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Abstract
Circulants form a well-studied and important class of matrices, and they arise in many

algebraic and combinatorial contexts, in particular as multiplication tables of cyclic groups
and as special classes of latin squares. There is also a known connection between circulants
and mathematical juggling. The purpose of this note is to expound on this connection de-
veloping further some of its properties. We also formulate some problems and conjectures
with some computational data supporting them.
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1 Introduction
Let n be a positive integer, and let t = (t1, t2, . . . , tn) be a sequence of n nonnegative
integers. Then t is a juggling sequence of length n provided that

1 + t1, 2 + t2, . . . , n+ tn (1.1)

are distinct modulo n, implying, in particular, that t1 + t2 + · · ·+ tn ⌘ 0 (mod n). Thus
if (1.1) holds and balls are juggled where, at time i, there is at most one ball that lands in
the juggler’s hand and is immediately tossed so that it lands in ti time units (1  i  n)1,
then there are no collisions; that is, juggling balls with one hand according to these rules is
possible (for a talented juggler!). The number of balls juggled equals (t1+t2+ · · ·+tn)/n.
If we extend t to a two-way infinite sequence (ti : i 2 Z) where ti = ti mod n, then a ball

⇤We are indebted to a referee who helped improve our exposition.
E-mail addresses: brualdi@math.wisc.edu (Richard A. Brualdi), schroederm@marshall.edu (Michael W.

Schroeder)
1If ti = 0, then there is no ball to toss at time i.

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/
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caught at time i is tossed so that it lands at time i + ti. This defines certain orbits of the
balls being juggled determined by the times at which a specified ball is caught and then
tossed.

The sequence t is a minimal juggling sequence provided that the integers ti have been
reduced modulo n to 0, 1, . . . , n � 1. In particular, ti = n (a ball is caught and tossed at
time i to land in n time units) is equivalent to ti = 0 (no ball is caught and tossed at time
i). For some references on mathematical juggling and related work, see e.g. [1, 4, 10].

We now briefly summarize the contents of this paper. In the next section we introduce
many examples and discuss some basic properties of juggling sequences and show how
they correspond to decompositions of all 1’s matrices. We also show how palindromic jug-
gling sequences correspond to a special graph property. In Section 3, we elaborate on the
connection between juggling sequences and circulant matrices as discussed in [3], and re-
late juggling sequences to the permanent of circulants defined in terms of n indeterminates.
In Section 4, we present some calculations concerning the coefficients of the distinct terms
in the permanents of these circulants and discuss certain questions and conjectures. Finally,
in Section 5 we discuss the existence of juggling sequences with additional properties. Part
of the purpose of this paper is to draw attention to a number of directions, questions, and
conjectures concerning juggling sequences and the permanent expansion of circulants.

2 Juggling sequences
In this section we introduce some of the basic ideas of juggling sequences with many
examples and, in the case of palindromic juggling sequences, establish a connection with
matchings in complete graphs.

A theorem of M. Hall, Jr. [8] for abelian groups when restricted to cyclic groups yields
the following result concerning juggling sequences.

Theorem 2.1. Let U = {u1, u2, . . . , un} be a multiset of n integers. Then there is at least
one permutation ⇡ of {1, 2, . . . , n} such that u⇡ = (u⇡(1), u⇡(2), . . . , u⇡(n)) is a juggling
sequence, that is, for which

1 + u⇡(1), 2 + u⇡(2), . . . , n+ u⇡(n)

are distinct modulo n, if and only if

u1 + u2 + · · ·+ un ⌘ 0 (mod n). (2.1)

In this theorem there is no loss in generality in assuming that 0  u1, u2, . . . , un 
n� 1.

In view of Theorem 2.1, we call a multiset U = {u1, u2, . . . , un} of n integers satisfy-
ing (2.1) a juggleable set of size n. If u1, u2, . . . , un have been reduced modulo n, then we
have a minimal juggleable set. It follows from Theorem 2.1 that U = {0, 1, 2, . . . , n� 1}
is a (minimal) juggleable set if and only if n is odd.

Given U = {u1, u2, . . . , un}, whether or not U is a juggleable set is independent of
which representatives of the equivalence classes modulo n determined by the ui have been
chosen, in particular, whether or not the integers ui have been reduced modulo n. But if
t = (t1, t2, . . . , tn) is a juggling sequence for the juggleable set U , the number of balls
that are juggled depends on which representatives of the equivalence classes modulo n

have been chosen, in particular, on whether or not the integers in U have been reduced
modulo n.
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A juggling sequence (t1, t2, . . . , tn) is determined by a unique permutation of
{1, 2, . . . , n} and conversely any permutation of {1, 2, . . . , n} determines a unique jug-
gling sequence.

Example 2.2. Let n = 7 and consider the permutation � of {1, 2, 3, 4, 5, 6, 7} whose cycle
decomposition is (1, 5, 6)(2, 4, 7, 3). (Thus in �, 1 ! 5 ! 6 ! 1 and 2 ! 4 ! 7 ! 3 !
2). For each i = 1, 2, . . . , 7, define ti = �(i) � i mod 7, then t = (4, 2, 6, 3, 1, 2, 3) is a
minimal juggling sequence.

Reversing this procedure, let n = 9 and consider the juggling sequence t = (1, 5, 3, 4,
8, 3, 3, 6, 3). We obtain a permutation � of {1, 2, 3, 4, 5, 6, 7, 8, 9} by calculating and re-
ducing modulo 9:

�(1) = 1 + 1 = 2, �(2) = 5 + 2 = 7, �(3) = 3 + 3 = 6,

�(4) = 4 + 4 = 8, �(5) = 8 + 5 = 4, �(6) = 3 + 6 = 9,

�(7) = 3 + 7 = 1, �(8) = 6 + 8 = 5, �(9) = 3 + 9 = 3.

Thus � is the permutation with cycle decomposition (1, 2, 7)(3, 6, 9)(4, 8, 5). ⌃
Example 2.3. Let n = 3 and consider t = (4, 4, 1). Then to juggle according to t requires
three balls and the balls determine three orbits of Z:

· · · ! 1 ! 5 ! 9 ! 10 ! 14 ! 18 ! 19 ! · · · ,
· · · ! 2 ! 6 ! 7 ! 11 ! 15 ! 16 ! 20 ! · · · ,
· · · ! 3 ! 4 ! 8 ! 12 ! 13 ! 17 ! 21 ! · · · .

(Here, for instance, 2 ! 6 represents the fact that at time unit 2, a ball is tossed so that it
lands in 4 time units in the future, that is, at time unit 6; then the ball is tossed to land in 1
time unit in the future, that is at time unit 7.) Reducing t mod 3 to (1, 1, 1) results in only
one ball and only one orbit:

· · · ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! · · · .

Let Jm,n denote the m ⇥ n matrix of all 1’s. Juggling using the juggling sequence
(4, 4, 1) gives a decomposition of the matrix J3,3 of all 1’s whereby any three consecutive
matrices sum to J3,3. (The first subscript ‘3’ in J3,3 represents the number of balls juggled,
the second ‘3’ represents the number of terms in the juggling sequence. The ordering of
the rows is arbitrary.) This is indicated by

· · ·

��������

4 4 1 4 4 1 4 4 1

1 1 1
1 1 1

1 1 1

��������
· · · ,

giving

J3,3 =

2

4
1

1
1

3

5+

2

4
1

1
1

3

5+

2

4
1

1
1

3

5 .

Using the mod 3 reduction (1, 1, 1) of (4, 4, 1) gives the trivial decomposition

J1,3 =
⇥
1 1 1

⇤
. ⌃
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Example 2.4. Let n = 5 and consider t = (3, 3, 4, 4, 1). Then juggling (with three balls)
using this juggling sequence is indicated by

· · ·

��������

3 3 4 4 1 3 3 4 4 1 3 3 4 4 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

��������
· · · ,

giving the decomposition

J3,5 =

2

4
1 1

1
1 1

3

5+

2

4
1

1 1
1 1

3

5+

2

4
1 1

1 1
1

3

5 .

The juggling sequence t = (2, 4, 2, 3, 4) corresponds to

· · ·

��������

2 4 2 3 4 2 4 2 3 4 2 4 2 3 4

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

��������
· · · ,

and gives a different decomposition of J3,5. ⌃
We call a juggling sequence t = (t1, t2, . . . , tn) decomposable provided the per-

mutation associated with t has at least two nontrivial cycles in its cycle decomposition.
Equivalently, t is decomposable provided t = r + s where r = (r1, r2, . . . , rn), s =
(s1, s2, . . . , sn) are juggling sequences such that {ri, si} = {0, ti} for i = 1, 2, . . . , n,
and r, s 6= t. Any juggling sequence can be uniquely written as a sum of indecomposable
juggling sequences arising from the unique cycle decomposition of the associated permu-
tation.

Example 2.5. With n = 9, t = (1, 5, 3, 4, 8, 3, 3, 6, 3) is a juggling sequence (4 balls).
The corresponding decomposition is not that of J3,9 but, after permutation of columns, is

J1,3 � J1,3 �
✓

1 1
1

�
+


1

1 1

�◆
. ⌃

We summarize this discussion with the following theorem.

Theorem 2.6. Let t = (t1, t2, . . . , tn) be a sequence of n integers. Then t is a (minimal)
juggling sequence if and only if � : {1, 2, . . . , n} ! {1, 2, . . . , n} defined by

�(i) ⌘ ti + i (mod n)

is a permutation of {1, 2, . . . , n}. There is a one-to-one correspondence between minimal
juggling sequences of length n and permutations of {1, 2, . . . , n}.

Notice that Theorem 2.6 provides an algorithm to determine whether a sequence is a
juggling sequence.

Knutson (see [10]) showed how to generate all juggling sequences of length n with k

balls (1  k  n) from the constant juggling sequence (k, k, . . . , k) of length n. There are
two transformations used in the algorithm:
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I. Given a juggling sequence (k1, k2, . . . , kn), the cyclic shift (kn, k1, k2, . . . , kn�1) is
also a juggling sequence.

II. Given a juggling sequence (k1, . . . , ki, . . . , kj , . . . , kn), then the swap (k1, . . . ,
(j � i) + kj , . . . ,�(j � i) + ki, . . . , kn) is also a juggling sequence:

i+ ((j � i) + kj) = j + kj and j + (�(j � i) + ki) = i+ ki

where the balls thrown at times i and j swap landing times.

Theorem 2.7 ([10]). Any juggling sequence of length n with k balls can be generated from
the constant juggling sequence (k, k, . . . , k) by cyclic shifts and swaps.

We now consider a special property of juggling sequences that are palindromic. In the
following argument, we use that a sequence (t0, t1, . . . , tn�1) is a juggling sequence of
length n if ti + i 6⌘ tj + j (mod n) for each i 2 {0, 1, . . . , n � 1}, which is a direct
consequence of the original definition. That is, if p is a juggling sequence of length n,
then, modulo n, p+ (0, 1, 2, . . . , n� 1) will be a permutation of {0, 1, 2, . . . , n� 1}.

Let n be odd and n = 2m+ 1. Let p = (pm, pm�1, . . . , p1, p0, p1, . . . , pm�1, pm) be
a minimal palindromic juggling sequence. For each i 2 {1, 2, . . . ,m}, define

xi = pi + i mod n and yi = pi � i mod n.

Since p is a juggling sequence, we have that, modulo n,

(ym, . . . , y2, y1, p0, x1, x2, . . . , xm) =

(pm �m, . . . , p2 � 2, p1 � 1, p0, p1 + 1, p2 + 2, . . . , pm +m) =

p+ (0, 1, . . . , n� 1)� (m,m, . . . ,m).

Hence {p0, x1, . . . , xm, y1, . . . , ym} is a set of distinct values.
Construct a digraph G(V,E) with vertex set V = {0, 1, 2, . . . , n � 1} and edge set

E = {e1, . . . , em}, where ei = (xi, yi) for each i 2 {1, 2, . . . ,m}. We define the length
of edge ei to be yi � xi mod n. Hence each ei has length n� 2i; thus G is a directed near
1-factor whose set of edge lengths is {1, 3, 5, . . . , n� 2}.

Conversely, let V = {0, 1, 2, . . . , n � 1} and suppose G(V,E) is a directed near 1-
factor whose set of edge lengths is {1, 3, 5, . . . , n � 2}. Then we may assume E =
{e1, . . . , em}, where ei is the directed edge of length n � 2i with ei = (xi, yi). Let
p0 denote the vertex in G not incident to any edge, and for each i 2 {1, 2, . . . ,m}, let
pi = xi � i mod n. Then pi = yi + i mod n for each i 2 {1, 2, . . . ,m}. Define
p = (pm, pm�1, . . . , p1, p0, p1, . . . , pm�1, pm). Then modulo n we have

p+ (0, 1, . . . , n� 1) = (ym, . . . , y2, y1, p0, x1, x2, . . . , xm) + (m,m, . . . ,m).

Since all values in {p0, x1, . . . , xm, y1, . . . , ym} are distinct, p is a juggling sequence.
These two operations which map between minimal palindromic juggling sequences of

length n and directed near 1-factors on n vertices whose set of edge lengths is {1, 3, 5, . . . ,
n� 2} are inverses of one another, which leads to the following theorem.

Theorem 2.8. Let n be an odd positive integer. Then there is a one-to-one correspondence
between minimal palindromic juggling sequences of length n and directed near 1-factors
on the vertex set {0, 1, . . . , n� 1} whose set of edge lengths is {1, 3, 5, . . . , n� 2}.
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A similar construction gives a result for all positive even integers n.

Theorem 2.9. Let n be a positive even integer. Then there is a one-to-one correspondence
between minimal palindromic juggling sequences of length n and directed 1-factors on the
vertex set {0, 1, . . . , n� 1} whose set of edge lengths is {1, 3, 5, . . . , n� 1}.

Proof. Let n = 2m. The proof method is similar to that given for the argument to Theo-
rem 2.8, so in what follows we give only the construction for the correspondence.

Let {(xi, yi) | i 2 {1, 2, . . . ,m}} be a 1-factor on {0, 1, 2, . . . , n � 1} with (xi, yi)
having length 2i � 1 for each i 2 {1, 2, . . . ,m}. For each i 2 {1, 2, . . . ,m}, let pi =
xi �m+ i mod n. Then pi = yi �m� i+ 1 mod n. So modulo n,

(xm, . . . , x2, x1, y1, y2, . . . , ym)� (0, 1, . . . , n� 1) =

(pm, . . . , p2, p1, p1, p2, · · · , pm).

Therefore (pm, . . . , p2, p1, p1, p2, . . . , pm) is a minimal palindromic juggling sequence.
Conversely, if (pm, . . . , p2, p1, p1, p2, . . . , pm) is a minimal palindromic juggling se-

quence, then we may define xi = pi + m � i mod n and yi = pi + m + i � 1 mod n

and have that {(xi, yi) | i 2 {1, 2, . . . ,m}} is the edge set of a directed 1-factor in which
(xi, yi) has length 2i� 1 for each i 2 {1, 2, . . . ,m}.

Example 2.10. For n = 6, (2, 5, 2, 2, 5, 2) is the minimal palindromic juggling sequence
corresponding to the directed 1-factor with edge set {(4, 5), (0, 3), (2, 1)}. Note the edges
have lengths 1, 3, and 5, respectively. Similarly for n = 7, (2, 5, 3, 1, 3, 5, 2) is the minimal
palindromic juggling sequence corresponding to the directed near 1-factor with unused
vertex 1 and edge set {(4, 2), (0, 3), (5, 6)}. In this case, the edges have lengths 5, 3, and
1, respectively. ⌃

3 Juggleable sets and circulants
Let Pn be the set of minimal juggleable sets of size n. For U 2 Pn, let Jn(U) be the set
of juggling sequences of length n with U as juggleable set. It follows from [2] that the
number of minimal juggleable sets of size n is given by

|Pn| =
1

n

X

d|n

✓
2d� 1

d

◆
�

⇣
n

d

⌘
(3.1)

where � is Euler’s totient function and the summation extends over all positive integers d
dividing n. The number of minimal juggling sequences of length n is n!, since for each
permutation (i1, i2, . . . , in) of {1, 2, . . . , n}, we have

(i1 � 1) + (i2 � 2) + · · ·+ (in � n) =
nX

i=1

i�
nX

i=1

i = 0,

and hence the multiset {i1�1, i2�2, . . . , in�n} of integers taken modulo n, is a juggleable
set.

Let n, k, and ⌫ be positive integers. In [7] it is proved that the number of nonnegative
integer solutions of

u1 + u2 + · · ·+ un = k and
nX

i=1

iui ⌘ ⌫ (mod n) (3.2)
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equals the number of nonnegative integer solutions of

v1 + v2 + · · ·+ vk = n and
kX

i=1

ivi ⌘ ⌫ (mod k). (3.3)

Taking ⌫ = 0, we get the following duality result.

Theorem 3.1. The number of minimal juggleable sets {u1, u2, . . . , un} with u1 + u2 +
· · ·+un = k equals the number of minimal juggleable sets {v1, v2, . . . , vk} with v1+v2+
· · ·+ vk = n.

The above discussion gives a characterization of the number of juggling sequences
corresponding to each minimal juggleable set.

Theorem 3.2. Let U = {u1, u2, . . . , un} be a minimal juggleable set. The number
|J (U)| of juggling sequences with U as juggleable set equals the number of permuta-
tions (j1, j2, . . . , jn) of {1, 2, . . . , n} such that ji ⌘ i + r (mod n) has ui solutions for
each r = 0, 1, . . . , n� 1.

Another viewpoint (see [2]) is the following. Consider the n⇥ n circulant matrix

C(x0, x1, . . . , xn�1) =

2

666664

x0 x1 · · · xn�2 xn�1

xn�1 x0 · · · xn�3 xn�2
...

...
. . .

...
...

x2 x3 · · · x0 x1

x1 x2 · · · xn�1 x0

3

777775
. (3.4)

Thus
C(x0, x1, . . . , xn�1) = x0In + x1Pn + x2P

2
n
+ · · ·+ xn�1P

n�1
n

,

where Pn is the n ⇥ n permutation matrix corresponding to the cyclic permutation
(2, 3, . . . , n, 1) (thus P

0
n

= P
n

n
= In). The book [6] contains a thorough discussion of

circulants.
Recall that the permanent of an n⇥ n matrix A = [aij : 0  i, j  n] is

per(A) =
X

(i1,i2,...,in)

a1i1a2i2 · · · an,in

where the summation extends over all the permutations (i1, i2, . . . , in) of {1, 2, . . . , n}.
Each term a1i1a2i2 · · · an,in in the permanent of C(x0, x1, . . . , xn�1) is of the form

x
k0
0 x

k1
1 · · ·xkn�1

n�1

where k0, k1, . . . , kn�1 are integers such that

0  ki  n, (0  i  n� 1) and k0 + k1 + · · ·+ kn�1 = n,

and ki is the number of integers r with 0  r  n� 1 such that ir � r ⌘ ki (mod n) and

k0 · 0 + k1 · 1 + · · ·+ kn�1 · (n� 1) ⌘ 0 (mod n).
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Thus the number of distinct terms in the permanent of the circulant C(x0, x1, . . . , xn�1)
equals the number |Pn| of juggleable sets of size n and thus is given by (3.1). Theorem 2.1
implies that the monomial x0x1 . . . xn�1 is a term in per(A) if and only if 1 · 0 + 1 · 1 +
· · ·+1 · (n�1) ⌘ 0 (mod n); since 0+1+ · · ·+(n�1) = n(n�1)/2, x0x1 . . . xn�1 is
a term in per(A) if and only if n is odd. Now let n be even. Then a monomial of the form
x
k0
0 x

k1
1 · · ·xkn�1

n�1 with kr = 2, ks = 0, and all other ki’s equal to 1, is a term in per(A) if
and only if |r � s| = n/2.

In [9] it is shown that |Pn| equals the dimension of a certain symmetric space associated
with a cyclic group of order n. See [12] for a comparison with the number of distinct terms
occurring in the determinant.

The following corollary is a direct consequence of Theorem 3.2 and the definitions of
a circulant matrix and the permanent.

Corollary 3.3. Two permutations j1, j2, . . . , jn and l1, l2, . . . , ln of {1, 2, . . . , n} give the
same term in the permanent of C(x0, x1, . . . , xn�1) if and only if

|{i : ji ⌘ i+ r (mod n)}| = |{i : li ⌘ i+ r (mod n)}|
for each r = 0, 1, . . . , n� 1.

If the common values are k0, k1, . . . , kn�1, then the term in the permanent equals
x
k0
0 x

k1
1 · · ·xkn�1

n�1 .

Example 3.4. Table 1 gives the minimal juggleable sets of size n = 4 and their correspond-
ing terms in per(C(x0, x1, . . . , xn�1)), along with the juggling sequences corresponding

Table 1: Minimal juggleable sets and juggling sequences for n = 4.

Juggleable
sets U

{u0, u1, u2, u3}

Corresponding
term in the
permanent

Corresponding
juggling sequences

J4(U)

Cardinalities
|J4(U)|

(coefficients)

{0, 0, 0, 0} x
4
0 (0, 0, 0, 0) 1

{1, 1, 1, 1} x
4
1 (1, 1, 1, 1) 1

{2, 2, 2, 2} x
4
2 (2, 2, 2, 2) 1

{3, 3, 3, 3} x
4
3 (3, 3, 3, 3) 1

{0, 0, 2, 2} x
2
0x

2
2 (0, 2, 0, 2), (2, 0, 2, 0) 2

{1, 1, 3, 3} x
2
1x

2
3 (1, 3, 1, 3), (3, 1, 3, 1) 2

{0, 0, 1, 3} x
2
0x1x3

(0, 0, 1, 3), (0, 1, 3, 0),
(1, 3, 0, 0), (3, 0, 0, 1)

4

{0, 1, 1, 2} x0x
2
1x2

(0, 1, 1, 2), (1, 1, 2, 0),
(1, 2, 0, 1), (2, 0, 1, 1)

4

{1, 2, 2, 3} x1x
2
2x3

(1, 2, 2, 3), (2, 2, 3, 1),
(2, 3, 1, 2), (3, 1, 2, 2)

4

{0, 2, 3, 3} x0x2x
2
3

(0, 2, 3, 3), (2, 3, 3, 0),
(3, 3, 0, 2), (3, 0, 2, 3)

4

to each such pattern and their number. ⌃
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As in Table 1 for n = 4, constant juggleable sets correspond to the n monomials terms
x
n

0 , xn

1 , . . ., xn

n�1 of the permanent of the matrix C(x0, x1, . . . , xn�1) each occuring with
coefficient equal to 1.

If {u1, u2, . . . , un} is a minimal juggleable set of size n, we define c(u1, u2, . . . , un) to
be the number of juggling sequences of length n whose pattern is given by {u1, u2, . . . , un}.
Therefore, c(u1, u2, . . . , un) equals the number of permutations (i1, i2, . . . , in) of {1, 2,
. . . , n} such that ir� r ⌘ ki (mod n) has ui solutions for i = 1, 2, . . . , n. The permanent
of C(x0, x1, . . . , xn�1) is then given by the homogeneous polynomial of degree n,

X

{u1,u2,...,un}2Pn

c(u1, u2, . . . , un)x
u1
0 x

u2
1 · · ·xun�1

n
,

whose number of terms is given by (3.1). Thus from Table 1 we see that the permanent of
C(x0, x1, x2, x3) equals

1x4
0x

0
1x

0
2x

0
3 + 1x0

0x
4
1x

0
2x

0
3 + 1x0

0x
0
1x

4
2x

0
3 + 1x0

0x
0
1x

0
2x

4
3 + 2x2

0x
0
1x

2
2x

0
3 +

2x0
0x

2
1x

0
2x

2
3 + 4x2

0x
1
1x

0
2x

1
3 + 4x1

0x
2
1x

1
2x

0
3 + 4x0

0x
1
1x

2
2x

1
3 + 4x1

0x
0
1x

1
2x

2
3.

As the referee pointed out, c(u1, u2, . . . , un) is the number of ways to arrange the multiset
consisting of u1 0’s, u2 1’s, . . . , un (n� 1)’s into a juggling sequence. Some evaluation of
these numbers can be found in sequence A006717 [11].

Theorem 3.5. If U = {u1, u2, . . . , un} is a minimal juggleable set of size n, then

c(u1, u2, . . . , un) � 1. (3.5)

Equality holds in (3.5) if and only if U is a constant multiset. If n is a prime p and U is not
a constant multiset, then p is a divisor of c(u1, u2, . . . , un).

Proof. If U is a constant minimal juggleable set {k, k, . . . , k}, then x
n

k
occurs as a term in

the permanent of C(x0, x1, . . . , xn�1) corresponding to the positions of the 1’s in P
k

n
, that

is, the positions (1, k + 1), (2, k + 2), . . . , (n, k + n) taken modulo n. If {u1, u2, . . . , un}
is a non-constant juggleable set, there is a term in the permanent of C(x0, x1, . . . , xn�1)
equal to x

u1
0 x

u2
1 · · ·xun

n�1 not arising solely from the n positions (1, k+ 1), (2, k+ 2), . . . ,
(n, k + n) modulo n corresponding to the 1’s in the permutation matrices In, Pn, P

2
n
, . . . ,

P
n�1
n

.
The k ⇥ k principal submatrix C[i1, i2, . . . , ik | i1, i2, . . . , ik] = C(xi1 , xi2 , . . . , xik)

of C determined by rows and columns i1, i2, . . . , ik is cyclically permutation equivalent
(row and column indices are taken modulo n) to the submatrix C[i1+1, i2+1, . . . , ik+1 |
i1 +1, i2 +1, . . . , ik +1] = C(xi1+1, xi2+1, . . . , xik+1) determined by rows and columns
i1 + 1, i2 + 1, . . . , ik + 1 taken modulo n. Thus if we take a monomial in the permanent
corresponding to a permutation j1, j2, . . . , jn, we get n � 1 other equal monomials by
sequentially adding 1 modulo n to each of j1, j2, . . . , jn and cyclically permuting:

(j1, j2, . . . , jn) ! (jn + 1, j1 + 1, . . . , jn�1 + 1)

! · · · (3.6)
! (j2 + (n� 1), . . . , jn + (n� 1), j1 + (n� 1)).

If U is a non-constant juggleable set, then not all these permutations can be equal. (If
e.g. all of these n permutations are equal, then (j1, j2, . . . , jn) is a cyclic permutation
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a, a+1, a+2, . . . , a+(n�1) modulo n giving the monomial xn

i
with coefficient equal to

1.) This amounts to simultaneously permuting rows and columns of C(x0, x1, . . . , xn�1)
using the permutation matrix Pn and replacing the permutation (and its corresponding term
in the permanent) with the image of (j1, j2, . . . , jn) under this action. The result is a term
in the permanent with the same value; basically we have that the position (i, j) moves into
the position (i + 1, j + 1) (indices taken mod n) under the action of Pn, so to position
(i+ l, j + l) (indices taken mod n) under the action of P l. So the set of positions in those
sets corresponding to powers of P have to be invariant under a cyclic shift by l in order to
get another term in the permanent with the same value. If n is a prime this cannot happen
unless the term is of the form x

n

i
. Since there may be other terms of equal value in the

permanent of C(x0, x1, . . . , xn�1), we have that p | c(u1, u2, . . . , un).

Corollary 3.6. If n is odd, the coefficient of c(1, 1, . . . , 1) of x0x1 · · ·xn�1 in the perma-
nent per(C(x0, x1, . . . , xn�1)) is divisible by n.

Proof. The corollary follows as in the proof of Theorem 3.5 since the term x0x1 · · ·xn�1

comes from the juggleable set {0, 1, . . . , n � 1} and whatever order gives a juggling se-
quence, each of the (n� 1) cyclic shifts is different, resulting in a contribution of n to the
coefficient.

4 Coefficients in per(C(x0, x1, . . . , xn�1))

We first consider the special case of n = 5.

Example 4.1. Let n = 5. The formula (3.1) for the number of distinct terms in the perma-
nent of C(x0, x1, x2, x3, x4) is

1

5

✓
�(5) +

✓
9

5

◆
�(1)

◆
=

1

5
(4 + 126) = 26.

There are five constant terms in the permanent each with coefficient 1 and there are twenty-
one terms each with coefficient divisible by 5. So either we have two terms each with
coefficient 10 and nineteen terms with coefficient 5, or we have one term with coefficient
15 and twenty terms with coefficient 5.

The term x0x1x2x3x4 occurs in each of the following:
2

66664

x0

x1

x2

x3

x4

3

77775
,

2

66664

x0

x3

x1

x4

x2

3

77775
,

2

66664

x0

x2

x4

x1

x3

3

77775
.

and thus, by cyclically simultaneously permuting rows and columns (changing the diagonal
position in which x0 occurs by shifting along the main diagonal), appears in the permanent
with coefficient at least 15 and therefore exactly 15. Note the positions occupied by the xi

with i 6= 0 above: 2

66664

x1 x2 x3

x4 x1 x2

x3 x4 x1

x2 x3 x4

3

77775
.
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Each xi with i 6= 0 occupies all the positions in the submatrix obtained by striking out row
1 and column 1 that it occupies in C(x0, x1, x2, x3, x4). Thus this simple analysis gives

per(C(x0, x1, x2, x3, x4)) =
4X

i=0

x
5
i
+ 5(twenty other terms) + 15x0x1x2x3x4. ⌃

From calculations of per(C(x0, x1, . . . , xn�1)) using Sage, we found the following
information:

• (n = 5): largest coefficient is 15 occuring uniquely for

x0x1x2x3x4.

Coefficients are 1, 5, 15. This confirms the calculations in Example 4.1.
• (n = 6): largest coefficient is 24 occuring for the six terms of the form

x
2
0x1x2x

0
3x4x5.

Coefficients are 1, 2, 3, 6, 9, 12, 18, 24.
• (n = 7): largest coefficient is 133 occuring uniquely for

x0x1x2x3x4x5x6.

Coefficients are 1, 7, 14, 21, 35, 42, 49, 133.
• (n = 8): largest coefficient is 256 occuring for the 8 terms

x
2
0x1x2x3x

0
4x5x6x7, x0x

2
1x2x3x4x

0
5x6x7,

x0x1x
2
2x3x4x5x

0
6x7, x0x1x2x

2
3x4x5x6x

0
7,

x
0
0x1x2x3x

2
4x5x6x7, x0x

0
1x2x3x4x

2
5x6x7,

x0x1x
0
2x3x4x5x

2
6x7, x0x1x2x

0
3x4x5x6x

2
7.

For instance, x2
0x1x2x3x

0
4x5x6x7 occurs in the term
2

66666666664

x0

x2

x3

x6

x0

x5

x1

x7

3

77777777775

.

There are 810 different terms that occur in per(C(x0, x1, . . . , x7)). The full set of
coefficients in the permanent are

{1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 56, 64, 72, 80, 96, 128, 160, 256}.

Note that the differences of consecutive coefficients in this list are:

1, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 16, 32, 32, 96.

Only the last is not a power of 2.
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Conjecture 4.2. Our calculations have shown that for n = 4, the largest coefficient in
per(C(x0, x1, . . . , xn�1)) is 4 = 22 occuring 4 times, and for n = 8, the largest coeffi-
cient is 256 = 28 occuring 8 times. We conjecture that if n is a power of 2, then the largest
coefficient is also a power of 2 occuring for the terms of the form x

2
0x1x2 · · · dxn/2 · · ·xn�1,

and cyclical translates of terms of this form (total number of different terms is n). Unfor-
tunately, the occurrence of these terms does not seem to have a pattern. For instance, with
n = 8, we have

2

66666666664

x0 x1 x2 x3 x4 x5 x6 x7

x7 x0 x1 x2 x3 x4 x5 x6

x6 x7 x0 x1 x2 x3 x4 x5

x5 x6 x7 x0 x1 x2 x3 x4

x4 x5 x6 x7 x0 x1 x2 x3

x3 x4 x5 x6 x7 x0 x1 x2

x2 x3 x4 x5 x6 x7 x0 x1

x1 x2 x3 x4 x5 x6 x7 x0

3

77777777775

(x2
0x1x2x3x5x6x7).

This corresponds to the permutation � of {1, 2, 3, 4, 5, 6, 7, 8} such that

�(1) = 1, �(2) = 2, �(3) = 8, �(4) = 5,

�(5) = 7, �(6) = 4, �(7) = 6, �(8) = 3.

The coefficient of x2
0x1x2x3x5x6x7 is the number of permutations ⇡ of {1, 2, 3, 4, 5, 6, 7, 8},

such that
⇡(i)� i ⌘ j (mod 8)

has two solutions for j = 0, no solutions for j = 4, and one solution for j = 1, 2, 3, 5, 6, 7.
A similar statement holds for all even n, and we seek the number of such solutions.

Conjecture 4.3. Three conjectures/problems for n even (or perhaps just n a power of 2):

(a) There exists a term x
2
0x1x2 · · · dxn/2 · · ·xn�1 in per(C(x0, x1, . . . , xn�1)) arising

from every choice of the two x0’s on the main diagonal.

(b) In reference to (a), the largest number of terms occurs when the x0’s are chosen to
be n/2 apart (cyclically, the same number of elements on the main diagonal between
them). In the case of n = 8, there are 16 terms for a choice of x0’s which are 4 apart
(5th x0 on the main diagonal minus 1st x0 on main diagonal) and 8 terms for all
other choices of x0’s.

(c) If n is a power of 2, the coefficient of x2
0x1x2 · · · dxn/2 · · ·xn�1 is a power of 2.

Problem 4.4. The matrix C(x0, x1, . . . , xn�1) can be regarded as a special latin square.
The coefficient of x0x1 · · ·xn�1 in per(C(x0, x1, . . . , xn�1)) equals the number of trans-
versals of this latin square. In [5] it is shown that if n is odd and sufficiently large, the
coefficient of x0x1 · · ·xn�1 in per(C(x0, x1, . . . , xn�1)) is greater than (3.246)n. In the
cases of n = 5 and n = 7, the number of latin square transversals of C(x0, x1, . . . , xn�1)
equals 15 = 5 ⇥ 3 and 133 = 7 ⇥ 19, respectively. Since a latin square transversal is
mapped into a latin square transversal by multiplying C(x0, x1, . . . , xn�1) by the full cycle
permutation matrix Pn, it follows that for odd n, the number of latin square transversals,
that is, c(1, 1, . . . , 1) is divisible by n. See also Theorem 3.5 and Corollary 3.6.
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If n is odd, the term x0x1 · · ·xn�1 occurs in per(C(x0, x1, . . . , xn�1) with a nonzero
coefficient. A conjecture would be that this term has the largest coefficient. Thinking of
the xi as n different colors giving n! multicolored transversals, the conjecture is saying that
the number of multicolored transversals with all colors different is greater than the num-
ber of multicolored transversals of any other prescribed color type (so at least two colors
the same). This coefficient is equal to the number of transversals of C(x0, x1, . . . , xn�1)
considered as a latin square, so finding this exactly is probably not attainable (see [5]).

