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Abstract
A quantitative structure activity relationship (QSAR) has been carried out on a series of benzimidazole derivatives to

identify the structural requirements for their inhibitory activity against yeast Saccharomyces cerevisiae. A multiple lin-

ear regression (MLR) procedure was used to model the relationships between various physicochemical, steric, electron-

ic, and structural molecular descriptors and antifungal activity of benzimidazole derivatives. The QSAR expressions

were generated using a training set of 16 compounds and the predictive ability of the resulting models was evaluated

against a test set of 8 compounds. The best QSAR models were further validated by leave one out technique as well as

by the calculation of statistical parameters for the established theoretical models. Therefore, satisfactory relationships

between antifungal activity and molecular descriptors were found. QSAR analysis reveals that lipophilicity descriptor

(logP), dipole moment (DM) and surface area grid (SAG) govern the inhibitory activity of compounds studied against

Saccharomyces cerevisiae.
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1. Introduction
Benzimidazoles and their derivatives are well known

to the chemists mainly because of the broad spectrum of the
antimicrobial properties exhibited by this class of com-
pounds.1-13 Interest in the chemistry, synthesis and microbi-
ology of this pharmacophore continues to be fuelled by
their biological properties such as antifungal,14 antitubercu-
lar,15 antioxidant,16,17 antiallergic,18,19 and antiparasitic.20 It
is also well known that these molecules are present in a va-
riety of antitumoural,21 anthelmintic22 and herbicidal
agents23. Many derivatives of benzimidazole show antihist-
aminic, cytostatic, local analgesic, hypotensive and antiin-
flammatory activity.24 In recent years, benzimidazole deriv-
atives have been attracted particular interest due to their an-
ticancer activity or may act as in vitro anti-HIV agents.25,26

Predictions of biological and physicochemical prop-
erties of molecules based on their structure are the funda-
mental and most interesting objectives of chemistry. The
conception that there exists a close relationship between

bulk properties of compounds and the molecular structure
of those compounds is quite rooted in chemistry. This idea
allows one to provide a clear connection between the
macroscopic and the microscopic properties of matter,
and thus has been firmly established as one of the central
foundations of chemistry. Therefore, it is the basic tenet of
chemistry to attempt to identify these assumed relation-
ships between molecular structure and physico-chemical
properties and then to quantify them.

A large number of research studies is needed to ana-
lyze the pharmacophore present in these compounds using
the Three Dimensional QSAR (quantitative structure-ac-
tivity relationship) methods.27–29 The physicochemical
properties predicted from structure are helpful in the
search for new molecules of similar or increased biologi-
cal activity. QSAR studies enable the investigators to es-
tablish reliable quantitative structure-activity relation-
ships, to derive a QSAR model and predict the activity of
novel molecules prior to their synthesis. These studies re-
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duce the trial- and error element in the design of com-
pounds by establishing mathematical relationships be-
tween physical, chemical, biological, or environmental
activities of interest and measurable or computable pa-
rameters such as physicochemical, electronic, topological,
or stereochemistry. 3D-QSAR methodology has been suc-
cesfully used to generate models for various chemothera-
peutic agents. Beside importance of QSAR modeling in
drug design, computational and in silico methods are im-
portant contributors to drug discovery processes.30,31

To gain insight into the structural and molecular re-
quirement influencing the inhibitory activity, herein we
depict QSAR analysis of some benzimidazole derivatives
for their inhibitory activity against Saccharomyces cere-
visiae. The relevance of the model used for design of nov-
el derivatives should be assessed not only in terms of pre-
dictivity, either internal or external, but also in terms of
their ability to provide a chemical and structural explana-
tion of their binding interaction. These results should pro-
vide guidelines for design of more potent and selective an-
tifungals.

