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Abstract
Innovate textile materials for special clothing are intended for providing trauma protection for the wear-

er. Fabrics made from high performance aramid fi bres are widely used nowadays for manufacturing ath-

letic sportswear for extreme sports due to their high specifi c tensile modulus and strength. The aim of 

our study was to illustrate a new approach when searching for optimal settings for impregnating indi-

vidual batches of textile materials on the basis of para aramid fi bres. We demonstrate a feed-forward bot-

tleneck (FFBN) neural network mapping technique that makes it possible to see all optima (optimal set-

tings for best quality) in the studied process. The selections of optimal settings are based on making 

decisions allowing us to choose optimal settings for processes in relation to the best quality and small-

est (minimal) expense. This new approach can be applied for searching optimal settings regarding dif-

ferent chemical treatments. If a standard statistical regression model (in the cases of non-linear relation-

ships) experiences lack of fi t, it can be successfully substituted with the FFBN neural network mapping 

technique. This method can also be recommended as a double check of a studied process when we use 

other approaches. 

Keywords: aramid fabrics, optimisation, impregnation, feed-forward bottleneck neural network, design of ex-

periment

Izvleček
Inovativni tekstilni materiali za specialna oblačila so namenjeni za zaščito telesa pred poškodbami. Tkanine, 

narejene iz visokozmogljivih aramidnih vlaken, se dandanes na široko uporabljajo za izdelavo atletskih špor-

tnih oblačil za ekstremne športe, ker imajo visoko natezno trdnost in elastični modul. Cilj naše študije je bil pri-

kazati nov pristop pri iskanju optimalnih nastavitev za impregnacijo posameznih serij tekstilnih materialov na 

osnovi paraaramidnih vlaken. V raziskavah je predstavljena metoda 2D (2-dimenzionalnega) nevronskega ma-

piranja s tako imenovanim pristopom »feed foward bottleneck neural network (FFBN NN)«, ki omogoča vizual-

no ugotovitev optimalnih rešitev (optimalnih nastavitev procesa, pri katerih dobimo najboljšo kakovost). Opti-

malne nastavitve procesa izberemo s pomočjo odločitev, pri katerih lahko izberemo najboljšo kakovost pri 

najnižjih stroških. Takšen pristop je uporaben za ugotovitev optimalnih nastavitev pri različnih kemijskih obde-

lavah. V primerih, ko pri standardnem regresijskem modelu (zaradi nelinearnih zvez) pride do nezadostnega ali 

pomanjkljivega ujemanja, ga lahko uspešno nadomestimo z modelom v obliki nevronske mreže FFBN. Meto-

do mapiranja FFBN NN lahko uporabljamo sočasno s standardnimi statističnimi metodami. Tako omogočimo 

dvojno kontrolo sistema.

Ključne besede: aramidna vlakna, optimizacija, impregnacija, feed-forward bottleneck neural network, načrtova-

nje poskusa
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New Approach for Optimising the Impregnations of Individual 

Batches of Aramid Fabrics

1 Introduction

Aramid � bres have been produced in Russia since 
1970. � e history of the � rst Russian para aramid � -
bres under the name SVM (super high-modulus � -
bre) is given on the web-page of the Alchemie 
Group [1]. � is group was founded in 1999 to com-
mercialise Russian materials’ technologies focusing 
on unique materials’ processes and materials that en-
able the Alchemie Group to supply ultra-e�  cient, ul-
tra-light, ultra-high strength materials, composites, 
components, solutions, systems and products for the 
21st century. Aramid � bres are currently in produc-
tion as AuTx-WE � bre based on Rusar (Russian Ar-
amid) technology with a tenacity of over 250 cN/tex.
� e process of � bre forming is principally di� erent 
from that used while forming Kevlar and Twaron 
aramid � bres. � e SVM � bre has high strength 
(190–220 cN/tex), high modulus (75–100 GPa), and 
elongation at break (3,0–4,0%). � is � bre is used for 
the manufacturing high strength lightweight com-
posites and as a fabric was applied in the creation of 
the � rst � exible Russian bullet proof vests.
� e current generation of � bres that have become 
the base for AuTx materials appeared in 1997 un-
der the tradename RUSAR (an abreviation for 
Russian Aramid). � is � bre has very high strength 
(230–270 cN/tex for AuTx WE and >300 cN/tex 
for AuTx DWE), high modulus (100–140 GPa), 
elongation at break at (2,6–3,0%) and is extremly 
environmentally resilient. � e technology of AuTx 
has a large potential for development [1].
Nowadays the high interest for goods produced 
from aramide � bres and fabrics has been proved by 
numerous research [2–8].
In this paper we examined the impregnation proc-
esses of high performance fabrics made from ara-
mid � bres designed for the manufacturing of athlet-
ic sportswear for extreme sports using the neural 
network mapping technique when searching for op-
timal conditions regarding the studied process.
Traditional statistical methods based on the designing 
of experiments (for example, surface response meth-
od or others) are o! en used for improving the prop-
erties of textile materials [9–11]. In some cases the ar-
ti� cial neural network methods have been employed 
for predicting the properties of fabrics [12–13].
� e application of the feed-forward bottleneck neural 
network (FFBN NN) mapping technique for optimi-
sation is a relatively new method that is easy to use 