Remark 4.5. Concerning Problem 4.4 and the juggleable set {1, 2, . . . , n} with n odd,
corresponding to the term x0x1 · · ·xn�1 in per(C(x0, x1, . . . , xn�1)). A permutation
(i1, i2, . . . , in) of this juggleable set is a juggling sequence giving the term x0x1 · · ·xn�1

in per(C(x0, x1, . . . , xn�1)) provided 1 + i1, 2 + i2, . . . , n+ in are distinct modulo n. If
this is the case, then any cyclic permutation of (i1, i2, . . . , in) is also a juggling sequence
(since subtracting 1 modulo n from distinct integers modulo n gives distinct integers mod-
ulo n, thereby giving n terms in per(C(x0, x1, . . . , xn�1)) equal to x0x1 · · ·xn�1. The
difficulty in calculating the coefficient of x0x1 · · ·xn�1 in per(C(x0, x1, . . . , xn�1)) is
knowing how many permutations i1, i2, . . . , in of the set {1, 2, . . . , n} have the property
that 1 + i1, 2 + i2, . . . , n + in are distinct modulo n. So one might consider the additive
group Z(n)

n = Zn ⇥ Zn ⇥ · · ·⇥ Zn (n copies of Zn) and the mapping

T : Z(n)
n

! Z(n)
n

given by

T (i1, i2, . . . , in) = (1 + i1, 2 + i2, . . . , n+ in)

= (1, 2, . . . , n) + (i1, i2, . . . , in) mod n.

Unfortunately, this mapping is not a homomorphism and so does not seem useful. But
it does seem that for a juggleable set {u1, u2, . . . , un} with at least one repeat, that is, the
number of permutations (u1, u2, . . . , un) of this pattern such that 1+u1, 2+u2, . . . , n+un

are distinct modulo n is smaller than when there is no repeat in {u1, u2, . . . , un}. But it
seems difficult to make a comparison.

Remark 4.6. Assume n is odd. Then x
1
0x

1
1x

1
2 · · ·x1

n�1 occurs in per(C(x0, x1, . . . , xn�1))
with a nonzero coefficient. We can think of this term as generating other terms that occur
in per(C(x0, x1, . . . , xn�1)) as follows:

We increase or decrease (by 1) some of the exponents of this term to get

x
1+a0
0 x

1+a1
1 x

1+a2
2 · · ·x1+an�1

n�1

where each ai 2 {1, 0,�1}, and
n�1X

i=0

ai = 0 (4.1)

and, in order that the result is a term in per(C(x0, x1, . . . , xn�1)), we must have

n�1X

i=0

iai ⌘ 0 (mod n). (4.2)
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(By (4.2),
P

n�1
i�0 (1 + ai) = 0 and

P
n�1
i=0 i(ai + 1) ⌘ 0 (mod n) and thus gives a term in

this permanent.) We can do a similar operation on the resulting term but then we need to
be sure that the resulting exponents are always between 0 and n. Continuing like this we
can generate all terms that occur in this permanent.

So in this operation we increase s � 1 exponents by 1 and decrease s exponents by �1,
so adding (a0, a1, a2, . . . , an�1), subject to the condition (4.2), to the vector of exponents
in a term in our permanent. One line of investigation is to try to determine when this
operation increases/decreases the coefficient of the corresponding terms in our permanent.
In particular, when with one application starting with the term x

1
0x

1
1x

1
2 · · ·x1

n�1, does the
coefficient decrease? Note that in one application, we must reduce two exponents to 0 in
order that we satisfy (4.2); in general there must be at least four changes in exponents. See
the following example.

Example 4.7. Let n = 9. We start with the term x0x1x2x3x4x5x6x7x8. We can change
exponents by using the vector (0, 0, 1,�1, 0,�1, 1, 0, 0). Since 1 · 2� 1 · 3 + (�1) · 5 +
1 · 6 = 0 ⌘ 0 (mod 9),

x0x1x
2
2x4x

2
6x7x8

is a term in our permanent. ⌃
Problem 4.8. If n is even, then we can also ask for the term(s) with the largest coefficient.
If n = 4, there are four terms that appear with the largest coefficient of 4, namely

x
2
0x1x3, x0x

2
1x2, x1x

2
2x3, x0x2x

2
3.

A conjecture might be:
If n is even then the terms in per(C(x0, x1, . . . , xn�1)) that occur with the largest

coefficient are the terms with the property that xi occurs with exponent 2, xi+n/2 (subscript
mod n) occurs with exponent 0, and all other xi appear with exponent 1.

Remark 4.9. We have that there is a nonzero term in per(C(x0, x1, . . . , xn�1)) with ex-
actly two nonzero exponents (so binomials) if and only if n is not a prime. The reason is
as follows: Suppose x

a

i
x
b

j
occurs with a nonzero coefficient where 0  j < i  n� 1 and

i 6= j, and a, b � 1, and a+ b = n (and so a, b  n� 1). Then by Hall’s theorem

ai+ bj = ai+ (n� a)j ⌘ 0 (mod n), that is, a(i� j) ⌘ 0 (mod n).

If n is a prime p, this is a contradiction since p - a and p - (i � j). If n is not a prime, say
n = uv where 1 < u, v < n�1. Then we may choose a = u, and i and j so that i�j = v,
and get a term x

a

i
x
(n�a)
j

with a nonzero coefficient.
In investigating binomials in per(C(x0, x1, . . . , xn�1)) it is sufficient to consider bi-

nomials of the form x
a

0x
b

k
where 1  k  n � 1. Thus we consider the terms of

per(x0In + xkP
k

n
) different from x

n

0 and x
n

k
. This permanent is easily computed:

per(x0In + xkP
k

n
) =

dX

t=0

✓
d

t

◆
x
t
n
d

0 x
(d�t)n

d
k

where d = gcd(n, k).

Thus the largest coefficient of a binomial is
�
d
d
2

�
.

More generally, let H ✓ {0, 1, . . . , n � 1}. If we set xj = 0 if j 62 H , then the
permanent of the resulting matrix CH(x0, x1, . . . , xn�1) gives all the terms that occur in
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per(C(x0, x1, . . . , xn�1)) and their coefficients in which the only xi that can occur are
those with i 2 H . By also setting xi = 1 for i 2 H , the permanent equals the number of
terms in per(CH(x0, x1, . . . , xn�1)).

Remark 4.10. Now consider terms in per(C(x0, x1, . . . , xn�1)) where there are exactly
three nonzero exponents (so in the juggling context, three different heights in throwing
the balls). These terms are then trinomials. Which trinomial has the largest coefficient
among all trinomials that occur in per(C(x0, x1, . . . , xn�1))? The conjecture is that the
maximum coefficient occurs when the exponents are as equal as possible; in particular if
n = 3k, then the trinomial will largest coefficient is conjectured to be x

k

0x
k

k
x
k

2k and its
cyclic permutations. In investigating trinomials in per(C(x0, x1, . . . , xn�1)) it suffices to
consider terms of the form x

a

0x
b

r
x
c

s
where 0 < r < s < n and a + b + c = n, that is it

suffices to consider the trinomials in

per(x0In + xrP
r

n
+ xsP

s

n
).

The conjecture is that the largest coefficient of a trinomial in this permanent occurs when
the exponents are as equal as possible and the powers of Pn, i.e. the subscripts of the x’s
are as equally spaced as possible (in the cyclic sense). If n = 3k, then after permutations
x0In + xkP

k

n
+ x2kP

2k
n

becomes a direct sum of k 3⇥ 3 matrices of the form

x0I3 + xkP3 + x2kP
2
3 .

5 Juggling sequences with additional properties
Let U = {u1, u2, . . . , un} be a minimal juggleable set, and let u⌧(1), u⌧(2), . . . , u⌧(n) be a
juggling sequence corresponding to U . Thus ⌧ is a permutation of {1, 2, . . . , n} and it is
natural to ask about the existence of such permutations ⌧ with additional properties, equiv-
alently, extensions of Theorem 2.1 by imposing additional restrictions on the permutation
⌧ . Juggling sequences correspond to transversals in the circulant C(x0, x1, . . . , xn�1) and
thus we seeks transversals of C(x0, x1, . . . , xn�1) whose pattern has additional properties.

Two natural permutations to consider are involutions and centrosymmetric permutations
of � of {1, 2, . . . , n}. Involutions are permutations � of {1, 2, . . . , n} where for all i and
j, �(i) = j implies �(j) = i, and these correspond to transversals of C(x0, x1, . . . , xn�1)
whose positions have a symmetric matrix pattern, that is, transversal patterns invariant
under a reflection about the main diagonal. A permutation � is centrosymmetric pro-
vided that for all i, �(i) + �(n + 1 � i) = n + 1 and these correspond to transversals
of C(x0, x1, . . . , xn�1) whose positions have a centrosymmetric matrix pattern, that is,
transversal patterns invariant under a 180 degree rotation. There are permutations that are
both symmetric and centrosymmetric.

Example 5.1. Let n = 4 and let � = (2, 1, 4, 3). As a permutation matrix, � equals
2

664

1
1

1
1

3

775

which is invariant under a reflection about the diagonal and a rotation of 180 degrees. Thus
� is both an involution (invariant under a reflection about the main diagonal) and a cen-
trosymmetric permutation (invariant under a 180 degree rotation). Notice that � is also
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invariant under reflection about the antidiagonal running from the lower left to the upper
right, and this holds in general for permutations that are both symmetric and centrosym-
metric. ⌃

Let U = {u1, u2, . . . , un} be a multiset where ui 2 {0, 1, . . . , n�1} for 0  i  n�1.
We say that U is balanced mod n provided that its nonzero elements can be paired as {a, b}
so that a+b ⌘ 0 (mod n). Thus if n is even, 0 and n/2 each occur an even, possibly zero,
number of times, and if n is odd, 0 occurs an odd number of times. If U is balanced mod n,
then it is an immediate consequence of Theorem 2.1 that U is a juggleable set with each xi

with i 6= 0 occurring with an even, possibly zero, exponent in per(C(x0, x1, . . . , xn�1)).

Example 5.2. Let n = 8 and let U = {0, 0, 1, 7, 1, 7, 4, 4}. Then U is balanced mod 8
and hence is a juggleable set. In C(x0, x1, . . . , x7) below we have realizations

1 2 3 4 5 6 7 8

1 x0 x1 x2 x3 x4 x5 x6 x7

2 x7 x0 x1 x2 x3 x4 x5 x6

3 x6 x7 x0 x1 x2 x3 x4 x5

4 x5 x6 x7 x0 x1 x2 x3 x4

5 x4 x5 x6 x7 x0 x1 x2 x3

6 x3 x4 x5 x6 x7 x0 x1 x2

7 x2 x3 x4 x5 x6 x7 x0 x1

8 x1 x2 x3 x4 x5 x6 x7 x0

.

corresponding to the term x
2
0x

2
1x

2
4x

2
7 in per(C(x0, x1, . . . , x7)), achieved in the permanent

per(C(x0, x1, . . . , x7)) by an involution (dark gray) and by a centrosymmetric permutation
(light gray). ⌃
Example 5.3. Let n = 6 and consider the multiset U = {2, 2, 2, 4, 4, 4} balanced mod 6
with the pairing {2, 4}, {2, 4}, {2, 4}. In both case we seek a corresponding transversal in

2

6666664

x0 x1 x2 x3 x4 x5

x5 x0 x1 x2 x3 x4

x4 x5 x0 x1 x2 x3

x3 x4 x5 x0 x1 x2

x2 x3 x4 x5 x0 x1

x1 x2 x3 x4 x5 x0

3

7777775
,

consisting of three x2’s and three x4’s. We have indicated such a realization in the cen-
trosymmetric case, but it is straightforward to check that it cannot be attained by an invo-
lution. ⌃

We have done a substantial amount of calculation with the following consequences:

(i) For n  19 a prime, all balanced mod n multisets can be achieved by a transversal
with a symmetric pattern. When n = 15, there are 16 balanced mod 15 multisets
that cannot be achieved by a transversal with a symmetric pattern, e.g. the multiset
{0, 6, 6, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 9, 9} cannot be so achieved. On the other hand, for
n = 18, there are 48 620 balanced mod 18 multisets satisfying (2.1) and only 36 195
can be achieved with a symmetric pattern.
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(ii) For odd n  21, all balanced mod n multisets can be achieved by a transversal with
a centrosymmetric pattern.

As a consequence of the data obtained we make two conjectures:

Conjecture 5.4. If n is a prime, then every balanced mod n multiset can be achieved by
a transversal with a symmetric pattern.

Conjecture 5.5. If n is odd, then a balanced mod n multiset can be achieved by a transver-
sal with a centrosymmetric pattern. If n is even, then the unachievable balanced mod n

multisets only have terms with the same parity.
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Abstract

It is several years that no theoretical construction for optimal (v, k, 1) optical orthog-
onal codes (OOCs) with new parameters has been discovered. In particular, the literature
almost completely lacks optimal (v, k, 1)-OOCs with k > 3 which are not regular. In this
paper we will show how some elementary difference multisets allow to obtain three new
classes of optimal but not regular (3p, 4, 1)-, (5p, 5, 1)-, and (2p, 4, 1)-OOCs which are de-
scribable in terms of Pell and Fibonacci numbers. The OOCs of the first two classes (resp.
third class) will be called silver (resp. golden) since they exist provided that the square of a
silver element (resp. golden element) of Zp is a primitive square of Zp.

Keywords: Silver and golden ratio, Pell and Fibonacci numbers, difference packing, optimal optical
orthogonal code, strong difference family, difference multiset.

Math. Subj. Class.: 05B10, 94B25

1 Introduction

The real numbers 1 +
p
2 (the silver ratio), 1+

p
5

2 (the golden ratio) and their marvelous
properties are very well known. Disregarding their geometrical meaning (see, e.g., [17]),
they can be defined in the same algebraic way in any finite field Fq of an appropriate order
q. By the Law of Quadratic Reciprocity (see, e.g., [20]), it is well known that 2 is a non-
zero square in Fq if and only if q ⌘ 1 or 7 (mod 8) and that 5 is a non-zero square in Fq

if and only if q ⌘ 1 or 4 (mod 5). Thus, for a prime p ⌘ 1 or 7 (mod 8), we naturally
define the silver elements of Zp as the two elements 1+x and 1�x of Zp where x and �x

are the square roots of 2 modulo p. Also, for a prime p ⌘ 1 or 4 (mod 5), we naturally
define the golden elements of Zp as the two elements 2�1(1 + x) and 2�1(1 � x) of Zp

where x and �x are the square roots of 5 modulo p.
We recall that the Pell sequence is the integer sequence {Pn} defined by P0 = 0,

P1 = 1 and by the recursive formula Pn = 2Pn�1 + Pn�2 for n � 2, and that the
⇤This work has been performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research

Council) of Italy.
E-mail address: buratti@dmi.unipg.it (Marco Buratti)
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Fibonacci sequence is the integer sequence {Fn} defined by F0 = 0, F1 = 1 and by the
recursive formula Fn = Fn�1 + Fn�2 for n � 2.

Two good textbooks on Pell and Fibonacci numbers are [19] and [18], respectively.
As in the real field, if ✓ is a silver element of Fq then we have

✓
n = Pn✓ + Pn�1 8n � 1 (1.1)

Also, if � is a golden element of Fq then we have

�
n = Fn�+ Fn�1 8n � 1 (1.2)

An optical orthogonal code of length v, weight k, auto-correlation �a and cross-
correlation �c – briefly, a (v, k,�a,�c)-OOC – can be seen as a set of k-subsets (codeword-
sets) of Zv such that

(i) any two distinct translates of a codeword-set share at most �a elements
(auto-correlation property);

(ii) any two translates of two distinct codeword-sets share at most �c elements
(cross-correlation property).

This topic, introduced by Chung, Salehi and Wei [12], has been well studied for a long time
in view of its many applications (see, e.g., [13]).

In particular, a (v, k, 1, 1)-OOC – briefly, a (v, k, 1)-OOC – can be viewed as a set of
k-subsets of Zv (codeword-sets) such that no element of Zv \ {0} can be represented as
a difference of two elements of a codeword-set in more than one way. Such an OOC is
said to be optimal when its size (that is the number of its codeword-sets) reaches the upper
Johnson bound b v�1

k(k�1)c.
There is a huge literature on optical orthogonal codes but, as far as this author is aware,

in the last seven years no theoretical construction for a class of optimal (v, k, 1)-OOCs with
new parameters has been discovered. In this paper we find three classes of optimal OOCs
with new parameters: an optimal (3p, 4, 1)-OOC and an optimal (5p, 5, 1)-OOC for each
prime p ⌘ 7 (mod 8) such that the silver elements of Zp are generators of Z⇤

p/{1,�1}
(both these codes will be called silver); an optimal (2p, 4, 1)-OOC for each prime p ⌘
11 or 29 (mod 30) such that the golden elements of Zp are generators of Z⇤

p/{1,�1} (this
code will be called golden).

The strategy to get our silver/golden OOCs is to use some elementary difference mul-
tisets (which are strong difference families with only one block) but, in the end, we will
show that all these codes can be presented in terms of Pell/Fibonacci numbers.

2 Difference packings via strong difference families

Given a k-multisubset, in particular a k-subset, B = {b1, . . . , bk} of an additive group
G, we call list of differences from B the multiset �B of all possible differences bi � bj

with (i, j) an ordered pair of distinct elements of {1, . . . , k}. One calls (G, k, 1) difference
packing any set D of k-subsets of G (blocks) with the property that its list of differences,
namely the multiset sum

�D :=
]

B2D
�B,
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does not have repeated elements. It is evident that the size of D cannot exceed b |G|�1
k(k�1)c.

For this reason, one says that D is optimal when its size reaches this value. The difference
leave of a (G, k, 1) difference packing D is defined to be the set of all elements of G not
appearing in �D. Thus D is optimal provided that its difference leave has size less or equal
to k(k� 1). The difference packing is a relative difference family [5] if its difference leave
is a subgroup H of G. In this case someone also speaks of a r-regular difference packing
if H has order r (see, e.g., [24]). Note that a (Zv, k, 1) difference packing is nothing but a
(v, k, 1)-OOC.

The problem of factoring a group into subsets and its variants [23] could play a crucial
role in the construction of difference packings. Also, the construction of a |G|-regular
(G⇥Fq, k, 1) difference packing can be facilitated by a suitable strong difference family in
G, a concept formally introduced in [6] but implicitly used for a long time. A t-(G, k, µ)
strong difference family is a t-multiset S of k-multisubsets (blocks) of a group G such that
�S covers all elements of G exactly µ times. The parameter µ is called the index of the
strong difference family and a trivial counting shows that it is necessarily equal to k(k�1)t

|G| .
Of course it is possible to consider, more generally, strong difference families whose blocks
have variable sizes [7].

In order to explain why strong difference families might be good to construct relative
difference families and more generally OOCs, we have to introduce some notation and
terminology.

Denote by F⇤
q the multiplicative group of the field Fq . Given a subset B of a direct

product G⇥ Fq and given c 2 F⇤
q , denote by (1, c) ·B the subset of G⇥ Fq obtained from

B by multiplying the second coordinates of all its elements by c and leaving invariant their
first coordinates. If B is a set of subsets of G ⇥ Fq and g 2 G, we denote by �gB the list
of the second coordinates of all elements of �B whose first coordinate is g so that one can
write

�B =
[

g2G

{g}⇥�gB.

Let us say that two subsets C and � of F⇤
q are companions if the list C · � := {c� |

c 2 C; � 2 �} does not have repeated elements. In this case it is evident that the size of
C cannot exceed b q�1

|�| c. Thus we say that C is an optimal companion of � when its size
reaches this value. In particular, we say that C is a perfect or near-perfect companion of �
when its size is exactly equal to q�1

|�| or q�2
|�| , respectively. In these last two cases we have

C ·� = F⇤
q or C ·� = F⇤

q \ {x} for some x 2 F⇤
q and one says that C ·� is a factorization

of F⇤
q in the former case and that 1

xC ·� is a near factorization of F⇤
q in the latter (see [23]).

The next proposition is very elementary.

Proposition 2.1. Let B = {B1, . . . , Bt} be a set of k-subsets of G⇥Fq such that all �gB
are sets admitting a common companion C. Then D := {(1, c) · B | c 2 C,B 2 B} is a
(G⇥ Fq, k, 1) difference packing.

The proof is straightforward; indeed, by assumption, C · �gB does not have repeated
elements, hence �D =

S
g2G{g}⇥ (C ·�gB) is also without repeated elements.

Now we show that the above proposition cannot give optimal optical orthogonal codes
for arbitrarily high values of q unless the projection of B on G is a strong difference family.

Proposition 2.2. Let D be a difference packing as in Proposition 2.1 and set µ = k(k�1)t
|G| .

Then, for q > k(k � 1)µ, D is optimal if and only if the following conditions hold:
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(i) The projection of B on G is a t-(G, k, µ) strong difference family;
(ii) C is an optimal companion of �gB for every g 2 G;

(iii) the remainder of the Euclidean division of q by µ does not reach µ
t .

Proof. (=)): The size of D is |C| · t, therefore we have |C| · t = b |G|q�1
k(k�1)c because D is

optimal. This gives |C| � k(k � 1) in view of the hypothesis q > k(k � 1)µ.
For each g 2 G, let Lg(B) be the complement of C ·�gB in Fq . We have |Lg(B)| =

q�|C|·|�gB| for each g 2 G. This implies that |Lg(B)| = |Lh(B)|+|C|·(|�hB|�|�gB|)
for any pair of elements g and h of G. Thus, if |�gB| < |�hB| we would have |Lg(B)| >
|C| and then Lg(B) would have size greater than k(k�1) in view of the previous paragraph.
This is clearly absurd since {g} ⇥ Lg(B) is contained in the difference leave of D whose
size is at most k(k � 1).

We conclude that |�gB| is a constant, i.e., the projection of B on G is a strong difference
family with t blocks of size k. This implies that its index is k(k�1)t

|G| which is equal to µ.
Thus |�gB| = µ for every g 2 G.

Now assume that C is not optimal. In this case the size of Lg(B) would be a constant
at least equal to µ, hence the difference leave of D, which is clearly given by

S
g2G{g}⇥

Lg(B), would have size greater than µ|G| = tk(k � 1), therefore greater than k(k � 1)
contradicting the optimality of D.

If r is the remainder of the Euclidean division of q by µ, then the difference leave of D
has size r · |G|. Thus, since D is optimal, we must have r · |G|  k(k � 1) which means
r <

µ
t .

((=): Straightforward.

Note that condition (iii) is certainly satisfied when t = 1, namely when B is a singleton
{B}. In this case one says that the projection of B on G, say ⇡(B), is a (G, k, µ) difference
multiset (also called a difference cover in [3]) rather than to say that {⇡(B)} is a 1-(G, k, µ)
strong difference family.

The above proposition suggests the following strategy for getting families of optimal
difference packings. Start with a t-(G, k, µ) strong difference family S which will be
used as “skeleton” of the desired optimal difference packing. Then take a prime power
q = µn + r with 1  r  µ

t and try to “lift” S to a suitable t-set B of k-subsets of
G ⇥ Fq in such a way that all �gB admit a common optimal companion C. For r = 1
this strategy has been used (sometimes implicitly) in many papers to construct relative
difference families and, in particular, regular OOCs. The elder constructions are surveyed
in [2]. More recent constructions can be found in [8, 9, 11, 14, 15, 21, 22, 25]. Here one
often tries to have each �gB a complete system of representatives for the cosets of the
subgroup of F⇤

q of index µ, namely the group C
µ of non-zero µ-th powers of Fq . Indeed in

this case a common companion of each �gB is clearly given by C
µ itself.

On the other hand, as far as this author is aware, the above strategy has been never
applied with r > 1 probably because the existence of a common optimal but not perfect
companion of all the set �gB seems to be almost a miracle. Indeed, the probability that
even a single set � ⇢ F⇤

q admits an optimal companion C diminishes dramatically if |�| is
not a divisor of q�1. Consider, for instance, that Theorem 2.8 and Theorem 2.9 in [4] imply
that for q ⌘ 1 (mod 3) the number of 3-subsets of F⇤

q admitting a perfect companion is at
least equal to q( q�1

3 )3, while for q ⌘ 2 (mod 3) the number of 3-subsets of F⇤
q admitting

a near-perfect companion is less or equal to q · �(q � 1) with � the Euler totient function.
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This probably explains why, at the moment, we have only a few known classes of
optimal but not regular (v, k, 1)-OOCs with k > 3 (see [1, 4, 10]).

Anyway in this paper we manage to find three new classes of optimal but not regu-
lar OOCs adopting the strategy described above with S equal to one the following very
elementary strong difference families:

(a) the (Z3, 4, 4) difference multiset {0, 0, 1, 1} for getting an optimal (3p, 4, 1)-OOC
with p = 8n+ 7 a prime whose silver elements are generators of Z⇤

p/{1,�1};
(b) the (Z5, 5, 4) difference multiset {0, 1, 1, 4, 4} for getting an optimal (5p, 5, 1)-OOC

with p a prime as above;
(c) the (Z2, 4, 6) difference multiset {0, 1, 1, 1} for getting an optimal (2p, 4, 1)-OOC

with p = 30n+ 11 or p = 30n+ 29 a prime whose golden elements are generators
of Z⇤

p/{1,�1}.

3 On the silver (3p, 4, 1) and (5p, 5, 1) optical orthogonal codes

Note that the silver elements of Zp are precisely the solutions of the congruence x2 � 2x�
1 ⌘ 0 (mod p), i.e., the elements ✓ of Zp such that ✓ + 1 = ✓(✓ � 1). This property is
crucial for getting the following construction.

Theorem 3.1. Let p = 8n + 7 be a prime and let ✓ be a silver element of Zp. If ✓ is
a generator of Z⇤

p/{1,�1}, then there exists an optimal (3p, 4, 1)-OOC and an optimal
(5p, 5, 1)-OOC.

Proof. By the Chinese Remainder Theorem, Z3p and Z5p are isomorphic to Z3 ⇥ Zp and
Z5⇥Zp, respectively. So it is enough to show that, under the given assumption, there exists
an optimal (Z3 ⇥ Zp, 4, 1) difference packing and an optimal (Z5 ⇥ Zp, 5, 1) difference
packing.

The assumption on ✓ implies that {✓i | 0  i  4n + 2} is a complete system of
representatives for the cosets of {1,�1} in Z⇤

p so that we have

Z⇤
p = {1,�1} · {1, ✓, ✓2, . . . , ✓4n+1

, ✓
4n+2}

and then {✓2i | 0  i  2n} · {±✓,±✓
2} = Z⇤

p \ {1,�1}. Thus we can claim that

C := {✓2i | 0  i  2n} is an optimal companion of {±✓,±✓
2}. (3.1)

Let us lift the (Z3, 4, 4) difference multiset {0, 0, 1, 1} to the following 4-subset of Z3⇥Zp

B = {(0, ✓), (0,�✓), (1, ✓2), (1,�✓
2)}.

The difference table of B (see Table 1) shows that we can write:

�0B = {±2✓,±2✓2}; �1B = �2B = {±✓(✓ � 1),±✓(✓ + 1)}. (3.2)

Then, recalling that ✓ + 1 = ✓(✓ � 1), we have:

�0B = 2{±✓,±✓
2}; �1B = �2B = (✓ � 1){±✓,±✓

2}.

We conclude, by (3.1), that C is an optimal companion of �gB for every g 2 Z3 and then
D = {(1, c) · B | c 2 C} is the desired optimal (Z3 ⇥ Zp, 4, 1) difference packing by
Proposition 2.2.
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Table 1: The difference table of B = {(0, ✓), (0,�✓), (1, ✓2), (1,�✓
2)}.

(0, ✓) (0,�✓) (1, ✓2) (1,�✓
2)

(0, ✓) • (0, 2✓) (2, ✓ � ✓
2) (2, ✓ + ✓

2)

(0,�✓) (0,�2✓) • (2,�✓ � ✓
2) (2,�✓ + ✓

2)

(1, ✓2) (1, ✓2 � ✓) (1, ✓2 + ✓) • (0, 2✓2)

(1,�✓
2) (1,�✓

2 � ✓) (1,�✓
2 + ✓) (0,�2✓2) •

Now, let us lift the (Z5, 5, 4) difference multiset {0, 1, 1, 4, 4} to the following 5-subset
of Z5 � Zp

B = {(0, 0), (1, ✓), (1,�✓), (4, ✓2), (4,�✓
2)}.

Table 2 is its difference table.

Table 2: The difference table of B = {(0, 0), (1, ✓), (1,�✓), (4, ✓2), (4,�✓
2)}.

(0, 0) (1, ✓) (1,�✓) (4, ✓2) (4,�✓
2)

(0, 0) • (4,�✓) (4, ✓) (1,�✓
2) (1, ✓2)

(1, ✓) (1, ✓) • (0, 2✓) (2, ✓ � ✓
2) (2, ✓ + ✓

2)

(1,�✓) (1,�✓) (0,�2✓) • (2,�✓ � ✓
2) (2,�✓ + ✓

2)

(4, ✓2) (4, ✓2) (3, ✓2 � ✓) (3, ✓2 + ✓) • (0, 2✓2)

(4,�✓
2) (4,�✓

2) (3,�✓
2 � ✓) (3,�✓

2 + ✓) (0,�2✓2) •

Recalling again that ✓ + 1 = ✓(✓ � 1), we can write

�0B = 2{±✓,±✓
2},

�1B = �4B = {±✓,±✓
2},

�2B = �3B = (✓ � 1){±✓,±✓
2}

so that, by (3.1), C is an optimal companion of �gB for each g 2 Z5. We conclude that
D = {(1, c) · B | c 2 C} is the desired optimal (Z5 ⇥ Zp, 5, 1) difference packing by
Proposition 2.2. The assertion follows.

The optimal OOCs arising from the above result will be called silver. We remark that
the assumption on ✓ is equivalent to ask that ✓2, that is 2✓ + 1, is a primitive square of Zp

and that this assumption does not depend on the chosen silver element; indeed the product
of the two silver elements is �1, hence they have the same orders in Z⇤

p/{1,�1}. We also
note that the difference leaves of the constructed pakings are

{0}⇥ {0, 2,�2} [ {1, 2}⇥ {0, ✓ � 1, 1� ✓}

for the (Z3 ⇥ Zp, 4, 1) difference packing and

{0}⇥ {0, 2,�2} [ {1, 4}⇥ {0, 1,�1} [ {2, 3}⇥ {0, ✓ � 1, 1� ✓}
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for the (Z5 ⇥ Zp, 5, 1) difference packing.
Among the 2399 primes p congruent to 7 modulo 8 and not exceeding 100 000 we

have checked that ✓ is not a generator of Z⇤
p/{1,�1} in “only” 599 cases. Thus, roughly

speaking, it seems that the two constructions succeed three times out of four.

Remark 3.2. Using formula (1.1), the optimal difference packings constructed in Theo-
rem 3.1 can be more explicitly written in terms of Pell numbers. They are of the form
D = {Bi | 0  i  2n} with

Bi = {(0, P2i+1✓ + P2i), (0,�P2i+1✓ � P2i), (1, P2i+2✓ + P2i+1),

(1,�P2i+2✓ � P2i+1)}

when D is a (Z3 ⇥ Zp, 4, 1) difference packing and with

Bi = {(0, 0), (1, P2i+1✓ + P2i), (1,�P2i+1✓ � P2i), (4, P2i+2✓ + P2i+1),

(4,�P2i+2✓ � P2i+1)}

when D is a (Z5 ⇥ Zp, 5, 1) difference packing.

By way of illustration we explicitly construct a silver (141, 4, 1)-OOC.
We have 141 = 3p with p = 47 = 8n + 7 prime, n = 5. A silver element of Zp

is ✓ = 8; indeed we have 8 + 1 ⌘ 82 � 8 (mod 47). Here the group Z⇤
p/{1,�1} has

prime order 23, hence ✓ is certainly a generator of it and Theorem 3.1 can be applied. The
reduction modulo p of the Pell sequence up to its 22-nd term is

(0, 1, 2, 5, 12, 29, 23, 28, 32, 45, 28, 7, 42, 44, 36, 22, 33, 41, 21, 36, 46, 34, 20).

Thus, applying Remark 3.2, the blocks of a (Z3 ⇥ Z47, 4, 1) difference packing are the
following:

{(0, ✓), (0,�✓), (1, 2✓ + 1), (1,�2✓ � 1)}
{(0, 5✓ + 2), (0,�5✓ � 2), (1, 12✓ + 5), (1,�12✓ � 5)}

{(0, 29✓ + 12), (0,�29✓ � 12), (1, 23✓ + 29), (1,�23✓ � 29)}
{(0, 28✓ + 23), (0,�28✓ � 23), (1, 32✓ + 28), (1,�32✓ � 28)}
{(0, 45✓ + 32), (0,�45✓ � 32), (1, 28✓ + 45), (1,�28✓ � 45)}
{(0, 7✓ + 28), (0,�7✓ � 28), (1, 42✓ + 7), (1,�42✓ � 7)}

{(0, 44✓ + 42), (0,�44✓ � 42), (1, 36✓ + 44), (1,�36✓ � 44)}
{(0, 22✓ + 36), (0,�22✓ � 36), (1, 33✓ + 22), (1,�33✓ � 22)}
{(0, 41✓ + 33), (0,�41✓ � 33), (1, 21✓ + 41), (1,�21✓ � 41)}
{(0, 36✓ + 21), (0,�36✓ � 21), (1, 46✓ + 36), (1,�46✓ � 36)}
{(0, 34✓ + 46), (0,�34✓ � 46), (1, 20✓ + 34), (1,�20✓ � 34)}

The isomorphism f : (x, y) 2 Z3 ⇥ Z47 ! 48y � 47x 2 Z141 turns the above blocks
into the following eleven codeword-sets forming the desired silver (141, 4, 1)-OOC with
difference leave {0, 7, 40, 45, 47, 94, 96, 101, 134}:

{102, 39, 64, 124}, {42, 99, 7, 40}, {9, 132, 25, 22}, {12, 129, 49, 139},
{63, 78, 34, 13}, {84, 57, 61, 127}, {18, 123, 97, 91}, {24, 117, 4, 43},

{126, 15, 115, 73}, {27, 114, 28, 19}, {36, 105, 100, 88}.
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As far as this author is aware, the above optimal OOC is new but the same cannot be
said for its parameters. Indeed it was proved in [16] that there exists a perfect (v, 4, 1)
difference family for all v ⌘ 1 (mod 12) not exceeding 10 000 except v = 25 and v = 37.
Also, according to Remark 1.4 in [1], any perfect (v, 4, 1) difference family can be also
seen as an optimal (w, k, 1)-OOC for all w’s between v and v + k(k � 1) included. Thus
we have the existence of an optimal (v, 4, 1)-OOC for all v’s not exceeding 10 012 except
v = 25 (indeed an optimal (v, 4, 1)-OOC with 26  v  48 is known to exist anyway).

