AES karakterizacija poroznosti tankih Au prevlek na kontaktih za miniaturne releje

AES Characterization of Porosity of Au Thin Layers on Contacts for Miniature Relays

Koller L!, S. Spruk, D. Railič, Inštitut za elektroniko in vakuumsko tehniko, Ljubljana

V profesionalni elektroniki postajajo zahteve po čimboljši korozijski obstojnosti materialov vse večje. Korozija tankih kovinskih struktur za elektronske sestavne dele je pomemben faktor, ki določa tudi zanesljivost komponent. Raziskali smo primernost elektrografske metode¹ v raztopini želatine za določanje poroznosti zelo tankih prevlek zlata (~0,3 µm) na nikljevi zaporni plasti. Za interpretacijo rezultatov smo prevleke po testih preiskali z optično in elektronsko mikroskopijo ter mikroanalizo. Porazdelitev niklja v kompleksu dimetilglioksima (DMG) v porah pa smo študirali s spektroskopijo Augerjevih elektronov.

Ključne besede: miniaturni releji, kontaktni materiali, elektrokemijske prevleke, korozijske lastnosti, AES karakterizacija

There are increasing trends to develop good corrosion resistant materials used in professional electronics. Corrosion of thin metal layers is an important factor, which determines the reliability of the electronic components. The reliability of the gel bulk electrographic test for porosity testing of thin Au coatings (~0.3 μ m) on Ni underplate has been investigated. After the tests the coatings were examined by the optic and electronic microscopy and microanalysis as well. The distribution of Ni on pore site after testing has been investigated by Auger spectroscopy.

Key words: miniature relays, contact material, electrochemical layers, corrosion properties, AES characterization

I. Uvod

Študij poroznosti je ena bistvenih nalog pri karakterizaciji tankih prevlek zlata galvansko nanešenih na kontaktne materiale. Za šibke hermetične releje z inertno atmosfero so zanimivo izhodno področje tudi zelo tanki samo nekaj desetink mikronov debeli filmi čistega mehkega zlata na ustrezni podlagi, naneseni pri izbranih parametrih iz posebnih kopeli. Pri nanosih tankih plasti zlata lahko vedno pričakujemo poroznost, saj so mehanizmi galvanskega nanašanja zlata2-10 razen od vrste kopeli odvisni še od lastnosti površine eventuelnega podsloja, njegove predobdelave in števila defektov. Zapiranje por se začenja šele pri večjih debelinah nanosov, ki pa niso vedno potrebni in ekonomsko utemeljeni. Za raziskavo poroznosti vzorcev kontaktov s prevleko zlata 0,3 µm na nikljevi zaporni plasti smo izbrali elektrografsko metodo s selektivnim jedkanjem v raztopini želatine z dodatkom specifičnega reagenta dimetilglioksima. Porazdelitev niklja, kemično vezanega v kompleksu dimetilglioksima v področju pore, smo raziskali s spektroskopijo Augerjevih elektronov.

2. Eksperimentalni del

Princip elektrokemične metode za ugotavljanje poroznosti tankih Au prevlek je osnovan na reakciji zaporne plasti ali podlage pod zlato prevleko s specifičnim reagentom skozi pore prevleke. Vzorec kontaktnega elementa vežemo kot anodo, pri čemer se podsloj anodno raztaplja skozi pore, te se z reagentom obarvajo in postanejo vidne. V našem primeru je bil vzorec kontaktni element prevlečen z zlato prevleko debeline 0,3 µm. Osnovní material je bila srebrova zlitina prevlečena s plastjo niklja, ki deluje kot zaporna plast. Anodno raztopljeni nikelj skozi pore v Au prevleki reagira z dimetilglioksimom in tvori rdeče obarvan kompleks (katoda je enak pozlačen vzorec z enako površino kot testni vzorec). Napravo za določanje poroznosti z elektrografskim testom prikazuje shema na sliki 1. Obarvane pore smo opazovali z optičnim mikroskopom. Z elektronskim mikroskopom smo posneli izgled površine Au prevleke, debelino prevleke pa smo določili z energijsko disperzijskim mikroanalizatorjem žarkov X. Porazdelitev kompleksa Ni-dimetilglioksim (Ni-DMG) v obarvanem reakcijskem produktu na področju pore smo raziskali s spektroskopijo Augerjevih elektronov.

