
UDK621.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 38(2008)3, Ljubljana

161

NEWTON, RUNGE-KUTTA AND SCIENTIFIC SIMULATIONS

Zvonko Fazarinc

Palo Alto, California, USA

Key words: Scientific simulations, accelerated motion, numeric integration of Newton’s equations, fourth order Runge-Kutta, Heun algorithm

Abstract: Scientific simulations of natural phenomena are powerful predictors of likely experimental outcomes. Improvement of their reliability and accu-
racy translates directly into time savings. Simulations are also powerful supporters of education. Created as teaching tools, simulations provide unique
insights into mechanisms of addressed phenomena and can serve as experimental breadboards to the student.

Visual display of simulated behaviour is usually the last step in writing a simulation code. The relevant algorithms that convert forces into motion to be
displayed are seldom given the attention of the expert scientist. His focus is understandably elsewhere and the simulation of motion has to draw on
previous work or on libraries of integration algorithms.

This paper addresses the motion algorithm from the viewpoint of Newton’s Laws and deals with the haphazard usage of pre-computer integration formulas
such as the high order Runge-Kutta schemes. As these are offered as the” high accuracy” and conveniently packaged answer to all integration needs,
these formulas have gained high acceptance without a demonstrated justification.

The goal of this paper is to highlight the mismatch with the computer age of the fourth order Runge-Kutta (FORK) integration formula and to analyze its
performance in light of simpler formulas with more transparency and less expenditure of computer cycles.

I wish to dedicate this paper to the memory of my late friend and colleague professor dr.Lojze Trontelj with whom I had the pleasure to discuss the potential
value of scientific simulations in the early days of computer evolution.

Newton, Runge-Kutta in simulacije v znanosti

Kjučne besede: simulacije v znanosti, pospešeno gibanje, numerična integracija Newtonovih enačb, metoda Runge-Kutta četrtega reda, Heunov
algoritem

Izvleček: Znanstvene simulacije naravnih pojavov so pomembni napovedovalci verjetnih eksperimentalnih izidov. Povečanje njihove zanesljivosti in na-
tančnosti ima za neposredno posledico velike prihranke časa. Simulacije so tudi močna podpora pri izobraževanju. Ustvarjene kot orodja za učenje,
simulacije omogočajo edinstven vpogled v mehanizme obravnavanih fenomenov in študentom lahko služijo kot eksperimentalni poligon.

Vizualni prikaz simuliranega pojava je navadno zadnji korak pri pisanju simulacijskega računalniškega programa. Relevantnim algoritmom, ki sile prevedejo
v prikazano gibanje, izkušeni strokovnjak le redko posveča posebno pozornost. Razumljivo je, da je osredotočen drugam, in simulacija gibanja se mora
zato naslanjati na prejšnje raziskovalne rezultate ali na knjižnice integracijskih algoritmov.

Članek obravnava algoritem gibanja s stališča Newtonovih zakonov in nestrogo uporabo integracijskih formul, ki izvirajo iz predračunalniških časov, kot na
primer postopke Runge-Kutta višjih redov. Ker jih ponujajo kot “natančne” in priročno prirejene odgovore na vse potrebe po integraciji, so te formule
splošno sprejete brez dokazne upravičenosti.

Namen tega članka je osvetliti neskladje med računalniško dobo in Runge-Kutta (FORK) integracijsko formulo četrtega reda ter analiza njene uspešnosti
v primerjavi s preprostejšimi, preglednejšimi formulami, ki zahtevajo manj računalniških ciklov.

Ta članek posvečam spominu na svojega preminulega prijatelja in kolego, profesorja dr. Lojzeta Trontlja, s katerim sem še v zgodnjih časih evolucije
računalnikov razpravljal o potencialni vrednosti simulacij v znanosti

1 Introduction

Scientific simulations of natural phenomena can predict
the outcomes of practical experiments if done correctly.
For dangerous experiments their value is unprecedented,
for expensive ones it is fiscally advantageous. Scientific
simulation can also provide unique insights into the under-
lying mechanisms of phenomena studied. In this mode their
educational potential is without precedent.

The task of a simulation designer is to assign relevant nat-
ural forces to objects that mimic their natural counterparts.
The running simulation allows the objects to mutually inter-
act and their resulting collective behaviour is studied. One
of the common tools for tracking the evolution of a simula-

tion is a dynamic visual display. This must contain some
algorithm that converts the forces on objects into their ve-
locity and position. This task is the focus of this paper.

