A N N A LES Series H istoria N aturalis, 27, 2017, 2 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 27, 2017, 2 UDK 5 Annales, Ser. hist. nat., 27, 2017, 2, pp. 89-204, Koper 2017 ISSN 1408-533X 3 2 1 ISSN 1408-533X Cena: 11,00 EUR 6 5 4 KOPER 2017 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series historia naturalis, 27, 2017, 2 UDK 5 ISSN 1408-533X ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 27, leto 2017, številka 2 UREDNIŠKI ODBOR/ COMITATO DI REDAZIONE/ BOARD OF EDITORS: Nicola Bettoso (IT), Christian Capapé (FR), Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Patricija Mozetič, Martina Orlando-Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Lektor/Supervisione/Language editor: Polona Šergon (sl.), Petra Berlot (angl.) Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafi co/ Graphic design: Dušan Podgornik, Lovrenc Lipej Prelom/Composizione/Typesetting: Grafi s trade d.o.o. Tisk/Stampa/Print: Grafi s trade d.o.o. Izdajatelj/Editore/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Società storica del Litorale - Capodistria© Za izdajatelja/Per Editore/ Publisher represented by: Salvator Žitko Sedež uredništva/Sede della redazione/ Address of Editorial Board: Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 5. 12. 2017. Sofi nancirajo/Supporto fi nanziario/ Financially supported by: Javna agencija za raziskovalno dejavnost Republike Slovenije (ARRS), Luka Koper in Mestna občina Koper Annales - series historia naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales series historia naturalis je vključena v naslednje podatkovne baze / La rivista Annales series historia naturalis è inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL). Vsi članki so v barvni verziji prosto dostopni na spletni strani: http://zdjp.si/p/annalesshn/ All articles are freely available in color via website: http://zdjp.si/en/p/annalesshn/ ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 27, Koper 2017, številka 2 ISSN 1408-533X VSEBINA / INDICE GENERALE / CONTENTS FLORA FLORA FLORA Martina ORLANDO-BONACA, Borut MAVRIČ, Lovrenc LIPEJ, Sara KALEB & Annalisa FALACE Coralline algae on biogenic formations in marine waters off Slovenia (northern Adriatic Sea) Koraligene alge na biogenih formacijah v slovenskih morskih vodah (severni Jadran) ......... Aljaž KOŽUH, Mitja KALIGARIČ & Danijel IVAJNŠIČ Potential distribution of silver fi r (Abies alba) in south-eastern Alpine and Dinaric phytogeographic regions of Slovenia and Croatia in the light of climate change Potencialna razširjenost jelke (Abies alba) v jugovzhodno-alpskem in dinarskem fi togeografskem območju Slovenije in Hrvaške v luči klimatskih sprememb .................................. Amelio PEZZETTA Le Orchidaceae di Bale-Valle (Istria, Croazia) Kukavičevke okolice Bal (Valle, Istra, Hrvaška) ..... FAVNA FAUNA FAUNA Lovrenc LIPEJ & Borut MAVRIČ Range expansion of alien nudibranch Melibe viridis (Kelaart, 1858) in the northern Adriatic Sea Širjenje areala tujerodnega gološkrgarja Melibe viridis (Kelaart, 1858) v severni Jadran .................. Emna SOUFI-KECHAOU, Ichrak SARIYA, Amine BEZAA, Neziha MARRAKCHI & Mohammed EL AYEB Antitumoral activity in inks of Sepia offi cinalis and Octopus vulgaris (Cephalopoda) from the northern Tunisian coast (central Mediterranean Sea) Protitumorska aktivnost črnila pri sipi Sepia offi cinalis in hobotnici Octopus vulgaris (Cephalopoda) iz severne tunizijske obale (osrednje Sredozemsko morje) ............................. SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL Remarks on incidental capture of deep-sea sharks in Marmara shelf waters Opažanja o naključnem ulovu globokomorskih morskih psov na celinskem pragu v Marmarskem morju .................................. Christian CAPAPÉ & Malek ALI First record of velvet belly lantern shark Etmopterus spinax (Chondrichthyes: Etmopteridae) from the Syrian coast (eastern Mediterranean) Prvi zapis o pojavljanju žametnega trneža Etmopterus spinax (Chondrichthyes: Etmopteridae) iz sirskih voda (vzhodni Mediteran) .. Hakan KABASAKAL On the jaws of a shortfIn mako shark, Isurus oxyrinchus, caught off the İzmir peninsula (central Aegean Sea, Turkey) Čeljusti primerka atlantskega maka, Isurus oxyrinchus, ujetega ob izmirskem polotoku (osrednje Egejsko morje, Turčija) ..........................119 151 107 97 137 145 12589 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Malek ALI, Christian REYNAUD & Christian CAPAPÉ Has a viable population of common lionfish, Pterois miles (Scorpaenidae), established off the Syrian coast (eastern Mediterranean)? Se je viabilna populacija plamenke, Pterois miles (Scorpaenidae), že uveljavila v vodah ob sirski obali (vzhodno Sredozemsko morje)? ..... Mohamed Mourad BEN AMOR, Khadija OUNIFI-BEN AMOR & Christian CAPAPÉ Occurrence of Sloane’s viperfish Chauliodus sloani (Osteichthyes: Chauliodontidae) from the Tunisian coast (central Mediterranean) O pojavljanju morskega gada Chauliodus sloani (Osteichthyes: Chauliodontidae) iz tunizijskih voda (osrednje Sredozemsko morje) ............................................ Claudia KRUSCHEL, Julia HARRAS, Irmgard BLINDOW & Stewart T. SCHULTZ Do fish assemblages at sites featuring man-made concrete walls differ from those at natural rocky-reef sites? Ali se ribje združbe na lokalitetah z betonskimi stenami razlikujejo od tistih v naravnem skalnatem okolju? .............................. DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS Lovrenc LIPEJ & Martina ORLANDO-BONACA Piran hosted the elite of marine biologists ............ Iztok ŠKORNIK Letno srečanje mednarodne organizacije za vodne ptice The Waterbird Society (Waterbird Society Annual meeting, Reykjavik, Iceland, August 8-12 2017) ................................... OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Matej VRANJEŠ Book review: Tourism in Protected Areas of Nature in Serbia and Slovenia .......................... Navodila avtorjem ................................................ Istruzioni per gli autori .......................................... Instruction to authors ............................................ Kazalo k slikam na ovitku ..................................... Index to images on the cover ................................ 189 191 193 195 198 198 184 183 157 163 167 87 FLORA FLORA FLORA 88 89 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Original scientifi c article DOI 10.19233/ASHN.2017.11 Received: 2017-09-14 CORALLINE ALGAE ON BIOGENIC FORMATIONS IN MARINE WATERS OFF SLOVENIA (NORTHERN ADRIATIC SEA) Martina ORLANDO-BONACA, Borut MAVRIČ & Lovrenc LIPEJ Marine Biology Station, National Institute of Biology, SI-6330 Piran, Fornace 41, Slovenia E-mail: martina.orlando@nib.si Sara KALEB & Annalisa FALACE Department of Life Sciences, University of Trieste, I-34127 Trieste, Via L. Giorgieri 10, Italy ABSTRACT Two major biogenic formations, composed mainly by dead corallites of the Mediterranean stony coral (Cladocora caespitosa), have been recently studied in Slovenian marine waters. The paper presents new data about the presence of coralline algae on the biogenic formation situated off Cape Ronek and off Cape Debeli rtič. Coralline algae are very important for the creation, development and maintenance of calcareous bio-concretions that offer new niches for many invertebrates and other algae. They are listed as important builders of the coralligenous biocoenosis in the “Draft Lists of coralligenous/maërl populations and of main species to be considered by the inventory and monitor- ing” of the RAC-SPA, and should be further deeply studied and appropriately protected. Key words: coralline algae, biogenic formations, circalittoral, northern Adriatic Sea ALGHE CORALLINE DELLE FORMAZIONI BIOGENICHE IN ACQUE MARINE SLOVENE (ADRIATICO SETTENTRIONALE) SINTESI Due formazioni biogeniche, prevalentemente composte da coralliti morti della madrepora a cuscino (Cladocora caespitosa), sono state recentemente studiate nelle acque slovene. Nel presente lavoro vengono riportati nuovi dati relativi alle alghe coralline presenti al largo di Punta Ronco e Punta grossa. Le alghe coralline hanno un ruolo importante nello sviluppo e nel mantenimento delle concrezioni biogeniche, offrendo nicchie per invertebrati e altre alghe. Nel documento “Draft Lists of coralligenous/maërl populations and of main species to be considered by the inventory and monitoring” del RAC-SPA, le alghe coralline sono riportate come importanti organismi biocostruttori della biocenosi coralligena, meritevoli di ulteriori studi e di una appropriata protezione. Parole chiave: alghe coralline, formazioni biogeniche, circalitorale, Adriatico settentrionale 90 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Martina ORLANDO-BONACA et al.: CORALLINE ALGAE ON BIOGENIC FORMATIONS IN MARINE WATERS OFF SLOVENIA (NORTHERN ADRIATIC SEA), 89–96 INTRODUCTION The shallow northern Adriatic area is dominated by muddy and sandy bottoms (Lipej et al., 2006) and for a long time it was believed that these are the only bottoms existing in this basin. More than 200 years ago Giuseppe Olivi (1792) was the fi rst to mention that in this part of the Adriatic Sea exist also rocky outcrops. Northern Adriatic fi shermen have been familiar with this kind of environments before marine scientists discovered them, since they are rich fi shing points, called tegnùe along the Venetian coast (Casellato et al., 2006), and trezze in the Gulf of Trieste. Around 250 such rocky outcrops, calcareous bio-concretions, have been counted in the Italian part of the Gulf of Trieste, derived from the build- ing action of calcareous organisms on hard substrata of diverse geological origins (Falace et al., 2015). Similar formations were recently studied also in Slovenian marine waters (Lipej et al., 2016). Currently, two major biogenic formations are known for the Slovenian Sea, which were sampled within the Interreg project TREC- ORALA. These biogenic formations are located off Cape Ronek and off Cape Debeli rtič. Both have substantially larger dimensions than trezze and are linked to the pres- ence of Mediterranean stony coral (Cladocora caespi- tosa), since they are formed entirely by dead corallites of this species. During a scientifi c meeting on the coralligenous environment, which took place at the Marine Biology Station in Piran in March 2011, the Italian, Croatian and Slovenian researchers suggested that the northern Adriatic forms of coralligenous environment, such as trezze, tegnùe, the precoralligenous in the infralittoral belt and biogenic formations of Mediterranean stony coral C. caespitosa (Linnaeus, 1767), should be recog- nized as a specifi c element within the Mediterranean coralligenous biocoenosis. The expression “biogenic formation” refers to any formations that are the result of limestone loading by some marine organisms, known as bioconstructors, during their lifetime. Among Fig. 1: Locations with Mediterranean stony coral (Cladocora caespitosa) colonies in the Slovenian coastal sea. Legend: 1 - Biogenic formation at Debeli rtič; 2 - Cape Debeli rtič; 3 - Cape Strunjan; 4 – Cape Ronek; 5 – Piranček; 6 – Pacug; 7 – Bernardin; 8 - Biogenic formation at Ronek. Sl. 1: Lokalitete s kolonijami sredozemske kamene korale (Cladocora caespitosa) v slovenskem morju. Legenda: 1 – Biogena formacija pred Debelim rtičem; 2 - Debeli rtič; 3 - rt Strunjan; 4 – rt Ronek; 5 – Piranček; 6 – Pacug; 7 – Bernardin; 8 – biogena formacija pred rtom Ronek. 91 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Martina ORLANDO-BONACA et al.: CORALLINE ALGAE ON BIOGENIC FORMATIONS IN MARINE WATERS OFF SLOVENIA (NORTHERN ADRIATIC SEA), 89–96 invertebrates the most well known bioconstructors are corals (Anthozoa), hydrozoans (Hydrozoa) and marine tube worms (Polychaeta Sedentaria) (Lipej et al., 2016). However, the precoralligenous and the coralligenous are primarily built by coralline algae (Laborel, 1961; Sartoretto, 1996). Among the eight action plans adopted by the Contracting Parties of the Barcelona Conven- tion, one is devoted to the coralligenous habitat: the Action plan for the conservation of the coralligenous and other calcareous bio-concretions in the Mediter- ranean Sea, UNEPMAP-RAC/SPA (Ballesteros, 2008). Within this document, the coralligenous formations are considered a typical Mediterranean underwater seascape, comprising coralline algal frameworks that grow in dim light conditions and in relatively calm waters (Ballesteros, 2006). Coralline algae are very important for the creation, development and maintenance of new niches for many invertebrates and other algae. Their habitat-building capacity is associated with the mechanism of minerali- zation of the cell wall with calcium and, to a lesser ex- tent, magnesium carbonate. In red algae (Rhodophyta) from the family Corallinaceae, the carbonate is present in the crystalline calcite form mainly, while in red algae from the family Peyssonneliaceae and in green algae (Chlorophyta) from the family Halimedaceae it pre- cipitates as aragonite. The occurrence of calcifi cation helps to balance the carbon dioxide defi cit in water, which is due to photosynthesis, and thus contributes to the maintenance of the alkaline potential in sea water (Andreoli et al., 2010). Falace et al. (2011) reported on the presence of cor- alline algae in the Slovenian circalittoral belt, including the biogenic formation off Cape Ronek. The aim of the current paper is to report the fi rst available data about the presence of coralline algal species on the biogenic formation located off cape Debeli rtič, and new data about their occurrence at Cape Ronek. MATERIAL AND METHODS Study area The biogenic formation at Cape Debeli rtič (Figs. 1 and 2) is more or less of triangular shape with a rounded plateau, which looks like a knob. On the reef there is a relatively steep step where the coastal sandy-rocky bottom sweeps into muddy sediment, which happens very quickly in comparison with the near surroundings. The biogenic formation is mostly covered by a thin layer of mud and, therefore, the accurate assessment of its borders was very diffi cult. It starts at about 10 m of depth and sweeps down to 17.5 m. This biogenic formation is mainly composed of dead Mediterranean stony coral corallites, with only a few living colonies (Lipej et al., 2016). The biogenic formation at Cape Ronek is located outside in the waters off Strunjan Nature Reserve (Fig. 1). Its shape is elliptical, with the longest axis in the west-east direction, and the shortest in the north-south direction (Fig. 3). The highest point of the biogenic formation is at 12.4 m depth, and it extends down to 21 m, where it shifts into a muddy bottom. It is entirely composed of dead, broken corallites of Mediterranean stony coral. This solitary structure is surrounded on all sides by a muddy bottom, signifi cantly less rich in biodiversity (Lipej et al., 2016). This formation is not covered by a surface layer of mud, with the density of living colonies of Mediterranean stony coral consider- ably higher than in other areas of the Slovenian Sea (see Tab. 1). Fieldwork and laboratory work The surveys of coralline algae at biogenic formations were done in July 2013. Algae were randomly manually collected from the sea bottom, scraped when they were found attached, on a transect in a depth range from 10 m to 13 m at Cape Debeli rtič, and from 13 m to 16 m at Cape Ronek (Figs. 2 and 3). Samples were collected in plastic bags and all the material was transported to the laboratory of the Marine Biology Station of the National Institute of Biology. Algal samples were sorted in labora- tory and fragments of material were air dried, mounted on aluminium stubs with acrylic adhesive and then analysed by scanning electron microscopy (SEM). Stubs were sonicated with a Vitec sonicator to remove sedi- ments and diatoms and then coated with gold/palladium (with S150 Sputter Coater, Edwards) prior to viewing in a LEICA Steroscan 430i at 20 kV. Tab. 1: Density of Mediterranean stony coral colonies in various areas of the Slovenian Sea (adopted from Lipej et al., 2016). Tab. 1: Gostota sredozemske kamene korale v različnih predelih slovenskega morja (prirejeno po Lipej in sod., 2016). Locality Density of C. caespitosa colonies (n/100m2) Biogenic formation at Debeli rtič 3 (2-4) Cape Debeli rtič 83 (70-96) Cape Strunjan 85 (66-105) Cape Ronek 108 Piranček 160 (128-192) Pacug 186 Bernardin 285 (263-306) Biogenic formation at Ronek 652 (498-806) 92 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Martina ORLANDO-BONACA et al.: CORALLINE ALGAE ON BIOGENIC FORMATIONS IN MARINE WATERS OFF SLOVENIA (NORTHERN ADRIATIC SEA), 89–96 RESULTS AND DISCUSSION Over the surveys performed in 2013, six species of coralline algae were found at the biogenic formation of Cape Debeli rtič, while seven were found at Cape Ronek (Table 2). In samples collected in 2010 by Falace et al. (2011) at the biogenic formation of Cape Ronek, Neogo- niolithon brassica-fl orida (Harvey) Setchell & L.R. Mason and Titanoderma pustulatum (J.V. Lamouroux) Nägeli were missing. However, in those samples they recorded Lithothamnion philippii Foslie, Pneophyllum confervi- cola (Kützing) Y.M. Chamberlain and Pneophyllum fragile Kützing that were not found at Cape Ronek in 2013. During the present study, encrusting thalli of Lithothamnion sonderi Hauck, N. brassica-fl orida and Phymatolithon lenormandii (Areschoug) W.H.Adey were collected at both biogenic formations. P. fragile was found as an epiphyte on dead Mediterranean stony coral coral- lites only at Cape Debeli rtič, where also few encrust- ing thalli of P. confervicola were collected. Conversely, Lithophyllum racemus (Lamarck) Foslie, Lithothamnion minervae Basso and T. pustulatum were found only at the biogenic formation of Cape Ronek; the fi rst only as non living sub-globular thalli (rhodoliths), the second both as encrusting form and live rhodoliths, and the third only as encrusting thalli. The term “rhodolith” includes all bio- genic excrescences where calcareous red algae represent at least 50% of the nodule, which consists of the coralline alga together with the substrate/core (Bressan & Babbini, 2003). The fact that thalli of L. minervae were found alive on all sides of the rhodolith proves that the structure is occasionally rolled by marine currents, representatives of the vagile fauna and/or anthropogenic activities such as fi sheries, diving and anchorage. So far 31 species of coralline algae were reported for the Slovenian sea (Falace et al., 2011). Among the 10 species collected in 2013 (Table 2), four were found for the fi rst time in this coastal area in 2010: Lithothamnion minervae Basso, L. philippii, Lithothamnion sonderi and N. brassica-fl orida (Falace et al., 2011). However, all of them were previously recorded in the Italian part of the Gulf of Trieste. Several species of coralline algae found in Slovenian marine waters are listed as important build- ers of the coralligenous biocoenosis in the “Draft Lists of coralligenous/maërl populations and of main species to be considered by the inventory and monitoring” of the RAC-SPA (UNEP(DEPI)/MED WG.362/3, 2011). In the Mediterranean Sea, the coralligenous biocoenosis comprises at least 315 algal species (Boudouresque, 1973; Ballesteros, 2006). Among them, some species are bioconstructors (coralline algae), others bore holes into hard structures (particularly certain green algae Fig. 2: Image of biogenic formation at Cape Debeli rtič generated from multi-beam ecosounder data (photo: E. Gordini). Coralline algae were collected along the red transect. Sl. 2: Slika biogene formacije pred Debelim rtičem, narejena na podlagi podatkov iz ehosonderja (avtor E. Gordini). Koraligene alge so bile nabrane vzdolž transekta, označenega z rdečo črto. 93 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Martina ORLANDO-BONACA et al.: CORALLINE ALGAE ON BIOGENIC FORMATIONS IN MARINE WATERS OFF SLOVENIA (NORTHERN ADRIATIC SEA), 89–96 and blue-green algae (Cyanobacteria)), and some are accompanying species, which include a number of exotic and invasive taxa (Andreoli et al., 2010). The genus Lithophyllum is known to be the most species- diverse genus of coralline algae in the Mediterranean Sea and plays a key role in the formation of several widespread bioconstructions (Falace et al., 2016). These taxa contribute with their growth to the construction of organogenic formations also in shallow northern Adri- atic Sea (Bressan & Babbini, 2003; Bressan et al., 2009; Giaccone et al., 2009; Falace et al., 2016). Among the 25 species of coralline algae reported for the northern Adriatic calcareous bio-concretions, Lithophyllum incrustans Philippi is one of the most important biocon- structors, in particular at the outcrops located at a depth of 23–25 m and at a distance 10 km from the coast (Falace et al., 2015). Even though L. incrustans has been reported for the Slovenian area (Falace et al., 2011) it was not observed at the biogenic formations near Cape Debeli rtič and Cape Ronek. Therefore, on the basis of the recent fi ndings of coralline algae on biogenic forma- tions in Slovenian waters, it is reasonable to expect that future researches in the area will reveal new species among algae and benthic invertebrates, as well. In the light of the current (limited) knowledge about coralline algae, biogenic formations, and other infralit- toral and circalittoral coralligenous environments in the Slovenian Sea, some recommendations can be made, according to Ballesteros (2003), for their conservation: a) prohibition of trawling in areas with coralligenous forms and their vicinity, to avoid both the physical dam- age of trawling and also the indirect effects due to in- creased turbidity and sedimentation rates; b) prohibition of other anthropogenic activities that lead to increased water turbidity and/or sediment removal (e.g. coastline modifi cations) in the vicinity of coralligenous forms; c) no waste water discharge in these areas; d) implementa- tion of the management of traditional and recreational fi sheries in order to prevent stock depletion of target species; e) controlled recreational diving pressures; f) urgent need for a protection law of coralligenous envi- ronments; g) further scientifi c research to increase the knowledge about biology and ecology of taxa inhabiting the coralligenous biocoenosis, to give a more accurate estimation of the coralligenous biodiversity. ACKNOWLEDGEMENTS The authors would like to thank dr. Emiliano Gor- dini, Milijan Šiško, Tihomir Makovec, Nicola Bettoso, Valentina Pitacco, Jernej Uhan and Marko Tadejević for their help during fi eldwork. Special thanks are due to dr. Fig. 3: Image of biogenic formation at Cape Ronek generated from multi-beam ecosounder data (photo: E. Gordini). Coralline algae were collected along the green transect. Sl. 3: Slika biogene formacije pred rtom Ronek, narejena na podlagi podatkov iz ehosonderja (avtor E. Gordini). Koraligene alge so bile nabrane vzdolž transekta, označenega z zeleno črto. 94 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Martina ORLANDO-BONACA et al.: CORALLINE ALGAE ON BIOGENIC FORMATIONS IN MARINE WATERS OFF SLOVENIA (NORTHERN ADRIATIC SEA), 89–96 Emiliano Gordini and Milijan Šiško also for the prepara- tion of fi gures. The surveys were carried out under the TRECORALA project (TREzze e CORalligeno dell’ALto Adriatico: valorizzazione e gestione sostenibile nel Golfo di Trieste), funded from the “Italy - Slovenia Cross-border Cooperation Operational Programme 2007-2013” – Programme under the European Territo- rial Cooperation Objective, co-funded by the European Regional Development Fund (ERDF) and by national funds (fi nancial support from the Slovenian Research Agency (research core funding No. P1-0237)). Tab. 2: Coralline algae found at biogenic formations at Cape Debeli rtič and Cape Ronek (* alive thalli, ** dead thalli). Data from 2010 were published in Falace et al. (2011). Tab. 2: Koraligene alge, najdene na biogenih formacijah pred Debelim rtičem in rtom Ronek (* žive steljke, ** mrtve steljke). Podatki iz leta 2010 so bili objavljeni v delu Falace in sod. (2011). Location Biogenic formation Cape Debeli rtič Biogenic formation Cape Ronek Biogenic formation Cape Ronek Taxa/ Year 2013 2013 2010 Lithophyllum racemus ** ** Lithothamnion minervae * * Lithothamnion sonderi * * * Lithothamnion sp. * * Lithothamnion philippii * Neogoniolithon brassica-fl orida * * Phymatolithon lenormandii * * * Pneophyllum confervicola * * Pneophyllum fragile * * Titanoderma pustulatum * 95 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Martina ORLANDO-BONACA et al.: CORALLINE ALGAE ON BIOGENIC FORMATIONS IN MARINE WATERS OFF SLOVENIA (NORTHERN ADRIATIC SEA), 89–96 KORALIGENE ALGE NA BIOGENIH FORMACIJAH V SLOVENSKIH MORSKIH VODAH (SEVERNI JADRAN) Martina ORLANDO-BONACA, Borut MAVRIČ & Lovrenc LIPEJ Morska biološka postaja, Nacionalni Inštitut za biologijo, SI-6330 Piran, Fornace 41, Slovenija E-mail: martina.orlando@nib.si Sara KALEB & Annalisa FALACE Department of Life Sciences, University of Trieste, I-34127 Trieste, Via L. Giorgieri 10, Italy POVZETEK Pred kratkim so raziskovalci v slovenskem morju pričeli z raziskavami dveh velikih biogenih formacij, ki jih sestavljajo mrtvi koraliti sredozemske kamene korale (Cladocora caespitosa). Avtorji poročajo o novih podatkih o navzočnosti koraligenih alg na biogeni formaciji pri Ronku in biogeni formaciji pred Debelim rtičem. Koraligene alge so zelo pomembne pri ustvarjanju, razvoju in ohranjanju apnenčastih tvorb in nudijo življenjske niše za mnoge nevretenčarje in druge alge. So pomembni gradniki koraligene biocenoze, navedene tudi v seznamu populacij koraligenih/maërl alg, ki jih je potrebno popisati in redno spremljati na podlagi priporočil RAC-SPA, zato bi jih bilo potrebno natančno raziskati in primerno zavarovati. Ključne besede: koraligene alge, biogene formacije, cirkalitoral, severni Jadran 96 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Martina ORLANDO-BONACA et al.: CORALLINE ALGAE ON BIOGENIC FORMATIONS IN MARINE WATERS OFF SLOVENIA (NORTHERN ADRIATIC SEA), 89–96 REFERENCES Andreoli, E., F. Boscolo, A. Carlin, D. Curiel, E. Gordini, L. Mizzan, E. Molin, M. Ombrelli, G. Pessa, A. Rismondo, S. Rizzardi, S. Vanin & M. Zanetto (2010): Le tegnùe dell’Alto Adriatico: valorizzazione della risorsa marina attraverso lo studio di aree di pregio ambientale. ARPA Veneto – Settore Acque, 203 pp. Ballesteros, E. (2003): The coralligenous in the Mediterranean Sea. Defi nition of the coralligenous as- semblage in the Mediterranean, its main builders, its richness and key role in benthic ecology as well as its threats. RAC/SPA, Tunis, 82 pp. Ballesteros, E. (2006): Mediterranean coralligenous assemblages: a synthesis of present knowledge. Ocean- ogr. Mar. Biol. Ann. Rev., 44, 123-195. Ballesteros, E. (2008): Action plan for the conser- vation of the coralligenous and other calcareous bio- concretion in the Mediterranean Sea. RAC/SPA, 25 pp. Boudouresque, C.F. (1973): Recherches de bionomie analytique, structurale et expérimentale sur les peuple- ments benthiques sciaphiles de Méditerranée Occiden- tale (fraction algale). Les peuplements sciaphiles de mode relativement calme sur substrats durs. Bulletin du Muséum d’Histoire Naturelle de Marseille, 33, 147–225. Bressan, G. & L. Babbini (2003): Biodiversità marina delle coste Italiane: Corallinales del Mar Mediterraneo: guida alla determinazione. Biol. Mar. Medit., 10 (Suppl. 2), 237 pp. Bressan, G, G. Giaccone & G. Relini (2009): Proposte didattiche. In: Biocostruzioni marine, Elementi di architettura naturale. Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Museo Friulano di Storia Naturale, Comune di Udine, 143-149. Casellato, N., L. Massiero, E. Sichirollo & S. Soresi (2006): Hidden secrets of the northern Adriatic: »Teg- nùe« – peculiar reefs. Central European Journal of Biol- ogy, 2(1), 122-136. Falace, A., S. Kaleb, M. Orlando-Bonaca, B. Mavrič & L. Lipej (2011): First contribution to the knowledge of coralline algae distribution in the Slovenian circalit- toral zone (Northern Adriatic). Annales Series Historia Naturalis, 21(1), 27-40. Falace, A., S. Kaleb, D. Curiel, C. Miotti, G. Galli, S. Querin, E. Ballesteros, C. Solidoro & V. Bandelj (2015): Calcareous Bio-Concretions in the Northern Adriatic Sea: Habitat Types, Environmental Factors that Infl u- ence Habitat Distributions, and Predictive Modeling. PLoS ONE, 10(11), e0140931. https://doi.org/10.1371/ journal.pone.0140931. Falace, A., L. Pezzolesi, S. Kaleb, A. Alvito, L. Don- narumma, F. Di Stefano, M. Abbiati, F. Badalamenti, G. Bavestrello, L. Benedetti-Cecchi, F. Boero, R. Cannas, C. Cerrano, F. Mastrototaro, G. Chimienti, M. Ponti, G. F. Russo, R. Sandulli & F. Rindi (2016): Distribution of bioconstructor coralline algae of the genus Lithophyllum along the Italian shores. Biol. Mar. Medit., 23(1), 182- 185. Giaccone, T., G. Giaccone, D. Basso & G. Bressan (2009): Le alghe. In: Biocostruzioni marine, Elementi di architettura naturale. Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Museo Friulano di Storia Naturale, Comune di Udine, 29-44. Laborel, J. (1961): Le concretionnement algal »cor- alligène« et son importance géomorphologique en Mé- diterranée. Recueil Travaux Station Marine d'Endoume, 23, 37-60. Lipej, L., R. Turk & T. Makovec (2006): Endangered species and habitat types in the Slovenian Sea. Zavod RS za varstvo narave. Ljubljana, 264 pp. Lipej, L., M. Orlando-Bonaca & B. Mavrič (2016): Biogenic formations in the Slovenian sea. National Insti- tute of Biology, Marine Biology Station, Piran, 206 pp. Olivi, G. (1792): Zoologia Adriatica, ossia Catalogo ragionato degli animali del golfo e delle lagune di Ven- ezia. Bassano, 4 Volumes, 334 pp. Sartoretto, S. (1996): Vitesse de croissance et bioé- rosion des concrétionnements »coralligènes« de Médi- terranée nord-occidentale. Rapport avec les variations Holocènes du niveau marin. Thèse Doctorat d'Écologie, Université d'Aix-Marseille, II., 194 pp. UNEP (2011): Draft Lists of coralligenous/maërl populations and of main species to be considered by the inventory and monitoring. Ed. RAC/SPA, Tunis, 11 pp. 97 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 original scientifi c article DOI 10.19233/ASHN.2017.12 received: 2017-11-20 POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH- EASTERN ALPINE AND DINARIC PHYTOGEOGRAPHIC REGIONS OF SLOVENIA AND CROATIA IN THE LIGHT OF CLIMATE CHANGE Aljaž KOŽUH Pševo 9, Pševo, 4000 Kranj e-mail: aljazeko@gmail.com Mitja KALIGARIČ Department of Biology, Faculty of Natural Sciences and Mathematics and Faculty of Agriculture and Life Sciences, University of Maribor, Koroška 160, Maribor, Slovenia e-mail: mitja.kaligaric@um.si Danijel IVAJNŠIČ Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, Maribor, Slovenia e-mail: dani.ivajnsic@um.si ABSTRACT We studied the potential distribution of silver fi r (Abies alba Miller) in the Alpine and Dinaric phytogeographic regions of Slovenia and Croatia in the light of climate change. A decline of silver fi r in southern Europe due to summer droughts and heat has already been observed, along with the spread of its range towards the north-east in continental Europe due to a warmer climate with milder winters. In this study, we modelled habitat suitability for the silver fi r in regard to the most probable climate change scenarios. No major changes in habitat suitability were found in either region. Habitat suitability should slightly increase in the central and western parts of the Alpine region in more optimistic scenarios and on Pohorje and in the Dinaric region in more pessimistic scenarios. A more distinctive change of habitat suitability would probably be suppressed by weather extremes, such as summer drought and heat, a cold winter period, and extreme weather phenomena. Key words: global warming, ecological modelling, habitat suitability, RCP, silver fi r, species range change DISTRIBUZIONE POTENZIALE DELL’ABETE BIANCO (ABIES ALBA) NELLE REGIONI FITOGEOGRAFICHE ALPINA SUD-ORIENTALE E DINARICA IN SLOVENIA E CROAZIA IN RELAZIONE AI CAMBIAMENTI CLIMATICI SINTESI Gli autori hanno studiato la distribuzione potenziale dell’abete bianco (Abies alba Miller) nelle regioni fi toge- ografi che alpina e dinarica della Slovenia e della Croazia in relazione ai cambiamenti climatici. Una diminuzione dell’abete bianco nell’Europa meridionale, dovuta alla siccità e al caldo estivi, era già stata osservata, insieme all’espansione del suo areale verso nord-est nell’Europa continentale. In questo studio gli autori hanno modellato l’idoneità dell’habitat per l’abete bianco in relazione agli scenari più probabili di cambiamento climatico. Non è risultato alcun cambiamento importante nell’idoneità dell’habitat in nessuna delle due regioni. Secondo scenari più ottimistici, l’adeguatezza dell’habitat dovrebbe aumentare leggermente nelle parti centrale e occidentale della regione alpina, mentre secondo scenari più pessimistici dovrebbe ingrandirsi sul Pohorje e nella regione dinarica. Un cambiamento più distintivo dell’idoneità dell’habitat verrebbe probabilmente soppresso da condizioni meteorologi- che estreme, quali la siccità estiva e il caldo, un freddo periodo invernale e fenomeni meteorologici estremi. Parole chiave: riscaldamento globale, modellistica ecologica, idoneità dell’habitat, RCP, abete bianco, cambiamenti dell’areale della specie 98 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 INTRODUCTION Recently, the spatial distributions of many plant spe- cies, among them trees, including the silver fi r (Abies alba), have been noted to be much different from their natural distributions owing to several anthropogenic factors and infl uences. With this research we aimed to reveal the potential distribution of silver fi r without anthropogenic infl uences in the Alpine and Dinaric phytogeographic regions of Slovenia and Croatia. Furthermore, we also aimed to determine differences between the two areas. Primarily, we tested the present natural habitat suitability for the silver fi r of those two study areas by considering environmental variables and ecological modelling techniques. Finally, we examined future potential spatial distributions of the silver fi r based on the four most likely future climate scenarios grounded on four representative concentration pathways (RCP) of greenhouse gases. The silver fi r (Abies alba) grows up to 50 m high and 2.5 m thick, an evergreen tree with coniform to oviform crown, fl at branches, fl at needles with white lines and upright cones. It blossoms from April to June (Brus & Robič, 2002). Its main growth period is around 50 to 60 days from May to July (Aussenac, 2002). The silver fi r is mainly a European tree species (Brus & Robič, 2002). Its natural habitat is located mostly in the mountain regions of eastern, western, southern and central Europe (Anić et al., 2009). It grows in the Alps, Vosges and Jura, on the Balkan Peninsula and in the Carpathians. There are also some isolated ranges on the Apennine Peninsula, Corsica, in the Massif Central and Pyrenees (Brus & Robič, 2002). Its range spreads between 40° and 52° in latitude (between Poland and northern Greece) and between 5° and 27° in longitude (between the western Alps and the Carpathians) (Anić et al., 2009). In the Alpine and Dinaric regions it prospers between 400 and 1200 meters above sea level (Brus & Robič, 2002) in humid habitats with more than 1000 mm annual rainfall, and in the Mediterranean with average annual temperatures between 7 and 13 °C (Aussenac, 2002). It prefers fresh, deep and nutrient rich soils and is not sensitive to geological bedrock: it grows on carbonate or non-carbonate substrates (Brus & Robič, 2002) despite water accessibility being lower on carbonate (Ficko et al., 2011). The silver fi r grows at late succession phases, mostly in a community with the common beech (Fagus sylvatica) and the spruce (Picea abies) (Brus & Robič, 2002). However, it is a rather weak competitor and as such prospers only in a narrow gradient of environmen- tal conditions. In most of the favourable areas for the silver fi r, the beech is more successful in less and spruce in more extreme conditions (Ellenberg, 1988). Neverthe- less, the silver fi r is more competitive in shady forests with slower growth during the spring compared to the beech (Diaci et al., 2010). It does not tolerate extreme winter cold and summer drought and heath (Gazol et al., 2015; Koprowski, 2013). In the Mediterranean, its growth is limited mostly by low precipitation and water accessibility in spring and summer, while in central Europe its growth is limited due to low temperatures in late winter and early spring (Gazol et al., 2015). Forest managers gave preference to coniferous rather than to deciduous trees (Ellenberg, 1988; Ficko et al., 2011). The silver fi r is more common and widespread in the Dinaric region than in the Alpine (Slovenian Forest Service, 2010). Young specimens of fi r are frequently consumed and damaged by deer (Brus & Robič, 2002). It is therefore no surprise that the silver fi r population size is negatively correlated with deer population size (Diaci et al., 2010). The global increase of greenhouse gas concentration and mean temperature is currently well documented (Ogrin, 2004). The CO2 concentration has risen from 280 to over 400 ppm since 1750 (Anić et al., 2009). Without anthropogenic emissions, it only rose by 20 ppm between the years 8000 and 2000 B.C. (Anić et al., 2009). In the study area, the increase of average annual temperature and decrease of annual rainfall was record- ed during the 20th century (Ogrin, 2004; ARSO, 2016). Similar trends are expected in the 21st century. Average annual temperature increased by 1 to 1.5 °C over the 20th century (Ogrin, 2004; Gazol et al., 2015) and it should increase additionally by 1.5 to 6 °C according to different scenarios during the 21st century (Ogrin, 2004). The variability in precipitation patterns are even higher (Ogrin, 2004). During the summer, the precipitation amount is expected to decrease by 20% followed then by a 30% increase during the winter (Kutner & Kobler, 2011). However, on the annual scale, a 10% decrease of precipitation is expected (Anić et al., 2009). It should be emphasized that extreme weather events (heat and cold waves, droughts, fi res, irregular precipitation, etc.) are more and more frequent and intensive (Kutner & Kobler, 2011; ARSO, 2016) and signifi cantly affect the silver fi r populations. The silver fi r population in the Mediterranean is expected to decrease due to more intensive summer droughts, heat waves and fi res (Gazol et al., 2015). The beech-fi r forests in the Dinaric region are expected to be gradually replaced by thermophile forests (Kutner & Kobler, 2011). In central Europe, the silver fi r range extension towards the northeast is expected because of less extreme cold conditions in late winter and early spring, as well as its present range stability despite the possible competition with thermophile tree species (Ruosch et al., 2016). We presumed that altitude, annual mean air tem- perature and precipitation variables represent the most important natural determinants of the silver fi r´s spatial distribution. Climate change should affect silver fi r pop- ulations and its distribution in the study area especially in the lowlands. On the other hand, it is not expected that silver fi r will spread to altitudes higher than its up- 99 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 per limit, because winter cold is still too severe in the high mountains (ARSO, 2016; Ogrin, 2004). From that perspective, we focused on three hypotheses: 1. there are more potentially suitable silver fi r habitats in the Dinaric than in the Alpine region; 2. its range will move towards higher altitudes and will be narrower along this gradient; 3. Potential silver fi r range will decrease especially in the Dinaric region because it also occupies mountain peaks. MATERIALS AND METHODS Study area The Alpine phytogeographic region of Slovenia and the Dinaric phytogeographic region of Slovenia and Croatia were chosen as the study area (Fig. 1). The Alpine region of Slovenia contains Alpine geographic region of Slovenia with Julian Alps, Kamnik-Savinja Alps and the Karawanks (they also contain several mountain plateaus – Pokljuka, Jelovica, Menina, Velika Planina and Dobrovlje), which are a part of the Southern Lime- stone Alps; and Pohorje and Kozjak as part of the Central Alps. The Dinaric region of Slovenia contains mostly the Dinaric geographic region of Slovenia with poljes and Dinaric plateaus (Senegačnik, 2012). The north-western border are the plateaus of Banjšice and Trnovski gozd. At the border with Croatia it stretches from Snežnik at the west across Kočevski Rog to the mountain edge of Bela Krajina at the east. In Croatia we marked off the Dinaric region from the Slovenian border with Gorski Kotar at the north across the Velebit and its continental hinterland with poljes to the southern edge of Velebit at the south. Alpine valleys stretch between 500 and 1000 m a.s.l., relief plateaus from 1000 to 1600 m a.s.l.; whereas the tree line extends up to 1900 m a.s.l., with the highest peaks reaching up to 1000 m above it. In the Dinaric region, poljes are distributed between 400 and 800 m a.s.l., plateaus between 800 and 1500 m a.s.l., and the highest peaks up to 1800 m a.s.l., thus stretching just above the tree line (Požar & Novak, 2005; Senegačnik, 2012). The average annual temperature of alpine plateaus is 2 to 6 °C, whereas on the Dinaric plateaus average temperatures are signifi cantly higher and range from 4 to 7 °C. Annual rainfall on both considered regions reaches 1500 to 3000 mm (Zaninović et al., 2008; ARSO, 2016). Collection of spatial data Initially, silver fi r spatial distribution data for the two phytogeographical regions in Slovenia and Croatia were gathered from the Slovenia Forest Service (Slo- venia Forest Service, 2010; url: http://www.zgs.si/slo/ gozdovi_slovenije/o_gozdovih_slovenije/karte/index. html) and the Flora Croatica database (Nikolić, 2015), which was established by the Faculty of Science in Zagreb (Url: https://hirc.botanic.hr/fcd/). Thereafter, Fig. 1: The chosen study area. Sl. 1: Izbrano območje raziskave. Tab. 1: Bioclimatic variables from the Worldclim data- base. Tab. 1: Bioklimatske spremenljivke podatkovne baze Worldclim. Symbol Description BIO1 Annual mean temperature BIO2 Mean Diurnal Range (mean of monthly (max temp – min temp)) BIO3 Isothermality (BIO2/BIO7) (*100) BIO4 Temperature Seasonality (standard deviation *100) BIO5 Max Temperature of Warmest Month BIO6 Min Temperature of Coldest Month BIO7 Temperature Annual Range (BIO5-BIO6) BIO8 Mean Temperature of Wettest Quarter BIO9 Mean Temperature of Driest Quarter BIO10 Mean Temperature of Warmest Quarter BIO11 Mean Temperature of Coldest Quarter BIO12 Annual Precipitation BIO13 Precipitation of Wettest Month BIO14 Precipitation of Driest Month BIO15 Precipitation Seasonality (Coeffi cient of Variation) BIO16 Precipitation of Wettest Quarter BIO17 Precipitation of Driest Quarter BIO18 Precipitation of Warmest Quarter BIO19 Precipitation of Coldest Quarter 100 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 bioclimatic (Worldclim 1.4; Hijmans et al., 2005) and elevation data were considered as major contributions to potential future distribution of the silver fi r under the selected climate change model (CCSM4) and four representative concentration pathways greenhouse gas scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5 [Tab. 2]) until the end of the century (2070) (Tab. 1). The horizon- tal resolution of these geospatial datasets corresponds to 30 arc seconds (approximately 1 km² in mid latitudes). The considered greenhouse gas (GHG) scenarios are named after possible changes of radiative forcing in the year 2100 relative to the preindustrial age (Meinshausen et al., 2011). Scenario RCP2.6 anticipates a recent peak of emissions of GHG (between years 2010 and 2020); scenario RCP4.5 anticipates the GHG peak around 2040; scenario RCP6.0 around 2080; and fi nally, sce- nario RCP8.5 a continuous