and non-time consuming [14–19]. � e projection of 
multidimensional data into a 2D map enables obtain-
ing of the input and output parameters within the 
same coordinates. � us, a contour plot of output pa-
rameters (responses) overlapping with locations cor-
responding to the combinations of input parameters 
(setting points) enables visualisation of the optimal 
setting parameters of the technological processes in 
the 2D map. Implementation of the FFBN NN map-
ping technique enables the � nding of several optimal 
solutions during the development of the new prod-
ucts, as well as to improve the qualities of industrial 
products. Application of the FFBN neural network 
mapping technique for pigment dyeing of aramid and 
arimid � bres was published in a paper [20]. It was of 
interest for considering optimisation of the impregna-
tion process of aramid fabrics using the FFBN NN 
method. � e FFBN NN approach in combination with 
the criteria functions for plotting coded diagrams is 
innovative within the � eld of enhancing textile prop-
erties via the adjusting of impregnation parameters.

2 Materials and methods

2.1 Materials
Aramid fabrics (Russian name SVM) with mass 
per unit areas of 131 g/m2 (fabric 1) and 216 g/m2 
(fabric 2) produced from polyamide benzimida-
zole (PABI) � laments were used during the im-
pregnation treatment. 
� e PABI � bres have extremely high modulus and 
strength, and are heat-resistant. � ey are widely 

Figure 1: A pattern of a sport jacket and trousers with 

the pieces of aramid fabrics (darker coloured)
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used for the production of protective clothing (i.e. 
bulletproof vests) [21] as well as for the recreational 
industry in a variety of applications ranging from 
boating to skiing. In this paper we studied those ar-
amid fabrics used for the manufacturing of athletic 
sport wear for extreme sports, particularly sport 
jackets and trousers (see Figure 1).
� e quality of lighter fabric 1 (131 g/m2) was evaluat-
ed using output parameters (responses) Y1–Y4, where 
Y1 represents weight gain I (%), Y2 sti� ness (mm), 
Y3 tensile strength (daN) and Y4 elongation (%). 
� e quality of fabric 2 (216 g/m2 ) was evaluated us-
ing output parameters Y5–Y7 where Y5 designates 
weight gain II (%), Y6 wear-resistanсe (cycles) and 
Y7 tear force (daN).

2.2 Plan of experimental design for the 
impregnation process

� e diagram of the impregnation process of aramid 
fabrics considered in this study is represented in 
Figure 2. � e fabric passes through a bath (2) and 
subsequently through squeeze rollers 3, then is di-
rected towards drying in the air and thermo-� xa-
tion at 150°C.