The conversion of forces acting on objects into their posi-
tional changes would seem quite trivial to Isaac Newton
and it may appear trivial to a practitioner of scientific simu-
lations as well. A double integration of the forces acting on
the mass in question is all that is necessary to obtain the
object’s instantaneous position. According to Newton’s First
Law of Motion /1/, an object’s momentum M is preserved.
It is defined for an object of mass m moving at velocity v as
M = mv. The change of momentum dM/dt can be caused
only by some force F acting on the object. Their relation-
ship is given by Newton’s Second Law of Motion as

162

Z. Fazarinc:
Newton, Runge-Kutta and Scientific SimulationsInformacije MIDEM 38(2008)3, str. 161-169

. Because we will ignore the change of mass in
the continuation of this paper we will assign all changes of
momentum to the velocity v. Consequently

 (1)

Furthermore, the temporal change of an object’s position
ds/dt is equal to its velocity v, thus

 (2)

The motion algorithm we employ in a simulation context
must conform to equations (1) and (2) in the discrete do-
main of finite differences

 (3)

and

 (4)

where Δt is the smallest discrete time resolution of the sim-
ulation. Yet, the algorithms that are used to perform the
two respective integrations do not necessarily produce the
correct answers. In most cases they are chosen from a
library of numerical integration routines with poorly defined
behaviour, without relevance to the particular problem,
sometimes producing inaccurate object positions and al-
ways consuming unnecessarily excessive computer re-
sources. The positional accuracy of an object, which is
subject to accelerating forces, can be critically important
when the force is a function of object’s position. Such is
the case with gravitational and electromagnetic simulations
as well as with all simulations of interacting objects.

In this paper we will use Newton’s Laws of Motion /1/ as
the reference for a critical analysis of the most frequently
recommended integration algorithm known as the Fourth
Order Runge-Kutta method /2/ in light of other integration
algorithms.

2 Approach

The numerical double integration of forces may be ad-
dressed from a mathematician’s viewpoint without regard
to the physics of the problem. This approach had led to
the majority of the numeric integration formulas in exist-
ence today and was driven by the quest for reduction of
manual computation effort without compromising the ac-
curacy of the approximation. We will elaborate on this in
later sections.

The same integration question may also be addressed from
the physicist’s viewpoint and be driven by the demand for
a match between Newton’s Laws of Motion and the results
produced by its discrete mimicry. This will be our approach
in the search for the ideal algorithm. Let us first put on the
mathematician’s hat.

2.1 Discrete Integration Method from
Mathematicians Viewpoint

All numeric integration formulas are based on the defini-
tion of the derivative’s integral over a finite interval Δt

Various approximations of this integral lead to different fam-
ilies of numeric integration formulas. Newton’s Interpola-
tion formula, for example, leads to the Adams family while
Taylor’s expansion gives rise to the Runge-Kutta family. We
will focus on the latter, which is based on

 (5)

The mathematician’s task is now to decide where to trun-
cate the infinite expansion, providing an acceptable error.
A good guess is that the truncation error /3/ may be in the
order of power of Δt of the first neglected term. Retaining
then as many terms as reasonable and using as small a
time step Δt as practical seems appropriate. Now the former
would complicate the formula while the latter would require
more repetitive evaluations to cover a desired time span.
Neither of these seems to be an overriding consideration
for today’s computer performance. But we must consider
the fact that a vast majority of existing numeric integration
formulas were developed before and at the turn of the 20-
th century, which this author likes to call the BC (before
computers) era. The problems that needed to be addressed
by numerical means were usually low order, nonlinear dif-
ferential equations for which their changes, i.e. the first
derivatives were known, arising usually from observations
or measurements. When the humans were faced with a
choice between numerous repetitive manual evaluations
of a simpler formula versus fewer executions of a more
complex formula, they would understandably choose the
latter. And this is how the more complex integration formu-
las gained their BC fame.

2.1.1 Newton

We will first choose a driving force function ,
which is representative of all force functions that can be
decomposed into Fourier series. This excludes the Dirac
function.