4 On the golden (2p, 4, 1) optical orthogonal codes

Note that the golden elements of Zp are precisely the solutions of the congruence x2�x�
1 ⌘ 0 (mod p), i.e., the elements � of Zp such that � + 1 = �

2. This property is crucial
for getting the following construction.

Theorem 4.1. Let p ⌘ 11 or 29 (mod 30) be a prime and let � be a golden element of
Zp. If � is a generator of Z⇤

p/{1,�1}, then there exists an optimal (2p, 4, 1)-OOC.

Proof. We have to show that, under the given assumption, there exists an optimal (Z2 ⇥
Zp, 4, 1) difference packing. Indeed Z2⇥Zp is isomorphic to Z2p by the Chinese Remain-
der Theorem.

We can write p = 6n+ 5 for a suitable n, hence p�1
2 = 3n+ 2, and the assumption on

� implies that we have

Z⇤
p = {1,�1} · {1,�,�2

, . . . ,�
3n
,�

3n+1}.

It is then clear that

C := {�3i�1 | 1  i  n} is an optimal companion of {±1,±�,±�
2}. (4.1)

Indeed we have C · {±1,±�,±�
2} = Z⇤

p \ {±1,±�}.
Let us lift the (Z2, 4, 6) difference multiset {0, 1, 1, 1} to the 4-subset B of Z2 � Zp

B = {(0, 0), (1, 1), (1,�), (1,�2}.

Looking at the difference table of B (see Table 3) we see that we have

�0B = {±(�� 1),±�(�� 1),±(�+ 1)(�� 1)}; �1B = {±1,±�,±�
2}.

Thus, recalling that �+ 1 = �
2, we can write

�0B = (�� 1){±1,±�,±�
2}, �1B = {±1,±�,±�

2}

so that, by (4.1), C in an optimal companion of �gB for each g 2 Z2. We conclude that
D = {(1, c) · B | c 2 C} is the desired optimal (Z5 ⇥ Zp, 5, 1) difference packing by
Proposition 2.2.

The optimal OOCs arising from the above result will be called golden. We remark that
the assumption on � is equivalent to ask that �2, that is � + 1, is a primitive square of
Zp and it does not depend on the chosen golden element; indeed the product of the two
golden elements is �1, hence their orders in Z⇤

p/{1,�1} are the same. We also note that
the difference leave of the constructed difference packing is

{0}⇥ {0, 1,�1,�� 1, 1� �} [ {1}⇥ {0, 1,�1,�,��}.
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Table 3: The difference table of B = {(0, 0), (1, 1), (1,�), (1,�2}.

(0, 0) (1, 1) (1,�) (1,�2)

(0, 0) • (1,�1) (1,��) (1,��
2)

(1, 1) (1, 1) • (0, 1� �) (0, 1� �
2)

(1,�) (1,�) (0,�� 1) • (0,�� �
2)

(1,�2) (1,�2) (0,�2 � 1) (0,�2 � �) •

We have checked that in the range [1, 105], Theorem 4.1 works in 1533 out of 2399 of the
cases.

Remark 4.2. Using formula (1.2), the optimal difference packing D constructed in The-
orem 4.1 can be more explicitly written in terms of Fibonacci numbers. Indeed we have
D = {Bi | 1  i  n} with

Bi = {(0, 0), (1, F3i�1�+ F3i�2), (1, F3i�+ F3i�1), (1, F3i+1�+ F3i)}.

By way of illustration we explicitly construct a golden (142, 4, 1)-OOC using the above
remark.

We have 142 = 2p with p = 71 ⌘ 11 (mod 30) prime, and we can write p = 6n + 5
with n = 11. A golden element of Zp clearly is � = 9; indeed we have 92 ⌘ 10 (mod 71).
The maximal proper divisors of (p�1)/2 are 5 and 7 and neither 105 nor 107 is 1 (mod p).
This guarantees that 10 has order (p � 1)/2 in Z⇤

p, namely � + 1 is a primitive square of
Zp. Thus Theorem 4.1 can be applied. The reduction modulo p of the Fibonacci sequence
up to its 34-th term is

(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 18, 2, 20, 22, 42, 64, 35, 28, 63, 20,

12, 32, 44, 5, 49, 54, 32, 15, 47, 62, 38, 29, 67, 25).

Thus, applying Remark 4.2, the blocks of an optimal (Z2⇥Z71, 4, 1) difference packing
are the following:

{(0, 0), (1,�+ 1), (1, 2�+ 1), (1, 3�+ 2)}
{(0, 0), (1, 5�+ 3), (1, 8�+ 5), (1, 13�+ 8)}

{(0, 0), (1, 21�+ 13), (1, 34�+ 21), (1, 55�+ 34)}
{(0, 0), (1, 18�+ 55), (1, 2�+ 18), (1, 20�+ 2)}

{(0, 0), (1, 22�+ 20), (1, 42�+ 22), (1, 64�+ 42)}
{(0, 0), (1, 35,�+ 64), (1, 28�+ 35), (1, 63�+ 28)}
{(0, 0), (1, 20�+ 63), (1, 12�+ 20), (1, 32�+ 12)}
{(0, 0), (1, 44�+ 32), (1, 5�+ 44), (1, 49�+ 5)}

{(0, 0), (1, 54�+ 49), (1, 32�+ 54), (1, 15�+ 32)}
{(0, 0), (1, 47�+ 15), (1, 62�+ 47), (1, 38�+ 62)}
{(0, 0), (1, 29�+ 38), (1, 67�+ 29), (1, 25�+ 67)}
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The isomorphism f : (x, y) 2 Z2 ⇥ Z71 ! 71x + 72y 2 Z142 turns the above blocks
into the following eleven codeword-sets forming the desired golden (142, 4, 1)-OOC with
difference leave {0, 1, 8, 9, 70, 71, 72, 133, 134, 141}:

{0, 81, 19, 29}, {0, 119, 77, 125}, {0, 131, 43, 103}, {0, 75, 107, 111},
{0, 5, 45, 121}, {0, 95, 3, 27}, {0, 101, 57, 87}, {0, 73, 89, 91},

{0, 109, 129, 25}, {0, 83, 37, 49}, {0, 15, 135, 79}.

Although the above optimal OOC is probably new, the same cannot be said for its
parameters for the same reason explained in the end of Section 3.
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Abstract

Covering perfect hash families provide a very compact representation of a useful family
of covering arrays, leading to the best asymptotic upper bounds and fast, effective algo-
rithms. Their compactness implies that an additional row in the hash family leads to many
new rows in the covering array. In order to address this, subspace restrictions constrain cov-
ering perfect hash family so that a predictable set of many rows in the covering array can be
removed without loss of coverage. Computing failure probabilities for random selections
that must, or that need not, satisfy the restrictions, we identify a set of restrictions on which
to focus. We use existing algorithms together with one novel method, affine composition,
to accelerate the search. We report on a set of computational constructions for covering
arrays to demonstrate that imposing restrictions often improves on previously known upper
bounds.
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1 Introduction
We develop effective construction techniques for combinatorial arrays called covering per-
fect hash families, which form a compact representation of covering arrays. Covering
arrays arise in numerous applications in which interactions among options or factors are
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to be measured; they are used in, for example, software testing [12, 13], hardware testing
[10, 20], design of composite materials [2], computational learning [1, 9], and biological
networks [14]. Computational methods to construct covering arrays often encounter diffi-
culties when the array has many rows, many columns, or both. To alleviate this concern,
covering perfect hash families were introduced in [21] and shown to provide a succinct rep-
resentation of a class of covering arrays. In [6] they were used to establish the best known
asymptotic upper bound on the fewest rows in a covering array. Also in [6], effective and
simple algorithms were examined for their construction.

Covering perfect hash families have proved instrumental in obtaining many sizes of
covering arrays that are the best currently known. Despite the compactness of the represen-
tation that they provide, their use lessens but does not remove the computational burden.
We propose and analyze a method, affine composition, to combine small covering perfect
hash families to make larger ones; this extends the range of array sizes for which computa-
tional methods are feasible. Moreover, the very compactness of the representation severely
limits the possible numbers of rows in the covering arrays produced. We develop a method
using subspace restrictions to produce covering arrays that are guaranteed to have at least a
specified number of duplicated rows, which can be removed without altering the coverage.
This provides finer control on the number of rows in the covering array, and hence often
improves upon the coarser use of covering perfect hash families without restrictions.

Both of these contribute to the construction of covering arrays with fewer rows than
the best previously known, and hence to a reduction in testing and measurement cost when
the covering arrays are applied. In order to develop these notions, we first provide formal
definitions and background.

Let q be a prime power. Let Fq be the finite field of order q. Let Rt,q = {r0, . . . , rqt�1}
be the set of all (row) vectors of length t with entries from Fq , and let Tt,q be the set of
all column vectors of length t with entries from Fq , not all 0. A vector x 2 Tt,q is a
permutation vector [21].

Lemma 1.1 (see [21]). Let X = {x1, . . . ,xt} be a set of vectors from Tt,q . The array

A = (aij) formed by setting aij to be the product of ri and xj is a qt ⇥ t matrix in which

every row is distinct if and only if the t⇥ t matrix X = [x1 · · ·xt] is nonsingular.

When µ 2 Fq \ {0}, substituting µxi for xi does not change the multiset of rows
produced, just their order. Define hxi = {µx : µ 2 Fq, µ 6= 0}. When x is not all 0,
we can select as the representative of hxi the unique vector whose first nonzero coordinate
is the multiplicative identity element. Let Vt,q be the set of representatives of the column
vectors in Tt,q . Let Ut,q be the set of vectors in Vt,q whose first coordinate is not zero. Then
|Vt,q| = qt�1

q�1 =
Pt�1

i=0 q
i, and |Ut,q| = qt�1.

A covering perfect hash family CPHF(n; k, q, t) is an n ⇥ k array C = (cij) with
entries from Vt,q so that, for every set {�1, . . . , �t} of distinct column indices, there is at
least one row index ⇢ of C for which [c⇢�1 · · · c⇢�t ] is nonsingular; call this a covering t-set

and say that the t-set of columns is covered. It is a Sherwood covering perfect hash family,
SCPHF(n; k, q, t), if in addition each entry is in Ut,q .

Let N, t, k, and v be positive integers with k � t � 2 and v � 2. A covering array

CA(N ; t, k, v) is an N ⇥ k array A in which each entry is from a v-ary alphabet ⌃, and for
every N ⇥ t sub-array B of A and every x 2 ⌃

t, there is a row of B that equals x.
When k is a positive integer, [k] denotes the set {1, . . . , k}. A t-way interaction is

{(ci, ai) : 1  i  t} where ci 2 [k], ci 6= cj for i 6= j, and ai 2 ⌃. Such an interaction
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is an assignment of values from ⌃ to t of the k columns. An N ⇥ k array A covers the
interaction ◆ = {(ci, ai) : 1  i  t, ci 2 [k], ci 6= cj for i 6= j, and ai 2 ⌃} if there is a
row r in A such that A(r, ci) = ai for 1  i  t. When there is no such row in A, ◆ is not

covered in A. Hence a CA(N ; t, k, v) covers all the t-way interactions on k columns on an
alphabet of v symbols.

Covering arrays are used extensively for interaction testing in complex engineered sys-
tems. The k columns represent factors and the v values are the levels of the factors. The
N rows form a test suite (each row is a test); and the coverage of interactions among the
factors is limited to the strength t.

Denote by CAN(t, k, v) the smallest value of N for which a CA(N ; t, k, v) exists. This
is a covering array number, and for essentially all applications the goal is to minimize it.
Applications also require that actual covering arrays be generated, and hence the focus is
on explicit, practical construction methods. Online tables at [5] give the least upper bound
on CAN(t, k, v) by an explicit construction for 2  t  6, 2  v  25, and k  10 000.

The connection between CPHFs and CAs is central in this paper, so we include a
standard proof for the following correspondence.

Lemma 1.2 (see [21]).

1. There exists a CA(n(qt � 1) + 1; t, k, q) if C is a CPHF(n; k, q, t); and

2. there exists a CA(n(qt � q) + q; t, k, q) if C is an SCPHF(n; k, q, t).

Proof. Let C be the covering perfect hash family. Replace each entry cij of C by the
column vector obtained by multiplying cij by each r` 2 Rt,q in the specified order. By
Lemma 1.1, this produces a CA(nqt; t, k, q). The product of each cij with (0, . . . , 0) 2
Rt,q is 0, so the resulting array contains n rows that contain only 0 entries. Remove n� 1

of these rows to form the CA(n(qt � 1) + 1; t, k, q). Now when cij 2 Ut,q , multiplication
by (�, 0, . . . , 0) 2 Rt,q always yields �. For each � 2 Fq , remove n � 1 of the rows in
which each entry is � to form the CA(n(qt � q) + q; t, k, q).

In generating the covering array from the CPHF, it may happen that rows are generated
that only cover t-way interactions that are also covered by other rows. Such a row is re-

dundant, and could be removed. Indeed by tracking coverage as rows of the covering array
are generated, one could avoid generating some of these redundant rows. More generally,
a post-optimization method [17] may reveal or produce further redundant rows. Because
the covering array is typically much larger than the covering perfect hash family, however,
effort can be saved by determining in advance certain rows of the covering array that are
guaranteed to be redundant, thereby avoiding their generation and subsequent elimination.

The simplest way to ensure that a row is redundant in the covering array generated is
that it be identical to another row; then it is replicated or repeated. Lemma 1.2 already
accounts for the redundancy of n� 1 rows for CPHFs, and of (n� 1)q rows for SCPHFs,
by noting that they are replicated. Our goal here is to restrict the CPHF in such a way that
many more rows are guaranteed to be replicated, and so reduce the size of the covering
array generated without having to analyze its coverage during and after its generation.

Whether restricted or not, CPHFs are needed to apply Lemma 1.2. Few general direct
constructions are known [18, 21, 24]; most arise from computation. Computational meth-
ods for SCPHFs include backtracking [21] and tabu search [25]. In [6], CPHFs are shown
to lead to the best known asymptotic results on the existence of covering arrays. Indeed
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the probabilistic methods lead to two classes of efficient algorithms for constructing cov-
ering arrays for much larger parameters than had been earlier handled, and the best known
bounds were improved on for a wide range of parameters as a result.

In [6], a means to restrict the CPHFs to ensure that certain rows are replicated is out-
lined, and applied for strength t = 3. In Section 2, we define restrictions and consider the
effect of imposing various restrictions on the expectation that a t-set of columns is covered,
in order to determine the types of restrictions that appear to be promising. In Section 3
we develop a recursive composition strategy to accelerate the computational search for re-
stricted CPHFs. In Section 4 we report on new bounds obtained by subspace restrictions,
at the same time updating some of the computational results from [6].

2 Subspace restrictions
We limit how entries are placed in a CPHF so that redundant rows are generated in the
application of Lemma 1.2; these can be removed. We denote by Ft,p the set of all p-tuples
of distinct entries from {0, . . . , t � 1}. A subspace restriction for n rows of dimension

p and replication r is an r-tuple (x1, . . . , xr) of distinct entries from {1, . . . , n} and an
r-tuple (U1, . . . , Ur) for which each Ui 2 Ft,p.

Let A = (aij) be a CPHF(n; k, q, t) in which each entry aij is a permutation vector of
length t. Write aij` for the `th entry of this vector. Let S be the subspace restriction (for n
rows), given by (x1, . . . , xr) and (U1, . . . , Ur). Denote by uab the element of Ua in position
b. Then A satisfies or meets the restriction if, when 1  c, d  r, axc,j,uc` = axd,j,ud` for
all 1  j  k and 1  `  p; for short, A is S-restricted.

Table 1: A CPHF(4; 18, 3, 4). Each permutation vector (h0, h1, h2, h3)
T is written as

h0h1h2h3.

1020 1002 1211 1112 1122 1001 1002 1202 1111 1222 1100 1010 1101 1010 1220 1022 1122 1110
1020 1001 1212 1112 1120 1001 1000 1200 1111 1222 1100 1011 1102 1010 1220 1020 1121 1111
1022 1221 1212 1001 1100 1110 1012 1020 1111 1122 1112 1202 1010 1102 1200 1220 1222 1201
1021 1220 1202 1011 1121 1120 1002 1000 1110 1100 1122 1212 1020 1121 1222 1201 1211 1221

Table 1 shows an example. Verifying that this is a CPHF entails checking, for each
4-set of columns, that in at least one row the four permutation vectors are covering. For
instance, checking that the second, fifth, sixth, and seventh columns have a covering 4-set
in some row is the same as checking that at least one of the matrices

2

664

1 1 1 1

0 1 0 0

0 2 0 0

2 2 1 2

3

775 ,

2

664

1 1 1 1

0 1 0 0

0 2 0 0

1 0 1 0

3

775 ,

2

664

1 1 1 1

2 1 1 0

2 0 1 1

1 0 0 2

3

775 ,

2

664

1 1 1 1

2 1 1 0

2 2 2 0

0 1 0 2

3

775

is nonsingular over F3. The first two are not because they repeat columns; the third is
not because the sum of the first and fourth rows equals the second. But the fourth matrix
is nonsingular, so we have verified that one of the 3 060 possible 4-sets of columns is
covering (the diligent reader can verify the rest). Every permutation vector in the CPHF

of Table 1 has a 1 in coordinate 0; hence the CPHF satisfies the restriction (1, 2, 3, 4) with
U1 = U2 = U3 = U4 = {0}. More is true. In the third and fourth rows, in each column the
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two permutation vectors agree in the first two coordinates, and hence the CPHF satisfies
the restriction (3, 4) with U3 = U4 = {0, 1}. Moreover, in the first and second rows, in
each column the two permutation vectors agree in the first three coordinates, and hence the
CPHF satisfies the restriction (1, 2) with U1 = U2 = {0, 1, 2}.

When S is a set of restrictions for n rows, and a CPHF(n; k, q, t) meets each S 2 S ,
it is S-restricted. Now suppose that A is an S-restricted CPHF(n; k, q, t). Suppose that
S 2 S consists of (x1, . . . , xr) and (U1, . . . , Ur), and that each Ui is a p-tuple. For each
1  i  r, in the qt rows obtained from the expansion of row xi, let Ei be the qp rows
that arise using evaluations on t-sets that are 0 on all elements not in Ui. Then E1 =

· · · = Er; that is, each row in E1 is replicated r � 1 further times in the expansion of A
by Lemma 1.2, and hence (r � 1)qp rows are redundant in the covering array generated
(although Lemma 1.2 removes some of them already).

In the example of Table 1, we noted the presence of three restrictions. The restriction
of dimension 1 and replication 4 results in 3 · 3 = 9 redundant rows. The restriction
of dimension 2 results in 3

2
= 9 redundant rows, of which three were already found to

be redundant using the restriction of dimension 1. Finally the restriction of dimension 3

results in 3
3
= 27 redundant rows; three of these were already found to be redundant using

the restriction of dimension 1, while none among the remaining 24 are made redudant
by the restriction of dimension 2. Hence for our example, we can ensure that at least
9+6+24 = 39 rows are redundant; rather than getting 4 · 34� 3 = 321 rows, we get 285.

A general example of a subspace restriction is straightforward. When the restriction S
has r = n, (x1, . . . , xn) = (1, 2, . . . , n), and Ui = (0) for 1  i  n, an S-restricted
CPHF(n; k, q, t) is precisely an SCPHF(n; k, q, t). (The entry in coordinate 0 must be
nonzero for the array to be a CPHF.) Enforcing restrictions of larger dimension can in-
crease the redundancy [6], but enforcing too many restrictions or restrictions of too large a
dimension might result in more rows or fewer columns.

Next we explore the effect of imposing a restriction on the expectation that an array is
a CPHF. To simplify the presentation, we fix a strength t and a prime power q, and denote
the product

Qb
i=a

qt�qi

qt by ⇡a,b. We consider a fixed set of t columns and ask for the prob-
ability that the columns are covered within r rows of the CPHF. In the basic process, we
impose no restriction, choosing each of the coordinates of each of t permutation vectors
independently and uniformly at random from Fq for each of the r rows. The probability
that the chosen set of columns is not covered in the basic process is (1�⇡0,t�1)

r. In the re-

stricted process, we first choose the p entries specified in the restriction independently and
uniformly at random for one row, using the same choice for all. The remaining coordinates
of each permutation vector are then chosen randomly. The probability that the chosen set
of columns is not covered in the restricted process is (1�⇡0,p�1)+⇡0,p�1 [(1� ⇡p,t�1)

r
].

The restricted process has a larger failure probability; indeed it is larger by an amount equal
to

(1� ⇡p,t�1)

h
1� [1� ⇡0,t�1]

r�1
i
.

We consider two cases to examine the effect of the dimension and replication of a
restriction. We tabulate failure probabilities within r rows when there is a restriction of size
r and dimension p. (When p = 0, there is no restriction.) First we give failure probabilities
for q = 25 and t = 6 (see Table 2).
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Table 2: Failure probabilities with restrictions for q = 25 and t = 6.

p # r ! 2 3 4
0 .1730551453⇥ 10

�2 .7199076267⇥ 10
�4 .2994808332⇥ 10

�5

1 .1730555215⇥ 10
�2 .7199483800⇥ 10

�4 .2998903189⇥ 10
�5

2 .1730649273⇥ 10
�2 .7209672112⇥ 10

�4 .3101274621⇥ 10
�5

3 .1733000718⇥ 10
�2 .7464379962⇥ 10

�4 .5660560231⇥ 10
�5

4 .1791790606⇥ 10
�2 .1383210872⇥ 10

�3 .6964257727⇥ 10
�4

5 .3263893163⇥ 10
�2 .1730452999⇥ 10

�2 .1669115393⇥ 10
�2

As one might expect, restrictions increase the failure probability, but for those of ‘low’
dimension the increase is modest. Next we examine failure probabilities for q = 3 and
t = 5 (see Table 3).

Table 3: Failure probabilities with restrictions for q = 3 and t = 5.

p # r ! 2 3 4
0 .1924749034 .0844425161 .0370465884
1 .1937767036 .0868835477 .0402353448
2 .1977309220 .0942611526 .0498358606
3 .2100498330 .1168880686 .0789332757
4 .2516261575 .1892616707 .1684735084

Naturally, because q is much smaller the failure probabilities are much larger than for
q = 25, even though the strength here is lower.

Now suppose that our goal is to make 2qp rows redundant in the generated covering
array. We can choose a restriction of dimension p and replicate it three times. An alternative
is to choose a second restriction of dimension p. If we choose the two restrictions so that
they have no rows in common, we can replicate each twice to get the same number of
redundant rows that we would get by selecting one with replication three. Which should we
prefer? An easy calculation shows that the failure probability after four rows is lower with
two restrictions of replication two, than one of replication three along with an unrestricted
row. In general when two restrictions of dimension p with replications r1 and r2 restrict
disjoint sets of rows, failure probabilities are minimized when r1 and r2 are as equal as
possible. Because setting r2 = 1 imposes no restriction at all, our quick example says that
r1 = r2 = 2 is better than r1 = 3 and r2 = 1. Hence we strive to choose many restrictions
with replication two.

This ignores the fact that there may be too few rows to specify the desired number of
restrictions. However, the requirement that the restrictions share no rows is too severe.
For the analysis, we only require that every two restrictions sharing a row select different
coordinates within that row. This ensures that the rows made redundant by one are not those
made redundant by the other (with the exception of the all zero row, which is redundant in
every case). Moreover, in an analysis of failure probabilities the effects of two restrictions
are independent, because the entries in each are chosen independently of one another.

Consider restrictions of dimensions d1 and d2 that share s coordinates within a row. The
impact is that the qd1 rows made redundant by the first and the qd2 rows made redundant by
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the second have qs rows in common (a subspace). Consequently, fewer rows are redundant
than if the two restrictions acted independently. When restrictions share the same rows,
even when on different coordinates, the effect on the failure probability can be dramatic:
When t = 5, for example, a restriction of dimension 4 on (0, 1, 2, 3) and a restriction
of dimension 2 on (3, 4), if replicated on the same two rows, are in fact a restriction of
dimension 5, forcing a replicated row in the CPHF itself. Nevertheless, when s is small, the
double coverage is also small, and there are cases in which permitting sharing is sensible.

3 Affine composition
Algorithms employed for unrestricted CPHFs from [6, 21, 25] extend in a natural way
to search for restricted CPHFs, so we do not repeat them here. Instead we describe an
additional approach. When one wants to make a covering array with ‘many’ columns,
computational methods either require too much time, or yield an array with many more
rows than anticipated. Yet the same methods can yield arrays with ‘few’ rows quickly
when the number of columns is small. To take advantage of the efficacy of computational
methods for smaller arrays, and still construct larger ones, recursive methods have been
developed to use small arrays in a cut–and–paste method; for example, see [3, 4, 7, 8, 15,
16, 19]. Roughly speaking, a cut–and–paste (or composition) method starts with an array
on k columns, forms m copies of the array written side by side to obtain mk columns, and
then uses further rows to cover the as-yet-uncovered interactions.

Writing two copies of a CPHF(n; k, q, t) side by side is equivalent to duplicating each
column. But then in the (n ⇥ 2k) array produced, every choice of t columns contain-
ing a duplicate leads to a singular matrix for every row of the CPHF. Hence exactlyPbt/2c

s=1

�k
s

�� k�s
t�2s

�
2
t�2s sets of t columns are noncovering. Although the uncovered t-sets

are easily counted and characterized, there are many of them.
Let A be a CPHF(n; k, q, t). Consider the effect of multiplying coordinate c of every

permutation vector in row r by a nonzero element µr,c of the finite field. This does not
affect the (non)singularity of any of the t⇥ t matrices that determine coverage. Indeed we
can apply different nonzero multipliers µr,c for every 1  r  n and 1  c  t � 1 to
form a new array B that is again a CPHF(n; k, q, t). Then we no longer simply duplicate
columns, we can change them in a controlled way.

Similarly for any row we can choose a field element m and any two different coordi-
nates c and d; then for each column, add m times the entry in coordinate c to the entry in
coordinate d. Again, this does not affect the (non)singularity of any of the t ⇥ t matrices
that determine coverage. This is most easily accomplished using an SCPHF, whose per-
mutation vectors always have first coordinate equal to 1. Then setting c = 0, this amounts
to m being an adder, which can be added to the entry of coordinate d of every permutation
vector in the row. We can choose adders ↵r,c for every 1  r  n and 1  c  t � 1,
provided that the array is an SCPHF.

In general, given an SCPHF(n; k, q, t) A, multipliers µr,c and adders ↵r,c for 1  r 
n and 1  c  t � 1, we can create a new array by, for each row r, for every column,
replacing the entry x in coordinate c by µr,cx + ↵r.c, with arithmetic in the field. Hence
each coordinate of each row undergoes an affine transformation. No matter how this is
done, the resulting array is an SCPHF(n; k, q, t). There are (q(q � 1))

n(t�1) ways to
choose these multipliers and adders. Affine composition applied to an SCPHF(n; k, q, t)
A0 selects m� 1 arrays A1, . . . , Am�1, each obtained by affine transformations of A.
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When affine composition is applied to A0 to form A1, . . . , Am�1, not only is each
an SCPHF when A0 is, but each Ai meets all of the restrictions that A0 does. In fact,
although [A0 A1 · · · Am�1] need not be an SCPHF because certain t-sets of columns are
not covered, it does meet all restrictions that A0 does. The question remains: Which affine
composition should we apply in order to leave the fewest, or to leave a particular set, of
uncovered t-sets of columns?

We consider various SCPHF(n; k, q, t)s, taking m = 2. Because considering all
(q(q � 1))

n(t�1) affine transformations is too time-consuming, we adopt a greedy strat-
egy. We consider each row in turn, and determine for some or all of the (q(q � 1))

t�1

affine transformations how many uncovered t-sets of columns having at least one column
from the original and from the transformed copy remain, if this transformation is applied
in the current row. We choose transformations that lead to a smallest number of t-sets yet
to cover. After the last row is processed, this smallest number is the number that must
be dealt with in additional rows not produced in the composition. Tie-breaking is carried
out by choosing the lexicographically first, so the method as implemented is deterministic.
Random tie-breaking, or selection methods more clever than greedy, might result in further
reductions.

Table 4: Numbers of noncovering t-sets after affine compositions.

n; k, v, t ⇥1 + 0 ⇥1 + ↵ ⇥µ+ 0 ⇥µ+ ↵ ⇥1 + ↵c ⇥µc + 0 ⇥µc + ↵c

2;12,4,4 2706 548 678 535 486 619 463
3;21,4,4 16170 1876 2015 1739 1572 1964 1452
4;31,4,4 54405 3239 2941 2783 2621 2594 2099
5;45,4,4 171270 4584 4176 3698 4228 3765 3312
6;59,4,4 391819 5161 3911 4835 3546
2;15,5,4 5565 1016 871 848 915 871 803
3;24,5,4 24564 1795 1611 1409 1634 1442 1236
4;40,5,4 119340 4001 3299 3037 3441 2869 2432
5;59,5,4 391819 5253 3635 4938 3337
6;88,5,4 1320660 8451 4689 7964 4367
2;18,7,4 9945 1109 985 940 1081 972 855
3;34,7,4 72369 2883 2421 2619 2202
4;57,7,4 352716 4627 3140 4386 2983
2;20,8,4 13870 1296 1242 1117 1224 1172 1069
3;38,8,4 101935 2979 2499 2737 2249
4;67,8,4 577071 5461 3441 5191 3278
2;22,9,4 18711 1606 1448 1330 1539 1364 1251
2;11,4,5 11550 2280 1763 1500 2070 1618 1389
3;15,4,5 46410 4856 2706 2350 4550 2706
2;10,3,6 25320 7984 5081 4573 7524 4766 4274

In Table 4, we report results for the number of uncovered t-sets of columns after affine
composition when the allowed affine transformations are limited in various ways. The
column (⇥1 + 0) gives numbers when every multiplier is 1 and every adder 0. This, of
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course, is another way to say that the second array is an exact copy of the first. The column
(⇥1 + ↵) always uses multiplier 1, and selects the same adder for every coordinate in
the row. The column (⇥µ + 0) always uses adder 0, and selects the same multiplier for
every coordinate in the row. The column (⇥µ + ↵) selects the same adder, and the same
multiplier, for every coordinate in the row. The column (⇥1 + ↵c) always uses multiplier
1, and considers all qt�1 ways to select adders for the coordinates in the row. The column
(⇥µc + 0) always uses adder 0, and considers all (q � 1)

t�1 ways to select multipliers for
the coordinates in the row. The column (⇥µc + ↵c) considers all (q(q � 1))

t�1 ways to
select adders and multipliers for the coordinates in the row.

Consider an arbitrary permutation vector in Ut,q and its images under the (q(q�1))
t�1

affine transformations. Every permutation vector in Ut,q appears precisely (q�1)
t�1 times

among these images. Hence when q(t�1) is large compared to the number of columns, the
probability that duplicate columns arise is reduced. Indeed simply making a copy (without
any nontrivial transformation) leaves far more uncovered sets of columns than even very
restricted sets of affine transformations do. This is part of the explanation for the effective-
ness of applying affine transformations.

Choosing the best affine transformation to apply seems impractical; indeed we did not
fill in the blank entries in Table 4 because even the greedy strategy has either too many op-
tions to consider or too large an array to check repeatedly. Of course, it would be better to
determine the most effective transformations without having to conduct a large search, but
because this depends heavily on the structure of the SCPHF, we know of no way to do this.
Hence we choose them randomly. The expected number of t-sets of columns that remain
uncovered after affine composition depends not only on the parameters of the SCPHF and
the number of copies made, but also on the structure of the SCPHF. Indeed it depends on
the number of rows in which ` columns of the SCPHF are linearly independent, for every
way to choose ` columns with 2  ` < t. Consider, for example, the situation with strength
t = 3, and consider two columns. For any row with identical permutation vectors in these
two columns, there is no possibility for affine composition to cover a 3-set of columns con-
taining this pair. Then the probability that randomly chosen affine transformations succeed
on a particular triple of columns depends upon in how many rows of the CPHF the two
have identical entries.

In general, we wish to maximize the number of sets of ` columns that are linearly
independent for all `  t. Because the definition of a CPHF does not include such a strong
condition, there can be SCPHFs on which affine composition yields a poor result.

After any affine composition is carried out, we anticipate that not all t-sets of columns
will be covered (although within each of the m copies formed. all t-sets of columns are
covered). Hence affine composition is not a means to avoid doing any computation, but
rather a means to reduce to a substantially smaller problem.

4 Computations with subspace restrictions
Subspace restrictions give a natural way for redundant rows to be formed in the expansion
of a CPHF into a covering array. For this to be worthwhile, the restricted CPHF must
have more columns than does the unrestricted CPHF with one fewer row. (Otherwise the
resulting covering array would in general have more rows without increasing the number
of columns.) In the results to follow, we find that restrictions not only reduce the number
of rows needed, but in many cases do not reduce the achievable number of columns.
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We construct SCPHFs satisfying specific sets of restrictions. We always enforce the
restriction (x1, . . . , xn) = (1, 2, . . . , n), and Ui = (0) for 1  i  n; this means we are
talking about SCPHFs and not general CPHFs, and hence can employ affine composition
as described. We also enforce restrictions of higher dimension. In particular, a restriction
on two distinct rows i and j with Ui = Uj = (0, 1, . . . , p � 1) is denoted by hpii,j or,
more simply, hpi. When multiple restrictions of this type are enforced, we require that they
refer to disjoint sets of rows of the SCPHF; provided that they do, we can simply list the
dimensions of the restrictions imposed. We use exponential notation, so that hpia requires
that the restriction hpi be imposed on a disjoint pairs of rows.