¹ Ladija KOLLER, dipl. inž. kem. Inklitut za elektroniko in vakuumsko tehniko Teslova 30, 61000 Ljubljana

Koller L. et al.: AES karakterizacija poroznosti tankih Au prevlek na kontaktih za miniaturne releje

3. Rezultati in diskusija

Površino pozlačenih kontaktov po elektrografskem testu z dimetilglioksimom smo opazovali z optičnim mikroskopom. Površina je bila prekrita z drobnimi, večjimi in manjšimi pikami, ki so bile na nekaterih mestih gostejše. Kompleks niklja z dimetilglioksimom je zrastel v večje madeže. Velikost rdečih pik je odvisna od velikosti pore in elektrenine, ki je pretekla pri elektrografskem anodnem raztapljanju niklja skozi pore. Razlika v velikosti por oziroma pik kompleksa na istem vzorcu je odvisna od več faktorjev. Glavni vzrok so lastnosti površine zaporne plasti niklja, predvsem njena debelina in hrapavost. Gladkost oziroma hrapavost pa je zopet odvisna od mehanske obdelave osnovne Ag zlitine in defektov na njeni površini. Enakomernost nanosa zlate prevleke smo raziskali na več vzorcih z enako tehnološko predobdelavo. V tabeli 1 so podani rezultati, dobljeni z metodo določanja debeline tankih plasti z ED mikroanalizatorjem žarkov X na 10 vzorcih.

Tabela 1: Debeline Au plasti pozlačenih kontaktnih elementov

vzorec	debelina (µm)	vzorec	debelina (µm)
1	0,31	6	0,30
2	0,30	7	0.32
3	0,32	8	0,31
4	0,29	9	0.30
5	0,31	10	0,30

Prerez Au plasti na sorazmerno gladkem predelu podsloja prikazuje elektronsko mikroskopski posnetek na sliki 2. Večinoma površina podsloja ni tako gladka, kar nam pojasnjuje pojav nastanka različno velikih por in neenakomerna poroznost zlate prevleke.

Elektronsko mikroskopski posnetek na sliki 3 prikazuje površino Au prevleke. Vidna je sorazmerno groba struktura, ki izhaja iz mehanske predobdelave kontaktnega elementa. Groba struktura in defekti na površini so ostali kljub nikljevi zaporni plasti, ki ima poleg svoje protidifuzijske še vlogo prekrivanja hrapavosti in defektov osnovne površine. S pomočjo teh opazovanj lahko pojasnimo prisotnost večjih in manjših por, ki jih je odkrjl elektrografski test. Razlika v velikosti por je posledica nezadostne poliranosti površine.

Slika 2: Prerez prevleke Au, d=0.3 μm, povečava 1000 x Figure 2: Cross section of Au coating (d=0.3 μm, enlargement 1000 x)

Slika 3: Izgled površine prevleke Au, d=0.3 μm, povečava 100 x Figure 3: Surface of Au coating (d=0,3 μm, enlargement 100 x)

Porazdelitev niklja v reakcijskem produktu niklja z DMG na področju pore smo raziskali s spektroskopijo Augerjevih elektronov. To metodo smo izbrali, ker pri tankih prevlekah prikazuje sestavo površine, ne da bi jo motil podsloj Ni, poleg tega pa se lahko z jedkanjem z argonskimi ioni približamo resnični velikosti por. Pri elektrografskem testu ostane kljub izpiranju površine s toplo vodo kompleks niklja z DMG tudi v neposredni okolici pore. Po drugi strani pa je raziskava s spektroskopijo Augerjevih elektronov pokazala, da je elektrografski test primeren za odkrivanje zelo drobne poroznosti v tankih plasteh ob sorazmerno dobri ločljivosti, pri čemer je mogoče oceniti tudi lastnosti

330

Koller L. et al.: AES karakterizacija poroznosti tankih Au prevlek na kontaktih za miniaturne releje

ENERGIJA ELEKTRONOV [eV]

 Slika 4: Spekter 1 Augerjevih elektronov na analiznem mestu 3 po jedkanju površinskih nečistoč z argonovimi ioni
Figure 4: Auger electron spectrum 1 taken at the spot 3 after ion sputtering of the surface impurities with the argon ions

