
Informatica 23 (1999) 259-273 2 5 9

More Efficient Functionality Decomposition in LOTOS^

Monika Kapus-Kolar
Jožef Štefan Institute, P.O.B. 3000, SI-1001 Ljubljana, Slovenia
Phone: +386 61 1773 531, Fax: +386 61 1262 102
E-mail: monika.kapus-kolar@ijs.si

Keywords: distributed service implementation, automated protocol synthesis, LOTOS

Edited by: Rudi Murn

Received: June 30, 1998 Revised: January 16, 1999 Accepted: May 18, 1999

An improved functionality-decomposition transformation for Basic LOTOS specifications is pro-
posed which, given a speciScation of the required external behaviour (the expected service) of a
system and a partitioning of the speciSed service actions among the system components, derives
the behaviour of individual components implementing the service. There may be an arbitrary
finite number of components, pairwise communicating by executing common actions and/or by
exchanging messages over queues with infinite capacity.

1 Introduction

The top-down design strategy starts by identifying the
required external behaviour of a system (its service),
followed by gradual refinement of its internal structure.
The crucial top-down design transformation is func-
tionality decomposition, used to decompose a given
process into a number of concurrent interacting sub-
processes. It is widely used in many design cases, both
for decomposing hardware and software, e.g. in design
of circuits, computers, computer networks, distributed
systems and telecommunication networks - for dis­
tributed implementation of various types of servers,
controUers, testers etc. The implementation of a ser­
vice of a particular layer in the standard reference,
model for open systems interconnection requires for
example derivation of a suitable behaviour of the pro­
tocol entities of the layer.

By decomposition, an abstract system specifica­
tion is refined into a less abstract specification bet-
ter reflecting the inherent system structure, i.e. its
functional components and their spatial distribution.
Thereby a specification becomes more tractable for
formal reasoning and implementation. The most el-
egant way is to start with a verified specification of
the system service and then apply to it only verified
correctness-preserving transformations, i.e. transfor-
mations refining the system structure without aifect-
ing its service, to avoid the need for posterior verifica-
tion of the obtained detailed system specification.

If a system is specified in a formal language (Turner,
1993), correctness-preserving transformations can be
expressed as well-defined syntactic manipulations that
can usually be completely automated. It must be ad-

^A preliminary version of the paper appeared in the IEEE
CS proceedings of the EUROMICRO'97 conference.

mitted that design by automated transformations is
rather uncommon in the current engineering practice,
but the reason is definitely not designers' aversion to
such style of work. Rather it is the lack of transforma­
tions that are well formalized, proven to be correct, ef-
ficiently implemented, easy to use and understand and,
above ali, that correspond to practically useful design
steps. In the future, high-quality tools for transforma-
tional design seem to be the best way to make formal
languages and methods accessible to non-experts.

For discovering, understanding and employing
correctness-preserving specification transformations,
it is convenient if a formal language offers opera-
tors for composing specifications of system compo­
nents directly representing real-life composition of the
components. Such are for example languages based
on process algebras, among which we concentrate
on Basic LOTOS, the core sublanguage of LOTOS
(Bolognesi and Brinksma, 1987), a standard specifi­
cation language originally intended for specification
of Open Systems Interconnection standards, but now
widely employed for specification of ali kinds of sys-
tems (both software and hardware) where external
behaviour and/or inter-component interaction are of
primary importance - see the Applications section in
(WELL).

The problem addressed in our paper is system de­
composition into a pre-defined number of components
pairwise communicating by executing common actions
and/or by exchanging messages over unbounded reli-
able first-in-first-out (FIFO) channels. It is assumed
that ali actions in the service specification are al-
ready pre-allocated to individual components, so that
the task is only to derive specification of the inter-
component communication, i.e. the protocol. The
transformation is expected to be compositional, i.e. to

mailto:monika.kapus-kolar@ijs.si

260 Informatica 23 (1999) 259-273 M. Kapus-Kolai

refiect the structure of the given service specification
in the derived component specifications.

Saleh in his very exhaustive survey (Saleh, 1996)
identifies 37 protocol synthesis methods, many of them
further diversified into several vaiiants. Among the 37
methods, 10 are based on LOTOS or similar models.
For Basic LOTOS and multi-component servers with
asynchronous internal channels, probably the most
representative reference is (Kant et aJ., 1996), whose
synthesis method has evolved from a long chain of sim­
ilar methods, starting with (Bochmann and Gotzhein,
1986). For servers with synchronous channels, such a
reference synthesizing earlier approaches is (Brinksma
and Langerak, 1995), though its method is only in-
tended for two-party servers. Thus in our paper
we take (Kant et al., 1996) as the starting point,
and (Brinksma and Langerak, 1995) as an additional
source of ideas. We generalize (Kant et al., 1996)
to servers with both synchronous and asynchronous
channels, suggest how to correct the errors identi-
fied in (Kant et al., 1996) (one also in (Brinksma
and Langerak, 1995)), and provide a hint for reduc-
ing the number of the necessary protocol interactions.
Our paper is a corrected and enhanced version of
(Kapus-Kolar, 1997), whose main deficiency is that
the adopted specification language is semantically not
exactly equivalent to Basic LOTOS, as it is here.

The paper is organized as follows. Section 2 intro-
duces the adopted specification language. In Section 3
we explain the basic principles of protocol derivation.
In Section 4 we propose distributed implementation
for each individual type of service behaviour or subbe-
haviour. Section 5 includes discussion and conclusions.

The paper should be quite self-sufficient, though to
keep it reasonably short, the presentations in the re-
raaining sections are rather concise. Thus a reader un-
familiar with LOTOS-based protocol synthesis is ad-
vised to first study the more tutorial-like papers (Kant
et al., 1996; Brinksma and Langerak, 1995). The two
papers should also be referred to for discussion on
earlier methods. Additional pointers to comparative
studies can be found in (Saleh, 1996).

Before proceeding to details, let us once more try to
motivate the reader by emphasizing that the algorithm
described below is not intended solely for embedding in
some GAD tool. The following sections provide many
hints on how to systematically design correct and effi-
cient distributed service implementations, that might
be useful for the design of any multi-component sys-
tem.

2 Specification Language

The language defined in Table 1 has been conceived
with an aim to include in an abstract and concise way
aH constructs defined in Basic LOTOS (Bolognesi and
Brinksma, 1987), in the exclusive setting of the pro­

tocol derivation problem formally defined in Section
3.1.

The following typographical convention has been
adopted: If A! is some universe of elements where "x"
denotes its name and stands for any letter, then vari-
ables X, x', ... , xi, ... range over elements of X and
variables X, X', ... , Xi, ... over subsets of A", if
not stated otherwise. In particular, a b stands for a
behaviour (for a process exhibiting it), a c for a sys-
tem component, an a for a non-(5 action, a g for an
interaction gate or an action on it, a u for a user-
defined action name, an s for i or a u (for a service-
action name), an m for a protocol message, an r for a
gate renaming, a p for the name of an explicitly spec­
ified process, an n for a process-parameter name, a v
for a process-parameter value, and an e for a service
specification subexpression. Let b' < b and &' < 6 re-
spectively denote that b' is a subbehaviour or a proper
subbehaviour of b.

We concentrate on the semantics of the language,
informally overviewed below, but its syntax is inten-
tionally kept simple, to simplify the presentation of
protocol derivation. Throughout the paper, the usual
self-understood forms of "syntactic sugar" are used
where convenient, e.g. switching between the infix and
the prefix notation, parentheses, omission of implicitly
implied parts of the specification, etc. Several illustra-
tive service and protocol specifications can be found
in Sections 3 and 4.

stop denotes inaction of the specified process, e.g.
of the system as a whole, of an individual system com­
ponent, or of some other partial system behaviour.

Actions with reserved names 6 (in the original LO­
TOS syntax specified by exit) and i respectively de­
note successful termination and an internal action of
the specified process. In a service specification they
are furnished with a superscript c indicating the com­
ponent controlling their execution, but the superscript
doesn't belong to the action name - the selection of c
influences the protocol derivation algorithm, but is ir-
relevant for the service itself.

u" denotes a service primitive, i.e. a type u interac­
tion between a system user and the system component
C.