In order to accelerate the computation, we use affine composition in some cases to
make a ‘large’ fraction of the CPHF. We employ column resampling, random extension,
and conditional expectation algorithms from [6]. The adaptation of each to incorporate any
number of restrictions is straightforward. There are more intensive search techniques that
yield more accurate results, but the simpler methods can be effectively applied for some-
what larger numbers of columns and symbols. So when we report that a certain number of
columns can be realized, we fully expect that a more intensive search can find a solution
with more columns (and, in some cases, has). Despite this, certain trends are evident, as
one expects based on the failure probabilities.

Given a prime power q, number n of rows, strength t, and set S of restrictions, we
tabulate the largest number k of columns found in an S-restricted SCPHF(n; k, q, t). When
q = 23 and t = 4, rows in Table 5 indicate the value of n; columns indicate the restrictions
enforced. Here C reports results for CPHFs, while � reports results for SCPHFs (that is,
no restrictions beyond the basic one).

Table 5: Improvements (shown in bold) on known covering array numbers when t = 4 and
q = 23.

n C � h2i h2i2 h3i h3ih2i h3i2 h3i3

2 39 39 39 30
3 98 98 98 85
4 250 245 240 227 196 194 170
5 603 600 585 569 497 484 389

6 1461 1365 1333 1192 1184 1174 1003 874

Entries shown in bold are those that improve upon the previously best known size of a
covering array for these parameters (all from [6]). It may be disappointing that by imposing
three h3i restrictions, our methods construct only 874 columns rather than 1365. However,
one must bear in mind that these restrictions force (at least) 36 432 redundant rows in the
covering array. This accomplishes what we set out to do. Although we may have fewer
columns, we generate fewer rows. Table 6 shows similar results for t = 5 and q = 5, using
a more extensive set of restrictions. Improvements are again frequent.

Table 7 gives a complete set of results for strength t = 4 with 4  q  25. (Henceforth
we do not display every improvement for a covering array number in bold; see [5] to
determine when an array is the best known.) Table 8 displays the results for t = 5 with
4  q  25 having two, three, and four rows, while Table 9 displays results with five and
six rows, and Table 10 gives results having seven or more rows.
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Table 6: Improvements (shown in bold) on known covering array numbers when t = 5 and
q = 5.

n C � h2i h2i2 h3i h3ih2i h3i2 h4i h4ih2i h4ih3i h4i2 h4i3

2 12 12 12 12 12
3 17 17 17 16 16
4 24 24 23 23 23 22 22 21 21 21 21
5 32 32 32 32 32 31 30 30 30 28 28
6 44 44 44 41 42 40 40 42 39 39 39 35
7 59 59 59 58 58 57 56 54 52 52 51 45
8 81 81 81 79 78 76 75 73 70 68 67 62
9 107 107 107 106 106 106 103 95 93 93 91 84
10 143 142 142 141 141 139 138 131 128 126 119 110
11 196 196 196 196 191 191 187 175 174 171 162 152
12 266 266 266 266 262 261 255 242 242 239 220 200
13 346 346 346 340 333 333 327 333 333 327 286 265
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Table 7: Number of columns found for various restrictions and strength four.

q n C � h2i h3i h3i2 h3i3

4 2 13 12 11 9

4 3 21 21 20 17

4 4 32 31 31 27 23

4 5 45 45 43 38 34

5 2 15 15 14 11

5 3 26 24 24 21

5 4 41 40 40 34 30

5 5 60 59 58 54 48

5 6 90 89 88 83 74 65

5 7 141 138 132 125 110 103

5 8 206 205 198 172 157 157

5 9 306 301 286 265 232 214

5 10 465 457 434 392 355 314

5 11 700 680 657 559 502 480

5 12 1102 1013 1012 820 751 712

5 13 1607 1431 1425 1264 1127 1090

7 2 18 18 17 14

7 3 34 34 33 30

7 4 57 57 56 51 45

7 5 101 99 98 89 79

7 6 169 169 166 154 134 119

7 7 282 277 275 242 209 186

7 8 475 475 457 394 364 311

7 9 814 764 742 631 551 527

7 10 1338 1336 1334 1064 956 897

8 2 20 20 19 15

8 3 38 38 37 33

8 4 67 67 67 60 53

8 5 122 121 118 109 94

8 6 220 218 214 177 154 148

8 7 379 370 359 316 277 239

8 8 657 657 611 565 445 415

8 9 1161 1159 1155 918 808 732

9 2 22 22 21 17

9 3 43 43 41 37

9 4 79 78 76 69 60

9 5 148 147 143 133 114

9 6 270 276 275 223 188 183

9 7 487 484 462 405 356 309

9 8 896 847 845 681 596 556

9 9 1621 1503 1475 1243 1106 1025

q n C � h2i h3i h3i2 h3i3

11 2 24 24 24 20

11 3 49 49 47 43

11 4 100 99 96 89 80

11 5 207 202 199 166 141

11 6 388 388 374 321 286 241

11 7 745 735 734 572 494 456

11 8 1508 1507 1474 1112 1009 934

13 2 28 27 27 21

13 3 57 57 55 51

13 4 124 124 121 106 94

13 5 260 265 262 214 177

13 6 524 524 494 431 371 324

13 7 1102 1027 1002 839 721 654

16 2 31 31 31 24

16 3 71 71 69 61

16 4 159 158 157 140 120

16 5 357 357 344 293 246

16 6 778 763 745 579 506 468

16 7 1666 1578 1527 1260 1102 1040

17 2 34 34 32 25

17 3 75 74 71 63

17 4 175 174 171 152 122

17 5 382 380 366 320 258

17 6 873 822 818 654 550 517

17 7 1778 1743 1323 1193

19 2 35 35 35 28

19 3 83 83 79 72

19 4 203 199 197 167 136

19 5 455 455 443 381 301

19 6 1056 1001 934 802 692 642

23 2 39 39 39 30

23 3 98 98 98 85

23 4 250 245 240 196 170

23 5 603 600 585 497 389

23 6 1461 1365 1333 1174 1003 874

25 2 42 42 41 33

25 3 107 107 104 90

25 4 277 274 265 215 187

25 5 694 688 668 529 443

25 6 1706 1584 1575 1286 1115 1037
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Table 8: Number of columns found for various restrictions and strength five, n 2 {2, 3, 4}.

n = 2 n = 3 n = 4

q C � h2i h3i h4i C � h2i h3i h4i C � h2i h3i h4i h4i2

3 12 11 10 10 8 13 13 12 12 12 16 16 15 15 15 14

4 11 11 11 11 10 15 15 15 15 14 20 20 20 19 18 17

5 12 12 12 12 12 17 17 17 16 16 24 24 23 23 21 21

7 14 14 14 14 12 22 21 21 21 19 31 31 31 31 29 27

8 15 15 15 15 13 23 23 23 23 22 36 36 36 35 33 30

9 16 16 15 15 14 25 25 24 24 22 39 39 39 39 36 33

11 17 17 17 16 15 29 29 28 28 26 47 47 47 47 42 38

13 19 19 18 18 16 31 31 31 31 29 55 55 55 53 48 44

16 20 20 20 20 18 38 38 38 36 33 66 66 64 64 56 53

17 21 20 20 20 18 39 39 39 37 34 70 70 70 68 61 56

19 22 22 22 22 19 41 41 40 40 37 78 78 77 75 68 60

23 24 24 24 24 21 48 48 47 46 43 90 90 88 87 81 72

25 25 25 24 24 21 49 49 49 49 42 98 97 96 94 88 76

Table 9: Number of columns found for various restrictions and strength five, n 2 {5, 6}.

n = 5 n = 6

q C � h2i h3i h4i h4i2 C � h2i h3i h4i h4i2 h4i3

3 19 19 19 19 18 17 23 23 23 22 22 21 19

4 26 26 26 25 24 23 34 34 32 32 31 28 27

5 32 32 32 32 30 28 44 44 44 42 42 39 35

7 47 47 47 47 43 39 69 69 68 67 61 59 50

8 55 55 55 55 50 45 83 83 82 82 74 67 60

9 62 62 61 60 55 51 95 95 92 91 88 77 73

11 79 79 79 77 69 61 127 125 125 120 109 100 90

13 93 93 92 88 84 75 157 157 156 153 140 120 106

16 119 119 119 111 103 92 210 207 206 197 185 165 146

17 128 128 128 120 112 97 228 223 219 217 199 181 157

19 143 143 143 136 126 107 269 262 262 258 233 207 180

23 181 178 175 171 155 136 345 344 342 332 299 259 228

25 197 197 194 184 166 147 406 406 391 386 332 288 249
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Table 10: Number of columns found for various restrictions and strength five, n � 7.

q n C � h2i h3i h4i h4i2 h4i3

4 7 42 42 41 41 41 38 33

5 7 59 59 59 58 54 51 45

5 8 81 81 81 78 73 67 62

5 9 107 107 107 106 95 91 84

5 10 143 142 142 141 131 119 110

5 11 196 196 196 191 175 162 152

5 12 266 266 266 262 242 220 200

5 13 346 346 346 333 333 288 265

5 14 458 458 455 447 435 394 363

5 15 609 609 606 603 569 527 484

5 16 779 721 672 647

7 7 101 101 99 96 93 82 77

7 8 149 149 148 140 132 121 112

7 9 211 209 205 201 195 179 159

7 10 318 312 312 315 284 253 230

7 11 455 454 451 447 418 361 341

7 12 661 661 660 628 592 546 495

7 13 702 679

8 7 123 123 122 116 109 99 90

8 8 186 185 184 183 163 150 134

8 9 283 283 277 278 252 229 210

8 10 430 429 427 417 371 343 320

8 11 622 622 604 595 569 510 473

8 12 812 749 675

q n C � h2i h3i h4i h4i2 h4i3

9 7 151 149 149 147 133 118 110

9 8 231 229 229 224 214 184 167

9 9 374 374 355 353 324 283 254

9 10 568 568 546 542 483 445 405

9 11 818 755 690 629

11 7 209 209 209 196 182 161 147

11 8 342 340 332 328 289 248 228

11 9 533 529 524 505 472 425 389

11 10 827 730 680 614

13 7 272 272 271 261 237 209 186

13 8 454 452 450 442 379 349 324

13 9 767 767 764 750 653 567 523

16 7 379 379 376 360 336 284 248

16 8 656 656 650 641 582 515 454

16 9 766

17 7 408 407 407 400 358 309 278

17 8 721 721 718 663 620 555 480

19 7 473 470 466 461 446 373 343

19 8 851 838 723 671 597

23 7 656 656 654 648 564 493 430

23 8 785

25 7 712 712 709 701 636 568 483
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We illustrate a further useful application of restrictions using strength t = 6. Every
time a restriction ht � 1i is enforced, qt�1 � q additional rows become redundant in the
covering array. By enforcing restrictions ht�1iq , qt� q2 rows are redundant. On the other
hand, each row of the SCPHF would employ only a slightly larger number of rows, qt� q.
To take advantage of this, compare the four situations with q = 3 and t = 6 in Table 11.
The SCPHF produced is permitted to have n rows, but must satisfy the specified number of
ht� 1i restrictions. The covering array generated has N rows; notice how close the values
of N are. Which should we prefer? By computing failure probabilities after n rows subject
to the restrictions, one finds that enforcing more restrictions gives lower failure probability,
primarily because more restrictions allow more rows.

Table 11: Four restricted SCPHF(n; k, 3, 6)s that yield covering arrays with similar num-
bers of rows.

n N #h5i Failure k

15 10893 0 .0000044079 57
16 10899 3 .0000043357 57
17 10905 6 .0000042646 58
18 10911 9 .0000041948 61

We applied the simple computational methods to each; the computed failure probabil-
ities suggest that we should choose more restrictions, and the largest number of columns
produced agrees. This is not an isolated example. In Table 12 we report on similar compu-
tations for q = 3 and t = 6 with different numbers of rows and restrictions. In order to read
this effectively, an entry ought to be compared with the one that is three columns to the left
and one row above, because the resulting covering arrays have comparable number of rows.
We reiterate that we have not found the maximum number of columns in general; indeed
we may be very far from it. Nevertheless, it is important that when enough restrictions (and
the right ones) are enforced, there is a possibility of improving on an unrestricted SCPHF

with fewer rows.
Improvements arise frequently when t = 6 for larger values of q as well; we summarize

the results in Table 13.
Naturally, other search techniques can be applied to make improvements, and other

restrictions may prove useful in the construction of covering arrays. What we have shown
is that worthwhile restrictions can often be enforced with little penalty in failure probability
or in number of columns generated. In order to avoid substantial computaion, it would be
of substantial interest to develop further geometric constructions of CPHFs using finite
projective or affine spaces, particularly with an eye to which nontrivial restrictions can be
enforced.

5 Concluding remarks
Two extensions of research on covering perfect hash families have been developed here.
The first provides a flexible recursive technique for making large CPHFs from smaller
ones; the remarkable feature of this approach is that rather than simply juxtaposing copies
of smaller arrays, each copy can be transformed by affine mappings in order to enhance the
coverage obtained. We have demonstrated that different affine transformations can have a
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Table 12: Number of columns found in an SCPHF(n; k, 3, 6) satisfying h5i`.

Number ` of h5i restrictions
n C 0 1 2 3 4 5 6 7 8 9 10

2 10 10 8

3 11 11 11

4 13 13 12

5 15 16 15 14

6 18 18 17 16 16

7 20 21 19 19 18

8 23 23 21 21 20 19

9 27 27 24 24 24 23

10 31 30 28 27 27 25 24

11 34 33 31 30 30 29 27

12 39 38 35 35 33 33 31 31

13 44 43 40 40 37 39 36 35

14 50 50 50 47 42 44 42 39 39

15 57 57 54 51 50 48 47 46 44

16 66 66 62 59 57 55 54 52 51 49

17 73 71 70 68 66 64 62 58 58 53

18 85 82 82 77 75 74 72 68 64 63 61

19 99 98 93 87 86 82 77 73 73 70 69

20 108 108 101 96 92 85 82 78 77 72

21 123 122 102 97 93 88 85

22 144 142 102 97
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Table 13: Number of columns found for various restrictions and strength six.

q n C � h2i h3i h4i h5i h5i2 h5i3

4 2 11 11 11 11 10 9

4 3 13 13 13 13 13 12

4 4 16 16 16 16 15 15 14

4 5 20 19 19 19 19 18 17

4 6 23 23 23 23 23 22 21 19

4 7 28 28 27 27 26 26 24 22

4 8 33 33 33 33 32 31 31 28

4 9 40 40 40 39 38 38 36 35

4 10 49 49 48 48 46 46 43 43

4 11 58 58 57 57 54 54 53 50

4 12 73 73 73 72 69 66 63 60

4 13 90 86 86 84 82 78 76 74

4 14 107 107 107 103 100 96 93 89

4 15 128 128 128 127 127 119 112 107

4 16 157 156 153 150 146 141 134 131

5 2 11 11 11 11 11 10

5 3 15 15 14 14 14 13

5 4 19 19 18 18 18 17 16

5 5 23 23 23 23 23 22 20

5 6 30 30 28 27 27 26 25 24

5 7 36 36 35 35 34 33 32 29

5 8 46 45 45 44 44 43 38 37

5 9 59 59 56 56 54 53 48 47

5 10 75 74 74 72 69 68 64 59

5 11 93 93 93 92 90 85 82 76

5 12 121 121 121 120 118 111 103 95

5 13 156 156 149 149 146 142 131 121

7 2 13 13 13 12 12 11

7 3 17 17 17 17 17 15

7 4 23 23 22 22 22 21 20

7 5 31 31 31 31 29 27 27

7 6 41 41 40 39 38 38 36 33

7 7 55 55 55 52 51 49 46 44

7 8 76 76 76 75 70 68 63 58

7 9 103 103 103 101 95 93 85 80

7 10 140 140 138 135 132 127 116 106

8 2 13 13 13 13 13 12

8 3 18 18 18 18 17 17

8 4 26 26 26 25 25 23 22

8 5 33 33 33 32 32 31 29

8 6 47 47 47 46 45 42 39 36

8 7 65 65 65 65 61 58 54 48

8 8 94 94 94 91 88 83 77 69

8 9 130 130 130 128 127 118 109 102

q n C � h2i h3i h4i h5i h5i2 h5i3

9 2 14 14 13 13 13 12

9 3 20 20 19 19 19 18

9 4 27 26 26 26 25 24 23

9 5 38 38 37 37 36 35 33

9 6 55 55 53 53 51 49 44 39

9 7 78 76 75 75 72 69 64 58

9 8 112 112 112 108 107 99 92 83

11 2 15 15 14 14 14 13

11 3 22 22 22 22 21 19

11 4 31 31 31 30 30 28 26

11 5 46 46 45 44 43 41 35

11 6 68 67 66 66 61 60 54 47

11 7 100 100 100 97 95 88 83 74

11 8 150 150 147 145 141 132 121 107

13 2 16 16 16 16 15 14

13 3 23 23 22 22 22 20

13 4 35 34 34 33 33 30 29

13 5 54 54 52 52 51 49 41

13 6 82 81 81 81 77 71 65 59

13 7 124 124 124 124 121 111 102 91

16 2 16 16 16 16 16 15

16 3 26 26 25 25 25 22

16 4 41 40 39 39 39 35 33

16 5 66 66 63 63 58 56 51

16 6 104 104 104 103 98 89 82 73

16 7 164 163 159 156 150 141 127 113

17 2 17 17 16 16 16 15

17 3 27 27 25 25 25 23

17 4 42 42 41 41 41 38 35

17 5 66 66 65 65 62 57 53

17 6 108 108 108 106 105 96 86 77

17 7 178 177 176 171 167 156 139 125

19 3 29 29 27 27 27 25

19 4 46 45 45 45 45 41 37

19 5 76 74 74 74 70 65 59

19 6 124 124 124 122 118 110 100 87

23 3 31 31 30 29 29 26

23 4 52 52 51 51 51 45 41

23 5 87 87 87 87 85 78 70

23 6 148 148 146 145 145 133 119 106

25 3 31 31 31 31 30 28

25 4 56 56 54 54 54 49 43

25 5 96 95 95 93 91 82 76

25 6 169 169 166 163 161 147 132 116
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dramatic effect on the composition, but theoretical guarantees for the observed improve-
ments are needed.

The second extension provides finer control on the number of rows obtained in the
resulting covering array, using the notion of subspace restrictions. Extensive computa-
tions demonstrate the effectiveness of such restrictions on reducing the number of rows in
the covering arrays produced, over a wide range of parameters. Although the algorithmic
methods used are relatively fast, we have repeatedly remarked that there is no reason to
believe that they yield sizes that are besr possible in general. More computationally expen-
sive methods such as backtracking [21] and tabu search [25], when feasible, may improve
upon the results obtained. Indeed, after this paper was completed, simulated annealing
and post-optimization have been used to obtain more accurate sizes for a smaller range of
parameters [11, 23].

Certainly further computation will yield further improvements, and the use of subspace
restrictions and affine composition accelerate these computations. However, we anticipate
that direct constructions (extending those in [18, 22, 24]) would be of most interest, partic-
ularly if they accommodate a variety of subspace restrictions.
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Abstract
We consider various reaction graphs on the set of distinct double Fano planes.

Keywords: Double Fano plane, reaction graph, strongly regular graph.

Math. Subj. Class.: 05B07, 05C62

The concept of a reaction graph, which has its origin in chemistry, has been explored
in several papers, for example, [5, 7, 8, 9, 10, 11].

The reaction graph(s) of the Fano plane (i.e. projective plane of order 2, Steiner triple
system of order 7, or BIBD(7, 3, 1)) are considered in detail in [8, 9], with some additional
comments provided in [7]. The vertices of such reaction graph are the 30 distinct Fano
planes (on a fixed 7-element set). The reaction graph is of degree 14, 8, and 7, respectively,
according to how adjacency is defined: namely, whenever two vertices (Fano planes) have
one, zero, or three triples in common, respectively. The graph of degree 14 is actually iso-
morphic to 2K15, that is, two disjoint complete graphs K15 as components. Each of these
corresponds to a maximal set of MAD STS(7)s (mutually almost disjoint STSs, cf. [6]).

It is well known that the simple BIBD(7, 3, 2) (i.e. with no repeated blocks) is unique
up to an isomorphism and consists of two disjoint Fano planes. It contains 14 blocks
(triples) and its automorphism group is of order 42. The blocks (triples) of one such design
can be represented as {0, 1, 3}, {0, 2, 3} mod 7. We shall call any simple BIBD(7, 3, 2) a
double Fano plane. Thus there are 7!

42 = 120 distinct double Fano planes on any 7-element
set. A double Fano plane will be denoted (a, b) provided a and b are the two disjoint Fano
planes that constitute it.

Let (a, b), (c, d) be two distinct double Fano planes. Due to the structure of the reaction
graphs of the single Fano plane, whenever |{a, b, c, d}| = 4, two of the 4 intersections
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between a and c, a and d, b and c, and b and d must contain exactly one triple. Without loss
of generality we may assume that the intersection between a and c, and also between b and
d both contain one triple. The remaining two intersections, namely between a and d, and
between b and c, may

(i) both contain zero triples, or

(ii) both contain three triples, or

(iii) one contains zero and the other contains three triples.

The edges of our reaction graph on K120 can now be one of four kinds: either
|{a, b, c, d}| = 3, or it is one of the three types above (see Figure 1).

We shall use the following “colourful” terminology.
A green edge joins two double Fano planes (a, b), (c, d) when |{a, b, c, d}| = 3, that

is, one of a, b equals one of c, d. A yellow, blue or red edge, respectively, joins two double
Fano planes (a, b), (c, d) when |{a, b, c, d}| = 4 and case (i), (ii) or (iii), respectively,
occurs.
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Figure 1: Pairs of double Fano planes.

According to the aforementioned intersections, one may define the following four re-
action graphs:

I. The green graph (the subgraph of K120 induced by the green edges).

This graph is regular of degree 14, and is quasi-strongly regular of grade 3 (cf. [4])
with parameters (120, 14, 6, (0, 1, 2)).

II. The yellow graph (the subgraph of K120 induced by the yellow edges).

This graph is regular of degree 21, and is quasi-strongly regular of grade 2 (cf. [4])
with parameters (120, 21, 0, (3, 6)).

III. The blue graph (the subgraph of K120 induced by the blue edges).

This graph is regular of degree 28 and is quasi-strongly regular of grade 3 with pa-
rameters (120, 28, 6, (4, 6, 12)).
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IV. The red graph (the subgraph of K120 induced by the red edges).

This graph is regular of degree 56. and is strongly regular with parameters (120, 56,
28, 24). A strongly regular graph with these parameters and automorphism group of
order 348 364 800 is known to exist (cf. [3]; see also [12, 13]).

The four coloured graphs together form a 4-class association scheme. The intersection
numbers for this scheme can be found at http://home.agh.edu.pl/˜meszka/
reaction_graphs.html.

Next we want to investigate the structure of so-called neighbourhood graphs.
For a vertex {a, b} of the reaction graph, a vertex {c, d} joined to it by a green edge is

called a green neighbour, and similarly for yellow, blue or red edges we have yellow, blue,
or red neighbours.

Given a vertex of the reaction graph, the green neighbourhood graph is the complete
graph K14 on its green neighbours. Its edges are coloured green, yellow or red – there
are no blue edges. The green edges induce graph consisting of two disjoint K7’s, the
yellow edges induce the Heawood graph (cf. [1]) , and the red edges induce the bipartite
complement of the Heawood graph. It is well-known that the automorphism group of the
Heawood graph is PGL(2, 7) of order 336. The coloured edges form a 3-class association
scheme.

The yellow neighbourhood graph of a vertex is the complete graph K21 on its yellow
neighbours. Its edges are 3-coloured: green, blue and red; there are no yellow edges. The
graph induced by the green edges is regular of degree 4 and is distance-transitive with
intersection array [4, 2, 2; 1, 1, 2], with automorphism group PGL(2, 7) of order 336. The
graphs induced by the blue and red edges, respectively, both have degree 8, and the same
automorphism group as the graph induced by green edges. In this case too the coloured
edges form a 3-class association scheme.

The blue neighbourhood graph of a vertex is the complete graph K28 on its blue neigh-
bours. Its edges are 4-coloured. The graph induced by green and blue edges, respectively,
is regular of degree 6, while the graph induced by the yellow edges is cubic, and is actu-
ally isomorphic to the Coxeter graph (cf. [2]). The automorphism group of each of these
three graphs is again PGL(2, 7). The graph induced by the red edges is the so-called 8-
triangular graph; it is regular of degree 12, and is distance-transitive with intersection array
[12, 5; 1, 4]. Its automorphism group is S8 of order 40 320. The coloured edges form a
4-class association scheme.

Finally, the red neighbourhood graph of a vertex is the complete graph K56 on its
red neighbours. Its edges are 4-coloured. The graph induced by green edges is of degree
6, and its automorphism group has order 225 792. Those induced by the yellow, blue
and red edges, respectively, are of degree 9, 12, and 28, respectively, where the first two
of these have automorphism group PGL(2, 7) of order 336, while the last one has large
automorphism group of order 2 903 040. In this case, the coloured edges do not form an
association scheme.

Let us remark that the graph induced by the union of the green and blue edges is of
degree 42, and turns out to be a quasi-strongly regular graph of grade 2 (cf. [4]) with
parameters (120, 42, 18, (6, 15)). Of course, the graph induced by the union of green,
yellow and blue edges is complementary to the red graph, and so is strongly regular with
parameters (120, 63, 30, 36).

http://home.agh.edu.pl/~meszka/reaction_graphs.html
http://home.agh.edu.pl/~meszka/reaction_graphs.html
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H-1053 Budapest, Reáltanoda u. 13–15, Hungary and
Department of Computer Science and Systems Technology, University of Pannonia,

H-8200 Veszprém, Egyetem u. 10, Hungary

Dedicated to Mario Gionfriddo on the occasion of his 70th birthday.

Received 31 December 2017, accepted 12 May 2018, published online 9 July 2019

Abstract
Some open problems are collected on hypergraphs, graphs, and designs, presented at

the HyGraDe conference celebrating Mario Gionfriddo’s 70th birthday.
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The conference HyGraDe took its name from HYpergraphs, GRAphs and DEsigns,
three important areas of the research activities of Mario Gionfriddo, to whom we happily
dedicated all our talks. Those are also the subjects of my collaborations with colleagues in
Catania. For the celebration conference I collected some open problems which are related
to the coloring theory of mixed hypergraphs; here they are organized in this three-sided
structure. The sources of the problems are mentioned in the text, rather than specified
inside the statement of each one.

1 Hypergraph coloring
A hypergraph H is a pair (X, E), where X is the underlying set called vertex set and E

is a set system over X , called edge set. A hypergraph is uniform if all its edges have the
same cardinality; more specifically, if |E| = r for all E 2 E , then H is said to be r-
uniform. (Hence, the 2-uniform hypergraphs are precisely the graphs.) In order to avoid
some anomalies, we shall restrict our attention to hypergraphs in which each edge contains
at least two vertices.
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As a general term, by coloring we mean any assignment ' : X ! N, and call '(x) the
color of vertex x 2 X .

The classical notion of proper coloring means a coloring such that every edge E 2 E

contains two vertices of distinct colors; in other words, no edge is monochromatic. The
chromatic number of H, denoted by �(H), is the smallest possible number of colors in a
proper coloring of H.

The opposite side is where each edge E 2 E contains two vertices of the same color;
i.e., no edge is multicolored.1 Motivated by Voloshin’s works, we use the term C-coloring
for a coloring of this type, and if a hypergraph has to be colored in this way, it will be called
a C-hypergraph. The upper chromatic number of a C-hypergraph H, denoted by �(H), is
the largest possible number of colors in a C-coloring of H.

Proper hypergraph coloring is a direct generalization of the fundamental notion of
proper graph coloring; research in this direction started in the mid-1960’s. On the other
hand, C-coloring in graphs is not really interesting as it simply means that each connected
component is monochromatic. For hypergraphs, however, such problems become highly
nontrivial; the first such questions arose in the first half of the 1970’s. But it took two
decades until Voloshin independently introduced the notion and also created a model far
beyond that, as we shall discuss below.

A comparison of some basic properties of proper colorings and C-colorings is given in
Table 1. It is important to emphasize that every number of colors is possible between min-
imum and maximum; indeed, in a proper coloring it is feasible to split any non-singleton
color class into two, while in a C-coloring any two color classes may be united. This simple
observation will have a relevance later.

Table 1: Some coloring properties.

proper coloring C-coloring

excluded edge type monochromatic multicolored
always colorable with |X| colors (= max) 1 color (= min)
interesting parameter � = min # of colors � = max # of colors

A general overview on hypergraph colorings — not only these two types — can be
found in [13]; and a comprehensive survey on C-coloring is given in [9].

Mixed hypergraphs. A new dimension in the theory of hypergraph coloring was opened
in the works of Voloshin [28, 29] where he invented the following complex model. A mixed
hypergraph has two types of edges, namely C-edges and D-edges; formally we may write
H = (X, C,D). The requirement for a coloring ' : X ! N is that every C-edge E 2 C

has to contain two vertices with common color and every D-edge E 2 D has to contain
two vertices with distinct colors. In other words, ' should be a proper coloring of (X,D)
and a C-coloring of (X, C) at the same time.

There is no a priori assumption on the relation between C and D, they may or may
not be disjoint. Edges in C \ D are termed bi-edges, and if C = D then H is called a bi-

1By ‘multicolored’ we mean that the colors of the elements are mutually distinct. Such a set is often called a
rainbow set in the literature.
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hypergraph. A coloring of a bi-hypergraph — termed bi-coloring — is a proper coloring
and a C-coloring at the same time.

Contrary to proper colorings and C-colorings, which always exist for every hypergraph,
a mixed hypergraph may not admit any coloring; in this case it is called uncolorable. For
instance, the bi-hypergraph whose bi-edges are the ten 3-element subsets of a 5-element
vertex set, is uncolorable because either at least three colors occur (violating the condition
of C-coloring) or some color occurs on at least three vertices (violating proper coloring).

If a mixed hypergraph H = (X, C,D) is colorable, its lower chromatic number denoted
by �(H) is the smallest possible number of colors, and its upper chromatic number �(H)
is the largest possible number of colors. The feasible set �(H) of H is the set of those
integers k for which H admits a coloring with precisely k colors.

A comprehensive account on the first decade of results and methods concerning mixed
hypergraphs is the monograph [30].

Stably bounded hypergraphs. A structure more general than mixed hypergraphs was
introduced in two steps, in the papers [5, 7] and [6], and studied further in a series of
papers. A stably bounded hypergraph is a hypergraph H = (X, E) for which also four
functions s, t, a, b : E ! N are given. The first two of them prescribe lower and upper
bounds on the number of colors occurring inside the edges, and the other two prescribe
bounds for each edge on the multiplicity of the color occurring most frequently in it. We
assume

1  s(E)  t(E)  |E|

and
1  a(E)  b(E)  |E|

for every E 2 E . A coloring ' is feasible if, for each E 2 E , we have:

• ' uses at least s(E) colors inside E,

• ' uses at most t(E) colors inside E,

• there exists a color which is assigned to least a(E) vertices of E,

• no color is assigned to more than b(E) vertices of E.

Hence, if E is a C-edge of a mixed hypergraph then its requirements are t(E) = |E| � 1
and a(E) = 2; and if it is a D-edge, then s(E) = 2 and b(E) = |E| � 1. In fact one of a
and t suffices to describe a C-edge, and one of s and b suffices to describe a D-edge.

Stating the conditions in other words, the functions s and t restrict the sizes of largest
multicolored subsets inside the edges, while a and b restrict the sizes of their largest
monochromatic subsets.

The lower chromatic number �(H), the upper chromatic number �(H), and the feasible
set �(H) are naturally defined in the same way as for mixed hypergraphs.

The conditions s(E) = 1, t(E) = |E|, a(E) = 1, b(E) = |E| put no restriction
on the coloring of edge E. We obtain functional subclasses of stably bounded hyper-
graphs if we prescribe the set of functions which are allowed to be restrictive. For instance,
(S,T,A)-hypergraph means that the functions s, t, and a can put restrictions on (some of)
the edges, but b must be non-restrictive for all edges. An interesting subclass is that of
(S,T)-hypergraphs, termed color-bounded hypergraphs. Earlier examples in the literature
may be interpreted as B-hypergaphs [1, 24] and S-hypergaphs [15].
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Table 2: Coloring restrictions determined by the functions s, t, a, b.

function meaning

s at least s(E) colors inside E

t at most t(E) colors inside E

a some color at least a(E) times inside E

b each color at most b(E) times inside E

Interval hypergraphs. A hypergraph H = (X, E) is called an interval hypergraph if
its vertex set X admits an ordering x1, x2, . . . , xn such that every edge E 2 E is a set
of consecutive vertices in this order. Interval hypergraphs have many nice properties and
admit efficient algorithms for various problems which are intractable on general structures.

Problem 1.1. Determine the time complexity of the following problems over the given
functional subclasses of stably bounded interval hypergraphs:

1. Colorability of (S,T)-hypergraphs.

2. Lower chromatic number of (S,A)-hypergraphs.

3. Lower chromatic number of (S,T,A)-hypergraphs.

4. Upper chromatic number of (S,T)-hypergraphs.

5. Upper chromatic number of A-hypergraphs.

6. Upper chromatic number of (T,A)-hypergraphs.

7. Upper chromatic number of (T,B)-hypergraphs.

8. Upper chromatic number of (S,T,B)-hypergraphs.

Table 3: Solved and unsolved cases — time complexity of basic coloring problems on seven
functional subclasses of stably bounded interval hypergraphs; ??? = open, o = obvious,
lin = solvable in linear time, NP-c = NP-complete, NP-h = NP-hard.

S,T A / T,A S,A / S,T,A T,B / S,T,B

exists? ??? o NP-c NP-c
min lin o ??? NP-h
max ??? ??? NP-h ???