increase of GHG emissions until the end of the 21st century (Weyant et al., 2009). Consequently, a global annual temperature increase is inevitable (Stocker et al., 2013) (Tab. 2). Spatial data processing and ecological modelling The acquired spatial databases of silver fi r distribu- tion in the study area were unifi ed (by leaning on the WGS84 coordinate system) and spatially fi ltered with ArcGIS software (ESRI, 2016). Selected environmental variables (bioclimatic and altitude) were extracted by using a background bias fi le (Barbet-Massin et al., 2014). Additionally, all 19 bioclimatic variables were PCA transformed in order to avoid possible correla- tion of explanatory variables. The resulting fi rst three components (BioPCA), explaining 87.5% of variability, together with altitude were considered using the habitat suitability modelling procedure. In that light, the Mahalonobis Typicality species dis- tribution modelling (SDM) approach within Idrisi Selva software (Clark Labs, 2015) was selected. This method is less sensitive to spatially auto-correlated occurrence data and is frequently being used to model plant distribution from the climate change perspective (Clark Labs, 2015). After completing the present scenario, the accuracy and reliability of the produced habitat suitability map was verifi ed with ROC analysis and the resulting AUC value. The fi nal processing of future environmental conditions, captured in future BioPCA components, gave us fi ve habitat maps (present, and four future, RCP scenarios) for the silver fi r in the study area. However, the continuous maps were simplifi ed for easier interpretation into four suitability maps by applying the following thresholds: 1 = 0 – 25%, 2 = 25 – 50%, 3 = 50 – 75% and 4 = 75 – 100%. Finally, a comparative table summarizing the proportions of each suitability class within both phytogeographic regions was produced (Tab. 3) RESULTS The ROC analysis results and the corresponding AUC value for the silver fi r suitability in the study area by applying the Mahalonobis typicality model are shown Tab. 2: The considered future climate scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5) according to CCSM global climate model. Tab. 2: Upoštevani podnebni scenariji (RCP2.6, RCP4.5, RCP6.0, RCP8.5) po globalnem podnebnem modelu CCSM. Scenario Solar radiation change (W/m²) Increase of global annual temperature by year 2100 (°C) (variability) RCP2.6 2.6 1.0 (0.3 to 1.7) RCP4.5 4.5 1.8 (1.1 to 2.6) RCP6.0 6.0 2.2 (1.4 to 3.1) RCP8.5 8.5 3.7 (2.6 to 4.8) Table 3: The proportion of potential habitat area for the silver fi r in each phytogeographic region by considering four suitability thresholds and climate scenarios. Tabela 3: Delež potencialnega habitata jelke po upoštevanih razredih ustreznosti in podnebnih napovedih na obravnavanih fi togeografskih območjih. Model Alpine phytogeographic region Dinaric phytogeographic region Both regions together Habitat suitability (%) Habitat suitability (%) Habitat suitability (%) 0-25 25-50 50-75 75-100 0-25 25-50 50-75 75-100 0-25 25-50 50-75 75-100 Present 40 26 22 11 53 24 13 10 49 25 16 10 RCP2.6 40 23 24 13 54 25 15 7 50 24 18 9 RCP4.5 41 27 17 14 49 24 19 7 47 25 19 9 RCP6.0 39 26 21 14 40 27 26 8 39 27 24 9 RCP8.5 36 25 26 13 71 6 12 11 60 12 16 12 101 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 in Fig. 2. The curve for the model is steep and fl attens quickly (Fig. 2), the AUC value is close to 1 (0.954) thus indicating a satisfactory level of agreement between oc- currence data and predicted suitability. Figure 3 shows the present silver fi r´s (Abies alba) habitat suitability in the chosen Alpine and Dinaric phytogeographic regions, and fi gure 4 its future (year 2070) potential suitability according to considered GHG scenarios (RCP 2.6, 4.5, 6.0, 8.5) and the CCSM4 global climate model. The present habitat suitability is the highest in Dinaric plateaus of Slovenia and Alpine plateaus and the middle mountain zone (Kamnik-Savinja Alps and the surround- ing plateaus) (Fig. 3). Low suitability is detected in the western Julian Alps and in the Dinaric region of Croatia (Fig. 3). Quite distinctive contrasts are evident on both sides of the border (Fig. 3). The lowest suitability can be identifi ed in the high mountains. The alpine valleys, the peak of Pohorje and several surrounding poljes exhibit low suitability as well (Fig. 3). All future scenarios show common spatial features of the silver fi r’s potential habitat but differ in a few details (Fig. 4). They all show lower habitat suitability in the western Julian Alps and the southern part of the Dinaric region in Croatia (Fig. 4). The fi rst scenario RCP2.6 is similar to the present one. The difference is noticeable in a somewhat lower habitat suitability on the Dinaric plateaus of Slovenia and higher on western Alpine plateaus of Slovenia (Pokljuka, Jelovica). The RCP4.5 scenario is the most similar to the present one. The only difference is a bit higher habitat suitability in the central Karawanks and a bit lower in the Trnovski gozd area. In comparison with RCP2.6 there is a bit higher silver fi r habitat suitability on the Dinaric plateaus of Slovenia and a bit lower on Pokljuka and Jelovica (Fig. 4). The RCP6.0 scenario is similar to the present one and to RCP4.5. There is a bit lower suitability in the central part of the Dinaric region of Slovenia, whereas in Trnovski gozd it is similar to the present one. A notice- able difference of silver fi r habitat suitability is in the eastern part of the Alpine region of Slovenia (eastern Karawanks, Pohorje) compared to other scenarios. There is a bit higher habitat suitability in the central part of the Dinaric region in Croatia as well (Fig. 4). The RCP8.5 scenario predicts the best conditions by the end of the century for the considered species mostly in Slovenia except in the western part of the Alpine region (Pokljuka, Jelovica, central Karawanks, western Kamnik-Savinja Alps) resulting in the highest habitat suitability. On the other hand, it is simultaneously the worst scenario for the Dinaric region of Croatia where there is very low habitat suitability almost throughout the whole region. This scenario assumes the highest contrast on both sides of the border (Fig. 4). Future scenarios also show a little tendency of potential habitat optimum shift from west to east in the Alpine region of Slovenia from less (RCP2.6) to the warmest scenario (RCP8.5) (Fig. 4). The proportions of potential silver fi r habitat area for each of the applied thresholds and considered regions separately and together are shown in Tab. 3. In the Alpine region, the proportions of the suitable area are similar considering all thresholds and RCP scenarios. However, in the 4th quartile of the potential habitat suitability a clear positive trend towards warmer climate conditions can be identifi ed. In the Dinaric Region the largest potential habitat in the fourth class is predicted in the case of scenario RCP8.5. If climate scenarios RCP2.6, 4.5 or 6.0 are realized, the Dinaric region could be Fig. 3: Recent habitat suitability for the silver fi r (Abies alba) in the chosen Alpine and Dinaric phytogeographic regions. Sl 3: Aktualna primernost jelke (Abies alba) v izbrani alpski in dinarski fi togeografski regiji. Fig. 2: ROC analysis curve and the corresponding AUC value. Sl. 2: Krivulja ROC analize in pripadajoča AUC vred- nost. 102 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 occupied with less silver fi r. Overall, high variability in silver fi r potential habitat in the study area is assured in both - more optimistic and more pessimistic - thresholds considered. DISCUSSION The infl uence of climate change on silver fi r popula- tions across Europe was already studied by Gazol et al. (2015). They outlined that in southwestern Europe, silver fi r populations could decrease owing to increased aridity, but increase in the Continental temperate zone of central Europe due to climate warming. Ruosch et al. (2016) draw similar conclusions, predicting that silver fi r range should decrease in southern Europe and spread northeast toward central Europe in future. They also predict that the present range should remain stable despite possible competition with thermophilous tree species. Kutner & Kobler (2011) tried to predict the change of forest vegetation in Slovenia by considering different climate scenarios with the use of ecological modelling. They calculated that the share of beech-fi r forests will substantially decrease by the year 2100 and could be mostly replaced by thermophile forests. The coniferous forests with prevalent spruce and fi r are expected to be replaced mostly by broadleaf forests. Koprowski (2013) tried to determine the response of silver fi r growing outside its natural range concerning spring extreme weather phenomena in Poland. The higher March temperatures should stimulate silver fi r growth especially in the western part of the study area, at the edge of continental plains with less spring frost and where colder winter periods are less pronounced. Anić et al. (2009) tried to reveal the infl uence of climate change on silver fi r´s ecological niche in Croatia and proposed that the niche will gradually decrease in the 21st century because of temperature rise. Ficko et al. (2011) found that silver fi r’s range in Slovenia shifted Fig. 4: Potential habitat suitability for silver fi r (Abies alba) for the year 2070 by four future climate scenarios (RCP2.6 [A], RCP4.5 [B], RCP6.0 [C], and RCP8.5 [D]) in the chosen Alpine and Dinaric phytogeographic regions. Sl. 4: Primernost habitata jelke (Abies alba) leta 2070 po štirih prihodnjih klimatskih scenarijih (RCP2.6 [A], RCP4.5 [B], RCP6.0 [C], and RCP8.5 [D]) v izbrani alpski in dinarski fi togeografski regiji. 103 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 towards cooler and more humid habitats over the last 40 years and slightly expanded. Based on our results, none of the hypotheses can be completely proven. The fi rst hypothesis about higher portion of suitable habitats in the Dinaric region can be at least partly proven, because the model, especially in Slovenia, shows more optimal potential habitats in the Dinaric compared to the Alpine region by apply- ing the 4th quartile suitability threshold (75-100%) for the Mahalonobis probability distribution. Surprisingly, though the environment in Gorski Kotar is very similar to that on the Slovenian side of the border (Čavlović et al., 2006; Kutnar & Kobler, 2011), the results show there much lower habitat suitability for the silver fi r. However, the spatial pattern of the silver fi r is hetero- geneous; the tree grows in places like the Velebit and in its surroundings despite less favourable condition (Nikolić, 2015). The second hypothesis can neither be proven nor rejected because the model does not show any distinctive change in the Alpine region or the results are not distinctive enough to draw proper conclusions. In this case, a more accurate scale would be needed to adequately test this research question. The third hypothesis can be completely rejected, because the silver fi r´s range will probably not decrease in the Dinaric region and could even increase, especially in the most pessimistic scenario, RCP8.5. The results confi rm the fact that silver fi r is most common in the middle altitude (mountain) zone (Brus & Robič, 2002). Lower habitat suitability in the west- ern and central Julian Alps might be the consequence of Mediterranean infl uence in the Soča valley (Ogrin, 2004). Thermophilic vegetation is also present there and could displace the silver fi r (Kutner & Kobler, 2011), although all references do not confi rm that (Ruosch et al., 2016). However, climate conditions there are more variable; even though there are higher rates of precipita- tion and longer dry periods (ARSO, 2016). In the Dinaric region of Croatia the results show mostly low habitat suitability, but some scenarios (especially RCP6.0) still indicate better potential habitat suitability in the northern and central parts of the region. However, in the southern part all scenarios show mostly low potential habitat suitability. We could conclude that especially in Gorski Kotar, where the environment is currently similar to that on the Slovenian side of the border, po- tential habitat suitability is also similarly high. On the Velebit, especially its southern part and its continental hinterland, the habitats might actually be less suitable for silver fi r today and still might be in the future. Maybe also the Mediterranean effect of summer droughts, heat and fi res is and will be more distinctive there. Future scenarios predict a lower share of optimal habitats in the Dinaric region in optimistic scenarios (RCP2.6 and RCP4.5) and higher in the most pessimistic (RCP8.5). In the Alpine region, all scenarios are simi- lar; however, most of habitats of greater suitability are also shown by considering the RCP8.5 scenario. The Dinaric region could be placed in southern Europe and the Mediterranean, where the silver fi r´s range should mostly decrease, especially because of hotter summers and more severe droughts (Aussenac, 2002; Kutnar & Kobler, 2011; Gazol et al., 2015; Ruosch et al., 2016). Such climate change consequences have already been spotted there (Anić et al., 2009; Čavlović et al., 2012; ARSO, 2016); but, surprisingly, our results do not con- fi rm such a response of the silver fi r. However, better potential habitat suitability for the silver fi r in central Eu- rope, where the Alpine region can be placed (Ruosch et al., 2016), is confi rmed but without signifi cant change. That could be the consequence of a milder climate in the Alps, where more distinctive summer heat and droughts are not present yet (ARSO; 2016). Finally, some restrictions and limitations regarding the research should be pointed out. We are aware that the bioclimatic variables of the Worldclim database are uncertain in some mountain areas, especially on geographically heterogeneous landscapes; this is why the results should be treated with some caution. Ow- ing to more accurate data in Slovenia, the forecast of habitat suitability is probably much more representative. The exaggerated difference on both sides of the border, despite similar environmental conditions, is certainly not a representative result, but likely the consequence of unbiased spatial data or a highly variable spatial pattern of the considered species concerning the considered environmental predictors. CONCLUSIONS The expected climate change could not have any distinctive infl uence on the silver fi r distribution range. In western and central parts of the Alpine region, the optimistic future climatic scenarios predict somewhat more favourable conditions for the silver fi r; in contrast, in the eastern part of its current range, in the Dinaric region, the pessimistic climate scenario (RCP 8.5) results in a more potentially suitable habitat area. Such results could be the consequence of higher mean air tem- peratures, but their favourable effect should probably be partly suppressed by more common and intensive weather extremes. Because of some research restrictions and limitations, the results can deviate from the actual expected state in the future. ACKNOWLEGMENTS We thank the Croatian Botanical Society and prof. Toni Nikolić in particular, for allowing the use of spatial distribution data of silver fi r in Croatia. The research for this paper was partly funded by the P1-0164 grant, provided by the Slovenian Research Agency. 104 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 POTENCIALNA RAZŠIRJENOST JELKE (ABIES ALBA) V JUGOVZHODNO-ALPSKEM IN DINARSKEM FITOGEOGRAFSKEM OBMOČJU SLOVENIJE IN HRVAŠKE V LUČI KLIMATSKIH SPREMEMB Aljaž KOŽUH Pševo 9, Pševo, 4000 Kranj e-mail: aljazeko@gmail.com Mitja KALIGARIČ Department of Biology, Faculty of Natural Sciences and Mathematics and Faculty of Agriculture and Life Sciences, University of Maribor, Koroška 160, Maribor, Slovenia e-mail: mitja.kaligaric@um.si Danijel IVAJNŠIČ Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, Maribor, Slovenia e-mail: dani.ivajnsic@um.si POVZETEK Zaradi vse bolj izrazitega vpliva klimatskih sprememb na vegetacijo smo s to raziskavo želeli ugotoviti njihov vpliv na potencialno razširjenost jelke (Abies alba Miller) v alpski in dinarski fi togeografski regiji na območju Slove- nije in Hrvaške. Že danes je opazno krčenje areala jelke na južnem območju razširjenosti zaradi vse intenzivnejših poletnih suš in vročine v Sredozemlju ter širjenje areala proti severovzhodu zaradi toplejše klime in milejših zim kontinentalne Evrope. Preverjali smo primernost habitata za jelko s pomočjo ekološkega modeliranja za sedanje stanje in štiri najbolj verjetne prihodnje scenarije. Rezultati niso pokazali večjih sprememb v primernosti habitata v obeh regijah. Primernost habitata naj bi se nekoliko povečala, v osrednjem in zahodnem delu alpske regije ob bolj optimističnih scenarijih, na Pohorju in v Dinarski regiji pa ob bolj pesimističnih scenarijih. Izrazitejše izboljšanje primernosti habitata pa bodo najbrž vseeno zavrli vse intenzivnejši vremenski ekstremi, kot so poletna suša in vročina, zimski mraz in vremenske ujme. Ključne besede: ekološko modeliranje, jelka, globalno segrevanje, primernost habitata, RCP, sprememba areala 105 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 REFERENCES Agencija Republike Slovenije za Okolje (ARSO) (Slovenian Environment Agency) (2016): Podnebje Slovenije – preglednice, karte in izredni dogodki (The climate of Slovenia – tables, maps and extreme weather phenomena). Vremenski portal meteo.si – Uradna vremenska napoved za Slovenijo, »Javne informacije Slovenije« ARSO – met (Weather portal meteo.si – The offi cial weather forecast for Slovenia, »Public informa- tion of Slovenia« ARSO - met). Acquired from: http:// meteo.arso.gov.si/met/sl/climate/. Anić, I., J. Vukelić, S. Mikac, M. Bakšić & D. Ugarković (2009): Utječaj globalnih klimatskih prom- jena na ekološku nišu obične jele (Abies alba Mill.) u Hrvatskoj (Effects of global climate change on the eco- logical niche of silver fi r (Abies alba Mill.) in Croatia). Šumarski list br. 3-4, CXXXIII, 135-144. Aussenac, G. (2002): Ecology and ecophysiology of circum-Mediterranean fi rs in the context of climate change. Annual Forest Science, 59, 823-832. Barbet-Massin, M., C.H. Albert & W. Thuiller (2012): Selecting pseudoabsences for species distribution mod- els: how, where and how many. Methods in Ecology and Evolution, 3, 327-338. Brus, R. & D. Robič (2002): Sprehod po gozdu: najpogostejša slovenska drevesa in grmi (A walk through the forest: the most common Slovenian tree and bush species). DZS, Ljubljana. Clark Labs (2015): Idrisi 17.0 The Selva Edition. Clark University 950 Main St., Worcester MA 01610 USA. Clark Labs (2015): Species Distribution Modeling with TerrSet´s Habitat and Biodiversity Modeler. Clark University 950 Main St., Worcester MA 01610 USA. Ac- quried from: https://clarklabs.org/species-distribution- modeling-in-terrsets-land-change-modeler/ Čavlović, J., A. Bončina, M. Božić, E. Goršić, T. Simončič & K. Teslak (2015): Depression and growth recovery of silver fi r in uneven-aged Dinaric forests in Croatia from 1901 to 2001. Forestry, 88, 586-598. Diaci, J., D. Rozenbergar & A. Boncina (2010): Stand dynamics of Dinaric old-growth forest in Slovenia: Are indirect human infl uences relevant? Plant Biosystems, 144(1), 194-201. Ellenberg, H. (1988): Vegetation Ecology of Central Europe, fourth edition. Cambridge University Press, Cambridge, pp. 197-207. ESRI (2016): ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute. Ficko, A., A. Poljanec & A. Boncina (2011): Do changes in spatial distribution, structure and abundance of silver fi r (Abies alba Mill.) indicate its decline? Forest Ecology and Management, 261, 844-85. Gazol, A., J. J. Camarero, E. Gutierrez, I. Popa, L. Andreu-Hayles, R. Motta, P. Nola, M. Ribas, G. Sangüe- sa-Barreda, C. Urbinati & M. Carrer (2015): Distinct effects of climate warming on populations of silver fi r (Abies alba) across Europe. Journal of Biogeography, 42, 1150 – 1162. Hijmans, R. J., S. Cameron & J. Parra (2005): World- Clim – Global Climate Data. Museum of Vertebrate Zo- ology, University of California, Berkeley, ZDA. Acquired from: http://www.worldclim.org/ IPCC AR5 WG1 (2013): Climate Change 2013: The Physical Science Basis. In: Stocker, T.F., D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (eds): Working Group 1 (WG1) Contribution to tke Intergovernmental Panel on Climate Change (IPCC) 5th Assessement Report (AR5). Cambridge University Press, 1523 pp. Koprowski, M. (2013): Reaction of silver fi r (Abies alba) growing outside its natural range to extreme weather events and a long-term increase in march tem- perature. Tree-ring research, 69(2), 49-61. Kutnar, L. & A. Kobler (2011): Prediction of forest vegetation shift due to different climate-change scenarios in Slovenia (Prognoza promjena šumske vegetacije zbog različitih scenarija klimatskih promjena u Sloveniji). Šumarski list 3-4, CXXXV, 113-126. Meinshausen, M., S.J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma, J-F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. Thomson, G. J. M. Velders, & D. P. P. van Vuuren (2011): The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213-241. doi:10.1007/s10584-011-0156-z. Nikolić, T. (2015): Flora Croatica baza podataka (http://hirc.botanic.hr/fcd). Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu. Ogrin, D. (2004): Vreme in Podnebje (Weather and climate). In Bat, M., F. Lovrenčak, R. Pavlovec & D. Ogrin (eds.): Narava Slovenije, Mladinska knjiga, Ljubljana, pp. 72-101. Požar, S. & F. Novak (2005): ATLAS Slovenije (Atlas of Slovenia). Geodetski Zavod Slovenije and Mladinska knjiga Založba, d.d., Ljubljana, 487 pp. Ruosch, M., R. Spahni, F. Joos, P. D. Henne, W. O. van der Knaap & W. Tinner (2016): Past and future evolution of Abies alba forests in Europe – comparison of a dynamic vegetation model with palaeo data and observations. Global Change Biology, 22, 727-740. Senegačnik, J. (2012): Slovenija in njene pokrajine (Slovenia and its landscapes). Modrijan, Ljubljana, 472 pp. Weyant, J., C. Azar, M. Kainuma, J. Kejun, N. Naki- cenovic, P. R. Shukla, E. La Rovere & G. Yohe (2009): Future IPCC Activities – New Scenarios: Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel. Intergov- ernmental Panel on Climate Change, Thirtieth session, Antalaya. IPCC Secretariat, Geneva, Switzerland, 81 pp. 106 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Aljaž KOŽUH et al.: POTENTIAL DISTRIBUTION OF SILVER FIR (ABIES ALBA) IN SOUTH-EASTERN ALPINE AND DINARIC ..., 97–106 Zaninović, K., M. Gajić-Čapka, M. Perčec Tadić, M. Vučetić, J. Milković, A. Bajić, K. Cindrić, L. Cvitan, Z. Katušin, D. Kaučić, T. Likso, E. Lončar, Ž. Lončar, D. Mihajlović, K. Pandžić, M.Patarčić, L. Srnec, V. Vučetić (2008): Klimatski atlas Hrvatske / Climate atlas of Croa- tia 1961-1990., 1971-2000. Državni hidrometeorološki zavod, Zagreb, 172 pp. Zavod za gozdove Slovenije (ZGS) (Slovenian Forest Service) (2010): Karte Drevesnih vrst: Jelka (Tree spe- cies maps: silver fi r). Oddelek za gozdnogospodarsko načrtovanje (Department for forestmanagement plan- ning), Rok Pisek, marec 2010. Acquired from: http:// www.zgs.si/slo/gozdovi_slovenije/o_gozdovih_sloveni- je/karte/index.html. 107 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 saggio scientifi co di rassegna critica di letteratura DOI 10.19233/ASHN.2017.13 ricevuto: 2017-07-18 LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA) Amelio PEZZETTA Via Monte Peralba 34 - 34149 Trieste e-mail: fonterossi@libero.it SINTESI Bale-Valle è un Comune croato della costa sud-occidentale dell’Istria la cui superfi ce è di circa 82 Kmq. Nel presente lavoro, tenendo conto delle ricerche personali dell’autore, delle informazioni fornite da alcuni studiosi, dei dati ricavati da alcuni siti Internet e dei riferimenti bibliografi ci più recenti, è stato compilato un elenco fl oristico comprendente tutte le specie, le sottospecie e gli ibridi appartenenti alla famiglia delle Orchidaceae che sono presenti nel territorio comunale ed è stata fatta l’analisi corologica. Nel complesso sono segnalate 31 entità tra specie e sottospecie cui si aggiungono 10 ibridi. A sua volta l’analisi corologica evidenzia la prevalenza degli elementi mediterranei. Parole chiave: Orchidaceae, checklist comunale, Bale-Valle, Istria, Croazia THE ORCHIDS OF BALE-VALLE (ISTRA, CROATIA) ABSTRACT Bale-Valle is a Croatian municipality on the southwest coast of Istria, covering a surface of about 82 Kmq. This paper, taking into account the author’s personal research, of the information provided by some researcher , data from some Internet sites and the most recent bibliographic references, lists all the members of the Orchidaceae family including hybrids, and provides a phytogeographical analysis. Overall, I found 31 species and subspecies, of orchids plus 10 hybrids. The phytogeographical analysis indicates the predominance of Mediterranean elements. Key words: Orchidaceae, municipal checklist, Bale-Valle, Istria, Croatia 108 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 INTRODUZIONE Bale-Valle (fi no al 1945 Valle d’Istria), dal 1992 è un Comune censuario della Croazia (Cergna 2006) situato nell’Istria sud-occidentale che confi na con Rovigno (Rovinj), Dignano (Vodnjan), Canfanaro (Kanfanar) e Sanvincenti (Svetvinčenat). La popolazione residente in base al Censimento del 2011 è di 1.129 abitanti mentre la superfi ce territoriale è di 82,06 Kmq. Oltre al centro comunale la popolazione vive sparsa in varie abitazioni e alcune frazioni: Černibek, Čubani, Golaš, Krmed, Pižanovac, Stancija Meneghetti e Sv. Bembo. La densità di popolazione è molto bassa (meno di 14 abitanti per Kmq) e sino ad un recente passato, come nel resto della penisola istriana, gran parte del territorio vallese è stato utilizzato per pratiche agro-pastorali che hanno portato alla formazione di un paesaggio eterogeneo costi- tuito da terreni aperti, in mosaico a formazioni boschive. In tempi recenti il rapporto dell’uomo con il territo- rio è cambiato. Da un lato l’abbandono delle pratiche agro-pastorali tradizionali ha portato allo sviluppo di formazioni vegetali arbustive e a una ripresa spontanea del processo di riforestazione. Dall’altro lo sviluppo di forme di agricoltura intensiva ha ridotto i terreni aperti. Lungo la costa invece, la realizzazione di strutture turistico-ricreative ha contribuito a ridurre gli spazi na- turali. A causa di ciò nell’ambito in esame il paesaggio è molto vario e si osserva un mosaico che associa insieme strutture turistiche, centri abitati, case sparse (molte del- le quali chiamate localmente “Stancija”), infrastrutture stradali e di altro tipo, boschi, radure, terreni incolti e altri coltivati (generalmente oliveti e in minor misura seminativi, vigneti e altro). La geologia Il Comune di Bale-Valle è attraversato dal 45° pa- rallelo e quindi si trova a metà strada tra il polo nord e l’equatore. Il suo territorio occupa una linea di costa sassoso-ghiaiosa dalla lunghezza complessiva di circa 5 Km ed è caratterizzato da un altopiano calcareo leg- germente ondulato in cui si elevano colline più o meno rotondeggianti che raggiungono l’altitudine massima di 244 m s.l.m. Esso è compreso nella cosiddetta “Istria rossa”, una parte della penisola istriana costituta da diversi altipiani divisi tra loro da profondi solchi vallivi che è situata a sud di una linea spezzata che con diverse angolazioni collega Salvore (Savudrija) con Buie (Buje), Montona (Motovun), Pisino (Pazin) e il vallone di Fia- nona (Plomin). È cosi chiamata poiché in tale ambito prevalgono rocce calcaree ricoperte da terreni di colore rossastro con uno spessore compreso tra 2 e 7 metri che contengono silicati, ossidi di ferro, d’alluminio e altri materiali insolubili. La particolare colorazione è la conseguenza di un processo di rubefazione che avviene in superfi ce e porta alla formazione di vari tipi di ossidi e idrossidi ferrosi e ossidi di manganese (Merlak, 2014). Il territorio vallese in particolare, è molto semplice essendo costituito da vari tipi di rocce calcaree databili al Cretaceo (Forti, 1988: 89; Alberi, 1997: 1568). In tale ambito non scorrono corsi d’acqua superfi ciali poiché a causa della natura permeabile del terreno, le precipita- zioni s’infi ltrano nel sottosuolo. Un’interessante caratteristica del luogo è costituita dal ritrovamento avvenuto all’inizio degli anni ‘80 nel fondo del mare che bagna le coste comunali, di ossa fossilizzate di dinosauro risalenti all’Hauteriviano superiore-Barremiano inferiore, un periodo geologico compreso tra i 135 e i 129 milioni di anni fa (Boscarolli & Dalla Vecchia, 1999). Il clima A Valle non esiste una stazione meteorologica che registri l’andamento delle precipitazioni e delle tem- perature e di conseguenza, i dati che si riportano sono valori medi registrati in più stazioni dell’Istria o quelli di località vicine quali Pola e Rovigno. In generale si può sostenere che tutto il territorio dell’Istria meridionale è caratterizzato dal clima mediterraneo con inverni miti, le stagioni estive generalmente lunghe e secche e le precipitazioni concentrate nel resto dell’anno. Analizzando in dettaglio i valori delle temperature, Gorlato (1997) fa presente che la temperatura media annua lungo la fascia costiera istriana raggiunge i 14 °C. Le recenti osservazioni confermano tali dati e in par- ticolare dimostrano che a Pola e Rovigno si registrano temperature medie annue di 14°C e 13,6°C (Zaninović et al., 2008). In particolare a Pola: la media dei valori minimi si registra nel mese di gennaio e si aggira attorno a 6°C; la media dei valori massimi di temperatura si registra tra luglio e agosto e si aggira tra 25-26°C; la media delle precipitazioni nel periodo 1961-1990 è stata di 848 mm mentre nel periodo 2011-2013 di 722 mm (IDEOPLAN, 2015). Di solito il periodo più piovoso va da ottobre a novembre. I venti dominanti sono: la bora, lo scirocco, il libec- cio, il levante, il ponente e il maestrale. Altri venti con minore frequenza giungono da vari quadranti mentre alcuni locali tra cui le brezze, sono causati dalle escur- sioni termiche diurne e da fattori topografi ci di dettaglio. Il paesaggio vegetale Le peculiarità geografi che del territorio, l’andamento climatico, le vicende storico-geologiche e la pressione antropica attuale e del passato si rifl ettono sul paesaggio vegetale e sulle sue particolarità fl oristiche e fi togeogra- fi che. Le principali tipologie vegetali che si rinvengono nel territorio vallese sono le seguenti: • ambiti di macchia mediterranea misti con sclero- fi lle e caducifoglie; • radure prative e prati-pascolo secondari inqua- drabili in varie associazioni vegetali tra cui: 109 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 Chryspogono-Euphorbietum nicaensis Horvatić e Danthonio -Scorzoneretum villosae Horvatić; • associazioni vegetali sinantropiche che attec- chisco nei pressi dei campi coltivati, dei centri abitati, dei terreni incolti, le cave abbandonate, delle abitazioni sparse e dei bordi stradali; • formazioni tipiche degli affi oramenti rocciosi con Saxifraga trydactilites L., varie specie di Sedum, etc. • formazioni arbustive che lentamente stanno oc- cupando pascoli e terreni abbandonati ed alla cui composizione, come osservato dallo scrivente, concorrono: Carpinus orientalis Mill., Colutea arborescens L., Cornus mas L., Cornus sanguínea L., Coronilla emerus L., Erica arborea L, Ligustrum vulgare L, Juniperus oxycedrus L., Paliurus spi- na-christi Mill., Prunus spinosa L., Rosa canina L, Rosa sempervirens L., Ruscus aculeatus L., Smilax aspera L., Spartium junceum L., vari tipi di Cistus L., Rubus L., etc.; • formazioni di bosco submediterraneo con Fraxi- nus ornus L. Ostrya carpinifolia Scop., Quercus pubescens Willd. ed altre essenze arboree. L’ambito litoraneo è caratterizzato dal bosco misto mediterraneo (Orno-Quercetum-ilicis Horvatić) che inizia a insediarsi a poche decine di metri dalla linea di battigia e si protrae sino ad alcuni Km dal mare. Questa particola- re associazione vegetale è diffusa lungo le coste orientali adriatico-ioniche dalla Grecia sino al Golfo di Trieste ove raggiunge il limite settentrionale di distribuzione geogra- fi ca (Poldini et al. 1980). Alle specie caratteristiche quali il leccio (Quercus ilex L.) e l’orniello (Fraxinus ornus) nel territorio in esame si accompagnano: Anemone hortensis L., Arbutus unedo L., Asparagus acutifolius L., Clematis fl ammula L., Cyclamen repandum Sibth & Sm., Doryc- nium hirsutum (L.) Ser., Lonicera etrusca Santi, Phillyrea latifolia L., Pistacia lentiscus L., Pistacia terebinthus L., Rosa sempervirens L., Rubia peregrina L., Viburnum tinus L., etc. (Šugar, 1985). Man mano si penetra verso l’interno, i parametri termici si abbassano, le infi ltrazioni di essenze cadu- cifoglie si accentuano e l’Orno-Quercetum-ilicis è sostituito dal bosco carsico sub-mediterraneo con la sua principale tipologia: l’Ostryo-Quercetum pubescentis (Ht.) Trinajstić dominato da Fraxinus ornus, Ostrya car- pinifolia e Quercus pubescens. Inoltre, in diverse parti, a causa dell’azione antropica, l’Orno-Quercetum-ilicis è sostituito anche da: 1) prati-pascolo secondari e radure erbose più o meno vaste spesso ricche di orchidacee; 2) formazioni miste arboreo-arbustive e arbustive. MATERIALI E METODI L’elenco fl oristico comprende le specie, le sot- tospecie e gli ibridi mentre non sono state prese in considerazione le varietà cromatiche e morfologiche. Esso è stato realizzato tenendo conto delle ricerche sul campo dell’autore, delle informazioni personali fornite da Remy Souche e Herbert Weyland e infi ne dei dati ricavati da: • il sito internet della SFO- PCV (Societè Francaises d’Orchidophilie); • le ricerche di Průša & Šmiták (2008) e Jelinec (2014) pubblicate sul sito internet denominato Orchidea klub Brno; • la consultazione dei saggi dei seguenti autori: Biel (2001), Delforge (2006), Griebl (2009); Her- tel & Hertel (2002), Hertel et al. (2016), Jakely (2016), Kranjčev (2005), Paulus (2000, 2014), Pericin (2001), Pezzetta (2016), Rottensteiner (2015, 2016) e Weyland (2010, 20113a). Le prime estemporanee e personali osservazioni nell’ambito di studio iniziarono circa venti anni fa e annualmente si sono protratte durante la stagione primaverile. Le stazioni in cui lo scrivente ha fatto dei ritrovamenti sono contrassegnate dai loro nomi con l’aggiunta del punto esclamativo. In tale sede sono state inserite in bibliografi a gli studi più recenti che vanno dagli ultimi decenni del secolo scorso all’attualità. Ac- canto ad ogni taxon sono riportati: il tipo corologico, gli autori che l’hanno segnalato, le località di presenza e le eventuali osservazioni sul rango tassonomico. Per la nomenclatura si è in genere seguita quella adottata nel recente volume del GIROS (2016) mentre per le specie non riportate in tale testo Delforge (2016) e/o nel caso di nuovi ritrovamenti i nomi assegnati alle singole piante dai loro autori. In diversi casi, alla nomenclatura sono state aggiunte varie precisazioni riportate nelle osservazioni e nelle considerazioni sui vari taxa dell’elenco fl oristico. Per l’assegnazione dei tipi corologici si è tenuto conto di quanto riportato in Pignatti (1982), Pezzetta (2011) e Delforge (2016). RISULTATI E DISCUSSIONE Elenco fl oristico Nell’elenco sotto riportato al fi ne di non ripetere troppe volte gli stessi nomi, si è deciso di utilizzare le seguenti sigle costituite da lettere maiuscole che si riferiscono agli autori delle segnalazioni: AX: PAULUS 2000; AY: BIEL 2001; BX: PERICIN 2001; BY: HERTEL & HERTEL 2002; CX: KRANJČEV 2005; CY: DELFORGE 2006; DX: PRŮŠA & ŠMITÁK 2008; DY: GRIEBL 2009; EX: WEYLAND 2010; EY: WEYLAND 2013a; FX: JELINEC 2014; FY: PAULUS 2014; GX: ROTTENSTEINER 2015; GY: HERTEL ET AL. 2016; HX: JAKELY 2016; HY: PEZZETTA 2016; IX: ROTTENSTEINER 2016; LX: SFO-PCV; LY: SOUCHE informazione personale; MX: WEYLAND informazione personale. 1. Anacamptis coriophora (L.) R.M. Bateman, Pridgeon & M.W. Chase subsp. fragrans (Pollini) R.M. Bateman, Pridgeon & M.W. Chase – Euri- 110 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 mediterraneo. (AY, BY, CX, DY, LY). Stazione di rinvenimento: Valle!. 2. Anacamptis morio subsp. (morio L.) R.M. Bate- man, Pridgeon & M.W. Chase - Europeo-Cauca- sico. (AY, BX, BY, CX, CY, DX, DY, FX, GX, LX, LY).Stazioni di rinvenimento: Golaš!, Krmed!, Stancija Golaš!, Stancija Negrin, Sv. Bembo, Valle!, Sono state ricondotte al taxon tutte le segnalazioni delle subsp. caucasica e picta. 3. Anacamptis papilionacea (L.) R.M. Bateman, Prid- geon & M.W. Chase - Eurimediterraneo. (AY, BY, CX, CY, DX, DY, FX, LY). Stazioni di rinvenimento: Golaš!, Stancija Golaš!, Sv. Bembo, Valle!. 4. Anacamptis pyramidalis (L.) Rich. subsp. pyra- midalis – Eurimediterraneo. (AY, BY, CX, DY, EX, FX, FY, LX, LY). Stazioni di rinvenimento: Golaš, Stancija Golaš!, Sv. Bembo!, Valle!. Sono state ricondotte al taxon tutte le segnalazioni di Anacamptis pyramidalis subsp. serotina Presser. 5. Cephalanthera longifolia (L.) Fritsch – Eurasiati- co. (MX). Stazione di rinvenimento: Valle. 6. Gymnadenia conopsea (L.) R. Br. in W.T. Aiton susbp. conopsea – Eurasiatico. (DX). Stazione di rinvenimento: Valle. 7. Himantoglossum adriaticum H. Baumann – Eurimediterraneo. (BY, GX, LY). Stazioni di rinvenimento:!, Sv. Bembo, Valle!. 8. Limodorum abortivum (L.) Sw. – Eurimediterra- neo. (AY, CX, DX, DY). Stazioni di rinvenimento: Golaš, Valle, 9. Neotinea maculata (Desf.) Stearn - Mediterra- neo-Atlantico. (BY). Stazione di rinvenimento: Valle. 10. Neotinea tridentata (Scop.) R.M. Bateman, Prid- geon & M.W. Chase – Eurimediterraneo. (BY, CX, DX, DY, FX, GX, LY). Stazioni di rinvenimento: Golaš!, Stancija Golaš!, Stancija Negrin, Valle. 11. Neottia nidus-avis (L.) Rich. – Eurasiatico. (AY). Stazioni di rinvenimento: Golaš, Valle. 12. Ophrys apifera Huds. – Eurimediterraneo. (AY, BY, CX, DX, DY, FX, LY). Stazioni di rinvenimen- to: Golaš, Stancija Golaš!, Valle!. 13. Ophrys bertolonii subsp. bertolonii Moretti –Ap- pennino-Balcanico. (BY, HX, IX, LY). Stazioni di rinvenimento: Valle!. 14. Ophrys holosericea (Burm. f.) Greuter subsp. holosericea. – Eurimediterraneo. (BY, IX, LY). Stazioni di rinvenimento: Valle!. 15. Ophrys holosericea (Burm. f.) Greuter subsp. tetraloniae (W.P. Teschner) Kreutz - Appennino- Stazione di rinvenimento: Valle!. Il taxon nuovo per il Comune di Valle, ha nel Comune di Buzet e quindi in Istria, il suo locus classicus ove fu descritto da TESCHNER (1987). 16. Ophrys holosericea (Burm. f.) Greuter subsp. untchjii (M. Schulze) Kreutz – Subendemico. (CY, DY, EX, EY, FY, GX, IX, LX, LY). Stazioni di rinvenimento: Golaš, Stancija Negrin, Sv. Bembo, Valle!. 17. Ophrys illyrica S. Hertel & K. Hertel – Appenni- no-Balcanico. (BY, DY, EX, HY, LY). Stazioni di rinvenimento: Sv. Bembo, Valle!. 18. Ophrys incubacea Bianca subsp. incubacea – Stenomediterraneo. (AY, BY, CY, DX, DY, EX, FX, LX). Stazioni di rinvenimento: Golaš, Stancija Golaš, Sv. Bembo, Valle!. 19. Ophrys istriensis Hertel, Paulus & Weyland – Endemico. (EY, FY, GY, IX, LY). Stazioni di rinvenimento: Sv. Bembo, Stancija Golaš!, Valle!. Sono state ricondotte al taxon tutte le segnalazioni di Ophrys aff. parvimaculata. 20. Ophrys sphegodes Mill. subsp. incantata De- villers & Devillers-Tersch. – Endemico. (CY, LX). Stazioni di rinvenimento: Golaš, Valle! 21. Ophrys sphegodes subsp. sphegodes Mill. – Eurimediterraneo. (AY, CX). Stazioni di rinveni- mento: Golaš, Valle!. 22. Ophrys sphegodes subsp. tommasinii (Vis.) Soó. – Appennino-Balcanico. (BY, CY, EX, LX). Sta- zioni di rinvenimento: Golaš, Stancija Golaš!, Valle! 23. Ophrys sulcata. Devillers-Tersch. & P. Devillers – Mediterraneo-Occidentale. (AX, BY). Stazioni di rinvenimento: Valle. Secondo Romolini (2002) la specie va assegnata a O. funerea Viv. Il taxon in Istria raggiunge il limite orientale di distribuzione geografi ca. 24. Orchis paucifl ora Ten. – Stenomediterraneo. (BY, CX, EX, FY, GX). Stazione di rinvenimento: Valle!. 25. Orchis provincialis Balb. Ex Lam. – Stenomedi- terraneo. (BY, DY, EX, FY). Stazione di rinveni- mento: Valle!. 26. Orchis purpurea Huds. – Eurasiatico. (BY, FX). Stazioni di rinvenimento: Krmed!, Valle!,. 27. Orchis simia Lam. – Eurimediterraneo. (BY, DX). Stazione di rinvenimento: Golaš!, Valle!. 28. Platanthera chlorantha (Custer) Rchb. – Eurosi- beriano. (BY). Stazione di rinvenimento: Valle. 29. Serapias lingua L. – Stenomediterraneo. ( HX, LY). Stazione di rinvenimento: Valle!. 30. Serapias vomeracea (Burm.f.) Briq. subsp. vo- meracea – Eurimediterraneo. (BY, EX). Stazione di rinvenimento: Valle. 31. Spiranthes spiralis (L.) Chevall. – Europeo-Cau- casico. (BY). Stazione di rinvenimento: Valle. Ibridi 1. Anacamptis ×gennarii (Rchb. f.) Nazzaro & La Valva. (BY, CY, IX). Stazioni di rinvenimento: Golaṧ, Stancija Negrin, Sv. Bembo, Valle!. 2. Ophrys bertolonii × O. illyrica (HY, LY). Stazione di rinvenimento: Valle!. 111 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 3. Ophrys bertolonii × O. istriensis (IX come Ophrys bertolonii × O. cf. parvimaculata). Stazione di rinvenimento: Valle. 4. Ophrys bertolonii × O. untchjii. (HY). Stazione di rinvenimento: Valle!. 5. Ophrys illyrica × O. tommasinii (DY, EX). Stazio- ne di rinvenimento: Valle. 6. Ophrys illyrica × O. untchjii. (DY, EX, LY). Sta- zione di rinvenimento: Valle. 7. Ophrys incubacea × O. tommasinii (DY). Sta- zione di rinvenimento: Valle. 8. Ophrys incubacea × O. untchjii. (HY).Stazione di rinvenimento: Valle. 9. Ophrys ×lyrata H. Fleischm. (O. bertolonii × O. incubacea) (BY, DY). Stazione di rinvenimento: Valle! Il taxon ha il suo locus classicus nell’isola di Lussino (Lošinj) in cui Fleischmann (1904) lo rinvenne e descrisse per la prima volta. 10. Ophrys ×mansfeldiana Soó (O. incubacea × O. tommasinii) (BY, DY). Stazione di rinvenimento: Valle. 