
RAZPRAVE

0 IB-CIJE - Theoretical Concept and
Implementation Aspects for a
Softuuare-based Information System for
Innovative Budgeting in a Competitive
Universitg Environment
Markuš Aleksy1, Ingo Bayer2, Tila Dickopp1, Axel Korthaus1
University of Mannheim, Schloss, L 5,5, B8131 Mannheim, Germany
'Department of Information Systems, 2School of Business Administration, Dean’s Office
{aleksy|dickopp|korthaus}@wifo3.uni-mannheim.de
bayer@bwl.uni-mannheim.de

Abstract
In our paper, we first describe a new conceptual approach to budget planning and allocation on the schools' level, which promotes
autonomy and goal-orientation and provides incentives in order to optimize the performance and innovation outputs. Subsequently,
we focus on the design and implementation of a software application system, which realizes Computer support for this approach. An
object-oriented UMI model and the discussion of selected design decisions p rovi d e background information about a stand-alone
prototype implementation. We provide an analysis of different aspects concerning a layered architecture for the final software
product and the evolution of the prototype to become a distributed application.
Keywords: university budgeting information system, distributed object-oriented systems, object-oriented analysis and design.

Povzetek
IB-CUE: teoretična podlaga in različni vidiki realizacije informacijskega sistema za podporo inovativnega proračunskega načrtovanja v
tekmovalnem univerzitetnem okolju
V članku najprej opišemo nov pristop k proračunskemu načrtovanju (načrtovanju denarnih pretokov) ter razdelitvi sredstev na ravni
posameznih šol (fakultet). Pristop podpira avtonomijo in ciljno usmerjenost ter vsebuje spodbude za doseganje optimalnih rezultatov
ter inovacij. Nato se osredotočimo na programsko opremo za računalniško podporo takega sistema. Prototip informacijskega sistema
je realiziran kot izoliran (stand-alone) sistem, njegove lastnosti pa opišemo na podlagi objektno usmerjenega UML modela ter posameznih
razvojnih odločitev. Sledi analiza različnih vidikov razslojene arhitekture končnega programskega produkta ter evolucija prototipa v
smeri porazdeljene aplikacije.
Ključne besede: informacijski sistem za načrtovanje proračuna univerze, porazdeljeni objektno usmerjeni sistemi, objektno usmerjena
analiza in načrtovanje.

1 Introduction
Today, state-ouvned German universities are facing major chal-

lenges due to dramatic changes in their environment. The deua-

stating status of puhlic finances as uveli as intensifying compe-

tition in ali fields of education forces them to rethink their

strategies and to adapt swiftly to these challenges, hecause only

those who are able to “ride before the uuave” of forced reforms

imposed by the government have a chance to define their own

future ([18], [19]). Therefore, they have to assure that their

declining financial resources are not only allocated in an effi-

cient way, but also in a way that advances the achieuement of

the university’s goals as a vuhole. In our paper, uve sketch the

core ideas of an innovative budgeting model on the level of a

school inside a university, hecause this is actually the plače

vuhere the university’s resources are transformed into teach-

ing and research as the tuvo major outputs of theAiflfwsity [2].

An in-depth discussion of design and implementation conside-

rations for a softuvare application system implementing the

neuv approach follovus in the second part of the paper^/

2004-številka 4-letnik XII UPORABNA NFORMATIKA 177

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Software-based Information
System for Innovative Budgeting in a Competitive University Environment

2 Concepts for an innovative budgeting system
The budgeting system is based on an intemal school
organization, in vvhich the chairs of the school belong
to different departments, as, for example, Department
of Accounting, Department of Management, and so
on. The departments are responsible for teaching and
research in their field of specialization, and the heads
of the departments negotiate contracts with the
dean's office about the output that has to be delivered
to the school. There is a mutual under-standing that
every department has to carry a part of the basic bur-
den the school has to carry for the university as a
vvhole. In addition to this basic output, every depart
ment is also expected to strive for innovations in re
search and teaching, vvhich will help the school to
excel as a competitor for puhlic and private funds [7].