First we integrate (1) and (2) to obtain our reference data

 (6)

2.1.2 Fourth-Order Runge-Kutta (FORK)

Had we followed the mindset of the BC era we would have
included at least the first three or four terms of the expan-
sion (5) thus placing the anticipated truncation error into
the fourth or fifth order of Δt, respectively. This would then
allow us the choice of a larger time increment as is desir-

163

Z. Fazarinc:
Newton, Runge-Kutta and Scientific Simulations Informacije MIDEM 38(2008)3, str. 161-169

able for manual integration. In turn, this would lead to a
fairly complex, yet very popular Fourth-Order Runge-Kutta
(FORK) formula /2/. Its systematic derivation involves much
algebra and the interested reader is directed to this refer-
ence. The FORK formula is

 (7)

In (7) the slope is allowed to be the function of time and of
the dependent variable y(t) should such be the case. We
will use this formula to evaluate the motion quantities (3)
and (4) and will then compute the deviation from Newton’s
answers in (6).

To evaluate (3) and (4) we must plug the respective values
of F and v into (7). Because these are only functions of
time the FORK parameters k0 through k3 adopt very sim-
ple forms. The result is shown below

 (8)

In Fig.1 we have superimposed the positions s(t) as calcu-
lated from (6) and from (8) as functions of the number of
time increments Δt.

Fig. 1: Newton and FORK position for cosinusoidal
driving force.

While deviations are not discernible in Fig.1 we have de-
picted in Fig.2 the percentage deviation between the FORK
evaluated s(t) and that predicted by Newton. These are
actual errors associated with our particular example and
have nothing to do with the elaborate but often meaning-
less truncation errors /3/

Fig. 2: Fractional error between Newton and FORK
positions for cosinusoidal driving force

2.1.3 Second Order Runge-Kutta

Let us now choose to include only the first two terms of the
Taylor expansion (5) With this choice we are committing,
in the mathematician’s mind, to a mere third order accura-
cy yet we do retain the control over Δt. The second term of
expansion (5) calls for y”(t), which we do not know but can
approximate by the central dif ference

, by the forward difference
 or by the backward dif ference
. We will return to this later but choose

for now the forward difference and obtain instantly the fol-
lowing second order formula

 (9)

Expression (9) is known as the trapezoidal but also as the
Heun or Second Order Runge-Kutta formula /4/ in which
we have replaced the fractional times with their linear ap-
proximations. Belonging to the second order brand this
formula was discouraged by the BC mathematicians and
remained in disrepute ever since. So let us now take a
quantitative look at the error issue in light of what we have
just learned about the FORK formula behaviour. To this
end we adopt the same force function with
its initial conditions spelled out in (6) to obtain from (3) and
(4) the following equations

 (10)

Fig. 3: Superposition of Newton and Heun position for
cosinusoidal driving force.

164

Fig.3 displays the position s(t) as function of index
and Fig.4 the percentage deviation of s(t) from the true
position given by (6). This time we have experimentally
adjusted the time increment Δt in such a way that the er-
rors in Fig.4 and in Fig.2 are about the same.

As discernible from two sets of plots we had to compute
almost twice as many points in (10) as we did in (8) to ob-
tain the match of errors. Thus, the FORK formula gives us
the same accuracy with fewer passes. No real surprise
here but to compare the net computational effort we must
establish some measurable criteria. Ignoring the memory
accesses and all other overhead and not allowing any du-
plicate computations, we can count the number of floating
point operations (FLOPs) needed for each time step.

Fig. 4: Fractional error between Newton and Heun
positions for cosinusoidal driving force

Formula (10) requires 30 FLOPs while (8) requires 49 pro-
vided that we have precomputed the repeating quantities
such as , , , etc. and allotted 10 FLOPs
for each trigonometric function evaluation. One could then
say that the two formulas are identical in terms of net com-
putational effort for the same accuracy. But formula (10)
gives us 70% more individual computed points. We will
reexamine this issue after we have completed a more se-
vere comparative test of the two formulas from a physi-
cist’s viewpoint.

2.2 Discrete Integration from Physicist’s
Viewpoint

While the truncation error /3/ might be the sole criterion
to a mathematician when judging various integration for-
mulas, to a physicist it is the trustworthiness of the simulat-
ed phenomenon that matters. We will therefore subject
formulas (7) and (9) to a more realistic scrutiny because in
simulations we seldom encounter a simple, clean textbook
case of a well defined external force. The force is com-
monly self induced by the motion and is then fed back to
the object involved. We will therefore make the force a func-
tion of the object’s position and elect the following rela-
tionship.