If two components c and c' communicate syn-
chronously (the condition encoded as ~'FIFO{c,c')),
they can exchange a protocol message m in an inter­
action sync^y !m, where the order of c and c' is irrele-
vant. If a C and a c' communicate asynchronously (i.e.
FIFO{c,c')), C can send an m to c' by a sendc,c'!m,
while c' receives the message by a recc,c'!»n. When
a protocol action appeaxs in a local behaviour speci­
fication, explicit specification of the location qualifier
identifying the particular system component is unnec-
essary. The parameter m is supposed to be always
specified as a constant, so that it can be considered a
part of the action name. sync, send and rec actions

FUNCTIONALITV DECOMPOSITION IN LOTOS Informatica 23 (1999) 259-273 261

Name of the construct
Inaction
Successful termination
Internal action
Service primitive
Protocol synchronization
Protocol message transmission
Protocol message reception
Sequential composition
Action prefix
Choice
Parallel composition
Disabling
Hiding
Gate renaming
Renaming
Process definition
Process instantiation

Type(s)
h
b
a,s'^
a,g,s'=
a,g
a.,9
a,9
b
b
b
b
b
b
r
b

b

Syntax
stop
6'
i''
u'̂
sync^ g,!m where -'FIFO{c,c')
sendr r' !m where FIFOic, č')
recr c' \m where FIFO(c, c')
bi » 62
o;62
bi[]b2
bi\G\b2
bi[> b2
hide G in bi
9-^9'
ren R in bi
p(n) := bi
p{v)

Table 1: The specihcation language abstract syntax

are only allowed in the derived protocol specifications.
"61 > > ^2" denotes a process behaving after suc­

cessful termination of 61 as 62, where S of 61 is inter-
preted in "&i > > 62" as i. "a; 62" is the special čase of
the sequential composition where 61 is an individual
action, so that no i is needed for transfer of control to
62.

"&1D&2" denotes a process ready to behave as 61 or
as 62-

"6i|G|&2" denotes parallel composition of processes
bi and 62. Actions listed in G and S are only exe-
cutable as common actions of the two processes, while
other actions the processes execute independently. By
connecting processes by "|||" or "||" one shortly speci-
fies their minimal or maximal synchronization, respec-
tively. Specihcation of a parallel composition of an
empty list of processes is an empty string identifier e,
while parallel composition of a singleton set of pro­
cesses equals the only member of the set.

"&i[> 62" denotes a process with behaviour 61 po-
tentially disrupted by behaviour 62- While 61 is stili
active, the process might terminate by executing S in
bi.

"hide G in bi" denotes a process behaving as bi
with its actions listed in G renamed into i, i.e. the
gates made internal to the process (hidden from its
environment). Hiding of an action doesn't influence
its location, i.e. hiding of a u'^ results in i"̂ .

"ren R in bi" denotes a process behaving as 61 with
its visible gates renamed as specified in R.

p(n) := 61 defines a process p with behaviour bi,
and a p{v) defines an instantiation of the process.
Parametrization of processes constituting a service
specification is not allowed, while in the derived proto­
col specification, the local mappings of the processes

might need input parameters. Process parametriza­
tion is not allowed in Basic LOTOS, but we don't
consider that a problem, for parameters can usually
be avoided, if so desired, by switching to a less concise
specification style interpreting the parameter value as
a part of the process name. Anyway, in the full LO­
TOS, parametrization is legal.

A specification is a list of process definitions. The
first process on the list is supposed to denote the be­
haviour that the specification is defining, i.e. the main
process. As such, it must never be instantiated within
the specification. Specifically, let Server denote the
main process in the specification of the service that is
being implemented.

In the original LOTOS syntax, explicit processes are
defined on formal gates, that are associated with ac-
tual gates upon process instantiation. In our simpli-
fied language, the gate instantiation can be expressed
as renaming of the gates on which a process is origi-
nally defined applied to the particular process instance
(see for example the instantiation of process "Proč" in
Table 22).

The relation used throughout the paper for judging
equivalence of behaviours is observational equivalence
« (Bolognesi and Brinksma, 1987), i.e. we are inter-
ested only into the external behaviour of processes,
that is into the actions that they make available for
synchronization with their environment (aH actions ex-
cept i and actions transformed into i by hiding).

The protocol derivation mapping defined below in
some cases introduces an e specifying no actions. e
is equivalent to 6 (as execution of no actions is a suc-
cess by definition), except for an additional absorption
rule (introduced for the purposes of protocol synthesis)
stating the (e > > 6) is equivalent to 6.

262 Informatica 23 (1999) 259-273 M. Kapus-Kolar

Server := Loop
Loop:= {{Idle[> {event^;{{Tepart'^;S^)\\\{Teport^;6^)))) » Loop)
Idle := {{test^;ldle)Wiplay^;ldle))
V{c,c'}:FIFO{c,c')
Serven := ((Mei[> {{event'; {{sendill;6)\\\{send3\l; 6))) » ((rec2!2;(5)|||(rec3!3;<5)))) » Serven)
Idlei := {{test';Idlei)\]{play^;Idlei))
Seri'er2 := {Teci\l;ieport^;sendil2;Server2)
Ser ver 3 := {Teci]l;Teport'^;sendi\3; Server 3)

Table 2: An example service and its derived protocol

In many of the protocol examples given below, elim-
ination of e is not the only simplification modulo ob-
servational equivalence that the specifications have un-
dergone. In addition, process parametrization has
been omitted where redundant.

3 Principles of Protocol
Derivation

3.1 Problem definition

The protocol derivation problem is defined as follows.
Given

• the above described system of components and chan-
nels for protocol interactions, with aH FIFO chan-
nels initially empty,

• a specification of the required system service (non-
blocking, with no non-executable or otherwise irrel-
evant parts), and

• a suitable (defined by the restrictions in Section 4)
partitioning of the specified actions among the sys-
tem components,

derive such behaviour of individual components that,
when the sync, send and rec actions are hidden, the
overall system behaviour is observationally equivalent
to the specified service and the server never stops with
any of its FIFO channels non-empty.

An illustrative example of a service and its protocol
is given in Table 2. The protocol has been derived as
suggested below and subsequently simplified. There is
a server consisting of asynchronously communicating
components 1 to 3, supporting users 1 to 3, respec-
tively. Whenever user 1 signals a particular event, the
server reports it to users 2 and 3, and subsequently
becomes ready for a new signal from user 1. Protocol
messages of type 1, issued by component 1, serve for
reporting the signalled event to components 2 and 3,
while messages 2 and 3 confirm to component 1 that
the event has been reported to users 2 and 3, respec-
tively. While there is no event to report, the server
idles, i.e. allows user 1 to play and execute tests, both
locally at component 1.

3.2 Mapping T

We are looking for a mapping Tc(e, 2;) which would
take any service specification subexpression e and
translate it into its counterpart at any individual com­
ponent C, within a given context z. The mapping of
individual subexpression types is given in Section 4.
A Tc{e,z) implements the service actions within e al-
located to c and the necessary protocol interactions
between c and the rest of the system components.

During service execution, each instantiation of an
explicit process p gives raise to a new instance of any
6 within the process body. Since the aim of mapping a
specification e of such a 6 is a proper implementation
of each particular instance of b, z for mapping the
e must be the identifier of the particular instance of
p. The particular instance of b is then unambiguously
identified by "z.Z{ey\ where Z{e) identifies e within
the specification of p's body. Protocol optimization by
re-use of instance identifiers shall not be systematically
considered, though often possible.

3.3 The basic principles of protocol
construction

Like (Kant et al., 1996) and previous similar algo-
rithms, our algorithm is based on a small set of intu-
itive rules that can be easily expressed in an informal
way:
1) Only the server components responsible for actions

in the service specification should participate in the
execution of the service.

2) An individual service action must always be im-
plemented at the component to which it has been
pre-assigned.