Thus, the budgeting model is based on the as-
sumption that it should be useful in a threefold way.
Firstly, it should enable the faculty members to carry
out the basic vvorkload the school is obliged to deliv-
er in general. Secondly, it should revvard those facul-
ty members who perform in a way that enables the
school to reach its more ambitious goals, and, last not
least, it should boost innovation inside the school.
Along these different goals, the budget model consists
of three major pillars, vvhich are:
• a Basic Budget,
. a Performance Budget,
. an Innovation Budget (cf. Figure 1).

The Basic Budget enables the school to meet basic
operational requirements and provides resources for
the general infrastructure, staff rooms etc. It can also

Elements of an Innovative Budgeting Model

| I_________ !

performance-independent performance-based
financial basis additional resources

basic performance innovation
budget budget budget

• to secure • performance-driven • project-oriented
operability • indicator-based • goal-oriented

• percentage-oriented

Figure 1: Elements of an innovative budgeting model

reflect different performance levels of departments
and be used to counteract the cementation of these
differences due to different initial resources.

The Performance Budget revvards the faculty in ac-
cordance vvith the percentage of the overall vvorkload
of the school the individual faculty member or the
individual department carries. This budget is distribu-
ted based on performance indicators that reflect the
performance indicators on the university level, vvhich
are directly responsible for the budget volume of the
school as a vvhole. In addition, performance budget
distribution can also account for indicators that reflect
the strategic goal settings of the school, so that goal-
orientation is strengthened vvithin the vvhole school.

The Innovation Budget has an "incubator function"
for the school. It is used to stimulate innovative pro-
jects, vvhich are in congruence vvith the schooFs strat-
egy, like research projects, nevv teaching models etc.

To be as efficient as possible, administrative tasks
such as budget planning activities have to be suppor-
ted by adequate softvvare-based information systems.
In the remainder of the paper, vve outline some basic
aspects of the development of a softvvare application
system that can support the nevv budgeting approach
explained above. IB-CUE ("Innovative Budgeting in a
Competitive University Environment") is the acro-
nym vve chose as a name for this information system,
vvhich is currently being developed at the University
of Mannheim. Hovvever, a vvorking prototype of the
application already exists.

Since the focus of this paper is to describe this pro-
totype and to present further considerations for im-
plementing a fully-fledged softvvare solution to sup
port our theoretical approach, vve do not go into more
detail about the budgeting methodology here. Read-
ers vvho are interested to learn more about the busi-
ness administrative concepts behind our approach are
referred to [1].

3 Considerations for the development of the
IB-CUE softvvare application

When vve planned the development process of IB-
CUE, vve identified tvvo core milestones that could
help to enforce an incremental approach that sup-
ports separation of concerns and step-vvise refine-
ment:
1. implementation of a stand-alone prototype pro-

viding the Business logic, and
2. migration to a distributed softvvare system.

178 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Softvvare-based Information
System for Innovative Budgeting in a Competitive University Environment

Figure 2: Screenshot of the prototypical IB-CUE softvvare application

Starting with a prototypical implementation that
only focused on the business logic of the budgeting
application and deferred technical considerations
until later had the big advantage, that many of the
complex questions and design decisions of softvvare
development could be disregarded at first. By initial-
ly focusing on the functional aspects only, it became
easier to provide a correct mapping of the requirements
(defined by the concepts of the budgeting model) to the
program code implementing the business logic. Hovv-
ever, vvhen designing the prototype, vve kept in mind
to encapsulate the business logic using clearly defined
interfaces in order to allovv for a layered approach dur-
ing the evolution of the system. This softvvare engineer-
ing method is called "Design by Contract" [10]. Thus,
it vvill be possible to reuse the core business logic to-
gether vvith different middlevvare tcchnologies for dis-
tributed communication or different clients for user
interaction, for example. As mentioned before, this first
step vvas already completed, and a Java-based proto-
typical implementation of the budgeting approach is
available since December 2003. Figure 2 shovvs a screen
shot of the prototype's GUI.

A core task of the second phase of the develop
ment process vvill be the consideration of distribution
aspects for the application. Since a school and its de-
partments have a distributed organization structure,
and faculty members should be able to enter their
performance achievements into the system by them-
selves, it is mandatory that ali people vvho are in-

volved in the budgeting process must be able to vvork
vvith the application simultaneously, vvithout having
to leave their offices. This requirement, vvhich is cru-
cial for user acceptance of the softvvare, cannot be met
by a monolithic stand-alone version of the application.
For this reason, a suitable middlevvare technology has
to be selected that provides the technical foundation
for the collaboration of distributed application compo-
nents.