11. Orchis ×aurunca W. Rossi & Minut. (O. pauci- fl ora × O. provincialis) (DY, EX, FY). Stazione di rinvenimento: Valle!. Nell’elenco fl oristico sono riportati 31 taxa infrage- nerici, corrispondenti a circa il 38,75 % del patrimonio orchidologico istriano che secondo Pezzetta (2013) am- monta a 80 taxa. Al loro insieme si aggiungono 11 ibridi e pertanto il numero complessivo dei taxa presenti è di 42. Tali numeri dimostrano l’importanza del patrimonio orchidologico dell’ambito di studio. Da ricerche sinora inedite dello scrivente, inoltre risulta che il Comune di Valle è tra i più ricchi di orchidacee della penisola istriana. I seguenti taxa dell’elenco sono riportati nella lista rossa della fl ora croata (Vitasović Kosić et al., 2009): Anacamptis laxifl ora, A. morio, A. papilionacea, A. pyra- midalis, Neotinea tridentata, Ophrys apifera, O. berto- lonii, O. bombylifl ora, O. holosericea s.l., O. insectifera, Orchis coriophora s.l., O. mascula s.l., O. militaris, O. provincialis, O. purpurea, O. simia, Platanthera chloran- tha e Serapias vomeracea. Le specie e sottospecie comprese nell’elenco si ripartiscono in 11 generi e di questi il più rappresentato è il genere Ophrys con 11 taxa. Seguono: Orchis e Anacamptis con 4 taxa ciascuno, Neotinea e Serapias con 2 e poi tutti gli altri con un solo taxon. Alcuni taxa compresi nell’elenco, come si è potuto osservare, sono caratterizzati da alcune criticità. Ciò è la conseguenza del fatto che i ricercatori adottano criteri di classifi ca- zione e concetti di specie diversi cui seguono risultati di ricerche discordanti e non unanimemente condivisi (Paulus 2000, Hertel & Hertel 2002, Delforge 2006). Nell’ambito in esame ha una certa importanza per la sua criticità Ophrys sphegodes subsp. sphegodes che in base alle ricerche dello scrivente nell’intera penisola istriana presenta caratteristiche morfologiche variabilis- sime, un fatto che ha contribuito ad assegnare i suoi popolamenti a taxa diversi il cui rango tassonomico è controverso. Tale osservazione è confermata anche da altri ricercatori tra cui Hertel & Hertel (2002, 2003) e Weyland (2013b). Secondo Devillers & Devillers-Ter- schuren (2004) e Delforge (2006) tutte le segnalazioni di O. sphegodes subsp. sphegodes fatte nelle zone mediterranee della Croazia devono essere attribuite ad altri taxa. Nel gruppo è discusso il rango tassonomico di O. sphegodes subsp. incantata descritta da Devillers & Devillers-Terschuren (2004) con locus classicus a Primosten (Dalmazia). Gli autori che l’hanno descritto e Delforge (2016) le attribuiscono lo status di specie, mentre per Hertel & Zirnsack (2006) il taxon deve considerarsi sinonimo di Ophrys tommasinii. Rispetto ad O. tommasinii, O. incantata è caratterizzata da una fi oritura più precoce e a tal proposito Delforge (2016) fa presente che appartiene alla prima fase di fi oriture delle specie del gruppo di Ophrys sphegodes a piccoli fi ori. Ad avviso dello scrivente la fi oritura precoce è un aspetto dell'isolamento riproduttivo che porta alla for- mazione del nuovo taxon ma i caratteri morfologici di O. sphegodes subsp. incantata non sono tali da poterla considerare una specie tipica; quindi è da ritenersi una sottospecie. Un gruppo molto controverso è quello di Ophrys holosericea che nel territorio in esame è rappresentato da quattro entità: O. holosericea subsp. tetraloniae, O. holosericea subps. holosericea, Ophrys holosericea subsp. untchji e Ophrys istriensis. Biel (2001) fa presente che il gruppo di O. holosericea nella penisola istriana è molto vario, ha un periodo di fi oritura che va dalla fi ne di marzo alla prima settimana di giugno ed è costituito da popolazioni che non sono facilmente classifi cabili. A suo avviso, questo fenomeno potrebbe essere la con- seguenza della posizione geografi ca della regione che la porta a ricevere fl ussi genetici provenienti da sud-est (Balcani ed Egeo), occidente e settentrione (Europa centrale). Hertel & Hertel (2002, op. cit.) in base alle dimensioni del labello e altre caratteristiche individua- no nell’Istria quattro varietà di O. holosericea di cui le prime tre indicano genericamente come Tipo1, Tipo 2 e Tipo 3 che segnalano anche nel territorio vallese mentre la quarta la identifi cano con Ophrys tetraloniae. Perazza & Lorenz (2013) nella classifi cazione degli individui del gruppo presenti nell’Italia Nord-Orientale attribuiscono alla specie nominale gli individui a fi ori grandi, alla subsp. untchjii quelli a fi ori medi con diverse colorature del perigonio e alla subsp. tetraloniae quelli con fi ori piccoli e a fi oritura più tardiva (giugno inoltrato). Paulus (2014) mette in dubbio il rango tassonomico di Ophrys untchjii affermando che potrebbe rappresentare una varietà locale di O. serotina caratterizzata da piante con un’alta percentuale di sepali di colore verde. Romolini & Souche (2012), a loro volta considerano sinonimi O. serotina e O. tetraloniae. 112 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 Nella Tabella 1 sono riportati i risultati dell’analisi corologica, con la ripartizione percentuale dei vari elementi geografi ci. I dati riportati dimostrano come l’elemento dominante sia il mediterraneo con 16 taxa corrispondente a oltre il 51 % delle entità presenti. Ad esso potrebbero aggiungersi le entità endemiche e appennino-balcaniche che sono strettamente legate a taxa affi ni mediterranei e che presentano un carattere di spiccata termofi lia perché sono tipiche di ambienti caldi e soleggiati. I corotipi con la maggior presenza di taxa sono l’Eurimediterraneo (11), l’Appennino-Balcanico (4), l’Eurasiatico s. str. (4) e lo Stenomediterraneo (4). In totale i corotipi rappresentati sono 10 e tale confi gu- razione arealica, in accordo con Poldini (2009), si può ritenere il risultato dell’intreccio dei fattori ecologici e biogeografi ci che agiscono sulle varie specie. Nell’in- sieme i vari taxa appartengono a corotipi caratterizzati da entità tipiche di ambienti termofi li mediterranei e submediterranei che ben si accordano con le caratte- ristiche ambientali locali. La presenza di un taxon a distribuzione eurosiberiana (Platanthera chlorantha), segnalata da Hertel & Hertel (2002, op. cit.), è indicativa del fatto che nel territorio vallese è presente qualche ambito molto riparato e fresco. Nell’ambito in esame sono presenti due specie en- demiche che sono esclusive della penisola istriana e/o dell’arcipelago cherso-lussignano (Ophrys istriensis e O. zinsmeisteri) e un endemismo istro-dalmata: Ophrys sphegodes subsp. incantata. Delforge (2016) considera sphegodes subsp. incantata presente anche in Abruzzo e alla luce di tale ipotesi (che lo scrivente non conferma), dovrebbe essere considerata un’entità appennino-bal- canica. Il taxa subendemico Ophrys untchjii, invece, è condiviso con alcune regioni italiane. Nell’ambito di studio sono segnalate anche quattro specie appennino-balcaniche (Ophrys bertolonii sub- sp. bertolonii, Ophrys holosericea subsp. tetraloniae, Ophrys illyrica e Ophrys sphegodes subsp. tommasinii) che potrebbero rappresentare attuali testimonianze di processi migratori avvenuti in ere geologiche passate tra le penisole italiana e balcanica. Un altro gruppo interes- sante è costituito dall’elemento mediterraneo-atlantico e mediterraneo-occidentale rappresentato in totale da due taxa che documenta possibili movimenti migratori avvenuti in direzione orientale. CONCLUSIONI L’elevato numero di Orchidacee presenti è un indicatore della grande qualità e integrità ambientale del territorio vallese poiché tali piante attecchiscono su terreni oligotrofi ci e stabili non alterati da dissodamenti, concimazioni e largo uso di diserbanti e insetticidi. Tali Tab. 1: Corotipi delle Orchidaceae di Bale-Valle. Tab. 1: Horotipi kukavičevk v občini Bale (Valle). Elementi geografi ci Numero taxa % Endemico e Subendemico 3 9,68 Endemico 2 Subendemico 1 Mediterraneo 16 51,61 Eurimediterraneo 11 Stenomediterraneo 4 Mediterraneo-Occidentale 1 Eurasiatico 7 22,58 Eurasiatico s. s. 4 Europeo-Caucasico 2 Eurosiberiano 1 Europeo 4 12,9 Appennino-Balcanico 4 Mediterraneo-Atlantico 1 3,23 Mediterraneo-Atlantico 1 Totale 31 100 113 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 pratiche agrarie modifi cando le caratteristiche fi sico-chi- miche dell’aria, dell’acqua e del suolo, possono essere la causa dell’estinzione dei funghi micorrizici e degli insetti pronubi da cui dipende la vita delle piante appartenenti alla famiglia in esame (Scopece et al., 2007, Newman, 2009, Swarts & Dixon, 2009, Ingeborg, 2010, Slaviero et al., 2016). Tuttavia le trasformazioni in atto quali lo sviluppo di un’agricoltura intensiva e delle infrastrutture stradali, turistiche e commerciali, tendono a ridurre gli spazi in cui possono attecchire. Anche l’abbandono di certe forme tradizionali di attività agro-pastorali porta alla trasformazione del territorio cui segue la scomparsa di or- chidacee tipiche di prati-pascolo e la maggiore diffusione di quelle di ambiti boschivi e cespugliosi. 114 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 KUKAVIČEVKE OKOLICE BAL (VALLE, ISTRA, HRVAŠKA) Amelio PEZZETTA Via Monte Peralba 34 - 34149 Trieste e-mail: fonterossi@libero.it POVZETEK Hrvaška občina Bale (Valle) se nahaja na jugozahodni istrski obali in obsega površino približno 82 km2. V priču- jočem delu avtor predstavlja popis vrst, podvrst in križancev kukavičevk na območju občine, ki izhajajo iz lastnih izsledkov, podatkov, ki so mu jih priskrbeli drugi raziskovalci, nekaterih spletnih virov in recentnih objav. Poleg tega je avtor opravil še horološko analizo. Skupno je popisal 31 vrst in podvrst ter 10 križancev. Horološka analiza je pokazala prevladovanje sredozemskih elementov. Ključne besede: Orchidaceae, popis vrst v občini, Bale-Valle, Istra, Hrvaška 115 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 BIBLIOGRAFIA Alberi, D. (1997): Istria, storia, arte, cultura. Ed. Lint, Trieste. Boscarolli, D. & F. M. Dalla Vecchia (1999): The up- per Hauterivian Lower Barremian dinosaur site of Bale/ Valle (SW Istria, Croatia). Il sito Hauteriviano superio- re-Barremiano inferiore con resti ossei di dinosauro di Valle (Istria sud-occidentale, Croazia). Natura Nascosta, 18, 1-5. Biel, B., (2001): Zwei Exkursionen des AHO Unter- franken zur Halbinsel Istrien (Kroatien). Ber. Arbeitskrs. Heim. Orchid., 18 (1), 1-21. Cergna, S. (2006): Valle d’Istria Notizie storico-an- tropologiche. SE. LA. VA. Pola. Delforge, P. (2006): Contribution à la connaissance des Orchidées de Croatie. Resultats de cinq années de prospections. Natural. Belges, 87 (Orchid. 19), 141-200. Delforge, P. (2016): Guide des orchidées d’Europe, d’Afrique du Nord et du Proche Orient. Delachaux et Niestlé, Paris. P. Devillers, & J. Devillers-Terschuren (2004): The Ophrys sphegodes complex in the Adriatic: spatial and temporal diversity. Natural. Belges, 85 (Orchid. 17), 129-148. Fleischmann, H. (1904): Zur Orchideen-Flora Lus- sins. Verh. Zool.-Bot. Ges. Wien, 54, 471.477. Forti, F. (1988): La geologia dell’Istria nel ricordo di Carlo D’Ambrosi (Il Carso di Buie e di Rovigno). Cen- tralgrafi ca snc, Trieste. GIROS (2016): Orchidee d’Italia - Guida alle orchi- dee spontanee. 2a ed., Il Castello, Cornaredo (MI). Gorlato, L. (1997): L’insediamento umano e la casa rurale in Istria. Alcione Editore, Mestre (Ve). Griebl, N. (2009): Die Orchideen Istriens und deren Begleitfl ora. Ber. Arbeitskrs. Heim. Orchid., 26 (2), 98- 165. Hertel, S. & K. Hertel (2002): Beobachtungen zu den Orchideen Istriens. J. Eur. Orch., 24, 493-542. Hertel, S. & K. Hertel (2003): Die Orchideen der Inseln Cres und Lošinj. J. Eur. Orch., 35 (4), 685-721. Hertel, S., H. F. Paulus & H. Weyland (2016): Ophrys istriensis Hertel, Paulus & Weyland, eine neue Art der Ophrys holoserica-Gruppe aus Istrien. Berichte aus den Arbeitskreisen Heimische Orchideen, 33(1), 78–91. Hertel, S. & A. Zirnsack (2006): Anmerkungen zu einigen kroatischen OrchideenTaxa. Eur. Orch., 38 (1), 215-244. IDEOPLAN, (2015): La strategia di sviluppo della città di Vodnjan-Dignano 2015 – 2020. http://www. vodnjan.hr/cmsmedia/dokumenti/gradskauprava-doku- menti/strategijarazvoja/ Ingeborg, F. (2010): Development of agrienvi- ronmental indicators in Austria. OECD workshop on agrienvironmental indicators, Leysan, Switzerland, 23- 26 march 2010. Jakely, D. (2016): Vorkommen und Verbreitung von Tulipa sylvestris subsp. australis in Istrien. Joannea Bota- nik, 13, 51–65. Jelinec, F. (2014): Kamenjak 2014. Orchidea klub Brno. http://orchideaklub.cz/?Expedice_na%B9ich_% E8len%F9:Kamenjak_2014 Kranjčev, R. (2005): Hrvatske Orhideje. AKD, Za- greb. Merlak, E. (2014): Una bibliografi a selezionata delle bauxiti carsiche e terre rosse (Carso classico italiano, Slovenia, Croazia, paesi dell’ex Jugoslavia, Albania, Ungheria, Romania). Atti Mus. Civ. St. Nat. Trieste, 57, 5-20. Newman, B. (2009): Orchids as indicators of ecosy- stem health in urban bushband fragments. PhD thesis. Murdoch University. Paulus, H.F. (2000): Zur Bestäubungsbiologie einiger Ophrys-Arten Istriens (Kroatien) mit einer Beschreibung von Ophrys serotina Rolli ex Paulus spec. nov. aus der Ophrys holoserica-Artengruppe (Orchidaceae und Insecta, Apoidea). Ber.Arbeitskrs.heim.Orchid, 17 (2), 4-33. Paulus, H.F. (2014): Zur Bestäubungsbiologie von Serapias lingua und einiger Ophrys-Arten in Kroatien (Orchidaceae und Insecta, Apoidea). J. Eur. Orch., 46 (3/4), 503- 560. Perazza, G. & R. Lorenz (2013): Le orchidee dell’Italia nord-orientale. Atlante corologico e guida al riconoscimento. Ed. Osiride, Rovereto (Tn). Pericin, C. (2001): Fiori e piante dell’Istria. Collana degli Atti, Centro di Ricerche storiche di Rovigno, Extra serie 3, 1-464. Pezzetta, A. (2011): Fitogeografi a delle orchidee italiane. GIROS Notizie, 47, 36-53. Pezzetta, A. (2013): Aspetti fl oristici, vegetazionali e fi togeografi ci dell’Istria e dell’Arcipelago di Cherso e Lussino. L’Universo, 3, 476-508. Pezzetta, A. (2016): Neue und interessante Ophrys- und Orchis-Funde aus Istrie. In: Rottensteiner, W.R. (ed.): Notizen zur Flora von Istrien, Teil II. Joannea Botanik, 13, 77-79. Pignatti, S. (1982): Flora d’Italia, voll. I-III. Edagrico- le, Bologna. Poldini, L. (2009): La diversità vegetale del Carso fra Trieste e Gorizia. Edizioni Goliardiche, Trieste. Poldini, L., G. Gioitti, F. Martini & S. Budin (1980): Introduzione alla fl ora e alla vegetazione del Carso. Ed. Lint, Trieste. Průša, D.& J. Šmiták (2008): Orchidea klub Brno - Istrie 2008. http://orchideaklub.cz/?Expedice_na%B9i- ch_%E8len%F9:Istrie_2008Istrie 2008. Romolini, R. (2002): Escursione orchidologica in Slovenia e Croazia (Istria). GIROS Notizie, 19, 13-15. Romolini, R. & R. Souche (2012): Ophrys d’Italia. Éd. Sococor, Saint-Martin-des-Londres (F). 116 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Amelio PEZZETTA: LE ORCHIDACEAE DI BALE-VALLE (ISTRIA, CROAZIA), 107–116 Rottensteiner, W.R. (2015): Notizen zur Flora von Istrien, Teil II Joannea Botanik, 12, 93–195. Rottensteiner, W.R. (2016): Notizen zur Flora von Istrien, Teil II. Joannea Botanik, 13, 73–166. Scopece, G., Musacchio A., Widmer A. & S. Coz- zolino (2007): Patterns of reproductive isolation in Mediterranean deceptive orchids. Evol. 61, 2623–2642. SFO-PCV Société Francaise d’Orchidophilie: Orchi- dées de Croatie. http://www.orchidee-poitou-charentes. org/article2797.html. Slaviero, A., S. Del Vecchio, S. Pierce, E. Fantinato & G. Buffa (2016): Plant community attributes affect dry grassland orchid establishment. Plant. Ecol., 217, 1533–1543. Swarts, N.D. & K.W. Dixon (2009): Terrestrial orchid conservation in the age of extinction. Ann. Bot. 104, 543–556. Šugar, I., (1985): Contributo alla conoscenza delle caratteristiche fi tosociologiche ed alla localizzazione della macchia e dei boschi a leccio nelle zone setten- trionali del litorale croato. Notiziario Fitosociologico, 22, 115-124. Teschner, W. (1987): Ophrys tetraloniae spec. nov. – eine spätblühende Verwandte der Hummel-Ragwurz in Istrien. Die Orchidee, 38(5), 220-224. Vitasović Kosić, I., M. Britvec, I. Ljubičić, D. Maštrović Pavičić (2009): Vaskularna fl ora Istre: ugrožene I rijetke svojte. (Vascular fl ora of Istria: enda- gered and rare taxa). Agronosmki glasnik, 3, 199-214. Weyland, H. (2010): Biotoppfl ege und Orchideen- monitoring auf einer ehemaligen Schafweide in Istrien. Ber. Arbeitskrs. Heim. Orchid., 27 (1), 6-40. Weyland, H. (2013a): Bestäubungsbiologische Untersuchungen an Ophrys parvimaculata (O. & E. Danesch) Paulus & Gack und Ophrys untchjii (Schulze) Delforge in Istrien. Ber. Arbeitskrs. Heim. Orchid., 30 (1), 37-50. Weyland, H. (2013b): Bestäubungsbiologische Be- obachtungen an Ophrys sphegodes Miller und Ophrys tommasinii Visiani und einigen anderen Ophrys- Arten in Istrien und Griechenland (Peloponnes). Ber. Arbeit- skrs. Heim. Orchid., 30 (2), 255-279. Zaninović, K., M. Gajć Čapka, M. Perčec Tadić, J. Vučetić Milković, A. Bajijć, K. Cindrić, L. Cvitan, Z. Katušin, D. Kaučić, T. Likso, E. Lončar, Ž. Lončar, D. Mihajlović, K. Pandžić, M. Patarčić, L. Srnec & V. Vučet- ić (2008): Klimatski atlas Hrvatske. DHMZ, Zagreb. FAVNA FAUNA FAUNA 119 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 short scientifi c article DOI 10.19233/ASHN.2017.14 received: 2017-08-21 RANGE EXPANSION OF ALIEN NUDIBRANCH MELIBE VIRIDIS (KELAART, 1858) IN THE NORTHERN ADRIATIC SEA Lovrenc LIPEJ & Borut MAVRIČ Marine Biology Station, National Institute of Biology, Fornace 41, Piran, Slovenia E-mail: lovrenc.lipej@nib.si ABSTRACT The alien nudibranch Melibe viridis (Kelaart, 1858) was recorded in the waters of Slovenia (Gulf of Trieste, northern Adriatic Sea). A specimen was photographed and fi lmed on rocky hard bottom of the Natural Monument Cape Madona in October 2016. This is the fi rst record of this large sized nudibranch for Slovenia and for the Gulf of Trieste, as well, and a new one among otherwise rare records on this species in the Adriatic Sea. Key words: Mollusca, Gastropoda, Nudibranchia, Slovenia, non indigenous species, Adriatic Sea ESPANSIONE DELL’AREALE DEL NUDIBRANCO ALIENO MELIBE VIRIDIS (KELAART, 1858) NELL’ADRIATICO SETTENTRIONALE SINTESI Il nudibranco alieno Melibe viridis (Kelaart, 1858) è stato trovato nel mare della Slovenia (Golfo di Trieste, Adriatico settentrionale). Un esemplare è stato fotografato e fi lmato sul fondale roccioso all’interno del Monumento naturale Punta Madonna, nell’ottobre del 2016. Si tratta del primo ritrovamento di questo nudibranco di grandi dimensioni per la Slovenia e per il Golfo di Trieste, e di una delle poche segnalazioni di questa specie per il mare Adriatico. Parole chiave: Mollusca, Gastropoda, Nudibranchia, Slovenia, specie non-indigena, mare Adriatico 120 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Lovrenc LIPEJ & Borut MAVRIČ: RANGE EXPANSION OF ALIEN NUDIBRANCH MELIBE VIRIDIS ..., 119–124 INTRODUCTION Melibe viridis (Kelaart, 1858) (Tethyididae: Nudi- branchia) is a large sized tropical nudibranch with a typi- cal head hood and infl ated cerata. It is widespread across the west Indo-Pacifi c region. The fi rst Mediterranean record of this species (as Melibe fi mbriata) was reported from the island of Cephalonia in the Ionian Sea in 1970 (Moosleitner, 1986), but it has also been recorded from the coastal waters off peninsular Greece (Tzouval & Pettas, 2005), Aegean waters off the island Milos (Kot- soubas & Cinelli, 1997), both the Ionian (Thompson & Crampton, 1984; Cariglio et al., 2004; Mastrototaro et al., 2004) and Tyrrhenian coasts of Calabria (Crocetta et al., 2009), the waters off Sardegna (Doneddu & Trainito, 2008), the waters off Cyprus (Sanchez Villarejo, 2007; Tsiakkiros & Zenetos, 2011), the Strait of Messina (Mo- jetta, 1998), north-eastern Sicily (Scuderi & Russo, 2003), Maltese islands (Borg et al., 2016), southern Turkey (Van Bragt, 2001; Yokes & Rudman, 2004), off Israeli coast (Mienis, 2010) and the island of Djerba in the Gulf of Gabes (Cattaneo-Vietti et al., 1990) (maps and references in Despalatović et al., 2002; Zenetos et al., 2004). Despalatović et al. (2002) published the fi rst records of M. viridis for the Adriatic Sea in waters off the island of Hvar (Croatia) and Jančić (2004) reported it close to the city of Herceg Novi (Montenegro). Recently, Mandić et al. (2016) reported on spawning of this species in Boka Kotorska Bay (Montenegro) in October 2014. In this note we report on the fi rst record of M. viridis in the Slovenian part of the Adriatic Sea, which also represent the fi rst fi nding for the Gulf of Trieste. MATERIAL AND METHODS On the 25th of October 2016 diver Kristijan Murn photographed and fi lmed a 10 cm long specimen of Me- libe viridis with Go-Pro camera at the location of Natural Monument of Punta Madona in Piran (Slovenia) (Fig. 1) The specimen was sighted at 7 m depth, creeping on rocks at the sea bottom (Fig. 2) in front of the Norik diving club Piran. Photographs and fi lm shots of the studied specimen are stored as a part of species record collection of Marine Biology Station (National Institute of Biology) in Piran. RESULTS AND DISCUSSION The observed seaslug was easily determined due to the typical shape, large and dilated buccal hood and other diagnostic features (Thompson & Crampton, 1984; Gosliner & Smith, 2003). This is the fi rst record of this nudibranch in the Slovenian part of Adriatic and at the same time in the Gulf of Trieste and the north- ernmost record in the Adriatic Sea, as well. The speci- men was photographed in rocky environment while crawling over the substrate and scaning the sediment between rocks with its oral veil. The habitat was not typical one for this species, since in most reports M. viridis was found in seagrass meadows of Cymodocea nodosa. However, it is also true that the rocky habitat host a high abundance of many small sized decapods and other crustaceans. The occurrence of M. viridis in the waters off Piran occurred in October, where temperatures are still rather high (above 20oC). At the end of summer the Gulf of Trieste is facing the intrusion of southern water masses into the area (Adriatic ingression) which could affect the occurrence of thermophilous faunistic elements (Dulčić et al., 2004). The possibility that M. viridis could be related with the ingression of southern Adriatic water masses was previously already pointed by Mandić et al. (2016) for Montenegrin waters. Tsiakkiros & Zene- tos (2011) considered the ballast waters as a probable vector of M. viridis introduction into the Mediterranean Sea, since this species was not reported neither from the Levantine waters nor from the Red Sea. The new Adriatic record on this species proved again the importance of an effective cooperation between SCUBA diving organisations and scientifi c institutes. In Slovenian coastal sea at least nine alien mollusks were recorded (Tab. 1) prior the fi nding of M. viridis (De Min & Vio, 1997, 1998; Lipej et al., 2008., Mavrič et al., 2010; Crocetta, 2011; Dailanis et al., 2016; Lipej et al., 2017). Six of them are bivalves, while other are gastropods with three of them being seaslugs (Bursatella Fig. 1: Map of the northern Adriatic Sea with the studied area. The sampling locality of Melibe viridis is presented with a circle. Sl. 1: Zemljevid Jadranskega morja z obravnavanim območjem. Lokaliteta, kjer je bil najden primerek vrste, Melibe viridis je označena s krogcem. 121 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Lovrenc LIPEJ & Borut MAVRIČ: RANGE EXPANSION OF ALIEN NUDIBRANCH MELIBE VIRIDIS ..., 119–124 Fig. 2: A specimen of Melibe viridis photographed on hard bottom in the Nature Monument Punta Madona, Piran in October 2016 (Photo: K. Murn). Sl. 2: Primerek vrste Melibe viridis, fotografi ran na skalnatem dnu znotraj naravnega spomenika Rt Madona v Piranu oktobra 2016 (Foto: K. Murn). Tab. 1: Alien molusks up to date recorded in the Slovenian part of the Adriatic Sea with the locality, year of fi rst record and literature reference. Tab. 1: Tujerodni mehkužci v slovenskem delu Jadranskega morja s podatki o lokaliteti, prvem zapisu in literaturnih virih. Alien mollusk Pathway/ Probable vector Locus year source Arcuatula senhousia (Benson, 1842) mariculture Gulf of Koper 2005 Mavrič et al. (2010) Magallana gigas (Thunberg, 1793) mariculture Sečovlje Bay 1971 De Min & Vio (1998) Ruditapes philippinarum (Adams & Reeve, 1850) mariculture Sečovlje salina 1993 Lipej (1994) Anadara kagoshimensis (Tokunaga, 1906) Shipping/ Ballast waters Gulf of Trieste (Slo) sandy environments 1996 De Min & Vio (1997) Anadara transversa (Say, 1822) Shipping/ Ballast waters Piran, Debeli rtič 2011 Crocetta (2011) Brachidontes pharaonis (P. Fischer, 1870) Shipping/ Ballast waters or fouling Cape Strunjan 2012 Lipej et al. (2017) Bursatella leachi Blainville, 1817 Suez Canal/ spreading Marine Biology Station, Piran 2001 Lipej et al. (2008) Rapana venosa (Valenciennes, 1846) Shipping/Ballast waters Many infralittoral sites 1983? De Min & Vio (1997) Polycera hedgpethi Er. Marcus, 1964 Shipping/fouling and/ or mariculture Škocjan Inlet 2015 Dailanis et al., (2016) Melibe viridis (Kelaart, 1858) Shipping/ Ballast waters? Cape Madona, Piran 2016 This paper 122 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Lovrenc LIPEJ & Borut MAVRIČ: RANGE EXPANSION OF ALIEN NUDIBRANCH MELIBE VIRIDIS ..., 119–124 ŠIRJENJE AREALA TUJERODNEGA GOLOŠKRGARJA MELIBE VIRIDIS (KELAART, 1858) V SEVERNI JADRAN Lovrenc LIPEJ & Borut MAVRIČ Morska Biološka Postaja, Nacionalni Inštitut za biologijo, Fornače 41, Piran, Slovenija E-mail: lovrenc.lipej@nib.si POVZETEK Tujerodnega morskega polža gološkrgarja vrste Melibe viridis (Kelaart, 1858) so v oktobru 2016 opazili v sloven- skih vodah (Tržaški zaliv, severni Jadran). Potapljač je primerek fotografi ral in posnel s fi lmsko kamero na skalnatem dnu znotraj akvatorija Naravnega spomenika Rt Madona. To je prvi zapis o pojavljanju te velike vrste gološkrgarja v Sloveniji in eden izmed maloštevilnih opažanj te vrste v Jadranskem morju. Ključne besede: Mollusca, Gastropoda, Nudibranchia, Slovenija, tujerodna vrsta, Jadransko morje leachi de Blainville, 1817, Polycera hedgpethi Marcus, 1964, M. viridis). The introduction of the bulk of them is related to shipping or to mariculture (Zenetos et al., 2004). Some of them such as B. leachi, Rapana venosa (Valenciennes, 1846), Arcuatula senhousia (Benson, 1842), Magallana gigas (Turnberg, 1893), and Ruditapes philippinarum Adams & Reeve, 1850 could already be considered as established in the area. The fate of M. viridis in the northernmost Adriatic area remains questionable, since these waters are facing low winter temperatures (<10 °C), which have an important impact on the survival of newcomers and probably prevent the establishment of viable populations. For now the occur- rence of this seaslug species in the Gulf of Trieste should be considered purely as a casual one. ACKNOWLEDGMENTS We would like to express our gratitude to mr. Kristi- jan Murn and mr. Marjan Makuc who shared with us the information on the presence of the seaslug studied in this paper and provided photographs and movie shoots of the investigated sea slug. The authors acknowledge the fi nancial support from the Slovenian Research Agency. 123 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Lovrenc LIPEJ & Borut MAVRIČ: RANGE EXPANSION OF ALIEN NUDIBRANCH MELIBE VIRIDIS ..., 119–124 REFERENCES Borg, A. J., J. Evans & P. J. Schembri (2016): Oc- currence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opisthobranchia, Tethydidae), in the Maltese Islands. Mediterranean Marine Science, 10/1, 131-136. Cariglio, D., G. Fanelli & F. Rubino (2004): First record of the alien gastropod Melibe fi mbriata (Opisto- branchia: Tethyidae) in the Taranto seas (Mediterranean Sea). J. Mar. Biol. Ass. U.K., 84, 1067-1068. Cattaneo-Vietti R., R. Chemello & R. Giannuzzi- Savelli (1990): Atlas of Mediterranean nudibranchs. Roma: Ed. La Conchiglia, 264 pp. Crocetta, F., W Ren Da & A. Vazzana (2009): Alien Mollusca along the Calabrian shores of the Messina Strait area and a review of their distribution in the Italian seas. Boll. Malacol., 45: 15-30. Crocetta, F. (2011): Marine alien mollusca in the Gulf of Trieste and neighbouring areas: a critical review and state of knowledge (updated in 2011). Acta Adri- atica, 52 (2), 247-260. Dailanis, T., O. Akyol, N. Babali, M. Bariche, F. Crocetta, V. Gerovasileiou, R. Ghanem, M. Gökoğlu , T. Hasiotis, A. Izquierdo-Muñoz, D. Julian, S. Katsane- vakis, L. Lipej, E. Mancini, Ch. Mytilineou, K. Ounifi Ben Amor, A. Özgül, M. Ragkousis, E. Rubio-Portillo, G. Servello, M. Sini, C. Stamouli, A. Sterioti, S. Teker, F. Tiralongo & D. Trkov (2016): New Mediterranean Biodiversity Records (July 2016). Mediterranean Marine Science, 17/2, 608-626. De Min, R. & E. Vio (1997): Molluschi conchiferi del litorale sloveno. Annals for Istran and Mediterranean Studies, Series Historia Naturalis, 11 (4), 241-258. De Min, R. & E. Vio (1998): Molluschi esotici nell’alto Adriatico. Annals for Istran and Mediterranean Studies, Series Historia Naturalis, 13, 43-54. Despalatović, M., B. Antolić, B., I. Grubelić & A. Žuljević (2002): First record of the Indo- Pacifi c gastro- pod Melibe fi mbriata in the Adriatic Sea. J. Mar. Biol. Assoc. U. K., 82 (5), 923-924. Doneddu, M.& E. Trainito (2008): Melibe viridis (Kelaart, 1858) (Opisthobranchia: Tethydidae): prima segnalazione per il Tirreno (Sardegna settentrionale). Boll. Malacol., 44(1-4): 45-47. Dulčić, J., B. Grbec, L. Lipej, G. Beg Paklar, N. Supić, & A. Smirčić (2004): The effect of the hemispheric climatic oscillations on the Adriatic ichthyofauna. Fre- senius Environmental Bulletin, 13, 293-298. Gosliner T.M. & V. G. Smith (2003): Systematic re- view and phylogenetic analysis of the nudibranch genus Melibe (Opisthobranchia: Dendronotacea) with descrip- tions of three new species. Proceedings of the California Academy of Sciences, 54(18), 302 - 356. Jančić, G. (2004): Melibe from the Adriatic. Sea Slug Forum. Australian Museum, Sydney. Available from http://www.seaslugforum.net/fi nd/12280. Koutsoubas D. & F. Cinelli (1997): Indo-Pacifi c origin gastropod species in the Aegean Sea. Melibe fi m- briata Alder & Hancock, 1864 a new invader. Bollettino Malacologico, 32 (1- 4), 1-6. Lipej, L. (1994): Assessment of infl uence of salt- making and maricultural activities on the ornitofauna of Sečovlje salinas. Acrocephalus, 15(62), 31-33. (In Slovenian) Lipej, L., Dobrajc, Z., Mavrič, B., Šamu, S. & Alajbegovič (2008): Opisthobranch Mollusks (Mollusca: Gastropoda) from Slovenian coastal waters (Northern Adriatic). Annals for Istrian and Mediterranean Studies, Series Historia Naturalis, 18(2), 1-14. Lipej, L., L. Acevedo ,E. H. K. Akel , A. Anastasopou- lou , A. Angelidis , E. Azzurro , L. Castriota , M. Çelik , L. Cilenti , F. Crocetta, A. Deidun, A. Dogrammatzi, M. Falautano, F. Á. Fernández-Álvarez, R. Gennaio, G. In- sacco, S. Katsanevakis, J. Langeneck, B. M. Lombardo,G. Mancinelli , Ch. Mytilineou , L. Papa, V. Pitacco, M. Pontes, D. Poursanidis, E. Prato, S. I. Rizkalla, P. C. Rodríguez-Flores, C. Stamouli, J. Tempesti, F. Tiralongo, S. Tirnetta, K. Tsirintanis, C. Turan, D. Yaglioglu, G. Zaminos & B. Zava (2017): New Mediterranean Biodi- versity Records (March 2017). Mediterranean Marine Science, 18/1, 179-201. Mandić, M., V. Mačić & O. Marković (2016): Spawn- ing of alien nudibranch Melibe Viridis (Kelaart, 1858) in South Adriatic Sea (Montenegro). Fresenius Environ- mental Bullettin, 25(11), 4566-4568. Mavrič, B., M. Orlando-Bonaca, N. Bettoso & L. Lipej (2010): Soft-bottom macrozoobenthos of the southern part of the Gulf of Trieste: faunistic, biocoenotic and ecological survey. Acta Adriatica, 51(2), 203-216. Mastrototaro, F., P. Panetta & G. D’Onghia (2004): Further records of Melibe viridis (Mollusca, Nudi- branchia) in the Mediterranean Sea, with observations on the spawning. Vie et Milieu, 54 (4), 251-253. Mienis, H.K. (2010): Monitoring the invasion of the eastern Mediterranean by Lessepsian and other Indo- Pacifi c Species. Haasiana, 5, 66-68. Mojetta, A. (1998): Arriva dal Mar Rosso un nuovo nudibranco. AQUA, 133, 18-20. Moosleitner H. (1986): Nota sulla presenza in Medi- terraneo di Melibe sp. (Opistobranchia: Fimbriidae). La Conchiglia, Anno XVIII, 202-203, 20. Sanchez Villarejo, F. (2007): Melibe ‘fi mbriata’ from Cyprus. Sea Slug Forum. Australian Museum, Sydney. Available from http://www.seaslugforum.net/fi nd. cfm?id=20207, (visited on 20 July 2017) Scuderi, D. & G. F. Russo (2003): Due nuovi gas- teropodi per le acque italiane: Melibe fi mbriata Alder e Hancock, 1864 e Tricolia tingitata Gofas, 1982 (Mol- lusca: Gastropoda). Biol. Mar. Medit., 10(2), 618-621. Thompson, T.E. & D.M. Crampton (1984): Biology of Melibe fi mbriata, a conspicuous opistobranch mol- 124 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Lovrenc LIPEJ & Borut MAVRIČ: RANGE EXPANSION OF ALIEN NUDIBRANCH MELIBE VIRIDIS ..., 119–124 lusc of the Indian Ocean, which has now invaded the Mediterranean Sea. J. Molluscan Stud., 50, 113-121. Tsiakkiros, L. & A. Zenetos (2011): Further additions to the alien mollusc fauna along the Cypriot coast: new opisthobranchia species. Acta Adriatica, 52(1), 115 – 124. Tzouval, K. & D. Pettas (2005): Melibe from the Mediterranean. Sea Slug Forum. Australian Museum, Sydney. Available from ttp://www.seaslugforum.net/ fi nd/13244 Van Bragt P.H. (2001): Melibe from Turkey (March 7). Sea Slug Forum. Australian Museum, Sydney (URL: www.seaslugforum.net/fi nd.cfm?id=3927). Yokes, B. & W. B. Rudman (2004): Lessepsian opisthobranchs from southwestern coast of Turkey; fi ve new records for Mediterranean. Rapp. Comm. Int. Mer Médit, 37, p. 557. Zenetos, A., S. Gofas, G. Russo G. & J. Templado (2004): CIESM Atlas of exotic species in the Mediter- ranean. 3. Molluscs (F. Briand, ed.) CIESM Publishers, Monaco, 376 pp. 125 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 original scientifi c article DOI 10.19233/ASHN.2017.15 received: 2017-07-13 ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM THE NORTHERN TUNISIAN COAST (CENTRAL MEDITERRANEAN SEA) Emna SOUFI-KECHAOU & Ichrak SARIYA Department of Animal Sciences, Halieutics and Food Technology, National Institute of Agronomy of Tunis, 43 avenue Charles Nicolle, 1082-Tunis-Mahrajène,Tunisia e-mail: esoufi @gmail.com Amine BEZAA, Neziha MARRAKCHI & Mohammed EL AYEB Laboratory of Venoms and Toxins, Pasteur Institute of Tunis. 13, place Pasteur, B.P. 74. 1002Tunis-Belvédère, Tunisia ABSTRACT In the present study, authors investigate the antitumor effects of peptides from the ink of two cephalopod species: the common cuttlefi sh, Sepia offi cinalis (Linnaeus, 1758), and the common octopus, Octopus vulgaris (Cuvier, 1797), from specimens sampled in the northern Tunisian coasts (central Mediterranean). The results indicate that the crude ink show anti-adhesion properties of the IGR39 cells depending on the Extra Cellular Matrixes (ECM) tested. The partially purifi ed fractions with a molecular weight inferior to 10 kDa for Sepia offi cinalis (Finf10) and the superior to 10 kDa for Octopus vulgaris (Fsup10) revealed anti-invasion, anti-migration and anti-adhesive activities on the U87 glioma cell lines, with a dose-dependent response. No antiproliferative activity was found for both of the partially purifi ed fractions and the MTT assay showed toxicity effect only for high ink fraction concentrations. Key words: Cephalopoda, Sepia ink, Octopus ink, antitumor, enzymatic hydrolysis, oligopeptide, Tunisia, central Mediterranean ATTIVITÀ ANTITUMORALE DI INCHIOSTRI DI SEPIA OFFICINALIS E OCTOPUS VULGARIS (CEFALOPODA) PROVENIENTI DALLA COSTA SETTENTRIONALE DELLA TUNISIA (MEDITERRANEO CENTRALE) SINTESI Nel presente studio gli autori analizzano gli effetti antitumorali dei peptidi ricavati dall’inchiostro di due specie di cefalopodi: la seppia comune, Sepia offi cinalis (Linnaeus, 1758), e il polpo comune, Octopus vulgaris (Cuvier, 1797), provenienti da campioni prelevati lungo la costa settentrionale della Tunisia (Mediterraneo centrale). I risultati indicano che l’inchiostro grezzo mostra proprietà di anti-adesione delle cellule IGR39, in dipendenza delle matrici extra cellulari (ECM) analizzate. Le frazioni parzialmente purifi cate, con un peso molecolare inferiore a 10 kDa per Sepia offi cinalis (Finf10), e superiore a 10 kDa per Octopus vulgaris (Fsup10), hanno evidenziato attività anti-in- vasione, anti-migrazione e anti-adesività sulle linee cellulari degli gliomi U87, con una risposta dose-dipendente. Nessuna attività antiproliferativa è stata trovata per entrambe le frazioni parzialmente purifi cate, e il dosaggio MTT ha dimostrato l’effetto tossicità solo per elevate concentrazioni di frazioni di inchiostro. Parole chiave: Cefalopoda, inchiostro di seppia, inchiostro di polpo, antitumorale, idrolisi enzimatica, oligopeptide, Tunisia, Mediterraneo centrale 126 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 INTRODUCTION In recent years, researchers have focused on identi- fying novel natural products as anticancer drugs. Anti- cancer peptides have characteristics of multi-function, high sensitivity and stability (Leng et al., 2005; Simmons et al., 2005). Molluscan species, such as sea hares show a wide range of uses in pharmacology as they produce bioactive metabolites used in the treatment of cancerous tumors (Chakraborty & Ghosh, 2010). Peptides as antitumor drugs can improve immune response, inhibit the tumor angiogenesis and metastasis of tumor cells, directly eradicate tumor cells and induce the apoptosis of tumor cells and stop the cell cycle (Shen et al., 2000; Aneiros & Garateix, 2004; Zheng et al., 2007). The most studied, Dolastatins is a family of cytotoxic peptides isolated from the mollusk Dollabella auricularia, where the linear pentapeptide Dolastatin-10 and the depsipeptide Dolas- tatin 15 have had the most promising antiproliferative activity reported (Pettit et al., 1995; Garteiz et al., 1998; Pettit et al., 1998). The pentapeptide Dolastatin-10 is characterized by four of the residues being structurally unique but with many side effects. Also, the Keenamide A is a cytotoxic cyclic hexapeptide isolated from the mollusk Pleurobranchus forskalii, elicits antitumor activ- ity via unknown mechanisms. This compound exhibited signifi cant activity against the P388, A549, MEL-20 and HT-29 tumor cell lines (Wesson et al., 1996). Strong an- ticancer peptides were also found from Meretix meretrix with IC 50 of 10 μg·mL -1 (Liu & Qiu, 2004). Cephalopoda ink had been used in the treatment of hemostasis for centuries in Chinese traditional medicine (Zhong et al., 2009). As early as 1982, it was reported that Sepia ink could regulate gastric juice secretion and had antiulceration activity (Andersen & Roepstorff, 1982). Researchers in Japan found that the peptidogly- can extracted from Sepia ink had higher antitumor activ- ity than the other fractions (Takaya et al., 1996, 1997). Other research works reported antitumor activity of cephalopoda ink (Naraoka et al., 2000; Palumbo et al., 2000). For example, it has been reported that Sepia ink has antitumor activity against Meth-A fi brosarcoma in BALB/c mice and its fraction containing peptidoglycan showed higher antitumor activity than the other fractions (Tetsushi et al., 2000; Mayer et al., 2010). Nowadays, none of the currently available anticancer drugs acts solely on carcinoma cells. Anticancer drugs are usu- ally extremely toxic and kill both malignant and normal cells. However, despite its wide spectrum of clinical uses, they are known to cause several adverse effects. These limits on the use of chemotherapeutic agents thus constrain their use in effective therapy. Protein hydrolysates formed by the enzymatic diges- tion of aquatic and marine by-products are an important source of bioactive peptides. Purifi ed peptides from these sources show cytotoxic effect on several human cancer cell lines such as HeLa, AGS, and DLD-1 (Wang et al., 2010). These characteristics imply that the use of peptides from marine sources has a great potential for the prevention and treatment of cancer, and that they might also be useful as molecular models in anticancer drug research. In this paper, the inks from Sepia offi cinalis and Octopus vulgaris had been used for in vitro antitumor activities. These two marine species have been chosen because of their widespread geographical distribution in Tunisia and also because of the popularity of this seafood. The cephalopoda ink, which is the natural substance released for defence purpuses against preda- tors is composed mainly of melanin and proteoglycans (Shen et al., 2007; Mayer et al., 2013). It is produced by the ink gland, a by-product of marine-product process- ing, generated after gutting procedures. The objective of this research work was the characterization and the evaluation of anticancer potential from the ink of S. offi cinalis and O. vulgaris through the antiproliferative effect, inhibition on invasion, migration of tumor cells, as well as cytotoxicity. A characterization of the nature the peptide has also been carried out after an enzymatic hydrolysis process. MATERIAL AND METHODS Biological material Like all the cephalopoda species, S. offi cinalis and O. vulgaris (Fig. 1) are positioned in a high level in the ma- rine food web and are carnivorous since egg hatchling S. offi cinalis is a demersal and neritic species present in the infra and circalittoral zones, on sandy or muddy-sandy bottoms and phanerogam meadows, from the coast up to 150 meters. The cuttlefi sh specimens are present in the coastal waters from April till October. In the winter, they migrate to deeper zones searching for abundant food and more adequate temperatures. O. vulgaris is a benthic, neritic species occurring from the coastline to the outer edge of the continental shelf (in depths from 0 to 200 m), where it is found in a variety of habitats, such as rocks, coral reefs, and grass beds. Throughout its distribution range, this species is known to undertake limited seasonal migrations, usually over- wintering in deeper waters and occurring in shallower waters during summer. In the western Mediterranean, large mature or maturing individuals migrate inshore in early spring, followed later on by smaller, immature individuals. These two groups begin their retreat into deeper waters by August/September and November/ December respectively. Specimens of S. offi cinalis and O. vulgaris were captured off Bizerte coasts (Fig. 1), (North of Tunisia, Mediterranean Sea) by deep-sea trawling for the Cuttle- fi sh and by traditional coast-fi shing for Octopus, during April 2010. The specimens were then transported to the 127 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 laboratory packed in ice and the ink gland was extracted. In order to avoid biochemical variation due to the physi- ological state of the animals, inks were homogenized by triturator and stored at -20°C before use. Ink extraction and preparation At a fi rst time, the crude cuttlefi sh or Octopus inks was dissolved in PBS buffer (500 mL). After centrifuga- tion at 1000 g during 10 min., the supernatants were collected for the antitumoral tests on tumor cell lines deriving from human melanoma IGR39. The sediment is stored at -80°C for further analyses. In a second time, the crude cuttlefi sh or Octopus inks were homogenized with acetone at -30°C (4V), according to the method of Takaya et al. (1994). The supernatant was collected after centrifugation at 1000 g during 15 min. and lyophilised. The sediment was stored at -80°C for further analyses. The lyophilised extracts were dissolved in a 0.1 M Tris- HCl solution (PH = 6.8) (40 v) for 72 hours at 4°C and then centrifuged at 11.000 g during 30 min (Mikro 200 R, Hettich Zentrifuger), in Amicon centrifuging cells (YM10) in order to separate the ink extracts according to their molecular weight. Two fractions were obtained for each cephalopoda species: the Fsup 10 molecular com- pounds with a molecular weight higher then 10kDa and another fraction denoted Finf 10 with the molecular weight inferior to 10 kDa. For Cuttlefi sh, as well as Octopus, these two fractions were lyophilised under vacuum (LABCONCO, 2.5 (Plus) Freezone). Finally, the freeze- dried fractions, Finf 10 and the Fsup 10 of Sepia and Octopus were dissolved in PBS (v/v) according to the method of Naraoka et al. (2000). Aliquots were stored at -80°C. Enzymatic hydrolysis The Pepsin (EC 3.4.23.1) was provided by DSM. The enzymatic hydrolysis conditions were: a temperature of A B Mediterranean sea Fig. 1: Location of the capture sites (FAO fi sheries department 2005) of the biological material. A. Sepia offi cinalis and B. Octopus vulgaris. Sl. 1: Lokalitete, kjer je bil nabran biološki material (FAO fi sheries department 2005). A. Sepia offi cinalis in B. Octopus vulgaris. 