3) Every protocol message should unambiguously iden-
tify the behaviour that it helps to implement.

4) Service choices should always be resolved exclu-
sively by service actions. Protocol actions only com-
municate the decisions between server components.

5) To simplify protocol derivation, we partition the
service actions in such a way that
• conflicts between distributed implementations of

concurrent service parts are a priori avoided, and
• ali service choices can be resolved locally at indi­

vidual components.

FUNCTIONALITV DECOMPOSITION IN LOTOS Informatica 23 (1999) 259-273 263

6) With the previous heuristics, the šole purpose of
protocol actions is to report on local terminations of
individual service parts.

3.4 Service behaviour attributes,
particularly termination types

Mapping T is guided by various pre-calculated at­
tributes of individual service subbehaviours, actually
(speaking in terms of the specification syntax) of the
service specification subexpressions by which they are
represented. Likewise, the attributes are also defined
for eax;h of the explicitly specified processes consti-
tuting the service. Computation and selection of at­
tributes is the key activity in the protocol derivation
process. After we find a set of attributes that is both
consistent and known to lead to an efficient protocol,
the protocol derivation itself (i.e. application of map­
ping T) is trivial. (That doesn't mean that the map­
ping has aJso been trivial to conceive and prove!)

For any attribute X{...) whose value is a set of
elements x, let Xx{. • •) indicate x € X{...), and vice
versa.

The basic attributes of a behaviour b are its starting
components (SC), its ending components {EC) and
its participating components (PC), respectively list-
ing the system components executing a starting, an
ending, or any service action within b. E.g., for a be­
haviour

6 = (((((a^5^)|||(b2;<53)) » (c3;siop))D<5^)|||
((di;,5^)[>(ai;<5^)))

we have SC{b) = {1,2}, EC{b) = {1,4}, PC{b) =
{1,2,3,4}.

Boolean attribute IT{b) indicates whether b might
immediately terminate (the above b can not, while its
part " (. . . 0<5̂)" in isolation could). Boolean attribute
ST{b) indicates whether b synchronizes its termination
with its environment, i.e. its 6 is not "consumed" by
a sequential composition operator (as is for example
6^ in the above b). Boolean attribute DT{b) indicates
whether a termination of b might be decision-making
(as are in the above b both occurrences of <5̂).

AH the above attributes are generic properties of
behaviours. Solving a system of recursive equations
for such an attribute, one should choose a solution
minimizing ali the process attributes, to respect the
natural semantics of the attribute.

There are two more attributes, TC and r C + , but
they are not generic properties of behaviours. They
are selected by a designer, to implement his/hers spe-
cific protocol derivation strategy. The exact role of
TC and TC^ is to dictate the termination type of in­
dividual service parts within the distributed service
implementation, as follows:

An individual service action must of course be imple-
mented at the component to which it is pre-allocated.
At any other component, we propose that it is selec-

tively mapped into a stop or an e (semantically equiva-
lent to 5). (Kant et al., 1996; Brinksma žind Langerak,
1995) strictly map to e, and consequently the quality
of the derived protocol suffers.

Depending on the mapping of the ending actions of
a particular b, in the čase that the server is running a
terminating alternative of b the behaviour Tc(6, z) of
a component c concludes either by stop (not preceded
by 5) or by 5. In the latter čase, c is a terminating
component of b, i.e. TCc{b). It is important that
Tc{b, z) concludes for ali terminating alternatives of b
in the same manner, i.e. always by stop or always by
6.

TCc{b) is always a consequence of TC^{b) indicat-
ing that the surrounding context of b requires c to con-
clude its implementation of b by 6. Besides, ECc{b)
implies TCc{b), for the ending components of a 6 are
responsible for detecting its termination.

If TCc{b), Tc{b, z) terminates on its own and so al-
lows C to sequentially proceed to the subsequent activ-
ities. That is the usual behaviour-termination type
in LOTOS-based protocol derivation. If -iTCc(6),
Tc{b,z) concludes by inactivity, that is disrupted by
a subsequent activity of c specified outside Tc(6, z).
The opportunity for protocol optimization lies in the
fact that setting TCc{b) to false renders the proto­
col messages serving solely for termination of Te (6, z)
unnecessary. For better understanding, observe that
for a service behaviour "6i > > bi", S in bi is invisible
for the service users and hence its implementation is
irrelevant, as long as control is properly transferred to
the implementation of 62 •

As TC and TC'^ are attributes that are rather se­
lected than computed, we don't provide strict rules for
them - just the restrictions that must be respected are
stated in Section 4. Within those limits, TC and TC'^
should be selected according to the relevant optimiza­
tion criteria. An always present criterion is minimiza-
tion of the (worst-case or average) inter-component
communication. Another criterion, often conflicting
with the former one, might be declaring for some ser­
vice parts b and components c that TCc{b) is desirable,
for C should terminate Te (6, z) as soon as possible, e.g.
to release some resources. A third criterion might be
to make a pair of server components exchange a proto­
col message at a particular point of service execution,
e.g. to convey some data. Moreover, scheduling of
protocol exchanges on FIFO channels usually requires
prevention of channel bufFers overcrowding.

When trying to find a solution better than the old
(rC+(6) = TC{b) = C), one must be aware that in
some cases a different solution might also result in a
less efficient protocol, depending on subtle properties
of the service structure. Thus the optimization should
be performed by thorough analysis of the entire service
specification. Nevertheless, one should never simply
retreat to (TC+(6) = TC{b) = C), for that might re-

264 Informatica 23 (1999) 259-273 M. Kapus-Kolax

Sendc(č,m) \\\{{isendc'[m;S)\{{c' e (C\{c})) A FIFO{c,c'))}U
{isync,,\m;Smc' g {C \{c})) A-nFIFOjcc'))})

ReCc(C, m) \\\i{{recc'lm;6Mc' € (C \ {c})) A i^/FO(c,c'))}U
{(sž/nc,,!m; J)|((c' £ iC\{c})) A^FIFO{c,c'))})

Exchc{C,C',m) := (if (c € C) then Sendc(C',ni) eke e endif |{|
if (c g C") then RecdJC \ {c'\({c 6 C) A (c' € C") A • ̂ F/FO(c,c'))}),m) else e endif)

Proi , (G) = K|(ix^ g G)}
Proj.iR) = {(M" ^ u'.'=)\(iu'= -^ u"=) g iž)}
SelectjC, z) a (within context z) deterministically selected element of C

Term'cib,TC+ib),z) Terme (6, z)
Term'c(6, C, z) := if (£'C(&) = (p) then Tc(6, z)

else if ECc{b) then (Tc(6, z) » SendaHC \ TC{b)), z.Z{h)))
else if ((c g C) A -<rCc{b)) then

if {\EC{b)\ = 1) then (Te(6,z)[> ReCc(£;C(6),^.Z(6)))
else {{Tc(b,z)[> 6)\\\RecciEClb),z.Zib)) endif

else Tc(&, z) endif endif endif
Altcjb, b', z) ~ Alfcib, {PC{b') n TC{b')),z)
Alfcib, C, z) := if iEC{b) = (j)) then Te(6, z)

else if (c = Select{iTC+{b) n PC(6)), Z(&))) then
{Termc{b,z) » Sendc((C \ (PC(6) UTC+(Ž)))),2.Z(6)))

else if ((c g C) A -PCc(&) A -TC+(6))
then ReCc(Se/ert((TC+(6) n PC{b)), Z(6)), z.Z(6))
else Terme (&, •2) endif endif endif

Table 3: Functions used in mapping T

sult in protocol errors, as explained in Section 4, if not
to mention that for some service types, that straight-
forward solution is extremely inefficient (as demon-
strated by the example in Table 7, discussed in Section
4.1).