Figure 2: A diagram of the impregnation process

Statistical designs of experiments (DOEs) is com-
monly used in many industries (chemical, polymer, 
car manufacturing, biotech, food and dairy, pulp and 
paper, steel and mining, plastic and paints, electron-
ic, telecom, etc.). DOEs can be used for the develop-
ments of new products and processes, enhancements 
of existing products and processes, optimising the 
qualities and performances of products, screening 
important factors, minimization of products’ costs 
and pollution, robustness testing of products and 
processes, and so on. � e goal of our study was im-
provement of the impregnation process. 
� e following � ve independent variables (which af-
fect the qualities of impregnated fabrics) were cho-
sen for the study: the concentration of latex (AH7) 
(x1, g/l), concentration of gelatin (x2, g/l), concen-
tration of binder (Carbamol) (x3, g/l), concentration 
of catalyst, MgCl2 х 6 Н2О (x4, g/l), and heat � xa-
tion time, (x5, s).
Each of the 5 independent variables were explored 
on 5 levels: –2, –1, 0, +1 and +2. � e contents and 
concentrations of components in the impregnation 
bath used during this study as coded and non-cod-
ed values are represented in Table 1. � e parameters 
were varied according to the speci� cation require-
ments of the technological impregnation process.
A design matrix including the 32 runs (number of 
experiments) was composed and is represented in 
Table 2, where Y1–Y4 are response variables related 
to fabric 1 while Y5–Y7 relate to fabric 2. � e input 
parameters X1–X5 are represented in the coded 
units (as code levels).
� e relationships were examined between the output 
properties of fabrics (Y1–Y7) depending on the con-
centrations of the ingredients in the impregnating 
bath and conditions (times) of the heat settings of 
� lm-forming compositions. � e goal of optimisation 
was to discover the maximal or minimal values of the 

Table 1: Coded and non-coded values of the independent input variables X1–X5 at 5 levels (–2, –1, 0, +1, +2) 

for the impregnating of aramid fabrics

Input Factors/Coded levels –2 –1 0 +1 +2

Х1 Latex (AH7) (g/l) 100 80 60 40 20

Х2 Gelatin 4%-solution (g/l) 0 20 40 60 80

Х3 Binder 50%-emulsion (g/l) 20 40 60 80 100

Х4 Catalyst MgCl2 х 6 Н2О (g/l) 0 2 4 6 8

Х5 Heat � xation time (s) 150 180 210 240 270
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Table 2 Experimental layout of the design matrix employed for ! ve independent variables (X1–X5) and output 

responses (Y1–Y7) for the impregnation process of aramid fabrics

№

Factors Fabric 1 (131 g/m2) Fabric 2 (216 g/m2)

X1 X2 X3 X4 X5

Weight 

gain I 

(%)

Y1

Sti" ness 

(mm)

Y2

Tensile 

strength 

(daN)

Y3

Elonga-

tion 

(%)

Y4

Weight 

gain II 

(%)

Y5

Wear 

resistance 

(cycles)

Y6

Tear 

force 

(daN)