128 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 45°C, pH2, an E/S ratio of 0.1% and an hydrolysis time of 10 hours. The reaction was stopped by heating the solution to 85°C to inactivate the enzyme. The resulting hydrolysate was centrifuged at 20,000 g for 20 min. Isolation and purifi cation of anticancer peptide Sepia ink hydrolysates were fractionated into a high and low molecular weight fractions and by ultrafi ltration at 4°C by PM-10 membrane (MWCO = 3000 Da) and kept for use in gel fi ltration. Prior to use, the membrane was washed with 10 mL of distilled water. The ultrafi l- trate was fi ltered again through a Millipore membrane fi lter (0.45 μm) and applied to a (2.8 cm × 90 cm) column saturated in Sephadex G-25 resin. The Sepha- dex G-25 column was eluted with distilled water and fractions were collected every 4 minutes with a fraction collector. The absorbance was measured at 280 nm. The hydrolysate was fractionated into fi ve fractions by gel fi ltration chromatography. Each fraction was tested for anticancer activities. The fraction showing the highest anticancer activ- ity was further purifi ed using reverse-phase HPLC on a Primesphere 10 C 18 column (10 mm × 250 mm) with a linear gradient of acetonitrile (0-50% for 20min) con- taining 0.1% trifl uoroacetic acid (TFA) at a fl ow rate of 1 mL·min -1 . The absorbance of the eluent was monitored at 280 nm. Active peak representing anticancer activity was pooled and freeze-dried immediately for a future analysis of the bioactive fraction. The yield of Sepia ink oligopeptides The fraction provided by the G-25 gel chromatog- raphy was concentrated in vacuum under 25°C and concentrated liquid was dried under 70°C by vacuum freeze-drying. Then the powder of Sepia ink oligopep- tides was collected and weighed. Cell line and cell culture Human glioma cell lines U87 and melanoma cell lines IGR 39 were used for anticancer activity tests with non purifi ed ink fractions. The human prostate cancer cell lines PC-3 were used later for the purifi ed and isolated active peptide. The cell lines were grown at 37°C in a 5% CO2, 95% air humidifi ed atmosphere, in MEM medium for U87 and DMEM-Ham’s F12 medium for IGR39. The medium was supplemented with 10% FCS + 5% heat inactivated horse serum to which streptomycin (100 μg/ mL) and penicillin (100 U/mL) had been added. The cells grown in fl asks were washed with PBS, trypsinized (3 mL of trypsine-EDTA, 500 μg/ml), centrifuged at 800 rpm for 5 min and dissolved in fresh culture medium at 104 cells/90 μL. Subsequently, a 90 μL volume of suspension cells was added to each well of a 96-well microplate and incubated at 37°C for 24 hours. Cell migration and invasion assay in vitro The assays were achieved in Boyden Chambers (Bec- ton Dickinson). A 24-well transwell (Corning, NY, USA) was used to evaluate the motility and invasive ability of U87 and IGR29 cells in vitro. The upper surface of poly- carbonate fi lters with 8 μm pores (0,3 cm2) was coated with 5 mg of Matrigel, fi brinogen (Sigma-Aldrich) at 50 μg/mL of PBS and incubated during 2 hours at 37°C . The lower chambers were fi lled with the medium (MEM/ BSA 0,1%) (Sigma-Aldrich) (500 μl in the lower well, and 200 μl in the upper one). The glioma cells U87 were pre-incubated with different doses of the molecular fractions Finf 10 and the Fsup 10 of Sepia and Octopus or 1% BSA (negative control) for 24 hours at 37 °C in a CO2 incubator and then washed with PBS, detached with the versene (Gibco) and resuspended in serum-free MEM. A suspension of cells (2 x105 cells/200 mL) was placed in the upper chambers. After 5 h of incubation at 37°C under optimal conditions, the supernatant was completely removed and the upper and lower faces of the membranes are washed with PBS. Cells on the upper surface of the fi lter (that did not migrate) were com- pletely removed by wiping them with a cotton swab. Cells that invaded the Matrigel and were fi xed during 10 min with glutaraldehyde 1% and then stained with crystal violet at 0.5 % for 30 min. The cellular migration was quantifi ed by counting the number of cells that mi- grated using a microscope (Leica) with 5 mm2 fi elds at a magnifi cation of x 400, or by measuring the absorbance at 560 nm after solubilization of the colorant in SDS 1%. Antiproliferative activity assay This assay aims to evaluate the effect of the molecu- lar fractions, Finf 10 and the Fsup 10 of Sepia and Octopus on the multiplication of tumor cells. U87 cells are incubated in the wells of a microplate (5 x 103 cells/ well) in 50 μl MEM/10% FCS (Fœtal Calf Serum/ 5% horse serum. After one hour incubation, the medium is renewed in presence of the fractions to test. Each day, 3 wells are washed with PBS and the cells are fi xed with glutaraldehyde 1% then fi xed with PBS. At the end of the week, the cells are stained with crystal violet 0.1% and quantifi ed by measuring the absorbance at 560 nm. Cytotoxicity assay The MTT assay (Mosmann, 1983) allows the evalu- ation of the effect of the molecular fractions Finf 10 and the Fsup 10 on the cell viability of cancer cells U87. The peptidic ink fractions from Cuttlefi sh and Octopus, at a concentration of 10 mg/mL was prepared in PBS 0.1 M (pH 7.4), and diluted 10-fold in cell culture medium containing the cells. The microplate was then incubated at 37 °C for 24, 48 and 72 h, changing the culture medium every 24 h and adding the ink fractions at a 129 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 fi nal concentration of 1 mg/mL. At the end of every incubation period, 15 μL of 5 mg/mL tetrazolium salt (MTT) solution was added to each well, and the plate was incubated for 3 h. To stop succinate-tetrazolium reductase activity and solubilize formazan crystals, 200 μL of dimethyl sulfoxide (DMSO) was then added to each well and kept at 37 °C for 1 h. Absorbance was read on a plate reader at 570 nm. Cellular adhesion assay The aim of this assay was to analyze the ability of ink fractions to inhibit the adhesion of tumor cells IGR39 on the proteins of the extracellular matrix (ECM). Four pro- teins were assyed: fi brinogen, fi bronectin, collagen type I and polylysin. The substrates of adhesion were prepared by coating the wells of a microplate (Nunc) by 50 μL of a proteic solution : fi brinogen at 50 μg/mL, la polylysine (PL) at 20 μg/mL, the collagen type I (Coll I) at 10μg/mL and fi bronectine (Fn) at 5μg/mL and incubating it during 2 hours at 37°C. The wells are then saturated with 50 μL PBS/BSA 0.5 % during 1 hour at 37°C. During saturation, the cells were detached by PBS/EDTA and washed twice with adhesion buffer (MEM, NaHCO3 1,2 g/l, HEPES 15 mM pH 7.3 and BSA 0,2%). For the assay of the ink fractions, the cells were pre-incubated during 30 min at room temperature with stirring and then deposited in the wells where 50 μL cellular suspension (106 cells/ mL adhesion buffer) were added and incubated during 1 hour at 37°C. After incubation, the non adherent cells are eliminated by washing with an adhesion buffer. The adherent cells are fi xed with glutaraldehyde 1% during 10 min at room temperature and are washed twice with distilled water and stained during 30 min by 100 μL of a crystal violet solution at 0.5%. Cellular adhesion was quantifi ed by measuring the absorbance at 560 using a microplate reader (Σ960 Metertech). All the data were analyzed by the software of SPSS. RESULTS AND DISCUSSION Effect of the crude ink on the adhesion of IGR23 to the proteins of the ECM Cephalopoda ink had been studied for its antimi- crobial and antiviral activities, but also for its toxicity for some cell lines (Derby et al., 2007). To this context, we investigated the antitumor potential of S. offi cinalis and O. vulgaris inks. At a fi rst time, the crude inks were diluted in PBS and then centrifuged. We evaluated the anti-adhesive effect of the supernatants on IGR39 cell lines deriving from human melanoma, on 3 different ECM: fi brinogen, fi bronectin and collagen type I. The results showed that cuttlefi sh ink - at a concentration of 5,28 μg/ml - signifi cantly (p < 0.05) inhibits the adhesion to fi brinogen, with an inhibition percentage of 60%. This inhibition was 25% on fi bronectin. There was no inhibition of the adhesion of the IGR 39 cells on the collagen type I (Fig. 2). Concerning Octopus ink, we noticed that the adhesion of IGR 39 cells on fi bronectin is signifi cantly (p < 0.05) decreased by 40% (concen- tration of 8,75 μg/mL), but there was no inhibition for fi brinogen and collagen type I. Effect of ink fractions on the adhesion of tumor cells U87 to the proteins of the ECM After the fractionation of the inks in Amicon cells, two fractions were obtained for each cephalopoda specie, the Fsup 10 (MW > 10 kDa) and the Finf 10 (MW < 10 kDa). With a concentration of 30 μg/mL, the cuttlefi sh Fsup 10 poorly inhibits the adhesion of U87 cells on fi brinogen (Fig. 3.A), whereas the Finf 10 fraction inhibits cell adhe- sion on fi brinogen in a dose-dependent manner, with an IC50 of 25μg/ml (Fig. 3.B). In the same way, Octopus Fsup 10 inhibits cell adhesion with an IC50 of 75 μg/mL (Fig. 4.A). However, the fraction Finf 10 assayed at dose 100μg/ mL did not show a signifi cant antitumor effect at the level of 5%. (Fig. 4.B). The adhesion assays of the U87 cells on Polylysine-L showed an inhibition that did not exceed 20 % with cuttlefi sh Finf 10 and Octopus Fsup 10. At that point we cannot conclude yet that these inhibitions are integrin-dependent (Fig. 5.A and B). Effect of ink fractions on the migration of U87 cells The cellular migration plays a very important role in the metastatic dissemination and requires cellular adhe- sion to the proteins of the extracellular matrixes (ECM). Because the extracts of the active fractions, F inf 10 of Se- pia ink and Fsup 10 of Octopus ink exhibited an inhibiting potential of the adhesion of U-87 tumoral cells, we have essayed the effect of these extracts on their migration. 0 20 40 60 80 100 120 Fg Fn Coll I Ce ll ad he sio n (% ) Extracellular matrixes (ECM) Control Sepia ink Octopus ink Fig. 2: Effect of crude Sepia and Octopus ink on the adhesion of the melanoma IGR 39 cells to fi brinogen, fi bronectin and collagen type I. Sl. 2: Učinek surovega črnila sipe in hobotnice na lepljenje celic melanoma IGR 39 na fi brinogen, fi - bronectin in kolagen tipa I. 130 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 The U87 cells treated with increasing concentrations of cuttlefi sh Finf10 or Octopus Fsup 10 stopped the migration of the cells and their adhesion to fi brinogen, with a dose- dependence (IC50 =15μg/ml) for Sepia Finf 10 and (IC50 = 40μg/ml) for Octopus Fsup 10 (Fig. 6 and Fig. 7). Antiproliferative effect of ink fractions on the U87 cells Because the ink fractions Sepia Finf 10 and Octopus Fsup 10 showed interesting antitumor activities (inhibits adhesion and migration of U87), their antiproliferative potential was assayed. Our results showed that the ink fractions did not show any signifi cant inhibition of cell proliferation during 4 days (Fig. 8 A and B). Isolation and purifi cation of the Sepia ink peptide Because the peptidic fraction inferior to 10 kDa of Sepia ink (Finf 10) is the one who was the most active, and because biologically active peptides have low molecular weight in general, we decided to concentrate our study on Sepia ink anticancer peptides. After ultrafi ltration using a 3000 Da MWCO membrane the permeates of Pepsin hydrolysates were loaded on a gel fi ltration col- umn (Sephadex G-25). Five anticancer peptide fractions with the highest activity were collected. The purity was 0 20 40 60 80 100 120 Control F sup 10 (30 mg/mL) Ce ll a dh es io n (% ) A 0 20 40 60 80 100 120 0 25 50 100 Amount of F inf 10 fraction of Sepia ink (mg/mL) B Fig. 3: Effect of the Sepia ink fractions on the adhesion of the glioma U87 cells on fi brinogen. A: Fsup 10 (30µg/ ml), B: Amount of Finf 10 fraction. Sl. 3: Učinek frakcije surovega črnila sipe na lepljenje celic glioma U87 na fi brinogen. A: Fsup 10 (30µg/ml), B: Količina Finf 10 frakcije. 0 20 40 60 80 100 120 0 25 50 100 Ce llu la r a dh es io n (% ) Amount of F sup 10 Octopus ink B 0 20 40 60 80 100 120 Control F inf 10 (100 mg/mL) Ce llu la r a dh es io n (% ) A Fig. 4: Effect of the Octopus ink fractions on the ad- hesion of the glioma U87 cells on fi brinogen. A: Finf 10 (100µg/mL); B: Amount of Fsup 10 fraction. Sl. 4: Učinek frakcije surovega črnila hobotnice na lepljenje celic glioma U87 na fi brinogen. A: Fsup 10 (30µg/ml), B: Količina Fsup 10 frakcije. 0 20 40 60 80 100 120 Control F sup 10 fraction (100 mg/mL) Ce llu la r a dh es io n (% ) A 0 20 40 60 80 100 120 Conrol F inf 10 fraction (30 mg/mL) Ce llu la r a dh es io n (% ) B Control Fig. 5: Dose-response effect of ink fractions on the adhesion of U87 cells to Polylysin-L. A: Sepia Fsup 10, B: Octopus Finf 10 Sl. 5: Učinek frakcij črnila na lepljenje U87 celic na polilizin-L v odvisnosti od doziranja. A: Sepia Fsup 10, B: Octopus Finf 10. 131 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 then detected by HPLC. The sample was divided into fi ve peaks and the peak 2 had the highest anticancer activity. After a further reverse-phase HPLC, the second peak had a molecular weight of 340.6. After freeze dry- ing, 1.74 g Sepia ink oligopeptide was obtained from 100 g Sepia ink. So the yield was 1.74 %. Effect of Sepia ink oligopeptides on cell viability The PC-3 cells (human prostate cancer cell lines) were treated with 2-10 μg·mL -1 of Sepia ink oligopep- tides for 24-72 h. PC-3 cells displayed dose-dependent decreases in viability, detectable as early as 24 h. At 24 h, the threshold concentration which caused a decrease in PC-3 cell viability was 1.89 μg·mL -1 (89 % of control, P > 0.05). The Sepia ink oligopeptide concentration that produced the maximal effect was 10 μg/mL (26% of control, P < 0.05), and the half inhibitory concentration (IC 50 ) was 7.45 μg·mL -1 . At 48 h, the threshold concentration was 2,2 μg·mL-1 (33 % of control, P < 0.05), the maximal effect was 10 μg·mL-1 (0.24% of control, P < 0.05), and the IC50 was 1.23 μg·mL-1. At 72 h, the threshold concentration was again 2 μg·mL-1 (43 % of control, P < 0.05). The maximal effect was 10 μg·mL-1 (0% of control, P < 0.05), and the IC50 was 1.64 mg·mL -1. The threshold concentration at 24, 48 and 72 h were the same (2 μg·mL-1), even though the level of the signifi cance increased from day 1 to days 2 and 3. The IC50 decreased from 7.45 μg·mL -1 at 24 h to 1.23 μg·mL-1 at 48 h. These results suggest that Sepia ink oligopeptides had a dose-dependent deleterious effect on PC-3 cell viability. Biologically active antitumor compounds have been isolated from different marine sources. Recently research has been focused on peptides from marine animal sources, since they have been found as second- ary metabolites from sponges, ascidians, tunicates, and mollusks. The structural characteristics of these peptides include various unusual amino acid residues which may be responsible for their bioactivity. However, many side effects had been observed in clinical trials and the complexity and low yield of chemical synthesis, together with low water solubility, have been signifi cant obstacles to broader clinical evaluation, triggering the development of analog compounds (De Arruda et al., 1995; Pitot et al., 1999; Tamura et al., 2007). Even if the bioactive peptides from marine mollusks had been well documented, there had been a few publications on anticancer peptides from cephalopoda, specifi cally the species O. vulgaris and S. offi cinalis ink wastes. Interestingly in our study, the crude Sepia and Octopus inks assayed on tumor cells IGR39, showed a selective inhibition according to the cellular matrix used. In order to refi ne this investigation, we adopted an acetone fractioning of the ink and interested par- ticularly to the supernatant. The two fractions obtained 0 20 40 60 80 100 120 0 10 20 30 Ce ll m ig ra tio n (% ) Amount of F inf 10 Sepia ink (mg/mL) Fig. 6: Effect of the Sepia Finf 10 ink fraction on the U87 cell migration and morphological changes. (I): Micro- scopic observation. A-D: Cells were incubated with F inf 10 Sepia ink fractions (0, 10, 20, 30 µg/mL) during 5 hours at 37°C. (II): U87 cellular migration (%) accord- ing to the concentration of Sepia ink fraction Finf10 (0, 10, 20, 30 µg/mL). Sl. 6: Učinek frakcije črnila sipe (Finf 10) na migracijo celic U87 in morfološke spremembe. (I): Mikroskopska opazovanja. A-D: Celice inkubirane s frakcijami Finf 10 črnila sipe (0, 10, 20, 30 µg/mL) v peturnem obdobju pri 37°C. (II): U87 celična migracija (%) glede na kon- centracijo frakcij črnila sipe Finf10 (0, 10, 20, 30 µg/mL). 0 20 40 60 80 100 120 0 25 50 100 Ce ll m ig ra tio n (% ) Amount of F sup10 Octopus ink (mg/mL) Fig. 7: Effect of the Octopus Fsup 10 ink fraction on the U87 cell migration and morphological changes. (I): Microscopic observation. A-D: Cells were incubated with Fsup 10 Octopus ink fractions (0, 25, 50, 100 µg/mL) during 5 hours at 37°C. (II): U87 cellular migration (%) according to the concentration of Octopus ink fraction Fsup 10 (0, 25, 50, 100 µg/mL). Sl. 7: Učinek frakcije črnila hobotnice (Fsup 10) na migracijo celic U87 in morfološke spremembe. (I): Mikroskopska opazovanja. A-D: Celice inkubirane s frakcijami Fsup 10 črnila sipe (0, 10, 20, 30 µg/mL) v peturnem obdobju pri 37°C. (II): U87 celična migracija (%) glede na koncentracijo frakcij črnila hobotnice Fsup 10 (0, 25, 50, 100 µg/mL). 132 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 Finf 10 (MW< 10kDa) and Fsup 10 (MW> 10kDa) were then assayed in vitro on glioma cell lines U87. The in anti- adhesive activities of the ink fractions belonging to the two cephalopoda species are not comparable. Sepia Finf 10 and Octopus Fsup 10 inhibit the adhesion of U87 cells on fi brinogen, according to their concentrations (dose-dependent) with an IC50 = 25μg/mL for cuttlefi sh ink fraction and 75μg/mL for Octopus. However, both of the ink extracts slightly inhibit the non-specifi c adhesion of U87 cells on Polylysin-L. This result suggests that the fractions would own an inhibition mechanism through one or more membrane receptors. It is also important to mention that the anti-adhesive effect requires a high concentration of the Octopus Fsup 10 (~50μg/mL), unlike Sepia Finf 10 fraction (~10 μg/mL). We can thus emit the hypothesis that these ink fractions may contain antago- nistic activities. According to the literature, the antitu- mor effect is correlated to a synergy between different chemical ink compounds. This action is related to the tyrosinase activity and peptidoglycans (Naraoka et al., 2000). We also showed that with concentrations of 10 μg/mL of Sepia ink fraction, the cell migration is reduced and is completely stopped with a concentration of 30 μg/ml. However, concerning the Octopus ink fraction, we observe an inhibition of cell migration starting from a concentration of 25 μg/mL. This inhibition is complete at 100 μg/mL. Somehow, there was no inhibition of cell proliferation. Our results are in concordance with the research work on squid (Ommastrephes bartrami) ink where the authors did not detect evident antiprolifertive activity on tumor cells Hep G2, but induces a suppres- sion of cell invasion and cell migration, according to the concentrations of ink fractions (Chen et al., 2010). The cytotoxicity assays of the Finf 10 and Fsup 10 of Sepia and Octopus during 5 hours showed that these fractions are toxic only at very high concentrations. It had previ- ously been reported that the tyrosinase (MW=94 kDa) is responsible of the toxic effect of cephalopoda ink (Prota et al., 1981, Palumbo et al., 1985, 1994, Takaya et al., 1994, Naraoka et al., 2000, 2003). At this point, we can only hypothesize that the cytotoxicity of the Octopus Fsup10 is also due to the enzymatic effect of tyrosinase, but this is to be confi rmed. The Sepia ink oligopeptides extracted using the protease Pepsin also inhibited the growth of PC-3 cells. In U-87 cells, Sepia ink oligopeptides caused a linear decrease of cell viability in a dose-dependent manner. However, the mechanism of the anticancer activity is unclear. Therefore, further studies are needed to identify the mechanism of the potent antitumor activity. Finally we can deduce that the fractions Finf 10 et Fsup 10, respectively from S. offi cinalis and O. vulgaris, do not have antiproliferative but are responsible of antiadhe- sive and anti-migration activity. However, we still have to investigate whether these antitumor activities are due to one or more chemical components and to determine their chemical nature and molecular mechanisms that are implied. The results of our study also demonstrated the effect of Sepia ink oligopeptides on growth inhibition and could be a potentially useful adjunct in the treat- ment of cancer. Hence, since the cephalopod species S. offi cinalis and O. vulgaris are easily accessible Tunisian marine resources, their ink protein wastes are attractive as a protein source for the future industrial production of functional peptides. 0 1 2 3 4 5 0 1 2 3 4 5 Ce llu la r p ro lif er at io n DO (5 60 n m ) Days Mean CT Mean S (1μg/mL) Mean S (5μg/mL) Mean S (10μg/mL) 0 1 2 3 4 5 1 2 3 4 5 6 Ce llu la r p ro lif er at io n DO (5 60 n m ) Days Mean CT Mean P (10μg/mL) Mean P (15μg/mL) Mean P (25μg/mL) A B Fig. 8: Anti-proliferative effect of the active fractions on U87 cells. (A): Sepia Finf 10, (B): Octopus Fsup 10. Sl. 8: Anti-proliferativni učinek aktivnih frakcij na U87 celice. A): Sepia Finf 10, (B): Octopus Fsup 10. 133 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 PROTITUMORSKA AKTIVNOST ČRNILA PRI SIPI SEPIA OFFICINALIS IN HOBOTNICI OCTOPUS VULGARIS (CEPHALOPODA) IZ SEVERNE TUNIZIJSKE OBALE (OSREDNJE SREDOZEMSKO MORJE) POVZETEK Avtorji poročajo o protitumorskih učinkih peptidov iz črnila dveh glavonožcev in sicer sipe, Sepia offi cinalis (Linnaeus, 1758), in hobotnice, Octopus vulgaris (Cuvier, 1797), dobljenih na primerkih, ujetih ob severnotunizijskih obalah (osrednje Sredozemsko morje). Rezultati prikazujejo, da učinkovine iz surovega črnila kažejo protiadhezijsko aktivnost na celice IGR39 v odvisnosti od testiranih izvenceličnih matriksov. Delno prečiščena frakcija z molekulsko maso, manjšo od 10 kDa pri vrsti Sepia offi cinalis (Finf10) in višjo od 10 kDa pri vrsti Octopus vulgaris (Fsup10) sta pokazali koncentracijsko odvisno protiinvazivno, protimigracijsko in protiadhezivno aktivnost na celičnih linijah glioma U87. Delno prečiščene frakcije niso pokazale nobenih protiproliferativnih aktivnosti, MTT protokol pa je pokazal toksični učinek le v primeru visoke koncentracije frakcije črnila. Ključne besede: Cephalopoda, črnilo sipe, črnilo hobotnice, protitumorska aktivnost , encimatska hidroliza, oligopeptidi, Tunizija, osrednje Sredozemsko morje REFERENCES Andersen, S.O. & P. Roepstorff (1982): Sclerotiza- tion of insect cuticle: An unsaturated derivative of N- acetyldopaminc and its role in sclerotization. J. Insect Biochem, 12(3), 269-276. Aneiros, A. & A. Garateix (2004): Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J. Chromatogr. B: Biomed. Sci. App., 803, 41-53. Chakraborty, S. & U. Ghosh (2010): Oceans: a store of house of drugs - A review. J. Pharm. Res., 3, 1293- 1296. Chen, S., J. Wang, C. Xue, H. Li, B.Sun, Y. Xue & W. Chai (2010): Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell Metastasis. Carbohydr. Polym., 81, 560-566. De Arruda, M., C.A. Cocchiaro, C.M. Nelson, C.M. Grinnell, B. Janssen, A. Haupt & T. Barlozzari (2008): 1995LU103793 (NSC D-669356): A synthetic peptide that interacts with microtubules and inhibits mitosis. Cancer Res, 55, 3085-3092. Fearon, E.R. & B. Vogelstein (1990): A genetic model for colorectal tumorigenesis. Cell, 61, 759-767. Garteiz, D.A., T. Madden, D.E. Beck, W.R. Huie, K.T. McManus, J.L. Abbruzzese, W. Chen & R.A. Newman (1998): Quantitation of dolastatin-10 using HPLC/elec- trospray ionization mass spectrometry: application in a phase I clinical trial. Cancer Chemother. Pharmacol., 41, 299-306. Leng, B.O., D.L. Xiao & X.C. Qing (2010): Inhibitory effects of anticancer peptide from Mercenaria on the 134 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Emna SOUFI-KECHAOU et al.: ANTITUMORAL ACTIVITY IN INKS OF SEPIA OFFICINALIS AND OCTOPUS VULGARIS (CEPHALOPODA) FROM ..., 125–134 BGC-823 cells and several enzymes. FEBS Letters, 579 (5), 1187-1190. Liu, X.D., L. Qiu & Q. Wu (2004): Studies on the physiological activity of a natural peptide from clam (Meretrix meretrix Linnaeus). J. Xiamen Univ. (Nat. Sci.), 43 (4), 432-435. Luesch, H., R.E. Moore & V.J. Paul (2001): Isolation of dolastatin 10 analogue from the marine cyanobacte- rium symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. Nat.Prod., 64(7), 907-910. Mayer, A.M.S., K.B. Glaser, C. Cuevas, R.S. Jacobs, W. Kem, R.D. Little, J.M. McIntosh, D.J. Newman, B.C. Potts & D.E. Shuster (2010): The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends in Pharmacological Sciences, 31, 255-265. Mayer, A.M.S., A.D. Rodriguez, O. Taglialatela-Sca- fati & N. Fusetani (2013): Marine Compounds with An- tibacterial, Antidiabetic, Antifungal, Anti-infl ammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; affecting the Immune and Nervous System, and other Miscellaneous Mechanisms of Action. Mar. Drugs, 11, 2510-2573. Monique, W.J., B. Den & N. Bastiaan (2005): Phar- maceutical development of a parenteral lyophilised formulation of the investigational anticancer agent ES- 285.HCl. PDA J. Pharm. Sci. Technol., 59(4), 246-257. Mosmann, T. (1983): Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55. Naraoka, T., H.S. Chung, H. Uchisawa, J. Sasaki & H. Matsue (2000): Tyrosinase activity in antitumor compounds of squid ink. Food Sci. Technol. Res., 6, 171-175. Naraoka, T., H. Uchisawa, H. Mori, H. Matsue, S. Chiba & A. Kimura (2003): Purifi cation, charac- terization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex argentinus. Eur. J. Biochem., 270, 4026-4038. Palumbo, A., A. Poli, A. Di Cosmo & M. D’Ischia (2000): N-Methyl-D-aspartate receptor stimulation ac- tivates tyrosinase and promotes melanin synthesis in the ink gland of the cuttlefi sh Sepia offi cinalis through the nitric oxide/c GMP signal transduction pathway. J. Biol. Chem., 275, 16885-16890. Pettit, G.R., J.K. Srirangam, , J. Barkoczy, M.D. Wil- liams, K.P. Durkin, M.R. Boyd, R. Bai, E. Hamel, J.M. Schmidt & J.C. Chapuis (1995): Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifi cations. Anticancer Drug Des., 10, 529–544. Pettit, G.R., E.J. Flahive, M.R. Boyd, R. Bai, E. Hamel, R.K. Pettit & J.M. Schmidt (1998): Antineoplastic agents 360. Synthesis and cancer cell growth inhibitory studies of dolastatin 15 structural modifi cations. Anticancer Drug Des., 13, 47–66. Pitot, H.C., E.A. McElroy, J.M. Reid, A.J. Windebank, J.A. Sloan, C. Erlichman, P.G. Bagniewski, D.L. Walker, J. Rubin, R.M. Goldberg & al. (1999): Phase I trial of dolastatin-10 (NSC 376128) in patients with advanced solid tumors. Clin. Cancer Res., 5, 525-531. Sanjay, G., C.M. Alain & M. Monica (2009): A phase I study of eribulin mesylate (E7389), a mechanistically novel inhibitor of microtubule dynamics, in patients with advanced solid malignancies. J. Clin. Cancer Res., 15(12), 4207-4212. Shen, G., R. Layer & R. McCabe (2000): Conopep- tides: From deadly venoms to novel therapeutics. Drug Discovery Today, 5, 98-106. Shen, C., J. Xie & K. Xu (2007): The components of cuttlefi sh (Sepiella maindroni de Rocheburns) oil. Food Chem., 102, 210-214. Simmons, T.L., E. Andrianasolo, K. McPhail, & al. (2005): Marine natural products as anticancer drugs. Mol. Cancer Ther., 4(2), 333-342. Susan, A, A. Brooke, J. Hannah, N. Lomax-Browne, M. Tracey, J. Carter, F. Chloe, C.E. Kinch, M.S. Debbie & I. Hall (2010): Molecular interactions in cancer cell metastasis. Acta Histochem., 112, 3-25. Takaya, Y., H. Uchisawa & F. Narumi (1996): Illexins A, B and C from Squid ink should have a branched structure. Biochem. Biophys. Res. Commun., 226(2), 335-338. Takaya, Y., H. Uchisawa & K. Hanamatsu (1997): Novel fucose-rich glycosaminoglycans from squid ink bearing repeating unit of trisaccharide structure(-6Gal- NAcα1-3GlcAβ1 3Fucα-1) n . Biochem. Biophys. Res. Commun., 198(2), 560-567. Tamura, K., K. Nakagawa, T. Kurata, T. Satoh, T. Nogami, K. Takeda, S. Mitsuoka, N. Yoshimura, S. Ku- doh, S. Negoro & al. (2007): Phase I study of TZT-1027, a novel synthetic dolastatin 10 derivative and inhibitor of tubulin polymerization, which was administered to patients with advanced solid tumors on days 1 and 8 in 3-week courses. Cancer Chemother. and Pharmacol., 60, 285-293. Tetsushi, N., C. Hun-Sik & U. Hidemitsu (2000): Tyrosinase activity in antitumor compounds of Squid ink. Food Sci.Technol. Res., 6(3), 171-175. Wang, Y., H. He, G. Wang, H. Wu, B. Zhou, X. Chen & Y. Zhang (2010): Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c Mice. Mar. Drugs, 8, 255-268. Wesson, K. & M. Hamann (1996): Keenamide, A, a bioactive cyclic peptide from the marine mollusk Pleu- robranchus forskalii. J. Nat. Prod., 59, 629-631. Zeng, M.J., D.M. Zhang & J.H. Chen (2007): Research advances of antitumor peptides. Chinese J. Biochem. Pharmacol., 28(2), 139-141 Zhong, J.P., G. Wang & J.H. Shang (2009): Protective effects of Squid ink extract towards hemopoietic injuries induced by cyclo- phosphamine. Mar. Drugs, 7(1), 9-18. SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS 137 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 original scientifi c article DOI 10.19233/ASHN.2017.16 received: 2017-06-04 REMARKS ON INCIDENTAL CAPTURE OF DEEP-SEA SHARKS IN MARMARA SHELF WATERS Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil Apt., No: 30, D: 4, Ümraniye, TR-34764, İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com ABSTRACT Between 23 November 2015 and 10 May 2017, 11 deep-sea sharks representing 3 families and 3 species were incidentally captured by commercial fi shermen in the shelf waters of the Sea of Marmara. These species were: the bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788), the bramble shark, Echinorhinus brucus (Bonnaterre, 1788), and the angular rough shark, Oxynotus centrina (Linnaeus, 1758). All of the examined deep-sea sharks were captured at depths from 45 to <200 m. Gear-abrasions and injuries induced by gaffi ng or rough handling were observed in the majority of the examined specimens (n = 10; 90.9%). The present study points out that, in the Sea of Marmara, H. griseus, E. brucus and O. centrina are exposed to pressure by different fi shing gears not only deployed in slope waters, but in shelf waters, too. Conservation of Marmara deep-sea sharks is a critical issue that requires an integrative approach to the implementation of protective measurements, covering both deep- and shelf water fi shery. Key words: deep-sea, sharks, continental shelf, bycatch, Marmara, conservation OSSERVAZIONI SU CATTURE ACCIDENTALE DI SQUALI DI ACQUE PROFONDE NELLA PIATTAFORMA CONTINENTALE DEL MAR DI MARMARA SINTESI Tra il 23 novembre 2015 e il 10 maggio 2017, 11 squali di acque profonde, che rappresentano 3 famiglie e 3 specie, sono stati accidentalmente catturati nelle acque della piattaforma continentale del Mar di Marmara. Le specie in questione sono: lo squalo capopiatto, Hexanchus griseus (Bonnaterre, 1788), il ronco, Echinorhinus brucus (Bonnaterre, 1788) e il pesce porco, Oxynotus centrina (Linnaeus, 1758). Tutti gli squali esaminati sono stati catturati a profondità tra i 45 e i <200 m. Nella maggior parte dei campioni esaminati (n = 10, 90,9%) sono state osservate abrasioni da attrezzature e lesioni indotte da uncini o manipolazione rude. Il presente studio rileva che nel Mar di Marmara H. griseus, E. brucus e O. centrina sono esposti a pressioni dovute all’uso di diversi attrezzi da pesca anche nelle acque della piattaforma continentale. La tutela degli squali delle acque profonde di Marmara è di cruciale importanza e richiede un approccio integrativo all’attuazione delle misure di protezione, considerando sia la pesca in acque profonde che in acque della piattaforma continentale. Parole chiave: acque profonde, squali, piattaforma continentale, cattura accessoria, Marmara, conservazione 138 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: REMARKS ON INCIDENTAL CAPTURE OF DEEP-SEA SHARKS IN MARMARA SHELF WATERS, 137–144 INTRODUCTION The deep sea has always been considered inac- cessible, isolated, diffi cult and expensive to reach and explore. The deep-sea fl oor is a vast habitat, covering more than 65% of the Earth’s surface (Thistle, 2003), and cartilaginous fi shes – sharks, rays and their relatives – are remarkable members of the ichthyofauna of this remote environment. Kyne & Simpendorfer (2007) de- fi ne deep-sea chondrichthyans as those sharks, rays and holocephalans whose distribution is predominantly at or restricted to depths below 200 m, or those that spend the majority of their lifecycle below this depth. For the moment, approximately half of the known chondrich- thyans, 575 of the 1207 species (47.6%), live in deep oceans, below 200 m (Cotton & Dean Grubbs, 2015). Our knowledge of Mediterranean deep-sea sharks has remarkably and progressively increased over the past few decades (see e.g., Hemida & Capapé, 2002; De Maddalena & Zuffa, 2003; Sion et al., 2004; Capapé et al., 2003, 2008; Kousteni & Megalofonou, 2012; Kabasakal & Bilecenoğlu, 2014; Kabasakal, 2015). Furthermore, research efforts on the deep-sea sharks of the Sea of Marmara, a subregion of the Mediterranean ecosystem, also demonstrated a promising increase dur- ing almost the same period, and the current status of Marmara deep-sea sharks has been reviewed recently in a deep-sea inventory study (Gönülal & Topaloğlu, 2016) and shark specifi c studies (Kabasakal & Karhan, 2015). Every new data on deep-sea sharks of the Sea of Marmara can also be considered as a contribution to the knowledge about the deep-sea chondrichthyans of the Mediterranean Sea. In the present article, the author reports on recent cases of incidental capture of deep-sea sharks in Marmara shelf waters and discusses the risk factors decreasing the survivability of these vulnerable species. MATERIAL AND METHODS Study area The Sea of Marmara is a 280 km long and 80 km wide intracontinental sea on the waterway between the Mediterranean and the Black Seas (Fig. 1) (Çağatay et al., 2016). Its maximum depth is 1370 m, and the sea consists of three deep basins with depths exceeding 1100 m (Çağatay et al., 2016). The northern part of the Sea of Marmara is characterized by a narrow shelf area, the southern sublittoral, on the other hand, is covered by a remarkably wider continental shelf (Fig. 1). The map of the Sea of Marmara depicted in Fig. 1 is based on bathymetric surveys carried out by Claude et al. (2001). Study material The deep-sea sharks examined in the present study were incidentally captured by commercial purse-seiners and stationary netters (mainly gill-netters) (Tab. 1). Since the present study was set to be a fi shery-dependent sur- vey of Marmara deep-sea sharks, fi xed-station sampling was not applicable and the observations were irregularly spread over a 2-year survey period. The author collected data on the examined species whenever and wherever a sampling occasion presented itself. The following data were recorded for the examined specimens: total length (TL), weight (W), sex, fi shing date, fi shing depth, fi shing locality, fi shing gear, and the presence of anthropogenic or fi shing-gear induced injuries. The fi shing localities related to the examined specimens are plotted on map (Fig. 1). The TL represents a horizontal line reaching from the tip of the snout to the tip of the upper lobe of the caudal fi n, where the caudal fi n is depressed to the body axis (Serena, 2005). The documentation of the species Fig. 1: Map showing the fi shing localities (*) of the examined deep-sea sharks in Marmara shelf waters during the 2015–2017 period (the numbers correspond to the numbers of specimens in Tab. 1). Hg, Hexanchus griseus ; Eb, Echinorhinus brucus; and Oc, Oxynotus centrina. Sl. 1: Zemljevid ribolovnega območja z lokalitetami (*), kjer so bili ujeti globokomorski psi na kontinentalnem pragu v Marmarskem morju med letoma 2015 in 2017 (številke se nanašajo na primerke v Tab. 1). Hg, Hexanchus griseus; Eb, Echinorhinus brucus; in Oc, Oxynotus centrina. 139 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: REMARKS ON INCIDENTAL CAPTURE OF DEEP-SEA SHARKS IN MARMARA SHELF WATERS, 137–144 followed the best practice protocol for ichthyological fi rst records proposed by Bello et al. (2014), particularly with regard to photographic identifi cation of deep-sea sharks. For the purpose of photographic identifi cation of previously recorded deep-sea shark species, a clear image, shot laterally and depicting details allowing con- clusive identifi cation (Bello et al., 2014), was required, otherwise the record was not included in the study. Raw data and photographs of the examined deep-sea sharks are preserved in the personal archives of the author. RESULTS AND DISCUSSION Between 23 November 2015 and 10 May 2017, 11 deep-sea sharks representing 3 families and 3 species were incidentally captured by commercial fi shermen in the shelf waters of the Sea of Marmara (Tab. 1; Fig. 1). These species were: the bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788), the bramble shark, Echinorhinus brucus (Bonnaterre, 1788), and the angular rough shark, Oxynotus centrina (Linnaeus, 1758). The majority of the specimens captured belonged to the species H. griseus (n=9; 81.8%), followed by E. brucus (n=1; 9.09%) and O. centrina (n=1; 9.09%) (Tab. 1). Most of them were captured in northern Marmara shelf waters (n=7; 63.6%), only 4 (36.3%) in the south- ern shelf waters (Tab. 1; Fig. 1). Ten of the examined specimens (90.9%) were captured by stationary-netters (gill nets, trammel nets), 1 examined H. griseus by a purse-seiner (Tab. 1). All of the examined deep-sea sharks were captured at depths <200 m, the recorded fi shing depths ranging from 45 to <200 m. The TL of the examined H. griseus varied between 200 and 525 cm (Tab. 1). Injuries induced by fi shing gear interactions Tab. 1: An overview of the recent capture (2015–2017) of deep-sea sharks in Marmara shelf waters. Abbreviations as follows: NW, northwestern; NE, northeastern; SW, southwestern; SM, Sea of Marmara. Tab. 1: Pregled novejših ulovov (2015-2017) globokomorskih morskih psov na kontinentalnem pragu Marmarskega morja. Okrajšave: NW, severozahodni; NE, severovzhodni; SW, jugozahodni; SM, Marmarsko morje. HEXANCHIDAE Hexanchus griseus (Bonnaterre, 1788) No Date Fishing depth (m) Fishing locality Fishing gear TL (cm) W (kg) Sex 1 23.11.2015 <100 off Şarköy, SW SM Stationary net 200 150 ♂ 2 2.12.2015 <100 off Şarköy, SW SM Stationary net 200 130 ♀ 3 13.03.2016 150 off Tekirdağ, NW SM Purse seine 500 ? ♀ 4 10.11.2016 80 off Darıca, NE SM Stationary net 350 200 ♀ 5 13.12.2016 150 off Tekirdağ, NW SM Stationary net 500 500 ♀ 6 24.12.2016 <100 off Avşa island, SW SM Stationary net 525 ? ? 7 20.02.2017 <200 off Tekirdağ, NW SM Stationary net 200 200 ♀ 8 19.03.2017 <100 off Mürefte, SW SM ? 300 200 ♂ 9 10.05.2017 <100 off Tekirdağ, NW SM Stationary net 300 150 ? ECHINORHINIDAE Echinorhinus brucus (Bonnaterre, 1788) (Fig. 2) No Date Fishing depth (m) Fishing locality Fishing gear TL (cm) W (kg) Sex 1 24.01.2017 45 off Şarköy, SW SM Gill net 160 100 ♀ OXYNOTIDAE Oxynotus centrina (Linnaeus, 1758) No Date Fishing depth (m) Fishing locality Fishing gear TL (cm) W (kg) Sex 1 28.02.2017 50 off Pendik, NE SM Stationary net 45 1,2 ♂ 140 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: REMARKS ON INCIDENTAL CAPTURE OF DEEP-SEA SHARKS IN MARMARA SHELF WATERS, 137–144 (abrasions), gaffi ng or rough handling were observed in most of the examined specimens (n=10; 90.9%) (Fig. 2). The pioneering writings on deep-sea sharks in the Sea of Marmara date back to the early 20th century. Based on the sharks landed at the İstanbul fi sh market, Ninni (1923) and Deveciyan (1926) reported on capture of H. griseus and E. brucus, providing brief biological notes on these species. Later, Erazi (1942), Kocataş et al. (1993), Meriç (1995) and Kabasakal (2003) confi rmed the occurrence of H. griseus and O. centrina in Marmara waters; whereas the occurrence of E. brucus in the Sea of Marmara was only reconfi rmed about a century after the fi rst record (Kabasakal et al., 2005). Contemporary occurrence of H. griseus, E. brucus and O. centrina in the Sea of Marmara was reported in recent shark-specifi c reviews (Kabasakal & Karhan, 2015). Compared to the 9 specimens of H. griseus inci- dentally captured during the 2-year study period, only 1 specimen of E. brucus and 1 of O. centrina were captured during the same period, corroborating the suggested rarity of these two deep-sea sharks in the Sea of Marmara (Kabasakal & Karhan, 2015). Based on the Sixgill Shark Database of Turkey, 60% of the inci- dentally captured specimens of H. griseus (n=90) were recorded in the Sea of Marmara between 1967 and 2013 (Kabasakal, 2013). Following the species reoccur- rence in Marmara waters in October 2002 (Kabasakal et al., 2005), 5 new specimens of E. brucus were cap- tured in the Sea of Marmara, the last occurrence dated to 19 May 2010 (Kabasakal & Bilecenoğlu, 2014). In a recent review of O. centrina occurrences in eastern Mediterranean, Kabasakal (2015) stated that as of Oc- tober 2012, 21.5% (n=19) of catches of angular rough shark were recorded in the Sea of Marmara. In a recent survey on the large sharks of Turkish waters, Kabasakal et al. (2017) concluded that 43.2% of the incidentally captured large sharks between 1990 and 2015 were H. griseus specimens (n=169), with the contribution of E. Fig. 2: (A) The bramble shark, Echinorhinus brucus, captured in the south-western Sea of Marmara. (B) Arrows indicate fi shing gear-induced injuries, such as deep lacerations on the left pectoral fi n and ventral surface of the body. (Photo: Ichthyological Research Society Archives). Sl. 2: Sl. 2: (A) Bodičasti morski pes, Echinorhinus brucus, ujet v jugozahodnem Marmarskem morju. (B) Puščice označujejo poškodbe nastale zaradi ribolovnega orodja kot so globoke rane na levi prsni plavuti in na trebušnem delu telesa. (Foto: Ichthyological Research Society Archives). 