To reduce the computational compIexity, the rules
for attribute evaluation in Section 4 are not exact, in
the sense that they sometimes assume that the proto­
col derivation algorithm must pay attention to a ser­
vice scenario that a more careful examination of the
service specification would identify as non-executable.
Particularly the rules neglect the positive impact of
synchronization between parallel behaviours. Conse-
quently, the decoraposition transformation might gen-
erate some redundant protocol interactions, or the
transformation might be unjustly declared inapplica-
ble to a particular action partitioning. In other words,
more exact attribute evaluation rules would result in
a more generally applicable transformation generating
more efficient protocols. But as the proposed rules are
strictly pessimistic, they are nevertheless sufRcient for
protocol correctness (with the harmless exception that
the generated component specifications might com-
prise some parts that are non-executable within the
context of the system), provided that the mapping T
itself is correct.

Of course, computation of attributes might also fail,
implying that it is impossible to satisfy ali the given
restrictions simultaneously, or result in a protocol not
satisfying the adopted optimization criteria. In that

čase, one should try to find a better service action par­
titioning, or artfully insert in the service specification
some dummy internal actions (as long as the service
remains observationally equivalent to the original).

3.5 Some auxiliary
specification-generating functions,
particularly implementation of
terminations

Table 3 defines a set of auxiliary specification-
generating functions for the mapping T. The first two
functions implement sending or receiving at a c of a
message m between c and any c' in (C \ {c}), inde-
pendently for each c'. EichdC, C, m) implements the
actions of c necessary to perform the task of each mem-
ber of C" receiving m from each member of C other
than itself. Since message exchanges in sync actions
are bi-directional, that allows some optimizations.

ProJe(G) and Proje(-R) respectively project onto
the gates of c a set of gates and a set of renamings.
Select{C, z) deterministically selects within context z
a component in C.

If the surrounding context of b requires a c to con-
clude its implementation of the terminating alterna-
tives of b (if any) by 5, formally TCf{b), that might
be implemented by the mapping Tcib,z) itself, i.e. c
included into TC{b). Alternatively, it might be better
to have -TCcib) and to make c exit its implementa­
tion of b upon reception of special messages (sent by

FUNCTIONALITY DECOMPOSITION IN LOTOS Informatica 23 (1999) 259-273 265

& = (((a^J^)[](b^c^;d^(?^))| | |((a^<5^)0(b^c^d^<5^))),^F/FO(l,2)
if TC2(&) then Term'i(6,{l ,2},^) := {{ici^;syndz.l;S)[]{h';syndz.2;syndz.3;d'-,S))\\\

((a^; syndzA; 6)[]{h^; synd.z.5; syndz.6; d^;S)))
Term'2ib,{1,2},z) := {{{syndz.l;6)[]isyndz.2;c^;syndz.S;S)}\\\

{(syndzA; d)[]{syndz.5; c^; syndz.6; S)))
else Term'i(6, {1,2},z) := {{{{a};6)\]{h^;syndz.2; synd.z.3; d^; S))\\\

{{a};S)[]{h^;syndz.5;syndz.6;d^;d))) » {syndz.7;6))
Term'2ib, {1,2}, z) := {{{syndz.2; c^; syndz.3; stop)|||(s2/nc!z.5; c^; syndz.6;stop))

[> {synd.z.7;6)) endif

Table 4: A service behaviour b and some of its possible implementations wrt. its termination type

b = (a^((b^Td^|(c^<?^)) , V{c,c'} : FIFO(c,c') , TC+{b) = {1,3,4} , TCjb) = {3,4}
Alt'i{b,{l,2,3},z) := {{{&'-;{{send3\z.2;6)\\\{sendi\z.2;d)) » stop)[> 5)

|||((rec3b.l;<5)|||(rec4!^.l;J)))
Alt'2{b,{l,2,3},z) := (recsh.l-S)
A/^'3(&,{l,2,3},z) := lveci\z.2;h^;sendih.l;send2\z.l;6)
A/^'4(6,{l,2,3},z) := {Teci\z.2]c^;sendi\z.l;S)

Table 5: Illustration of function Alt'

the ending components of b) together indicating global
termination of b. Function Term, an extension of
mapping T, implements the additional protocol inter-
actions. Function Term' is a generalization of Term
that signals the global termination to a component set
C.

For illustration of function Term, consider the ser­
vice behaviour b in Table 4 with requirement TC2'(b).
If we set TC2{b) to true, component 2 implements ali
the "a" actions as e. Consequently, whenever compo­
nent 1 selects an "a" alternative, it must send a special
indication to component 2, for component 2 does not
participate in such an alternative and needs a message
for its detection and subsequent proper local termi­
nation. In the vvorst čase, execution of b requires two
such messages. If we set TC2{b) to false instead, com­
ponent 2 simply executes its part of b and then stops.
Later its inactivity is disrupted by a message (a single
one!) implemented by Term applied to b. Obviously,
-TCiibi) is the more efRcient solution.

Function Alt is an extension of function Term in
the sense that one of the components knowing that
an alternative 6 of a 6' has been activated (and ter-
minated) indicates the fact to the yet non-informed
participants of b' that need the Information. Function
Alt' is a generalization of Alt that sends the Infor­
mation to a component set C, where necessary. Note
that both Alt' and Term' can serve for adding 6 to
implementation of a 6 at a c, but there is a slight dif-
ference: Term.' implements 6 upon c receiving mes­
sages from ali the ending components of 6 and is thus
also suitable if (Te (6,2;) ^ stop) or if c must detect
global termination of b. Otherwise c may enable S al-
ready after receiving a single message from a selected
participant of b (function Alt'), for the reception may

disrupt Te(6, z), supposed to be equivalent to stop, at
any time.

The effects of function Alt' are illustrated in Ta­
ble 5. Because of {TC^{b) A -.TCi(6)), component 1
detects global termination of b by receiving messages
from the ending components 3 and 4, introduced by
the Term part of Alt'. On the other hand we have
{-^TC}{b) A -.PC2(fe)), thus Alt' makes component 3
(selected among {1,3,4}) indicate activation of b to
component 2. 1 and 3 in the second argument of Alt'
are irrelevant, since both components participate in b,
and component 3 even terminates on its own.

3.6 Assumptions (obligations) for
mappings T, Term' and Alt'

This section is only intended for readers deeply inter-
ested in technical details, while others are advised to
refer to it only if having difficulties with the under-
standing of Section 4.

Mapping T is compositional, i.e. a mapping of a
behaviour b is defined in terms of the mappings of
its subbehaviours b'. Thus when designing Tc{b,z),
we always make some assumptions for each individ-
ual Tc{b',z). One level higher, analogous statements
appear as proof obligations for Tc{b,z). As mapping
Term' or Alt' shall often be used instead of T, the
obligations (suitably adapted) also apply to them.

Let Func{b, Arg) denote behaviour of the consid-
ered distributed system where every component c be-
haves like FunCc{b,Arg), where Func is T, Term'
or Alt' and Arg are the remaining arguments of the
mapping. Let Func{b,Arg)* denote Func{b,Arg)
with protocol interactions hidden. Below we list
the correctness criteria adopted for the system be-

266 Informatica 23 (1999) 259-273 M. Kapus-Kolax

haviour Func{b,Arg) and the individual component
behaviours Funcdb, Arg) within its context, assuming
that ali the FIFO channels are initially empty. Most
of the rules are just common sense or can be under-
stood in the light of the protocol derivation guidelines
stated so far, while the others support implementation
of various individual behaviour composition operators,
explained in Section 4. The obligations are indeed nu-
merous, but the correctness proof (Kapus-Kolar, 1998)
for the protocol derivation transformation has identi-
fied them as necessary, as will the reader if trying to
thoroughly understand the mappings in Section 4.
1) If-.PCc(&),then

{{{Func = T) A -rCc(6)) V
{{Func{b, Arg) = Term'{b,C,...)) A
(c^ (TC(6)UC)))V

{{Func{b,Arg) = Alt'{b,C,...)) A
ic^{TC+ib)UiC\PC{b)))))

implies FunCc{b,Arg) = stop and TCc{b) implies
FunCcib, Arg) = e.

2) Any visible action ofFered by Funcdb, Arg) is ei-
ther a service action pre-allocated to c within 6, a
protocol interaction associated with termination of
a 6' < 6, or 5.