4 Design and Implementation Aspects of the
IB-CUE Prototype

In order to capture the functional requirements of the
IB-CUE prototype, vve performed object-oriented ana-
lysis and design activities using the Unified Modeling
Language (UML) ([12], |13|). The resulting UML mo-
dels served as a foundation for the implementation of
the prototype in Java. During analysis and design, vve
had to make several decisions vvith respect to poten-
tial architectural options. For example, vve attached
great importance to the encapsulation of the function
al business logic code by applying a set of design pat-
terns and best practices [6], such as the "farade pat-
tern" or "single point of access" paradigm. This modu-
larization facilitates the reuse of the business logic and
the distribution of the application in the next evolu-
tionary step.

Another design decision referred to the question of
vvhere user input data is to be checked for correctness
vvith respect to the business rules, before it is fed into

2004 - številka 4 - letnik XII UPORABNA NFORMATIKA 179

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Softvvare-based Information
System for Innovative Budgeting in a Competitive University Environment

the budgeting algorithms etc. While it is common
practice to validate user input as quickly as possible,
i.e., in the user interface layer of an application, we
decided to have the business code check input data
for plausibility. Thereby, we made the code complete-
ly reusable, e.g. for the new distributed version of the
application, because no delegation of validation re-
sponsibilities to other components of the application
is required. The code performing the validation
checks is implemented in a generic manner.

The detachment of data and process behavior re-
presents yet another design decision we had to make.
This choice seems to be counter-intuitive at first sight,
since Object-Oriented principles postulate cohesion
and close packaging of corresponding data and oper-
ations vvithin classes. Hovvever, modern component-
based approaches like Enterprise JavaBeans [5] etc.
vvith their session-oriented and entity-oriented com
ponents recognize the benefits of separating data and
behavior on a higher level of abstraction. Common
design patterns such as the "value object pattern" or
the "transfer object pattern" also promote the factor-
ing out of data-centric classes. By separating these da
ta classes, vvhich are used by the business logic and
also by the user interface (or the netvvork layer in a
future version of IB-CUE), vve guarantee that new
data format requirements resulting from nevv applica
tion components do not affect the code implementing
the core business processes and rules of the system.
E.g., since varying marshaling capabilities of different
middlevvare technologies might result in different
data type requirements, our approach can minimize
the impact of svvitching the middlevvare technology.

In the remainder of this section, vve vvould like to
provide a detailed description of the design of our
prototype, vvhich vvas implemented in Java. Since the
business logic vvas proven to be correct, other layers
of the planned softvvare architecture for the final soft-
vvare product vvill be implemented using the AspectJ
technology [9). For an overvievv of the architectural
layers required for this system see section 5.

The first prototype mainly realizes the business lo
gic layer, vvhich vvill be rcused in the implementation
of the final softvvare product. Therefore, vve should
have a detailed look at hovv this layer vvas designed.
The business logic model consists of tvvo parts, as can
be seen in Figure 3: Classes that represent depart-
ments and their output make up the first part and are
placed on the left side of the figure. Classes that deal

vvith planning and allocating budgets make up the
second part and are placed on the right. A person be-
longing to a department (i.e., someone vvho produc-
es output) vvill exclusively vvork vvith instances of
model elements from the left part. A person vvho is
planning a budget vvill exclusively vvork vvith instances
of model elements on the right. A department produces
zero or more outputs. Each output that is a possible
candidate for a financial revvard is called an achie-
vement and is attached exclusively to the instance of
the department that produced it. By providing an
achievement vvith an element from a finite set of pos
sible achievement types, the achievement obtains a se-
mantic content, vvhich can be processed by a machine.
The achievement types build a tree-like structure, but
this feature found its vvay into the model only for con-
venience considerations and is not mandatory. The
vvell-knovvn "Composite" design pattern has been used
to model this structure [6]. As the researcher is respon-
sible for determining the type of an achievement, the
instances of the AchievementType subclasses should
be named in accordance vvith concepts that he can
understand, e.g. "publication in journal XY", and not
"publication in an A class journal".