141 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: REMARKS ON INCIDENTAL CAPTURE OF DEEP-SEA SHARKS IN MARMARA SHELF WATERS, 137–144 brucus to total specimens captured (n=392) accounting for less than 2% (n=7). The deep-sea sharks examined in the present survey, H. griseus, E. brucus and O. centrina, occur at a depth of 100–1000 m, 200–900 m, and 60–660 m, respectively (Serena, 2005). However, the published maximum depths for each of the mentioned species can be different, as reported by Sion et al. (2004) and Kabasakal et al. (2005). According to Sion et al. (2004), H. griseus was recorded at a depth of 1300 m in the eastern Ionian Sea, and O. centrina was recorded at a depth of 800 m in the western Ionian Sea. Moreover, imaging surveys carried out by re- motely operated vehicles in the northern Sea of Marmara revealed the presence of E. brucus at a depth of 1214 m in the Tekirdağ deep basin (Kabasakal et al., 2005). Deep areas in the Mediterranean Sea and adjacent waters, where trawling did not occur in the past, provid- ed secure shelter for deep-sea sharks. However, with the advancement of deep fi shing gear, commercial fi shing operations in these former shelters are gradually increas- ing and contributing importantly to the vulnerability and the depth shift of deep-sea sharks. During the DESEAS survey carried out in the Mediterranean Sea (depth range 600 to 2800 m; Sion et al., 2004) and imaging surveys carried out in Marmara deep basins (>1100 m depth; Kabasakal et al., 2005), the mentioned depth shifts were recorded for H. griseus, E. brucus and O. centrina, and are summarised in the above paragraph. However, in the present study, the majority of the examined specimens (n=8; 72.7%; Tab. 1) were recorded at depths shallower than their published minimum depth limits. Thus, these fi ndings suggest that H. griseus, E. brucus and O. centrina can be incidentally captured by commercial fi shermen operating in Marmara shelf waters. Previous research has also shown that H. griseus, E. brucus and O. centrina can occur in waters shallower than their published minimum depth limits. According to Kabasakal (2013), H. griseus can occur in coastal waters between depths of 10 and 50 m. A specimen of E. brucus was recorded in shelf waters at a depth of 100 m, and another one at 150 m (Kabasakal & Bilecenoğlu, 2014). Occurrence of O. centrina in shallow waters (<30 m depth) off Prince Islands and in the pre-Bosphoric area was reported by Kabasakal (2009, 2015). An examina- tion of the localities of shallow water with records of deep-sea shark occurrence, as indicated in the present study, as well as in previous reports, reveals that they are situated near slope areas in the vicinity of Marmara deep basins (Fig. 1). In the light of these fi ndings, the following question arises: What makes the shelf waters a death zone for deep-sea sharks? Broadly speaking, Marmara shelf waters represent an important fi shing ground and an area where 17% of the Turkish fi shing fl eet operates (Demirel & Gül, 2016). Furthermore, the Sea of Marmara is an important area for demersal fi shery, and besides the legally permitted demersal fi shing gears (e.g., stationary nets, bottom long- lines, hand-lines), illegal bottom-trawls and beam-trawls are also used on the Marmara sea fl oor (Demirel & Gül, 2016). Illegal bottom-trawling and beam-trawling are two leading sources of bycatch in the Sea of Marmara. According to Demirel & Gül (2016), 55% of total catch by illegal trawlers is discarded and chondrichthyan fi sh are one of the major groups observed in the discards. In most instances (>90%) the incidental capture of E. bru- cus and O. centrina in the Sea of Marmara was linked to demersal fi sheries (Kabasakal & Bilecenoğlu, 2014; Kabasakal, 2015). In addition to illegal bottom- and beam-trawling, stationary-netting and purse seining are also among the leading causes of mortality of Marmara deep-sea sharks. In a recent review of fi shing pressure on Marmara chon- drichthyans, Yığın et al. (2016) reported that incidental capture of chondrichthyans is mostly recorded in purse- seining and stationary-netting. In the present study, 83% of the examined deep-sea sharks were inciden- tally captured by demersal fi shing gears (Tab. 1). Only 1 bluntnose sixgill shark was captured by purse-seining (Spec. No. 3; Tab. 1). However, previous studies showed that the leading cause of incidental capture of H. gri- seus in the Sea of Marmara was purse-seiners catching small pelagics (e.g., sardine, anchovy) and other pelag- ics (e.g., bonito, greater amberjack) (Kabasakal et al., 2017). Since H. griseus is a demersal shark species, it might be expected for incidental catches of this shark to occur more frequently in demersal fi shery. However, the bluntnose sixgill shark is known to rise to surface waters at night in pursuit of its prey (diel migration pattern), which includes schools of small and other pelagics with high commercial value in purse-seine fi shery (Andrews et al., 2009; Kabasakal, 2013). Its diel migration for feeding purposes accounts for the frequent occurrence of incidental capture of H. griseus in purse-seine fi shery conducted in northern Marmara shelf waters. According to Serena (2005), in the Mediterranean Sea, H. griseus is caught as bycatch by bottom trawls and longlines in epibathyal and bathyal grounds. In one of his previous surveys, Kabasakal (2013) reported on the catch data of H. griseus in the Sea of Marmara and stated that the bluntnose sixgill shark is mostly caught on the shelf and upper slope regions of Marmara waters. During the 46- year research period, only one bluntnose sixgill shark was caught at a 1000 m depth by means of a drop-line (Kabasakal, 2013). In the Sea of Marmara, commercial fi shermen do not deploy their fi shing gear over bathyal grounds and their fi shing activities are concentrated on shelf and upper slope waters (Hakan Kabasakal, pers. obs.), which could explain the rarity of bathyal records of H. griseus in the fi shing business conducted in the Sea of Marmara. Based on this data, it is clear that the examined deep- sea sharks – H. griseus, E. brucus and O. centrina – came in contact with multiple gear types (e.g., bottom- and beam-trawls, gill- and trammel-nets, bottom long-lines 142 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: REMARKS ON INCIDENTAL CAPTURE OF DEEP-SEA SHARKS IN MARMARA SHELF WATERS, 137–144 and purse-seines) used in Marmara shelf water fi shery, and that these species are under severe multi-gear fi shing pressure. According to Stevens et al. (2000), chondrich- thyans are a common, though unspecifi ed bycatch in many fi sheries, particularly those using demersal trawls, long-lines or gill nets. However, there is yet another risk factor jeopardising the survivability of deep-sea sharks hauled on the decks of fi shing boats: injuries induced by fi shing gear or human handling. Physical injuries induced by fi shing gear interactions (abrasions), gaffi ng or rough handling may have lethal consequences and contribute to post-release mortal- ity of sharks (Skomal & Chase, 2002; Skomal, 2007). Kabasakal (2010) reported that the post-release surviv- ability of H. griseus specimens incidentally captured in Turkish waters decreased because of these injuries, and emphasized that gear-induced injuries can contribute to the cryptic mortality of this species. In the present study, gear abrasions or injuries induced by gaffi ng or rough handling were observed in most of the examined deep- sea sharks (n=10; 90.9%; Fig. 2). No such injuries were observed on the body surface of the single specimen of O. centrina, which was released immediately after the hauling. Since gear-induced injuries can cause serious damage and pose a future health risk, it is question- able whether the hauled and released specimens of H. griseus and E. brucus can survive with these serious in- juries. Observations of a released bluntnose sixgill shark captured by a commercial bottom-trawler in the Bay of Saros (NE Aegean Sea) revealed that, upon release, it exhibited aberrant behaviour with successive “rise and sink” movements, lost its equilibrium and eventually died (Kabasakal, 2010). Based on depth ranges recorded in several surveys, Gönülal & Topaloğlu (2016) grouped the deep-sea sharks of the Sea of Marmara into 1st group (200–500 m), 2nd group (500–1000 m) and 3rd group (>1000 m) spe- cies. Accordingly, Centrophorus granulosus, C. uyato, Dalatias licha, Mustelus asterias, O. centrina, Scylio- rhinus canicula, Squalus acanthias and S. blainvillei are included in the 1st group; E. brucus in the 2nd group; and Galeus melastomus in the 3rd group. However, the list by Gönülal & Topaloğlu (2016) omits H. griseus, the most common deep-sea shark occurring in the Sea of Marmara (Kabasakal & Karhan, 2015). Kabasakal (2016) reviewed the status of chondrichthyan fi shes in the Sea of Marmara and concluded that, due to their absence from fi shery records in the last 20 years or more, the presence of the Centrophorus species and of D. licha in Marmara waters should be considered questionable and required confi rmation. In conclusion, the present study confi rms the contemporary presence of H. griseus, E. brucus and O. centrina in the Sea of Marmara, and points out that Marmara deep-sea sharks are exposed to fi shing pres- sure by different fi shing gears not only deployed in slope waters but in shelf waters, too. Since only 1 specimen of E. brucus and 1 of O. centrina were captured during the 2-year survey, the study also confi rms the suggested rarity (Kabasakal & Karhan, 2015) of these two species in the Sea of Marmara. In the light of available data it is possible to assume that the combined effects of rarity and fi shing pressure makes E. brucus and O. centrina more vulnerable; further study is necessary to clarify whether these two shark species should be classifi ed as “in critical danger of extinction.” Due to injuries by fi shing gear, Marmara deep-sea sharks may be at risk for post-release disability or mortality. Slow growth, longevity, long life span, delayed maturity and low fecundity are common patterns of k-selected deep-sea ichthyofauna (Shotton, 2005), and deep-sea sharks can- not be excluded from this defi nition (Camhi et al., 1998; Stevens et al., 2000). Therefore, deep-sea sharks are highly vulnerable to targeted or untargeted fi shery, and in case of overexploitation, the recovery of their popula- tions could take several decades or more. Conservation of Marmara deep-sea sharks is a critical issue that re- quires an integrative approach to the implementation of protective measurements, covering both deep- and shelf water fi shery. ACKNOWLEDGMENTS The author wishes to thank following persons for their support in fi eld surveys: Mr. Emir Şerefoğlu, free diver, and Mr. Hüseyin Caner Karayer, fi sherman. Spe- cial thank goes to my wife Özgür and my son Derin, for their endless love and support. The author also wishes to thank two anonymous referees for their valuable com- ments, which improve the content of the article. 143 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: REMARKS ON INCIDENTAL CAPTURE OF DEEP-SEA SHARKS IN MARMARA SHELF WATERS, 137–144 OPAŽANJA O NAKLJUČNEM ULOVU GLOBOKOMORSKIH MORSKIH PSOV NA CELINSKEM PRAGU V MARMARSKEM MORJU Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil Apt., No: 30, D: 4, Ümraniye, TR-34764, İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com POVZETEK Med 23 novembrom 2015 in 10 majem 2017 so komercialni ribiči naključno ulovili 11 globokomorskih morskih psov treh vrst na kontinentalnem pragu Marmarskega morja. Morski psi so pripadali sledečim vrstam: šesteroškrgarju, Hexanchus griseus (Bonnaterre, 1788), bodičastemu morskemu psu, Echinorhinus brucus (Bonnaterre, 1788) in morskemu prašiču, Oxynotus centrina (Linnaeus, 1758). Preiskani morski psi so bili ujeti na globinah med 45 m in skoraj 200 m. Pri večini primerkov so bile vidne poškodbe in rane, nastale s kavlji in zaradi grobega rokovanja. Pričujoče delo potrjuje, da se v Marmarskem morju vrste H. griseus, E. brucus in O. centrina soočajo z ribolovnimi pritiski z različnimi ribolovnimi orodji ne samo v globinah, večjih od 200 m, ampak tudi na kontinentalnem pragu. Da bi zavarovali globokomorske pse v Marmarskem morju je ključen celovit pristop pri uveljavitvi varovalnih ukrepov, tako na nivoju ribolova v kontinentalnem pragu kot tudi v globljih vodah. Ključne besede: globokomorski morski psi, kontinentalni prag, prilov, Marmarsko morje, varovanje REFERENCES Andrews, K.S., G.D. Williams, D. Farrer, N. Tolim- ieri, C.J. Harvey, G. Bargmann & P.S. Levin (2009): Diel activity patterns of sixgill sharks, Hexanchus griseus: the ups and downs of an apex predator. Anim. Behav., 78, 525-536. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposed best practice approach to overcome unverifi ed and unverifi able “fi rst records” in ichthyology. Cybium, 38, 9-14. Camhi, M., S.L. Fowler, J.A. Musick, A. Bräutigam & S.V. Fordham (1998): Sharks and their Relatives – Ecol- ogy and Conservation. IUCN/SSC Shark Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK. iv + 39 pp. Capapé, C., O. Guélorget, J. Barrull, I. Mate, F. Hemida, R. Seridji, J. Bensaci & M.N. Bradäi (2003): Records of the bluntnose six-gill shark, Hexanchus gri- seus (Bonnaterre, 1788) (Chondrichthyes: Hexanchidae) in the Mediterranean Sea: a historical survey. Annales, Ser. Hist. Nat., 13, 157–166. Capapé, C., F. Hemida, J.-P. Quignarp, M.M. Ben Amor & C. Reynaud (2008): Biological observations on a rare deep-sea shark, Dalatias licha (Chondrichthyes: Dalatiidae), off the Maghreb coast (south-western Medi- terranean). PanamJAS., 3, 355-360. Claude, R., E. Demirbağ, C. Imren, A. Crausson, A. Normand, E. Le Drezen & A. Le Bot (2001): Marine Atlas of the Sea of Marmara (Turkey). Data collected on board R. V. Le Suroît, September 2000. http://archimer. ifremer.fr/doc/00279/39006/ Cotton, C.F. & R. Dean Grubbs (2015): Biology of deep-water chondrichthyans: introduction. Deep. Sea. Res II, 115, 1-10. Çağatay, M.N., G. Uçarkuş & B. Alpar (2016): Geol- ogy and morphotectonics of Sea of Marmara. In: Özsoy E., Çağatay M.N., Balkıs N., Balkıs N. and Öztürk B. (eds.). The Sea of Marmara. Marine Biodiversity, Fish- eries, Conservation and Governance. Turkish Marine Research Foundation (TUDAV), Publication No: 42, Istanbul: pp. 684-696. De Maddalena, A. & M. Zuffa (2003): A gravid fe- male bramble shark, Echinorhinus brucus (Bonnaterre, 1788), caught off Elba Island (Italy, northern Tyrrhenian Sea). Annales, Ser. Hist. Nat., 13, 167–172. Demirel, N. & G. Gül (2016): Demersal fi sheries in the of Sea of Marmara. In: Özsoy E., Çağatay M.N., Balkıs N., Balkıs N. and Öztürk B. (eds.). The Sea of Marmara. Marine Biodiversity, Fisheries, Conservation and Governance. Turkish Marine Research Foundation (TUDAV), Publication No: 42, Istanbul: pp. 630-643. Deveciyan, K. (1926): Pêche en Pêcheries en Tur- quie. Istanbul: Imprimerie de l’Administration de la Dette Publique Ottomane, 480 pp. 144 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: REMARKS ON INCIDENTAL CAPTURE OF DEEP-SEA SHARKS IN MARMARA SHELF WATERS, 137–144 Erazi, R.A.R. (1942): Marine fi shes found in the Sea of Marmara and in the Bosphorus. Revue de la Faculte´ des Sciences de l’Université d’Istanbul B 7, 103–115. Gönülal, O. & B. Topaloğlu (2016): Deep sea in the Sea of Marmara. In: Özsoy E., Çağatay M.N., Balkıs N., Balkıs N. and Öztürk B. (eds.). The Sea of Marmara. Marine Biodiversity, Fisheries, Conservation and Gov- ernance. Turkish Marine Research Foundation (TUDAV), Publication No: 42, Istanbul: pp. 684-696. Hemida, F. & C. Capapé (2002): Observations on a female bramble shark, Echinorhinus brucus (Bonnaterre, 1788) (Chondrichthyes: Echinorhinidae), caught off the Algerian coast (southern Mediterranean). Acta Adriat., 43, 103–108. Kabasakal, H. (2003): Historical and contemporary records of sharks from the Sea of Marmara, Turkey. An- nales, Ser. Hist. Nat ., 13, 1-12. Kabasakal, H. (2009): Observations on a rare shark, Oxynotus centrina (Chondrichthyes: Oxynotidae), in the Sea of Marmara (north-western Turkey). PanamJAS., 4, 609-612. Kabasakal, H. (2010): Post-release behavior and anthropogenic injuries of the bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788) (Chondrichthyes: Hexanchidae) in Turkish waters. Annales, Ser. Hist. Nat., 20, 39-46. Kabasakal, H. (2013): Bluntnose sixgill shark, Hexan- chus griseus (Chondrichthyes: Hexanchidae), caught by commercial fi shing vessels in the seas of Turkey between 1967 and 2013. Annales, Ser. Hist. Nat., 23, 33-48. Kabasakal, H. (2015): Occurrence of the angular rough shark, Oxynotus centrina (Chondrichthyes: Ox- ynotidae) in the eastern Mediterranean. Annales, Ser. Hist. Nat., 25, 1-10. Kabasakal, H. & M. Bilecenoğlu (2014): Not disap- peared, just rare! Status of the bramble shark, Echinorhi- nus brucus (Elasmobranchii: Echinorhinidae) in the seas of Turkey. Annales, Ser. Hist. Nat., 24, 93–98. Kabasakal, H. & S.Ü. Karhan (2015): Shark biodi- versity in the Sea of Marmara: departures and arrivals over a century. Mar. Biodivers. Rec., 8. doi:10.1017/ S1755267215000342 Kabasakal, H., M.İ. Öz, S.Ü. Karhan, Z. Çaylarbaşı & U. Tural (2005): Photographic evidence of the oc- currence of bramble shark, Echinorhinus brucus (Bon- naterre, 1788) (Squaliformes: Echinorhinidae) from the Sea of Marmara. Annales, Ser. Hist. Nat., 15, 51–56. Kabasakal, H., S.Ü. Karhan & S. Sakınan (2017): Review of the distribution of large sharks in the seas of Turkey (Eastern Mediterranean). Cah. Biol. Mar., 58, 219-228. Kocatas, A., T. Koray, M. Kaya & Ö.F. Kara (1993): Review of the fi shery resources and their environment in the Sea of Marmara. Studies and Reviews, No. 64. Fish- eries and environment studies in the Black Sea system. General Fisheries Council for the Mediterranean. Rome: FAO, pp. 87–143. Kousteni, V. & P. Megalofonou (2012): New records of the shark Oxynotus centrina (Chondrichthyes: Oxynoti- dae) in the Greek seas. Medit. Mar. Sci., 13, 162-174. Kyne, P.M. & C.A. Simpendorfer (2007): A collation and summarization of available data on deepwater chondrichthyans: biodiversity, life history and fi sheries. A Report Prepared by the IUCN SSC Shark Specialist Group for the Marine Conservation Biology Institute, 137 pp. Meriç, N. (1995): A study on existence of some fi shes on the continental slope of the Sea of Marmara. Turk. J. Zool., 19, 191–198. Ninni, E. (1923): Primo contributo allo studio dei pesci e della pesca nelle acque dell’Impero Ottomano. Venezia: Premiate Offi cine Grafi che Carlo Ferrari, 187 p. Serena, F. (2005): Field identifi cation guide to the sharks and rays of the Mediterranean and Black Sea. FAO Species Identifi cation Guide for Fishery Purposes. Rome, FAO. 97p. Shotton, R. (ed.) (2005): Deep Sea 2003: Conference on the Governance and Management of Deep-sea Fish- eries. Part 2: Conference poster papers and workshop papers. Queenstown, New Zealand, 1–5 December 2003 and Dunedin, New Zealand, 27–29 November 2003. FAO Fisheries Proceedings. No. 3/2. Rome, FAO. 487 p. Sion, L., A. Bozzano, G. D’Onghia, F. Capezzuto & M. Panza (2004): Chondrichthyes species in deep waters of the Mediterranean Sea. Sci. Mar., 68 (Suppl. 3), 153-162. Skomal, G.B. (2007): Evaluating the physiological and physical consequences of capture on post-release survivorship in large pelagic fi shes. Fish. Mang. Ecol., 14, 81-89. Skomal, G.B. & B.C. Chase (2002): The physiologi- cal effects of angling on post-release survivorship in tunas, sharks and marlin. In: Lucy J.A. and Studholme A.L. (eds.): Catch and release in marine recreational fi sheries. American Fisheries Society, Bethesda, MD, pp. 135-138. Stevens, J.D., R. Bonfi l, N.K. Dulvy & P.A. Walker (2000): The effects of fi shing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci., 57, 476-494. Thistle, D. (2003): The deep-sea fl oor an overview. In: Ecosystems of the World. Ecosystems of the Deep Ocean. (Tyler P.A. ed.), Elsevier: pp. 5-39. Yığın, C.Ç., A. İşmen, U. Önal & M. Arslan İhsanoğlu (2016): Elasmobranchs of the Sea of Marmara: Catch, biodiversity and conservation. In: Özsoy E., Çağatay M.N., Balkıs N., Balkıs N. and Öztürk B. (eds.). The Sea of Marmara. Marine Biodiversity, Fisheries, Conservation and Governance. Turkish Marine Research Foundation (TUDAV), Publication No: 42, Istanbul: pp. 644-654. 145 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 short scientifi c article DOI 10.19233/ASHN.2017.17 received: 2017-10-09 FIRST RECORDS OF VELVET BELLY LANTERN SHARK ETMOPTERUS SPINAX (CHONDRICHTHYES: ETMOPTERIDAE) FROM THE SYRIAN COAST (EASTERN MEDITERRANEAN) Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr Malek ALI Marine Sciences Laboratory, Basic Sciences Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria ABSTRACT This paper reports the fi rst records of velvet belly lantern shark Etmopterus spinax (Linnaeus, 1758) from the Syr- ian coast. They are related to three juvenile females measuring 298.6 mm, 306.3 mm and 317.1 mm in total length, respectively, and weighing 102.3 g, 110.4 g and 106.6 g, respectively. The specimens are described and commented with respect to other records from the local area and the Mediterranean Sea. Key words: Etmopteridae, Etmopterus spinax, deep sea shark, Eastern Mediterranean PRIMI RITROVAMENTI DI MORETTO ETMOPTERUS SPINAX (CHONDRICHTHYES: ETMOPTERIDAE) LUNGO LA COSTA SIRIANA (MEDITERRANEO ORIENTALE) SINTESI L’articolo riporta i primi ritrovamenti del sagrì nero o moretto Etmopterus spinax (Linnaeus, 1758) lungo la costa siriana. Si tratta di tre giovani femmine, rispettivamente di 298,6 mm, 306,3 mm e 317,1 mm di lunghezza totale, e 102,3 g, 110,4 g e 106,6 g di peso. Gli autori forniscono una descrizione degli individui e ne discutono la presenza su scala locale e più ampia del Mediterraneo. Parole chiave: Etmopteridae, Etmopterus spinax, squalo abissale, Mediterraneo orientale 146 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Christian CAPAPÉ & Malek ALI: FIRST RECORDS OF VELVET BELLY LANTERN SHARK ETMOPTERUS SPINAX (CHONDRICHTHYES: ETMOPTERIDAE) ..., 145–150 INTRODUCTION Velvet belly lantern shark Etmopterus spinax (Linnaeus, 1758) is a small-sized common shark, well-known in the eastern Atlantic from Iceland and Norway to Portugal (Quéro et al., 2003). To the south of the Strait of Gibraltar, the species is reported off Morocco (Lloris & Rucabado, 1998), Mauritania (Maurin & Bonnet, 1970), Senegal (Ca- denat & Blache, 1981), Guinea Bissau (Sanches, 1991), the Azores (Santos et al., 1997), Madeira (Sanches, 1986) and the Cape Verde Islands (Menezes et al., 2004), as well as in southern Africa (Compagno, 1984). E. spinax is known to be more commonly caught in the western Mediterranean Basin (Capapé, 1989; Capapé et al., 2000); mainly off the Tunisian and Sicil- ian coasts (Capapé et al., 2001; Porcu, 2014). Lipej & Dulcic (2010) noted its occurrence in the Adriatic Sea; eastwards, the species is reported in the Aegean Sea (Pa- paconstantinou, 2014), in Turkish waters (Bilecenoglu et al., 2014), off the Egyptian coast (Farrag, 2016), and in the Levant Basin (Golani, 2005). Conversely, the species is not recorded off the Lebanese coast (Mouneimne, 1979). However, investigations conducted nearby, on the Syrian coast, have allowed the collection of three specimens, the records of which form the subject of the present paper and are here described and commented on with respect to their distribution in this new capture area, as well as in the Mediterranean Sea. MATERIAL AND METHODS Information on the capture of E. spinax was provided by local fi shermen aware of the fi shing grounds. The researchers engage the help of the local communities, referring to it as local ecological knowledge (sensu Anadòn et al., 2009), in order to spread and heighten the awareness in fi sheries research. The description of the specimens in the present paper follows the protocol recommended by Bello et al. (2014) for fi rst records. On 19 August 2017, three specimens of E. spinax (Lin- naeus, 1758) were caught in Syrian marine waters during a trawl trip from the city of Lattakia southwards as far as the city of Jableh (between 35° 31´ N, 35° 39´ E and 35° 16´ N, 35° 49´ E), at a depth of about 375 m, on sandy and muddy bottoms (Fig. 1). All measurements were carried out using digital caliper and recorded to the nearest 0.1 millimetre, the weights to the nearest 0.1 gram. The three specimens were preserved in 10% buffered formalin and deposited in the Ichthyological Collection of the Labora- tory of Marine Sciences, Faculty of Agriculture, Tishreen University, Syria, under catalogue numbers M.S.L. 2316, 2317 and 2318, respectively (Fig. 2). RESULTS AND DISCUSSION All specimens were identifi ed as E. spinax through a combination of the following characteristics: body robust with a fairly long tail, snout moderately long, broad and fl attened, both dorsal fi ns bearing stout, grooved spines at the front, with the second fi n much longer than the fi rst and curved; mouth with thin, smooth lips; upper teeth small with a narrow central cusp and two pairs of lateral cusplets; lower teeth larger with a strongly slanted, blade- like cusp at the top and interlocking bases (Fig. 3); fi ve pairs of tiny gill slits, comparable in size to spiracles; fi rst dorsal fi n originating behind short and rounded pectoral fi ns; second dorsal fi n larger than the fi rst and originating behind the pelvic fi ns; anal fi n absent; tail slender, lead- ing to a long caudal fi n with a small lower lobe and a Fig. 1: Map of the Mediterranean showing Syria and map of the Syrian coast indicating the capture site of Etmopterus spinax (black star). Sl. 1: Zemljevid Sredozemskega morja in sirske obale z označbo lokalitete, kjer so bili ujeti primerki žametnega trneža Etmopterus spinax (črna zvezdica). Fig. 2: An Etmopterus spinax captured off the Syrian coast (specimen Ref. 2316); scale bar 50 mm. Sl. 2: Primerek žametnega trneža Etmopterus spinax (kataloška številka Ref. 2316); merilo 50 mm. 147 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Christian CAPAPÉ & Malek ALI: FIRST RECORDS OF VELVET BELLY LANTERN SHARK ETMOPTERUS SPINAX (CHONDRICHTHYES: ETMOPTERIDAE) ..., 145–150 low upper lobe with a prominent ventral notch near the tip; dermal denticles thin with hooked tips, occurring in an irregular pattern and well separated from one another (Fig. 4); coloration brown above, abruptly transitioning to black below; black markings on fl anks above and behind the pelvic fi ns, and along the caudal fi n. The morphology, measurements, counts and colour are in total agreement with previous descriptions of E. spinax by Tortonese (1956), Cadenat & Blache (1981), Compagno (1984) and Mc Eachran & Branstetter (1984). The three captures of E. spinax that constitute the fi rst records of the species from the Syrian coast have in- creased the number of elasmobranch reported to date in the region to a total of 43. Following Mc Eachran & Branstetter (1984), a second species belonging to the genus Etmopterus Rafi nesque, 1810 is believed to occur in the Mediterranean Sea, namely the smooth lantern shark E. pusillus (Lowe, 1839), which can be easily distinguished from E spinax by crater-shaped dermal denticles without the medial spine and fl anks without the conspicuous black markings. Previous studies on the reproductive biology of E. spinax showed it to be a viviparous aplacental species with a gestation period not exceeding one year. Sexual maturity is reached at similar sizes as in specimens from the areas off the British Isles (Hickling, 1963) and the Tunisian coast (Capapé, et al., 2001), in each area the males mature at a smaller size than the females, at 350 mm and 380 mm, respectively, with 460 mm as the maximum size recorded for both sexes. However, Com- pagno (1984) observed that the maximum size for this species was 600 mm. The three specimens presented in this study were females, measuring 298.6 mm, 306.3 mm and 317.1 mm in TL, respectively, and weighing 102.3 g, 110.4 g and 106.6 g, respectively. The dissec- tion of the abdominal cavities of all three specimens revealed whitish and undeveloped ovaries, thread-like oviducts and inconspicuous oviducal glands – patterns characteristics of juvenile females (Hickling, 1963; Ca- papé et al., 2001). This could mean they did not reach the size at fi rst sexual maturity, which in females from different Mediterranean marine regions ranges between 340 and 380 mm (Porcu et al., 2014). Conversely, in specimens from the Atlantic, southern Portugal (Coelho & Erzini, 2008), the fi rst sexual maturity is reached at a smaller size. Therefore, further records are needed before determining the size at fi rst sexual maturity for E. spinax from the Syrian coast. The stomachs of the three Syrian specimens were empty; however, Capapé et al. (2003) and Fanelli et al. (2009) noted that small specimens from Tunisian waters and western Mediterra- nean fed on crustaceans and cephalopods, while larger specimens fed on small teleost species, as corroborated by ontogenetic changes caused by such a diet. E. spinax is reported in both Mediterranean Basins in waters ranging between 150-200 m and 400 m, and probably deeper (Quignard & Capapé, 1971), as it has been recorded at depths as low as 2,200 m in the Ionian Sea (Sion et al, 2004). Due to economic and technical reasons, deep-sea waters are rather poorly exploited by commercial vessels; also, this species is not of interest to fi shermen and is generally discarded at sea when caught. Such patterns are observed throughout the Mediterra- nean Sea, including the Syrian coast. This could explain why E. spinax had not been captured here before and why the records of these three specimens constitute only the fi rst report of the species from this area. Fig. 4: Dermal denticles removed from Etmopterus spinax (specimen Ref. 2317); scale bar 0.2 mm. Sl. 4: Kožni dentikli vrste Etmopterus spinax (kataloška številka Ref. 2317); merilo 0,2 mm. Fig. 3: Ventral surface of the head of Etmopterus spinax (specimen Ref. 2316), showing teeth on the upper and lower jaws, and a dermal denticle; scale bar 10 mm. Sl. 3: Spodnja polovica glave primerka vrste Etmopterus spinax (kataloška številka Ref. 2316). Vidijo se zobje v zgornji in spodnji čeljusti ter kožni dentikli; merilo 10 mm. 148 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Christian CAPAPÉ & Malek ALI: FIRST RECORDS OF VELVET BELLY LANTERN SHARK ETMOPTERUS SPINAX (CHONDRICHTHYES: ETMOPTERIDAE) ..., 145–150 Tab. 1: Morphometric measurements (in mm) with percentages of total length (%TL) recorded for the three speci- mens of Etmopterus spinax captured off the Syrian coast. Tab. 1: Morfometrične meritve (v mm) in njihov delež glede na celotno dolžino telesa (%TL), opravljene na treh primerkih vrste Etmopterus spinax, ujetih ob obali Sirije. References 2316 M.S.L. 2317 M.S.L. 2318 M.S.L. Morphometric measurements mm TL% mm TL% mm TL% Total length 317.1 100.0 298.6 100.0 306.3 100.0 standard length 251.2 79.2 236.1 79.1 242.1 79.0 Head length 71.5 22.5 66.8 22.4 68.3 22.3 Prespiracular length 38.9 12.3 36.9 12.4 37.9 12.4 Spiracle length 5.2 1.6 4.7 1.6 5.1 1.7 Preorbital length 25.9 8.2 24.6 8.2 25.3 8.3 Eye length 19.2 6.1 18.1 6.1 18.5 6.0 Prenarial length 6.4 2.0 6.1 2.0 6.3 2.1 Preoral length 31.7 10.0 29.9 10.0 30.2 9.9 Nostril width 9.4 3.0 9.1 3.0 8.6 2.8 Mouth width 28.9 9.1 27.4 9.2 28.4 9.3 Pre-fi rst dorsal-fi n length 104.3 32.9 98.3 32.9 101.6 33.2 First dorsal-fi n length 27.7 8.7 26.2 8.8 37.6 12.3 First dorsal-fi n base 11.2 3.5 10.7 3.6 10.8 3.5 First dorsal-fi n height 12.6 4.0 11.9 4.0 12.1 4.0 First dorsal fi n spine length 16.1 5.1 15.1 5.1 15.2 5.0 Pre-second dorsal-fi n length 193.6 61.1 182.6 61.2 189.3 61.8 Second dorsal-fi n length 36.4 11.5 34.1 11.4 36.2 11.8 Second dorsal-fi n base 22.4 7.1 21.3 7.1 22.4 7.3 Second dorsal-fi n height 20.2 6.4 19.3 6.5 20.1 6.6 Second dorsal fi n spine length 19.4 6.1 18.2 6.1 19.1 6.2 Prepectoral-fi n length 77.1 24.3 72.8 24.4 74.6 24.4 Pectoral-fi n base 19.2 6.1 18.3 6.1 18.3 6.0 Pectoral-fi n length 27.6 8.7 26.3 8.8 26.3 8.6 Prepelvic-fi n length 166.2 52.4 156.8 52.5 161.8 52.8 Pelvic-fi n length 37.1 11.7 35.1 11.8 24.9 8.1 Pelvic-fi n base 25.5 8.0 23.9 8.0 23.8 7.8 Precaudal-fi n length 251.2 79.2 236.8 79.3 243.8 79.6 Dorsal caudal-fi n margin 66.1 20.8 62.2 20.8 34.5 11.3 Preventral caudal-fi n margin 29.7 9.4 28.3 9.5 29.2 9.5 Upper postventral caudal-fi n margin 47.3 14.9 44.3 14.8 46.4 15.1 Tooth rows on upper jaw 25 25 25 Tooth rows on lower jaw 25 25 25 Total weight (g) 106.6 102.3 110.4 149 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Christian CAPAPÉ & Malek ALI: FIRST RECORDS OF VELVET BELLY LANTERN SHARK ETMOPTERUS SPINAX (CHONDRICHTHYES: ETMOPTERIDAE) ..., 145–150 PRVI ZAPIS O POJAVLJANJU ŽAMETNEGA TRNEŽA ETMOPTERUS SPINAX (CHONDRICHTHYES: ETMOPTERIDAE) IZ SIRSKIH VODA (VZHODNI MEDITERAN) Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr Malek ALI Marine Sciences Laboratory, Basic Sciences Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria POVZETEK Avtorja poročata o prvih podatkih o pojavljanju žametnega trneža Etmopterus spinax (Linnaeus, 1758) iz sirskih voda. Nanaša se na ulov treh samic, ki so merile 298,6 mm, 306,3 mm in 317,1 mm v dolžino in tehtale 102,3 g, 110,4 g in 106,6 g. Avtorja te primerke opisujeta in razpravljata o pojavljanju vrste v lokalnem in širšem sredozem- skem merilu. Ključne besede: Etmopteridae, Etmopterus spinax, globokomorski morski pes, vzhodno Sredozemsko morje 150 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Christian CAPAPÉ & Malek ALI: FIRST RECORDS OF VELVET BELLY LANTERN SHARK ETMOPTERUS SPINAX (CHONDRICHTHYES: ETMOPTERIDAE) ..., 145–150 REFERENCES Anadón, J.D., A. Gimenez, R. Ballestar & I. Perez. (2009): Evaluation of local ecological knowledge as a method for collecting extensive data on animal abun- dance. Conserv. Biol., 23 (3), 617-625. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposal best practice approach to overcome unverifi ed and unverifi able «fi rst records» in ichthyology. Cybium, 38(1), 9-14. Bilecenoglu, M., M. Kaya, B. Cihangir & E. Çiçek (2014): An updated checklist of the marine fi shes of Turkey. Turk. J. Zool., 38(6), 901-929. Cadenat, J. & J. Blache (1981): Requins de Méditer- ranée et d’Atlantique (plus particulièrement de la côte occidentale d’Afrique). Faune trop., ORSTOM, 21, 1-330. Capapé, C. (1989): Les Sélaciens des côtes méditer- ranéennes: aspects généraux de leur écologie et exem- ples de peuplements. Océanis, 15, 309-331. Capapé, C., J.A. Tomasini. &. J.-P. Quignard (2000): Les Elasmobranches Pleurotrêmes de la côte du Langue- doc (France méridionale, Méditerranée septentrionale). Observations biologiques et démographiques. Vie Mi- lieu, 50(2), 123-133. Capapé, C., M.N. Bradaï., A.A. Seck., Y. Diatta , J.A. Tomasini & J.-P. Quignard (2001): Aspects of the repro- ductive biology of the velvet belly, Btmopterus spinax (Elasmobranchii: Squalidae). Bull. Inst. Scien. Technol. Mer, Salammbô; 28, 55-64. Capapé, C., O. Guélorget, C. Reynaud, A. Marquès, J. L. Bouchereau & J. Zaouali. (2003): Effects of repro- ductive factors on interrelationships among three deep water sharks from northern Tunisia (Central Mediterra- nean). Annales, Ser. Hist. Nat., 13(2), 109-120. Compagno, L.J.V. (1984): FAO Species Catalogue, vol. 4, Sharks of the World. An Annotated and Illustrated Catalogue of Shark Species known to Date. FAO Fisher- ies Synopsis, 125, vol. 4, part 1 (non carcharhinoids), viii+1–250 pp. Coelho, R. & K. Erzini (2008): Life history of a wide- ranging deepwater lantern shark in the north-east Atlan- tic, Etmopterus spinax (Chondrichthyes: Etmopteridae), with implications for conservation. J. Fish Biol., 73 (6), 1419-1443. Fanelli, E., J. Rey, P. Torres & L. Gil de Sola (2009): Feeding habits of blackmouth catshark Galeus melas- tomus Rafi nesque, 1810 and the velvet belly lantern shark Etmopterus spinax (Linnaeus, 1758) in the western Mediterranean. J. Appl. Ichthyol., 25 (Suppl. 1), 83-93. Farrag, M.M.S. (2016): Deep-sea ichthyofauna from Eastern Mediterranean Sea, Egypt: Update and new records. Egypt. J. aquat. Res., 42(4), 479-489. Golani, D. (2005): Check-list of the Mediterranean Fishes of Israel. Zootaxa, 2005(947): 1-200. Hickling C.F. (1963): On the small deep-sea shark Etmopterus spinax, and its parasite Analesma squalicola (Lovèn). J. Linnean Soc. (Zool.), 45, 17-24. Lipej, L. & J. Dulčić (2010): Checklist of the Adriatic Sea fi shes. Zootaxa, 2859, 1-92. Lloris, D. & J. Rucabado (1998): Guide FAO d’identifi cation des espèces pour les besoins de la pêche. Guide d’identifi cation des ressources marines vivantes pour le Maroc. FAO, Rome, 263 pp. Maurin, C. & M. Bonnet (1970): Poissons des côtes nord-ouest africaines (campagnes de la Thalassa), (1962 et 1968). Rev. Trav. Inst. scient. techn Pêch. marit. 34, 125-170. Menezes, G.M., O. Tariche, M.R. Pinho, P.N. Duarte, A. Fernandes & M.A. Aboim (2004): Annotated list of fi shes caught by the R/V Archipélago off the Cape Verde Archipelago. Arquipélago-Life Mar. Sci., 21 A, 57-71. Mc Eachran, J.D. & S. Branstetter (1984): Squalidae. In: P.J.P. Whitehead, M.L. Bauchot, J.C. Hureau., J. Nielsen J.& Tortonese. E. (Eds), pp. 128-147. Fishes of the North-western Atlantic and the Mediterranean, Vol I, UNESCO, Paris. Mouneimne, M. (1979): Poissons nouveaux pour les côtes libanaises. Cybium, 6, 105-110. Papaconstantinou, C. (2014): Fauna Graeciae: an updated list the the fi shes of the Hellenic Seas. Biodiver- sity Conservation Zoology. Hellenic Center for Marine Reasearch (HCMR), 340 pp. Porcu, C., M.F. Marongiu, M.C. Follesa, A. Bellodi, A. Mulas, P. Pesci & A. Cau (2014): Reproductive aspects of the velvet belly lantern shark Etmopterus spinax (Chondrichthyes: Etmopteridae), from the central western Mediterranean sea. Notes on gametogenesis and oviducal gland microstructure.. Medit. Mar. Sci., 15(2), 313-326. Quéro, J.C., P. Porche & J.J. Vayne (2003): Guide des poissons de l’Atlantique européen. Les Guides du naturaliste. Delachaux & Niestlé: Lonay (Switzerland) Paris, 465 pp. Quignard J.P. & C. Capapé C. (1971): Liste commen- tée des Sélaciens de Tunisie. Bull. Inst. nat. scient. Tech. Océanogr Pêche, Salammbô, 2(2), 131-141. Sanches, J.G. (1986): Nomenclatura e diagnose dos principais peixes marinhos de Portugal (Ciclóstomos, Seláceos e Holocéfalos). Instituto Nacional de Investi- gação das Pescas, Publicações Avulsas, Lisboa, 184 pp. Sanches, J.G. (1991): Catàlogo dos principais peixes marinhos da República da Guiné-Bissau. Publicacões avulsas do Instituto .Nacional de Investigação das Pes- cas, Lisboa, 429 pp. Santos, R.S., F.M. Porteiro & J.P. Barreiros (1997): Marine fi shes of the Azores: an annotated checklist and bibliography. Arquipélago. Life Mar. Sci., Supplement 1, xxiii + 242 pp. Sion. L., A. Bozzano, G. D’Onghia, F. Capezzuto & M. Panza (2004): Chondrichthyes species in deep wa- ters of the Mediterranean Sea. Scient. Mar., 68 (Suppl. 3), 153-162. Tortonese, E. (1956): Fauna d’Italia vol.II. Leptocar- dia, Ciclostomata, Selachii., Calderini, Bologna, Italy. [In Italian.], 332 pp. 151 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 short scientifi c article DOI 10.19233/ASHN.2017.18 received: 2017-09-13 ON THE JAWS OF A SHORTFIN MAKO SHARK, ISURUS OXYRINCHUS, CAUGHT OFF THE İZMİR PENINSULA (CENTRAL AEGEAN SEA, TURKEY) Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil Apt., No: 30, D: 4, Ümraniye, TR-34764, İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com ABSTRACT An old record of shortfi n mako shark, Isurus oxyrinchus, is discussed based on the set of upper and lower jaws dissected from a specimen caught off the İzmir Peninsula, central Aegean Sea, Turkey, which is now on display at the Kuşadası fi sh market. The specimen was captured as bycatch by a purse-seiner in the early 1990s. Based on the lower jaw circumference to total length ratio for I. oxyrinchus, the total length of this specimen was estimated at 1.8 m. Key words: shortfi n mako shark, Isurus, Kuşadası, jaws, historical record MASCELLE DI SQUALO MAKO, ISURUS OXYRINCHUS, CATTURATO AL LARGO DELLA PENISOLA DI İZMİR (MAR EGEO CENTRALE, TURCHIA) SINTESI Nell’articolo viene discusso un vecchio ritrovamento di squalo mako, Isurus oxyrinchus, sulla base della dissezione delle mascelle superiore e inferiore di un esemplare catturato al largo della penisola di İzmir (Turchia), nel mar Egeo centrale, ora esposte al mercato dei pesci di Kuşadası. L’esemplare è stato prelevato come cattura accessoria da una rete da circuizione nei primi anni 90 del secolo scorso. In base al rapporto fra la circonferenza della mascella inferiore e lunghezza totale per la specie in questione, la lunghezza totale di questo esemplare è stata stimata a 1,8 m. Parole chiave: squalo mako, Isurus, Kuşadası, mascelle, ritrovamento storico 152 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: ON THE JAWS OF A SHORTFIN MAKO SHARK, ISURUS OXYRINCHUS, CAUGHT OFF THE İZMİR PENINSULA ..., 151–154 INTRODUCTION Shark experts often rely on teeth and jaws as valu- able aids in identifying the species and size of a given shark specimen. Since shark jaws and teeth are consid- ered attractive decoration for coastal facilities, such as restaurants, fi shmongers and others, these trophies can, if reliable fi shing data are available, provide valuable data sources of historical records of local sharks. The occurrence of I. oxyrinchus in Turkish waters was reviewed by Kabasakal (2015), and a most recent northern Aegean Sea record was reported by Tunçer & Kabasakal (2016). In the present note, the author reports on the mentioned jaw of I. oxyrinchus. MATERIAL AND METHODS In early September 2017, during a fi eld trip, the author of the present article had the opportunity to ex- amine a set of dried upper and lower jaws of a shortfi n mako shark, Isurus oxyrinchus Rafi nesque, 1810, which is on display in Kuşadası, Turkey. The shark, the dried jaw of which is shown in Figure 1, was caught by a purse-seiner off the İzmir Peninsula (Fig. 2) in the early 1990s. The dental features of the examined jaw were compared with the dental characters of I. oxyrinchus as described by Compagno (2002). RESULTS AND DISCUSSION Anterior teeth of the examined jaw enlarged, with single dagger-shaped cusps and not forming a con- tinuous cutting edge. Intermediate teeth very small, less than half the height of the adjacent anterior teeth (Fig. 1). Cusps of upper and lower anterior teeth fl exed, tips reversed (Fig. 1). The dental features of the examined jaw coincided with the dental characters of I. oxyrinchus as described by Compagno (2002). The examined jaw of the shortfi n mako shark is displayed as decoration in the Kuşadası fi sh market. The circumference of the lower jaw of the examined specimen was 377.4 mm, and based on this measure- ment, the total length of the shortfi n mako shark was estimated at 1.809 m. This measurement and the resultant total length of the examined shortfi n mako shark coincided with the lower jaw circumference range (203–505 mm) and estimated total length range (1,360–3,200 mm) stated by Lowry et al. (2009). The height of the 1st anterior tooth on the lower jaw was 32 mm. The height of the 1st anterior tooth measured by Celona et al. (2004) on an estimated 390 cm long female shortfi n mako, caught off Scaletta Zanclea, Sicily, on 26 July 2003, was 45 mm. The dental formula for the upper and lower jaws of the examined shortfi n mako was 12-12 / 13-13, respectively. The tooth count in I. oxyrinchus is remarkably variable. Based on the lower-jaw tooth count information for short- fi n mako sharks from the Pacifi c, the Atlantic-Mediterra- nean and the Indian Oceans, Garrick (1967) reported the dental formulae as 11-16, 11-15 and 10-13, respectively. The dental count of the upper and lower jaws of a male shortfi n mako shark (123.6 cm TL) caught in the Bay of Saroz was 14-14 / 14-14 (Kabasakal & Kabasakal, 2013). The dental formula of the Scaletta Zanclea specimen was 12-12 / 12-12 (Celona et al., 2004). Fig. 2: Map depicting the approximate site of capture () of the examined specimen in the central Aegean Sea. Sl. 2: Zemljevid obravnavanega območja z označeno približno lokaliteto (), kjer je bil primerek ujet v osrednjem Egejskem morju. Fig. 1: (A) Examined dried jaw of the Isurus oxyrinchus caught off İzmir peninsula in the early 1990s. (B) An- terior and intermediate teeth of the examined jaw; the arrow indicates the 3rd anterior tooth. Sl. 1: (A) Preiskana posušena čeljust atlantskega maka, ujetega ob izmirskem polotoku v zgodnjih devetdesetih. (B) Sprednji in vmesni zobje iz preiskane čeljusti; puščica označuje tretji sprednji zob. 153 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: ON THE JAWS OF A SHORTFIN MAKO SHARK, ISURUS OXYRINCHUS, CAUGHT OFF THE İZMİR PENINSULA ..., 151–154 In a recent review of the occurrence of I. oxyrinchus off the Turkish coast, Kabasakal (2015) reported on the capture of 17 shortfi n mako sharks in the period between 1950 and 2013. Following this review, a juvenile male (74.7 cm TL) was caught in the coastal waters of the Bay of Edremit on 8 April 2016 (Tunçer & Kabasakal, 2016). According to Kabasakal et al. (2017), 5.3% (n=21) of large elasmobranchs captured by the Turkish fi shing fl eet between 1990 and 2015 was comprised of I. oxy- rinchus. Both historical and contemporary occurrences of shortfi n mako shark in Turkish seas are corroborated by several studies (Kabasakal & De Maddalena, 2011; Ergüden et al., 2013; Kabasakal & Kabasakal, 2013; Kabasakal, 2015; Tunçer & Kabasakal, 2016). Most of the data on the occurrence of I. oxyrinchus in the waters of Turkey were obtained by fi shery-dependent studies. Such studies are valuable data sources for clarifying the contemporary occurrence of shortfi n mako shark and other sharks in Turkish waters. While available data on the occurrence of I. oxyrinchus suggest that the shortfi n mako shark is a rarely occurring large shark in Turkish Aegean and Mediterranean waters (Kabasakal, 2015; Tunçer & Kabasakal, 2016), the examined jaw provides further evidence supporting its historical occurrence in the mentioned marine region. The forensic analysis method used to determine the size of a shark based on the circumference of the jaws (Lowry et al., 2009) has proved to be a valuable tool in shark research. Following this method, it could be pos- sible to estimate the sizes of previously recorded local sharks caught off the Turkish coas ts of the Aegean and Mediterranean Seas – at least the species examined by Lowry et al. (2009) – based on their preserved jaws. The size estimations of historical records can provide valu- able data in determining whether nowadays the local sharks are decreasing in size or not in comparison with historical specimens. Although the historical and con- temporary occurrence of shortfi n mako shark in Turkish Aegean and Mediterranean waters has been confi rmed, the available knowledge does not allow us to make a re- liable prediction of the seasonality of I. oxyrinchus in the mentioned region. Since several large specimens (TL > 250 cm) have been caught in the mentioned region, and I. oxyrinchus is considered dangerous and responsible for unprovoked attacks on swimmers and boats (Bonfi l & Abdallah, 2004), the seasonal occurrence of this species in Turkish waters should be monitored, as emphasised by Kabasakal (2015). Today, the aforementioned coast- line is intensively used for aquaculture, fi shery and rec- reational activities. Therefore, the seasonal co-existence of man and shortfi n mako shark could evolve into a major problem, possibly triggering a headhunt and thus jeopardizing the survival of I. oxyrinchus as well as other local large predatory sharks. ACKNOWLEDGMENTS I am grateful to my wife Özgür, and my son Derin, for their endless love, patience and support. I am also grateful to staff of Kuşadası Fish Market, allowing me to examine the present jaws of shortfi n mako shark, and provide valuable information on the catch of the speci- men, as well as two anonymous referees for their valu- able comments, improving the content of the article. 