3) In b, every b' <b \s assigned its unique identifier,
that is present in every protocol message associated
with termination of b'.

4) If {{{Func = T) A TCc{b)) V
{{Func{b, Arg) = Term'{b,C,...)) A
(c G {TC{b) U C))) V

{{Func{b,Arg) = Alt'{b,C,...)) A
{ce{TC+{b)U{C\PC{b)))))),

then FunCc{b,Arg) terminates in aH the terminat-
ing alternatives of b, otherwise never terminates.

5) Within Func{b, Arg), for any terminating alterna­
tive of 6, any FunCc{b,Arg) not terminating for the
alternative enters inaction before the last of the end-
ing components c' terminates FunCc'{b,Arg).

6) Func{b,Arg) inherits from b its starting actions,
with the exception that a starting J in 6 is considered
equivalent to a starting i in Func{b, Arg)*, provided
that there is a c guarding both the 6 and the i.

7) Within Func{b,Arg), for any terminating alter­
native of 6, any c £ SC{b) is activated before
the last of the ending components c' terminates
FunCc'{b,Arg).

8) Pretending that S of Func{b,Arg) is already
executable when enabled by ali c having it in
FunCc{b,Arg), Func{b,Arg)* « b, with the excep-
tion that enabling of 6 is allowed to be an internal
decisionof Func(&, Ar^")* if-'5T(6). If 6 is the entire
service, exact observational equivalence is required.

9) For each c, FunCc{b, Arg) contains only actions that
are executable within Func{b, Arg).

10) No Funcc{b, Arg) ever requires that the incoming
protocol messages on FIFO channels are received
in an order other than that of their transmissions

Server := {{{a};Proc)l\{h^;S')) » {h^;S''))
Proč := (c^;Proc)
V{c,c '}:F7F0(c,c ')
Serveri := {{{a};send2ll;stop)[]{h^;S)) »

{{send2\2;S)\\\{send3\2;S)))
Server2 := (((reci!l;Proc2)[> (reci!2;5)))
Proc2 := (c^;Proc2)
Servers := (reci!2;b''; J)

Table 7: An example implementation of a service com-
bining finite and infinite alternatives

within Func{b,Arg).
11) Any protocol message sent within Func{b, Arg) is

also received within it.

4 Distributed Implementation
of Individual Service
Specification Subexpression
Types

In this section we describe distributed implementation
of individual service specification subexpression types.
Table 6 summarizes the rules valid for any subexpres-
sion of type b, while the more specific rules are given in
separate tables, explained in Sections 4.2 to 4.8. Each
of the tables is typically divided into four sections: 1)
definition of the syntax of the expression e that is being
mapped, 2) attribute calculation rules, 3) (optional)
additional restrictions on e or its attributes, and 4)
mapping T for e. Studying Tc{b, z) in the tables with
the specific rules, the reader may with no harm pretend
that the only server components are those participat-
ing in b. The explanations of the transformations have
also been conceived from that viewpoint.

4.1 Rules applying to ali behaviour
types

The generally applicable rules in Table 6 deserve some
explanation.

Rule {{EC{b) = (j)) ^ {TC+{b) = (f)) pre-
vents server components from interpreting a non-
terminating b as terminating (i.e. no c can ever ter-
minate, if {EC{b) = 0), for that might result in a
protocol error, if b is alternative to a terminating b'
(Kapus-Kolar et al., 1991). With that rule, it is no
longer necessary to report every process instantiation
vjithin the service to every component, as it is in (Kant
et al., 1996). An illustrative example is given in Ta­
ble 7. In comparison with the solution suggested in
(Kant et al., 1996), there is an infinite saving in proto­
col messages - two per every instantiation of "Proč".

FUNCTIONALITV DECOMPOSITION IN LOTOS Informatica 23 (1999) 259-273 267

if {EC{b) = (f)) then TC+{b) = (j)
else if 36' : ((6 < b') A ^PCc{b')) then --TC+{b)

else TC^{b) defined in the corresponding one of the Tables 10,12,13,15,17,20 endif endif
{DT(b) A STjb)) => {i\ECib)\ = 1) A {TC+{b) = EC{b)))
ECjb) C jTC+jb) \ {PCjb) \ ECjb))) C TCjb) C TC+{b)
if -^PCc{b) then if TCc{b) then Tc(&, z) ~ e else Tc(6,2) := stop endif
else Tc(f>, z) defined in the corresponding one of the Tables 9,10,12,13,15,17-19,20 endif

Table 6: Rules valid for any service subexpression b
introduced for the purpose of protocol synthesis

The second row of Table 6 requires that a behaviour
b whose termination might be both decision-making
and synchronized has a single ending component that
is also the only component regarding b as terminating.
To understand the requirement, observe the service
behaviour

b = {{{^^;5')[>{i^-y;5')W]\{5'^{i'-y-5'))

e = 6 = stop
SCcib) = ECcib) = PCc{b) --
IT{b) = DT{h) = false

= false

Table 8: The specific rules for s top

SCc{b) =
IT{b) =
Tc'(e,z)

e = b = 5''
--ECcib) = PCc{b) = {c = c')
true DT{b) = false
•.= b

Table 9: The specific rules for S'^

ponent 1 can't report them separately (only upon 6 of
Ti{b,z)), necessitating

(TC+(6i) = rC+(6i[> 62) = TC(6i)).
Hence the considered rule applies to "6i[> 62" • Also,
(|rC"'"(6i[> 62)1 = 1) (not to speak of a decision-
making 6 within 63) implies

(TCib) ^ EC{b) = EC{bi)),
i.e. 6 oi b must be in ali its alternatives controlled by
component 1 (and indeed it is). (Kant et al., 1996;
Brinksma and Langerak, 1995) ignore the fact that a
decision-making S of 61 within a "&i[> 62" might be
synchronized, thus they sometimes generate erroneous
protocols. The two methods can only be amended by
getting rid of the rule (PCdb) => TC+{b)), as we have
done.

In the third row of Table 6, the not yet ex-
plained idea is that -^PCc{b) should imply {TC^{b) =
TCc{b)). That is because a non-participant c of a 6
should not participate in Terme(6,2), just as not in
Tc{b, z), as stated in the last row of the table.

The Tc{b, z) rule in Table 6 implies that if -.PCc(&),
TC^{b') for any b' <b can be false by definition.

e = b = h[]b2
SCc{b) = {SCcibi)VSCcib2))
ECc{b) = {ECc{bi)V ECc{b2))
PCcib)^{PCa{bi)VPCc{b2))
JT(6) = (/ r (b i)v7r (62))
STjbi) = STib2) = STjb)
DT{b) = (DTibi) V DTib2) V 7T(6))
TC+{bi) = {TCc{b)APCcib,))
TC+{b2) = {TCc{b)APCcib2))
3c' : iSCjb,) = SCib2) = {c'})
Tc{e,z) := {Altaibi,b,z)[]Altc{b2,b,z))

Table 10: The specific rules for choice

of the form "((6i[> b2)|[b2]|b3)"- S of 61 is decision-
making for (61 [> 62) and synchronized with 5 of 63,
hence both S must be controlled by the same component
(in our čase, it is the component 1). Thus

((|£C(6i)i = 1)A (rC(6i) = £;C(6i) = ECibs))).
Moreover, as 5 of Ti (bi, z) and the corresponding 6
of Ti(bi[> b2,z) are guarded by S of Ti(63, z), com-

4.2 Implementat ion of inaction and
terminat ion

The specific rules for stop and 6'^ are defined in Table 8
and Table 9, respectively.

4.3 Implementat ion of choice
For implementation of choice (Table 10) we adopt the
usual restriction (Bochmann and Gotzhein, 1986) that
alternatives must have an unique and common start-
ing plače. Provided that distributed implementation
of individual alternatives is communication-closed and
preserves their starting actions, the choice is entirely
local.