2. Materials and Methods

The structures of the benzimidazoles tested in this
study are presented in Table1. All the compounds were
synthesized by a general procedure described by Vlaoviæ32

and these compounds were evaluated for their in vitro
growth inhibitory activity against yeast Saccharomyces
cerevisiae according a procedure described earlier.33

2. 1. Molecular Modeling

The molecular modeling study was performed using
HyperChem 7.5 software (HyperCube Inc, Version 7.5)
running on P-III processor.34 HyperChem includes a mod-
el builder that turns a rough 2Dsketch of a molecule into
3D. The created 3-D models were cleaned up and subject-
ed to energy minimization using molecular mechanics
(MM2). The minimization is executed until the root mean
square (RMS) gradient value reaches a value smaller than
0.1 kcal/molÅ. The Austin Model-1 (AM-1) method was
used for re-optimization until the RMS gradient attains a

Table 1. Structures of benzimidazole derivatives used in training and test set

Compound R1 R2 R3 R4 MIC (μg/ml)
1 NH2 C6H5–CH2 H H 100.00

2 NH2 4–CH3–C6H4–CH2 H H 25.00

3 NH2 4–Cl–C6H4–CH2 H H 25.00

4 NH2 C6H5–CO H H 100.00

5 NH2 4–CH3–C6H4–CO H H 50.00

6 NH2 4–Cl–C6H4–CO H H 50.00

7 NH2 3–CH3–C6H4–CH2 H H 25.00

8 NH2 3–Cl–C6H4–CH2 H H 25.00

9 NH2 3–F–C6H4–CH2 H H 50.00

10 NH2 3–OCH3–C6H4–CH2 H H 100.00

11 CH3 C6H5–CH2 H H 25.00

12 CH3 4–CH3–C6H4–CH2 H H 12.50

13 CH3 4–Cl–C6H4–CH2 H H 12.50

14 CH3 C6H5–CO H H 50.00

15 CH3 4–CH3–C6H4–CO H H 12.50

16 CH3 4–Cl–C6H4–CO H H 12.50

17* H 3–CH3–C6H4–CH2 CH3 CH3 6.25

18* H 3–Cl–C6H4–CH2 CH3 CH3 6.25

19* H 3–F–C6H4–CH2 CH3 CH3 12.50

20* H 3–OCH3–C6H4–CH2 CH3 CH3 25.00

21* NH2 3–CH3–C6H4–CH2 CH3 CH3 6.25

22* NH2 3–Cl–C6H4–CH2 CH3 CH3 6.25

23* NH2 3–F–C6H4–CH2 CH3 CH3 12.50

24* NH2 3–OCH3–C6H4–CH2 CH3 CH3 25.00

25* NH2 H H H 3000.00

26* CH3 H H H 2500.00

27* NH2 H CH3 CH3 1000.00

28* CH3 H CH3 CH3 500.00

* external test set 



28 Acta Chim. Slov. 2013, 60, 26–33

Kuzmanovi} et al.:  Quantitative Structure-Activity Relationship (QSAR) ...

value smaller than 0.0001kcal/molÅ using MOPAC.35,36

The lowest energy structure was used for each molecule to
calculate molecular descriptors.

2. 2. Descriptors Generation

The numerical descriptors were calculated for each
compound in the data set, using the software HyperChem,34

Dragon37 and CS Chem Office Software version 7.0.38 Since
there was a 78 different descriptors for each compound (elec-
tronic, constitutional, hydrophobic, and topological),
Pearson’s correlation matrix was used as a qualitative model,
in order to select the suitable descriptors for MLR analysis.
One way to avoid data redundancy is to exclude descriptors
that are highly intercorrelated with each other before perform-
ing statistical analysis. The values of descriptors selected for
MLR model are presented in Table 2 (molar refractivity (MR),
polarizability (P), molar volume (MV), hydration energy
(HE), molar weight (MW), total energy (TE), surface area grid
(SAG), dipole moment (DM) and partition coefficient (logP)). 