Y7

1 +1 +1 +1 +1 +1 5.7 82 228 6.2 4.3 270 40

2 –1 +1 +1 +1 –1 10.8 90 244 6.5 5.8 280 42

3 +1 –1 +1 +1 –1 7.5 96 204 6.5 6.5 212 40

4 –1 –1 +1 +1 +1 8.1 93 250 6.3 10.2 216 40

5 +1 +1 –1 +1 –1 8.5 73 216 6.0 3.4 285 25

6 –1 +1 –1 +1 +1 7.2 70 242 5.7 6.7 216 36

7 +1 –1 –1 +1 +1 6.2 64 214 5.3 4.2 220 40

8 –1 –1 –1 +1 –1 8.6 70 252 5.7 6.1 225 49

9 +1 +1 +1 –1 –1 8.1 67 211 5.8 6.1 177 54

10 –1 +1 +1 –1 +1 11.6 54 243 4.7 6.5 277 57

11 +1 –1 +1 –1 +1 10.2 49 228 6.4 7.8 192 58

12 –1 –1 +1 –1 –1 11.0 56 238 6.2 8.2 289 56

13 +1 +1 –1 –1 +1 9.6 52 228 5.9 4.2 221 50

14 –1 +1 –1 –1 –1 9.6 51 229 6.5 5.6 270 67

15 +1 –1 –1 –1 –1 5.0 51 233 6.4 4.3 199 60

16 –1 –1 –1 –1 +1 7.4 46 220 6.0 4.7 216 64

17 –2 0 0 0 0 10.8 57 224 5.0 7.9 325 63

18 +2 0 0 0 0 6.0 54 228 6.5 4.3 258 55

19 0 –2 0 0 0 13.3 52 198 4.5 6.5 234 56

20 0 +2 0 0 0 7.1 53 238 6.5 5.7 206 53

21 0 0 –2 0 0 8.3 52 220 5.8 4.3 227 52

22 0 0 +2 0 0 11.7 52 222 5.9 7.0 203 61

23 0 0 0 –2 0 4.8 65 198 6.0 3.5 188 51

24 0 0 0 +2 0 16. 47 236 6.2 8.8 367 62

25 0 0 0 0 –2 9.2 53 220 6.5 6.0 242 50

26 0 0 0 0 +2 6.2 95 232 5.5 3.2 140 60

27 0 0 0 0 0 8.8 97 252 6.5 4.6 281 60

28 0 0 0 0 0 9.0 98 248 6.5 4.6 304 59

29 0 0 0 0 0 9.2 96 248 6.4 4.6 288 65

30 0 0 0 0 0 8.7 96 247 6.4 4.6 279 62

31 0 0 0 0 0 8.9 97 252 5.7 4.5 291 60

32 0 0 0 0 0 8.8 93 251 6.0 4.5 295 63

Target min min max max min max max
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objective functions in order to reach the best qualities 
for the products. In this case the generalised response 
should be determined. Normalisation of the data was 
performed in order to obtain a generalised response.
In order to obtain the normalized values of the re-
sponse variables (yn), each y value was divided by 
its maximal value (yn1 = y1/y1max, yn2 = y2/y2max, ..., 
ynk = yk/ykmax). As a result values no greater than 
one were obtained for each of the response and 
could be compared.
� e goal of our optimisation was the maximisations 
of Y3, Y4, Y6 and Y7 and the minimisations of Y1, 
Y2 and Y5. � erefore, the generalised values of the 
response variables was obtained using Equations 1 
and 2 for fabric 1 and fabric 2, correspondingly.
(Yn_gen1) = yn3*yn4/ yn1*yn2 (1)
(Yn_gen2) = yn6*yn7/ yn5 (2)

It should be noted that the normalised values of “Y” 
were used in the neural network method described 
below.

2.3 Feed-forward bottleneck (FFBN) neural 
network

� e general concept of arti� cial neural networks 
(ANN) is based on simpli� ed imitation of the hu-
man nervous system.
A simple network has a feed-forward structure: sig-
nals � ow from inputs forward through any hidden 
units, eventually reaching the output units. Input data 
are organised as vectors (based on linear algebra). In 
other words the input layer serves for introducing the 
values of the input variables. (In Figure 3 one can see 
fragments of vectors from the design matrix). Neural 
networks are typically organised in layers. � e hidden 
and output layer neurons are connected to all the 
units in the preceding layer. In the study we applied 
the FFBN NN-containing input layer, hidden layer 
and de-mapping of input (output layer) (see Figure 
4). Layers are made up of a number of interconnected 
“nodes” which contain an “activation function”.
� e FFBN neural network applied in the study refers 
to an auto associative neural network. � e feed-for-
ward nets here are trained to produce an approxima-
tion of the identity mapping between network inputs 
and outputs using back propagation or similar learn-
ing procedures [14–19]. � is neural network can deal 
with linear and nonlinear correlation amongst varia-
bles. Multidimensional data sets are di�  cult to inter-
pret and visualise. � e FFBN neural network was 
used for compression and visualisation of the data in 

2D maps. � e FFBN neural network is formed by 
means of mapping and demapping the hidden layer. 
� e signals in the two hidden nodes are taken as two 
coordinates for each input object, enabling a 2D pro-
jection of experimental objects onto a 2D map.
� e architecture of FFBN NN is represented in Fig-
ure 3. � e DOE matrics containing »m« factors (X1–
Xm) with »k« numbers of runs is shown at the top of 
Figure 3. � e principle of bottleneck layer mapping: 
the two neurons within the hidden layer produce, for 
each input object xi, a corresponding pair of coordi-
nates (hi = {hi,1, hi,2}). � e run number »i« marked as 
a vector xi = {xi1 xi2 xi3...xim}. In the FFBN each i-th 
object is projected onto a two dimensional map with 
coordinate hi1/hi2 (see blue arrow). In our experi-
ment we have got 32 projection points (k = 32) cor-
responding to 32 experimental settings.