Let bi be the selected alternative. After its execu-
tion, one of its ending components proceeds to inform-
ing on the selected alternative the missing terminating
participants of b. That is implemented by using func-
tion Alt instead of Term. If no message is sent to
a missing participant c of b, Tc(b, z) is equivalent to
Tc(b2, z), that is in the čase of bi not enabled, so that

268 Informatica 23 (1999) 259-273 M. Kapus-Kolar

b=ii^^;h^;S-'mc';d';e'-S')) FIFO{c,c') = {{c,c'} e {1,2}) , TCjb) = {1,2}
Ti(6,z) := {{a};sync2lz.l;(5)[](c^;send3!2.2;recsIz.S;e^;sync2\zA; S))
T2{b,z) := {{sync,lz.l-y;S)l\{sync,\zA;S)
T3(6,z) := (reci!z.2;d^;sendi!z.3;stop)

Table 11: An example implementation of choice

e = b = bi » b2
SCcib) = SCcjbi) ECcjb) = ECcib2) P a (6) ^ (Pgc(fci) V-PCc(&2))
ITjb) = ITjbi) DT{b) = DT{b2) STjbi) = false , 5T(62) = ST{b)
{{^PCc{b2) ATCc{b2))V ECcibi)) =^ TC+{bi) ^ ((EC(6) = ^) vrCc(6) V ECe(6i) V 5C,(62))
TC+ib2)=TCa{b)
T Je, z) :=iiTC+(b^) then (Term.f6i.z1 > > Exchr(EC(b^),SC(b•).),z.Z(b^)) » Termr(bo.,z))

else if 5Cc(62) then {Term'c{bi,{c},z) » Termc(&2,z))
else (Te(bi,2)[> Termc{b2,z)) endif endif

Table 12: The specific rules for sequential composition

the component waits for a disrupting message issued
at some point after completion of b.

In the example in Table 11, component 2 is a missing
terminating participant of the second alternative, thus
it is notified of its execution. On the other hand, com­
ponent 3 does not participate in the first alternative,
but is not required to terminate it, thus it receives no
notification.

Initial (decision-making) terminations of b are no
longer forbidden (see Table 16), as they are in
(Brinksma and Langerak, 1995). That is because each
initial S is now controlled by the component c' making
the choice and guards termination of Te(6, z) for any
other C 6 PC{b).

4.4 Implementat ion of sequential
composition and action prefix

Implementation of sequential composition is specified
in Table 12. Proper sequencing of bi and 62 requires
that each c e EC{bi) reports (by a message z.Z(bi))
termination of Tc(6i,z) to each c' € SC{b2) (Kant
et al., 1996). An analogous solution is employed for
implementing action prefix (Table 13).
1) A C e TC"*"(61) executes Terme(61, z), then its

part of the exchanges of message z.Z{bi) sent from
EC{bi) to SC{b2), and finally Ter7nc(62,z).

2) If (-.TC+(6i) A 5Ce(62)), the receptions of z.Z{bi)
at C are implemented by upgrading Te(61, z)
into Term'c(6i,{c},z); afterwards, c proceeds to
Terme (62, z).

3) If (-.TCe+(6i) A -^SCc{b2)), C concludes Te(61, z) by
inaction, that might be disrupted by Termc(62,z)
or some later activity.

The various situations are illustrated by the example
in Table 14, where one can also observe a situation of
&i having both a terminating and a non-terminating
alternative.

As terminations of bi are not terminations of b, there
is no strict rule for TC^{bi), but we require that
1) {-^PCc{b2) A TCe(62)) implies TC+{bi), for other-

wise Terme(62,z), unguarded in T(6, z), could pre-
maturely disrupt Te(61, z), and

2) TC+{bi) implies
{{ECib) = ^) V TCcib) V ECaibi) V SCc{b2)),

to prevent disruption of Termc(6i,z) by actions upon
termination of b in the alternatives where c doesn't
participate in 62-

4.5 Implementat ion of disabling
Implementing disabling (Table 15) we encounter simi-
lar problems as when implementing choice. The start-
ing actions of the disrupting behaviour 62 are alter­
natives to the actions (including S) in the potentially
disrupted 61, thus we require (Brinksma and Langerak,
1995) 62 to have an unique starting component c'
that is also the only participant of 61. (Kant et al.,
1996) has tried to avoid the restriction, but unsuc-
cessfully, with potential protocol errors (Kapus-Kolar,
1999). The difficult problem is that it is not sufficient
to individually implement bi and 621 if ^1 is terminat­
ing. We need a special termination scheme, like the
one explained in the following.

If &2 is activated, a termination of b is always a ter­
mination of 62, and thus properly detected by ali the
participants of b needing the Information, since by the
adopted restriction, {PC{b) = PC{b2))- However, if
61 terminates without being disrupted by 62, c' must
subsequently report, where necessary, the termination
to the other participants of b. For a receiving c", the
situation is exactly as in the čase of "610^2"- At c',
however, the transmission must not be attached se-
quentially to the 61 part (as in (Kant et al., 1996)),
because in that position it would be disruptable by
the 62 part (Kapus-Kolar, 1999). Hence it must be

FUNCTIONALITV DECOMPOSITION IN LOTOS Informatica 23 (1999) 259-273 269

e = b = s'' -.bo
SCcjb) = {c = cO ECcjb) = ECc{b2) PCcjb) = ((c = c') V PCcib2))
IT{b) = false DT{b) ^ DT{b2) STjbi) = STjb) TC+ib2) = TCajb)
Tc{e,z) :=if (c = c') then [s'' •{^endc{SC{b2),z.Z{b{)) » Term^(62,-2)))

else if SCc(&2) then (ReCc{{c'},z.Z{bi)) » Termcib2,z))
else Terme{b2,z) endif endif

Table 13: The specific rules for action prefix

6=(((ai;b3;((ci;<5^)|||(d2;<5^)))[](ei;f^stop))»((g^h^ji;(5^)|||(k2;(5^)))
FIFO{c,c') ^ {{c,c'} = {1,2}) , TC{b) = {1,2,3,4}
Ti{b,z) := {{{3}•,send3lz.l•,Tec3\z.2•,c^]5)\}{e^;send^\z.3^,stop))

» {sync2\zA;g^;send4!2;.5;Tec4\z.6\i^;S))
T2ib,z)
T3ib,z)
T4{b,z)

:= {Tec3\z.2;d'^;synCilzA;k'^;S)
:= {Teci\z.l;h^;{{sendilz.2]S)\\\{send2lz.2;6)))
:= ((reci!2.3;f^;stop)[> {reci\z.5;h.''';sendi\z.6;S))

Table 14: An example implementation of sequential composition

executed after c' exits both parts, implying that the
message is also sent if 62 is executed (Brinksma and
Langerak, 1995). Therefore -iTCj, (61), for the mes­
sage reports completion of b rather than 61.

If c' is also the only ending component of 62; c"
needn't be a terminating component of 62 and inter-
prets the reception as a disruption of Tc{b2,z) (see
the example in Table 16). In the opposite čase, com-
ponents (including c') must first terminate 62 (if cur-
rently active), before sequentially proceeding to syn-
chronization upon completion of b (Brinksma and
Langerak, 1995). However, the second solution is only
applicableifforeveryc" € i{TC{b)nPC{b))\{c'}), al\
the initial actions of Termc"{b2,z) are also receptions
of messages sent by c'. The simplest way to secure
that is to require \PC{b)\ = 2, as it is in (Brinksma
and Langerak, 1995).

Initial (decision-making) terminations of 62 are
no longer forbidden, as they are in (Brinksma and
Langerak, 1995). That is because each initial S is now
controUed by c' and guards termination of Tc{b, z) for
any other c G PC{b).

4.6 Implementat ion of parallel
composition

Parallel composition of service parts (Table 17), re-
gardless of the extent of their synchronization, intro-
duces no additional protocol messages. Each compo­
nent simply executes in parallel its local implementa-
tions of individual service parts, locally synchronized
as specified by the parallel composition operator. To
minimize communication costs, we allow separate ter­
mination optimization of individual parallel service
parts.