2. 3. Statistical Methods

The complete regression analysis were carried out
by PASS 2005, GESS 2006, NCSS Statistical Softwares.39

The Elimination Selection Stepwise regression (ES-SWR)
algorithm was used to select the most appropriate descrip-
tors. ES-SWR is a popular stepwise technique that com-
bines Forward Selection (FS-SWR) and Backward
Elimination (BE-SWR). 

For the testing the validity of the predictive power of
selected MLR models the LOO technique was used. The
developed models were validated by the calculation of
following statistical parameters: PRESS, SSY, SPRESS,
r2

CV, and r2
adj. These parameters were calculated from the

following equations:

formula (1)

formula (2)

formula
(3)

formula (4)

formula
(5)

where, Yobs, Ycalc and Ymean are observed, calculated and

Table 2. Values of inhibitory activities and molecular descriptors used in the regression analysis

Log 
Cmpd (1/cMIC) MR P MV HE MW TE SAG DM logP
1 3.349 77.28 26.63 675.88 –7.12 223.28 –9.75 416.78 1.45 2.96

2 3.977 81.56 28.46 728.44 –5.95 237.30 –9.81 442.99 1.53 3.44

3 4.013 81.99 28.55 712.38 –6.72 257.72 –9.81 437.70 1.48 3.52

4 3.375 77.21 26.71 666.31 –7.67 237.29 29.80 409.30 2.16 2.84

5 3.701 81.49 28.55 720.15 –6.52 251.29 29.61 437.71 2.13 3.32

6 3.735 80.61 28.64 710.59 –7.35 271.71 30.38 434.96 2.88 3.39

7 3.977 81.56 28.46 744.54 –6.39 237.30 26.35 458.41 4.46 3.44

8 4.013 81.99 28.55 736.31 –7.16 257.72 26.03 450.08 4.43 3.52

9 3.683 77.40 26.53 704.51 –7.31 241.27 26.07 433.17 4.43 3.12

10 3.403 83.65 29.10 771.05 –8.95 253.30 27.94 470.97 4.42 2.83

11 3.949 78.48 27.11 693.35 –2.73 222.29 1.34 423.77 1.32 3.45

12 4.276 82.76 28.94 745.41 –1.61 236.32 1.23 453.96 1.45 3.94

13 4.312 83.19 29.04 737.17 –2.44 256.73 1.63 448.98 1.69 4.01

14 3.674 78.41 27.20 686.80 –3.68 236.27 53.89 422.33 2.40 3.33

15 4.301 82.69 29.03 741.13 –2.53 250.30 53.68 452.01 2.42 3.81

16 4.336 81.81 29.12 731.39 –3.36 270.71 54.42 447.07 2.86 3.89

17 4.603 87.25 30.78 811.60 –1.00 250.34 27.17 490.32 3.98 4.24

18 4.637 87.69 30.87 804.81 –1.86 270.76 26.87 429.54 3.97 4.31

19 4.308 83.10 28.85 777.39 –2.23 254.34 27.02 477.14 3.98 3.91

20 4.028 89.34 31.42 841.79 –3.68 266.38 28.92 507.17 3.97 3.63

21 4.628 90.12 32.13 844.29 –4.26 265.36 27.67 503.71 4.43 4.42

22 4.659 89.24 32.22 833.57 –5.38 285.36 27.18 498.16 4.40 4.49

23 4.333 85.97 30.20 802.16 –5.21 269.32 27.46 480.77 4.41 4.09

24 4.051 92.27 32.77 871.99 –6.83 281.36 29.38 517.74 4.40 3.80

25 1.647 43.63 15.13 430.33 –11.28 133.15 –1.21 292.48 1.04 0.99

26 1.723 44.83 15.62 450.85 –4.75 132.16 10.35 304.78 1.56 1.05

27 2.207 49.54 17.55 478.26 –5.28 161.15 5.59 328.57 2.05 1.54

28 2.505 49.95 19.83 492.38 –6.32 160.16 14.14 372.35 2.58 2.02
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mean values; n, number of compounds; p, number of in-
dependent parameters.