Figure 3: " e architecture of feed-forward bottleneck 

(FFBN) neural network

� e 2D map with distribution of 32 experimental 
settings (as was determined in the plan of the ex-
periment) is shown at the right side of Figure 4 in 
coordinate H1/H2.
For each of the 32 experimental settings the corre-
sponding value of response Y was determined during 
the course of the experiment. � e projection of Y onto 
H1/H2 coordinates gave the contour plots of response 
Y. Overlapping the projections of 32 experimental ob-
jects (obtained from the FFBN neural network 2D 
map) with responses’ contour plots in the same coor-
dinates (H1/H2) enables visualisation and the deter-
mining of optimal settings (the dark colour in the 2D 
map corresponds to the highest values of response Y).
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3 Results and discussions

3.1 Searching optima using FFBN neural 
network mapping

� e architecture of the FFBN neural network with 
input matrix (X1–X5) applied in the study and 
projection of experimantal setting points (1–32) is 
shown in Figure 4. It complemented the projec-
tion of generalised response Ygen1 (for fabric 1) 
onto a 2D map with the same coordinate H1/H2. 
� e right (bottom) side of Figure 4 illustrates the 
contour plot of Ygen1 overlapped with 32 input 
setting points.

Figure 4: " e architecture of FFBN neural network 

with input matrix (X1–X5) and projection of experi-

mental setting (points 1–32), as well as values of gen-

eralised response Ygen1 (for fabric 1) onto 2D map 

with coordinate H1/H2

Input data are represented as vectors X1–X5 cor-
responding to 5 columns in the design matrix 
with 32 rows related to the 32 setting points (see 
Table 2).
A special architecture of error back-propagation 
neural network was used (5, 2, 5), in which the 
data are fed into the 5-nodes input layer and then 
transferred through the 2-nodes hidden layer 
(compared to a bottleneck) to the 5-nodes output 
layer. The number of nodes in the input and out-
put layers correspond to the number of inde-
pendent variables which is equal to 5 (number of 
factors in DOE). During the training process we 
are able to get within the output nodes, the val-
ues more similar to the input variables of the 
samples, after passing the bottleneck of the two-
node hidden layer. The signals in the two hidden 

nodes are then taken as two coordinates for each 
input object acting as a 2D projection of samples 
into a map.
For each of the 32 experimental settings the corre-
sponding value of Y (Y1–Y7) was determined in the 
course of the experiment. � e projection of 32 com-
binations of experimental conditions and values of 
response within the same coordinates H1/H2 ena-
bles determination of optima in the impregnation 
process.
Figure 5 illustrates the experimental data for fab-
ric 1 with surface density 131 g/m2. It represents 
the 34 setting points overlapped with the contour 
plots of responses: Y1- weight gain, Y2- sti� ness, 
Y3- tensile strength, Y4- elongation and general-
ised values Ygen1 = Y3*Y4/ Y1*Y2.
� e dark green (in colour picture)/grey (in the grey 
scale picture) area corresponds to maximal values. 
For fabric 1 it corresponds to combination 15. � us, 
for fabric 1 optimal condition settings correspond 
to levels of X1–X5 (+,–,–,–,–) with parameter X1 at 
level +1 and parameters Х2–Х5 at the level –1. 
� us, the optimal settings for fabric 1 enable ob-
taining of the following quality characteristics: Y1 = 
5.0%, Y2 = 51mm, Y3 = 233daN; Y4 = 6.4%.
Figure 6 represents the experimental data for fabric 

2 with surface density 216 g/m2. � e thirty two (32) 
experimental setting points are overlapped with the 
contour plots of responses: Y5- weight gain, Y6- 
wear resistance, Y7- tear force; and generalised val-
ues Ygen2 = Y6*Y7/ Y5.
For fabric 2 optima for generalised response corre-
spond to combination 14, 18 and central values 
(zero level (27–32)) (marked with red circles in Fig-
ure 6). Non-coded values of Y5–Y7 in that points 
are seen in Table 2.
We can also select the optimal settings by taking 
into account individual responses Y6, Y7 and Y5 
(not generalised). If the weight gain (Y5) is insignif-
icant (or the values for Y5 at point 24 satisfy our 
requrements) and we would like to get the highest 
wear resistance (Y6) and tear force (Y7) we obvi-
ously would select point 24 (see Figure 6). � is 
point 24 corresponds to the highest values of Y7 (Y7 
= 62daN) and Y6 (Y6 = 367cycles) keeping the Y5 
at the middle level (Y5 = 8.8%).
� us, three (multimum) optima were recommend-
ed for fabric 2. � e � rst optimum corresponds to 
the setting point 14 (–,+,–,–,–); the second opti-
mum belongs to point 18 (2,0,0,0,0); and the third 
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optimum is located at the centre point 27–32 
(0,0,0,0,0).
To obtain the highest wear resistance and tear force 
keeping the weight gain at the middle level we rec-
ommend setting point number 24 (0,0,0,+2,0).