154 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Hakan KABASAKAL: ON THE JAWS OF A SHORTFIN MAKO SHARK, ISURUS OXYRINCHUS, CAUGHT OFF THE İZMİR PENINSULA ..., 151–154 REFERENCES Bonfi l, R. & M. Abdallah (2004): Field identifi cation guide to the sharks and rays of the Red Sea and Gulf of Aden. FAO species identifi cation guide for fi shery purposes. Rome: FAO, 71 pp. Celona, A., L. Piscitelli & A. De Maddalena (2004): Two large shortfi n makos, Isurus oxyrinchus, Rafi nesque, 1809, caught off Sicily, western Ionian Sea. Annales, Ser. Hist. Nat., 14, 35–42. Compagno, L.J.V. (2002): Sharks of the world. An an- notated and illustrated catalogue of shark species known to date. Vol. 2. Bullhead, mackerel and carpet sharks (Hederodontiformes, Lamniformes and Orectolobi- formes). FAO Species Catalogue for Fishery Purposes, FAO, Rome, no. 1, 269 pp. Ergüden, D., M. Gürlek & C. Turan (2013): A young Isurus oxyrinchus Rafi nesque, 1810 (Chondrichthyes: Lamnidae) individual captured from Iskenderun Bay, Turkey. Mediterr. Mar. Sci., 14, 463–480. Garrick, J.A.F. (1967): Revision of sharks of genus Isurus with description of a new species (Galeoidea, Lamnidae). Proc. U. S. Natl. Mus., 118, 663-694. ČELJUSTI PRIMERKA ATLANTSKEGA MAKA, ISURUS OXYRINCHUS, UJETEGA OB IZMIRSKEM POLOTOKU (OSREDNJE EGEJSKO MORJE, TURČIJA) Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil Apt., No: 30, D: 4, Ümraniye, TR-34764, İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com POVZETEK Avtor poroča o starejšem zapisu, ki se nanaša na ulov primerka atlantskega maka, Isurus oxyrinchus, ob izmirskem polotoku v osrednjem Egejskem morju. Ohranjene so njegove čeljusti, ki jih razkazujejo na ribji tržnici Kuşadası. Primerek se je ujel kot prilov v povlečni mreži iz zgodnjih devetdesetih let. Na podlagi odnosa med obodom spodnje čeljusti in celotno dolžino telesa je bila ocenjena velikost primerka 1,8 m dolžine. Ključne besede: atlantski mako, Isurus, Kuşadası, čeljusti, zgodovinski zapis Lowry, D., A. L. Fagundes de Castro, K. Mara, L. B. Whitenack, B. Delius, G. H. Burgess & P. Motta (2009): Determining shark size from forensic analysis of bite damage. Mar. Biol., 156, 2483-2492. Kabasakal, H. (2015): Occurrence of shortfi n mako shark, Isurus oxyrinchus Rafi nesque, 1810, off Turkey’s coast. Mar. Biodivers. Rec., 8, e134. doi: 10.1017/ S1755267215001104. Kabasakal, H. & A. De Maddalena (2011): A huge shortfi n mako shark Isurus oxyrinchus Rafi nesque, 1810 (Chondrichthyes: Lamnidae) from the waters of Marma- ris, Turkey. Annales, Ser. Hist. Nat., 21, 21–24. Kabasakal, H. & Ö. Kabasakal (2013): First record of a shortfi n mako shark, Isurus oxyrinchus Rafi nesque, 1810 (Chondrichthyes: Lamnidae) from the Bay of Saroz (NE Aegean Sea). Annales, Ser. Hist. Nat., 23, 27–32. Tunçer, S. & H. Kabasakal (2016): Capture of a juve- nile shortfi n mako shark, Isurus oxyrinchus Rafi nesque, 1810 (Chondrichthyes: Lamnidae) in the Bay of Edremit, northern Aegean Sea (Turkey). Annales, Ser. Hist. Nat, 26, 31-36. IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY 157 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 short scientifi c article DOI 10.19233/ASHN.2017.19 received: 2017-10-15 HAS A VIABLE POPULATION OF COMMON LIONFISH, PTEROIS MILES (SCORPAENIDAE), ESTABLISHED OFF THE SYRIAN COAST (EASTERN MEDITERRANEAN)? Malek ALI Marine Sciences Laboratory, Basic Science Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria Christian REYNAUD Laboratoire Interdisciplinaire de Recherche sur la Didactique, l’Education et la Formation, E.A. 3749, Composante «Didactique et Socialisation», Faculté d’Éducation, Université de Montpellier, 2, Place Marcel Godechot, B.P. 4152, 34095 Montpellier cedex 5, France Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc, 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr ABSTRACT A new record of a mature common lionfi sh Pterois miles (Bennet, 1828) from the Syrian coast and captures reported by fi shermen in the context of local ecological knowledge suggest that a viable population of the species has successfully established in the area. Monitoring activities need to be implemented to contain the invasion of a species considered, for many reasons, a huge threat not only for this area, but for the entire Mediterranean marine environment. Key words: Scorpaenidae, Pterois miles, alien species, Eastern Mediterranean Sea È POSSIBILE CHE UNA POPOLAZIONE VITALE DI PESCE SCORPIONE, PTEROIS MILES (SCORPAENIDAE), SI SIA STABILITA NELLE ACQUE AL LARGO DELLA COSTA SIRIANA (MEDITERRANEO ORIENTALE)? SINTESI Un nuovo ritrovamento di un esemplare maturo di pesce scorpione Pterois miles (Bennet, 1828) lungo la costa siriana e le catture riportate dai pescatori suggeriscono, nel contesto delle conoscenze ecologiche locali, che una popolazione vitale della specie si sia stabilita con successo nella zona. Secondo gli autori, nuove attività di monito- raggio dovrebbero venir implementate al fi ne di contenere l’invasione di una specie considerata, per svariate ragioni, un’enorme minaccia non solo per quest’area, ma per l’intero ambiente marino mediterraneo. Parole chiave: Scorpaenidae, Pterois miles, specie aliena, mare Mediterraneo orientale 158 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Malek ALI at al.: HAS A VIABLE POPULATION OF COMMON LIONFISH, PTEROIS MILES (SCORPAENIDAE), ESTABLISHED ..., 157–162 INTRODUCTION The common lionfi sh Pterois miles (Bennet, 1828) is well-known in the eastern Mediterranean, where it ente- red the Red Sea through the Suez Canal. The fi rst record was in the Levant Basin, off Herzliya (Golani & Sonin, 1992), since then, other records have been reported off the northern coast of Lebanon (Bariche et al., 2013), in Turkish waters (Turan et al., 2014), off the coast of Cyprus (Jimenez et al., 2016), and throughout the Levant Basin (Jimenez et al., 2017). The species has migrated westwards and is presently known in the Aegean Sea (Crocetta et al., 2015), while recently also reaching the Tunisian coast and southern Italy (Azzurro et al., 2017). The fi rst records of P. miles from the Syrian coast were presented by Ali et al. (2016), who noted that these fi ndings did not represent suffi cient data to state that a substantial population had successfully established in the area. Due to the fact that P. miles has drastic effects on native fi sh species, including the destruction of eco- systems and negative economic impacts on fi sheries and tourism, investigations have been regularly conducted in the concerned area and the most recent results are presented in this paper. MATERIAL AND METHODS Our methodology was mainly based on the infor- mation provided by fi shermen, referred to as Local Ecological Knowledge (LEK), which has been applied in the collection of data about natural systems and the monitoring of recent biodiversity changes in the marine environment (Anadón et al., 2009; Azzurro et al., 2011). The approach from Azzurro & Bariche (2017) was adop- ted to investigate the status and distribution of alien spe- cies, such as the P. miles lionfi sh, in the Mediterranean. On 29 May 2017, a specimen of P. miles was captured together with 2 specimens of striped eel catfi sh Plotosus lineatus (Thunberg, 1787) 12 km north of Lattakia City, 2 km offshore (35° 46´ E, 35° 39´N) (Fig. 1), on rocky bot- tom, at a depth of 25 m, using a bottom cage net made of metal wire. Prior to the dissection, the fresh specimen was measured to the nearest 0.1 millimetre using a di- gital caliper, and weighed to the nearest 0.1 gram. After the dissection, the ovaries and the digestive tract were reinserted into the abdominal cavity, and subsequently, the entire specimen was preserved in 10% buffered formalin and deposited in the Ichthyological Collection of the Marine Science Laboratory, Agriculture Faculty of the University of Tishreen, under the catalogue number 2290 M.S.L (Fig. 2 A). RESULTS AND DISCUSSION The captured specimen was 226.1 mm in total length, its total body weight was 194.2 g (Tab. 1). It was identifi ed as a Pterois miles based on a combination of morpholo- gical characters, morphometric measurements, meristic counts and colour, which were in total agreement with previous descriptions of the species by Golani & Sonin (1992), Carpenter & Niem (1999), Golani et al. (2002), Turan et al. (2014) and Ali et al. (2016). The stomach content was removed and four small, undetermined fi sh weighing 0.6 g were found. The dissected specimen exhibited large and developed ovaries, allowing the conclusion it was mature and able to reproduce, thus corroborating the presence of a viable population in this or the neighbouring areas, most likely Turkish waters, where new records confi rm that the species is success- fully established there (Özbek et al., 2017). A single mature specimen does not constitute suffi cient evidence of a defi nitive establishment, however, experienced local fi shermen aware of the fi shing grounds report that the species has lately been a common bycatch in their nets. They are worried about a progressive invasion of this species, about increased competitive pressure for food exerted on native species with a high commercial interest or endangered species, about the destruction of local ecosystems, but also about human envenomation during handling (Frazer et al., 2012). According to Jimenez et al. (2016), some divers Fig. 1: Map of the Mediterranean showing Syria, and map of the coast of Syria indicating the capture site of Pterois miles (black star). Sl. 1: Zemljevid Sirije in širšega Sredozemskega morja z označeno lokaliteto, kjer je bila ujeta plamenka (črna zvezdica). 159 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Malek ALI at al.: HAS A VIABLE POPULATION OF COMMON LIONFISH, PTEROIS MILES (SCORPAENIDAE), ESTABLISHED ..., 157–162 consider P. miles a beautiful fi sh and are reluctant to cull this species, although it impoverishes local biodiversity and thus profoundly affects the seascape. Still, a specifi c monitoring of this fi sh is required, and the capture of Fig. 2: A. Pterois miles captured off the Syrian coast (Ref. 2290 M.S.L.), scale bar = 20 mm. B. 1. Sexual gland. 2. Fat surrounding the stomach, scale bar = 20 mm. C. Sexual glands, scale bar = 10 mm. Sl. 2: A. Primerek plamenke (kataloška številka 2290 M.S.L.), ujet ob sirski obali, merilo = 20 mm. B. 1. Spolna žleza. 2. Plast maščobe, ki obdaja želodec, merilo = 20 mm. C. spolne žleze, merilo = 10 mm. this mature specimen off the Syrian coast is a signal of a huge threat, which should not be dismissed, but rather taken into consideration, as the observations made by local fi shermen also confi rm. 160 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Malek ALI at al.: HAS A VIABLE POPULATION OF COMMON LIONFISH, PTEROIS MILES (SCORPAENIDAE), ESTABLISHED ..., 157–162 Tab. 1: Morphometric measurements in mm and in percentages of total length (% TL), and meristic counts recorded in the specimen of Pterois miles (ref. 2290 M.S.L.). Tab. 1: Morfometrične meritve v mm in delež glede na celotno dolžino (% TL) ter meristična štetja, ki se na- našajo na primerek plamenke (kataloška številka 2290 M.S.L.). Reference of specimen M.S.L. 2290 Morphometric measurements mm %TL Total length 226.1 100.0 Standard length 177.1 78.3 Head length 69.4 30.7 Body depth 68.4 30.3 Inter-orbital space 8.6 3.8 Eye diameter 8.7 3.8 Pre-orbital length 28.1 12.4 Dorsal fi n length 139.0 61.5 Pectoral fi n length 129.3 57.2 Ventral fi n length 83.2 36.8 Anal fi n length 69.4 30.7 Dorsal fi n base 104.5 46.2 Pectoral fi n base 25.3 11.2 Ventral fi n base 11.5 5.1 Anal fi n base 30.4 13.4 Dorsal fi n height 64.8 28.7 Pre-dorsal length 55.2 24.4 Pre-pectoral length 56.0 24.8 Pre-ventral length 61.7 27.3 Pre-anal length 125.5 55.5 Counts First dorsal fi n rays XIII +11 Pelvic fi n rays I + 6 Anal fi n rays III +7 Pectoral fi n rays XIV Total weight (g) 194.2 body Weight without viscera (g) 173.3 Sexual glands weight (g) 1.9 Preys weight (g) 0.6 161 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Malek ALI at al.: HAS A VIABLE POPULATION OF COMMON LIONFISH, PTEROIS MILES (SCORPAENIDAE), ESTABLISHED ..., 157–162 SE JE VIABILNA POPULACIJA PLAMENKE, PTEROIS MILES (SCORPAENIDAE), ŽE UVELJAVILA V VODAH OB SIRSKI OBALI (VZHODNO SREDOZEMSKO MORJE)? Malek ALI Marine Sciences Laboratory, Basic Science Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria Christian REYNAUD Laboratoire Interdisciplinaire de Recherche sur la Didactique, l’Education et la Formation, E.A. 3749, Composante «Didactique et Socialisation», Faculté d’Éducation, Université de Montpellier, 2, Place Marcel Godechot, B.P. 4152, 34095 Montpellier cedex 5, France Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc, 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr POVZETEK Na podlagi novega ulova plamenke Pterois miles (Bennet, 1828) in ulovov, o katerih poročajo ribiči vzdolž sirske obale v okviru lokalnega ekološkega znanja avtorji domnevajo, da se je viabilna populacija te vrste uspešno uveljavila v tem okolju. Obenem priporočajo vzpostavitev rednega monitoringa, ki bi nadzoroval invazijo te vrste, saj ta predstavlja veliko nevarnost ne samo za ožje območje, ampak tudi za celotno Sredozemsko morje. Ključne besede: Scorpaenidae, Pterois miles, tujerodna vrsta, vzhodno Sredozemsko morje 162 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Malek ALI at al.: HAS A VIABLE POPULATION OF COMMON LIONFISH, PTEROIS MILES (SCORPAENIDAE), ESTABLISHED ..., 157–162 REFERENCES Ali M., H. Alkusairy, A. Saad, C. Reynaud & C. Ca- papé (2016): First record of Pterois miles (Osteichthyes: Scorpaenidae) in Syrian marine waters: confi rmation of its accordance in the eastern Mediterranean. Tishreen Univ. J. Res. Scient. Stud. –Biol. Sci., 38(4), 307-313. Anadón, J.D., A. Gimenez, R. Ballestar & I. Perez. (2009): Evaluation of local ecological knowledge as a method for collecting extensive data on animal abun- dance. Conserv. Biol., 23 (3), 617-625. Azzurro, E. & M. Bariche (2017): Local knowledge and awareness on the incipient lionfi sh invasion in the eastern Mediterranean Sea. Mar. Freshwater Res.. https.// doi.org/10.1071/MF16358. Azzurro, E., P. Moschelle. & F. Maynou (2011): Tracking signals of change in Mediterranean fi sh diver- sity based on local ecological knowledge. Plos One, 6, e24885. Azzurro, E., B. Stancanelli, V. Di Martino & M. Ba- riche (2017): Range expansion of the common lionfi sh Pterois miles (Bennett, 1828) in the Mediterranean Sea: an unwanted new guest for Italian waters. Bio. Inv. Rec., 6 (2), 95-98. Bariche, M., M. Torres & E. Azzurro (2013): The presence of the invasive Lionfi sh Pterois miles in the Mediterranean Sea. Medit. Mar. Sci., 14(2), 292-294. Carpenter, K. E. & V.H. Niem (1999): FAO species identifi cation guide for fi shery purposes the living ma- rine resources of the western central pacifi c. Volume 4. Bony fi shes part 2. 724 pp. Crocetta, F., D. Agius, P. Balistreri, M. Bariche, Y. K. Bayhan, M. Çakir, S. Ciriaco, M. Corsini-Foka, A. Deidun, R. El Zrelli, D. Ergüden, J. Evans, M. Ghelia, M. Giavasi, P. Kleitou, G. Kondylatos, L. Lipej, C. Mifsud, Y. Özvarol, A. Pagano, A., P. Portelli,., D. Poursanidis, L. Rabaoui, P.J. Schembri, E. Taskin,, F. Tiralongo & A. Ze- netos (2015): New Mediterranean biodiversity records (October 2015). Medit. Mar. Sci., 16(3), 682-702. Dailianis, T., O. Akyol, N. Babali, M. Bariche, F. Crocetta, V. Gerovasileiou, R. Chanem, M. Gökoglu, T. Hasiotis, A. Izquierdo-Muñoz, D. Julian, S. Katsanevakis, L. Lipej, E. Mancini, C. Mytilineou, K. Ounifi Ben Amor, A. Özgül, M. Ragkousis, E. Rubio-Portillo, G. Servello, K. Sini, C. Stamouli, C., A. Sterioti., S. Teker., F. Tiralongo, D. Trkov (2016): New Mediterranean biodiversity records (July 2016). Medit. Mar. Sci., 17(2), 608-626. Frazer, T. K., C. A. Jacoby,. M. A. Edwards, S. C. Barry & C. M. Manfrino (2012): Coping with the lionfi sh invasion: can targeted removals yield benefi cial effects? Rev. Fish. Sci., 20(4), 185-191. Golani, D. & O. Sonin (1992): New records of the Red Sea fi shes, Pterois miles (Scorpaenidae) and Ptera- gogus pelycus (Labridae) from the Eastern Mediterranean Sea. Jap. J. Ichthyol., 39(2), 167-169. Golani, D., L. Orsi-Relini., E. Massuti & J. P. Qui- gnard (2002): CIESM Atlas of exotic species in the Mediterranean. Vol. 1. Fishes. (F. Briand editor). CIESM Publications, Monaco, 256 pp. Jimenez, C., A. Petrou, V. Andreou, L. Hadjioannou, W. Wolf, N. Koutsoloukas & R. Abu Alhaija (2016): Veni, vedi, vici:The successful establishment of the lionfi sh Pterois miles in Cyprus (Levantine Sea). Rapp. Comm. int. Mer Médit., 41, 417. Jimenez, C., V. Andreou, L. Hadjioannou, A. Petrou, R. Abu Alhaija & P. Patsalou (2017): Not everyone’s cup of tea: Public perception of culling invasive lionfi sh in Cyprus. J. Black Sea/ Medit. Environ., 23(1), 38-47. Özbek, E.Ö., S. Mavruk, I. Saygu & B. Öztürk (2017): Lionfi sh distribution in the eastern Mediterranean coast of Turkey. J. Black Sea/ Medit. Environ., 23(1), 1-16. Turan, C., D. Ergüden , M. Gülek, D. Yaghoglu, A.Uyan & N. Uygur (2014): First record of the Indo- -Pacifi c Pterois miles (Bennet, 1828) (Osteichthyes: Scorpaenidae) for the Turkish marine waters. J. Black Sea/ Medit. Environ., 20(2), 158-163. 163 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 short scientifi c article DOI 10.19233/ASHN.2017.20 received: 2017-09-26 OCCURRENCE OF SLOANE’S VIPERFISH CHAULIODUS SLOANI (OSTEICHTHYES: CHAULIODONTIDAE) FROM THE TUNISIAN COAST (CENTRAL MEDITERRANEAN) Mohamed Mourad BEN AMOR & Khadija OUNIFI-BEN AMOR Institut National des Sciences et Technologies de la Mer, 2060 La Goulette, Tunisia Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr ABSTRACT This paper reports the occurrence of Sloane’s viperfi sh Chauliodus sloani Schneider, 1801, from the Tunisian coast. Two specimens were collected by shrimp trawl during a scientifi c survey carried out in the northern area of the country. The specimens were caught in deep waters, at a depth of 410 m. The lack of knowledge of this species in the Mediterranean is probably due to the fact that it occurs in deep sea areas and is of little commercial interest. Key words: description, morphometric measurements, meristic counts, distribution, deep waters RITROVAMENTO DI PESCE VIPERA CHAULIODUS SLOANI (OSTEICHTHYES: CHAULIODONTIDAE) LUNGO LA COSTA DELLA TUNISIA (MEDITERRANEO CENTRALE) SINTESI L’articolo riporta il ritrovamento del pesce vipera Chauliodus sloani Schneider, 1801, lungo la costa tunisina. Due esemplari sono stati catturati con una rete a strascico per gamberi durante una spedizione scientifi ca effettuata nella parte settentrionale del paese. Gli esemplari sono stati catturati a 410 m di profondità. La mancanza di dati inerenti questa specie nel mare Mediterraneo è probabilmente dovuta al fatto che vive in acque molto profonde e ha scarso interesse commerciale. Parole chiave: descrizione, misure morfometriche, conteggi meristici, distribuzione, acque profonde 164 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Mohamed Mourad BEN AMOR et al.: OCCURRENCE OF SLOANE’S VIPERFISH CHAULIODUS SLOANI (OSTEICHTHYES: CHAULIODONTIDAE) FROM ..., 163–166 INTRODUCTION According to Gibbs (1984), two species of the ge- nus Chauliodus Schneider, 1801, occur in the FNAM area: the Dana viperfi sh, Chauliodus danae Regan and Trewavas, 1929, only known in the eastern Atlantic, and Sloane’s viperfi sh Chauliodus sloani Schneider, 1801, widely distributed in the Pacifi c, Indian and Atlantic Oceans, but also found in the Mediterranean Sea. C. sloani has been previously recorded in the western Mediterranean Basin, especially in the seas surround- ing Italy (Tortonese, 1970) and the Adriatic Sea (Lipej & Dulcic, 2010). Further investigations have reported the occurrence of this species eastwards, in the Greek waters of the Aegean Sea (Papaconstantinou, 1988), southwest off Cyprus (Galil, 2004), and in the Turkish waters of the Levant Sea (Dalyan & Eryilmaz, 2008). C. sloani was noted as very rare off the Algerian coast by Dieuzeide et al. in 1954, and no new record has been observed since (Hemida, pers. com., 2017). Bradai et al. (2004) reported the species occurrence off northern Tunisian coast, but no specimen was available for confi rmation. The C. sloani specimens described herein were collected during a scientifi c expedition of the Hannibal vessel organized by the Institut des Sciences et Technologies de la Mer of Salammbô (Tunisia). The paper also provides comments about the species’ distribution in the local area and in the Mediterranean Sea. MATERIAL AND METHODS The two specimens were collected on 12 July 2017, with a shrimp trawl, at a depth of 410 m, on soft bottom, at the locality 37°33’08’’ N and 09°45’49’’ E (Fig. 1), together with other teleost species, the elasmobranch small-spotted catshark Scyliorhinus canicula (Linnaeus, 1758) and the deep-water rose shrimp Parapenaeus longirostris (Lucas, 1846). The fresh specimens were measured for total length (TL), standard length (SL) and all morphometric characters to the nearest millimetre, and weighed to the nearest gram, on board. They were delivered to the laboratory for morphometric measure- ments and counts of meristic characters, which are sum- marized in Table 1. Both specimens were fi xed in 10 % buffered formaldehyde, preserved in 75% ethanol and deposited in the Ichthyological Collection of the Institut des Sciences et Technologies de la Mer of Salammbô (Tunisia), under the catalogue number INSTM Chau-slo 01 and INSTM Chau-slo 02, respectively, and fi nally described in the present paper (Fig. 2) following Bello et al.’s (2014) protocol. RESULTS AND DISCUSSION The specimens were identifi ed based on the fol- lowing combination of characters: body long and compressed, covered by hexagonal scales on sides, with two ventro-lateral rows of photophores; head short with a minuscule snout, jaws with long fangs, numerous large teeth on premaxilla and dentary, lower jaw longer than the upper, dorsal fi n close to head, fi rst spinous ray pro- longed, its origin over the eighth photophore in lateral series, pre-dorsal length; length from snout to dorsal fi n 23.8/23.9 % of standard length (SL), dorsal adipose fi n present near tail, colour iridescent silver-blue. The description, colour, all measurements and counts are in total agreement with Tortonese (1970), Gibbs (1984) and Dalyan & Eryilmaz (2008). Therefore, these two fi ndings constitute the fi rst well-documented record of the species in Tunisian waters, and Chauliodus sloani can be added to the list of local ichthyofauna. Fig. 2: Chauliodus sloani, northern Tunisian region. A. Specimen referenced INSTM Chau-slo 01. B. Specimen referenced INSTM Chau-slo 02, scale bar for both specimens = 35 mm. Sl. 2: Chauliodus sloani, Severna Tunizija. A. Primerek s kataloško številko INSTM Chau-slo 01. B. Primerek s kataloško številko INSTM Chau-slo 02, merilo za oba primerka = 35 mm. Fig. 1: Map of the Mediterranean Sea showing Tunisia (rectangle) and indicating the capture site (black star) of the two specimens of Chauliodus sloani in the north- ern region. Sl. 1: Zemljevid Sredozemskega morja z Tunizijo (pra- vokotnik) in označbo lokalitete (črna zvezdica), kjer sta bila ujeta primerka Chauliodus sloani na severu države. 165 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Mohamed Mourad BEN AMOR et al.: OCCURRENCE OF SLOANE’S VIPERFISH CHAULIODUS SLOANI (OSTEICHTHYES: CHAULIODONTIDAE) FROM ..., 163–166 C. sloani can be distinguished from its co-generic species C. danae by its predorsal fi n closer to head 17- 28% (usually 21-24%) SL versus in C. danae, 24-33% (usually 26-28%) SL. The origin of dorsal fi n in C. sloani is over the fourth to eighth photophore in lateral series, and over the ninth to eleventh photophore in lateral se- ries in C. danae. Additionally, C. sloani reaches a larger size than C. danae, more than 300 mm SL versus about 150 mm SL (Gibbs, 1984). The size of both Tunisian specimens, 226 mm SL and 160 mm SL, respectively, strengthens our diagnosis and confi rms the occurrence of C. sloani in local waters. In the wake of the local ecological knowledge following Anadón et al. (2009), used to track the geo- graphical distribution of rare species in their living areas (Azzurro et al., 2011), information was gathered through contacts with fi shermen, SCUBA divers, and sea lovers, concomitantly with regular surveys of Tunisian fi sh mar- kets. These investigations showed that Chauliodus sloani was poorly known in the region prior to this capture. This could be due to the fact that the species inhabits waters of more than 1000 m in depth, and deep bot- toms are little exploited by commercial vessels or not at all. Also, the species is not appreciated by consumers and therefore of no economic interest. This means that only scientifi c research offers the possibility to capture such a species in Tunisia, which is probably the case throughout the Mediterranean Sea. Tab. 1: The morphometric measurements in mm and as percentages of standard length (SL %), meristic counts and weight recorded in the two specimens of Chauliodus sloani from the northern Tunisian region. Tab. 1: Morfometrične meritve v mm in kot delež glede na standardno dolžino telesa (SL %), meristično štetje in teža dveh primerkov vrste Chauliodus sloani iz severne Tunizije. References INSTM Chau-slo 01 INSTM Chau-slo 02 Morphometric measurements mm %SL mm %SL Total length (TL) 251 111.1 174 108.8 Standard length (SL) 226 100 160 100 Head length 30 13.3 24 15 Eye diameter 6 2.6 5 3.1 Preorbital length 10 4.4 7 4.4 Predorsal length 54 23.9 38 23.8 Preventral length 98 43.4 83 51.9 Preanal length 191 84.5 147 91.9 Prepectoral length 40 17.7 30 18.8 Dorsal fi n base 13 5.8 11 6.9 Ventral fi n base 7 3.1 6 3.8 Pectoral fi n base 4 1.8 3 1.9 Anal fi n base 18 8 16 10 Adipose fi n base 16 7.1 12 7.5 Meristic counts Dorsal fi n rays 6 6 Anal fi n rays 10 10 Pectoral fi n rays 12 12 Pelvic fi n rays 7 7 Caudal fi n rays 11 11 Number of photophores 8 8 Number of teeth in upper jaw 8 8 Number of teeth in lower jaw 14 14 Total body weight (g) 19.5 9.5 166 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Mohamed Mourad BEN AMOR et al.: OCCURRENCE OF SLOANE’S VIPERFISH CHAULIODUS SLOANI (OSTEICHTHYES: CHAULIODONTIDAE) FROM ..., 163–166 REFERENCES Anadón, J.D., A. Gimenez, R. Ballestar& I. Perez (2009): Evaluation of local ecological knowledge as a method for collecting extensive data on animal abundance. Conserv. Biol., 23 (3), 617-625. DOI: 10.1111/j.1523-1739.2008.01145.x Azzurro, E., P. Moschella & F. Maynou (2011): Track- ing signals of change in Mediterranean Fish diversity based on local ecological knowledge. PLoS ONE, 6 (9), e24885. https://doi.org/10.1371/journal.pone.0024885 Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposal best practice approach to overcome unverifi ed and unverifi able «fi rst records» in ichthyology. Cybium, 38 (1), 9-14. Bradai, M.N., J.P Quignard, A. Bouain, O. Jarboui, A. Ouannes-Ghorbel, L. Ben Abdallah, J. Zaouali & S. Ben Salem (2004): Ichtyofaune autochtone et exotique des côtes tunisiennes: Recensement et biogéographie. Cybium, 28 (4), 315-328. Dalyan, C. & L. Eryilmaz (2008): A new deepwater fi sh, Chauliodus sloani Bloch and Schneider, 1801 (Osteichthyes: Stomiidae), from the Turkish waters of Levant Sea (Eastern Mediterranean). J. Black Sea/ Medit. Environ., 14 (1), 33-37. Dieuzeide R., M. Novella & J. Roland (1954): Cata- logue des poissons des côtes algériennes, Volume II. Bull. Sta. Aquic. Pêche, Castiglione nov. Sér., 5, 1-258. Gibbs, Jr R.L. (1984): Chauliodontidae. pp. 336-337. In: Whitehead P.J.P., Bauchot, M.L., Hureau J.C., Nielsen J. & Tortonese. E. (eds),. Fishes of the North-western Atlantic and the Mediterranean. Vol I. UNESCO, Paris. Galil, B.S. (2004): The limit of the sea: the bathyal fauna of the Levantine Sea. Scient. Mari., 68 (Supple- ment 3), 63-72. Lipej, L & J. Dulčić (2010): Checklist of the Adriatic Sea fi shes. Zootaxa, 2859, 1-92. Papaconstantinou, C. (1988): Fauna Graeciae, IV Pisces. Check-list of Marine Fishes of Greece. National Center for Marine Research, Hellenic Zoological Soci- ety, Athens, Greece. Tortonese, E. (1970): Osteichthyes: pesci ossei. [Osteichthyes bony fi shes.]. Calderini, Bologna, Italy. [In Italian] O POJAVLJANJU MORSKEGA GADA CHAULIODUS SLOANI (OSTEICHTHYES: CHAULIODONTIDAE) V TUNIZIJSKIH VODAH (OSREDNJE SREDOZEMSKO MORJE) Mohamed Mourad BEN AMOR & Khadija OUNIFI-BEN AMOR Institut National des Sciences et Technologies de la Mer, 2060 La Goulette, Tunisia Christian CAPAPÉ Laboratoire d’Ichtyologie, case 104, Université Montpellier 2, Sciences et Techniques du Languedoc 34095 Montpellier cedex 5, France E-mail: capape@univ-montp2.fr POVZETEK Avtorji poročajo o pojavljanju morskega gada, Chauliodus sloani Schneider, 1801, iz tunizijskih voda. Na strokov- nih vzorčenjih sta bila na globini 410 m pri lovu kozic ujeta dva primerka na severu države. Pomanjkanje podatkov o tej vrsti je najverjetneje posledica dejstva, da se pojavlja v globokomorskem okolju, poleg tega pa ima zanemarljiv komercialni interes. Ključne besede: opis, morfometrične meritve, meristična štetja, razširjenost, globokomorsko okolje 167 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 original scientifi c article DOI 10.19233/ASHN.2017.21 received: 2017-10-12 DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER FROM THOSE AT NATURAL ROCKY-REEF SITES? Claudia KRUSCHEL & Julia HARRAS University of Zadar, Department of Ecology, Agronomy and Aquaculture & CIMMAR – Center for Interdisciplinary Marine and Maritime Research, 23000 Zadar, Croatia e-mail: ckrusche@unizd.hr Irmgard BLINDOW Biological Station Hiddensee, Ernst-Moritz Arndt University Greifswald, Biologenweg 15, 18565 Kloster/Hiddensee, Germany Stewart T. SCHULTZ University of Zadar, Department of Ecology, Agronomy and Aquaculture & CIMMAR – Center for Interdisciplinary Marine and Maritime Research, 23000 Zadar, Croatia ABSTRACT The urban development of seashores is predicted to lower biodiversity. After we validated a stationary lure- assisted visual-census method, we proceeded to test the overall hypothesis that fi sh community structure changes when complex and heterogeneous natural rocky habitats are displaced by less complex vertical hard surfaces. Taxonomic fi sh community descriptors derived from pristine rocky shorelines were compared with those featuring concrete walls and to natural rocky reefs directly neighboring such developments. Fish communities differed very little between sites across the three levels of development and existing differences were not consistent across all sites within a level. We conclude that in the Croatian Adriatic, the typically small-scale concrete-wall developments do not cause major disruptions of natural near-shore fi sh assemblages. Key words: fi sh community, lure visual census, rocky reefs, seawalls, urbanization, predation intensity LE COMUNITÀ ITTICHE IN SITI CON PARETI ANTROPICHE DI CEMENTO SONO DIVERSE DA QUELLE IN SITI ROCCIOSI NATURALI? SINTESI Lo sviluppo urbano delle zone costiere contribuisce alla diminuzione della biodiversità. Dopo aver convalidato un metodo di censimento visivo assistito da un’esca, gli autori hanno verifi cato l’ipotesi generale che la struttura della comunità ittica subisca variazioni quando complessi habitat rocciosi naturali ed eterogenei vengono sosti- tuiti da superfi ci solide verticali meno complesse. I descrittori tassonomici della comunità ittica di coste rocciose incontaminate sono stati confrontati con quelli ottenuti dal censimento su pareti di cemento e con quelli rilevati su scogliere rocciose naturali direttamente vicine a tali costruzioni. Le comunità ittiche differivano di poco tra i siti classifi cati secondo tre livelli di sviluppo, e le differenze esistenti non erano coerenti tra i siti all’interno dello stesso livello. Gli autori pertanto concludono che nell’Adriatico croato le costruzioni verticali in cemento su piccola scala non causano gravi disturbi nelle comunità ittiche in prossimità della costa. Parole chiave: comunità ittiche, esca censimento visivo, scogliere rocciose, costruzioni verticali, urbanizzazione, intensità di predazione 168 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 INTRODUCTION Urbanization of coastal areas adds artifi cial struc- tures to the marine landscape (Clynick et al., 2007; Bulleri & Chapman, 2010; Airoldi & Bulleri, 2011). Concrete walls within marinas and swimming enclo- sures are now common features of coastal environments (Chapman & Bulleri, 2003; Bulleri, 2005, 2006; Clynick et al., 2008; Bulleri & Chapman, 2010; Di Franco et al., 2011); however, there is insuffi cient knowledge of their ecological effects. A better understanding about their impact is necessary to support the integration of environmental protection into coastal management plans and to reduce the magnitude of human impact (Chapman & Bulleri, 2003; Bulleri & Chapman, 2004; Bulleri, 2005; Bulleri et al., 2005; Clynick et al., 2007; Bulleri & Chapman, 2010; Airoldi & Bulleri, 2011; Di Franco et al., 2011). Urban structures differ from natural environments in several ways. Man-made concrete walls are vertically aligned, hard surfaces that are less complex and heterogeneous than natural reefs (Clynick et al., 2009). Although the existence of structure at all is enough for the recruitment of many fi sh species (Jen- kins & Wheatley, 1998), seawall surfaces facilitate less microhabitat for colonization (Moschella et al., 2005) and less refuges from predators, especially for larval fi sh (Kruger & Strydom, 2010). Concrete walls may not shel- ter viable fi sh population sizes (Clynick et al., 2008) and steep walls in marinas may not function as fi sh nursery habitats due to the absence of shallow marginal water Tab. 1a: Locations with GPS coordinates and association with either (i) lure pre-experiment (effect of presence/ absence of a lure on fi sh richness and abundance) or (ii) fi sh census to detect site difference in fi sh communities (natural sites vs. developed and adjacent sites). Tab. 1a: Lokalitete z GPS koordinatami in oznaka, ali gre za (i) predposkus (vpliv prisotnosti/odsotnosti vabe na ribjo pestrost in abundanco) ali za (ii) opazovalni cenzus rib z namenom ugotavljanja razlik v ribji združbi med lokalitetami (naravna okolja proti razvitim oz. bližnjim okoljem). Coastal Location Northing Easting Lure exper. Site difference study nat. site adj. site dev. site cement wall usage South of Prevlaka 42.40571 18.50647 no yes no no NA North of Prevlaka 42.40723 18.51299 no no yes yes as military structure Cavtat 42.57954 18.21390 no no yes yes as hotel swimming area Slano 42.77285 17.88325 no yes no no NA North of Slano 42.80302 17.84438 no yes no no NA Trogir 43.49894 16.21764 no no yes yes sheltering small boats Murter 43.77535 15.63076 no no yes yes in small marina East of Tkon 43.90845 15.43872 yes NA NA NA NA Tkon 43.90845 15.43872 no yes no no NA U. Kablin 44.00628 15.26060 yes yes no no NA Zdrelac 44.01490 15.25469 yes NA NA NA NA Susina 44.02608 15.23367 yes NA NA NA NA U. Lamjana Vela 44.03677 15.21466 yes NA NA NA NA U. Koštanj 44.05000 15.23000 yes NA NA NA NA Kolovare (Zadar) 44.10083 15.23977 yes NA NA NA NA Lukoran 44.10742 15.15363 no no yes yes in small marina U. Kobiljak 44.10895 15.10255 yes yes no no NA Ceprljanda 44.12577 15.11704 yes NA NA NA NA Borik 44.13160 15.20973 yes NA NA NA NA Muline 44.13468 15.06889 yes NA yes yes in small marina Sušica 44.14572 15.08266 yes yes NA NA NA Zaton 44.21875 15.16371 no no yes yes as breakwater Vinjerac 44.25873 15.46940 yes NA NA NA NA North of Modrić 44.27020 15.52350 yes NA NA NA NA 169 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 (Kruger & Strydom, 2010). Fish populations at natural sites may be more productive than at artifi cial structures, as has been shown for limpets which are larger and pro- duce more eggs on natural rocks compared to seawalls (Moreira et al., 2006). Yet, adding artifi cial structures as new habitat may result in overall higher species rich- ness within the area (Connell & Glasby, 1999) but may also provide habitats for invasive species as already discovered for rocky-bottom invertebrates (Vaselli et al,. 2008) and algae (Bulleri & Airoldi, 2005). Currently the general prediction seems to be that artifi cial structures do not constitute a surrogate for natural environments even though they may accommodate a similar suite of fi sh species as natural habitats (Rooker et al., 1997). In some studies fi sh assemblages indeed differed across naturally rocky shores and seawalls (Clynick et al., 2008 and therein, Sala et al., 2012). Our study compares fi sh communities in the shallow Croatian Adriatic Sea that are associated with three dif- ferent levels of shoreline development. Pristine natural sites (at least 5 km distant from any developments) contain natural rocky-algal reefs (in the following the terms “natural” or “nat” are used) that feature a habitat sequence starting at the shore line with big boulders or bedrock-cliffs followed by smaller boulders, followed by sand and eventually seagrass beds (Posidonia oce- anica or Cymodocea nodosa) and/or algal meadows on sediment. At sites with man-made concrete walls (in the following the terms “developed” or “dev” are used) rocky reefs were removed and replaced by more homogeneous and less complex vertical concrete walls e.g. within marinas or swimming enclosures (Tab. 1a and 1b) where C. nodosa is more likely to consolidate the neighboring sand than P. oceanica. Aside from these two extremes, natural sites and concrete-wall sites, we also investigated sites which lie adjacent (within 0.5 km) to concrete-development sites but feature the natural offshore sequence of habitats (in the following the terms “adjacent” or “adj” are used). We tested the overall prediction that fi sh communi- ties differ across sites with different levels of develop- ment: natural, developed, adjacent. Fish assemblages may vary with regard to the abundance of individual fi sh of each species, the total abundance of fi sh individuals and in taxonomic richness, diversity, and evenness. We also expected to see unique taxa at each type of site due to small-scale habitat preferences or behaviors. We structured our sampling scheme to test six null hypoth- eses: 1. There is no difference in the abundance of indi- vidual fi sh taxa or in total fi sh abundance; 2. There is no signifi cant difference in taxonomic richness, diversity or evenness; 3. There are no species unique to each level of development; 4. Across levels of development relative habitat coverage and habitat richness do not differ; 5. Overall fi sh taxonomic richness is equal compar- ing seawalls with natural large rocky surfaces such as large boulders and bedrock cliffs; 6. Sites belonging to the same level of development will not cluster together based on the relative abundance of the observed taxa. MATERIALS AND METHODS Before testing the null hypotheses, we tested the assumption that using a visual census assisted by a stationary lure results in observing more taxa and higher fi sh abundance than a lure-less census (Bohnsack & Bannerot,1986; Kruschel & Schultz, 2010 a, 2010 b, 2012). The lure is a lead weight (2.5 cm long) with a double cone-shape and the largest diameter at its centre (0.75 cm). The lure was attached to a nylon fi shing line. Starting 1 m from the lure, 6 spherical lead weights with a diameter of 0.5 cm were placed in 1 m incre- ments to allow for estimation of water depths to 7 m, the maximum depth investigated. For 50% of many replicate fi sh counts at each of 13 sites, one snorkeler placed the lure for 10 seconds and at 10 cm above the benthic substrate cover in the center of a 1 m2 benthic area while a second snorkeler identifi ed and counted all fi sh present at the benthic substrate and in the above water column for the time it took to place, present, and retrieve the lure. The other 50% of fi sh counts were done without a lure but within independent 1 m2 x water-depth volumes investigated for an equivalent amount of time as used for the lure assisted presentations. In both sets of observa- tions experimental plots were selected systematically by swimming in a straight line from a random starting point while counting to 20 upon which the observer stopped. In case there was a barrier or the visibility was too low to see fi sh at the bottom the snorkeler randomly changed the direction and continued to count to 20 again until suitable conditions were found. We conducted the pre- experiment at a group of thirteen sites in the Zadar area (Tab. 1a). For each site we collected data on fi sh abun- dance and taxonomical richness from pooled presenta- tions with and without a lure. Whether the application of a lure results in a difference in observed taxonomic richness and fi sh abundance, compared to the non-lure treatment, was tested with R (R Development Core Team 2012) with the non-parametric Wilcoxon rank sum test on untransformed response variables considering that at a large amount of experimental plots zero fi sh were detected for either method and that Wilcoxon does not assume normal distribution. We found a highly signifi - cant difference (Fig. 1) across the two methods in both fi sh abundance (p < 0.001) and taxonomic richness (p < 0.001). Based on these results, only the lure-assisted visual census was used to test all hypotheses in this study. To study fi sh communities in response to shoreline- habitat differences, lure-assisted stationary visual- 170 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 census events were performed at 21 sites (Tab. 1a). We investigated seven developed (concrete wall) sites (116 census events, Tab. 1b), seven matching adjacent sites (less than 0.5 km away from concrete walls, 130 census events), and seven natural rocky shore sites (at least 5 km away from any shoreline development, 117 census events). For each fi sh taxon, abundance was recorded to calculate total and relative abundances and taxonomic richness. Schools of fi sh were counted as one observation because individual fi sh within schools Tab. 1b: Locations names, GPS coordinates, description and illustration of the seven sites featuring cement walls (developed sites). Tab. 1b: Lokalitete, GPS koordinate, opis in fotografi je okolij z betonskimi stenami (razvita okolja). Location name GPS position Description Google image Zaton, near Zadar 44.218753 15.163708 Concrete wall not enclosing marina, breakwater Muline, Ugljan 44.134680 15.068890 Concrete wall enclosing small marina Lukoran, Ugljan 44.107420 15.153630 Concrete wall enclosing small marina Murter 43.775350 15.630760 Concrete wall enclosing small marine Trogir 43.498940 16.217640 Concrete wall enclosing a few small boats Cavtat 42.579540 18.213900 Concrete wall with swimming enclosure at Hotel North Prevlaka 42.407233 18.512992 Concrete structure for former military use 171 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 do not constitute independent observations and should therefore not be used in a study of site preference. Disregarding the lack of independence of individuals in schools, e.g. of Atherina spp., Chromis chromis, Oblada melanura; can lead to the masking of differences in fi sh community structure across sites that are truly based on fi sh individual’s choices of place. A linear mixed-model expressed each response variable in reference to the three levels of shoreline development nested inside locations. A visual census event constituted the counting of all fi sh, except within schools, and the estimation of relative coverage for each habitat type within a square meter above the sea