PRESS is an acronym for prediction sum of squares.
It is used to validate a regression model with regards to
predictability. To calculate PRESS, each observation is in-
dividually omitted. The remaining n – 1 observations are
used to calculate a regression and estimate the value of the
omitted observation. This is done n times, once for each
observation. The difference between the actual Y value,
yobs, and the predicted Y, ycalc, is called the prediction er-
ror. The sum of the squared prediction errors is the PRESS
value. The smaller PRESS is, the better the predictability
of the model. Its value being less than SSY points out that
the model predicts better than chance and can be consid-
ered statistically significant. SSY are the sums of squares
associated with the corresponding sources of variation.
These values are in terms of the dependent variable, y. 

3. Results and Discussion

In order to identify the effect of chemical structure
on the inhibitory activity, QSAR studies of title com-
pounds were performed. The compounds was divided into
training set of 16 compounds and test set of 8 compounds
on the basis of structural diversity. A set of benzimida-
zoles consisting of 16 molecules was used for multilinear
regression model generation. An attempt has been made to
find structural requirement for inhibition of yeast
Saccharomyces cerevisiae using QSAR Hansch approach
on benzimidazole derivatives. Different physicochemical,
steric, electronic, and structural molecular descriptors

were used as independent variables and were correlated
with antifungal activity. 

The intercorrelation among the descriptors and their
correlation with inhibitory activity is investigated by con-
struction of a correlation matrix. From the correlation ma-
trix of the selected descriptors (Table 3), it can be con-
cluded that only one of the aforementioned indices is
highly correlated with the activity. This means that is pos-
sible to obtain only one statistically significant monopara-
metric model with logP descriptor as independent vari-
able (r = 0.9706). A correlation matrix was constructed to
find the interrelationship among the parameters, which
shows that some parameters selected in the study is high-
ly correlated with the other (r>0.7). Therefore, any combi-
nation of these descriptors in multiple regression analysis
may result with a model suffering from multi-colinearity. 

From the QSAR study of the series of benzimida-
zoles, two best biparametric models were derived. Both
the models include lipophilicity descriptor (logP). The
specifications for the best-selected MLR models are
shown in Table 4. 

But, only high correlation coefficient is not enough
to select the equation as a model and hence various statis-
tical approaches were used to confirm the robustness and
practical applicability of the equations.40,41 There are three
important components in any QSAR analysis: develop-
ment of models, validation of models and utility of devel-
oped models. Validation is a crucial aspect of any QSAR
analysis.42–44

The statistical validity of the resulting models, as
depicted in Table 4, is determined by r, s, and F. It is note-

Table 3. Correlation (r) matrix for the molecular descriptors calculated for benzimidazole derivatives

Log (1/cMIC) MR P MV HE MW TE SAG DM logP
Log (1/cMIC) 1

MR 0.6021 1

P 0.6308 0.9719 1

MV 0.5009 0.9122 0.8569 1

HE 0.7526 0.2181 0.2448 0.1197 1

MW 0.3352 0.5657 0.6732 0.4387 –0.1138 1

TE 0.0303 0.0141 0.1221 0.0965 0.06065 0.3903 1

SAG 0.4721 0.8888 0.8302 0.9945 0.0792 0.4302 0.1087 1

DM –0.1718 0.1151 0.0883 0.4043 –0.4971 0.3007 0.4931 0.4608 1

logP 0.9706 0.5731 0.6196 0.4289 0.8079 0.3448 0.0193 0.3944 0.2755 1

Table 4. Best MLR models for the prediction of antibacterial activity

Model Coefficient n r s F
1 Intercept 0.6758 16 0.9756 0.0787 128.6225

logP 0.9134

DM 0.0289

2 Intercept 0.0174 16 0.9754 0.0794 127.3676

logP 0.8491

SAG 0.0022
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worthy that all these equations were derived using the en-
tire data set of compounds (n = 16) and no outliers were
identified. The F-value presented in Table IV is found sta-
tistically significant at 99% level since all the calculated F
values are higher as compared to tabulated values.