Visualisation of the process in the 2D map provides 
signi� cant information for making decisions and 
selecting a suitable condition for the experiment.
An optimal solution was chosen on the basis of a 
compromise decision.

Figure 5: Experimental data for fabric 1 with surface density 131 g/m2. " irty two (32) setting points over-

lapped with the contour plots of responses: Y1- weight gain; Y2- sti# ness; Y3- tensile strength; Y4- elongation, 

and generalised values Ygen1 = Y3*Y4/ Y1*Y2
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4 Conclusion

Implementation of the feed-forward bottleneck 
neural network technique enabled the � nding-out 
of one optimum for fabric 1 that corresponded to 
setting parameters in setting point 15 (+,–,–,–,–) 
with parameter X1 at level +1 and parameters Х2–
Х5 at the level –1. For fabric 2 three (multimum) 
optima were recommended: corresponding to the 
setting points 14 (–,+,–,–,–), 18 (2, 0,0,0,0) and cen-
tre point 27–32 (0,0,0,0,0). To get the highest wear 
resistance and tear force keeping the weight gain at 
the middle level and recommended setting point 
number 24 (0,0,0,+2,0).
� e FFBN mapping technique enables the � nding- 
out multiple optima that could be selected upon 
compromise decisions by taking into account the 
desired quality of material, as well as the technical 
and economic viewpoint and safety of the process. 
Translation of the multidimensional process input 
parameter’s space into the 2D coordinate system and 
application of the criteria function as a combination 

of the process output parameters can be very in-
formative and opening a whole new area of � nding 
optimal conditions in the � eld of the textile impreg-
nation industry.

References

 1. Alchemie Group home page [online], [accessed 
22. 4. 2015]. Available on Word Wide Web: 
<http://alchemie-group.com/core-materials-
technology/autx-aramid-� bre/compliance/>.

 2. KIM, Hyun Ah and KIM, Seung Jin. Physical 
properties of para-aramid/nylon hybrid air 
textured yarns for protective clothing. Fibers 

and Polymers, 2014, 15(11), 2428–2436, doi: 
10.1007/s12221-014-2428-5.

 3. ZHENG, Huanda and ZHENG, Laijiu. Dyeing 
of meta-aramid � bers with disperse dyes in su-
percritical carbon dioxide. Fibers and Polymers, 

2014, 15(8), 1627–1634, doi: 10.1007/s12221-
014-1627-4.

Figure 6: Experimental data for fabric 2 with surface density 216 g/m2. " irty two (32) setting points over-

lapped with the contour plots of responses: Y5- weight gain; Y6- wear resistance; Y7- tear force, and generalised 

values Ygen2 = Y6*Y7/ Y5



176 New Approach for Optimising the Impregnations of Individual 

Batches of Aramid Fabrics

Tekstilec 2015, 58(3), 168−176

 4. BILISIK, Kadir. Experimental determination of 
yarn pull-out properties of para-aramid (Kev-
lar®) woven fabric. Journal of Industrial Textiles 

January, 2012 41(3), 201–221, doi: 10.1177/ 
1528083711413411.

 5. UPPAL, Rohit, RAMASWAMY, Gita N. and 
LOUGHIN, � omas. A novel method to assess 
degree of crystallinity of aramid � lament yarns. 
Journal of Industrial Textiles, 2013, 43(1), 3–19, 
doi: 10.1177/1528083712444648.

 6. LIN, Lantian, SHEN, Yiping and ZHANG, 
Qiuping. Analysis of environmental impact on 
mechanical properties of aramid � laments. Jour-

nal of Industrial Textiles, 2013, 42(4), 489–500, 
doi: 10.1177/1528083712446383.

 7. PARK, Jong Lyoul, YOON, Byung Il, PAIK, Jong 
Gyu and KANG, Tae Jin. Ballistic performance 
of p-aramid fabrics impregnated with shear 
thickening � uid. Part I – E� ect of laminating se-
quence. Textile Research Journal, 2011, 82(6), 
527–541, doi: 10.1177/0040517511420753.