The budgets are divided into different groups along
three dimensions:

The "assignment dimension"
Budgets may or may not be assigned to a (not empty)
set of departments. Unassigned budgets function as
aggregate budgets and, therefore, they must have
children, vvhich either are assigned to departments or
have children themselves. This is another application
of the aforementioned "Composite" design pattern
[6]. In a correct model, every budget has to be attrib-
utable to one or more departments either directly or
indirectly through its child budgets. Furthermore, the
planner can assign budgets to departments either
manually, or they are assigned to a department auto-
matically, because the department fulfils certain goals,
i.e., it has achievements of certain types, vvhich trig-
ger the assignment of this budget. Typically, basic and
innovation budgets vvill be assigned by hand, vvhereas
performance budgets vvill be assigned automatically
according to generally defined achievement goals.

The "amount type dimension"
Each budget has an associated rule that is used to cal-
culate the amount for this budget. It should be noticed

180 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Software-based Information
System for Innovative Budgeting in a Compelitive University Environment

-children

-children

Department

AmountType

Budget

Achievement

ProRataBudget

AssignedBudgct

AchievementType

FixedAmountType

UnassignedBudget

FixedGratuity Budget

AdaptiveAmountType

Goa!AssignedBudgct

PercentageAmountType

ManuallyAssignedBudgetConcreteAchievementTypeAggregateAchievementType

Figure 3: UML class diagram of the budgeting system problem domain

that more than one department might share the
amount of a budget, so that an adequate partitioning
scheme must determine the amount granted to each
department. There are three kinds of rules vvhich can
be used to achieve this:

. The budget's amount can be a fixed value. The root
budget, vvhich is the aggregate of ali budgets, may
only be set based on this kind of rule.

. The budget's amount can be a fraction of the amount
of its parent budget, specified in percent.

2004 - številka 4 - letnik XII UPORABNA INFORMATIKA 181

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Softvvare-based Information
System for Innovative Budgeting in a Competitive University Environment

. The budget's amount can be adjusted according to
context parameters, e.g. an amount that shall be used
to give 100€ to each of five departments should be set
to 500€.

The "gratuity dimension" or "subdivision dimen-
sion"
Two strategies can be applied to divide an amount of
a GoalAssignedBudget among the departments. Ei-
ther each department receives a fixed value or the
value is calculated on a pro rata basis depending on
the frequency or vveighted frequency of appropriate
achievements.

Figure 4 shows part of an object diagram of an ex-
ample scenario, which is compliant with the class di
agram shovvn in Figure 3. It is an instance-level dia

gram depicting a snapshot of the system at runtime.
In the example, there are two different departments,
Department Euler and Department Gaufi, vvhich have
produced three achievements: Mechanica, Disquisi-
tiones Arithmeticae, and Approximate Integration. Ali
those objects are modeled vvith white object rectan-
gles here. The achievements are of tvvo different
achievement types, namely Monograph and Journal
of Mathematics, modeled with light grey object rect-
angles. The budgeting part of the model is represent-
ed by dark grey object rectangles. There is an aggregate
total budget (of type UnassignedBudget) with an
amount of 4.000.0006 (of type FixedAmount Type), and
two sub-budgets can be seen, namely a basic budget (of
type ManuallyAssignedBudget) vvith an amount of
500.0006 (of type FixedAmountType), and a perfor-

amount = €500.000
: FixedAmountTyp

amount = € 1.000.000
: FixedAmountType

amount =€ 1.500.000
: FixedAmountType

amount = € 4.000.000
: FixedAmountTvpe

Mechanica : Achievement

amount = 30%
: PercentaqeAmountType

amount = 50%
: PercentaqeAmountType

amount = 50%
: PercentageAmountTvpe

Research: UnassignedBudget

Department Euler: Department

Monograph: AchievementType

Department Gauft: Department

Basic : ManuallyAssignedBudget Performance: UnassignedBudget

Cateqory I Journal: ProRataBudget

Journal Of Phvsics : Achievement!voe

Approximate Integration : Achievement

Journal Publication : UnassignedBudget

Aggregate Budoet: UnassignedBudget

Monograph Publication: ProRataBudget

Disouisitiones Arithmeticae : Achievement

Journal Of Mathematics : AchievementType

Figure 4: UML object diagram of an example scenario

182 UPORABNA NFORMATIKA 2004 - številka 4 - letnik XII

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Software-based Information
System for Innovative Budgeting in a Competitive University Environment