bottom and within the water column above with a lure placed 10 cm above the benthic cover in the center of the resulting water volume (1 m2 x water depth, maximum depth 7 m) for 30 seconds. Selection of experimental plots was again random. The lure was identical to the one used in the pre-experiment. One snorkeler placed the lure for 30 seconds of bottom time while a second snorkeler (always JH) identifi ed and counted all fi sh present on the benthic substrate and in the above water column exclusively during the bottom time of the lure but not during the placement and retrieval time. Depth and rela- tive benthic habitat cover was recorded afterwards (by JH). Unidentifi ed fi sh and juvenile fi sh were not taken into account as taxa, thus not contributing to derived richness, diversity and evenness, except if only juvenile fi sh and/or if only unidentifi ed fi sh had been observed. Fish identifi ed to the genus level only (Gobius, Parablen- nius, Symphodus) were recognized as taxa (contributing to derived richness, diversity, and evenness) only if no species-level observations within the same genera were made. However, all fi sh contributed to the total fi sh abundance. Rank abundance for each species-level taxon was calculated for natural, adjacent, developed samples using the R (R Development Core Team, 2012) pack- ages BiodiversityR and vegan. These packages also were used to assemble a cluster dendrogram with Bray distances for taxa across all sites categorized by their level of development. Total taxonomic richness, Shannon’s diversity index, and evenness were calculated by hand in an Excel spreadsheet for each level of development according to Camargo (1995). Unique taxa were defi ned as taxa that were not observed at every level of development, but may have been observed at one or two level(s) of development. Observed abundance and taxonomic richness were calculated for each lure presentation. Using R (R Development Core Team, 2012), statistical analysis had been performed via ANOVA with residuals of a linear mixed-effect model for the Poisson distribu- tion to adjust to the non-normal response variables (due to frequent zero values) abundance and taxonomic richness. The linear mixed-effect model expressed the response variable in reference to the level of develop- ment, nested inside the sites categorized by their level of development, assuming all individual lure-presentations were independent replicate experiments. The difference deviance (χ2), degrees of freedom and probability are reported in the results. For each experimental plot all present dominant habitat groups had been recorded (Fig. 2). Using R (R Fig. 2: Proportions of habitat groups in different levels of development (adj = adjacent, dev = developed, nat = natural). Sl. 2: Deleži skupin habitatov v različnih stopnjah ra- zvoja (adj = bližnji, dev = razviti, nat = naravni). Fig. 1: Boxplots showing the signifi cant differences in fi sh abundance and taxonomical richness observed in the pre-experiment to test the hypothesis that lure- -assisted stationary visual census is more powerful in detecting fi sh taxa and fi sh individuals within an ob- servational area than lure-less stationary visual census. Sl. 1: Box-plot diagram prikazuje statistično značilne razlike v ribji abundanci in taksonomski pestrosti v predposkusu, s katerim so avtorji testirali hipotezo, da lahko z metodo opazovalnega cenzusa z vabo popišemo večje število ribjih vrst in osebkov na opazovanem ob- močju kot z metodo opazovalnega cenzusa brez vabe. 172 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 Development Core Team, 2012), the statistical tests were carried out as described above for fi sh taxa richness and abundance. If tested as signifi cant a post hoc test, a pair- wise t-test with Bonferroni corrections, compared each dominant habitat group pair. In R (R Development Core Team, 2012) a cross-table was created because both predictor and response variables (level of development and dominant habitat group) are categorical variables. Fisher’s exact test for count data was carried out to test if the presence and relative abundance of dominant habi- tat groups are infl uenced by the level of development. For each experimental plot habitat richness had been calculated. Two-sided Spearman’s rank correlation had been used for testing the correlation across habitat rich- ness and taxonomic richness in R (R Development Core Team, 2012), and the probabilities are reported in the results. Subsequently it was tested with the help of R (R Development Core Team, 2012), whether there is a sig- nifi cant difference in habitat richness due to the levels of development. Habitat richness had been transformed via boxcox transformation. The transformed data was tested on normal distribution by Shapiro-Wilk normality test and non-parametric Kruskal-Wallis rank sum test was applied. The difference deviance (χ2), degrees of freedom and probability are reported in the results. RESULTS Hypothesis 1: There is no difference in the abun- dance of individual fi sh taxa or in total fi sh abundance across the three levels of shoreline development. Total abundances were not signifi cantly different across levels of development (χ2 = 3.0, Df = 2, p = 0.22). Across all sites four of the fi ve most abundant species, C. chromis, C. julis, D. annularis and D. vulgaris were shared across all three levels of development (Tab. 2a). The four shared species were overall 100 to 250 times more abundant than most other species across all 21 investigated sites (Fig. 3). The relative abundance of the four most abundant species are presented in Table 2b. While C. julis is clearly (3.9 x) most abundant in adjacent sites, D. annularis is most abundant (2.7 x) at developed sites. C. chromis and D. vulgaris are more evenly distributed across the developed and adjacent sites than the species above but are also least abundant in natural sites. Hypothesis 2: There is no signifi cant difference in taxonomic richness, diversity or evenness. As predicted, no signifi cant differences in taxonomic richness, diversity or evenness have been detected (Tab. 3). Hypothesis 3: There are no species unique to each level of development. Across the 21 sites 49 species and two higher taxa (unidentifi ed species within two families) have been observed (see Tab. 4) and identifi ed. Only fi ve species were unique to one of the levels of development and another nine species were absent at one of the levels of development. The level of uniqueness across levels of Tab. 2a: Rank abundances (relative abundance) for the 5 most common taxa at each of the three levels of develop- ment. Tab. 2a: Rangi abundance (relativna abundanca) za 5 najbolj pogostih taksonov rib glede na tri stopnje razvoja (naravno, bližnje in razvito okolje). Rank Natural Adjacent Developed 1 Diplodus vulgaris 0.30 C. julis 0.42 D. annularis 0.29 2 Chromis chromis 0.20 C. chromis 0.19 D. vulgaris 0.26 3 Coris julis 0.19 D. vulgaris 0.19 C. chromis 0.18 4 Diplodus annularis 0.18 Atherina spp. 0.10 Symphodus ocellatus 0.15 5 Gobius bucchichi 0.13 D. annularis 0.10 C. julis 0.12 Fig. 3: Rank abundance for taxa pooled over all sites. For abbreviations and full species names see Tab. 4. Sl. 3: Rangi abundanc taksonov, združenih za vse lokali- tete. Za okrajšave in polna imena rib glej Tab. 4. 173 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 development was low, 73% of the observed taxa have been found within all levels of development. Hypothesis 4: Across levels of development relative habitat coverage and habitat richness do not differ. All levels of development supported six major habitat types (Fig. 1). Adjacent and natural sites feature a natural sequence of spatial distribution of the basic habitats within the investigated depth range (max. 7 m) over a larger area than at developed sites. This is because the removal of the reefs to make room for concrete walls necessitates the shortening of the littoral and sublittoral zone and all habitats investigated, large rock surfaces, small rock surfaces, vegetated sands and bare sands are confi ned within a more or less shorter distance from the shore. The main and default difference in terms of pres- ence/absence of habitats is that large boulders, bare and vegetated, are completely replaced by concrete walls, bare and vegetated, in developed sites. The total propor- tion of large rock-surfaces (larger than diver’s body size) is about 1/3 less in developed sites than at natural and adjacent sites. Another trend is that at developed sites 1/3 of the vegetated rock surfaces are contributed by small vegetated rocks, exclusively covered in turf algae, while this proportion of small vegetated rocks is 1/6 in adjacent sites and only 1/9 at natural sites. Most of the rock-based vegetation in natural and adjacent sites is lo- cated on larger boulders and much of it supports canopy vegetation, like Cystoseira sp., a trend stronger in natural than adjacent sites. Another trend is that developed sites have the highest proportion of small bare rocks on the expense of vegetated and bare sediments. Overall we can conclude that: 1. tall dense vegetation on rocks is most abundant in natural, less in adjacent and substan- tially less in developed sites, 2. small turf-algae covered rocks and also small bare rocks are most common in developed sites and least common in natural sites, 3. vegetation on sediment is most abundant in natural sites, less in adjacent sites and least in developed sites, 4. in the benthic zone between shoreline and 7 m depth, bare sediments are most abundant in adjacent sites, less in natural sites and least in developed sites (Fig. 2). Hypothesis 5: Considering all sites sampled fi sh taxonomic richness is equal at seawalls and natural large and small rocky surfaces. The proportions of dominant habitats in every level of development are illustrated in Figure 2, while Figure 4 shows the signifi cant differences in taxonomic fi sh richness (χ2 = 21.3, Df = 7, p = 0.003) across levels of development and main habitats. In detail, large vegetat- ed rocks are less species rich than bare concrete walls (p = 0.023) and small vegetated rocks are less species rich than vegetated concrete walls (p = 0.025), small bare rocks and large vegetated rocks are more species rich than small vegetated rocks (p = 0.032 and p = 0.004). Small bare rocks are less species rich than vegetation (p = 0.043). Fisher’s exact test for count data showed that the probability of observing dominant habitat groups is not infl uenced by the level of development equals p < 0.001. Tab. 2b: Ranking of the relative abundances of the four most abundant species according to site developmental status. Tab. 2b: Rangi abundance (relativna abundanca) za 4 najbolj pogoste vrste rib glede na tri stopnje razvoja (nat - naravno, adj - bližnje in dev - razvito okolje). Rank Coris julis Diplodus vulgaris Diplodus annularis Chromis chromis 1 adj 0.66 dev 0.32 dev 0.57 dev 0.35 2 dev 0.18 adj 0.41 adj 0.21 adj 0.41 3 nat 0.16 nat 0.28 nat 0.22 nat 0.24 Tab. 3: Taxonomic richness, Shannon’s diversity index, evenness and the effective number of species (richness) at each of the three levels of development. Tab. 3: Taksonomska pestrost, Shannonov diverzitetni indeks, indeks enakomernosti porazdelitve in efektivno število vrst (pestrost) na vsaki razvojni stopnji. Level of development Richness Diversity Evenness Effective richness natural 32 2.59 0.75 13 adjacent 34 2.43 0.69 11 developed 35 2.67 0.75 14 174 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 Hypothesis 6: Sites belonging to the same level of development will not cluster together based on the rela- tive abundance of the observed species. Sampling sites do not consistently cluster according to their association with one of the three developmental levels (Fig. 5). Neither do they consistently cluster by geographical closeness. Sites that are by defi nition geo- graphically very close, as are developed and adjacent sites, show no clear pattern of similarity. Some adjacent/ developed site-pairs are very far apart in the dendrogram, examples are adjacent and developed sites within loca- tions Zaton and Trogir. Others are as close as predicted in Bray distance, like within the location Muline (for geographical position of all locations see Tab. 1a). Natu- ral sites are not consistently clustering by geographical distance either. Natural sites in Slano and at U. Kobilijak are hundreds of kilometers of coastline apart but close in Bray distance, while natural sites in Tkon and U. Kablin which are both on the Island of Pašman are not close in Bray distance (Tab. 1a and Fig. 5). DISCUSSION We did not detect signifi cant differences in total fi sh abundance across sites of different development levels. Four species were signifi cantly more abundant than any of the other taxa. A rank abundance curve (Fig. 2) shows that the total combined abundance of these four spe- Tab. 4: Listed are all taxa that have been detected within this study and if they are unique for one or two levels of development. Tab. 4: Popis ugotovljenih vrst v raziskavi in njihova opredelitev, ali se pojavljajo v enem ali na dveh nivojih razvoja (DEV - razvito, ADJ – bližnje in NAT - naravno). Apogonidae Gobiidae Muraenidae Apim - Apogon imberbis (ADJ, DEV) Gobu - Gobius bucchichi Muhe - Muraena helena (NAT) Atherinidae Goco - Gobius cobitis Pomacentridae Atbo - Atherina spp. Gocr - Gobius cruentatus Chch - Chromis chromis Belonidae Goge - Gobius geniporus (DEV, NAT) Scorpaenidae Bebe - Belone belone Goni - Gobius niger (DEV) Scno - Scorpaena notata (ADJ, DEV) Blennidae Poma - Pomatoschistus marmoratus (NAT) Serranidae Sapa - Salaria pavo (ADJ) Labridae Seca - Serranus cabrilla Pain - Parablennius incognitus Coju - Coris julis Sehe - Serranus hepatus Paga - Parablennius gattorugine (ADJ, DEV) Lavi - Labrus viridis (ADJ) Sesc - Serranus scriba Paro - Parablennius rouxi Syci - Symphodus cinereus Sparidae Pasa - Parablennius sanguinolentus (ADJ, DEV) Sydo - Symphodus doderleini Bobo - Boops boops Pate - Parablennius tentacularis Symed - Symphodus mediterraneus Dian - Diplodus annularis Bothidae Symela - Symphodus melanocercus Dipu - Diplodus puntazzo Bopo - Bothus podas (ADJ, DEV) Syoc - Symphodus ocellatus Disa - Diplodus sargus Callionymidae Syroi - Symphodus roissali Divu - Diplodus vulgaris Capu - Callionymus pusillus Syros - Symphodus rostratus Limo - Lithognathus mormyrus (DEV, NAT) Centracanthidae Syti - Symphodus tinca Obme - Oblada melanura Spma - Spicara maena Thpa - Thalassoma pavo Sasa - Sarpa salpa Spsm - Spicara smaris (NAT, ADJ) Muglidae (unidentifi ed) Syte - Syngnathus sp. Mullidae Syty - Syngnathus typhle Muba - Mullus barbatus Trachinidae Musu - Mullus surmuletus (DEV, NAT) Trdr - Trachinus draco Tripterygiidae (unidentifi ed) 175 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 cies exceeded 900 individuals while the total combined abundance of the remaining species was lower than 700 individuals. Of these four species, D. annularis, D. vulgaris and C. julis are very mobile fi sh and known to be aggressive mesopredators (Kruschel & Schultz, 2012) while the fourth, C. chromis, is a schooling planktivore known to aggregate, when in the shallow waters, over transitions between rocks and sediments (Guidetti, 2000). We did discover differences in the relative abun- dance across developmental levels for these species. C. julis dominates rocky shores adjacent to developments where it is 3.9 times more abundant than in pristine and developed sites. As a wait-chase predator it may prefer the more frequent transitions from complex (vegetated rocks, vegetation) to more open habitats (bare rocks, sand) of which the adjacent sites offer more than the other two levels of development (Fig. 2). D. annularis is 2.7 times more abundant at developed than at natural sites. This seems surprising since developed sites offer less vegetation, especially P. oceanica. However, sea- walls sharply border sediments, bare or vegetated, often covered with the seagrass C. nodosa and neighboring rocks are small. This combination should be attractive to D. annularis, a species attracted to vegetation and sand but rarely seen on complex rocky-reef bottoms (Bauchot & Hureau, 1990; Macpherson, 1994; Froese & Pauly, 2012). D.vulgaris is also more abundant at developed sites than natural sites, indicating that sea- walls probably resemble rocky cliffs and larger boulder surfaces suffi ciently to attract this species and may offer less competition with the ecologically similar D. puntazzo and D. sargus, which are generally in popula- tion decline, especially in developed areas with higher local fi shing pressure. According to Sala and Ballesteros (1997) the three rocky-reef Diplodus species are known to coexist in pristine sites by differential habitat and depth preferences (D. vulgaris and D. sargus) but also by differential prey use within the same habitats and depths (D. vulgaris and D. puntazzo). It is likely that the decline of D. sargus and D. puntazzo due to overfi shing has released D. vulgaris from its competitive restric- tions. Likewise, C. chromis may prefer developed and adjacent sites because of the lower abundance of large piscivorous fi sh in heavier fi shed areas. Another reason for increased C. chromis in developed sites may be the greater availability of particulate organic matter (POM) in the water column, including plankton and anthropo- genic particles, e.g. from sewage and run-off, which is typical for areas with higher human population densities (Guidetti et al., 2002). We found no signifi cant differences in taxonomic richness, diversity or evenness across sites of different developmental level. Two obvious observations support this homogeneity across sites - they are all dominated by the same four species, resulting in similarly low even- ness and very few species are unique to a particular level of development. Almost all species are everywhere but in similarly low numbers, resulting in similar spe- cies richness and number of effective species. The overwhelming dominance by four species at all sites may indicate that natural sites are similarly degraded as developed sites by factors other than development so that some taxa have effectively been excluded while a few other species dominate all sites. Another reason for a relatively similar suite of taxa could be the negative Fig. 5: Dendrogram of taxonomical communities at the sampled sites based on pairwise Bray distances. Sl. 5: Dendrogram taksonomskih združb na raziskanih lokalitetah na temelju parnih Brayevih razdalj. Fig. 4: Fish taxonomic richness within major habitat types pooled across the 21 sites investigated. Sl. 4: Taksonomska pestrost rib v glavnih habitatnh tipih, združenih v 21 raziskanih lokalitetah. 176 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 method bias against observing cryptic and epibenthic species such as Gobiidae, Blenniidae and Tryterigiidae (Lipej & Orlando-Bonaca, 2006; Kovačić et al., 2012) in dense vegetation on rocks, of which there is more available in natural than in developed sites. Increasing dominance of small predators may be due to favourable habitat changes or because of predator/ competitor release and the associated trophic cascades. Trophic cascades have been extensively studied in tropical reefs with varying conclusions, e.g. Casey et al. (2017) found no evidence for it in the very complex Great Barrier Reef context, while Stier et al. (2017) found that overall abundance of taxa and the alpha di- versity were reduced as a result of top-predator loss and mesopredator release, although beta diversity remained unchanged. A recent publication by Nagelkerken et al. (2017) clearly shows that the collapse of large predator populations combined with resource enrichment can foster behavioural changes in already common meso- predators towards more aggressive risk-taking, eventu- ally resulting in a clear dominance by such taxa and an associated loss of biodiversity in the community. In short, predator loss and associated widespread disruptions of ‘normal’ species interactions signifi cantly reduces bio- diversity. The possibility of such complex scenarios has gotten less attention in the Mediterranean/Adriatic. We suspect that the three highly dominant mesopredators in our study, C. julis, D. vulgaris and D. annularis, may indicate a similar top-down/eutrophication mediated change in community structure in the Croatian Adriatic infralittoral belt. Yet, fi sh assemblages across developmental levels were not identical, 10% of the 52 identifi ed taxa were unique to one level of development and another 17% avoided one level of development. However, 62% of all species contributed less than 10 individuals across all sites (Fig. 2) so we must consider that detectability of all of these species is low and that total lack of ob- servation for any one species may indicate a general under-sampling, especially considering the relatively small overall area sampled. In general stationary lure methods are positively biased towards any mobile predators and negatively biased against any sedentary fi sh whereas mobile lure-methods do not have that bias (Murphy & Jenkins, 2010; Kruschel & Schultz, 2010 b). Every fi sh-census method, including all visual ones, is biased. There is intrinsic bias because of fi sh traits (size, colour, behaviour) especially in the context of habitat traits (complexity, color). Extrinsic bias is due to method specifi cs (Edgar et al., 2004; Lowry et al., 2012; Kruschel & Schultz, 2012). Guidetti et al. (2005) compared stationary and strip-transect visual-census methods at breakwaters and concluded that in very heterogene- ous habitats or at discrete structures such as seawalls and artifi cial reefs, point methods are more feasable. Harmelin Vivien et al. (1985) and Bohnsack & Bannerot (1986) concur with this preference. We generally agree with this view but recommend fi sh counts along short and random mobile lure-assisted transects (3-5 m) over stationary counts, because the former allow for a larger number of random and independent samples than the latter. Mobile short lure transects are less likely to result in errors due to species interferences and double counts, typical for the stationary counts. At the same time short mobile lure-transects allow the monitoring of behavioral differences e.g. in aggressivity, predation mode, and dominance. Random and short mobile lure-transects can be applied equally in homogeneous habitat patches and in heterogeneous habitat mosaics and within dis- crete areas (less than 100m) or across large sampling sites (> 1000 m) (Kruschel & Schultz, 2012). We found a few signifi cant differences in the relative proportions across the six main shared habitat types and some obvious trends across development levels (Fig. 2). All the main structural components are represented in all levels of development – large vegetated and bare rock surfaces, small vegetated and bare rock surfaces, vegetation on sand, and bare sand. The most signifi cant proportional differences between developed sites and adjacent/natural sites are due to the removal of the rocky reef by seawalls and the associated shortening of the investigated littoral slope between the shoreline and 7 m depth. However, we also found differences be- tween adjacent and natural sites. Adjacent sites harbor lower proportions of canopy vegetation as they have less large algae attached to rocks and boulders and less vegetation, algae and seagrass, anchored in sand. This difference between adjacent and pristine natural sites may be due to two major stressors in developed areas – higher incident of urchin barrens and low water clarity due to pollution and sediment mobilization at developed shores. In the scope of an extensive and long term visual-census throughout the Croatian Adriatic, we have observed urchin barrens everywhere at developed and pristine natural sites but we see an association with areas of high fi shing pressure causing a lack of urchin predation due to declining abundances of predators, e.g. D. sargus, D. putazzo, Sparus aurata (Guidetti & Dulčić, 2007; Rustici et al., 2017 and therein). Another trigger of urchin barrens seems to be nutrient pollution, probably due to the changes in algal composition from slow growing brown algae, e.g. Cystoseira species, to opportunistic fast growing algae, e.g. green algae, which may be more effi ciently digested by urchins (Piazzi & Ceccherelli, 2017 and therein). Both stressors, overfi sh- ing and nutrient rich waste water are higher in developed than in pristine locations. Fish species richness did differ across main habitat types: large vegetated boulders had signifi cantly fewer species than bare seawalls but did not differ in species richness from vegetated seawalls (Fig. 4). Considering that canopy vegetation on rock is the preferred habitat of various cryptobenthic fi sh, a more detailed study addressing the diffi culties of counting cryptobenthic 177 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 species within vegetation in a regular visual census should be considered to further test this hypothesis but we would recommend benign methods which are non- destructive to the habitat and non-consumptive to the fi shes (Orlando-Bonaca & Lipej, 2007; Kovačić et al., 2012). Overall, fi sh community structure based on relative abundances of all species differed very little between sites across three levels of development, and existing differences were not consistent across all sites. We also found no evidence that latitude (contra Guidetti & Dulčić, 2007) or smaller-scale geographical distances cause consistent similarity patterns. One reason for the lack of consistent and obvious differences between the extremes – pristine natural vs. seawall sites could be related to the fact that different communities can be ob- served at sheltered vs. wave exposed sides of seawalls. The landward, sheltered, seawall-side attracts different communities, including invasive species (Guidetti, 2004; Bulleri & Airoldi, 2005; Vaselli et al., 2008). The communities of the seaward and exposed side of a sea- wall are more similar to natural reefs than at the land- ward side with signifi cantly more D. vulgaris and less C. chromis and Oblada melanura (Clynick, 2006; Pizzolon et al., 2007). A multitude of yet not investigated factors, including fi shing intensity, natural predation intensities and other biological interactions, as well as details in habitat composition are possible candidates to interact, positively or negatively, with development-level effects. In this study we casually observed that the occurance and abundance of planktivorous fi sh, e.g. C. chromis and Atherina sp. strongly varied with wave exposure and the presence of particulate organic matter at seawall sites, while the presence of fi sherman discarding fi sh offal into the water at developed sites caused unusually high abundances of cruising predators and substrate-dwelling fi sh. These observations offer direct explanations why spatially close sites such as developed and adjacent sites may be unexpectedly dissimilar or too similar. The adjacent and developed (concrete wall) sites of North Prevlaka were similar most likely due to the unusual and widespread accumulation of POM, while the adjacent and developed sites of Lukoran were distinct from each other, most likely due to regular offal feedings as a point source pollution at the seawall site only. CONCLUSIONS Using a stationary lure results in observing higher fi sh abundance and taxonomic richness compared to the non-lure treatment, a result that corroborates the reports from previous mobile lure-assisted studies. We discovered little evidence that natural, adjacent and de- veloped sites support different fi sh communities, instead there was variability within all levels. We have reason to believe, that without gathering information about the quality and quantity of many other variables at each site, true differences in fi sh communities due to the level of development may remain masked. We also suggest to use a long-term monitoring approach to address hypoth- eses related to the impact of urbanization. Nevertheless, our study does not indicate that lightly developed sites typical of the Croatian Adriatic are obviously less likely to support typical Adriatic fi sh communities than more natural sites. 73% of the 52 taxa observed within this rel- atively small scale study were present at all investigated sites, but in low numbers. We suspect that overall fi sh communities become lower in evenness as top preda- tory fi sh taxa decline, which allows smaller and already widespread common mesopredators to dominate and become more aggressive. This predation/competition release and associated mesopredator increase in relative abundance is likely to have far reaching top-down effects on the entire community. To understand this and other region-wide declines, the interplay between fi shing pres- sure, habitat changes, eutrophication and interrupted species-interactions needs to be better understood in the Croatian Adriatic. Overall we conclude that the typi- cally small scale concrete wall developments embedded into expansive undeveloped shorelines, as targeted in this study, do not directly cause major disruptions of natural near-shore fi sh assemblages. They can instead provide additional structure that constitutes fi sh habitats and their presence is, according to our study, not associ- ated with a general local decline of fi sh richness in their immediate surrounding. 178 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 ALI SE RIBJE ZDRUŽBE NA LOKALITETAH Z BETONSKIMI STENAMI RAZLIKUJEJO OD TISTIH V NARAVNEM SKALNATEM OKOLJU? Claudia KRUSCHEL & Julia HARRAS University of Zadar, Department of Ecology, Agronomy and Aquaculture & CIMMAR – Center for Interdisciplinary Marine and Maritime Research, 23000 Zadar, Croatia e-mail: ckrusche@unizd.hr Irmgard BLINDOW Biological Station Hiddensee, Ernst-Moritz Arndt University Greifswald, Biologenweg 15, 18565 Kloster/Hiddensee, Germany Stewart T. SCHULTZ University of Zadar, Department of Ecology, Agronomy and Aquaculture & CIMMAR – Center for Interdisciplinary Marine and Maritime Research, 23000 Zadar, Croatia POVZETEK Urbani razvoj zmanjšuje biodiverziteto. Po ovrednotenju opazovalnih metod z uporabo vabe smo nadaljevali s testiranjem hipoteze, da se struktura ribje združbe spremeni, ko naravno in raznoliko skalnato okolje nadomestijo manj kompleksne navpične trdne površine. Taksonomske ribje kazalce, pridobljene z naravnega skalnatega okolja, smo primerjali s tistimi iz okolja betonskiih sten ter naravnimi skalnatimi okolji, ki mejijo na razvojno spremembo. Ribje združbe so se med lokalitetami s tremi različnimi fazami razvoja le malo razlikovale, poleg tega pa te razlike niso bile ugotovljene na vseh lokalitetah. Avtorji menijo, da v hrvaškem delu Jadrana značilne navpične betonske stene manjših razsežnosti ne povzročajo večjih motenj v obrežnih ribjih združbah. Ključne besede: ribja združba, opazovalni census z uporabo vabe, skalnato dno, betonske stene, urbanizacija, plenilski vpliv 179 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 REFERENCES Airoldi, L. & F. Bulleri (2011): Anthropogenic dis- turbance can determine the magnitude of opportunistic species responses on marine urban infrastructures. PLoS ONE, 6(8), 1-9. Bauchot, M. L. & J. C. Hureau (1990): Sparidae. In: Quero J. C., J.-C.Hureau. C. Karrer, A. Post & Saldanha L. (1990): Check-list of the fi shes of the eastern tropical Atlantic (CLOFETA).JNICT: Lisbon, SEI: Paris and UN- ESCO: Paris, 2, 790-812. Bohnsack, J.A. & S.P. Bannerot (1986): A Stationary Visual Census Technique for Quantitatively Assessing Community Structure of Coral Reef Fishes. In: NOAA Technical Report NMFS. National Marine Fisheries Service, 41, 1-15. Bulleri, F. (2005): Role of recruitment in causing differences between intertidal assemblages on seawalls and rocky shores. Mar. Ecol. Prog. Ser., 287, 53-65. Bulleri, F. (2006): Is it time for urban ecology to include the marine realm? Trends Ecol. Evol., 21(12), 658-659. Bulleri, F. & M.G. Chapman (2004): Intertidal assem- blages on artifi cial and natural habitats in marinas on the north-west coast of Italy. Mar. Biol., 145, 381-391. Bulleri, F. & L. Airoldi (2005): Artifi cial marine struc- tures facilitate the spread of a nonindigenous green alga, Codium fragile ssp. tomentosoides, in the North Adriatic Sea. J. Appl. Ecol., 42, 1063-1072. Bulleri, F. & Chapman M. G. (2010): The introduc- tion of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol., 47, 26-35. Bulleri, F., M.G. Chapman & A.J. Underwood (2004): Patterns of movement of the limpet Cellana tramoserica on rocky shores and retaining seawalls. Mar. Ecol. Prog. Ser., 281, 121-129. Bulleri, F., M.G. Chapman & A.J. Underwood (2005): Intertidal assemblages on seawalls and vertical rocky shores in Sydney Harbour, Australia. Austral Ecol., 30, 655-667. Bulleri, F., A.J. Underwood & L. Benedetti-Cecchi (2007): The assessment and interpretation of ecological impacts in human-dominated environments. Environ. Conserv., 34(3), 181-182. Camargo, J. A. (1995): On measuring species even- ness and other associated parameters of community structure. Oikos, 74(3), 538-542. Casey, J., A.H. Baird, S.J. Brandl, M.O. Hoogenboom, J.R. Rizzari & A.J. Frisch (2017): A test of trophic theory: fi sh and benthic assemblages across a predator density gradient on coral reefs. Oecologija, 183(1), 161-175. Chapman, M.G. & F. Bulleri (2003): Intertidal sea- walls - new features of landscape in intertidal environ- ments. Landscape Urban Plan., 62(3), 159-172. Clynick, B.G. (2006): Assemblages of fi sh associated with coastal marinas in north-western Italy. J. Marine Biol. Assoc. UK, 86, 847-852. Clynick, B.G., M.G. Chapman & A.J. Underwood (2007): Effects of epibiota on assemblages of fi sh associ- ated with urban structures. Mar. Ecol. Prog. Ser., 332, 201-210. Clynick, B.G., M.G. Chapman & A.J. Underwood (2008): Fish assemblages associated with urban struc- tures and natural reefs in Sydney, Australia. Austral Ecol., 33, 140-150. Clynick, B.G., D. Blockey & M.G. Chapman (2009): Anthropogenic changes in patterns of diversity on hard substrata: an Overview. In M.Wahl (eds) Marine hard bottom communities. Ecological studies (Analysis and Synthesis), vol 206, Springer, Berlin, Heidelberg, p. 247- 256. Connell, S.D. & T.M. Glasby (1999): Do urban structures infl uence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res., 47, 373-387. Di Franco, A., M. Graziano, G. Franzitta, S. Felline, R. Chemello & M. Milazzo (2011): Do small marinas drive habitat specifi c impacts? A case study from Medi- terranean Sea. Mar. Pollut. Bull., 62, 926-933. Edgar, G.J., N.S. Barrett & A.J. Morton (2004): Bi- ases associated with the use of underwater visual census techniques to quantify the density and size-structure of fi sh populations. Journal of Experimental Mar. Biol. Ecol., 308, 269-290. Froese, R. & Pauly D. (2012): FishBase (Version 02/2012) [online publication]. www.fi shbase.org. 10/10/2012. Guidetti, P. (2004): Fish assemblages associated with coastal defense structures in south-western Italy (Mediterranean Sea). Journal of the Mar. Biol. Assoc.UK, 84, 669-670. Guidetti, P. & J. Dulčić (2007): Relationships among predatory fi sh, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient. Mar. Environ. Res., 63, 168-84. Guidetti, P., G. Franelli, S: Fraschetti, A. Terlizzi & F. Boero, (2002): Coastal fi sh indicate human-induced changes in the Mediterranean littoral. Mar. Environ. Res. 53, 77-94. Guidetti, P., C. Verginella, C. Viva, & R. Odorico (2005): Protection effects on fi sh assemblages, and comparison of two visual census techniques in shallow rocky habitats in the northern Adriatic Sea. J.Mar. Biol. Assoc. UK, 2, 247-255. Harmelin-Vivien, M.L., J.G. Harmelin, C. Chauvet, C. Duval, R. Galzin, P. Lejeune, G. Barnebe, F. Clanc, R. Chevalier, J. Duclerc, & G. Lasserre (1985): Evalua- tion visuelle des peuplements et populations de pois- sons. Methodes et problemes. Revue Ecologie (La Terre La Vie), 40, 467-539. Jenkins, G. P. & M.J. Wheatley (1998): The infl uence of habitat structure on nearshore fi sh assemblages in a 180 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 Claudia KRUSCHEL et al.: DO FISH ASSEMBLAGES AT SITES FEATURING MAN-MADE CONCRETE WALLS DIFFER ..., 167–180 southern Australian embayment: Comparison of shallow seagrass, reef-algal and unvegetated sand habitats, with emphasis on their importance to recruitment. J. Exp. Mar. Biol. Ecol., 221, 147-172. Kovačić, M., R.A. Patzner & U. Schliewen (2012): A fi rst quantitative assessment of the ecology of crypto- benthic fi shes in the Mediterranean Sea. Mar. Biol., 159(12), 2731-2742. Kruger, M. & N.A. Strydom (2010): Spatial and Temporal Variability in the Larval Fish Assemblage of a warm temperate South African estuary, with notes on the effects of artifi cial channelling. Afr. Zool., 45(2), 195-212. Kruschel, C. & S.T. Schultz (2010 a): Relationship between macrofaunal diversity and habitat diversity in a Central Croatian Adriatic lagoon. Annales Series Historia Naturalis, 20, 1-14. Kruschel, C. & S.T. Schultz (2010 b): Lure-assisted visual census: a new method for quantifying fi sh abun- dance, behaviour, and predation risk in shallow coastal habitats. Mar. Freshwater Res., 61, 1249-1359. Kruschel, C. & S.T. Schultz (2012): Use of a lure in visual census signifi cantly improves probability of de- tecting wait-ambushing and fast cruising predatory fi sh. Fish. Res., 123-124, 70-77. Lipej, L. & M. Orlando-Bonaca (2006): Assessing blennioid fi sh populations in the shallow Gulf of Trieste: a comparison of four in situ methods. Periodicum Bi- ologorum, 108(2), 151-157. Lowry, M., H. Folop, M. Gregson & I. Suthers. (2012): Comparison of baited remote underwater video (BRUV) and underwater visual census (UVC) for assess- ment of artifi cial reefs in estuaries. J. of Exp. Mar. Biol. Ecol., 416-417, 243-253. Macpherson, E. (1994): Substrate utilisation in a Mediterranean littoral fi sh community. Mar. Ecol. Prog. Ser., 114, 211-218. Moreira, J. M., M.G. Chapman & A.J. Underwood (2006): Seawalls do not sustain viable populations of limpets. Mar. Ecol. Prog. Ser., 322, 179-188. Moschella, P.S., M. Abbiati, P. Aberg, L. Airoldi, J.M. Anderson, F. Bacchiocchi, F. Bulleri, G.E. Dinesen, M. Frost, E. Gacia, L. Granhag, P. R. Jonsson R., M. P. Satta, A. Sundelof, R.C. Thompson & S. J. Hawkins (2005): Low-crested coastal defense structures as artifi cial habi- tats for marine life: Using ecological criteria in design. Coast. Eng., 52(10-11), 1053-1071. Murphy, H. M. & G.P. Jenkins (2010): Observational methods used in marine spatial monitoring of fi shes and associated habitats: a review. Mar. Fresh. Res., 61, 236- 252. Nagelkerken, I., S. Goldenberg, C. Ferreira, D. Rus- sel. & S.D. Connell (2017): Species interactions drive fi sh biodiversity loss in a high CO2 world. Curr. Biol., 27(14), 2177-2184. Orlando-Bonaca, M. & L. Lipej (2007): Microhabitat preference and depth distribution of comtooth blennies (Blennidae) in the Gulf of Trieste (Northern Adriatic Sea). Mar. Ecol., 28, 418-428. Pizzolon, M., E. Cenci & C. Mazzoldi (2007): The onset of colonization in a coastal defense structure (Chiogga, Northern Adriatic Sea) Estuar. Coast. Shelf S., 78(1), 166-178. Piazzi, L. & G. Ceccherelli (2017): Concomitance of oligotrophy and low grazing pressure is essential for the resilience of Mediterranean subtidal forests. Mar. Pollut. Bull. 123(1-2), 197-204. Rustici, M., G. Ceccherelli & L. Piazzi (2017): Preda- tor exploitation and sea urchin bistability: Consequence on benthic alternative states. Ecol. Model., 344, 1-5. Rooker, J.R., Q.R. Dokken, C. . Pattengill & G.J. Holt (1997): Fish assemblages on artifi cial and natural reefs in the Flower Garden Banks National Marine Sanctuary, USA. Coral Reefs, 16(2), 83-92. Sala, E & E. Ballesteros (1997): Partitioning of space and food resources by the three fi sh in the genus Dip- lodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Mar. Ecol. Progr, Ser., 152, 273-283. Sala, E., E. Ballesteros, P. Dendrinos, A. Di Franco, F. Ferretti, D. Foley, S. Fraschetti, A. Friedlander, J. Garrabou, H. Güçlüsoy, P. Guidetti, B. S. Halpern, B. Hereu, A. A. Karamanlidis, Z. Kizilkaya, E. Macpherson, L. Mangialajo, S. Mariani, F. Micheli, A. Pais, K. Riser, A. A. Rosenberg, M. Sales, K. A. Selkoe, R. Starr, F. Tomas, F. Mikel & M. Zabala, (2012): The structure of Mediter- ranean Rocky Reef Ecosystems across Environmmental and Human Gradients and Conversation Implications. PLoS ONE, 7(2). Stier, A.C., C.D. Stallings, J.F. Samhouri, M.A. Al- bins, & G.R. Almany (2017): Biodiversity effects of the predation gauntlet. Coral Reefs, 36(2), 601-606. Vaselli, S., F. Bulleri & L. Benedetti-Cecchi (2008): Hard coastal-defense structures as habitats for native and exotic rocky-bottom species. Mar. Environ. Res., 66, 395-403. DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS 183 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 PIRAN HOSTED THE ELITE OF MARINE BIOLOGISTS What stimulated a British citizen from the small Ascension Island, lost somewhere halfway between southern America and southern Africa, to attend the Eu- ropean Marine Biology Symposium (EMBS), organized in Piran in September 2017? Especially when he already knew that he would have to defeat 10 days of navigation to the Republic of South Africa and then another day or two by air and road transport to reach the venue. And then repeat the same odyssey to return home. He practically spent almost one entire month of trip for 15 minutes of lectures in the congress hall at Grand Hotel Bernardin, on the Slovenian coast. But dr. Andy Richard- son is not anyone. He is a lovely British guy who gave up his life in the kingdom to explore the sea around the remote island. At the symposium he presented the results of several years of research on the Blue marlin, a sword- -like fi sh, living in the central Atlantic. He fascinated the audience with an extraordinary presentation of his work and, of course, his enthusiasm for which there is clearly no limit, not in time nor in distance. And fortunately at the symposium in Piran, dr. Richardson was not the only such enthusiastic researcher, they were plenty. The Marine Biology Station of the National Institute of Biology of Slovenia organized the 52nd EMBS, the largest of its kind in Europe and one of the largest for biologists in the world. A great week for socializing with European colleagues, and also with researchers from other countries, such as Australia, Canada, South Africa, Israel, China, Brazil, Mexico, USA, Algeria, Turkey, Thailand, Tunisia, Chile, Japan, Taiwan, New Zealand, Saudi Arabia, New Caledonia and Colombia, who proved that science today is a global matter. At the symposium, researchers had the opportunity to become acquainted with current contents, new approaches and techniques, and in particular to establish new cooperati- on in research, projects and exchanges of students. The congress was organized in several modern thematic sections, such as marine symbiosis, imaging in marine biology, benthic-pelagic coupling, marine metagenomics, and mesophotic ecosystems. By far the most extensive part was covered by the general section. DELO NAŠIH ZAVODOV IN DRUŠTEV, 183-185 Dr. Andy Richardson presenting the results of several years of research on the Blue marlin living in the central Atlantic (photo: Anja Šimon). 184 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 LETNO SREČANJE MEDNARODNE ORGANIZACIJE ZA VODNE PTICE THE WATERBIRD SOCIETY (WA- TERBIRD SOCIETY ANNUAL MEETING, REYKJAVIK, ICELAND, AUGUST 8-12 2017) Od 8. do 12. avgusta 2017 je v Univerzitetnem središču Askja (po istoimenskem vulkanu) v Reykjaviku na Islandiji potekalo mednarodno srečanje strokovnja- kov za vodne ptice z naslovom »The Waterbird Society Annual Meeting«. Gre za že 41. Srečanje mednarodne organizacije Waterbird Society s sedežem v ZDA. Orga- nizacija Waterbird Society je mednarodna znanstvena, nevladna organizacija, katere cilj je proučevanje in varovanje vodnih ptic. Srečanja smo se udeležili sodelavci iz Krajisnkega parka Sečoveljske soline (KPSS) v okviru Programa Finančnega mehanizma EGP 200-2014 (SI02), CARS- OUT! Okoljsko prijazen obisk zavarovanih območij in Programa Norveškega fi nančnega mehanizma (SI05). V treh delovnih dneh je bilo kar 92 predavanj, od tega dve plenarni. Predstavljenih je bilo tudi 24 prispev- kov na posterjih, med njimi tudi prispevek I. Škornika »Status, distribution and threats of fi ve breeding species in Sečovlje Salina Nature Park: prescription of biodiversi- ty conservation for the area.