On interval hypergraphs, complexity is known for all the other combinations of the four
functions s, t, a, b. Subsets of those results are proved in different papers, the last pieces
appearing in [10], where also a detailed summary for several further classes of hypergraphs
is given. Note that each of T, A, and (T,A) admits a monochromatic X , whereas each of S,
B, and (S,B) admits a multicolored X .
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Table 4: The other functional subclasses, time complexity solved completely on interval
hypergraphs.

T S / B / S,B A,B / any larger

exists? o o NP-c
min o lin NP-h
max lin o NP-h

Gaps. The feasible set �(H) of a colorable hypergraph H is called gap-free if it is an
interval of integers. If this property does not hold, then we say that H has a gap at k (also
called ‘gap in the chromatic spectrum’) if k is an integer such that �(H) < k < �(H) and
k /2 �(H).

If 1 2 �(H), then the feasible set is gap-free. On the other hand, for every finite set
W of positive integers with 1 /2 W , in [20] a mixed hypergraph H is constructed such that
�(H) = W . Since |X| 2 �(H) also guarantees that �(H) is gap-free, a hypergraph with
gaps in �(H) necessarily has both C-edges and D-edges.

It is interesting to investigate which classes of hypergraphs have members with gaps
in the chromatic spectrum, and which are completely gap-free. For instance, a gap-free
class is that of interval hypergraphs [21], and the property remains valid also for interval
(S,T)-hypergraphs. Also, mixed ‘hypertrees’ — hypergraphs H = (X, C,D) which can be
represented over a tree graph such that each hyperedge E 2 C [ D induces a subtree —
have a gap-free �(H) [23], but this property does not extend for (S,T)-hypertrees [8].

Another famous example is the class of planar mixed hypergraphs, which admit con-
structions with �(H) = {2, 4}, hence a gap at 3 [22].

Problem 1.2.

1. Can interval (S,A)-hypergraphs have gaps?

2. Can interval (T,B)-hypergraphs have gaps?

3. Can interval (A,B)-hypergraphs have gaps?

4. What gaps can occur in stably bounded planar hypergraphs and in their functional
subclasses?

The planar case is open also for color-bounded hypergraphs.

Chromatic polynomials. Let H = (X, E) be a hypergraph in any of the models above
(mixed, stably bounded, etc.), and assume that H is colorable. For � running over the
natural numbers, it is known that the number of allowed colorings

' : X ! {1, . . . ,�}

is a polynomial in �, more precisely a polynomial of degree �(H). It is called the chromatic
polynomial of H, denoted by P (H,�).

For any class H of hypergraphs, one can consider the class

{P (H,�) | H 2 H}
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of chromatic polynomials. From this point of view, the partial order for functional sub-
classes of mixed and stably bounded hypergraphs is determined in [6], as illustrated in
Figure 1. Also, the chromatic polynomials of non-1-colorable hypergraphs (i.e., of those
containing at least one D-edge) is characterized [7], in terms of Stirling numbers of the
second kind.

any Y ✓ {S,T,A,B} such that {S,A} ✓ Y or {A,B} ✓ Y
. &

A / A,T S,T,B / S,T / T,B / M
& . &

T / C S / S,B
#

B / D

Figure 1: Hierarchy of classes of chromatic polynomials; M = mixed hypergraphs, C =
only C-edges, D = only D-edges.

Problem 1.3.

1. Characterize those polynomials which are chromatic polynomials of a given type of
1-colorable hypergraphs.

2. Determine the hierarchy analogous to the one exhibited in Figure 1 when the hyper-
graphs have a structural property (e.g., interval hypergraphs). How does the hierarchy
depend on the structure?

The requirement of 1-colorability in Problem 1.3.1 means the restriction to C-hyper-
graphs for mixed, T-hypergraphs for color-bounded, and A-hypergraphs or (T,A)-hyper-
graphs for those subclasses of stably bounded hypergraphs which are not color-bounded.

2 Graphs
There are many problems in graph theory which can be interpreted in terms of colorings of
mixed hypergraphs. Here we discuss only one of them.

F-WORM colorings. Let F be a fixed graph with at least three vertices. For a graph
G = (V,E), a vertex coloring ' is an F -WORM coloring if the vertex set of every subgraph
isomorphic to F in G is neither monochromatic nor multicolored. (‘WORM’ abbreviates
‘without rainbow or monochromatic’.)

The notion was introduced not much time ago, in [19], which actually appeared later
than the second paper [18]. Further early works on the subject are [11] and [12].

Three basic coloring problems, also for F -WORM colorings, are whether a given G
is colorable, and if it is, then what is the minimum and maximum number of colors in an
F -WORM coloring of G. This similarity to the previous section is no surprise because
one can observe that F -WORM coloring of G precisely means a feasible coloring of the
bi-hypergraph whose bi-edges are the subsets B ⇢ V such that |B| = |V (F )| and the
induced subgraph G[B] contains a subgraph isomorphic to F .
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Many aspects of mixed hypergraphs can be raised for F -WORM colorings as well, and
also further questions arise. Here we mention only some of the interesting problems.

Problem 2.1. Let F be a connected graph with at least three vertices.

1. Is it NP-complete to decide whether a generic graph G admits an F -WORM color-
ing?

2. What is the necessary and sufficient condition for F to ensure that the minimum
number of colors in an F -WORM coloring is bounded above by a universal constant
for all F -WORM colorable graphs?

3. What is the time complexity of computing the minimum number of colors?

4. What is the complexity of deciding whether the feasible set (set of those numbers k
of colors for which a generic input graph G admits an F -free coloring with precisely
k colors) is gap-free?

5. Can the F -WORM feasible set contain any large gaps?

6. Study similar problems assuming that G belongs to a particular class of graphs.

Partial results are known to these questions, but the case of general F seems to be open.

3 Designs
A Steiner system S(t, k, v) is a k-uniform hypergraph with v vertices, such that each t-tuple
of vertices is contained in precisely one edge (also called block). Viewing such systems
from the direction of mixed hypergraphs, several interesting approaches arise. For in-
stance, if each block is considered as a C-edge, we obtain a C-S(t, k, v) system. Another
possibility2 is to assume that each block is a bi-edge; then we have a B-S(t, k, v) system.
Particular types are the systems B-STS(v), C-STS(v), B-SQS(v), C-SQS(v), derived from
Steiner triple and quadrulpe systems (where (t, k) = (2, 3) or (t, k) = (3, 4), respectively),
cf. also [27]. Besides, we consider here finite geometries, too.

Finite projective planes. It is proved in [3] that if the points of a projective plane of order
q are colored in such a way that no line is multicolored, then the number of colors cannot
exceed q2 � q � ⇥(q1/2) as q ! 1; i.e., this function is an upper bound on the upper
chromatic number. The bound is tight for an infinite sequence of planes, and it is even
proved in [2] that an optimal C-coloring is obtained by making a ‘double blocking set’ (a
set that meets every line in at least two points) monochromatic and assigning a distinct color
to every point outside this set, provided that the plane is a Desarguesian plane PG(2, q) of
sufficiently large order.

Problem 3.1.

1. Find a tight general lower bound on the upper chromatic number for every finite
projective plane of order q.

2. Find estimates on the upper chromatic number of other types of finite geometries.

3. Study further types of colorings of finite geometries.
2In fact many more possibilities arise when larger block sizes are considered.
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Steiner quadruple systems. It is known that for every fixed t � 2 the upper chromatic
number of a C-S(t, t+1, v) system is at most ct log v for some constant ct [26]. However, a
tight estimate is available only for triple systems, as we shall mention below. For quadruple
systems of order v = 2m a repeated application of the ‘doubling construction’ shows that
the upper chromatic number can be at least m+1 in general. The method is: start with two
vertex-disjoint systems H1 = (X1, E1) and H2 = (X2, E2) of order v, take 1-factorizations
(F i

1, . . . , F
i
v�1) of the complete graphs whose vertex set is Xi for i = 1, 2; and then the

blocks in the system of order 2v are those in H1 [ H2 moreover the 4-tuples of the form
e1j [ e2k where e1j 2 F 1

j and e2k 2 F 2
k , for all combinations (j, k) with 1  j, k  v � 1.

Problem 3.2.

1. Do there exist uncolorable B-SQS(v) systems?

2. Does every H = C-SQS(2m) have �(H)  m+ 1?

3. Does there exist an infinite sequence of B-SQS(v) systems with unbounded upper
chromatic number?

A complete answer to parts 2 and 3 seems to be unknown even for quadruple systems
obtained by the repeated application of the doubling construction, starting from a single 4-
element block on four vertices. (Such systems always admit a bi-coloring — their feasible
set is {2, 3} when viewed as bi-hypergraphs — hence they are not relevant concerning
part 1.)

Steiner triple systems. The ‘doubling plus one’ construction builds an STS(2v + 1)
from an STS(v). The method is: start with a triple system H = (X, E) of order v, where
X = {x1, . . . , xv}; let X 0 be a set of v + 1 further vertices, disjoint from X; take a
1-factorization3 (F1, . . . , Fv) of the complete graphs whose vertex set is X 0; and create the
triples of the form xi [ e where e 2 Fi. Together with the edges of H, this yields a Steiner
triple system over X [X 0.

The coloring requirement on a B-STS system means that each block (triple) has to
contain precisely two colors. In a C-STS system, monochromatic blocks may also occur
(and the lower chromatic number is 1).

In [25], the first paper dealing with C-STS and B-STS (and also with SQS) systems, it
is proved that if v < 2m, then the upper chromatic number of every STS(v) is at most m;
moreover, � = m is attained for exactly those systems which are obtained by a sequence of
doubling plus one constructions starting from the trivial system of order 3 with one triple.

For such B-STS systems, Mario Gionfriddo raised the following attractive problem
in [16].

Conjecture 3.3. If a B-STS(2m � 1) system H is obtained from B-STS(3) by a sequence
of doubling plus one constructions, then it has �(H) = �(H) = m.

In other words, no bi-coloring of B-STS(2m�1
�1) can be extended to the B-STS(2m�

1) without increasing the number of colors, i.e., the latter system does not admit any ‘ex-
tended bi-coloring’.

3Since v is odd — more precisely v ⌘ 1 _ 3 (mod 6) — we have v + 1 even, therefore the edge set of the
complete graph Kv+1 can be decomposed into 1-factors.
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One approach to the conjecture is to assume that a B-STS(2m � 1), obtained from
a B-STS(2m�1

� 1) by doubling plus one, admits a bi-coloring with m � 1 colors, and
to investigate what types of size distributions of the color classes might occur. The first
necessary conditions of this kind are given in [14]. The recent paper [4] makes further steps
in this direction, and also describes a doubling-plus-one sequence constructed explicitly
over GF(2), which is proved to not admit any extended bi-coloring.

It is important that the construction be started from B-STS(3), because other systems
may admit extended bi-colorings [17]. The smallest known example is v = 13! 2v+1 =
27, which has an extended bi-coloring with 3 colors.

4 Conclusion
Mixed hypergraph is a great invention. By the combination of two antipodal concepts a new
dimension has been opened for coloring theory. The above collection of problems is just an
appetizer, lots of interesting further ones remain unsolved, for instance to characterize nice
classes of colorable hypergraphs. Moreover, mixed hypergraphs and their generalizations
can describe several issues in graph theory as well. WORM coloring considered above is
just one example; one can mention areas in Ramsey theory, and more.
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[3] G. Bacsó and Zs. Tuza, Upper chromatic number of finite projective planes, J. Combin. Des.
16 (2008), 221–230, doi:10.1002/jcd.20169.

[4] Cs. Bujtás, M. Gionfriddo, E. Guardo, L. Milazzo, Zs. Tuza and V. Voloshin, Extended bicol-
orings of Steiner triple systems of order 2h � 1, Taiwanese J. Math. 21 (2017), 1265–1276,
doi:10.11650/tjm/8042.

[5] Cs. Bujtás and Zs. Tuza, Mixed colorings of hypergraphs, in: M. Meszka (ed.), Fifth Cracow
Conference on Graph Theory USTRON ’06, Elsevier, Amsterdam, volume 24 of Electronic
Notes in Discrete Mathematics, 2006 pp. 273–275, doi:10.1016/j.endm.2006.06.026.

[6] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, III: Model comparison, Appl. Anal. Dis-
crete Math. 1 (2007), 36–55, doi:10.2298/aadm0701036b.

[7] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, I: General results, Discrete Math. 309
(2009), 4890–4902, doi:10.1016/j.disc.2008.04.019.

[8] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees,
Discrete Math. 309 (2009), 6391–6401, doi:10.1016/j.disc.2008.10.023.

[9] Cs. Bujtás and Zs. Tuza, Maximum number of colors: C-coloring and related problems, J.
Geom. 101 (2011), 83–97, doi:10.1007/s00022-011-0082-2.

[10] Cs. Bujtás and Zs. Tuza, Color-bounded hypergraphs, VI: Structural and functional jumps in
complexity, Discrete Math. 313 (2013), 1965–1977, doi:10.1016/j.disc.2012.09.020.



10 Art Discrete Appl. Math. 1 (2018) #P2.05

[11] Cs. Bujtás and Zs. Tuza, K3-WORM colorings of graphs: lower chromatic number and gaps in
the chromatic spectrum, Discuss. Math. Graph Theory 36 (2016), 759–772, doi:10.7151/dmgt.
1891.

[12] Cs. Bujtás and Zs. Tuza, F -WORM colorings: results for 2-connected graphs, Discrete Appl.
Math. 231 (2017), 131–138, doi:10.1016/j.dam.2017.05.008.

[13] Cs. Bujtás, Zs. Tuza and V. Voloshin, Hypergraph colouring, in: L. W. Beineke and R. J. Wilson
(eds.), Topics in Chromatic Graph Theory, Cambridge University Press, Cambridge, volume
156 of Encyclopedia of Mathematics and its Applications, chapter 11, pp. 230–254, 2015, doi:
10.1017/cbo9781139519793.014.

[14] M. Buratti, M. Gionfriddo, L. Milazzo and V. Voloshin, Lower and upper chromatic numbers
for BSTSs(2h � 1), Comput. Sci. J. Moldova 9 (2001), 259–272, http://www.math.md/
publications/csjm/issues/v9-n2/8294/.

[15] E. Drgas-Burchardt and E. Łazuka, Chromatic polynomials of hypergraphs, Appl. Math. Lett.
20 (2007), 1250–1254, doi:10.1016/j.aml.2007.02.006.

[16] M. Gionfriddo, Colourings of hypergraphs and mixed hypergraphs, Rend. Sem. Mat. Messina
Ser. II 9 (2003), 87–97.

[17] M. Gionfriddo, E. Guardo and L. Milazzo, Extending bicolorings for Steiner triple systems,
Appl. Anal. Discrete Math. 7 (2013), 225–234, doi:10.2298/aadm130827019g.

[18] W. Goddard, K. Wash and H. Xu, WORM colorings forbidding cycles or cliques, Congr. Numer.
219 (2014), 161–173.

[19] W. Goddard, K. Wash and H. Xu, WORM colorings, Discuss. Math. Graph Theory 35 (2015),
571–584, doi:10.7151/dmgt.1814.

[20] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D. West, Chromatic spectrum is broken, in:
H. J. Broersma, U. Faigle, C. Hoede and J. L. Hurink (eds.), 6th Twente Workshop on Graphs
and Combinatorial Optimization, Elsevier, Amsterdam, volume 3 of Electronic Notes in Dis-
crete Mathematics, 1999 pp. 86–89, doi:10.1016/s1571-0653(05)80030-7, proceedings of the
Biennial Workshop held at the University of Twente, Enschede, May 26 – 28, 1999.

[21] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D. B. West, The chromatic spectrum of mixed
hypergraphs, Graphs Combin. 18 (2002), 309–318, doi:10.1007/s003730200023.

[22] D. Kobler and A. Kündgen, Gaps in the chromatic spectrum of face-constrained plane graphs,
Electron. J. Combin. 8 (2001), #N3, http://www.combinatorics.org/ojs/index.
php/eljc/article/view/v8i1n3.

[23] D. Král, J. Kratochvı́l, A. Proskurowski and H.-J. Voss, Coloring mixed hypertrees, in:
U. Brandes and D. Wagner (eds.), Graph-Theoretic Concepts in Computer Science, Springer-
Verlag, Berlin, volume 1928 of Lecture Notes in Computer Science, 2000 pp. 279–289, doi:
10.1007/3-540-40064-8 26, proceedings of the 26th International Workshop (WG 2000) held
in Konstanz, June 15 – 17, 2000.

[24] C.-J. Lu, Deterministic hypergraph coloring and its applications, in: M. Luby, J. Rolim and
M. Serna (eds.), Randomization and Approximation Techniques in Computer Science, Springer-
Verlag, Berlin, volume 1518 of Lecture Notes in Computer Science, 1998 pp. 35–46, doi:10.
1007/3-540-49543-6 4, proceedings of the 2nd International Workshop (RANDOM’98) held
at the University of Barcelona, Barcelona, October 8 – 10, 1998.

[25] L. Milazzo and Zs. Tuza, Upper chromatic number of Steiner triple and quadruple systems,
Discrete Math. 174 (1997), 247–259, doi:10.1016/s0012-365x(97)80332-9.

[26] L. Milazzo and Zs. Tuza, Logarithmic upper bound for the upper chromatic number of S(t, t+
1, v) systems, Ars Combin. 92 (2009), 213–223.

http://www.math.md/publications/csjm/issues/v9-n2/8294/
http://www.math.md/publications/csjm/issues/v9-n2/8294/
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v8i1n3
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v8i1n3


Zs. Tuza: Mixed hypergraphs and beyond 11

[27] L. Milazzo, Zs. Tuza and V. Voloshin, Strict colorings of Steiner triple and quadruple systems:
a survey, Discrete Math. 261 (2003), 399–411, doi:10.1016/s0012-365x(02)00485-5.

[28] V. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova 1 (1993), 45–52, http://
www.math.md/publications/csjm/issues/v1-n1/7747/.

[29] V. I. Voloshin, On the upper chromatic number of a hypergraph, Australas. J. Combin. 11
(1995), 25–45, https://ajc.maths.uq.edu.au/pdf/11/ocr-ajc-v11-p25.
pdf.

[30] V. I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, volume 17
of Fields Institute Monographs, American Mathematical Society, Providence, RI, 2002, doi:
10.1090/fim/017.

http://www.math.md/publications/csjm/issues/v1-n1/7747/
http://www.math.md/publications/csjm/issues/v1-n1/7747/
https://ajc.maths.uq.edu.au/pdf/11/ocr-ajc-v11-p25.pdf
https://ajc.maths.uq.edu.au/pdf/11/ocr-ajc-v11-p25.pdf


ISSN 2590-9770
The Art of Discrete and Applied Mathematics 1 (2018) #P2.06

https://doi.org/10.26493/2590-9770.1230.f19
(Also available at http://adam-journal.eu)

Mario Gionfriddo and mixed hypergraph
coloring

Vitaly Voloshin
Troy University, Troy, AL, USA

Received 20 December 2017, accepted 28 January 2018, published online 14 July 2019

Abstract
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1 A little bit of history
It was the summer of 1992 in new independent state, Republic of Moldova, the very fresh
ex-USSR country. Living in Kishinev, the capital city, and desperately looking for any con-
tacts with western mathematicians, one day I went to the library of the Institute of Math-
ematics and Informatics. That library was good because one could find some additional
western mathematical journals compared to the university library. It was an absolutely ran-
dom event (or was it?): my attention was attracted by the International Mathematical Union
Canberra Circular (from Australia!), with the list of mathematical conferences all over the
world. At that time the internet was not widely accessible, there was no Google, not even
email available. I noticed a very brief, just one paragraph, advertisement that there will
be Catania Combinatorial Conference in October 1992, in Italy. And the address of Mario
Gionfriddo was simply provided as the contact information.

Since I had nothing to lose, I decided to write a postcard (see both sides in Figure 1). I
wrote:

Dear Professor Mario Gionfriddo:

I would be much obliged to you if you could send me invitation/program/information/

Proceedings of the 3rd Catania Combinatorial Conference. I am a specialist in Graph

and Hypergraph Theory, Assistant Professor of the Moldova State University, Kishinev.

E-mail address: vvoloshin@troy.edu (Vitaly Voloshin)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/
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I would like to be friend with you. My report may be entitled :“Conditional Colourings

on Hypergraphs”.

Thank you very much.

Sincerely yours V. Voloshin

24 July 1992.

Since I was studying English from zero at that time (my foreign language was French),
writing in English was a good exercise. If you look at this postcard, you may also recognize
an old Soviet postcard with the stamps of Republic of Moldova over it. But it was beyond
any imagination, what significant events were implied by this simple postcard.

Figure 1: Postcard that changed the world.

I was waiting the reply for about two months and, having none, thought that it was one
of many cases left without any answer. All of the sudden, one week before the conference,
the invitation letter by Mario Gionfriddo arrived. There was no possibility for me to arrange
everything (visa etc.) on such short notice (later I learned it required 1–4 months!). So I
had to answer that I can’t come. Then Mario asked me for my CV (correspondence by
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email just started in Moldova); it was mailed to Catania. Since then I had no news for a
long time and decided that I have to forget it again.

But I will never forget the day of June 26, 1993 when I have received the official
invitation by Mario Gionfriddo saying that CNR of Italy has awarded a research grant
to me for visiting University of Catania for two months. It was a huge event because it
gave me some hope that I can probably survive the hardships of that period. I must confess
that there was time when I believed that as mathematician I will not survive. 1992 was
the year of war in Moldova, and it felt like we just escaped the Titanic. After arranging
multiple problems (like visa, ticket etc.) I arrived to Catania in early October, 1993. I
could only recognize Mario at Catania railway station (we never met!) because he was
holding the famous book of Claude Berge “Hypergraphs” [3]. It was the best “password”
in that moment; and it was the very first application of hypergraph theory in real life for
me.

When we started discussions about possible research collaboration, I realized that we
have very different backgrounds and not that much in common. Mario mostly worked in
block designs but I was not familiar with them except occasional mentioning in the book of
Berge. However, at that time I already was developing basic concepts of mixed hypergraph
coloring. The basic idea of it was to allow edges that can be monochromatic but must not
be polychromatic (all vertices = different colors). At the very beginning they were called
“anti-edges” because this term exactly reflected the meaning. Mixing classic edges (non
monochromatic subsets) with anti-edges (non polychromatic subsets) lead to the concept
of mixed hypergraph coloring. It was completely new at that time (even this circumstance
became clear much later!). The very first paper [33] was just published but nobody heard
about it in Italy. The main paper [34] was in progress and not even published yet. But
because of the generality of graph coloring, the ideas for collaboration came naturally.

It was due to Mario himself and his colleagues Salvatore Milici, Gaetano Quattrocchi,
Angelo Lizzio and others. It was due to the Mario’s seminar, multiple discussions with
international visitors like Zsolt Tuza, Alex Rosa, Curt Lindner, Chris Rodger, Carsten
Thomassen, Robin Wilson, and graduate students like Lorenzo Milazzo and many oth-
ers. Very soon I realized that I got into the very best environment that a mathematician can
dream: the international center of active research in graphs, hypergraphs and designs under
the leadership of Mario Gionfriddo. The new direction of research aiming at application of
mixed hypergraph coloring in coloring of block designs has taken off. It was a matter of
not one, not even two years of research collaboration when the very first significant results
have been obtained and published.

As I recall, the very first fundamental questions which were worth to work on, were
these:

1. What is the upper chromatic number of Steiner triple system (abbreviated by STS for
short) considered as C-hypergraph? That is, what is the maximum total number of
colors when coloring the vertices of each block with at most two colors?

At that time, the STS were colored in old classic way: no block was monochromatic.
Under this constraint, the problem on maximum number of colors did not exist since
the coloring with n (number of points, or vertices in STS) colors was always feasible.

2. If we color each block with precisely two colors, are there uncolorable Steiner triple
systems? That is, are there STS which cannot be colored in this way with any number
of colors?
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Notice that in classic coloring, all systems were trivially colorable with n colors and
therefore this problem never arose. However, if the system is colorable under these
new constraints, then such concepts as the minimum and maximum number of colors
naturally arise; they are called the lower and upper chromatic numbers and denoted
by � and �̄ respectively.

3. Is the chromatic spectrum of any STS continuous? That is, whether there exist col-
orings using any intermediate number of colors between � and �̄. Otherwise there is
a gap in chromatic spectrum meaning there is no coloring with a number of colors k
such that � < k < �̄.

When I arrived to Catania for the first time, there were a few preliminary results in the
first and second questions regarding some other hypergraph classes like interval mixed hy-
pergraphs. But there was no idea, no approach, not even one fact of any mixed hypergraph
with the gap in chromatic spectrum.

Simultaneously, in 1993, in order to find out if the concept of mixed hypergraph col-
oring was new, I submitted the current version of [34] to Paul Erdős with only one this
question. The assumption was that Erdős knew everything; and, to my great satisfaction,
the answer was yes. In 1993–1996, I received six letters from Paul Erdős, and in the fifth
letter he wrote, see Figure 2:

1994 IX 13

Dear Professor Voloshin,

Many thanks for your letter, I hope you will have a pleasant and fruitful time in Catania,

please give my regards to Professor Gionfriddo. Keep me informed of your further

plans.

Kind regards

Paul Erdős

Figure 2: Paul Erdős sends regards to Mario Gionfriddo, 1994.

This letter was an additional evidence of how high was the international recognition of
Mario Gionfriddo long before I came to Catania.
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2 Mathematical results obtained in Catania
We use the terminology from [4]. Let V = {v1, v2, . . . , vn} be a finite set of elements
called vertices, and let E = {E1, E2, . . . , Em} be a family of subsets of V called edges or
hyperedges. The pair H = (V, E) is called a hypergraph with vertex set V = V (H) and
edge-set E = E(H). The hypergraph H = (V, E) is sometimes called a set system. If each
edge of a hypergraph contains precisely two vertices, then it is a graph.

If every edge of H is of size r, then H is called an r-uniform hypergraph; evidently, a
simple graph is a 2-uniform hypergraph.

Let {1, 2, . . . ,�} be a set of colors. A proper �-coloring of a hypergraph H = (V, E)
is a mapping c : V ! {1, 2, . . . ,�} for which every edge E 2 E has at least two vertices of
different colors. The number of proper �-colorings of H is a polynomial in �; it is denoted
by P (H,�) and is called the chromatic polynomial. The minimum value of � for which
there exists a proper �-coloring of a hypergraph H is called the chromatic number of H,
denoted by �(H). A hypergraph H is k-colorable if �(H)  k.

The concept of a mixed hypergraph coloring was introduced in [33]. Instead of H =
(V, E), the basic idea was to consider a structure H = (V, C,D), termed a mixed hyper-

graph, with two families of subsets called C-edges and D-edges. By definition, a proper

�-coloring of a mixed hypergraph H = (V, C,D) is a mapping c : V ! {1, 2, . . . ,�} for
which two conditions hold:

• every C 2 C has at least two vertices of a Common color;

• every D 2 D has at least two vertices of Different colors.

A mixed hypergraph H is called colorable if it admits at least one proper coloring; and
it is uncolorable if no such colorings exist.

The chromatic spectrum is the vector (r1, r2, . . . , rn), where each rk is the number of
partitions of the vertex set induced by proper colorings using precisely k colors. A gap in
the chromatic spectrum is an integer k for which �(H) < k < �̄(H) and rk = 0. A mixed
hypergraph H = (V, C,D) is called a bihypergraph if the families of C-edges and D-edges
coincide, i.e., C = D.

A Steiner system S(t, k, v) is a k-uniform hypergraph of order v, for which each t-
tuple of vertices is contained in precisely one edge. To mention some examples, a system
S(2, 3, v) is a Steiner triple system STS(v), an S(3, 4, v) is a Steiner quadruple system

SQS(v), and an S(2, q + 1, q2 + q + 1) is a finite projective plane of order q.
The edges are called blocks. We may view each block as a C-edge (when an STS(v)

is denoted by CSTS(v)) or as a bi-edge – that is, a C-edge and a D-edge at the same time
(when an STS(v) is denoted by BSTS(v)). The notations CS(t, k, v), BS(t, k, v), CSQS(v)
and BSQS(v) are derived for the respective systems in a similar way.

The study of the upper chromatic number in Steiner triple systems started in Catania in
1993 and resulted in a series of publications, see [26, 27, 28, 29, 31, 30, 32]. For example,
in [30] the authors proved that

�̄(BSTS(v))  �̄(CSTS(v))  k,

for all v  2k � 1. This upper bound on �̄ is tight for all k � 2, and the systems attaining
equality were also characterized. In particular, in them the cardinalities of color classes
are powers of 2. The first PhD Thesis in this field (and in mixed hypergraph coloring in
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general) was defended under supervision of Mario Gionfriddo by Lorenzo Milazzo in 1997,
see [28].

A coloring of a Steiner triple system STS(n) in a way that every block receives pre-
cisely two colors is also called a bicoloring [7]. All bicolorable STS(2h � 1)s have upper
chromatic number �̄  h. If �̄ = h < 10, then lower and upper chromatic numbers co-
incide, i.e., � = �̄ = h. In 2003, Mario raised a subtle and challenging conjecture [13]
that this equality holds whenever �̄ = h � 2. Until today it remains open, intriguing and
motivating for further research. Some of the most recent results in this direction discuss
extensions of bicolorings of STS(v) to bicolorings of STS(2v + 1) obtained by using the
so called doubling plus one construction, see [5].

The problem of colorability of BSTS was also first formulated in Catania in 1993
though no example of uncolorable BSTS was found. The first such example was con-
structed by Ganter at TU Dresden, and all uncolorable BSTS(15)s have been characterized
by Rosa [35]: BSTS(15) is colorable if and only if it contains BSTS(7) as a subsystem.
Out of the 80 non-isomorphic BSTS(15)s, only 23 meet this criterion and are therefore
colorable. The other 57 are uncolorable. It follows that uncolorable BSTS(n)s exist for
each admissible n � 15.

As to BSQS, the situation is much more difficult. Even though the problem to find
at least one uncolorable BSQS was formulated first in Catania in 1993 as well, no one
such system has been found. The conjecture is that they exist. The best result related to
this problem is by Lo Faro, Milazzo and Tripodi [22]: all BSQS(n) are colorable for all
admissible n  16. Therefore, the smallest admissible n for which uncolorable BSTS(n)
may exist is n = 20.

There is a significant series of important results and publications by the whole Catania
group of mathematicians like these [2, 6, 13, 14, 15, 16, 17, 20, 22, 23, 24, 25, 26, 27, 28,
29, 31, 30, 32] just to name a few. Here is the right point to mention that Catania group is
very closely related to Messina group of mathematicians who work in the same direction:
Giovanni Lo Faro, Enzo Li Marzi, Corinna Marino and Antoinette Tripodi. Because of this
connection, as one can see, they also have published many papers generally speaking in
mixed hypergraph coloring.

It was October of 1998. After half year stay in USA, I arrived to Catania where I
met Zsolt Tuza as usual, again. We were working on some problems when I received
an email from Dhruv Mubayi, a graduate student of Doug West, University of Illinois at
Urbana-Champaign. In that email, Dhruv communicated that while looking at a completely
different problem, he found an example of mixed hypergraph on 16 vertices, 36 D-edges
and 144 (!) C-edges with the gap in the chromatic spectrum. It was a shocking discovery,
literally a breakthrough! As I recall, when we realized it, we immediately started searching
for the smallest example, and it took just one night for Zsolt to come up next morning
with the example depicted in Figure 3. It had 6 vertices {1, 2, 3, 4, 5, 6}, 2 D-edges {1, 6}
and {2, 3, 4, 5}) (solid line and curve), 3 C-edges {2, 3, 4}, {3, 4, 5} and {2, 4, 5} (dashed
curves), and 4 bi-edges {1, 2, 3}, {1, 4, 5}, {6, 2, 3}, and {6, 4, 5} (bold curves). One can
easily see that if vertices 2 and 3 are colored with the same color, say A, then this coloring
extends in a unique way to vertices 4 and 5 with color B, vertex 1 with color C and vertex 6
with color D. If, on the contrary, vertices 2 and 3 are colored differently, say colors A and
B, then this coloring extends to vertex 1 with color A, vertex 4 with color A, and vertices 5,
6 with color B. Actually, there are four distinct extensions of this coloring, all with colors A
and B. So, there is no coloring using 3 colors, and the chromatic spectrum of this example
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is R(H) = (0, 4, 0, 1, 0, 0). The chromatic polynomial P (H,�) = �(��1)(�2
�5�+10).

Figure 3: The very first smallest example with gap, Catania, 1998.

The first results have been published in [21]. It was the very beginning of the chase
for the gaps in the chromatic spectrum in mixed hypergraphs which with variable success
continues until today.

Around the year of 2000, Catania group was reinforced by new researcher, Lucia Gion-
friddo. After defending PhD Thesis, she got interested in problems related to mixed hy-
pergraph coloring, namely the gaps in the chromatic spectrum. For an impressively short
period of time, Lucia has discovered the first designs, namely P3-designs with the gaps in
the chromatic spectrum. The idea was to consider decompositions of complete graphs into
P3 (a path on 3 vertices) and declare every block as a bi-edge, i.e., colorable with precisely
two colors. It is a special case of bi-hypergraph. She proved that there are many such struc-
tures with many gaps, in particular, big gaps, even gaps, odd gaps, etc., see [8, 9, 10, 11].
Later other designs, namely P4-designs with the gaps have been found when considering
equicolorings in [1]. Surprisingly, until today, these are the only examples of block designs
with the gaps. We do not know anything about continuity of the chromatic spectrum of
BSTS or BSQS, for example.

Based on Lucia’s results, while my stay in Catania, we were able to carry out some
computational experiments and construct the smallest 3-uniform bi-hypergraph with the
gap in the chromatic spectrum, see Figure 4: it contains 7 vertices and 9 bi-edges and its
chromatic spectrum is R(H) = (0, 12, 0, 3, 0, 0, 0), see [12]. The chromatic polynomial of
this bi-hypergraph P (H,�) = 3�(��1)(�2

�5�+10). It is interesting that the chromatic
spectra and chromatic polynomials of hypergraphs in Figure 3 and in Figure 4 are related
(compare). They were found independently.