If ali components communicate synchronously (as
for example in process "First" in Table 22), the cross-

cut theorem (Eijk, 1990) for re-grouping of parallel pro-
cesses applies: One may pretend that it is not that
protocol interactions in the implementations of 61 and
62 share internal system channels and differ only in
the message contents, but that the message contents
is also a part of the channel name, i.e. that the two
implementations use different system channels. Hence
as far as synchronization between the service actions
in 61 and 62 is ignored, the distributed server runs the
parallel service parts' implementations independently.
Moreover, synchronization upon a service action be-
tween the parallel service parts is at šole discretion of
the component executing the action, i.e. a local mat-
ter.

(Kant et al., 1996; Brinksma and Langerak, 1995;
Kapus-Kolar, 1997) erroneously (Kapus-Kolar, 1999)
presume that the cross-cut theorem also applies to
asynchronous communication. The simplest way to es-
tablish virtual independence between the implementa­
tions of 61 and 62 in the presence of FIFO channels is to
require that there is no asynchronously communicating
pair of components belonging to {PC{bi) n PC{b2))-
(For example, for process "First" in Table 22 it is cru-
cial that -1^/^0(1,2).) If the parallel composition is
pure interleaving, however, the above restriction is not
necessary (as for example in process "Second" in Ta­
ble 22). That is J because the components are known
to always be able to receive protocol messages in the
global order in which they have been sent, in both the
implementation of 61 and of 62 (Kapus-Kolar, 1998)

4,7 Implementat ion of hiding and
renaming

Table 13 indicates that the only property of an ac­
tion s'' that is relevant for mapping T is its location.
Hence hiding commutes with T and its implementa-

270 Informatica 23 (1999) 259-273 M. Kapus-Kolar

e = b = bi[> &2

SCcjb) = jSCcih) V SCo{b2)) ECcjh) = {ECcih) V ECc{b2))
PCcjb) = jPCcibi) V PCcib2)) STibi) = ST{b2) = STib)
ITjb) = (JT(6i) V ITib2)) I DTjb) = iiECjbi) ^ <p) V ITjbi) V DT{b2))
TC+(bi) = ECcjbi) ; if (ECjb) = PCjbi)) then TC+{b2) = PCcjbi) else TC+{b2) = TCcjb) endif"

3c' : ((PC(6i) = SCib2) = {c'})A
{{ECjb) C je'}) V (((TC(b) n PCjb)) \ {c'}) = <l>)y {\PC{b)\ = 2)))

Tc(e,z) :=if (EC(6i) = (j)) then if PCc(6i) then (6i[> Termc{b2,z)) else Term.f69,z) endif
elseif PCc(6i) then ((61 [> Termc{b2,z)) » Sendc((rC(6) nPC(6)),z.Z(6i)))

elseif rCc(6) then
if {EC{b2) = PC{bi)) then {T,{b2,z)[> KeCc{PC{bi),z.Z{b^)))
else (ReCc(PC(bi),2.Z(6i))[|

(Terme (62, z)
if {EC{b2) 7̂ (/•) then > > ReCc(PC(6i),z.Z(6i)) endif)) endif

else Tc{b2-,z) endif endif endif

Table 15: The specific rules for disabling

6 = ((ai;bi;J^)[> {n{{d}-{{e^;nm';5m » {g';5'))))
^{c,c'} : FIFO{c,d) , TCjb) ^ {1,3}
Ti(6,z) := (((a^bi;(5)[> iSWid^;iisend2\z.2;S)\\\isend3lz.2;d)) » {{Tec2lz.3;S)\\\{rec3\z.S;6))

» {send3\z.l]S))
T2ib,z) := (reci!z.2;e^;sendi!2;.3;stop)
T3(6,z) := ((reci!z.2;f^;sendib.3;stop)[> (reci!a:.l;(5))

Table 16: An example implementation of disabling

tion is trivial (Table 18). To enforce the commuting
for renaming, we require that ali renamings are local
to individual server components (Table 19). An exam-
ple implementation of hiding and renaming is given in
Table 22.

4.8 Implementation of process
definition and instantiation

An explicit process p is implemented at a component
C as an exphcit process Pc{n) (Table 20), where formal
parameter n carries the process instance identifier (Ta­
ble 21). For the main process Server we presume that
it might be necessary for its termination to be a cora-
mon action of the server environment and aH the server
components. An example implementation of multiple
concurrent instances of a process is process "Second"
in Table 22. Note that in the example, simplification
of aH z.Z{b) into Z{b), suggested for the example in
Table 7, would result in an erroneous protocol.

5 Discussion and Conclusions

We have proposed a correctness-preserving transfor-
mation for functionality decomposition based on spec-
ifications written in Basic LOTOS (Bolognesi and
Brinksma, 1987), the core sublanguage of the stan­

dard specification language LOTOS. Given a specifica-
tion of the required external behaviour (the expected
service) of a system and a partitioning of the speci-
fied service actions among the system components, the
transformation derives behaviour of individual compo­
nents implementing the service. A correctness proof is
provided in (Kapus-Kolar, 1998).

e = b = hide G in 61
SCjb) = SCcjbi) ECcjb) = ECcjbi)
PCcib) = PCcjbi)
ST{bi) = STjb)

ITjb) = IT{bi)
DTjb) = DTjbi)

TCcjbi) ^ TCcjb)

Tcje, z) := hide Proj^jG) in T^b^z)

Table 18: The specific rules for hiding

Our algorithm enhances and integrates the algo-
rithms of (Kant et al., 1996; Brinksma and Langerak,
1995). As the two algorithms are themselves a synthe-
sis of the earlier similar approaches, and thoroughly
compared to them, in the follovving we only compare
our algorithm to the two algorithms.
• Unlike (Brinksma and Langerak, 1995), our algo­
rithm is applicable to multi-party servers.
• It is applicable to servers with both synchronous and
asynchronous inter-component channels, while (Kant

FUNCTIONALITV DECOMPOSITION IN LOTOS Informatica 23 (1999) 259-273 271

e = b = bi\G\b2
SCcjb) = iSCcjbi) V 5^(62)) ECcib) = (ECaibi) V ECcib2))
PCcjb) ^ {PCc{bl)\J PC,{b2))
STjbi) = STjbi) = true
TCt{b^)=TCt{b2)=TCM

IT{b)^{IT{bi)MT{b2])
DT{b) = (DTibi) V£>r(b2))

(G = 0) V ->3{c, c'} C {PC{bi) n PC{b2)) : FIFOjc,d)
Tc{e,z) := {TerTnc{bi,z)\Proj^{G)\TerTncib2,z))

Table 17: The specific rules for parallel composition

Server := {First\[a},c^]\Second)
First := hide b^ in {{{{a';d')\\\{h'^;6^)) » {c'';5^))\[h'']\{d';h^;S^))
Second := ((ren A^ -^ â B^ -> b^ C^ -^ ĉ in Proc)|||(ren A^ -> K^ B^ -> y=̂ C^ -> ẑ in Proč))
Proc:=(((Ai;5i) | | | (B3;5='))»(C2;52))
F7FO(c,c') = ({c ,c '}^{ l ,2})
aerveri := (Firsti(l)|[ai]|Secondi(2))
Fir5^i(z) := ((ai;s2/nc2'z-l;<5)lll(<i^s2/nc2!z.2;(5))
Secondi{z) := ((ren A^ —>• â in Proci(z.l))|| |(ren A^ —̂ x^ in Proci(z.2)))
Proci(z) := (A^;sj/nc2!z.l;(5)
Server2 := (Firsi2(l)|[c'^|Second2(2))
First2iz) —hideh^ in ((b2;s2ynci!z.l;c2;(S)|[b2]|(s2/nci!z.2;b2;(5))
Second2(z) := ((ren C^ -^ c^ in Proc2(z.l))|||(ren C^ -> ẑ in Proc2(z.2)))
Proc2(z) := iasync,\z.l;6)\\\{rec3lz.l;S)) » {C^;S))
Server3 := Second3{2)
Secondsiz) := ((ren B^ -^ b^ in Proc3(z.l))|||(ren B^ -^ y^ in ProC3(z.2)))
Proc3(z) := (B^;senrf2!z.l;^))