 (11)

where ω2 is a proportionality constant for the moment. Such

opposing functional dependence of force on position is
commonly encountered in gravitational, electromagnetic,
Van DerWall and other simulations of natural phenomena /
5/, /6/.

2.2.1 Newton

First we solve Newton’s equations (1) and (2) for the case
of force function (11)

 or

Solving for s(t) this second order differential equation yields
the harmonic solution

 (12)

Position s(t) from equation (12) with v(0) = 0 is plotted in
Fig.5 as the black solid line.

2.2.2 FORK formula

We introduce the force function (11) into equation (3) and
then use the FORK formula (7) in both (3) and (4) to end up
with an expression for position s(t). Because the FORK for-
mula integrates only one first order equation at a time, we
would need a separate application of (7) to (3) and another
to (4). Two sets of distinguishable factors “k” would have to
be employed in general. But because (3) and (4) are cou-
pled the following simplification is available from /7/

Because for our case the slope is only
a function of time t the above equations simplify to

 (13)

At this time we must point out that scientific simulations
are commonly run with constant time increments Δt for a
variety of practical reasons. One is the preservation of rel-
ative temporal occurrences of events under observation
while simplicity of coding does not lag far behind. The half
increment appearing in m1 and m2 must therefore be ap-

Z. Fazarinc:
Newton, Runge-Kutta and Scientific SimulationsInformacije MIDEM 38(2008)3, str. 161-169

165

proximated by a linear interpolation

Fig. 5: Newton and FORK position when the driving
force depends on position.

With this substitution the Runge-Kutta equation (13) pro-
duces the position s(t), shown in Fig. 5, superimposed on
Newton’s prediction from (12). The plot was computed for

, which is just over six points per period of the re-
sulting harmonic motion s(t).

The rugged waveform is the consequence of that. It was
chosen intentionally for later comparisons with other op-
tions.

Fig. 6: Long term behaviour of Newton and FORK with
positional feedback.

In order to gain an insight into the long term stability of the
FORK solution we have plotted in Fig.6 the Newton pre-
diction for 8500 time increments and superimposed on it
the FORK answer from (13) for 8000 time increments. It is
not doubtable that the FORK solution (13) would continue
to provide stable answers beyond 8000 points but we will
later prove this to be the case.

2.2.3 Second Order Formula

Let us continue to retain the physicist’s viewpoint and ar-
gue with the mathematician who would want to convince
us that only an infinite number of terms in the Taylor expan-
sion would guarantee a perfect match of a numeric algo-
rithm with Newton’s formulas. On the other hand there are
no doubts that Newton’s equations (1) and (2) describe a
second order system. Why should a second order numer-

ic formula not suffice to adequately describe the acceler-
ated motion? So, instead of choosing an existing integra-
tion algorithm we will force a second order integration for-
mula to conform to Newton’s laws of motion.

We start again from formulas (3) and (4). In them we have
intentionally avoided the specification of respective tem-
poral arguments of F and v. The discrete domain, charac-
terized by finite time increments, often confronts us with
the question of what happens before something else. We
could, for example, compute the new velocity from Equa-
tion (3) by using the present force , the previous
force F(t), their average as seen before or some other more
general combination of the two. Similarly, we could com-
pute the position s(t) from Equation (4) using some arbi-
trary combination of the previously evaluated and contem-
poraneous velocities. Without knowing the outcomes pro-
duced by a given choice, we have no reason to prefer one
over the other. Therefore we will elect as yet undefined
fractions of the force a and (1-a) F(t) as the contri-
butions to velocity changes as indicated below

 (14)

Furthermore we will choose as yet unknown fractions of
two primary velocity choices to determine their relative
contributions to the change of position

 (15)

Parameters a and b have values between zero and unity
and we will try to extract them by a parameter optimization
procedure designed to force a match between the simu-
lated results produced by the above equations and the true
accelerated motion expressed by Newton’s Laws. We will
do this for our specific choice of force defined by (11),
which yields the following version of (14)

 (16)

Expressions (15) and (16) represent the numeric integra-
tion algorithm that we are trying to force in compliance with
(1) and (2).To this end we must find a closed form solution
of the coupled equations (15) and (16). We have done this
in the Appendix AP1 with the result

 (17)

A comparison of position s(t) in (17) with that in (12) sug-
gests that the quantity must be unity, calling for

, which further entails a +
b = 1. The numerator of the second term of the ex-
pression in (17) demands b – a = 0 to conform to (12).