For the testing the quality of the predictive power of
selected MLR models the LOO procedure was used
(Table 5). The PRESS value above can be used to com-
pute an r2

CV statistic, called r2 cross validated, which re-
flects the prediction ability of the model. This is a good
way to validate the prediction of a regression model with-
out selecting another sample or splitting your data. In this
study, r2

adj and r2
CV is taken as a proof of the high predic-

tive ability of QSAR models. A high value of these statis-
tical characteristic (> 0.5) is considered as a proof of the
high predictive ability of the models. Adjustable correla-
tion coefficient (r2

adj) tells us the statistical significance of
incorporated physicochemical descriptor in MLR. r2

adj

takes into account the adjustment of conventional correla-
tion coefficient (r2). 

Table 6. Predicted log1/cMIC values of training set with residual

Compound Log (1/cMIC) pred. Residuals
Model 1 Model 2 Model 1 Model 2

1 3.421 3.434 –0.072 –0.085

2 3.862 3.898 0.115 0.079

3 3.934 3.955 0.079 0.058

4 3.332 3.316 0.043 0.059

5 3.769 3.785 –0.068 –0.084

6 3.855 3.838 –0.120 –0.103

7 3.947 3.932 0.030 0.045

8 4.019 3.982 –0.006 0.031

9 3.653 3.605 0.030 0.078

10 3.388 3.441 0.015 –0.038

11 3.865 3.865 0.084 0.084

12 4.316 4.347 –0.040 –0.071

13 4.387 4.395 –0.075 –0.083

14 3.787 3.760 –0.113 –0.086

15 4.226 4.232 0.075 0.069

16 4.311 4.289 0.025 0.047

However, the high r2
CV does not imply automatical-

ly a high predictive ability of the model. Thus, the high
value of LOO r2

CV is the necessary condition for a model
to have a high predictive power, it is not a sufficient condi-
tion. In order to verify the predictive power of the devel-
oped models, the predicted (log1/cMIC) values of the train-
ing set of compounds were calculated and compared with
the experimental values (Table 6, Fig. 1). 

Although model showed good internal consistency,
they may not be applicable for the analogs which were
never used in the generation of the correlation. It is proven
that the only way to estimate the true predictive power of
a model is to test it on a sufficiently large collection of
compounds from an external test set. The test set must in-
clude no less than five compounds, whose activities and
structures must cover the range of activities and structures
of compounds from the training set. This application is
necessary for obtaining trustful statistics for comparison
between the observed and predicted activities for these
compounds. Therefore, the external extrapolation power
of the model was further authenticated by a test set of
eight compounds (Table 7, Fig. 2).

The values of inhibitory activitiy of a external set of
molecules was calculated with the models 1 and 2. These

Table 5. Cross-validation parameters

Model PRESS SSY PRESS/SSY SPRESS r2
CV r2

adj

1 0.1101 1.6864 0.0653 0.0829 0.9347 0.9445

2 0.1349 1.6864 0.0800 0.0918 0.9200 0.9440

Fig 1. Plots of predicted versus the experimentally observed anti-

fungal activity of training set
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data are compared with experimentally obtained values of
antifungal activity against the same species of fungi. From
the data presented in Table 7, it is shown that high agreement
between experimental and predicted inhibitory values was
obtained (the residual values are small, indicating the good
predictability of the established models. According to the
reference,45 without the validation of the QSAR models by
using the external test set, we could not have come to a right
conclusion about high predictive ability of derived models. 