Table 22: An example implementation of parallel composition, hiding, renaming and process instantiation

e = 6 = ren R in 61
SCcib) = SCcibi)
PCcib) = PCoibi)
ST{bi) = STib)

ECcib) = ECcibi)
IT{b) = IT (bi)
DT{b) = DT(bi)

TCc{bi) = TCcib)
{{ul -> 5) e iž) => 3u2 : {9 = u'2)
Te(e,z) := ren Proj,{R) in Tc{bi,z)

Table 19: The specific rules for renaming

et al., 1996) only supports asynchronous communica-
tion. As such, our algorithm has wide applicability
(see the Introduction) and is also suitable for hard-
ware/software co-design.
• The algorithm corrects an error identified in
(Brinksma and Langerak, 1995) and several identi­
fied in (Kant et al., 1996). It is also more general, in
the sense that it supports implementation of decision-
making terminations.
• The algorithm provides means for the generation
of more efficient protocols (with less intercomponent
communication), based on the following observation:
If there are two consecutive service parts 61 and &2,
the only server components that really must detect
the termination of 61 are those executing its ending

e = (p-.-bi)
SCcip) = SCcibi)
PCM = PCcibi)
5T(6i) = STip)

ECcip) = ECcibi)
IT {p) = IT{b{)
DTijp) = DTibi)

TC+{b,) = TCc{p)
Tc{e,z) := (pcin) := Termc(&i,n))

Table 20: The specific rules for process definition

actions. Other participants of 61 can as well conclude
its execution by inaction that is later disrupted by ac­
tions announcing execution of 62, for it is the start of
62 - not the formal termination of bi - that is relevant
to the service users. Even if there is no 62 following &i,
it might stili be more efficient for a non-ending partici-
pant of bi not to čare about its termination, but rather
conclude its part of 61 with inaction later disrupted by
termination-signalling messages from the ending par­
ticipants of 61.
• The algorithm is more flexible, for it allows one to
employ the above communication-reduction principle
to an extent best meeting his/her various optimization
criteria, reduction of inter-component communication
often being just one of them. If the principle is only
employed where mandatory for protocol correctness,

272 Informatica 23 (1999) 259-273 M. Kapus-Kolar

b = p
SCcjb) = SCcJp)
PCcib) = PCcip) DT{b) = DTip)

ECcjb) = ECcjp)

if (p = Server) then ST(p) = true
else STjp) = {STjp) V STjb))
if (p = Server) then TCdp) = true
else TCcip) = TCc{b)
To{e,z):=Pc{z.Z{h))

Table 21: The specific rules for process instantiation

best possible performance. Even optimization crite-
ria are not well known; it would be convenient to have
them derived automatically from a more detailed spec-
ification of the system and the service, particularly
from requirements regarding action parameters and
quantitative timing, and the Information on the invo-
cation probability for individual service parts. Thus
we decided to postpone the implementation of the al-
gorithm till completion of a thorough study on the
subject.

the algorithm reduces to a corrected version of (Kant
et al., 1996; Brinksma and Langerak, 1995) adapted
for multi-party servers with synchronous and/or asyn-
chronous inter-component channels.

It seems that one should prefer our algorithm to
(Kant et al., 1996; Brinksma and Langerak, 1995),
though it could be further improved by more exact
computation of service specification subexpression at-
tributes and restrictions, that vvould vviden its appli-
cability and/or increase the efficiency of the derived
protocols. Other items for further study are the same
as for the two former algorithms:
• introduction of inter-component co-ordination
schemes that would render the various restrictions
on the service specification structure unnecessary, i.e.
allow distributed decision-making, as for a very lim-
ited setting suggested in (Langerak, 1990). There is
presently no adequate solution that would not ruin the
compositionality of the algorithm, thereby making the
service/protocol relationship difficult to understand.
• extension to service actions with data parameters
and to timed service actions. Our experience (Kapus-
Kolar, 1991a,b) shows that it is typically possible to
convey data and timing Information piggybacked in
the protocol messages already present if data and tirne
are ignored, i.e. in the messages introduced by the
above presented algorithm. Of course, provided that
the messages are sent at appropriate points of service
execution. Hence again the message-scheduling flexi-
bility of our algorithm proves convenient, particularly
in the presence of real-time requirements and protocol
channels with substantial transit delay.
• generalization to unreliable protocol channels, though
it presently seems that it would be better to solve
the problem beloui the application layer of the system.
For recovery from errors requires returning to previ-
ous States, but the concept of an explicit state is not
defined in LOTOS.

The aJgorithm as it is now is useful as a set of hints
on how to systematically design correct and efficient
distributed service implementations. To complete the
work, it would be desirable to implement the algorithm
within a GAD tool. The mapping itself is trivial to im­
plement, but the communication optimization part is
complicated, if one wants to give the algorithm the

References
[1] Bochmann, G. v., Gotzhein, R., Deriving Protocol

Specifications from Service Specifications, in Proč.
ACM SIGCOMM'86 Symp., AGM, 1986, 148-156.

[2] Bolognesi, T., Brinksma, E., Introduction to the
ISO Specification Language LOTOS, Computer
Netvjorks & ISDN Systems 14(1), 25-59 (1987).

[3] Brinksma, E., Langerak, R., Punctionality Decom-
position by Gompositional Gorrectness Preserving
Transformation, SACJ/SART 13, 2-13 (1995).

[4] Eijk, P. v., Tools for LOTOS Specification Style
Transformation, in Formal Description Technigues
/J (S. T. Vuong, ed.), North-HoUand, 1990, 43-51.

[5] Kant, G., Higashino, T., Bochmann, G. v., Deriv­
ing Protocol Specifications from Service Specifica­
tions Written in LOTOS, Distributed Computing 10,
29-47 (1996).

[6] Kapus-Kolar, M., Deriving Protocol Specifications
from Service Specifications Including Parameters,
Microprocessing and Microprogramming 32, 731-738
(1991).

[7] Kapus-Kolar, M., Deriving Protocol Specifica­
tions from Service Specifications with Heteroge-
neous Timing Requirements, in Proč. Srd lEE Int.
Conf. on Softuiare Engineering for Real-Time Sys-
tems, lEE, London, 1991, 266-270.

[8] Kapus-Kolar, M., Employing Disruptions for More
Efficient Functionality Decomposition in LOTOS, in
Proč. 22nd EUROMICRO Conf., IEEE Gomputer
Society, 1997, 464-471.

[9] Kapus-Kolar, M., Employing Disruptions for More
Efficient Functionality Decomposition in LOTOS,
Technical Report 7878, Jožef Štefan Institute, Ljubl­
jana, 1998.

[10] Kapus-Kolar, M., Comments on Deriving Proto­
col Specifications from Service Specifications Writ-
ten in LOTOS, to appear in Distributed Computing
12(4), 1999.

FUNCTIONALITV DECOMPOSITION IN LOTOS Informatica 23 (1999) 259-273 273

[11] Kapus-Kolar, M., Rugelj, J., Bonač, M., Deriv-
ing Protocol Specifications from Service Specifica-
tions, in Proč. 9th lASTED Int. Symp. Applied In-
formatics (M. H. Hamza, ed.), ActaPress, Anaheim-
Calgary-Zurich, 1991, 375-378.

[12] Langerak, R., Decomposition of Functionality: A
Correctness-Preserving LOTOS Transformation, in
Protocol Specification, Testing and Verification X
(L. Logrippo, R. Probert, H. Ural, eds.), North-
Holland, 1990, 229-242.

[13] Saleh, K., Synthesis of Communication Protocols:
An Annotated Bibliography, Computer Communi­
cation Reviev) 26(5), 40-59 (1996).

[14] Turner, K. J. (ed.), Using Formal Description
Technigues - An Introduction to ESTELLE, LOTOS
and SDL, John Wiley, New York, 1993.

[15] WELL - World-wide Environment for Leaming
LOTOS, "http://www.cs.stir.ac.uk/~kjt/research/-
well/wen.htmr.

http://www.cs.stir.ac.uk/~kjt/research/-