« Predavanja so potekala sočasno v treh dvoranah. Odvijala so se v sklopu simpozija o galebih in simpozija o mormonu. Obenem so potekala tudi druga predavanja na temo prehranjevanja, selitve, oglašanja, kartirnih popisov, populacijskih trendov, telemetrije, itd. Nadvse poučne so bile strokovne ekskurzije, ki so bile organizirane za udeležence simpozija. Tri ekskur- zije so bile krajše, saj smo jih izvedli zgodaj zjutraj pred samim začetkom predavanj, zadnja ekskurzija pa je bila celodnevna. Prvi dan simpozija smo začeli z zgodnje jutranjo ekskurzijo v Alftanes. Drugi dan smo s čolnom odpluli do otoka Puffi n Island, kjer smo občudovali kolonijo mormonov (Fratercula arctica) in drugih morskih ptic. Zadnja jutranja ekskurzija je bila v Seltjarnarnes, kjer je bilo kljub vetru in mrazu veliko zanimivih vrst. S celodnevno ekskurzijo na polotok Snæfellsnes pa se je končala ornitološka konferenca Waterbirds 2017. Dežela vulkanov je presenetila tudi v ornitološkem pogledu. Tisočere jate pobrežnikov, ki se pripravljajo na svoj odhod, obrežja polna rac, arktične čigre, kolonije triprstih galebov, ki se s svojimi mladiči gnetejo na ozkih skalnih policah strmega klifa tik nad fjordom so le del bogastva, ki smo ga lahko občudovali. Spoznali smo kako se Islandci spopadajo It would be too unfair to expose individual researchers, since there were many exceptional presentations. The participants were received also by the mayor of Piran, Peter Bossman, with a pleasant speech about the beauties of his town and a feast, and he did not forget to promote the visit to the center and to the Sečovlje salt pans. The guests then visited the Sečovlje Salina Nature Park during an organized excursion in the only free afternoon. The researchers of the Marine Biology Station Piran organized also the traditional Yellow Submarine compe- tition on the beach, where younger generations compe- ted in fun games, such as sampling of marine organisms and sediments, while the older ones cheered aloud. There was also a social dinner at the Vinakoper, where the participants had the opportunity to learn more about the tastes of local gastronomy and oenological peculia- rities. This event was also used by the organizers to grant fi nancial awards for the four best poster presentations of young researchers. The winner was a lovely biologist from Saudi Arabia. At the symposium biologists listened to ideas for new researches, they brought new ties, basics for cooperati- on, and some of the lecturers also made them laugh out loud. This is the case of the Croatian professor, dr. Peter Kružić, who fi nished the lecture on coral bleaching in the Adriatic Sea with a photograph of the winning Slo- venian national basketball team, triggering a hurricane applause in the hall and warming the heart of Slovenian researchers. The organization of such symposium is defi nitely Sisyphus’s work. For the fi rst time Slovenia hosted a pan-European congress of this magnitude. For this su- ccess, the merits are of a great crowd of people, part of the organizing and scientifi c committees, which were preparing for the congress for almost a year and a half. Acknowledgment goes also to various local sponsors, who helped the organizers in giving to the participants of the 52nd EMBS nice memories to take home. The Ma- rine Biology Station Piran passed the relay to the next organizer of the EMBS, the Flanders Marine Institute in Oostende, Belgium. Lovrenc Lipej & Martina Orlando-Bonaca DELO NAŠIH ZAVODOV IN DRUŠTEV, 183-185 185 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 DELO NAŠIH ZAVODOV IN DRUŠTEV, 183-185 z naravovarstvenimi problemi, kaj za njihovo naravno dediščino pomeni turizem in obiskovanje ter dostop- nost do zavarovanih območij. Iztok Škornik KPSS-SOLINE Pridelava soli d.o.o. Sl. 1: Udeleženci srečanja so imeli priložnost spoznati posebnosti islandske biodiverzitete (Foto: I. Škornik). Sl. 2: Triprsti galeb (Rissa tridactyla) (Foto: I. Škornik). OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS 189 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 OCENE IN POROČILA, 189-190 Book review: TOURISM IN PROTECTED AREAS OF NATURE IN SERBIA AND SLOVENIA Editors: Dejan Filipović, Anton Gosar, Miha Koderman, Snežana Đurđić University of Belgrade – Faculty of Geography, 2017, 183 pp. ISBN 978-86-6283-053-1 Just recently I had a conversation with one of my former colleagues at the Triglav National Park - where I used to work - and he complained to me saying »I’m really fed up with this schizophrenic situation«. I needed no further explanation of his »anxiety« as I know the reason for it lies in problems common to the majority, if not all, of protected areas (PA) management author- ities (MA). The main purpose and task of the protected areas MA is of course to safeguard ecosystems, species and habitats, and to preserve the traditional cultural landscape of the area. But on the other hand (with an exception of the IUCN category 1), the majority of them also have the duty to promote the sustainable develop- ment of local communities. Sustainable agriculture and sustainable tourism are in this regard the most common denominators of protected areas development strategies. Sustainable tourism in protected areas - what a “fancy” idea - so easy to imagine, so diffi cult to realize. The green dots and areas on tourist maps attract a rapidly increasing number of visitors every year (e.g. 40% of visitors to Slovenia), and tourism and recreation-related industries take advantage of this growth. New types of visits are being introduced so rapidly that MAs can hard- ly follow. Consequently, they are in continuous search of the »right« balance between nature conservation, man- agement of tourist fl ows, and sustainable development of the areas involved. Anything but a simple task. The book presented here tackles also some of the above mentioned issues. It is a collection of scientifi c papers delivered as a result of bilateral project »Inte- grated approach to tourism development in protected areas - Experiences of Serbia and Slovenia« between the University of Belgrade - Faculty of Geography and the University of Primorska, Faculty of Tourism Stud- ies - Turistica. The fi rst three papers deal with general arrangements on the level of legislation, international standards, and national planning systems, with a special attention on tourism-related activities, regulations and spatial planning. Andrej Sovinc presents a general over- view of the management objectives of protected areas of different categories as defi ned by the IUCN international standards. More specifi cally, his focus is on limitations, possibilities, and ambiguities in planning tourism ac- tivities in National (IUCN 2) and Landscape parks (5). Anton Gosar presents the selected cases of differences and (in)consistencies between the objectives of pro- tected areas as set by IUCN standard classifi cation and Slovenian general Law of Nature Protection. Moreover, he illustrates two cases where even in the central area of the Triglav national park strict rules are not followed: the case of second homes, and the »famous« case of the Pokljuka Sport Center. As for the Serbian side, Dejan Filipović presents the spatial planning system in the Re- public of Serbia, with special emphasis on integration of protected areas objectives in the spatial planning docu- ments at different hierarchical levels. As he concludes, it is necessary to increase the coverage of protected areas by planning documents with a long-term perspective in order to achieve more effi cient measures of protection. The majority (6) of other papers deal with issues of the current state of tourism development, most of them focusing on potentials, constraints, and prospects of sustainable tourism development in the selected protected areas of Slovenia and Serbia. Although the paper delivered by Dobrica Jovičić doesn’t exactly fi t into this book, it nevertheless brings a valuable insight into general socio-economic aspects of the recent tourism development trends in Serbia (including few notes on ecotourism potentials). Her conclusion is that tourism in Serbia is not yet developing in line with gen- eral sustainable development objectives and guidelines. Snežana Đurđić on the other hand explores potentials and constraints of ecotourism development in four macro-regions (»clusters«) of Serbia: Vojvodina, Bel- grade area, Western and Eastern Serbia. Ecotourism as a particularly suitable form of tourism offer in protected areas is only in the initial phase of organization, but the ambiguous and even »confl ict« relations between tour- ism development and nature conservation have already emerged. Marija Belij highlights potentials of cultural tourism development in Serbian national parks, mainly by describing cultural heritage assets of the three NP under consideration. She points out that many of them have not yet undergone adequate protective measures. The next two papers present interesting case-studies from the Slovenian coast. Dane Podmenik and Simon Kerma explore potentials for ecotourism development in the Dragonja valley, an area in the hinterland where a nature park is to be (?) established. After interpreting the selected extensive fi eld work data, the authors summa- rize conclusions in the form of a SWOT analysis table. Lovrenc Lipej and Simon Kerma present an overview of the existing and potential tourist offer linked to biodi- versity in the protected areas on the Slovenian coast. They point out some of the nature and history-based po- tentials that have so far been overlooked in the current coastal tourism offer. Maja Sevšek and Irma Potočnik Slavec examine local inhabitants’ involvement in the tourism related development of the Landscape Park Kum. Drawing upon a fi eld survey, they conclude that a more participative management of the PA is necessary in order to stimulate stronger sustainable development of the area. Last but not the least, two papers dealing with the issue of the second home phenomenon in the pro- tected areas in Serbia and Slovenia are included. Sanja Pavlović presents an overview of the development of the 190 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 so-called »weekend cottages« and settlements in eight protected areas in Serbia, while Miha Koderman focuses on the Triglav national park, and the settlement Goreljek that lies within it. The presence of »weekend cottages« can and does have positive impacts on socio-economic development and landscape preservation in protected areas, however, at the same time it can and it does bring negative effects to those areas as well. To conclude, the book is a very valuable collection of papers dealing with diverse topics and perspectives on the development of tourism in protected areas in general, and in the selected case-study areas. The majority of contributions focus on unrealized potentials of tourism development in PA. Hopefully, in the near future an opportunity will arise to examine the existing tourist offer and fl ows, and the related question of how to or how not to deal with them. Beside the wish of the editors of this collection to foster communication between diverse actors and stakeholders, this could also serve as an effective pill for the above mentioned PA managers’ “schizophrenia”. Matej Vranješ Nova Gorica, Slovenia (tu pride naslovnica) OCENE IN POROČILA, 189-190 ANNALES · Ser. hist. nat. · 27 · 2017 · 2 191 NAVODILA AVTORJEM 1. Revija ANNALES (Anali za istrske in mediteranske študije Series historia naturalis) objavlja izvirne znanstve- ne in pregledne članke z naravoslovnimi vsebinami, ki obravnavajo posebnosti različnih podpodročij sredozem- skega naravoslovja: morska biologija in ekologija, ihtio- logija, geologija s paleontologijo, krasoslovje, oljkarstvo, biodiverziteta Slovenije, varstvo narave, onesnaževanje in varstvo okolja, fi zična geografi ja Istre in Mediterana idr. Vključujejo pa tudi krajše znanstvene prispevke o zaključenih raziskovanjih., ki se nanašajo na omenjeno področje. 2. Sprejemamo članke v angleškem, slovenskem in italijanskem jeziku. Avtorji morajo zagotoviti jezikovno neoporečnost besedil, uredništvo pa ima pravico članke dodatno jezikovno lektorirati. 3. Članki naj obsegajo do 48.000 znakov brez pre- sledkov oz. 2 avtorski poli besedila. Članek je mogoče oddati na e-naslov annales@mbss.org (zaželjeno) ali na elektronskem nosilcu (CD) po pošti na naslov uredništva. Avtor ob oddaji članka zagotavlja, da članek še ni bil objavljen in se obvezuje, da ga ne bo objavil drugje. 4. Naslovna stran članka naj vsebuje naslov članka, ime in priimek avtorja (avtorjev), ime in naslov inštitucije, kjer je (so) avtor(ji) zaposlen(i) oz. domači naslov in na- slovom elektronske pošte (samo prvi oz. korespondenčni avtor). 5. Članek mora vsebovati povzetek in izvleček. Izvle- ček je krajši (cca. 10 vrstic) od povzetka (cca. 30 vrstic). V izvlečku na kratko opišemo namen, metode dela in rezultate. Izvleček naj ne vsebuje komentarjev in priporočil. Povzetek vsebuje opis namena in metod dela ter po- vzame analizo oziroma interpretacijo rezultatov. V pov- zetku ne sme biti ničesar, česar glavno besedilo ne vse- buje. V povzetku se avtor ne sklicuje na slike, tabele in reference, ki so v članku. 6. Avtorji naj pod izvleček članka pripišejo ustrezne ključne besede (največ 6). Zaželjeni so tudi angleški (ali slovenski) prevodi izvlečka, povzetka, ključnih besed, podnapisov k slikovnemu in tabelarnemu gradivu. V na- sprotnem primeru bo za prevode poskrbelo uredništvo. 7. Glavni del besedila naj vključuje sledeča poglavja: Uvod, Material in metode, Rezultati, Razprava ali Rezul- tati in razprava, Zaključki (ali Sklepi), Zahvala (če avtor želi), Literatura. Dele besedila je možno oblikovati v pod- poglavja (npr. Pregled dosedanjih objav v Uvodu, Opis območja raziskav v Material in metode). Podpisi k slikam so priloženi posebej za poglavjem Literatura. 8. Tabele avtor priravi posebej na ločenih straneh v programu Word, tako kot rokopis, jih zaporedno oštevilči in opremi z naslovom – kratkim opisom. V glavnem delu besedila se sklicuje na tabele tako, da jih na ustreznem mestu označi z npr. “(Tab. 1)”. 9. Slikovno gradivo (grafi , zemljevidi, fotografi je, table) avtor posreduje v ločenih datotekah (jpeg, tiff) z najmanj 300 dpi resolucije pri želeni velikosti. Največja velikost slikovnega gradiva je 17x20 cm. Vsa potrebna dovoljenja za objavo slikovnega gradiva (v skladu z Za- konom o avtorski in sorodnih pravicah) priskrbi avtor sam in jih predloži uredništvu pred objavo članka. Slike je po- trebno tudi podnasloviti in zaporedno oštevilčiti (glej toč- ko 7). V glavnem delu besedila se avtor sklicuje na slike tako, da jih na ustreznem mestu označi z npr. “(Sl. 1)”. 10. Bibliografske opombe, s čimer mislimo na citat – torej sklicevanje na druge publikacije, sestavljajo na- slednji podatki v oklepaju: avtor in leto izida; npr. (No- vak, 2007). Če sta dva avtorja, se izpišeta oba (Novak & Kranjc, 2001), če so trije ali več pa se izpiše samo prvi, ki mu sledi okrajšava et al. (Novak et al., 1999). Več citatov je med seboj ločenih s podpičjem in si sledijo kronološko - z naraščajočo letnico izdaje, npr. (Novak et al., 1999; Adamič, 2001; Kranjc & Zupan, 2007). Osebno informa- cijo (ustno, pisno) izpišemo prav tako v oklepaju z naved- bo kratice imena in priimka posredovalca informacije, za vejico pa dodamo “osebno sporočilo”, npr. (J. Novak, osebno sporočilo). 11. Celotni bibliografski podatki so navedeni v po- glavju Literatura v abecednem vrstnem redu. Pri tem avtor navede izključno dela, ki jih je v članku citiral. Če ima isti avtor več bibliografskih podatkov, se najprej kronološko izpišejo tisti, kjer je edini avtor, sledijo dela v soavtorstavu še z enim avtorjem in dela v soavtorstvu z več avtorji. Imena revij, v katerih so izšla citirana dela, se izpišejo okrajašano (splošno priznane okrajšave re- vij). Članki, ki še niso bili publicirani, se lahko citirajo le, če so bili dokončno sprejeti v tisk, pri čemer se na koncu bibliografskega podatka doda beseda “v tisku”. Člankov, ki so šele bili poslani v recenzijo, se ne sme citirati. Primeri navajanje različnih tipov bibliografskih podat- kov: članki v revijah: Klock, J.-H., A. Wieland, R. Seifert & W. Michaelis (2007): Extracellular polymeric substances (EPS) from cyanobac- terial mats: characterisation and isolation method optimi- sation. Mar. Biol., 152, 1077-1085. Knjige in druge neserijske publikacije (poročila, di- plomska dela, doktorske disertacije): Wheeler, A. (1969): The fi shes of the British Isles and North-West Europe. McMillan, London, 613 p. ANNALES · Ser. hist. nat. · 27 · 2017 · 2 192 Poglavje v knjigi: McEachran, J. D. & C. Capapé (1984): Myliobatidae. In: Whitehead, P. J. P., M. L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 1. Unesco, Paris, pp. 205- 209. 12. Drugo: latinski izrazi kot npr. in vivo, in situ, e.g., i.e., ter rodovna (Myliobatis sp.) in vrstna (Myliobatis aqui- la) imena se izpišejo v fontu italic. Kadarkoli je možno, se uporabljajo enote iz sistema SI (Système international d'unités). 13. Prvi odtis člankov uredništvo pošlje avtorjem v korekturo. Avtorji so dolžni popravljeno gradivo vrniti v enem tednu. Besedilo popravljamo s korekturnimi zna- menji, ki jih najdemo na koncu Slovenskega pravopisa (2001), Ljubljana, ZRC SAZU, 24–25. Širjenje obsega besedila ob korekturah ni dovoljeno. Druge korekture opravi uredništvo. 14. Za dodatna pojasnila v zvezi z objavo člankov je uredništvo na voljo. UREDNIŠTVO ANNALES · Ser. hist. nat. · 27 · 2017 · 2 193 ISTRUZIONI PER GLI AUTORI 1. La rivista ANNALES (Annali per gli studi istriani e mediterranei, Series historia naturalis) pubblica articoli scientifi ci originali e compendii dai contenuti scientifi - ci relativi ai vari settori della storia naturale e pertinen- ti l’area geografi ca del Mediterraneo: biologia marina, ecologia, ittiologia, geologia, paleontologia, carsologia, olivicoltura, biodiversità della Slovenia, tutela della natu- ra, inquinamento e tutela dell’ambiente, geografi a fi sica dell’Istria e del Mediterraneo ecc. La rivista pubblica an- che articoli scientifi ci brevi relativi a ricerche concluse pertinenti a tali settori. 2. La Redazione accetta articoli in lingua inglese, slo- vena e italiana. Gli autori devono garantire l’ineccepibi- lità linguistica dei testi, la Redazione si riserva il diritto di una revisione linguistica. 3. Gli articoli devono essere di lunghezza non su- periore alle 48.000 battute senza spazi, ovvero 2 fogli d’autore. Possono venir recapitati all’indirizzo di posta elettronica annales@mbss.org (preferibilmente) oppure su supporto elettronico (CD) per posta ordinaria all’indirizzo della Redazione. L’autore garantirà l’originalità dell’articolo e si impe- gnerà a non pubblicarlo altrove. 4. Ogni articolo deve essere corredato da: titolo, nome e cognome dell’autore (autori), denominazione ed indirizzo dell’ente di appartenenza o, in alternativa, l’indirizzo di casa, nonché l’indirizzo di posta elettronica (solo del primo autore o dell’autore di corrispondenza). 5. I contributi devono essere corredati da un riassunto e da una sintesi. Quest’ultima sarà più breve (cca. 10 ri- ghe) del riassunto (cca 30 righe). Nella sintesi si descriveranno brevemente lo scopo, i metodi e i risultati delle ricerche. La sintesi non deve contenere commenti e segnalazioni. Il riassunto riporterà in maniera sintetica lo scopo, i metodi delle ricerche e l’analisi ossia l’interpretazione dei risultati. Il riassunto non deve riferirsi alle tabelle, fi - gure e alla bibliografi a contenuta nell’articolo. 6. Gli autori sono tenuti ad indicare le parole chiave adeguate (massimo 6). Sono auspicabili anche le tradu- zioni in inglese (o sloveno) della sintesi, del riassunto, delle parole chiave, delle didascalie e delle tabelle. In caso contrario, vi provvederà la Redazione. 7. Il testo principale deve essere strutturato nei se- guenti capitoli: Introduzione, Materiali e metodi, Risul- tati, Discussione o Risultati e discussione, Conclusioni, Ringraziamenti (se necessari), Bibliografi a. Il testo può essere strutturato in sottocapitoli (ad es. sottocapitolo Rassegna delle pubblicazioni nell’Introduzione; sottoca- pitolo Descrizione dell’area di ricerca nel capitolo Ma- teriali e metodi). Le didascalie devono essere presentate separatamente, a seguito del capitolo Bibliografi a. 8. Le tabelle saranno preparate in forma elettronica come il manoscritto (formato Word) e allegate in fogli se- parati alla fi ne del testo. Gli autori sono pregati di con- trassegnare ogni tabella con un numero e il titolo ossia una breve descrizione. Nel testo la tabella viene richia- mata come segue: (Tab. 1). 9. Il materiale grafi co (grafi ci, carte geografi che, fo- tografi e, tavole) va preparato in formato elettronico (jpeg o tiff) e consegnato in fi le separati, con una defi nizione di 300 dpi alla grandezza desiderata, purché non ecceda i 17x20 cm. Prima della pubblicazione, l’autore provve- derà a fornire alla Redazione tutte le autorizzazioni ri- chieste per la riproduzione del materiale grafi co (in virtù della Legge sui diritti d’autore). Tutto il materiale grafi co deve essere accompagnato da didascalie (vedi punto 7) e numerato.. Nel testo i grafi ci vengono richiamati come segue: (ad es. Fig. 1). 10. I riferimenti bibliografi ci (citazioni) richiamano un’altra pubblicazione (articolo). La nota bibliografi ca, riportata nel testo, deve contenere i seguenti dati tra parentesi: cognome dell’autore, anno di pubblicazione, ad es. (Novak, 2007). Se gli autori sono due, verranno indicati entrambi (Novak & Kranjc, 2001), nel caso di tre o più autori verrà indicato soltanto il primo, seguito dall’abbreviazione et al. (Novak et al., 1999). Vari rife- rimenti bibliografi ci in una stessa nota vanno divisi dal punto e virgola e segnalati in ordine cronologico, ad. es. (Novak et al., 1999; Adamič, 2001; Kranjc & Zu- pan, 2007). La testimonianza (orale, scritta) verrà indi- cata tra parentesi con l’abbreviazione del nome e con il cognome di chi l’ha trasmessa, seguiti dalla virgola e la dicitura “informazione personale”, ad es. (J. Novak, informazione personale). 11. La bibliografi a completa va inserita in ordine alfabetico nel capitolo Bibliografi a. L’autore indicherà esclusivamente i lavori e le edizioni citati nell’articolo. Se si citano più lavori dello stesso autore, verranno indi- cati prima in ordine cronologico i lavori in cui l’autore appare solo, poi quelli in cui l’autore compare assieme ad un secondo coautore, seguiti infi ne da quelli in cui egli compare tra più coautori. I nomi delle riviste in cui sono pubblicati i lavori citati saranno indicati nella forma abbreviata (abbreviazioni uffi cialmente riconosciute). Gli articoli inediti si possono citare soltanto se sono in cor- so di pubblicazione, facendo loro seguire la dicitura “in corso di pubblicazione”. Gli articoli, non ancora recensiti non possono essere citati. ANNALES · Ser. hist. nat. · 27 · 2017 · 2 194 Esempio di lavoro bibliografi co: Articoli in riviste: Klock, J.-H., A. Wieland, R. Seifert & W. Michaelis (2007): Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation me- thod optimisation. Mar. Biol., 152, 1077-1085. Libri ed altre pubblicazioni non periodiche (relazioni, tesi di laurea, dissertazioni di dottorato): Wheeler, A. (1969): The fi shes of the British Isles and North-West Europe. McMillan, London, 613 p. Capitoli di libro: McEachran, J. D. & C. Capapé (1984): Myliobatidae. In: Whitehead, P. J. P., M. L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 1. Unesco, Paris, pp. 205-209. 12. Altro: Le espressioni latine come ad es. in vivo, in situ, e.g., i.e., i nomi dei generi famiglie (Myliobatis sp.) e delle specie (Myliobatis aquila) si scrivono con il caratte- re italic. Quando possibile saranno utilizzate le unità del sistema SI (Système international d’unités). 13. Gli autori ricevono le prime bozze di stampa per la revisione. Le bozze corrette vanno quindi rispedite entro una settimana alla Redazione. In questa fase, i testi cor- retti con segni adeguati (indicazioni in merito si trovano alla fi ne della pubblicazione “Slovenski pravopis” (2001), Ljubljana, ZRC SAZU, 24-25, non possono essere più am- pliati. La revisione delle bozze è svolta dalla Redazione. 14. La Redazione rimane a disposizione per eventuali chiarimenti. LA REDAZIONE ANNALES · Ser. hist. nat. · 27 · 2017 · 2 195 INSTRUCTIONS TO AUTHORS 1. The journal ANNALES (Annals for Istrian and Mediterranean Studies, Series historia naturalis) publishes original scientifi c and review articles in the fi eld of natural studies related to the specifi cs of various subfi elds of Mediterranean natural studies: marine biology and ecology, ichthyology, geology with paleontology, karst studies, olive growing, biodiversity of Slovenia, nature protection, pollution and environmental protection, physical geography of Istria and the Mediterranean, etc. It also publishes short scientifi c papers on completed research projects related to the above-mentioned sub- fi elds. 2. The articles submitted can be written in the English, Slovene or Italian language. The authors should ensure that their contributions meet acceptable standards of language, while the editorial board has the right to have them language edited. 3. The articles should be no longer than 48,000 characters (spaces excluded) or 32 typewritten double- spaced pages. They can be submitted via e-mail annales@mbss.org (preferably) or regular mail, with the electronic data carrier (CD) sent to the address of the editorial board. Submission of the article implies that it reports original unpublished work and that it will not be published elsewhere. 4. The title page should include the title of the article, the name and surname of the author(s), their affi liation (institutional name and address) or home address, and e-mail address (of the fi rst author or the corresponding author only). 5. The article should contain the summary and the abstract, with the former (c. 30 lines) being longer than the latter (c. 10 lines). The abstract contains a brief description of the aim of the article, methods of work and results. It should contain no comments and recommendations. The summary contains the description of the aim of the article and methods of work and a brief analysis or interpretation of results. It can contain only the information that appears in the text as well. It should contain no reference to fi gures, table and citations published in the main text. 6. Beneath the abstract, the author(s) should supply appropriate keywords (max 6) and, if possible, the English (or Slovene) translation of the abstract, summary, keywords, and captions to fi gures and tables. If unprovided, the translation will be provided by the editorial board. 7. The main text should include the following chapters: Introduction, Material and Methods, Results, Discussion or Results and Discussion, Conclusion, Acknowledgement (not obligatory), References. Individual parts of the text can form a sub-chapter (e.g. Survey of Previous Studies under Introduction; Description of Research Area under Material and Methods). Captions to fi gures should appear on a separate page beneath References. 8. Each table should be submitted on a separate page in Word programme (just like the main text). It should be numbered consecutively and supplied with the title – brief description. When referring to the tables in the main text, use the following style: (Tab. 1). 9. Illustrative matter (diagrams, maps, photographs, plates) should be submitted as separate fi les (in jpeg or tiff format) and saved at a minimum resolution of 300 dpi per size preferred, with the maximum possible publication size being 17x20 cm. Prior to publication, the author(s) should obtain all necessary authorizations (as stipulated by the Copyright and Related Rights Act) for the publication of the illustrative matter and submit them to the editorial board. All fi gures should be captioned and numbered consecutively (cf. Item 7). When referring to the fi gures in the main text, use the following style: (Fig. 1). 10. Bibliographic notes or citations – i.e. references to other articles or publications – should contain the following data: author and year of publication, e.g. (Novak, 2007). If there are two authors, include both surnames (Novak & Kranjc, 2001); if there are more than two authors, include the surname of the fi rst author followed by a comma and the abbreviation et al. (Novak et al., 1999). If there is more than one reference, separate them by a semicolon and list them in ascending chronological order, e.g. (Novak et al., 1999; Adamič, 2001; Kranjc & Zupan, 2007). When citing information obtained through personal communication (oral, written), provide the initial letter of the name and full surname of the informant followed by a comma and the phrase personal communication, e.g. (J. Novak, personal communication). 11. The entire list of bibliographic data should be published under References in alphabetical order. The author(s) should list only the works cited in the article. If you are listing several works by the same author with some of them written in co-authorship, fi rst list those written by the author him/herself, then those written in co-authorship with another author, and fi nally those written in co-authorship with more than one author, with the entries listed in chronological order. The names of journals in which the works cited were published should be abbreviated (cf. list of offi cial journal abbreviations). Unpublished articles can be cited only if they have been ANNALES · Ser. hist. nat. · 27 · 2017 · 2 196 approved for publication, which should be indicated by adding the phrase in press to the end of the relevant bibliography entry. Some examples of how to cite different types of bibliographical data: Articles published in serial publications: Klock, J.-H., A. Wieland, R. Seifert & W. Michaelis (2007): Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Mar. Biol., 152, 1077-1085. Books and other non-serial publications (reports, diploma theses, doctoral dissertation): Wheeler, A. (1969): The fi shes of the British Isles and North-West Europe. McMillan, London, 613 p. Chapters published in a book: McEachran, J. D. & C. Capapé (1984): Myliobatidae. In: Whitehead, P. J. P., M. L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds.): Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 1. Unesco, Paris, pp. 205-209. 12. Miscellaneous: Latin phrases such as in vivo, in situ, e.g., i.e., and names of genera (Myliobatis sp.) and species (Myliobatis aquila) should be written in italics. Whenever possible, use the SI units (Système international d’unités). 13. The authors are sent the fi rst page proofs. They should be returned to the editorial board within a week. When reading the proofs, the authors should use the correction signs listed at the end of the book Slovenski pravopis (2001), Ljubljana, ZRC SAZU, 24–25. It is not allowed to lengthen the text during proof- reading. Second proof-reading is done by the editorial board. 14. For additional information regarding article publication contact the editorial board. EDITORIAL BOARD ANNALES · Ser. hist. nat. · 27 · 2017 · 2 198 KAZALO K SLIKAM NA OVITKU SLIKA NA NASLOVNICI: Hobotnice (Octopus vulgaris) so pridneni plenilci, ki imajo pomembno vlogo tako v morskem ekosistemu kot tudi v morskem ribištvu. Manj znano pa je, da so zelo uporabni tudi za pridobivanje zdravilnih učinkovin. (Foto: L. Lipej) Sl. 1: V zadnjih desetletjih smo priča vse pogostejšemu pojavljanju tujerodnih vrst v slovenskem delu Jadrana. Tokrat raziskovalci poročajo o opazovanju orjaškega gološkrgarja vrste Melibe viridis v naravnem spomeniku Rt Madona. (Foto: M. Mandić) Sl. 2: Že od nekdaj so peptidi iz črnila glavonožcev znani kot uporabne učinkovine proti raku. Oligopeptidi iz črnila sipe (Sepia sp.) dokazano zavirajo rast celic in so uporabni pri zdravljenju raka. (Foto: L. Lipej) Sl. 3: V zadnjih letih so biogene formacije v Tržaškem zalivu pritegnile pozornost raziskovalcev. V teh izjemnih življenjskih okoljih, ki jih tvorijo mrtvi koraliti sredozemske kamene korale (Cladocora caespitosa), so našli nekatere zanimive vrste koraligenih alg, kot je vrsta Neogoniolithon mamillosum na sliki. (Foto: S. Kaleb) Sl. 4: Tokratno mednarodno srečanje strokovnjakov za vodne ptice je potekalo avgusta v Reykjaviku na Islandiji. Udeleženci so imeli priliko seznaniti se z izjemno pestrostjo ptičjih vrst. Na sliki arktične čigre (Sterna paradisea). (Foto: I. Škornik) Sl. 5: Z metodo opazovalnega cenzusa z uporabo vabe so ihtiologi v hrvaškem delu Jadranskega morja ugotovili, da se ribja združba v umetno preoblikovanem okolju manjših razsežnosti ne razlikuje občutno od tistih v naravnem okolju. (Foto: L. Lipej) Sl. 6: Morski gad (Chauliodus sloani) je značilen plenilec globokomorskega okolja. S kavljastimi zobmi zagrabi plen, ki ima zelo malo možnosti, da bi se mu izmuznil. (Foto: B. Mavrič) INDEX TO IMAGES ON THE COVER FRONT COVER: Octopuses (Octopus vulgaris) are bottom-dwelling predators with an important role in the marine ecosystem and in fi sheries. A less known fact about them is that they are also useful for obtaining bioactive (medicinal) substances. (Photo: L. Lipej) Fig. 1: Over the last decades, we have witnessed frequent occurrences of non-indigenous species in the Slovenian part of the Adriatic Sea. The latest report is of a sighting of the giant nudibranch Melibe viridis in the Nature Monu- ment of Cape Madona. (Photo: M. Mandić) Fig. 2: Peptides obtained from cephalopod ink are traditionally known as effi cient anti-cancer compounds. A recent study has proven the inhibitory effects of Sepia ink oligopeptides on malignant cell growth, confi rming their poten- tial for the use as adjunct cancer treatment. (Photo: L. Lipej) Fig. 3: In recent years, researchers have been focussing their attention on biogenic formations in the Gulf of Trieste. In these extraordinary habitats created by the dead corallites of the Mediterranean stony coral (Cladocora caespi- tosa), some interesting species of coralligenous algae have been found, such as this Neogoniolithon mamillosum. (Photo: S. Kaleb) Fig. 4: This year, the annual international meeting of waterbirds experts was held in August in Reykjavik, Iceland. The participants had the opportunity to observe the outstanding diversity of the local avifauna, which includes Arctic terns (Sterna paradisea). (Photo: I. Škornik) Fig. 5: Using the lure-assisted visual census method, ichthyologists studying the Croatian Adriatic have discovered that fi sh communities inhabiting small-scale artifi cially modifi ed environments do not differ substantially from those populating pristine environments. (Photo: L. Lipej) Fig. 6: Sloane’s viperfi sh (Chauliodus sloani) is an opportunistic predator of the ocean abyss. It impales its prey with its fanglike teeth, leaving the victim with virtually no chance of escape. (Photo: B. Mavrič) ANNALES · Ser. hist. nat. · 27 · 2017 UDK 5 Letnik 27, Koper 2017, številka 2 ISSN 1408-533X Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies VSEBINA / INDICE GENERALE / CONTENTS FLORA FLORA FLORA Martina ORLANDO-BONACA & Roberto ODORICO Unusual expansion of Laurencia obtusa (Hudson) J.V. Lamouroux in the Zambratija Bay (northern Adriatic Sea) Nenavadno razširjanje alge Laurencia obtusa (Hudson) J.V. Lamouroux v zambratijskem zalivu (severni Jadran) ................ Nina ŠAJNA, Kristijan ADAMLJE & Mitja KALIGARIČ Dittrichia graveolens – How does soil salinity determine distribution, morphology, and reproductive potential? Dittrichia graveolens – kako slanost tal določa njeno razširjenost, morfologijo in reproduktivni potencial? ................................... Amelio PEZZETTA Le Orchidaceae del Molise: Aggiornamento sistematico e nuova check-list Kukavičevke dežele Molize: sistematska dopolnila in nov seznam vrst ................................ FAVNA FAUNA FAUNA Ilias FOSKOLOS, Myrto TOURGELI PROVATA & Alexandros FRANTZIS First record of Conchoderma auritum (Cirripedia: Lepadidae) on Ziphius cavirostris (Cetacea: Ziphiidae) in Greece Prvi zapis o pojavljanju raka vitičnjaka vrste Conchoderma auritum (Cirripedia: Lepadidae) na Cuvierjevem kljunatem kitu Ziphius cavirostris (Cetacea: Ziphiidae) v Grčiji ................. IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Khadija OUNIFI-BEN AMOR, Mohamed Mourad BEN AMOR, Sihem RAFRAFI & Christian CAPAPÉ First confi rmed record of wedge sole Dicologlossa cuneata (Soleidae) from the Tunisian coast (central Mediterranean) Prvi zabeležen primer pojavljanja morskega lista vrste Dicologlossa cuneata (Soleidae) iz tunizijske obale (osrednje Sredozemsko morje) ..... Sihem RAFRAFI-NOUIRA, Olfa EL KAMEL-MOUTALIBI, Khadija OUNIFI-BEN AMOR, Mohamed Mourad BEN AMOR & Christian CAPAPÉ A case of hermaphroditism in the common eagle ray Myliobatis aquila (Chondrichthyes: Myliobatidae), reported from the Tunisian coast (central Mediterranean) Primer hermafroditizma pri navadnem morskem golobu Myliobatis aquila (Chondrichthyes: Myliobatidae) ob tunizijski obali (osrednje Sredozemsko morje) ..................... SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL Notes on historical and contemporary catches of lamniform sharks in Turkish waters Zapisi o historičnih in sodobnih ulovih morskih volkov (Lamniformes) v turških vodah ................... Christian CAPAPÉ & Malek ALI Record of dicephalus embryo in longnose spurdog Squalus blainvillei (Chondrichthyes: Squalidae) from the Syrian coast (eastern Mediterranean) Zapis o dvoglavem primerku rjavega trneža Squalus blainvillei (Chondrichthyes: Squalidae) iz sirske obale (vzhodno Sredozemsko morje) ...... 7 13 29 37 51 59 1 43 ANNALES · Ser. hist. nat. · 27 · 2017 RECENTNE SPREMEMBE V SREDOZEMSKI BIODIVERZITETI CAMBIAMENTI RECENTI NELLA BIODIVERSITÀ MEDITERRANEA RECENT CHANGES IN THE MEDITERRANEAN BIODIVERSITY Sihem RAFRAFI-NOUIRA, Khadija OUNIFI-BEN AMOR, Mohamed Mourad BEN AMOR & Christian CAPAPÉ Abundant records of red-eye round herring Etrumeus golanii (Osteichthyes: Clupeidae) from the Tunisian coast (central Mediterranean) Številne najdbe vrste Etrumeus golanii (Osteichthyes: Clupeidae) ob tunizijski obali (osrednje Sredozemsko morje) ............................. Aytaç ÖZGÜL & Okan AKYOL On the occurrence of the smallscale codlet, Bregmaceros nectabanus (Bregmacerotidae), off the Urla coast in Izmir Bay (Aegean Sea, eastern Mediterranean) Pojavljanje vrste Bregmaceros nectabanus (Bregmacerotidae), v vodah blizu Urle v Izmirskem zalivu (Egejsko morje, vzhodno Sredozemlje) ....................................................... OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Domen TRKOV Na Morski biološki postaji obeležili dan biotske raznovrstnosti .......................................... Navodila avtorjem ................................................ Istruzioni per gli autori .......................................... Instruction to authors ............................................ Kazalo k slikam na ovitku ..................................... Index to images on the cover ................................ 65 77 79 81 83 86 86 69 ANNALES · Ser. hist. nat. · 27 · 2017 VSEBINA / INDICE GENERALE / CONTENTS FLORA FLORA FLORA Martina ORLANDO-BONACA, Borut MAVRIČ, Lovrenc LIPEJ, Sara KALEB & Annalisa FALACE Coralline algae on biogenic formations in marine waters off Slovenia (northern Adriatic Sea) Koraligene alge na biogenih formacijah v slovenskih morskih vodah (severni Jadran) ......... Aljaž KOŽUH, Mitja KALIGARIČ & Danijel IVAJNŠIČ Potential distribution of silver fi r (Abies alba) in south-eastern Alpine and Dinaric phytogeographic regions of Slovenia and Croatia in the light of climate change Potencialna razširjenost jelke (Abies alba) v jugovzhodno-alpskem in dinarskem fi togeografskem območju Slovenije in Hrvaške v luči klimatskih sprememb .................................. Amelio PEZZETTA Le Orchidaceae di Bale-Valle (Istria, Croazia) Kukavičevke okolice Bal (Valle, Istra, Hrvaška) ..... FAVNA FAUNA FAUNA Lovrenc LIPEJ & Borut MAVRIČ Range expansion of alien nudibranch Melibe viridis (Kelaart, 1858) in the northern Adriatic Sea Širjenje areala tujerodnega gološkrgarja Melibe viridis (Kelaart, 1858) v severni Jadran .................. Emna SOUFI-KECHAOU, Ichrak SARIYA, Amine BEZAA, Neziha MARRAKCHI & Mohammed EL AYEB Antitumoral activity in inks of Sepia offi cinalis and Octopus vulgaris (Cephalopoda) from the northern Tunisian coast (central Mediterranean Sea) Protitumorska aktivnost črnila pri sipi Sepia offi cinalis in hobotnici Octopus vulgaris (Cephalopoda) iz severne tunizijske obale (osrednje Sredozemsko morje) ............................. SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL Remarks on incidental capture of deep-sea sharks in Marmara shelf waters Opažanja o naključnem ulovu globokomorskih morskih psov na celinskem pragu v Marmarskem morju .................................. Christian CAPAPÉ & Malek ALI First record of velvet belly lantern shark Etmopterus spinax (Chondrichthyes: Etmopteridae) from the Syrian coast (eastern Mediterranean) Prvi zapis o pojavljanju žametnega trneža Etmopterus spinax (Chondrichthyes: Etmopteridae) iz sirskih voda (vzhodni Mediteran) .. Hakan KABASAKAL On the jaws of a shortfIn mako shark, Isurus oxyrinchus, caught off the İzmir peninsula (central Aegean Sea, Turkey) Čeljusti primerka atlantskega maka, Isurus oxyrinchus, ujetega ob izmirskem polotoku (osrednje Egejsko morje, Turčija) ..........................119 151 107 97 137 145 12589 ANNALES · Ser. hist. nat. · 27 · 2017 IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Malek ALI, Christian REYNAUD & Christian CAPAPÉ Has a viable population of common lionfi sh, Pterois miles (Scorpaenidae), established off the Syrian coast (eastern Mediterranean)? Se je viabilna populacija plamenke, Pterois miles (Scorpaenidae), že uveljavila v vodah ob sirski obali (vzhodno Sredozemsko morje)? ..... Mohamed Mourad BEN AMOR, Khadija OUNIFI-BEN AMOR & Christian CAPAPÉ First record of Sloane’s viperfi sh Chauliodus sloani (Osteichthyes: Chauliodontidae) from the Tunisian coast (central Mediterranean) Prvi zapis o pojavljanju morskega gada Chauliodus sloani (Osteichthyes: Chauliodontidae) iz tunizijskih voda (osrednje Sredozemsko morje) ............................. Claudia KRUSCHEL, Julia HARRAS, Irmgard BLINDOW & Stewart T. SCHULTZ Do fi sh assemblages at sites featuring man-made concrete walls differ from those at natural rocky-reef sites? Ali se ribje združbe na lokalitetah z betonskimi stenami razlikujejo od tistih v naravnem skalnatem okolju? .............................. DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITÀ DEI NOSTRI ISTITUTI E SOCIETÀ ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS Lovrenc LIPEJ & Martina ORLANDO-BONACA Piran hosted the elite of marine biologists ............ Iztok ŠKORNIK Letno srečanje mednarodne organizacije za vodne ptice The Waterbird Society (Waterbird Society Annual meeting, Reykjavik, Iceland, August 8-12 2017) ................................... OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Matej VRANJEŠ Book review: Tourism in Protected Areas of Nature in Serbia and Slovenia .......................... Navodila avtorjem ................................................ Istruzioni per gli autori .......................................... Instruction to authors ............................................ Kazalo k slikam na ovitku ..................................... Index to images on the cover ................................ 189 191 193 195 198 198 184 183 157 163 167 ANNALES · Ser. hist. nat. · 27 · 2017