There is one more result that is worth to mention. It is about the upper chromatic index
of a multi-graph, which represents a type of anti-Vizing theorem. It was first formulated
in [34] as Problem 13 and was implied by the duality of mixed hypergraphs. Consider
the colorings of the edges of a multi-graph in such a way that every non-pendant vertex
is incident to at least two edges of the same color. The maximum number of colors that
can be used in such colorings is the upper chromatic index of a multi-graph G, denoted
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Figure 4: The smallest 3-uniform example with gap, Catania, 2002.

Figure 5: Mixed Hypergraph Coloring encoded in BSTS(7).
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by �̄0(G). The exact value of it was found in [18]. It was proved that if a multi-graph
G has n vertices, m edges, p pendant vertices and maximum number c of disjoint cycles,
then �̄0(G) = c+m� n+ p. This result was reported by Lorenzo Milazzo at the Second
Lethbridge Workshop on Designs, Codes, Cryptography and Graph Theory, July 9 – 14,
2001.

One of the basic results in applications of mixed hypergraph coloring to block designs,
namely, about the cardinality of color classes being powers of 2 in the optimal coloring of
BSTS(7), was encoded in the picture of it on the book cover of [19]: one vertex in yellow
color, two vertices in red color and four vertices in blue, see Figure 5. In contrast to classic
drawing, it is depicted as a hypergraph. Every block is colored with two colors and any
other proper coloring has the same distribution of color classes.

3 Conclusion

In conclusion, what I witnessed through decades, was a multilateral activity by Mario Gion-
friddo which can be summarized in this way (I do not pretend to be complete):

Mario Gionfriddo:

1. Created an outstanding scientific school of researchers in Graphs, Hypergraphs and
Designs with many publications in top journals all over the world.

2. Turned University of Catania and University of Messina into major centers of in-
ternational collaboration. Proved that he is a great teacher, educator, researcher,
organizer, and in general, a great leader in contemporary mathematics.

3. Played and still plays an outstanding role in Italian and especially Sicilian Discrete
Mathematics, namely, the Theory of Graphs, Hypergraphs and Designs.

4. Played an outstanding explicit and implicit role in developing the theory of Mixed
Hypergraph Coloring. Explicit: by personal participation in research and actually
proving many theorems. Implicit: by inviting researchers and organizing seminars,
workshops and conferences where actual collaboration occurred.

Dear Mario,

I congratulate you on the occasion of 70th anniversary, thank you
for your great role in my life and wish you a good health and
further achievements in developing Graphs, Hypergraphs and
Designs!

Remark. Dear reader! If it were not that postcard, randomly mailed in 1992 (Figure 1), at
this very same moment you would read a very different paper.
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Figure 6: With Mario Gionfriddo, Messina, 2003.
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1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are
considered. Unless otherwise stated, we follow the book by Bondy and Murty [14] for
terminology and notation.

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The girth of G
is the number g = g(G) of edges in a shortest cycle. For every v 2 V , NG(v) denotes the
neighbourhood of v, i.e. the set of all vertices adjacent to v, and NG[v] = NG(v) [ {v} is
the closed neighbourhood of v. The degree of a vertex v 2 V is the cardinality of NG(v).
Let S ⇢ V (G), then we denote by NG(S) = [s2SNG(s)�S and by NG[S] = S[NG(S).

A graph is called regular if all its vertices have the same degree. A (k, g)-graph is a
k-regular graph with girth g. Erdős and Sachs [15] proved the existence of (k, g)-graphs
for all values of k and g provided that k � 2. Since then most work carried out has focused
on constructing a smallest (k, g)-graph (cf. e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18,
20, 21, 22]). A (k, g)-cage is a k-regular graph with girth g having the smallest possible
number of vertices. Cages have been intensely studied since they were introduced by Tutte
[25] in 1947. More details about constructions of cages can be found in the recent survey
by Exoo and Jajcay [17].

In this note we are interested in (k, 8)-cages. Counting the number of vertices in the
distance partition with respect to an edge yields the following lower bound on the order of
a (k, 8)-cage:

n0(k, 8) = 2(1 + (k � 1) + (k � 1)2 + (k � 1)3). (1.1)

A (k, 8)-cage with n0(k, 8) vertices is called a Moore (k, 8)-graph (cf. [14]). These
graphs have been constructed as the incidence graphs of generalized quadrangles Q(4, q)
and W (q) [12, 17, 24], which are known to exist for q a prime power and k = q + 1 and
no example is known when k � 1 is not a prime power (cf. [11, 13, 19, 27]). Since they
are incidence graphs, these cages are bipartite and have diameter 4. Recall also that if q is
even, Q(4, q) is isomorphic to the dual of W (q) and viceversa. Hence, the corresponding
(q + 1, 8)-cages are isomorphic.

In this note we present an alternate description of the known (q+1, 8)-cages with q � 2
a prime power as follows:

Definition 1.1. Let Fq be a finite field with q � 2 a prime power and % be a symbol
not belonging to Fq . Let �q = �q[W0,W1] denote a bipartite graph with vertex sets
Wi = F3

q
[ {(%, b, c)i, (%, %, c)i : b, c 2 Fq} [ {(%, %, %)i}, i = 0, 1, and edge set defined

as follows:

For all a, b, c 2 Fq

N�q ((a, b, c)1) = {(w, aw + b, a
2
w + 2ab+ c)0 : w 2 Fq} [ {(%, a, c)0};

N�q ((%, b, c)1) = {(c, b, w)0 : w 2 Fq} [ {(%, %, c)0};
N�q ((%, %, c)1) = {(%, c, w)0 : w 2 Fq} [ {(%, %, %)0};
N�q ((%, %, %)1) = {(%, %, w)0 : w 2 Fq} [ {(%, %, %)0}.
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Or equivalently,

For all i, j, k 2 Fq

N�q ((i, j, k)0) = {(w, j � wi, w
2
i� 2wj + k)1 : w 2 Fq} [ {(%, j, i)1}

N�q ((%, j, k)0) = {(j, w, k)1 : w 2 Fq} [ {(%, %, j)1}
N�q ((%, %, k)0) = {(%, w, k)1 : w 2 Fq} [ {(%, %, %)1};
N�q ((%, %, %)0) = {(%, %, w)1 : w 2 Fq} [ {(%, %, %)1}.

Note that % is just a symbol not belonging to Fq and no arithmetical operation will be
performed with it.

Theorem 1.2. The graph �q given in Definition 1.1 is a Moore (q + 1, 8)-graph for each

prime power q � 2.

The proof of the above theorem shows that the graph �q described in Definition 1.1 is
in fact a labelling for a (q + 1, 8)-cage, for each prime power q � 2. We need to settle
this alternate description because it is used in [2, 3, 4] to construct small (k, g)-graphs for
k = q � 1, q and g = 7, 8.

2 Proof of Theorem 1.2
2.1 Preliminaries: the graphs Hq and Bq

In order to prove Theorem 1.2 we will first define two q-regular bipartite graphs Hq and Bq

(cf. Definitions 2.1 and 2.4). The graph Hq was also introduced by Lazebnik, Ustimenko
and Woldar [20] with a different formulation.

Definition 2.1. Let Fq be a finite field with q � 2. Let Hq = Hq[U0, U1] be a bipartite
graph with vertex set Ur = F3

q
, r = 0, 1, and edge set E(Hq) defined as follows:

For all a, b, c 2 Fq

NHq ((a, b, c)1) = {(w, aw + b, a
2
w + c)0 : w 2 Fq}.

Note that throughout the proofs equalities and operations are intended in Fq .

Lemma 2.2. Let Hq be the graph from Definition 2.1. For any given a 2 Fq , the vertices

in the set {(a, b, c)1 : b, c 2 Fq} are mutually at distance at least four. And, for any given

i 2 Fq , the vertices in the set {(i, j, k)0 : j, k 2 Fq} are mutually at distance at least four.

Proof. Suppose that there exists a path of length two between distinct vertices of the form
(a, b, c)1 (w, j, k)0 (a, b0, c0)1 in Hq . By Definition 2.1, j = aw + b = aw + b

0 and k =
a
2
w+ c = a

2
w+ c

0. Combining the equations we get b = b
0 and c = c

0 which implies that
(a, b, c)1 = (a, b0, c0)1 contradicting the assumption that the path has length two. Similarly
suppose that there exists a path of length two (i, j, k)0 (a, b, c)1 (i, j0, k0)0. Reasoning as
before, we obtain j = ai + b = j

0, and k = a
2
i + c = k

0 yielding (i, j, k)0 = (i, j0, k0)0
which is a contradiction.

Proposition 2.3. The graph Hq from Definition 2.1 is q-regular, bipartite, of girth 8 and

order 2q3.
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Proof. For q = 2 it can be checked that H2 consists of two disjoint cycles of length 8.
Thus we assume that q � 3. Clearly Hq has order 2q3 and every vertex of U1 has degree q.
Let (x, y, z)0 2 U0. By definition of Hq ,

NHq ((x, y, z)0) =
�
(a, y � ax, z � a

2
x)1 : a 2 Fq

 
. (2.1)

Hence every vertex of U0 has also degree q and Hq is q-regular. Next, let us prove that Hq

has no cycles of length smaller than 8. Otherwise suppose that there exists in Hq a cycle

C2t+2 = (a0, b0, c0)1 (x0, y0, z0)0 (a1, b1, c1)1 · · · (xt, yt, zt)0 (a0, b0, c0)1

of length 2t + 2 with t 2 {1, 2}. By Lemma 2.2, ak 6= ak+1 and xk 6= xk+1 (subscripts
being taken modulo t+ 1). Then

yk = akxk + bk = ak+1xk + bk+1, k = 0, . . . , t,

zk = a
2
k
xk + ck = a

2
k+1xk + ck+1, k = 0, . . . , t,

subscripts k being taken modulo t+ 1. Summing all these equalities we get

t�1X

k=0

(ak � ak+1)xk = (a0 � at)xt, t = 1, 2;

t�1X

k=0

(a2
k
� a

2
k+1)xk = (a20 � a

2
t
)xt, t = 1, 2.

(2.2)

If t = 1, then (2.2) leads to (a0 � a1)(x1 � x0) = 0. System (2.2) gives x0 = x1 = x2

which is a contradiction to Lemma 2.2. This means that Hq has no squares so that we may
assume that t = 2. The coefficient matrix of (2.2) has a Vandermonde determinant, i.e.

����
a1 � a0 a0 � a2

a
2
1 � a

2
0 a

2
0 � a

2
2

���� =

������

1 1 1
a1 a0 a2

a
2
1 a

2
0 a

2
2

������
=

Y

0k<j2

(aj � ak).

This determinant is different from zero because by Lemma 2.2, ak+1 6= ak (the subscripts
being taken modulo 3). Using Cramer’s rule to solve it we obtain x1 = x0 = x2 which is
a contradiction to Lemma 2.2.

Hence, Hq has girth at least 8. Furthermore, when q � 3 the minimum number of
vertices of a q-regular bipartite graph of girth greater than 8 must be greater than 2q3. Thus
we conclude that the girth of Hq is exactly 8.

Next, we will make use of the following induced subgraph Bq of �q .

Definition 2.4. Let Bq = Bq[V0, V1] be a bipartite graph with vertex set Vi = F3
q
, i = 0, 1,

and edge set E(Bq) defined as follows:

For all a, b, c 2 Fq

NBq ((a, b, c)1) = {(j, aj + b, a
2
j + 2ab+ c)0 : j 2 Fq}.

Lemma 2.5. The graph Bq is isomorphic to the graph Hq .
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Proof. Let Hq be the bipartite graph from Definition 2.1. Since the map � : Bq ! Hq

defined by �((a, b, c)1) = (a, b, 2ab+c)1 and �((x, y, z)0) = (x, y, z)0 is an isomorphism,
the result holds.

Hence, the graph Bq is also q-regular, bipartite, of girth 8 and order 2q3.
In what follows, we will obtain the graph �q from the graph Bq by adding some new

vertices and edges. We need a preliminary lemma.

Lemma 2.6. Let Bq be the graph from Definition 2.4. Then the following hold:

(i) The vertices in the set {(a, b, c)1 : b, c 2 Fq} are mutually at distance at least four

for all a 2 Fq .

(ii) The vertices in the set {(i, j, k)0 : j, k 2 Fq} are mutually at distance at least four

for all i 2 Fq .

(iii) The q vertices of the set {(x, y, j)0 : j 2 Fq} are mutually at distance at least six for

all x, y 2 Fq .

Proof. The proof of items (i) and (ii) is almost identical to that of Lemma 2.2.
(iii): By (ii), the vertices in {(x, y, j)0 : j 2 Fq} are mutually at distance at least four.

Suppose by contradiction that Bq contains the following path of length four:

(x, y, j)0 (a, b, c)1 (x
0
, y

0
, j

0)0 (a
0
, b

0
, c

0)1 (x, y, j
00)0, for some j

00 6= j.

Then y = ax+b = a
0
x+b

0 and y
0 = ax

0+b = a
0
x
0+b

0. It follows that (a�a
0)(x�x

0) = 0,
which is a contradiction since, by the previous statements, a 6= a

0 and x 6= x
0.

2.2 The conclusion

Figure 1 shows a spanning tree of �q with the vertices labelled according to Definition 1.1.
Note that the lower level of such a tree corresponds to the set of vertices of Bq .

(0, 0, 0)
0

(0, 0, w
)
0

(0, j, 0)
0

(0, j, w
)
0

(i, 0, 0)
0

(i, 0, w
)
0

(i, j, 0)
0

(i, j, w
)
0

(0, 0, 0)
1

(0, t, 0)
1

(0, 0, c)
1

(0, t, c)
1

(a, 0, 0)
1

(a, t, 0)
1

(a, 0, c)
1

(a, t, c)
1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(%, 0, 0)1

(%, j, 0)1

(%, 0, i)1

(%, j, i)1

(%, 0, 0)0

(%, 0, c)0

(%, a, 0)0

(%, a, c)0

(%, %, 0)0
(%, %, i)0

(%, %, 0)1
(%, %, a)1

· · · · · · · · · · · ·

· · · · · ·

(%, %, %)1 (%, %, %)0

Figure 1: Spanning tree of �q .

We are now ready to prove Theorem 1.2:
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Proof of Theorem 1.2. Let B0
q
= B

0
q
[V0, V

0
1 ] be the bipartite graph obtained from Bq =

Bq[V0, V1] by adding q
2 new vertices to V1 labeled (%, b, c)1, b, c 2 Fq (i.e., V 0

1 = V1 [
{(%, b, c)1 : b, c 2 Fq}), and new edges NB0

q
((%, b, c)1) = {(c, b, j)0 : j 2 Fq} (see

Figure 1). Then B
0
q

has |V 0
1 |+ |V0| = 2q3+q

2 vertices, every vertex of V0 has degree q+1,
and every vertex of V 0

1 has still degree q. Note that the girth of B0
q

is 8 by Lemma 2.6(iii).
The statements from Lemma 2.6 still partially hold in B

0
q
, as stated in the following claim.

Claim 1. For any given a 2 Fq [ {%}, the vertices of the set {(a, b, c)1 : b, c 2 Fq} are

mutually at distance at least four in B
0
q
.

Proof. For a = %, it is clear from Lemma 2.6(i), since the new vertices do not change the
distance among the vertices in the set {(a, b, c)1 : b, c 2 Fq}. For a = %, the vertices
in the set {(a, b, c)1 : b, c 2 Fq} are mutually at distance at least four since each vertex
of the form (i, j, k)0 has exactly one neighbour in this set, so the result follows from the
bipartition of B0

q
.

Claim 2. For all a 2 Fq [ {%} and for all c 2 Fq , the q vertices of the set {(a, t, c)1 : t 2
Fq} are mutually at distance at least 6 in B

0
q
.

Proof. By Claim 1, for all a 2 Fq [ {%} the q vertices of {(a, t, c)1 : t 2 Fq} are mutually
at distance at least 4 in B

0
q
. Suppose that there exists in B

0
q

the following path of length
four:

(a, t, c)1 (x, y, z)0 (a
0
, t

0
, c

0)1 (x
0
, y

0
, z

0)0 (a, t
00
, c)1, for some t

00 6= t.

If a = %, then x = x
0 = c, y = t, y0 = t

00 and a
0 6= % by Claim 1. Then y = a

0
x + t

0 =
a
0
x
0 + t

0 = y
0 yielding that t = t

00 which is a contradiction. Therefore a 6= %. If a0 = %,
then x = x

0 = c
0 and y = y

0 = t
0. Thus y = ax+ t = ax

0 + t
00 = y

0 yielding that t = t
00

which is a contradiction. Hence we may assume that a0 6= % and a 6= a
0 by Claim 1. In this

case we have:

y = ax+ t = a
0
x+ t

0;

y
0 = ax

0 + t
00 = a

0
x
0 + t

0;

z = a
2
x+ 2at+ c = a

02
x+ 2a0t0 + c

0;

z
0 = a

2
x
0 + 2at00 + c = a

02
x
0 + 2a0t0 + c

0
.

Thus,

(a� a
0)(x� x

0) = t
00 � t; (2.3)

(a2 � a
02)(x� x

0) = 2a(t00 � t). (2.4)

If q is even, (2.4) leads to x = x
0 and (2.3) leads to t

00 = t which is a contradiction with
our assumption. Thus assume q is odd. If a + a

0 = 0, then (2.4) gives 2a(t00 � t) = 0, so
that a = 0 yielding that a0 = 0 (because a + a

0 = 0) which is again a contradiction. If
a+ a

0 6= 0, multiplying equation (2.3) by a+ a
0 and subtracting both equations we obtain

(2a � (a + a
0))(t00 � t) = 0. Then a = a

0 because t
00 6= t, which is a contradiction to

Claim 1. Therefore, Claim 2 holds.
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Let B00
q
= B

00
q
[V 0

0 , V
0
1 ] be the graph obtained from B

0
q
= B

0
q
[V0, V

0
1 ] by adding q

2 + q

new vertices to V0 labeled (%, a, c)0, a 2 Fq[{%}, c 2 Fq , and new edges NB00
q
((%, a, c)0) =

{(a, t, c)1 : t 2 Fq} (see Figure 1). Then B
00
q

has |V 0
1 | + |V 0

0 | = 2q3 + 2q2 + q vertices
such that every vertex has degree q + 1 except the new added vertices which have degree
q. Moreover the girth of B00

q
is 8 by Claim 2.

Claim 3. For all a 2 Fq [ {%}, the q vertices of the set {(%, a, j)0 : j 2 Fq} are mutually

at distance at least 6 in B
00
q

.

Proof. Clearly these q vertices are mutually at distance at least 4 in B
00
q

. Suppose that there
exists in B

00
q

the following path of length four:

(%, a, j)0 (a, b, j)1 (x, y, z)0 (a, b
0
, j

0)1 (%, a, j
0)0, for some j

0 6= j.

If a = % then x = j = j
0 which is a contradiction. Therefore a 6= %. In this case

y = ax+b = ax+b
0 which implies that b = b

0. Hence z = a
2
x+2ab+j = a

2
x+2ab0+j

0

yielding that j = j
0 which is again a contradiction.

Let B000
q

= B
000
q
[V 0

0 , V
00
1 ] be the graph obtained from B

00
q

by adding q+1 new vertices to
V

0
1 labeled (%, %, a)1, a 2 Fq [ {%}, and new edges NB000

q
(%, %, a)1 = {(%, a, c)0 : c 2 Fq},

see Figure 1. Then B
000
q

has |V 00
1 | + |V 0

0 | = 2q3 + 2q2 + 2q + 1 vertices such that every
vertex has degree q + 1 except the new added vertices which have degree q. Moreover the
girth of B000

q
is 8 by Claim 3 and clearly these q+1 new vertices are mutually at distance 6.

Finally, the graph �q is obtained by adding to B
000
q

another new vertex labeled (%, %, %)0 and
edges N�q ((%, %, %)0) = {(%, %, i)1 : i 2 Fq [ {%}}. The graph �q has 2(q3 + q

2 + q + 1)
vertices, it is (q+1)-regular and has girth 8, so by the uniqueness of a (q+1, 8)-cage (see
e.g. [29]), �q is indeed a (q + 1, 8) Moore graph.

Remark 2.7. Coordinatizations of classical generalized quadrangles Q(4, q) and W (q)
in four dimensions are discussed in [23, 26, 28]. The alternate description of a Moore
(q + 1, 8)-graph given in Theorem 1.2 in three dimensions is equivalent to this coordinati-
zation.
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Birkhäuser Verlag, Basel, 1998, doi:10.1007/978-3-0348-0271-0.

[29] P. K. Wong, Cages—a survey, J. Graph Theory 6 (1982), 1–22, doi:10.1002/jgt.3190060103.



ISSN 2590-9770
The Art of Discrete and Applied Mathematics 1 (2018) #P2.08

https://doi.org/10.26493/2590-9770.1311.cc2
(Also available at http://adam-journal.eu)

Perfect blocking sets in P3-designs

Paola Bonacini , Mario Gionfriddo , Lucia Marino
Department of Mathematics and Computer Science, University of Catania, Catania, Italy

Received 29 December 2017, accepted 30 March 2018, published online 25 July 2019

Abstract
A well-known problem in Design Theory is the study of the possible existence of block-

ing sets in Steiner systems. In this paper, we introduce the concept of perfect blocking sets
in G-designs and determine all the possible v for which there exist P3-designs having per-
fect blocking sets.

Keywords: 05B05, 05C15

Math. Subj. Class.: Blocking sets, transversals, P3-designs.

1 Introduction
Let Kv be the complete undirected graph defined in a vertex set X . Given a graph with n
vertices, a G-design of order v (briefly a G(v)-design), for v � n, is a pair ⌃ = (X,B),
where B is a partition of the edge set of Kv into classes generating graphs all isomorphic
to G. The classes of B are said to be the blocks of ⌃. A Kn-design of order v is a Steiner
systems S(2, n, v).

Let ⌃ = (X,B) be a G-design of order v. Following hypergraph terminology, a
transversal T of ⌃ is a subset of X intersecting every block of ⌃. The transversal number

of ⌃ is the minimum cardinality of transversals of ⌃. A blocking set T of ⌃ is a transversal
such that also its complementary CT is a transversal of ⌃: in other words, T is a blocking
sets if and only if every block of ⌃ contains elements of T and elements of CX(T ). For
a blocking set T of ⌃, the discrepancy is the number �(⌃) =

��|T | � |CXT |
�� (see [4, 8]).

In what follows, we will indicate by B(⌃) the set of all possible p 2 N for which there
exist in ⌃ blocking sets of cardinality p. Therefore: �(⌃) = |B(⌃)|. Note that there exist

blocking sets in a system if and only if the system is 2-vertex-colourable.
The problem to determine the existence of possible blocking-sets in Steiner systems has

been studied by many authors [1, 2, 7] , expecially for S(2, 4, v) [3, 9, 10, 11, 12], and for
G-designs [6]. Interesting results can be found also in [5].

E-mail addresses: bonacini@dmi.unict.it (Paola Bonacini), gionfriddo@dmi.unict.it (Mario Gionfriddo),
lmarino@dmi.unict.it (Lucia Marino)
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In this paper, we introduce the concept of perfect blocking-set of a G-design and deter-
mine all possible v for which there exist P3-designs having perfect blocking sets.

In what follows, b will always indicate the number of blocks in a G-design. Observe
that, in the case of systems with b = 1 (Steiner systems S(h, k, v) with v = k), the research
of blocking sets is trivial. Therefore, in what follows, we will consider always systems with
b > 1. It is known that:

Theorem 1.1. A P3-design of order v exists if and only if v ⌘ 0 or 1 (mod 3), v � 4.

Observe that if a path P3 has vertices x, y, z and edges {x, y}, {y, z}, we will denote it
by [x, y, z].

2 Transversals and blocking sets in G-designs
The following results were proved in [4, 8]:

Theorem 2.1. If ⌃ = (X,B) is a G-design of order v and T is a blocking set of cardinality

p of ⌃ such that p 
v�1
r , then:

✓
p

2

◆
+ p ·


v � 1

r
� (p� 1)

�
� |B|.

Theorem 2.2. If ⌃ = (X,B) is a P3-design of order v and T is a transversal of cardinality

p of ⌃, then: ✓
p

2

◆
+ p · (v � p) � v(v � 1)/4.

where the inequality is the best possible.

Proof. To see that the inequality is the best possible, consider the system ⌃ = (X,B),
defined in X = {1, 2, . . . , 8}, and having for blocks:

B : [1, 2, 3], [1, 3, 4], [1, 4, 2], [5, 6, 7], [5, 7, 8], [5, 8, 6],

[1, 5, 3], [2, 5, 4], [1, 6, 3], [2, 6, 4],

[1, 7, 3], [2, 7, 4], [1, 8, 3], [2, 8, 4].

We can see that ⌃ is a P3-design of order v = 8 and that T = {1, 2, 5} is a blocking
set of ⌃. Further, we can verify that, from Theorem 2.2, the minimum possible value of p
for v = 8 is p = 3.

Observe that the minimum cardinality of a blocking set depends on the system and
not only on its order. The following two systems ⌃1 = (X,B1) and ⌃2 = (X,B2), are
defined both in X = {1, 2, . . . , 9}. Therefore their order is v = 9. However, the minimum
cardinality of a blocking set in them is different:

B1 : [1, 2, 4], [1, 3, 4], [2, 3, 5],

[1, 4, 7], [1, 5, 4], [1, 6, 4], [1, 7, 8], [1, 8, 4], [1, 9, 4],

[2, 5, 8], [2, 6, 5], [2, 7, 5], [2, 8, 9], [2, 9, 5],

[3, 6, 9], [3, 7, 6], [3, 8, 6], [3, 9, 7].
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B2 : [1, 2, 3], [1, 3, 4], [1, 4, 2], [5, 6, 7], [5, 7, 8], [5, 8, 6],

[1, 5, 3], [2, 5, 4], [1, 6, 3], [2, 6, 4],

[1, 7, 3], [2, 7, 4], [1, 8, 3], [2, 8, 4],

[1, 9, 7], [2, 9, 6], [3, 5, 9], [4, 9, 8].

We can see that:

• the minimum possible cardinality in ⌃1 is exactly p = 3 and that T1 = {1, 2, 3} is a
blocking set of ⌃2;

• the minimum possible cardinality in ⌃2 is p = 4 and that T2 = {1, 2, 5, 9} is a
blocking set of ⌃1.

Definition 2.3. Let ⌃ = (X,B) be a G-design. We say that a blocking set T of ⌃ is perfect

if there exists a constant C 2 N such that in every block B 2 B there are exactly C edges
having an extreme in T and the other extreme in CXT .

Observe that the blocking set T1 of the P3-design ⌃1, defined above, is perfect; while
the blocking set T2 of ⌃2 is not perfect.

3 Perfect blocking sets in P3-designs
We see the exact cardinality of any perfect blocking set in in P3-designs.

Theorem 3.1. If T is a perfect blocking set of any P3-design of order v, then

|T | =
v ±

p
v

2
,

and v must be a square.

Proof. Let ⌃ = (X,B) be a P3-design of order v and let T be a perfect blocking set of ⌃.
Observe that, from the definition of perfect blocking set, every block of ⌃ contains exactly
one edge having an extreme in T and the other extreme in CXT . Therefore, since |T | = p
and |CXT | = v � p, it follows:

p(v � p) =
v(v � 1)

4
,

hence:

p =
v ±

p
v

2
.

Since p is a positive integer, it follows that v must be a square.

From Theorem 3.2, if we consider a P3-design of order v having perfect blocking set,
since v ⌘ 0 or 1 (mod 4), then there is a positive integer k such that v = (2k)2 or v =
(2k + 1)2.
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Theorem 3.2. Let T be a perfect blocking set of any P3-design of order v. If |T |  |CXT |,
then:

(i) if v ⌘ 0 (mod 4), then v = (2k)2 and |T | = k(2k � 1), for any k 2 N ;

(ii) if v ⌘ 1 (mod 4), then v = (2k + 1)2 and |T | = k(2k + 1), for any k 2 N .

Proof. Let ⌃ = (X,B) be a P3-design of order v and let T be a perfect blocking set of ⌃,
such that |T |  |CXT |.

(i): If v ⌘ 0 (mod 4), then there exists k 2 N such that v = (2k)2. Further:

|T | =
v �

p
v

2
=

4k2 � 2k

2
= k(2k � 1).

(ii): If v ⌘ 1 (mod 4), then there exists k 2 N such that v = (2k + 1)2. Further:

|T | =
v �

p
v

2
=

(4k2 + 4k + 1)� (2k + 1)

2
= k(2k + 1).

4 Main results
In this section we determine the spectrum of P3-designs having perfect blocking sets.

Theorem 4.1. There exist P3-designs of order v having perfect blocking sets if and only if

v is a square.

Proof. Let ⌃ = (X,B) be a P3-design of order v and let T be a perfect blocking set of ⌃.
From Theorems 3.1 and 3.2, it follows that v must be a square.

Therefore, let v be an odd [resp. even] square number. This implies that v = (2k+ 1)2

and p = |T | = k(2k + 1) [resp. v = (2k)2 and p = |T | = k(2k � 1)].
If X is a set of cardinality v, partition X into 3 classes X1, X2, X3, defined as follows:

X1 = {a1, a2, . . . , ak(2k+1)} [resp.: X1 = {a1, a2, . . . , ak(2k�1)}];
X2 = {b1, b2, . . . , bk(2k+1)} [resp.: X2 = {b1, b2, . . . , bk(2k�1)}];
X3 = {c1, c2, . . . , c2k+1} [resp.: X3 = {c1, c2, . . . , c2k}].

To simplify, indicate by q the cardinality of X3, i.e. q = 2k + 1 [resp. q = 2k], and of
course p = k(2k + 1) [resp. p = k(2k � 1)].

Define in X the following families of paths P3:

F : [a1, a2, b1], [a1, a3, b1], . . . , [a1, ap, b1],

[a2, a3, b2], [a2, a4, b2], . . . , [a2, ap, b2],

...
[ap�2, ap�1, bp�2], [ap�2, ap, bp�2],

[ap�1, ap, bp�1];
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G1,2 : [a1, b1, c1], [a2, b2, c1], . . . , [aq�1, bq�1, c1],

[aq, bq, c2], [aq+1, bq+1, c2], . . . , [a2q�3, b2q�3, c2],

(the last index 2q � 3 is because of 2q � 3 = (q � 1) + (q � 2)),
[a2q�2, b2q�2, c3], [a2q�1, b2q�1, c3], . . . , [a3q�6, b3q�6, c3],

(the last index 3q � 6 is because of 2q � 3 = (q � 1) + (q � 2) + (q � 3)),
...

[ap�2, bp�2, cq�2], [ap�1, bp�1, cq�2],

[ap, bp, cq�1];

G2,2 : [a1, c1, c2], [a2, c1, c3], [a3, c1, c4], . . . , [aq�1, c1, cq],

[aq, c2, c3], [aq+1, c2, c4], [aq+2, c2, c5], . . . , [a2q�3, c2, c2q�3],

...
[ap�2, cq�2, cq�1], [ap�1, cq�2, cq],

[ap, cq�1, cq];

H1 : [a1, b2, b1], [a1, b3, b1], . . . , [a1, bp, b1],

[a2, b3, b2], [a2, b4, b2], . . . , [a2, bp, b2],

[a3, b4, b3], [a3, b5, b3], . . . , [a3, bp, b3],

...
[aq�1, bq, bq�1], [aq�1, bq+1, bq�1], . . . , [aq�1, bp, bq�1],

[aq, bq+1, bq], [aq, bq+2, bq], . . . , [aq, bp, bq],

[aq+1, bq+2, bq+1], [aq+1, bq+3, bq+1], . . . , [aq+1, bp, bq+1],

...
[a2q�3, b2q�2, b2q�3], [a2q�3, b2q�1, b2q�3], . . . , [a2q�3, bp, b2q�3],

...
[ap�2, bp�1, bp�2], [ap�2, bp, bp�2],

[ap�1, bp, bp�1];

H2 : [a1, c2, b1], [a1, c3, b1], . . . , [a1, cq, b1],

[a2, c2, b2], [a2, c3, b2], . . . , [a2, cq, b2],

[a3, c2, b3], [a3, c3, b3], . . . , [a3, cq, b3],

...
[aq�1, c2, bq�1], [aq�1, c3, bq�1], . . . , [aq�1, cq, bq�1],

[aq, c1, bq], [aq, c3, bq], . . . , [aq, cq, bq],
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[aq+1, c1, bq+1], [aq+1, c3, bq+1], . . . , [aq+1, cq, bq+1],

...
[a2q�3, c1, b2q�3], [a2q�3, c3, b2q�3], . . . , [a2q�3, cq, b2q�3],

...
[ap�2, c1, bp�2], [ap�2, c2, bp�2], [ap�2, c3, bp�2], . . . , [ap�2, cq�3, bp�2],

[ap�2, cq�1, bp�2], [ap�2, cq, bp�2],

[ap�1, c1, bp�1], [ap�1, c2, bp�1], [ap�1, c3, bp�1], . . . , [ap�1, cq�3, bp�1],
[ap�1, cq�1, bp�1], [ap�1, cq, bp�1],

[ap, c1, bp], [ap, c2, bp], [ap, c3, bp], . . . , [ap, cq�3, bp],
[ap, cq�2, bp], [ap, cq, bp].

If X = X1[X2[X3 and B = F [G1[G2[H1[H2, then it is possible to verify that
⌃ = (X,B) is a P3-design of order v = (2k + 1)2 [resp. v = (2k)2], for any k 2 N , and
that X1 having is a perfect blocking set of ⌃ of cardinality k(2k+1) [resp. v = k(2k�1)].

Indeed, observe that:

1. the family F has cardinality |F| =
�p
2

�
and its blocks contain exactly an edge having

both extremes in X1; no block of B � F contains two elements of X1; further they
contain all the edges {aj , bi}, for every i = 1, 2, . . . , p�1 and j = i+1, i+2, . . . , p;

2. the family G1 contains all the blocks of type [ai, bi, cj ], where:

• j = 1, for i = 1, 2, . . . , q � 1;
• j = 2, for i = q, q + 1, . . . , 2q � 3;

...
• j = q � 1, for i = p =

�q
2

�
= k(2k + 1) [resp. = k(2k � 1)];

3. the family G2 contains blocks of type {a, c0, c00}, where {a, c0} 2 X1 ⇥ X3 and
{c0, c00} 2 X3 ⇥X3;

4. the family H1 contains all the blocks of type [ai, bj , bi], for every i = 1, 2, . . . , p� 1
and j = i+ 1, . . . , p;

5. the family H2 contains all the blocks of type [ai, cj , bi], for every i = 1, 2, . . . , p and
j = 1, . . . , q, with exception for:

• j = 1, for i = 1, 2, . . . , q � 1;
• j = 2, for i = q, q + 1, . . . , 2q � 3;

...
• j = q � 1, for i = p = q.
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Abstract

The authors give a survey about the problem of parallelism in Steiner systems, pointing
out some open problems.

