "nevidni" 
del zamenjana (slika 7b).

Če pa je točka zunaj tega pasu, so ugotovitve rav­
no nasprotne. Če je "vidni" del na levi, imamo eno 
presečišče (slika 8a), v nasprotnem primeru pa ni pre­
sečišč (slika 8b).

S tem smo opisali vse možne situacije, ki lahko 
nastopijo pri testiranju krožnega loka. Dejanskega 
testiranja je zelo malo. Povzemimo zdaj vse možnosti 
na enem mestu (tabela 1):

V

Slika 7a: »Vidni« del krožnega loka je na levi

V

~ _

Slika 7b: »Vidni« del krožnega loka je na desni

Situacija Št. presečišč

Točka je zunaj krožnice
Poltrak seka tetivo +1

Točka je znotraj krožnice
Točka je znotraj pasu tetive

"Vidni'' del na desni strani +1

Točka je zunaj pasu tetive
“Vidni" del na levi strani +1

Tabela 1: Situacije pri testiranju

V primeru, da mnogokotnik vsebuje luknje, nam 
to samih pravil za testiranje ne spremeni. Vse luknje 
se hkrati z zanko upoštevajo pri testiranju. Tako av­
tomatično dobimo pravilno število presečišč.

4 Robni primeri
Običajen robni primer se zgodi, ko je testna točka t na 
mnogokotniku. To je lahko daljica ali pa krožni lok. Te 
situacije enostavno odkrijemo in nam ne spremenijo 
poteka algoritma. Če je točka na daljici, odkrijemo to 
s pomočjo vektorskega produkta (vp, xv,v2 =0). Če 
je na krožnem loku, odkrijemo s pomočjo primerjave

V

Slika 8a: Točka t je zunaj pasu, »vidni« del je leve

V

Slika 8b: Točka t je zunaj pasu, »vidni« del je desno
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razdalje do središča krožnega loka </(c,,/2) = /j. Slika 
9 prikazuje ta dva primera. Testna točka (f,) je na dal­
jici, točka (tz) pa na krožnem loku.

Slika 9: Testni točki na robu mnogokotnika

Odvisno od potrebe aplikacije se točka v takšnem 
primeru določi kot zunanja ali notranja.

Bolj zanimivi so primeri, ko gre žarek skozi robno 
točko mnogokotnika. To so lahko robne točke daljic ali 
končne točke krožnih lokov. Te primere prav tako 
enostavno rešimo. V primeru, da gre žarek skozi rob­
no točko daljice, preverimo položaja sosednjih robnih 
točk. Slika 10 prikazuje situacijo.

V primeru, da sta sosednji točki na nasprotnih stra­
neh žarka (v3 in v5), vemo, da gre za presečišče (v4). Če 
pa sta sosednji točki na isti strani (u2 in v3), imamo 
samo dotik (v2). Ta dva primera enostavno ločimo s 
pomočjo primerjave koordinat y sosednjih točk glede 
na koordinato y žarka.

Zadnji robni primer je primer, ko gre žarek skozi 
končno točko krožnega loka. Slika 11 kaže dva prime-

Slika 10: Žarek seka robni točki daljice

ra. Žarek p gre skozi točko v3, žarek q pa skozi točko 
v4. V prvem primeru imamo dotik, v drugem pa pre­
sečišče. Poglejmo, zakaj.

Slika 11: Žarek seka končne točke krožnega loka

V primeru točke v3 vidimo, da se oba sosednja dela 
mnogokotnika (rob v3v6 in krožno lok a2) nadaljujeta 
na isti strani žarka. V primeru točke v4 pa se sosednja 
dela (rob u4u2 in krožni lok«2) nadaljujeta na različnih 
straneh žarka.

5 Časovna zahtevnost
Čeprav je algoritem razširjena verzija klasičnega al­
goritma sekanja žarka, ostaja časovna zahtevnost ena­
ka. Algoritem torej deluje v linearnem času 0(n), kjer 
je n skupno število mnogokotnikovih elementov (da­
ljic in krožnih lokov).

V vseh delih algoritma smo uporabili samo eno­
stavne računske operacije, kot sta vektorski produkt 
in bounding-box test [1]. Na ta način se izognemo tež­
jim računskim operacijam, saj ti dve zahtevata samo 
celoštevilsko množenje in seštevanje.

Pri testiranju krožnih lokov imamo podobno situ­
acijo. Za ugotavljanje, ali je točka znotraj krožnice, 
rabimo le razdaljo točke od središča. Določanje, ali je 
točka znotraj vodoravnega pasu tetive, rešimo s pri­
merjavo koordinat y, stran tetive, na kateri se nahaja 
točka, pa spet ugotovimo z vektorskim produktom.

Poglejmo še meritve časa algoritma. Uporabili smo 
PC Pentium Celeron 300Mhz s 128Kb predpomnilni­
ka in 384Mb pomnilnika. Algoritem je bil implemen­
tiran v Visual C+ + na VVindovvs 2000. Algoritem smo 
testirali na mnogokotniku, sestavljenem iz 2848 daljic 
in 3334 krožnih lokov (slika 12). V tabeli 2 so podani
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časi algoritma za različna števila testnih točk. Skupni jic in čas za testiranje krožnih lokov. Slika 13 kaže 
čas algoritma je razdeljen tudi na čas za testiranje dal- grafično predstavitev meritev časa.

- dge 9

Slika 12: Testni mnogokotnik

8000

število točk

10000 12000 14000 16000

skupaj daljice —-krožni loki |

Slika 13: Graf porabljenega časa CPE
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Št. točk Čas daljic Čas kr. lokov Skupni čas

1000 0,30 0,33 0,63

2000 0,59 0,66 1,25

4000 1,18 1,32 2,50

8000 2,40 2,66 5,06

16000 4,75 5,35 10,1

Tabela 2: Meritve časa CPE [s]

Ugotovili smo tudi, da je razmerje med časom, 
porabljenim za testiranje daljic in krožnih lokov 1,1. 
To pomeni, da zahtevajo krožni loki okoli 10 % več 
procesorskega časa. Iz teh rezultatov lahko sklepamo, 
da so testi krožnih lokov učinkoviti, saj se skoraj ena­
kovredno kosajo s testiranjem daljic.

B Sklep
Predstavili smo razširjen algoritem za določanje vseb­
nosti točk v posplošenih mnogokotnikih, ki vsebuje­
jo tudi krožne loke. Takšni primeri se najdejo pred­
vsem v GIS in CAD/CAM sistemih, kjer obstajajo zelo 
veliki posplošeni mnogokotniki. Algoritem je sestav­
ljen tako, da z uporabo preprostih nezahtevnih račun­
skih operacij hitro in učinkovito reši problem.

Algoritem testira vse daljice in krožne loke na pre­
sečišče z vodoravnim žarkom. Posebej za krožne loke 
smo skonstruirali teste za določitev presečišča. Ti se 
razlikujejo od testov za daljice, vendar so še vedno 
dovolj hitri.

Z analizo algoritma ugotovimo, da kljub razširitvi 
še vedno deluje v linearni časovni zahtevnosti O(n). To 
prikazujejo tudi meritve porabljenega časa.

Posplošeni mnogokotniki predstavljajo težjo nalo­
go z vsebnostnim testom. Zaradi njihove uporabnosti, 
predvsem v področju geodezije, smo skonstruirali ta al­
goritem in pokazali, da je mogoče problem rešiti eno­
stavno in učinkovito.
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