mance budget (of type UnassignedBudget) with an
amount of 1.500.0006 (also of type FixedAmount Type).
The basic budget is assigned to each department. The
performance budget has a child budget Research (of
type UnassignedBudget) with an amount of 1.000.0006
(of type FixedAmountType). This budget is subdivid-
ed into further sub-budgets, such as MonographPub-
lication of type ProRataBudget, vvhich means that the
amount is distributed on a pro rata basis. The amount
of the budget is of type PercentageAmountType and
is set to 30% of the research budget. There is an object
link to an achievement type object called Monograph,
and the two achievements Mechanica and Disquisi-
tiones Arithmeticae are of this type, so that they have
to share the 30% of the research budget's amount. The
other objects and links should be self-explanatory af-
ter this description.

In addition to the classes described above, the busi-
ness layer must contain manager classes vvhich are
used to receive a list of ali objects. This greatly simpli-
fies the implementation of the other aspects of the
system since a single point of access is convenient
vvhen operations should be carried out that affect ali
classes. In the default implementation the manager
classes simply store a list of objects on the heap.

5 Evolution to a distributed version of IB-CUE
Currently, vve are vvorking on a distributed, multi-
user version of IB-CUE to meet the real needs of po-
tential users of the softvvare. There are three main re-
quirements: firstly, IB-CUE must be deployable in a
heterogeneous IT infrastructure, secondly it must use
standardized communication methods in order to be
secure, and thirdly it should be possible to integrate
the system vvith legacy applications. These problems
are typically solved by using a middlevvare technolo-
gy, vvhich facilitates the distribution of the softvvare
system and provides standardized technical Services
for common infrastructure problems. It is obvious that
the correct choice of this technology is crucial to the
overall robustness and maintainability.

In order to be able to use a middlevvare technolo-
gy at ali, vve encapsulated the business code into vvell-
defined components. So, vvhatever method is chosen
for distribution, it vvill result in netvvork components
functioning as proxies [6] for the business compo
nents, vvhich do the actual vvork. This vvay, the code
vvhich is proven to be correct (cf. above) does not need
to be changed.

Those and further considerations vvill lead to a fi-
nal version of IB-CUE vvhich, from an architectural
point of vievv, can be split up into six different layers,
each vvith its ovvn responsibility. When a system is
analyzed at a high level of abstraction, as is done in
the follovving paragraphs, it is not pertinent to call
these layers e.g. packages or modules. This vvould
undoubtedly influence the vvay the system is looked
at and induce to analyze it in an object-oriented or
modular fashion. Since the best choice for an imple
mentation technology is to be discussed later, vve only
speak of "layers" for novv. The relevant layers are:
« business layer,
. presentation layer,
. distribution layer,
. authentication and authorization layer,
■ database layer, and
■ transaction layer.

The business lai/er contains the data structures
vvhich represent the elements of the business model
described above, e.g. budgets, departments, etc. Also,
the algorithms vvhich vvork vvith the data and perform
the required manipulations and calculations belong to
this layer. These algorithms can be further split up
into tvvo different groups: VVhile the first group as-
sures the integrity of the data, the second group has
knovvledge of the changes that the data has to under-
go vvhen certain business actions are taken.

The presentation layer is responsible for displaying
the objects of the business layer in a Graphical User
Interface (GUI) and for providing the user vvith Con
trols vvith vvhich the business actions can be initiated.

The distribution layer allovvs the business objects to
be distributed on multiple physical (or Virtual) ma-
chines. It handles the technical details of the commu
nication betvveen the different machines and can add
additional features like quality of Service or load bal-
ancing. Furthermore the distribution !ayer must be
able to communicate vvith legacy systems in order to
integrate data vvhich is hold there into the application.