Z. Fazarinc:
Newton, Runge-Kutta and Scientific Simulations Informacije MIDEM 38(2008)3, str. 161-169

166

These two requirements imply the following overall con-
clusion of our analysis

 a = b = 0.5 (18)

Our final form of the set (15) and (16) is now highly remi-
niscnet of the Heun formula

 (19)

For a = b = 0.5 expression (17) takes on the form.which
except for the angular frequency Ω matches Newton’s
prediction (12) in all other details.

 (20)

Fig. 7: Newton and Heun position when driving force
depends on position

It should therefore not come as a surprise that an evalua-
tion of (20) produces Figs.7 and 8 for which we have cho-
sen the parameter . Figs.5 and 6, on the other
hand, were obtained with as stated earlier. The ra-
tio of 1 to 0.38 happens to match the ratio 21 to 8 of float-
ing point operations needed to execute (13), versus (19).
This, in turn, assures equal computation time for both for-
mulas with (19) providing 2.6 times as many time incre-
ments.

Fig. 8: Long term behaviour of Newton and Heun with
positional feedback.

A debate over the relative accuracy of one or the other
formula is irrelevant since both appear to match the New-
ton waveform except for the angular frequencies as seen

from the graphs. For the Heun case defined in (20), the
fractional deviation of Ω from ω is established as

 and is plotted in Fig.9

versus . In the Appendix AP2 we have also found an
analytic expression for the angular frequency Ω of the
Runge-Kutta case and its relevant deviation from the nom-
inal ω as

.This is

also plotted in Fig.9 as R..

Fig. 9: Fractional error of FORK and Heun simulated
frequency.

There is a slight difference in favor of Heun in terms of
angular frequencies but more significant is the fact that for
same expenditure of computer cycles Heun delivers more
computed points with shorter time increments. Both of
these are desirable for dynamic simulations, which demand
displays of velocities and positions of objects.

3. Conclusion

In summary the Heun algorithm has been found to numer-
ically integrate Newton’s laws of motion with the same ac-
curacy as the FORK formula in tests from the highest fre-
quencies down to the Nyquist limit. The superiority of Heun
formula over the FORK algorithm is its ability to deliver 260%
more computed points at proportionately reduced time in-
crement for same expenditure of computer cycles. Both
of these are criteria important to simulation practitioners.
Furthermore, its simplicity of implementation leaves the
designer in control of the last stage of his dynamic simula-
tion code. i.e. of computing the new velocities
and the new positions of his objects from forces

 currently acting on them. When we consider our
starting force (11) we can present the preferred result of
our analysis for general force functions as

 (21)

Z. Fazarinc:
Newton, Runge-Kutta and Scientific SimulationsInformacije MIDEM 38(2008)3, str. 161-169

167

A simulation program in which (21) was implemented has
been tested with 100 spherical particles with randomly
assigned initial velocities. They were allowed to interact
through mutual gravitation, through three-dimensional col-
lisions and individually by bouncing off the box walls. The
gravitational masses of particles were adjusted so that their
naturally formed clusters were able to disperse as their
rotational velocity increased. This assured a continuous
activity of all 100 particles. While there is no method avail-
able to evaluate the accuracy of observed simulated be-
haviour of this many objects, the physics comes to the res-
cue. Unless a loss mechanism or a source of energy is
coded into the system the total energy must remain con-
stant. Therefore we have monitored the overall energy
through one million passes, during which each of the 100
particles received an update of position and velocity from
the Heun algorithm from formula (21). During the whole
observation time of one hour and 23 minutes that was need-
ed for the experiment, the total energy of particles remained
unchanged.

Appendix

AP1 Closed form solution of equations (15) and (16)

They are respectively

 (APP1)

 (APP2)

Take the first forward difference of (APP1)

.