ENERGIJA ELEKTRONOV [eV]

 Slika 6: Spekter 3 Augerjevih elektronov na analiznem mestu 2 po jedkanju površinskih nečistoč z argonovimi ioni
Figure 6: Auger electron spectrum 3 taken at the spot 2 after ion sputtering of the surface impurities with the argon ions

Slika 7: Spekter 4 Augerjevih elektronov na analiznem mestu 4 po jedkanju površinskih nečistoč z argonovimi ioni Figure 7: Auger electron spectrum 4 taken at the spot 4 after ion sputtering of the surface impurities with the argon ions Koller L. et al.: AES karakterizacija poroznosti tankih Au prevlek na kontaktih za miniaturne releje

podsloja in površine osnovnega materiala z ozirom na njun vpliv na velikost por. Na vzorcih smo izbrali zanimiva analizna mesta (madeže 1,2,3,4), na katerih smo posneli spektre Augerjevih elektronov po jedkanju površinskih nečistoč z argonskimi ioni. Kot prikazuje spekter št. 1 na sliki 4. je na analiznem mestu 3 koncentracija niklja največja, medtem ko je koncentracija niklja na mestu 4 pod mejo detekcije. Vidna je tudi konica zlata ter močna konica ogljika in konici dušika ter kisika, ki so sestavine organskega izvora iz kompleksa dimetilglioksima. Analizno mesto 1 (spekter št. 2, slika 5) prikazuje manjšo koncentracijo niklja poleg zlata, ogljika in kisika pa je prisotna tudi majhna konica bakra, ki nastopa kot nečistoča, mu pa težko določimo izvor. Spekter št. 3 na sliki 6 je posnet na analiznem mestu 2. Na tem mestu je površina jedkana do čiste površine zlata, kjer še najdemo majhni konici niklja in kisika. Spekter št. 4 na sliki 7 je posnet na manjšem madežu (analizno mesto 4). Tu ne najdemo niklja, kot nečistoče pa se pojavljata železo in žveplo, ki sta lahko zunanjega izvora ali pa izvirata iz galvanske kopeli.

Zaključek

 Izbrani elektrografski test v raztopini želatine z dodanim elektrolitom in specifičnim reagentom z dobro ločljivostjo odkriva poroznost v zelo tankih prevlekah zlata na nikljevi zaporni plasti.

 Kot je pokazala raziskava s spektroskopijo Augerjevih elektronov, je vizualna ocena velikosti por z elektronskim testom le relativna zaradi migracije kompleksa v okolico pore. Uporaba elektrografskega testa je omejena samo na oceno gostote in relativne velikosti por, lahko pa iz razlike v velikosti značilnih struktur kompleksa Ni-DMG, zraslih na plasti galvansko nanešenega zlata, ocenimo tudi lastnosti podsloja niklja in površinsko obdelavo osnovne zlitine.

Zahvala

Delo je finančno podprlo Ministrstvo za znanost in tehnologijo Slovenije, Ljubljana (Projekt P2-5166-0204-94).

Literatura

- Standard: Test Methods for Porosity in Gold Coatings on Metal Substrates, ASTM B 583-83
- ²K. Wundt, R. Sehnabl: Gold und seine legierungen in der Galvanotechnik, 2. Teil, *Galvanotechnik* 77, 1986, 2, 312-318
- ¹S. M. Garte: Porosity of Gold Electrode deposits: Effect of Substrate Surface Structure, *Plating*, Sept, 1983, 946-951
- 1990, January
- ¹Krajevski, R. Mechler, Oberflache-Surface 21, 1980, 159-162
- [®]Kruglikov, Petrakova, Zaščita metalov 1981, 538-541
- ⁷A. Brenner, Electrodeposition of Alloys, Vol.1, AP 1963
- ⁸Qualitatsprufung galwanischer Überzuge, Zbornik Numberg 1990 ⁹F. H. Reid in W. Goldie, Gold als Oberflache, Eugen, G. Lenze Verlag, Saulgau (Wuertt) 1982
- ¹⁰L. Koller, M. Jenko, S. Spruk, D. Railič, Kovine zlitine tehnologije 28, 1994, 1-2, 465-468