The authentication and authorization layer governs a
list of users vvho have access to the system. The per-
mission to perform certain actions can be granted to
or removed from a user at this layer.

The database layer is responsible for long-term per-
sistence of the business objects in a database.

The transaction layer protects the system from dam-
age vvhich could arise from inconsistent data due to
concurrent use of business data.

2004-številka 4-letnik XII UPORABNA NFORMATIKA 183

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Softvvare-based Information
System for Innovative Budgeting in a Competitive University Environment

Although the described functionality can be imple-
mented in several ways, in this čase an approach must
be chosen vvhich bas minimum impact on the busi-
ness layer. Otherwise the testing and verification of
the business algorithms vvhich has already been done
vvould have been futile. This means the interdepen-
dencies betvveen the layers have to be designed in a
way that allovvs every layer to interact vvith the busi
ness layer vvhile the business layer itself exists in a
clean room environment vvithout any outgoing de-
pendencies. Figure 5 shovvs vvhich layer must have
knovvledge of vvhich other layers. A layer must have
knovvledge of another layer only if it needs to influ
ence the mode of operation of that other layer.

In the follovving subsections the dependencies be
tvveen the layers are described briefly by giving exam-
ples of how a layer influences the operation mode of
another layer. This vvill be the basis for the discussion
on hovv the problem is to be addressed. The order of
description of these dependencies matches the num-
bering of the arrovvs in Figure 5.

Dependency betvveen transaction and database
layers
The transaction layer needs to coordinate transactions
vvith the database layer. Since a database management
system (DBMS) usually comes vvith its ovvn transaction
Processing monitor (TPM), in some cases the TPM of
the DBMS can also be used to manage transactions
outside of the DBMS, but in most cases it is the respon-
sibility of the transaction layer to nest the database
transactions in the application transactions [20].

Distiibution Layer

Presentation Lar/er

Transaction Layer

Database Layer

Business Layer

Authentication and
AuthorizationLayer

Figure 5: Dependencies betvveen the layers

Dependency betvveen transaction and distribution
layers
In cases vvhen several clients access data concurrently
over a netvvork or vvhen data is held at many different
locations, the transaction layer must be designed vvith
respect to the special situations. One possible scenario
is that a transaction needs to be rolled-back vvhen a
participant in the netvvork exceeds response time. The
example points up that the transaction layer must have
knovvledge of the details of the distributed system. Fur-
ther examples can be found in [16].

Dependency betvveen transaction and business
layers
One of the most common activities of transaction Pro
cessing is that resources are locked by the transaction
manager - in this čase the transaction layer. This can
only be done vvhen the transaction layer has access to
the resources either directly or through a resource
manager, but in both cases profound knovvledge of
the implementation details of the business layer is es-
sential.

Dependency betvveen database and business layers
The database layer not only needs to read ali the val-
ues encapsulated in the business layer in order to store
them in a DBMS, but it is also responsible for deciding
vvhich data needs to be kept on the heap at ali. This
requires keeping a record of the frequency in vvhich the
data in the business layer is accessed.

Dependency betvveen distribution and business
layers
In order to marshal data that is to be transmitted over
the netvvork, its structure must be knovvn. This means
that the distribution layer needs read and vvrite access
to the business layer.

Dependency betvveen authentication/authorization
and database layers
Similar to the example given above a DBMS usually
has its ovvn security system, vvhich in most cases re-
quires a form of authentication [14]. One responsibil-
ity of the authentication and authorization layer is to
provide the DBMS vvith data necessary to authenti-
cate the user. VVhile the database login might differ
from the login used to gain access to IB-CUE, the au
thentication and authorization layer need to be able to
map one to the other.

184 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Software-based Information
System for Innovative Budgeting in a Competitive University Environment

Dependency between authentication/authorization
and database layers
Not every user is authorized to vvork with ali business
data and to initialize every business action. The au-
thentication and authorization layer therefore must
have the possibility to disallow certain actions de-
pending on the identity of the data and the user - it is
not sufficient to control data access by only taking the
typc of the data into account, e.g. vvhen a university
member has the permission to vievv the budget of his
school he does not at the same time have the permis
sion to vievv the budget of every possible school.