Note that the first bracketed term arises directly from (APP2)
as and the second one
as

Substitute these into the above equation and collect con-
temporaneous terms to obtain

This equation is equivalent to

 with

 (APP3)

(APP3) has two closed form solutions dependent on the
relative magnitude of A and B. The case B>A is of interest
to us. Application of the Z-transform /8/ results in the fol-
lowing Z-domain equation for s(t) in which the transformed
variable is defined as

From this follows immediately

where

 (APP4)

The inversion is done by the sum of residui since we are
dealing with an analytic function /9/. We have discretized
time as in the following expressions

Because we get

or

From (APP4) it follows

Then

(APP5)

 where

The denominator of the second right hand term of (APP5)
can be found with straightforward but time consuming al-
gebraic manipulations as

 (APP6)

Z. Fazarinc:
Newton, Runge-Kutta and Scientific Simulations Informacije MIDEM 38(2008)3, str. 161-169

168

 is extracted directly from (APP1) as

while is obtained
from (APP2).

From expressions (APP5) and (APP6) and from the defini-
tion of A in (APP3) we obtain via tedious but elementary
algebraic manipulation

The argument of Ω is evaluated as follows

With these values our solution for s(t) becomes

 (APP7)

AP2. Closed Form solution of FORK equation (13)

We reproduce the relevant expressions

 (APP8)

and

 (APP9)

 (APP10)

When we substitute the m-factors from (APP8) into (APP9)
we obtain

In scientific simulations the stepping time increment is
commonly maintained at a fixed value and consequently
the quantity is simply not available. In the time
period when the FORK algorithm was developed, the rele-

vant slopes were extracted from measurements or obser-
vations so there was no problem to satisfy the above for-
mulas. But in simulations we are forced to either run at
halved increments and use only every second result, do
some fancy iteration to extract the fractional time values or
approximate the half time quantity. Only a linear interpola-
tion is available in the second order systems so we will
make the following substitution:

 This leads to

 A simple
collection of terms yields

 (APP11)

Take the first difference, which yields

 (APP12)

We need the velocity term in (APP12). To this end we in-
sert the m-factors from (APP8) into velocity equation
(APP10) to get

,

After making the same approximation to the half increment
term we obtain

 (APP13)

Insertion of this into (APP12) yields

This equation can be easily rewritten into the form
 with

 (APP14)

Taking advantage of previously recorded derivation be-
tween (APP3) and (APP5) we can write down the solution
of our FORK equation defined by (APP8),APP(9) and
(APP10)as

Z. Fazarinc:
Newton, Runge-Kutta and Scientific SimulationsInformacije MIDEM 38(2008)3, str. 161-169

169

The numerator of the second term is established from ex-
pression (APP14) as

Just as easily we find

The target expression has an undefined numerator
in the second term, part of which is obtained from (APP11)
by setting the time equal to zero

. Multiplier of the

sinusoidal term is found as

The closed form solution of the FORK equation (13) is now

The fractional angular frequency deviation is

References

/1/ J.S Newton “Philosophiae Naturalis Principia Mathematica”,
Translation by Andrew Motte, UC CAL Press, Berkeley, CA, 1946
p. 13

/2/ F.B.Hildebrand “Introduction to Numerical Analysis”, Second Edi-
tion, Dover Publications, New York 1974, p.285-292

/3/ Ibid pp.5-10

/4/ Ibid p.290

/5/ Z.Fazarinc, “Getting Physics into the Bounce”, IEEE Potentials
Vol.14 No.1, Feb./March 1995, pp.21-25

/6/ Z. Fazarinc, “Potential Theory, Maxwell’s Equations, Relativity,
Radiation and Computers”, CAEE, Vol.7, No.2, John
Wiley&Sons, Inc 1999 pp.51-86

/7/ F.B.Hildebrand “Introduction to Numerical Analysis”, Second Edi-
tion, Dover Publications, New York 1974, pp.291-292

/8/ John A. Aseltine, “Transform Method in Linear Systems Analy-
sis”, McGraw-Hill Book Co., Inc. 1958, p.260

/9/ Ibid, p.276.

Dr. Zvonko Fazarinc
Formerly director of R&D laboratory at Hewlett

Packard Co in Palo Alto
and Consulting professor of EE at

Stanford University, California
620 Sand Hill Road, 417D, Palo Alto, California 94304

Tel.: (001) (650) 330 0310; Fax: (001) (650) 330 1967
E-mail: z.fazarinc@comcast.net

Prispelo (Arrived): 26.06.2008 Sprejeto (Accepted): 15.09.2008

Z. Fazarinc:
Newton, Runge-Kutta and Scientific Simulations Informacije MIDEM 38(2008)3, str. 161-169