 8. ZIELINSKA, Dorota, DELCZYK-OLEJNICZAK, 
Bogumila, WIERZBICKI, Lukasz, WILBIK-
HAŁ GAS, Bożena, STRUSZCZYK, Marcin Hen-
ryk and LEONOWICZ, Marcin. Investigation of 
the e� ect of para-aramid fabric impregnation 
with shear thickening � uid on quasi-static stab 
resistance. Textile Research Journal, 2014, 84 (15), 
1569–1577, doi:10.1177/0040517514525881.

 9. LI, Ting-Ting, WANG, Rui, LOU, Ching Wen 
and LIN, Jia-Horng. Evaluation of high-modu-
lus, puncture-resistance composite nonwoven 
fabrics by response surface methodology. Jour-

nal of Industrial Textiles, 2013, 43(2), 247–263, 
doi: 10.1177/1528083712452900.

10. ZHIYING, Cui, YANMIN, Wan and WEIY-
UAN, Zhang. � ermal protective performance 
and moisture transmission of � re� ghter protec-
tive clothing based on orthogonal design. Jour-

nal of Industrial Textiles, 2010, 39(4), 347–356, 
doi: 10.1177/1528083709347126.

11. LEE, Kyulin and CHO, Gilsoo. � e optimum 
coating condition by response surface methodol-
ogy for maximizing vapor-permeable water re-
sistance and minimizing frictional sound of com-
bat uniform fabric. Textile Research Journal, 2014, 
84(7), 684–693, doi: 10.1177/0040517513509870.

12. SARAVANA, kumar T. and SAMPATH, V. R. 
Prediction of dimensional properties of we!  knit-
ted cardigan fabric by arti� cial neural network 

system. Journal of Industrial Textiles, 2013, 42(4), 
446–458, doi: 10.1177/1528083712444296.

13. BEHERA, B. K. and GOYAL, Y. Arti� cial neural 
network system for the design of airbag fabrics. 
Journal of Industrial Textiles, 2009, 39(1), 45–55, 
doi: 10.1177/1528083708093335.

14. KRAMER, Mark A. Nonlinear principal com-
ponent analysis using autoassociative neural 
networks. AIChE Journal, 1991, 37(2), 233–243, 
doi: 10.1002/aic.690370209.

15. NOVIČ, Marjana and GROŠELJ, Neva. Bottle-
neck type of neural network as a mapping de-
vice towards food speci� cations. Analytica 

Chimica Acta, 2009, 649(1), 68–74, doi: 10.1016/ 
j.aca.2009.07.018.

16. DASZYKOWSKI, M., WALCZAK, B. and MAS-
SART, D.L. A journey into low-dimensional 
spaces with autoassociative neural networks. 
Talanta, 2003, 59(6), 1095–1105, doi: 10.1016/
S0039-9140(03)00018-3.

17. DASZYKOWSKI, M., WALCZAK, B. and MAS-
SART, D.L. Projection methods in chemistry. 
Chemometrics and Intelligent Laboratory Sys-

tems, 2003, 65(1), 97–112, doi: 10.1016/S0169-
7439(02)00107-7.

18. LIVINGSTONE, D. J., HESKETH, G. and 
CLAYWORTH, D. Novel method for the dis-
play of multivariate data using neural networks. 
Journal of Molecular Graphics, 1991, 9(2), 115–
118, doi: 10.1016/0263-7855(91)85008-M.

19. KOCJANČIČ, Robert and ZUPAN, Jure. Appli-
cation of a feed-forward arti� cial neural net-
work as a mapping device. Journal of Chemical 

Information and Modeling, 1997, 37 (6), 985–
989, doi: 10.1021/ci970223h.

20. FJODOROVA, Natalja, NOVIČ, Marjana and DI-
ANKOVA, Tamara. Optimization of pigment dye-
ing process of high performance � bers using 
feed-forward bottleneck neural networks map-
ping technique. Analytica Chimica Acta, 2011, 
705(1–2), 148–154, doi: 10.1016/j.aca.2011.04.041.

21. High-performance ! bres. Edited by J. W. S. Hear-
le. Cambridge: Woodhead Publishing, 2001, pp. 
329, doi: 10.1533/9781855737549.

Acknowledgments

Authors thank for the European Commission for the 

! nancial support under project CAESAR (SSPI-

022674) and the Slovenian Ministry of Higher Edu-

cation, Science and Technology (grant P1-017).