Dependency betvveen presentation and business
layers

The presentation layer takes the role of the vievv
and the controller in the commonly used model vievv
controller pattern S6C. The relationship betvveen the
vievv and the model can be designed to be a one-vvay
relationship as betvveen the presentation layer and the
business layer in IB-CUE.

Dependency betvveen presentation and authentica-
tion/ authorization layers
The presentation layer must display a login dialog
that provides the authentication and authorization
layer vvith the data necessary for the authentication of
the user.

The usual vvay to implement the described layers
is to choose appropriate technologies and design the
classes in a vvay that respects the requirements of the
technologies to be used. For example, if the distribu-
tion layer should be implemented using Enterprise
JavaBeans (EJBs) [5], the classes have to implement
certain interfaces and use certain implementation pat-
terns.

The most appropriate approach in this čase is, hovv-
ever, to use a technique knovvn as "aspect-oriented pro-
gramming" (AOP) [8]. The name aspect-oriented pro-
gramming is a summary for generic techniques vvhich
allovv the softvvare designer to separate concerns like
distribution, transaction processing or authorization
and authentication in a different module. The main
business classes can stili be vvritten in a traditional Ob
ject-Oriented language. This is accomplished by de-
scribing the transformation that each class must under-
go vvhen a certain layer - or aspect like it is called in
AOP - is added. For example the transaction aspect,
vvhen implemented in a naive vvay, might make it ne-

2004 - številka 4 - letnik XII

cessary to add a flag to every class vvhich teliš the TPM
if the class is currently in use and therefore access op-
erations should be locked. Since transaction processing
is not part of the core business logic the code should
also be kept in a different module. This is exactly hovv
AOP vvorks: the code of the various aspects is vvoven
into the core business code previous to the compilation
of the system.

B Conclusion
As a means to support state-ovvned universities in fac-
ing deteriorating financial conditions and an intensi-
fied performance competition, vve have introduced an
innovative budgeting system on the schools' level,
vvhich is especially suited as a controlling instrument
to guarantee Basic operation of the schools, revvard
outstanding performance and to bring forvvard inno-
vation. We have discussed design and implementa
tion aspects of our Java-based monolithic softvvare
prototype IB-CUE, vvhich implements this approach.
Furthermore, vve provided background information
about the current evolution of this prototype into a
distributed application vvith separate client and Serv
er components. VVe described basic considerations
concerning a layered approach to the design of the
final softvvare product's architecture. The next steps in
our project vvill be to select suitable technologies for
the implementation of those layers. For example, vve
vvill have to analyze the pros and cons of some of the
currently most popular middlevvare technologies,
among vvhich are heavy-weight technologies such as
the Common Request Broker Architecture (ČORBA)
[11], Java 2 Enterprise Edition (J2EE) [17], and the
Common Object Model Plus (COM+) [15], as vvell as
more lightvveight technologies like Web Services [3],
vvhich have become very popular recently.

References
[1] M. Aleksy, I. Bayer, T. Dickopp and A. Korthaus.

Innovative Budgeting in a Competitive University
Environment - Theoretical Concept and Design
Considerations for an Information System. Rroceedings
of the International VVorkshop on Business and
Information (BAI 2004), Taipei, Taivvan, March 26-27,
2004, chapter 11-4, (2004).

[2] I. Bayer. “Strategische und operative Fuhrungvon
Fakultaten - Flerausforderungen durch Autonomie und
Wettbewerb\ Dissertation, Universitat Mannheim,
Hemmer Scientific, Frankenthal, pp. 4-7, (2002).

[3] D. Booth et al. "Web Services Architecture”, W3C
VVorking Group Note, (2004).

uporabna INFORMATIKA 185

Markuš Aleksy, Ingo Bayer, Tilo Dickopp, Axel Korthaus: IB-CUE - Theoretical Concept and Implementation Aspects for a Software-based Information
System for Innovative Budgeting in a Competitive University Environment

[4] T. Cormen, C. Leiserson, R. Rivest. “Introduction To
Algorithms’’, MIT Press and McGraw Hill, (1994).

[5] L.G. DeMichiel. “Enterprise JavaBeans™ Specification,
Version 2.1”, Final Release, Sun Microsystems, (2003).