Table 7. Predicted log1/cMIC values of external set with residual

Compound Log (1/cMIC) pred. Residuals
Model 1 Model 2 Model 1 Model 2

17 4.664 4.696 –0.061 –0.093

18 4.727 4.622 –0.09 0.015

19 4.362 4.387 –0.054 –0.079

20 4.106 4.215 –0.078 –0.187

21 4.841 4.878 –0.213 –0.250

22 4.904 4.926 –0.245 –0.267

23 4.539 4.548 –0.206 –0.215

24 4.274 4.383 –0.223 –0.332

25 1.610 1.501 0.037 0.146

26 1.680 1.580 0.043 0.143

27 2.142 2.048 0.065 0.159

28 2.595 2.551 –0.090 –0.046

Analysis of the results suggested that for antifungal
activity lipophilicity is an essential parameter which is con-
tributing positively. This parameter is usually related to
pharmacological activity. This evidence was clearly de-
scribed in lipid theory advanced by Meyer and Overton.46,47

According to this theory, logP is a measure of hydrophobic-
ity which is important for the penetration and distribution
of the drug, but also for the interaction of drug with recep-
tors. The positive contribution of logP in both the proposed
equations thus suggests its significant participation in the
inhibitory activity. The results clearly indicate that com-
pounds with higher lipophilicity values exhibited increased
inhibitory action on the growth of the tested yeast. 

Other descriptors, DM and SAG, were effective de-
scriptors combined with logP. Both the descriptors are the
indicators of lipophilicity/hydrophobicity. They may be
related to bind between drug and receptor because polari-
ty is essential factors to bind active site of receptor mole-
cule. Therefore, it can be suggested that simple calcula-
tion of logP, DM and SAG might predict the antifungal ac-
tivity of these class of molecules.

4. Conclusion

From the results discussed above, it can be conclud-
ed that the different substituted benzimidazole derivatives
showed in vitro considerable inhibitory activity against
the yeast Saccharomyces cerevisiae. Molecular modeling

and QSAR analysis were performed to find the quantita-
tive effects of the molecular structure of the compounds
on their antifungal activity. Various physicochemical pa-
rameters, especially partition coefficient, ionization con-
stant and water solubility can be used successfully for
modeling antifungal activity of benzimidazoles. Two best
QSAR mathematical models are used to predict inhibitory
activity of the benzimidazoles investigated and close
agreement between experimental and predicted values
was obtained. The low residual activity and high cross-
validated r2 values (r2

CV) observed indicated the predictive
ability of the developed QSAR models. It indicates that
these models can be successfully applied to predict the an-
tifungal activity of these class of molecules. 
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Povzetek
QSAR metoda je bila uporabljena v seriji novih benzimidazolskih derivatov razli~nih struktur s ciljem ugotavljanja nji-

hovih inhibitorskih aktivnosti na kvasovke Saccharomyces cerevisiae. Postopek multiple linearne regresije (MLR) je bil

uporabljen za modeliranje odnosa med razli~nimi fizikalno-kemi~nimi, sternimi, elektronskimi in strukturnimi moleku-

larnimi deskriptorji in antifugalne aktivnosti preizku{enih benzimidazolnih derivatov. QSAR odvisnosti so bile dobijene

iz poskusnega seta sestavljenega iz 16 spojin. Mo`nost uporabe dobijenih ena~b za predvidevanje inhibitorske aktivnos-

ti je bila nato preizku{ena z uporabo testnega niza iz 8 derivatov benzimidazola. Najbolj{i QSAR model je preverjen z

izra~unom statisti~nih parametrov ugotovljenega teoreti~nega modela. Tako je dolo~en odgovarjajo~ odnos odvisnosti

med antifugalno aktivnostjo in molekularnimi deskriptorji. Ugotovljeno je da ima na inhibitorsko aktivnost derivatov

benzimidazola na kvasovke Saccharomyces cerevisiae najve~ji vpliv deskriptor lipofilnosti (logP), dipolni moment

(DM) in mre`a povr{inskega podro~ja (SAG).