Keywords: Steiner system, (partial) parallel class.

Math. Subj. Class.: 05B05, 51E10

1 Introduction

A Steiner system S(h, k, v) is a k-uniform hypergraph ⌃ = (X,B) of order v, such that
every subset Y ✓ X of cardinality h has degree d(Y ) = 1 [4]. In the language of classical
design theory, an S(h, k, v) is a pair ⌃ = (X,B) where X is a finite set of cardinality
v, whose elements are called points (or vertices), and B is a family of k-subsets B ✓ X ,
called blocks, such that for every subset Y ✓ X of cardinality h there exists exactly one
block B 2 B containing Y .

Using more modern terminology, if Ku
n denotes the complete u-uniform hypergraph

of order n, then a Steiner system S(h, k, v) is a Kh
k -decomposition of Kh

v , i.e. a pair
⌃ = (X,B), where X is the vertex set of Kh

v and B is a collection of hypergraphs all
isomorphic to Kh

k (blocks) such that every edge of Kh
v belongs to exactly one hypergraph

of B. An S(2, 3, v) is usually called Steiner Triple System and denoted by STS(v); it is
well-kown that an STS(v) exists if and only if v ⌘ 1, 3 (mod 6), and contains v(v � 1)/6
triples. An S(3, 4, v) is usually called Steiner Quadruple System and denoted by SQS(v);
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it is well-kown that an SQS(v) exists if and only if v ⌘ 2, 4 (mod 6), and contains
v(v � 1)(v � 2)/24 quadruples.

Given a Steiner system ⌃ = (X,B), two distinct blocks B0, B00 2 B are said to be
parallel if B0 \B00 = ;. A partial parallel class of ⌃ is a family ⇧ ✓ B of parallel blocks.
If ⇧ is a partition of X , then it is said to be a parallel class of ⌃. Of course not every
Steiner system S(h, k, v) has a parallel class (for example, when v is not a multiple of k)
and so it is of considerable interest to determine in general just how large a partial parallel
class a Steiner system S(h, k, v) must have.

Open problem 1.1 (Parallelism Problem). Let 2  h < k < v, determine the maximum
integer ⇡(h, k, v) such that any S(h, k, v) has at least ⇡(h, k, v) distinct parallel blocks.

In this paper we will survey known results on the parallelism problem and give some
open problems, including Brouwer’s conjecture.

2 A result of Lindner and Phelps

In [6] C. C. Lindner and K. T. Phelps proved the following result.

Theorem 2.1. Any Steiner system S(k, k+1, v), with v � k4 +3k3 + k2 +1, has at least
d v�k+1

k+2 e parallel blocks.

Proof. Let ⌃ = (X,B) be a Steiner system S(k, k + 1, v), with v � k4 + 3k3 + k2 + 1.
Let ⇧ be a partial parallel class of maximum size, say t, and denote by P the set of vertices
belonging to the blocks of ⇧. Since ⇧ is a partial parallel class of maximum size, every
Y ✓ X � P , |Y | = k, is contained in one block B 2 B which intersects P in exactly one
vertex. Denote by ⌦ the set of all blocks having k elements in X�P (and so the remaining
vertex in P ) and by A the set of all vertices belonging to P and to some block of ⌦:

⌦ = {B 2 B : |B \ (X � P )| = k},
A = {x 2 P : x 2 B,B 2 ⌦}.

For every x 2 A, set
T (x) = {B � {x} : B 2 ⌦}.

We can see that ⌃0 = (X � P, T (x)) is a partial Steiner system of type S(k � 1, k,
v � (k + 1)t), with

|T (x)| 
�v�(k+1)t

k�1

�

k
,

and {T (x)}x2A is a partition of Pk(X�P ), i.e., the set of all k-subsets of X�P . Observe
that, if B is a block of ⇧ containing at least two vertices of A, then for each x 2 A\B we
must have

|T (x)| 
k
�v�(k+1)t�1

k�2

�

k � 1
.

Indeed, otherwise, let y be any other vertex belonging to A \ B and B1 be a block of
T (y). Since at most k

�v�(k+1)t�1
k�2

�
/(k � 1) of the blocks in T (x) can intersect the block

B1, then T (x) must contain a block B2 such that B1 \ B2 = ;. Hence, the family ⇧0 =
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(⇧ � {B}) [ {B1, B2} is a partial parallel class of blocks having size |⇧0| > |⇧|, a
contradiction. It follows that, for every block B 2 ⇧ containing at least two vertices of A,

X

x2A\B

|T (x)| 
(k + 1)k

�v�(k+1)t�1
k�2

�

k � 1
.

Therefore, if we denote by r the number of blocks of ⇧ containing at most one vertex of A
and by s the number of blocks of ⇧ containing at least two vertices of A, then

✓
v � (k + 1)t

k

◆
=
X

x2A

|T (x)| 
"
(k + 1)k

�v�(k+1)t�1
k�2

�

k � 1

#
r +

"�v�(k+1)t
k�1

�

k

#
s.

Now, consider the following two cases:

Case 1.

h
(k + 1)k

�v�(k+1)t�1
k�2

�
/(k � 1)

i

�v�(k+1)t

k�1

�
/k.

It follows
✓
v � (k + 1)t

k

◆
=
X

x2A

|T (x)| 
(r + s)

�v�(k+1)t
k�1

�

k
 t

"�v�(k+1)t
k�1

�

k

#
,

from which t � v�k+1
k+2 .

Case 2.

h
(k + 1)k

�v�(k+1)t�1
k�2

�
/(k � 1)

i
>
�v�(k+1)t

k�1

�
/k.

In this case, it follows t �
�
v � k3 � k2

�
/(k + 1) and so

t � v � k3 � k2

k + 1
� v � k + 1

k + 2
,

for v � k4 + 3k3 + k2 + 1.

Combining Cases 1 and 2 completes the proof of the theorem.

For Steiner triple and quadruple systems Theorem 2.1 gives the following result.

Corollary 2.2.

(i) Any STS(v), with v � 45, has at least
⌃
v�1
4

⌥
parallel blocks.

(ii) Any SQS(v), with v � 172, has at least
⌃
v�2
5

⌥
parallel blocks.

Regarding STS(v)s, the cases of v < 45 has been studied by C. C. Lindner and
K. T. Phelps in [6] and by G. Lo Faro in [7, 8], while for SQS(v)s, the cases of v < 172 has
been examined by G. Lo Faro in [9]. Collecting together their results gives the following
theorem.

Theorem 2.3.

(i) Any STS(v), with v � 9, has at least
⌃
v�1
4

⌥
parallel blocks.

(ii) Any SQS(v) has at least
⌃
v�2
5

⌥
parallel blocks, with the possible exceptions for

v = 20, 28, 34, 38.
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The following result due to D. E. Woolbright [12] improves the inequality of Lindner-
Phelps for Steiner triple systems of order v � 139.

Theorem 2.4. Any STS(v) has at least 3v�70
10 parallel blocks.

For large values of v (greater then v0 ⇡ 10000), the above result in turn is improved by
the following theorem which is due to A. E. Brouwer [1] and is valid for every admissible
v � 127.

Theorem 2.5. Any Steiner triple system of sufficiently large order v has at least
l
v�5v2/3

3

m

parallel blocks.

In 1981 A. E. Brouwer stated the following open problem.

Open problem 2.6 (Brouwer’s Conjecture). Any STS(v) has at least
⌃
v�c
3

⌥
parallel blocks,

for a constant c 2 N .

By similar arguments as in Theorem 2.1, C. C. Lindner and R. C. Mullin [11] proved a
further result for an arbitrary Steiner system S(h, k, v).

Theorem 2.7. Any Steiner system S(h, k, v), with

v � 2k[2k(k � 1)2(k � h)� (h� 1)(k � h� 1)] + h� 1

k2 � kh� h+ 1
,

has at least 2(v�h+1)
(k+1)(k�h+1) parallel blocks.

3 A result on parallelism in S(k, k + 1, v), for k � 3

For k � 3, in [3] (for k = 3) and in [2] (for k > 3) the author proved the following result.

Theorem 3.1. Any Steiner system S(k, k + 1, v), with k � 3, has at least
⌅
v+2
2k

⇧
parallel

blocks.

Proof. Let ⌃ = (X,B) be a Steiner system S(k, k + 1, v), with k � 3, and ⇧ be a family
of parallel blocks of ⌃ such that

P =
[

B2⇧

B

and
|X � P | � (k � 1)|⇧|+ 2(k � 1),

which implies v � 2k(|⇧|+1)�2. We will prove that ⌃ has a family ⇧0 of parallel blocks
such that |⇧0| > |⇧|. This is trivial if there exists a block B 2 ⌃ such that B ✓ X � P .
Therefore, we suppose that for every block B 2 B, B * X � P .

Note that, for any Y ✓ X �P, |Y | = k� 1, if R = (X �P )� Y , then there exists an
injection ' : R ! P defined as follows: for every x 2 R, '(x) is the element of P such
that Y [ {x,'(x)} 2 B. Now let

{ai,1, ai,2, . . . , ai,k+1} 2 ⇧, for i = 1, 2, . . . , r,

such that
{ai,1, ai,2, . . . , ai,k} ✓ '(R);
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let
{bji,1, b

j
i,2, . . . , b

j
i,k+1} 2 ⇧, for j = 1, 2, . . . , k � 1 and i = 1, 2, . . . , pj ,

such that

{bji,1, b
j
i,2, . . . , b

j
i,j} ✓ '(R) and {bji,j+1, . . . , b

j
i,k+1} \ '(R) = ;;

and let
{ci,1, ci,2, . . . , ci,k+1} 2 ⇧, for i = 1, 2, . . . , h,

such that
{ci,1, ci,2, . . . , ci,k+1} \ '(R) = ;.

Necessarily,

(k + 1)r +
k�1X

i=1

ipi � |'(R)| = |X � P |� (k � 1) � (k � 1)t+ k � 1.

Since t = r +
Pk�1

i=1 pi + h, it follows that

(k + 1)r +
k�1X

i=1

ipi � (k � 1)r + (k � 1)
k�1X

i=1

pi + (k � 1)h+ k � 1,

and so

r � 1

2

"
k�2X

i=1

pi(k � 1� i) + h(k � 1) + (k � 1)

#
.

Let xi,j 2 R such that '(xi,j) = ai,j and let yji,u 2 R such that '(yui,j) = bji,u.

Case 1. Suppose ai,k+1 /2 '(R), for each i = 1, 2, . . . , r. It follows that

|X � P |� (k � 1) =
k�1X

i=1

ipi + kr.

Since |X � P |� (k � 1) � (k � 1)t+ (k � 1) and t = h+ r +
Pk�1

i=1 pi, it follows

k�1X

i=1

ipi + kr � (k � 1)t+ k � 1 = (k � 1)h+ (k � 1)r + (k � 1)
k�1X

i=1

pi + k � 1,

hence

r �
k�2X

i=1

pi(k � 1� i) + h(k � 1) + (k � 1).

Now, consider the injection  : R0 ! P , where R0 = {xi,j 2 R : i 6= 1}, such that for all
xi,j 2 R0, (xi,j) is the element of '(R) satisfying the condition {x1,1, x1,2, . . . , x1,k�1,
xi,j , (xi,j)} 2 B.

If � is the family of the blocks {x1,1, x1,2, . . . , x1,k�1, xi,j , (xi,j)} and

L = {ci,j : i = 1, 2, . . . , h, j = 1, 2, . . . , k + 1} [ {b1i,1 : i = 1, 2, . . . , p1} [ {a1,k},
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then |�| = k(r � 1) and |L| = (k + 1)h+ p1 + 1, with

|�| = k(r � 1) = kr � k

�
k�2X

i=1

pi(k � i� 1) + hk(k � 1) + k2 � 2k > (k + 1)h+ p1 + 1 = |L|,

where we used the following inequalities, which hold for k � 3,

r �
k�2X

i=1

pi(k � i� 1) + h(k � 1) + k � 1,

hk(k � 1) > h(k + 1),

k2 � k > 1.

Then, it is possible to find an element x 2 P � L such that

{x1,1, x1,2, . . . , x1,k�1, 
�1(x), x} 2 B.

Further, there exists at least an element y 2 '(R), y 6= x, with x and y belonging to the
same Bx,y 2 ⇧. If

⇧0 = ⇧� {Bx,y} [ {{x1,1, x1,2, . . . , x1,k�1, 
�1(x), x}, Y [ {'�1(y), y}},

then ⇧0 is a family of parallel blocks of B with |⇧0| > |⇧|.

Case 2. Suppose there is at least one element ai,k+1 such that {ai,1, ai,2, . . . , ai,k+1} ✓
'(R). Assume that

{ai,1, ai,2, . . . , ai,k+1} ✓ '(R), for each i = 1, 2, . . . , r0

and

{ai,1, ai,2, . . . , ai,k} ✓ '(R), ai,k+1 /2 '(R), for each i = r0 + 1, . . . , r.

If r � 2, consider the injection µ : R00 ! P , where

R00 =
�
xi,j 2 R : (i, j) 6= (1, 1), (1, 2), . . . ,

�
1,
⌃
k�1
2

⌥�
, (2, 1), (2, 2), . . . ,

�
2,
⌃
k�1
2

⌥� 
,

such that for every xi,j 2 R00, µ(xi,j) is the element of '(R) satisfying the condition
n
x1,1, x1,2, . . . , x1,d k�1

2 e, x2,1, x2,2, . . . , x2,b k�1
2 c, xi,j , µ(xi,j)

o
2 B.

If �0 is the family of blocks
n
x1,1, x1,2, . . . , x1,d k�1

2 e, x2,1, x2,2, . . . , x2,b k�1
2 c, xi,j , µ(xi,j)

o

and

L0 = {ci,j : i = 1, 2, . . . , h, j = 1, 2, . . . , k + 1} [ {b1i,1 : i = 1, 2, . . . , p1},
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it follows that

|�0| � (k � 1)t�
k�1X

i=1

ipi = (k � 1)(r +
k�1X

i=1

pi + h)�
k�1X

i=1

ipi

= (k � 1)r + (k � 1)h+
k�2X

i=1

(k � 1� i)pi

� k + 1

2

k�2X

i=1

(k � 1� i)pi +
h(k2 � 1)

2
+

(k � 1)2

2

> (k + 1)h+ p1 + 1 = |L0|+ 1,

where we used

t = r + h+
k�1X

i=1

pi,

r � 1

2

"
k�2X

i=1

pi(k � i� 1) + h(k � 1) + (k � 1)

#
,

k � 3.

Therefore, it is possible to find at least two distinct elements x0, x00 belonging to two distinct
blocks B0, B00 of �0:

B0 =
n
x1,1, x1,2, . . . , x1,d k�1

2 e, x2,1, x2,2, . . . , x2,b k�1
2 c, µ

�1(x0), x0
o
,

B00 =
n
x1,1, x1,2, . . . , x1,d k�1

2 e, x2,1, x2,2, . . . , x2,b k�1
2 c, µ

�1(x00), x00
o
,

such that x0, x00 2 P � L0. Since x0 6= x00, we can suppose that

x0 6= a2,d k�1
2 e.

Therefore, it is possible to find an element y 2 '(R), y 6= x0, with x0 and y belonging to
the same block Bx,y of ⇧. It follows that there exists a family ⇧0 of parallel blocks with
|⇧0| = |⇧|+ 1.

If r = 1, then r0 = r = 1. Since

r � 1

2

"
k�2X

i=1

pi(k � i� 1) + h(k � 1) + (k � 1)

#
,

then
k�2X

i=1

pi(k � i� 1) + h(k � 1) + (k � 1)  2.

It follows necessarily: k = 3, h = 0, p1 = 0. Hence t = p2 + 1, |X � P | = 2p2 + 6, and
v = 6p2 + 10.

If p2 = 0, then v = 10 and t = 1, and it is well-known that the unique STS(10) has
two parallel blocks.
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If p2 � 1, consider the blocks

B0 = {x1,1,'
�1(b21,1), X1,2, x

0},
B00 = {x1,1,'

�1(b21,1), X1,3, x
00},

where x0, x00 2 '(R). Since x0 6= x00, we can assume x0 6= b21,2 and by applying the same
technique as the previous cases we can find a family ⇧0 of parallel blocks with |⇧0| =
|⇧|+ 1.

Therefore, it is proved that if ⌃ = (X,B) is any S(k, k + 1, v), with k � 3, and
⇧ is a family of parallel blocks of ⌃ such that |⇧| = t and |X � P | � (k � 1)t +
2(k � 1), where P =

S
B2⇧ B, then ⌃ has a partial parallel class ⇧0 of cardinality |⇧0| >

|⇧|. It follows that, if t = b v�2(k�1)
2k c, then ⌃ has a partial parallel class of cardinality

t0 = t+ 1 =
⌅
v+2
2k

⇧
.

By applying the same technique used in the previous proof, M. C. Marino and
R. S. Rees [10] improved the lower bound stated by Theorem 3.1 to

j
2(v+2)
3(k+1)

k
.

4 Open problems

(a) Remove the exceptions of Theorem 2.3.

It is known that ⇡(3, 4, v) =
⌅
v
4

⇧
for v = 4, 8, 10, 14. In [5] by means of an exhaus-

tive computer search the authors classified the Steiner quadruple systems of order 16
up to isomorphism; following a private conversation, it turned out that the computer
search showed that every SQS(16) has a parallel class and so ⇡(3, 4, 16) = 4.

(b) Determine the smallest v such that ⇡(3, 4, v) 6=
⌅
v
4

⇧
.

Concerning the parallelism in Steiner systems, an interesting question arises when
we consider resolvable systems. A Steiner system ⌃ = (X,B) is said to be resolv-
able provided B admits a partition R (resolution) into parallel classes. A resolvable
Steiner triple system is called Kirkman Triple System (KTS, in short). It is well-
known that a KTS(v) exists if and only if v ⌘ 3 (mod 6) (any resolution contains
(v � 1)/2 parallel classes of size v/3).

(c) Problem of A. Rosa (1978): Let ⌃ = (X,B) be any KTS(v) and R be a resolution
of ⌃. Determine a lower bound for the size of partial parallel classes of ⌃ in which
no two triples come from the same parallel class of R.

The problem of A. Rosa can be posed for any resolvable Steiner systems S(h, k, v):

(c’) Problem of A. Rosa: Let ⌃ = (X,B) be any Steiner system S(h, k, v) and R be a
resolution of ⌃. Determine a lower bound for the size of partial parallel classes of
⌃ in which no two blocks come from the same parallel class of R.
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Abstract

Signed graphs are graphs whose edges get a sign +1 or �1 (the signature). Signed
graphs can be studied by means of graph matrices extended to signed graphs in a natural
way. Recently, the spectra of signed graphs have attracted much attention from graph
spectra specialists. One motivation is that the spectral theory of signed graphs elegantly
generalizes the spectral theories of unsigned graphs. On the other hand, unsigned graphs
do not disappear completely, since their role can be taken by the special case of balanced
signed graphs.

Therefore, spectral problems defined and studied for unsigned graphs can be considered
in terms of signed graphs, and sometimes such generalization shows nice properties which
cannot be appreciated in terms of (unsigned) graphs. Here, we survey some general results
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on the adjacency spectra of signed graphs, and we consider some spectral problems which
are inspired from the spectral theory of (unsigned) graphs.

Keywords: Signed graph, adjacency matrix, eigenvalue, unbalanced graph.

Math. Subj. Class.: 05C22, 05C50

1 Introduction

A signed graph � = (G,�) is a graph G = (V,E), with vertex set V and edge set E,
together with a function � : E ! {+1,�1} assigning a positive or negative sign to each
edge. The (unsigned) graph G is said to be the underlying graph of �, while the function
� is called the signature of �. Edge signs are usually interpreted as ±1. In this way, the
adjacency matrix A(�) of � is naturally defined following that of unsigned graphs, that is
by putting +1 or �1 whenever the corresponding edge is either positive or negative, re-
spectively. One could think about signed graphs as weighted graphs with edges of weights
in {0, 1,�1}, however the two theories are very different. In fact, in signed graphs the
product of signs has a prominent role, while in weighted graphs it is the sum of weights
that is relevant. A walk is positive or negative if the product of corresponding weights is
positive or negative, respectively. Since cycles are special kinds of walks, this definition
applies to them as well and we have the notions of positive and negative cycles.

Many familiar notions related to unsigned graphs directly extend to signed graphs. For
example, the degree dv of a vertex v in � is simply its degree in G. A vertex of degree
one is said to be a pendant vertex. The diameter of � = (G,�) is the diameter of its
underlying graph G, namely, the maximum distance between any two vertices in G. Some
other definitions depend on the signature, for example, the positive (resp., negative) degree
of a vertex is the number of positive (negative) edges incident to the vertex, or the already
mentioned sign of a walk or cycle. A signed graph is balanced if all its cycles are positive,
otherwise it is unbalanced. Unsigned graphs are treated as (balanced) signed graphs where
all edges get a positive sign, that is, the all-positive signature.

An important feature of signed graphs is the concept of switching the signature. Given a
signed graph � = (G,�) and a subset U ✓ V (G), let �U be the signed graph obtained from
� by reversing the signs of the edges in the cut [U, V (G)\U ], namely ��U (e) = ���(e) for
any edge e between U and V (G)\U , and ��U (e) = ��(e) otherwise. The signed graph �U

is said to be (switching) equivalent to � and ��U to ��, and we write �U ⇠ � or ��U ⇠ ��.
It is not difficult to see that each cycle in � maintains its sign after a switching. Hence, �U

and � have the same positive and negative cycles. Therefore, the signature is determined
up to equivalence by the set of positive cycles (see [82]). Signatures equivalent to the
all-positive one (the edges get just the positive sign) lead to balanced signed graphs: all
cycles are positive. By � ⇠ + we mean that the signature � is equivalent to the all-positive
signature, and the corresponding signed graph is equivalent to its underlying graph. Hence,
all signed trees on the same underlying graph are switching equivalent to the all-positive
signature. In fact, signs are only relevant in cycles, while the edge signs of bridges are
irrelevant.

Note that (unsigned) graph invariants are preserved under switching, but also by vertex

E-mail addresses: fbelardo@unina.it (Francesco Belardo), cioaba@udel.edu (Sebastian M. Cioabă),
koolen@ustc.edu.cn (Jack Koolen), jfwang@sdut.edu.cn (Jianfeng Wang)
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permutation, so we can consider the isomorphism class of the underlying graph. If we
combine switching equivalence and vertex permutation, we have the more general concept
of switching isomorphism of signed graphs. For any not given notation and basic results in
the theory of signed graphs, the reader is referred to Zaslavsky [82] (see also the dynamic
surveys [80, 81]).

We next consider matrices associated to signed graphs. For a signed graph � = (G,�)
and a graph matrix M = M(�), the M -polynomial is �M (�, x) = det(xI � M(�)).
The spectrum of M is called the M -spectrum of the signed graph �. Usually, M is the
adjacency matrix A(�) or the Laplacian matrix L(�) = D(G)�A(�), but in the literature
one can find their normalized variants or other matrices. In the remainder, we shall mostly
restrict to M being the adjacency matrix A(�). The adjacency matrix A(�) = (aij) is
the symmetric {0,+1,�1}-matrix such that aij = �(ij) whenever the vertices i and j are
adjacent, and aij = 0 otherwise. As with unsigned graphs, the Laplacian matrix is defined
as L(�) = D(G) � A(�), where D(G) is the diagonal matrix of vertices degrees (of the
underlying graph G). In the sequel we will mostly restrict to the adjacency matrix.

Switching has a matrix counterpart. In fact, let � and �U be two switching equivalent
graphs. Consider the matrix SU = diag(s1, s2, . . . , sn) such that

si =

(
+1, i 2 U ;

�1, i 2 � \ U.

The matrix SU is the switching matrix. It is easy to check that

A(�U ) = SU A(�)SU and L(�U ) = SU L(�)SU .

Hence, signed graphs from the same switching class share similar graph matrices by means
of signature matrices (signature similarity). If we also allow permutation of vertices, we
have signed permutation matrices, and we can speak of (switching) isomorphic signed
graphs. Switching isomorphic signed graphs are cospectral, and their matrices are signed-
permutationally similar. From the eigenspace viewpoint, the eigenvector components are
also switched in signs and permuted. Evidently, for each eigenvector, there exists a suitable
switching such that all components become nonnegative.

In the sequel, let �1(�) � �2(�) � · · · � �n(�) denote the eigenvalues of the ad-
jacency matrix A(�) of the signed graph � of order n; they are all real since A(�) is a
real symmetric matrix. The largest eigenvalue �1(�) is sometimes called the index of �.
If � contains at least one edge, then �1(�) > 0 > �n(�) since the sum of the eigen-
values is 0. Note that in general, the index �1(�) does not equal the spectral radius
⇢(�) = max{|�i| : 1  i  n} = max{�1,��n} because the Perron-Frobenius The-
orem is valid only for the all-positive signature (and those equivalent to it). For example,
an all �1 signing (all-negative signature) of the complete graph on n � 3 vertices will have
eigenvalues �1 = · · · = �n�1 = 1 and �n = �(n� 1).

We would like to end this introduction by mentioning what may be the first paper
on signed graph spectra [82]. In that paper, Zaslavsky showed that 0 appears as an L-
eigenvalue in connected signed graphs if and only if the signature is equivalent to the all-
positive one, that is, � is a balanced signed graph.

For notation not given here and basic results on graph spectra, the reader is referred
to [23, 22], for some basic results on the spectra of signed graphs, to [83], and for some
applications of spectra of signed graphs, to [27].
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In Section 2, we survey some important results on graph spectra which are valid in
terms of the spectra of signed graphs. In Section 3 we collect some open problems and
conjectures which are open at the writing of this note.

2 What do we lose with signed edges?

From the matrix viewpoint, when we deal with signed graphs we have symmetric {0, 1,
�1}-matrices instead of just symmetric {0, 1}-matrices. Clearly, the results coming from
the theory of nonnegative matrices can not be applied directly to signed graphs. Perhaps
the most important result that no longer holds for adjacency matrices of signed graphs is
the Perron-Frobenius theorem. We saw one instance in the introduction and we will see
some other consequences of the absence of Perron-Frobenius in the next section. Also, the
loss of non-negativity has other consequences related to counting walks and the diameter
of the graph (Theorem 3.10). On the other hand, all results based on the symmetry of the
matrix will be still valid in the context of signed graphs with suitable modifications. In this
section, we briefly describe how some well-known results are (possibly) changed when
dealing with matrices of signed graphs.

We start with the famous Coefficient Theorem, also known as Sachs Formula. This for-
mula, perhaps better than others, describes the connection between the eigenvalues and the
combinatorial structure of the signed graph. It was given for unsigned graphs in the 1960s
independently by several researchers (with different notation), but possibly first stated by
Sachs (cf. [23, Theorem 1.2] and the subsequent remark). The signed-graph variant can be
easily given as follows. An elementary figure is the graph K2 or Cn (n � 3). A basic figure
(or linear subgraph, or sesquilinear subgraph) is the disjoint union of elementary figures. If
B is a basic figure, then denote by C(B) the class of cycles in B, with c(B) = |C(B)|, and
by p(B) the number of components of B and define �(B) =

Q
C2C(B) �(C). Let Bi be

the set of basic figures on i vertices.

Theorem 2.1 (Coefficient Theorem). Let � be a signed graph and let �(�, x) =Pn
i=0 aix

n�i be its adjacency characteristic polynomial. Then, a0 = 1 and, for i > 0,

ai =
X

B2Bi

(�1)p(B)2c(B)�(B).

Another important connection between the eigenvalues and the combinatorial structure
of a signed graph is given by the forthcoming theorem. If we consider unsigned graphs, it
is well known that the k-th spectral moment gives the number of closed walks of length k
(cf. [22, Theorem 3.1.1]). Zaslavsky [83] observed that a signed variant holds for signed
graphs as well, and from his observation we can give the subsequent result.

Theorem 2.2 (Spectral Moments). Let � be a signed graph with eigenvalues �1 � · · · �
�n. If W±

k denotes the difference between the number of positive and negative closed
walks of length k, then

W±
k =

nX

i=1

�k
i .

Next, we recall another famous result for the spectra of graphs, that is, the Cauchy
Interlacing Theorem. Its general form holds for principal submatrices of real symmetric
matrices (see [22, Theorem 1.3.11]). It is valid in signed graphs without any modification
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to the formula. For a signed graph � = (G,�) and a subset of vertices U , then � � U is
the signed graph obtained from � by deleting the vertices in U and the edges incident to
them. For v 2 V (G), we also write � � v instead of � � {v}. Similar notation applies
when deleting subsets of edges.

Theorem 2.3 (Interlacing Theorem for Signed Graphs). Let � = (G,�) be a signed graph.
For any vertex v of �,

�1(�) � �1(�� v) � �2(�) � �2(�� v) � · · · � �n�1(�� v) � �n(�).

In the context of subgraphs, there is another famous result which is valid in the theory
of signed graphs. In fact, it is possible to give the characteristic polynomial as a linear
combination of vertex- or edge-deleted subgraphs. Such formulas are known as Schwenk’s
Formulas (cf. [22, Theorem 2.3.4], see also [5]). As above, � � v (� � e) stands for the
signed graph obtained from � in which the vertex v (resp., edge e) is deleted. Also, to make
the formulas consistent, we set �(;, x) = 1.

Theorem 2.4 (Schwenk’s Formulas). Let � be a signed graph and v (resp., e = uv) one
of its vertices (resp., edges). Then

�(�, x) = x�(�� v, x)�
X

u⇠v

�(�� u� v, x)� 2
X

C2Cv

�(C)�(�� C, x),

�(�, x) = �(�� e, x)� �(�� u� v, x)� 2
X

C2Ce

�(C)�(�� C, x),

where Ca denotes the set of cycles passing through a.

Finally, a natural question is the following: if we fix the underlying graph, how much
can the eigenvalues change when changing the signature? Given a graph with cyclomatic
number ⇠, then there are at most 2⇠ nonequivalent signatures as for each independent cycle
one can assign either a positive or a negative sign. However, among the 2⇠ signatures,
some of them might lead to switching isomorphic graphs, as we see later. In general, the
eigenvalues coming from each signature cannot exceed in modulus the spectral radius of
the underlying graph, as is shown in the last theorem of this section.

Theorem 2.5 (Eigenvalue Spread). For a signed graph � = (G,�), let ⇢(�) be its spectral
radius. Then ⇢(�)  ⇢(G).

Proof. Clearly, ⇢(�) equals �1(�) or ��n(�). Let A be the adjacency matrix of (G,+),
and A� be the adjacency matrix of � = (G,�). For a vector X = (x1, . . . , xn)T , let
|X| = (|x1|, . . . , |xn|)T .

If X is a unit eigenvector corresponding to �1(A�), by the Rayleigh quotient we get

�1(G,�) = XTA�X  |X|TA|X|  max
z:zT z=1

zTAz = �1(G,+).

Similarly, if X is a unit eigenvector corresponding to the least eigenvalue �n(A�), by the
Rayleigh quotient we get

�n(G,�) = XTA�X � |X|T (�A)|X| � min
z:zT z=1

zT (�A)z = �n(G,�) = ��1(G,+).

By gluing together the two inequalities, we get the assertion.
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It is evident from the preceding results that the spectral theory of signed graphs well
encapsulates and extends the spectral theory of unsigned graphs. Perhaps, we can say that
adding signs to the edges just gives more variety to the spectral theory of graphs. This fact
was already observed with the Laplacian of signed graphs, which nicely generalizes the
results coming from the Laplacian and signless Laplacian theories of unsigned graphs. It
is worth mentioning that thanks to the spectral theory it was possible to give matrix-wise
definitions of the signed graph products [29], line graphs [6, 83] and subdivision graphs [6].

3 Some open problems and conjectures

In this section we consider some open problems and conjectures which are inspired from
the corresponding results in the spectral theory of unsigned graphs. We begin with the
intriguing concept of “sign-symmetric graph” which is a natural signed generalization of
the concept of bipartite graph.

3.1 Symmetric spectrum and sign-symmetric graphs

One of the most celebrated results in the adjacency spectral theory of (unsigned) graphs is
the following.

Theorem 3.1.

1. A graph is bipartite if and only if its adjacency spectrum is symmetric with respect
to the origin.

2. A connected graph is bipartite if and only if its smallest eigenvalue equals the nega-
tive of its spectral radius.

For the first part, one does not need Perron-Frobenius theorem. To the best of our
knowledge, Perron-Frobenius is crucial for the second part (see [10, Section 3.4] or [33,
Section 8.8] or [76, Chapter 31]).

On the other hand, in the larger context of signed graphs the symmetry of the spectrum
is not a privilege of bipartite and balanced graphs. A signed graph � = (G,�) is said to be
sign-symmetric if � is switching isomorphic to its negation, that is, �� = (G,��). It is
not difficult to observe that the signature-reversal changes the sign of odd cycles but leaves
unaffected the sign of even cycles. Since bipartite (unsigned) graphs are odd-cycle free, it
happens that bipartite graphs are a special case of sign-symmetric signed graphs, or better
to say, if a signed graph � = (G,�) has a bipartite underlying graph G, then � and �� are
switching equivalent. In Figure 1 we depict an example of a sign-symmetric graph. Here
and in the remaining pictures as well negative edges are represented by heavy lines and
positive edges by thin lines.
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Figure 1: A sign-symmetric signed graph.
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If � is switching isomorphic to ��, then A and �A are similar and we immediately get:

Theorem 3.2. Let � be a sign-symmetric graph. Then its adjacency spectrum is symmetric
with respect to the origin.