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides. "Design
Patterns: Elements of Reusable Object-Oriented
Softvvare," Addison-Wesley, (1995).

[7] E. Kappler. "Die Universitat kann Autonomie lernen". In:
Tischer, S., VVinckler, G., Biedermann, H. etal.:
Universitaten im Wettbewerb - Zur Neustrukturierung
osterreichischer Universitaten. Rainer Hampp Verlag,
Munchen, pp. 297-330, (2000).

[8] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. V.
Lopes, C. Maeda, and A. Mendhekar, “Aspect-oriented
programming”. European Conference on Object-Oriented
Programming 1997 (ECOOP 1997), LNCS 1241, pp.
220-242. Springer, (1997).

[9] R. Ladded. “Aspectl in Action”, Manning Publications,
(2003)

[10] B. Meyer. “Object-Oriented Softvvare Construction",
Sams, (1997).

[11] Object Management Group. “Common Object Repuest
Broker Architecture: Gore Specification", 0MG Adopted
Specification, Tech. Doc. No. formal/04-03-12, (2004).

[12] Object Management Group. “UML 2.0 Infrastructure
Specification", OMG Adopted Specification, Tech. Doc.
No. ptc/03-09-15,
http://www.omg.org/docs/ptc/03-09-15.pdf, (2003a).

[13] Object Management Group. “UML 2.0 Superstructure
Specification", OMG Adopted Specification, Tech. Doc.
No. ptc/03-08-02,
http://www.omg.org/docs/ptc/03-08-02.pdf, (2003b).

[14] G. Pernul. “Database Security”, Advances in Computers,
Vol. 38, Academic Press, pp. 1-74, (1994).

[15] D.S. Platt. “Understanding C0M + ”, Microsoft Press,
Redmond, WA, (1999).

[16] M. Rangarao, A. Vogel. "Programming with Enterprise
JavaBeans, JTS and OTS, Building Distributed
Transactions with Java and C+ + ”, John Wiley & Sons,
(1999).

[17] B. Shannon. “Java™ 2 Platform Enterprise Edition
Specification, vi.4”, Final Release, Sun Microsystems,
(2003).

[18] B. Sporn. “Adaptive University Structures - An Analysis of
Adaptation to Socio-economic Environments of US and
European Universities”. Jessica Kingsley, London,
(1999).

[19] W.-D. VVebler. “Qualitat der Lehre als Gegenstand
staatlicher Steuerung”. In: Neusel, A., Teichler, U.,
VVinckler, H. (Hrsg.): Hochschule-Staat-Politik, Christoph
Oehler zum 65. Geburtstag, Frankfurt, New York, pp.
235-256, (1993).

[20] G. VVeikum, G. Vossen. “Fundamentals of Transaction
Information Systems: Theory, Algorithms, and Practice of
Concurrency Control and Recovery”, Morgan Kaufmann
Publishers, (2001).

Dr. Markuš Aleksy studied in Management Information Systems at the University of Mannheim, Germany. He holds a doctorate degree from
the University of Mannheim. His research interests include analysis, design, implementation, and evaluation of distributed systems, especially
based on ČORBA.

Tilo Dickopp studied Computer Science and Applied Mathematics at the University of Mannheim. He is currently working on his doctorate
degree. His research interests include object-oriented analysis, design, implementation, and evaluation of distributed systems, especially
based on J2ME, as well as mobile electronic Commerce.

Dr. Ingo Bayer studied Business Administration at the University of Mannheim. He holds a doctorate degree from the University of Mannheim
and is currently Managing Director of the Business School at the University of Mannheim. His research interest lies in the transition Process
from a State dominated system of higher education to a more market oriented model, especially in the areas of strategic planning, management,
finance and budgeting.

Dr. Axel Korthaus studied Management Information Systems at the University of Mannheim. He holds a doctorate degree from the University
of Mannheim and is currently working on his professorial dissertation. He is the project leader of a project on collaborative, component-based
business application software development and gives lectures on OOA/OOD, OODB, and CBSE. His research interests include object-oriented
analysis, design, implementation, and evaluation of distributed systems, especially based on J2EE, as well as knowledge management in
software engineering.

186 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