The converse of the above theorem is not true, and counterexamples arise from the
theory of Seidel matrices. The Seidel matrix of a (simple and unsigned) graph G is S(G) =
J � I � 2A, so that adjacent vertices get the value �1 and non-adjacent vertices the value
+1. Hence, the Seidel matrix of an unsigned graph can be interpreted as the adjacency
matrix of a signed complete graph. The signature similarity becomes the famous Seidel
switching. The graph in Figure 2 belongs to a triplet of simple graphs on 8 vertices sharing
the same symmetric Seidel spectrum but not being pairwise (Seidel-)switching isomorphic.
In [25, p. 253], they are denoted as A1, its complement Ā1 and A2 (note, A2 and its
complement Ā2 are Seidel switching isomorphic). In fact, A1 and its complement Ā1 are
cospectral but not Seidel switching isomorphic. In terms of signed graphs, the signed graph
A0

1 whose adjacency matrix is S(A1) has symmetric spectrum but it is not sign-symmetric.
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Figure 2: The graph A1.

Note that the disjoint union of sign-symmetric graphs is again sign-symmetric. Since
the above counterexamples involve Seidel matrices which are the same as signed complete
graphs, the following is a natural question.

Problem 3.3. Are there non-complete connected signed graphs whose spectrum is sym-
metric with respect to the origin but they are not sign-symmetric?

Observe that signed graphs with symmetric spectrum have odd-indexed coefficients of
the characteristic polynomial equal to zero and all spectral moments of odd order are also
zero. A simple application of Theorems 2.1 and 2.2 for i = 3 or k = 3, respectively, leads
to equal numbers of positive and negative triangles in the graph. When we consider i = 5
or k = 5, we cannot say that the numbers of positive and negative pentagons are the same.
The following corollary is an obvious consequence of the latter discussion (cf. also [25,
Theorem 1]).

Corollary 3.4. A signed graph containing an odd number of triangles cannot be sign-
symmetric.

Remark 3.5. As we mentioned in Section 2, a signed graph with cyclomatic number ⇠ has
exactly 2⇠ not equivalent signatures (see also [55]). On the other hand, the symmetries, if
any, in the structure of the underlying graph can make several of those signatures lead to
isomorphic signed graphs.
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3.2 Signed graphs with few eigenvalues

There is a well-known relation between the diameter and the number of distinct eigenvalues
of an unsigned graph (cf. [22, Theorem 3.3.5]). In fact, the number of distinct eigenvalues
cannot be less than the diameter plus 1. With signed graphs, the usual proof based on
the minimal polynomial does not hold anymore. Indeed, the result is not true with signed
graphs. As we can see later, it is possible to build signed graphs of any diameter having
exactly two distinct eigenvalues.

For unsigned graphs, the identification of graphs with a small number of eigenvalues
is a well-known problem. The unique connected graph having just two distinct eigen-
values is the complete graph Kn. If a graph is connected and regular, then it has three
distinct eigenvalues if and only if it is strongly regular (see [22, Theorem 3.6.4]). At the
1995 British Combinatorial Conference, Haemers posed the problem of finding connected
graphs with three eigenvalues which are neither strongly regular nor complete bipartite.
Answering Haemers’ question, van Dam [71, 72] and Muzychuk and Klin [58] described
some constructions of such graphs. Other constructions were found by De Caen, van Dam
and Spence [24] who also noticed that the first infinite family nonregular graphs with three
eigenvalues already appeared in the work of Bridges and Mena [9]. The literature on this
topic contains many interesting results and open problems. For example, the answer to the
following intriguing problem posed by De Caen (see [73, Problem 9]) is still unknown.

Problem 3.6. Does a graph with three distinct eigenvalues have at most three distinct
degrees?

Recent progress was made recently by van Dam, Koolen and Jia [70] who constructed
connected graphs with four or five distinct eigenvalues and arbitrarily many distinct de-
grees. These authors posed the following bipartite version of De Caen’s problem above.

Problem 3.7. Are there connected bipartite graphs with four distinct eigenvalues and more
than four distinct valencies?

For signed graphs there are also some results. In 2007, McKee and Smyth [57] con-
sidered symmetric integral matrices whose spectral radius does not exceed 2. In their nice
paper, they characterized all such matrices and they further gave a combinatorial interpreta-
tion in terms of signed graphs. They defined a signed graph to be cyclotomic if its spectrum
is in the interval [2,�2]. The maximal cyclotomic signed graphs have exactly two distinct
eigenvalues. The graphs appearing in the following theorem are depicted in Figure 3.

Theorem 3.8. Every maximal connected cyclotomic signed graph is switching equivalent
to one of the following:

• For some k = 3, 4, . . ., the 2k-vertex toroidal tessellation T2k.
• The 14-vertex signed graph S14.
• The 16-vertex signed hypercube S16.

Further, every connected cyclotomic signed graph is contained in a maximal one.

It is not difficult to check that all maximal cyclotomic graphs are sign-symmetric. Note
that for k even T2k has a bipartite underlying graph, while for k odd T2k has not bipartite
underlying graph but it is sign-symmetric, as well. The characteristic polynomial to T2k is
(x�2)k(x+2)k, so T2k is an example of a signed graph with two distinct eigenvalues and
diameter bk

2 c.
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S14

u1

v1

uk

vk

u1

v1
T2k

S16

Figure 3: Maximal cyclotomic signed graphs.

Problem 3.9 (Signed graphs with exactly 2 distinct eigenvalues). Characterize all con-
nected signed graphs whose spectrum consists of two distinct eigenvalues.

In the above category we find the complete graphs with homogeneous signatures
(Kn,+) and (Kn,�), the maximal cyclotomic signed graphs T2k, S14 and S16, and that
list is not complete (for example, the unbalanced 4-cycle C�

4 and the 3-dimensional cube
whose cycles are all negative must be included). There is already some literature on this
problem, and we refer the readers to see [30, 62]. All such graphs have in common the
property that positive and negative walks of length greater than or equal to 2 between two
different and non-adjacent vertices are equal in number. In this way we can consider a
signed variant of the diameter. In a connected signed graph, two vertices are at signed
distance k if they are at distance k and the difference between the numbers of positive and
negative walks of length k among them is nonzero, otherwise the signed distance is set to
0. The signed diameter of �, denoted by diam±(�), is the largest signed distance in �.
Recall that the (i, j)-entry of Ak equals the difference between the numbers of positive
and negative walks of length k among the vertices indexed by i and j. Then we have the
following result (cf. [22, Theorem 3.3.5]):

Theorem 3.10. Let � be a connected signed graph with m distinct eigenvalues. Then
diam±(�)  m� 1.

Proof. Assume the contrary, so that � has vertices, say s and t, at signed distance p � m.
The adjacency matrix A of � has minimal polynomial of degree m, and so we may write
Ap =

Pm�1
k=0 akAk. This yields the required contradiction because the (s, t)-entry on the

right is zero, while the (s, t)-entry on the left is non-zero.

Recently, Huang [47] constructed a signed adjacency matrix of the n-dimensional hy-
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percube whose eigenvalues are ±
p
n, each with multiplicity 2n�1. Using eigenvalue in-

terlacing, Huang proceeds to show that the spectral radius (and therefore, the maximum
degree) of any induced subgraph on 2n�1 + 1 vertices of the n-dimensional hypercube, is
at least

p
n. This led Huang to a breakthrough proof of the Sensitivity Conjecture from

theoretical computer science. We will return to Huang’s construction after Theorem 3.23.

3.3 The largest eigenvalue of signed graphs

In the adjacency spectral theory of unsigned graphs the spectral radius is the largest eigen-
value and it has a prominent role because of its algebraic features, its connections to combi-
natorial parameters such as the chromatic number, the independence number or the clique
number and for its relevance in applications. There is a large literature on this subject, see
[11, 20, 43, 45, 60, 68, 78] for example.

As already observed, the presence of negative edges leads invalidates of the Perron-
Frobenius theorem, and we lose some nice features of the largest eigenvalue:

• The largest eigenvalue may not be the spectral radius although by possibly changing
the signature to its negative, this can be achieved.

• The largest eigenvalue may not be a simple eigenvalue.

• Adding edges might reduce the largest eigenvalue.

Therefore one might say that it not relevant to study signed graphs in terms of the magnitude
of the spectral radius. In this respect, Theorem 2.3 and Theorem 2.5 are helpful because the
spectral radius does not decrease under the addition of vertices (together with some incident
edges), and the spectral radius of the underlying graph naturally limits the magnitude of
the eigenvalues of the corresponding signed graph. For the same reason, the theory of limit
points for the spectral radii of graph sequences studied by Hoffman in [43, 45] is still valid
in the context of signed graphs.

The Hoffman program is the identification of connected graphs whose spectral radii do
not exceed some special limit points established by A. J. Hoffman [45]. The smallest limit
point for the spectral radius is 2 (the limit point of the paths of increasing order), so the first
step would be to identify all connected signed graphs whose spectral radius does not exceed
2. The careful reader notices that the latter question has already been completely solved
by Theorem 3.8. Therefore, the problem jumps to the next significant limit point, which isp

2 +
p
5 = ⌧

1
2 + ⌧�

1
2 , where ⌧ is the golden mean. This limit point is approached from

above (resp., below) by the sequence of positive (resp., negative) cycles with exactly one
pendant vertex and increasing girth.

In [11, 19], the authors identified all connected unsigned graphs whose spectral radius
does not exceed

p
2 +

p
5. Their structure is fairly simple: they mostly consist of paths

with one or two additional pendant vertices. Regarding signed graphs, we expect that the
family is quite a bit larger than that of unsigned graphs. A taste of this prediction can be
seen by comparing the family of Smith Graphs (the unsigned graphs whose spectral radius
is 2, cf. Figure 2.4 in [23]) with the graphs depicted in Figure 3. On the other hand, the
graphs identified by Cvetković et al. acts as a “skeleton” (that is, appear as subgraphs) of
the signed graphs with the same bound on the spectral radius.

Problem 3.11 (Hoffman Program for Signed Graphs). Characterize all connected signed
graphs whose spectral radius does not exceed

p
2 +

p
5.
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3.4 The smallest eigenvalue of signed graphs

Unsigned graphs with smallest eigenvalue at least �2 have been characterized in a veritable
tour de force by several researchers. We mention here Cameron, Goethals, Seidel and Shult
[15], Bussemaker and Neumaier [13] who among other things, determined a complete list
of minimal forbidden subgraphs for the class of graphs with smallest eigenvalue at least
�2. A monograph devoted to this topic is [21] whose Chapter 1.4 tells the history about
the characterization of graphs with smallest eigenvalue at least �2.

Theorem 3.12. If G is a connected graph with smallest eigenvalue at least �2, then G is
a generalized line graph or has at most 36 vertices.

In the case of unsigned graphs, their work was extended, under some minimum degree
condition, from �2 to �1 �

p
2 by Hoffman [44] and Woo and Neumaier [79] and more

recently, to �3 by Koolen, Yang and Yang [51].
For signed graphs, some of the above results were extended by Vijayakumar [77] who

showed that any connected signed graph with smallest eigenvalue less than �2 has an
induced signed subgraph with at most 10 vertices and smallest eigenvalue less than �2.
Chawathe and Vijayakumar [17] determined all minimal forbidden signed graphs for the
class of signed graphs whose smallest eigenvalue is at least �2. Vijayakumar’s result [77,
Theorem 4.2] was further extended by Koolen, Yang and Yang [51, Theorem 4.2] to signed
matrices whose diagonal entries can be 0 or �1. These authors introduced the notion of
s-integrable graphs. For an unsigned graph G with smallest eigenvalue �min and adjacency
matrix A, the matrix A � b�mincI is positive semidefinite. For a natural number s, G is
called s-integrable if there exists an integer matrix N such that s(A � b�mincI) = NNT .
Note that generalized line graphs are exactly the 1-integrable graphs with smallest eigen-
value at least �2. In a straightforward way, the notion of s-integrabilty can be extended
to signed graphs. Now we can extend Theorem 3.12 to the class of signed graphs with
essentially the same proof.

Theorem 3.13. Let � be a connected signed graph with smallest eigenvalue at least �2.
Then � is 2-integrable. Moreover, if � has at least 121 vertices, then � is 1-integrable.

As E8 has 240 vectors of (squared) norm 2, one can take from each pair of such a
vector and its negative exactly one to obtain a signed graph on 120 vertices with smallest
eigenvalue �2 that is not 1-integrable. Many of these signed graphs are connected.

Koolen, Yang and Yang [51] proved that if a connected unsigned graph has smallest
eigenvalue at least �3 and valency large enough, then G is 2-integrable. An interesting
direction would be to prove a similar result for signed graphs.

Problem 3.14. Extend [51, Theorem 1.3] to signed graphs.

An interesting related conjecture was posed by Koolen and Yang [52].

Conjecture 3.15. There exists a constant c such that if G is an unsigned graph with small-
est eigenvalue at least �3, then G is c-integrable.

Koolen, Yang and Yang [51] also introduced (�3)-maximal graphs or maximal graphs
with smallest eigenvalue �3. These are connected graphs with smallest eigenvalue at least
�3 such any proper connected supergraph has smallest eigenvalue less than �3. Koolen
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and Munemasa [50] proved that the join between a clique on three vertices and the comple-
ment of the McLaughlin graph (see Goethals and Seidel [36] or Inoue [48] for a description)
is (�3)-maximal.

Problem 3.16. Construct maximal signed graphs with smallest eigenvalue at least �3.

Woo and Neumaier [79] introduced the notion of Hoffman graphs, which has proved
an essential tool in many results involving the smallest eigenvalue of unsigned graphs (see
[51]). Perhaps a theory of signed Hoffman graphs is possible as well.

Problem 3.17. Extend the theory of Hoffman graphs to signed graphs.

3.5 Signatures minimizing the spectral radius

As observed in Section 2, an unsigned graph with cyclomatic number ⇠ gives rise to at
most 2⇠ switching non-isomorphic signed graphs. In view of Theorem 2.5, we know that,
up to switching equivalency, the signature leading to the maximal spectral radius is the
all-positive one. A natural question is to identify which signature leads to the minimum
spectral radius.

Problem 3.18 (Signature minimizing the spectral radius). Let � be a simple and connected
unsigned graph. Determine the signature(s) �̄ such that for any signature � of �, we have
⇢(�, �̄)  ⇢(�,�).

This problem has important connections and consequences in the theory of expander
graphs. Informally, an expander is a sparse and highly connected graph. Given an integer
d � 3 and � a real number, a �-expander is a connected d-regular graph whose (unsigned)
eigenvalues (except d and possibly �d if the graph is bipartite) have absolute value at most
�. It is an important problem in mathematics and computer science to construct, for fixed
d � 3, infinite families of �-expanders for � small (see [8, 46, 56] for example). From
work of Alon-Boppana (see [18, 46, 61]), we know that � = 2

p
d� 1 is the best bound we

can hope for and graphs attaining this bound are called Ramanujan graphs.
Bilu and Linial [8] proposed the following combinatorial way of constructing infinite

families of d-regular Ramanujan graphs. A double cover (sometimes called 2-lift or 2-
cover) of a graph � = (G = (V,E),�) is the (unsigned) graph �0 with vertex set V ⇥
{+1,�1} such that (x, s) is adjacent to (y, s�(xy)) for s = ±1. It is easy to see that
if � is d-regular, then �0 is d-regular. A crucial fact is that the spectrum of the unsigned
adjacency matrix of �0 is the union of the spectrum of the unsigned adjacency matrix A(G)
and the spectrum of signed adjacency matrix A� = A(�), where A�(x, y) = �(x, y) for
any edge xy of � and 0 otherwise (see [8] for a short proof). Note that this result can be
deduced using the method of equitable partitions (see [10, Section 2.3]), appears in the
mathematical chemistry literature in the work of Fowler [26] and was extended to other
matrices and directed graphs by Butler [14].

The spectral radius of a signing � is the spectral radius ⇢(A�) of the signed adjacency
matrix A� . Bilu and Linial [8] proved the important result

Theorem 3.19 (Bilu-Linial [8]). Every connected d-regular graph has a signing with spec-
tral radius at most c ·

p
d log3 d, where c > 0 is some absolute constant.

and made the following conjecture.
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Conjecture 3.20 (Bilu-Linial [8]). Every connected d-regular graph G has a signature �
with spectral radius at most 2

p
d� 1.

If true, this conjecture would provide a way to construct or show the existence of an
infinite family of d-regular Ramanujan graphs. One would start with a base graph that is
d-regular Ramanujan (complete graph Kd+1 or complete bipartite graph Kd,d for example)
and then repeatedly apply the result of the conjecture above. Recently, Marcus, Spielman
and Srivastava [56] made significant progress towards solving the Bilu-Linial conjecture.

Theorem 3.21. Let G be a connected d-regular graph. Then there exists a signature � of
G such that the largest eigenvalue of A� is at most 2

p
d� 1.

As mentioned before, A� may have negative entries and one cannot apply the Perron-
Frobenius theorem for it. Therefore, the spectral radius of A� is not always the same
as the largest eigenvalue of A� . In more informal terms, the Bilu-Linial conjecture is
about bounding all the eigenvalues of A� by �2

p
d� 1 and 2

p
d� 1 while the Marcus-

Spielman-Srivastava result shows the existence of a signing where all the eigenvalues of
A� are at most 2

p
d� 1. By taking the negative of the signing guaranteed by Marcus-

Spielman-Srivastava, one gets a signed adjacency matrix where all eigenvalues are at least
�2

p
d� 1, of course.

There are several interesting ingredients in the Marcus-Spielman-Srivastava result. The
first goes back to Godsil and Gutman [35] who proved the remarkable result that the average
of the characteristic polynomials of the all the signed adjacency matrices of a graph �
equals the matching polynomial of �. This is defined as follows. Define m0 = 1 and for
k � 1, let mk denote the number of matchings of � consisting of exactly k edges. The
matching polynomial µ�(x) of � is defined as

µ�(x) =
X

k�0

(�1)kmkx
n�2k, (3.1)

where n is the number of vertices of �. Heilmann and Lieb [42] proved the following
results regarding the matching polynomial of a graph. See Godsil’s book [34] for a nice,
self-contained exposition of these results.

Theorem 3.22. Let � be a graph.

1. Every root of the matching polynomial µ�(x) is real.
2. If � is d-regular, then every root of µ�(x) has absolute value at most 2

p
d� 1.

If � is a d-regular graph, then the average of the characteristic polynomials of its signed
adjacency matrices equals its matching polynomial µ�(x) whose roots are in the desired
interval [�2

p
d� 1, 2

p
d� 1]. As Marcus-Spielman-Srivastava point out, just because the

average of certain polynomials has roots in a certain interval, does not imply that one of the
polynomials has roots in that interval. However, in this situation, the characteristic poly-
nomials of the signed adjacency matrices form an interlacing family of polynomials (this
is a term coined by Marcus-Spielman-Srivastava in [56]). The theory of such polynomials
is developed in [56] and it leads to an existence proof that one of the signed adjacency
matrices of G has the largest eigenvalue at most 2

p
d� 1. As mentioned in [56],

The difference between our result and the original conjecture is that we do not
control the smallest new eigenvalue. This is why we consider bipartite graphs.
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Note that the result of Marcus, Spielman and Srivastava [56] implies the existence of an
infinite family of d-regular bipartite Ramanujan graphs, but it does not provide a recipe
for constructing such family. As an amusing exercise, we challenge the readers to solve
Problem 3.18 by finding a signature of the Petersen graph (try it without reading [84]) or
of their favorite graph that minimizes the spectral radius.

A weighing matrix of weight k and order n is a square n⇥ n matrix W with 0,+1,�1
entries satisfying WWT = kIn. When k = n, this is the same as a Hadamard matrix and
when k = n � 1, this is called a conference matrix. Weighing matrices have been well
studied in design and coding theory (see [28] for example). Examining the trace of the
square of the signed adjacency matrix, Gregory [39] proved the following.

Theorem 3.23. If � is any signature of �, then

⇢(�,�) �
p
k (3.2)

where k is the average degree of �. Equality happens if and only if � is k-regular and A�

is a symmetric weighing matrix of weight k.

This result implies that ⇢(Kn,�) �
p
n� 1 for any signature � with equality if

and only if a conference matrix of order n exists. By a similar argument, one gets that
⇢(Kn,n,�) �

p
n with equality if and only if there is a Hadamard matrix of order n. Note

also that when k = 4, the graphs attaining equality in the previous result are known from
McKee and Smyth’s work [57] (see Theorem 3.8 above). Using McKee and Smyth char-
acterization and the argument below, we can show that the only 3-regular graph attaining
equality in Theorem 3.23 is the 3-dimensional cube.

Let Qn denote the n-dimensional hypercube. Huang [47] constructed a signed adja-
cency matrix An of Qn recursively as follows:

A1 =


0 1
1 0

�
and An+1 =


An I2n
I2n �An

�
,

for n � 1. It is not too hard to show that (An)2 = nI2n for any n � 1 and thus, An

attains equality in Theorem 3.23. We remark that Huang’s method can be also used to
produce infinite families of regular graphs and signed adjacency matrices attaining equality
in Theorem 3.23. If G is a k-regular graph of order N with signed adjacency matrix As

such that ⇢(As) =
p
k, then define the k+1-regular graph H by taking two disjoint copies

of G and adding a perfect matching between them and a signed adjacency matrix for H as

B =


As IN
IN �As

�
.

Because A2
s = kIN , we can get that B2 = (k+ 1)I2N . Thus, using any 4-regular graph G

from McKee and Smyth [57] (see again Theorem 3.8) with a signed adjacency matrix As

satisfying A2
s = 4I , one can construct a 5-regular graph H with signed adjacency matrix

B such that B2 = 5I . The following is a natural question.

Problem 3.24. Are there any other 5-regular graphs attaining equality in Theorem 3.23?

If the regularity assumption on G is dropped, Gregory considered a the following vari-
ant of Conjecture 3.20.
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Conjecture 3.25 ([39]). If � is the largest vertex degree of a nontrivial graph G, then
there exists a signature � such that ⇢(G,�) < 2

p
�� 1.

Gregory came to the above conjecture by observing that in view of Theorem 3.22 the
bound in the above conjecture holds for the matching polynomial of G and by noticing that

µG(x) =
1

|C|
X

C2C
�(G,�;x),

where C is the set of subgraphs of G consisting of cycles and |C| is the number of cycles
of C. Since the matching polynomial of G is the average of polynomials of signed graphs
on G, one could expect that there is at least one signature �̄ such that ⇢(G, �̄) does not
exceed the spectral radius of µG(x). As observed in [39], for odd unicyclic signed graphs
the spectral radius of the matching polynomial is always less than the spectral radius of
the corresponding adjacency polynomial, but the conjecture still remains valid. We ask the
following question whose affirmative answer would imply Conjecture [39].

Problem 3.26. If ⇢ is the spectral radius of a connected graph G, then is there a signature
� such that ⇢(G,�) < 2

p
⇢� 1?

In view of the above facts, we expect that the signature minimizing the spectral radius
is the one balancing the contributions of cycles so that the resulting polynomial is as close
as possible to the matching polynomial. For example, we can have signatures whose cor-
responding polynomial equals the matching polynomial, as in the following proposition.

Proposition 3.27. Let � be a signed graph consisting of 2k odd cycles of pairwise equal
length and opposite signs. Then ⇢(�) < 2

p
4k � 1.

Is the signature in Proposition 3.27 the one minimizing the spectral radius? We leave
this as an open problem (see also [85]).

We conclude this section by observing that for a general graph, it is not known whether
Problem 3.18 is NP-hard or not. However, progress is made in [16] where the latter men-
tioned problem is shown to be NP-hard when restricted to arbitrary symmetric matrices.
Furthermore, the problems described in this subsection can be considered in terms of the
largest eigenvalue �1, instead of the spectral radius.

3.6 Spectral determination problems for signed graphs

A graph is said to be determined by its (adjacency) spectrum if cospectral graphs are iso-
morphic graphs. It is well-known that in general the spectrum does not determine the graph,
and this problem has pushed a lot of research in spectral graph theory, also with respect to
other graph matrices. In general, we can say that there are three kinds of research lines:

(1) Identify, if any, cospectral non-isomorphic graphs for a given class of graphs.

(2) Routines to build cospectral non isomorphic graphs (e.g., Godsil-McKay switching).

(3) Find conditions such that the corresponding graphs are determined by their spectrum.

Evidently, the same problems can be considered for signed graphs with respect to
switching isomorphism. On the other hand, when considering signed graphs, there are
many more possibilities for getting pairs of switching non-isomorphic cospectral signed
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graphs. For example, the paths and the cycles are examples of graphs determined by their
spectrum, but the same graphs as signed ones are no longer determined by their spectrum
since they admit cospectral but non-isomorphic mates [1, 3].

Hence, the spectrum of the adjacency matrix of signed graphs has less control on the
graph invariants. In view of the spectral moments we get the following proposition:

Proposition 3.28. From the eigenvalues of a signed graph � we obtain the following in-
variants:

• number of vertices and edges;

• the difference between the number of positive and negative triangles ( 16
P

�3
i );

• the difference between the number of positive and negative closed walks of length p
(
P

�p
i ).

Contrarily to unsigned graphs, from the spectrum we cannot decide any more whether
the graph has some kind of signed regularity, or it is sign-symmetric. For the former,
we note that the co-regular signed graph (C6,+) (it is a regular graph with net regular
signature) is cospectral with P2 [ Q̃4 (cf. Figure 4). For the latter, we observe that the
signed graphs A1 and A2 are cospectral but A1 is not sign-symmetric while A2 is sign-
symmetric.
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Figure 4: The cospectral pair (C6,+) and P2 [ Q̃4.

3.7 Operations on signed graphs

In graph theory we can find several operations and operators acting on graphs. For example,
we have the complement of a graph, the line graph, the subdivision graph and several kind
of products as the cartesian product, and so on. Most of them have been ported to the level
of signed graph, in a way that the resulting underlying graph is the same obtained from the
theory of unsigned graphs, while the signatures are given in order to preserve the balance
property, signed regularities, and in many cases also the corresponding spectra. However,
there are a few operations and operators which do not yet have a, satisfactory, ‘signed’
variant.

One operator that is missing in the signed graph theory is the complement of a signed
graph. The complement of signed graph should be a signed graph whose underlying graph
is the usual complement, however the signature has not been defined in a satisfactory way
yet. What we can ask from the signature of the complement of a signed graph? One could
expect some nice features on the spectrum, as for the Laplacian, so that the spectra of the
two signed graphs � and �̄ are complementary to the spectrum of the obtained complete
graph.
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Problem 3.29. Given a graph � = (G,�), define the complement �̄ = (Ḡ, �̄) such that
there are nice (spectral) properties derived from the complete signed graph � [ �̄.

In terms of operators, in the literature we have nice definitions for subdivision and line
graphs of signed graphs [6, 83]. The signed total graph has been recently considered and
defined in [7].

From the product viewpoint, most standard signed graph products have been defined
and considered in [29] and the more general NEPS (or, Cvetković product) of signed graphs
have been there considered. In [66] the lexicographic product was also considered, but the
given definition is not stable under the equivalence switching classes.

However, there are some graph products which do not have a signed variant yet. As an
example, we mention here the wreath product and the co-normal product.

3.8 Seidel matrices

The Seidel matrix of a graph � on n vertices is the adjacency matrix of a signed complete
graph Kn in which the edges of � are negative (�1) and the edges not in � are positive
(+1). More formally, the Seidel matrix S(�) equals Jn � In � 2A(�). Zaslavsky [83]
confesses that

This fact inspired my work on adjacency matrices of signed graphs.

Seidel matrices were introduced by van Lint and Seidel [75] and studied by many peo-
ple due to their interesting properties and connections to equiangular lines, two-graphs,
strongly regular graphs, mutually unbiased bases and so on (see [10, Section 10.6] and
[4, 37, 64] for example). The connection between Seidel matrices and equiangular lines is
perhaps best summarized in [10, p. 161]:

To find large sets of equiangular lines, one has to find large graphs where the
smallest Seidel eigenvalue has large multiplicity.

Let d be a natural number and Rd denote the Euclidean d-dimensional space with the usual
inner product h·, ·i. A set of n � 1 lines (represented by unit vectors) v1, . . . , vn 2 Rd is
called equiangular if there is a constant ↵ > 0 such that hvi, vji = ±↵ for any 1  i <
j  n. For given ↵, let N↵(d) be the maximum n with this property. The Gram matrix
G of the vectors v1, . . . , vn is the n ⇥ n matrix whose (i, j)-th entry equals hvi, vji. The
matrix S := (G� I)/↵ is a symmetric matrix with 0 diagonal and ±1 entries off-diagonal.
It is therefore the Seidel matrix of some graph � and contains all the relevant parameters of
the equiangular line system. The multiplicity of the smallest eigenvalue �1/↵ of S is the
smallest dimension d where the line system can be embedded into Rd.

Lemmens and Seidel [53] (see also [4, 37, 49, 54, 59] for more details) showed that
N1/3(d) = 2d� 2 for d sufficiently large and made the following conjecture.

Conjecture 3.30. If 23  d  185, N1/5(d) = 276. If d � 185, then N1/5(d) =
b3(d� 1)/2c.

The fact that N1/5(d) = b3(d� 1)/2c for d sufficiently large was proved by Neumaier
[59] and Greaves, Koolen, Munemasa and Szöllősi [37]. Recently, Lin and Yu [54] made
progress in this conjecture by proving some claims from Lemmens and Seidel [53]. Note
that these results can be reformulated in terms of Seidel matrices with smallest eigenvalue
�5. Seidel and Tsaranov [65] classified the Seidel matrices with smallest eigenvalue �3.
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Neumann (cf. [53, Theorem 3.4]) proved that if N↵(d) � 2d, then 1/↵ is an odd integer.
Bukh [12] proved that N↵(d)  c↵d, where c↵ is a constant depending only on ↵. Balla,
Dräxler, Keevash and Sudakov [4] improved this bound and showed that for d sufficiently
large and ↵ 6= 1/3, N↵(d)  1.93d. Jiang and Polyanskii [49] further improved these
results and showed that if ↵ /2 {1/3, 1/5, 1/(1 + 2

p
2)}, then N↵(d)  1.49d for d

sufficiently large. When 1/↵ is an odd integer, Glazyrin and Yu [32] obtained a general
bound N↵(d) 

�
2↵2/3 + 4/7

�
d+ 2 for all n.

Bukh [12] and also, Balla, Dräxler, Keevash and Sudakov [4] conjecture the following.

Conjecture 3.31. If r � 2 is an integer, then N 1
2r�1

(d) = r(n�1)
r�1 +O(1) for n sufficiently

large.

When 1/↵ is not a totally real algebraic integer, then N↵(d) = d. Jiang and Polyanskii
[49] studied the set T = {↵ | ↵ 2 (0, 1), lim supd!1 N↵(d)/d > 1} and showed that the
closure of T contains the closed interval [0, 1/

pp
5 + 2] using results of Shearer [67] on

the spectral radius of unsigned graphs.
Seidel matrices with two distinct eigenvalues are equivalent to regular two-graphs and

correspond to equality in the relative bound (see [10, Section 10.3] or [37] for example). It
is natural to study the combinatorial and spectral properties of Seidel matrices with three
distinct eigenvalues, especially since for various large systems of equiangular lines, the
respective Seidel matrices have this property. Recent work in this direction has been done
by Greaves, Koolen, Munemasa and Szöllősi [37] who determined several properties of
such Seidel matrices and raised the following interesting problem.

Problem 3.32. Find a combinatorial interpretation of Seidel matrices with three distinct
eigenvalues.

A classification for the class of Seidel matrices with exactly three distinct eigenvalues
of order less than 23 was obtained by Szöllősi and Östergård [69]. Several parameter sets
for which existence is not known were also compiled in [37]. Greaves [38] studied Seidel
matrices with three distinct eigenvalues, observed that there is only one Seidel matrix of
order at most 12 having three distinct eigenvalues, but its switching class does not contain
any regular graphs. In [38], he also showed that if the Seidel matrix S of a graph � has three
distinct eigenvalues of which at least one is simple, then the switching class of � contains
a strongly regular graph. The following question was posed in [38].

Problem 3.33. Do there exist any Seidel matrices of order at least 14 with precisely three
distinct eigenvalues whose switching class does not contain a regular graph?

The switching class of conference graph and isolated vertex has two distinct eigenval-
ues. If these two eigenvalues are not rational, then the switching class does not contain a
regular graph. So we suspect that there must be infinitely many graphs whose Seidel ma-
trix has exactly three distinct eigenvalues and its switching graph does not contain a regular
graph. A related problem also appears in [38].

Problem 3.34. Does every Seidel matrix with precisely three distinct rational eigenvalues
contain a regular graph in its switching class?

The Seidel energy S(�) of a graph � is the sum of absolute values of the eigenvalues of
the Seidel matrix S of �. This parameter was introduced by Haemers [41] who proved that
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S(�)  n
p
n� 1 for any graph � of order n with equality if and only S is a conference

matrix. Haemers [41] also conjectured that the complete graphs on n vertices (and the
graphs switching equivalent to them) minimize the Seidel energy.

Conjecture 3.35. If � is a graph on n vertices, then S(�) � S(Kn) = 2(n� 1).

Ghorbani [31] proved the Haemers’ conjecture in the case det(S) � n � 1 and very
recently, Akbari, Einollahzadeh, Karkhaneei and Nematollah [2] finished the proof of the
conjecture. Ghorbani [31, p. 194] also conjectured that the fraction of graphs on n vertices
with | detS| < n � 1 goes to 0 as n tends to infinity. This conjecture was also recently
proved by Rizzolo [63].

It is known that if � has even order, then its Seidel matrix S is full-rank. If a graph �
has odd order n, then rank(S) � n � 1. There are examples such C5 for example where
rank(S) = n � 1. Haemers [40] posed the following problem which is still open to our
knowledge.

Problem 3.36. If rank(S) = n� 1, then there exists an eigenvector of S corresponding to
0 that has only ±1 entries?

Recently, van Dam and Koolen [74] determined an infinitely family of graphs on n
vertices whose Seidel matrix has rank n � 1 and their switching class does not contain a
regular graph.

4 Conclusions

Spectral graph theory is a research field which has been very much investigated in the last
30–40 years. Our impression is that the study of the spectra of signed graphs is very far
from the level of knowledge obtained with unsigned graphs. So the scope of the present
note is to promote investigations on the spectra of signed graphs. Of course, there are many
more problems which can be borrowed from the underlying spectral theory of (unsigned)
graphs. Here we just give a few of them, but we have barely scratched the surface of the
iceberg.
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