
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 7 (2014) 83–103

The L2(11)-subalgebra of the Monster algebra

Sophie Decelle ∗

Department of Mathematics, Imperial College, 180 Queen’s Gate, London, SW7 2AZ, UK

Received 31 October 2011, accepted 25 August 2012, published online 15 March 2013

Abstract

We study a subalgebra V of the Monster algebra, VM, generated by three Majorana axes
ax, ay and az indexed by the 2A-involutions x, y and z of M, the Monster simple group.
We use the notation V = 〈〈ax, ay, az〉〉. We assume that xy is another 2A-involution and
that each of xz, yz and xyz has order 5. Thus a subgroupG of M generated by {x, y, z} is
a non-trivial quotient of the group G(5,5,5) = 〈x, y, z | x2, y2, (xy)2, z2, (xz)5, (yz)5,
(xyz)5〉. It is known that G(5,5,5) is isomorphic to the projective special linear group
L2(11) which is simple, so that G is isomorphic to L2(11). It was proved by S. Norton
that (up to conjugacy) G is the unique 2A-generated L2(11)-subgroup of M and that K =
CM(G) is isomorphic to the Mathieu groupM12. For any pair {t, s} of 2A-involutions, the
pair of Majorana axes {at, as} generates the dihedral subalgebra 〈〈at, as〉〉 of VM, whose
structure has been described in [16]. In particular, the subalgebra 〈〈at, as〉〉 contains the
Majorana axis atst by the conjugacy property of dihedral subalgebras. Hence from the
structure of its dihedral subalgebras, V coincides with the subalgebra of VM generated by
the set of Majorana axes {at | t ∈ T}, indexed by the 55 elements of the unique conjugacy
class T of involutions of G ∼= L2(11). We prove that V is 101-dimensional, linearly
spanned by the set { at · as | s, t ∈ T }, and with CVM(K) = V ⊕ ιM, where ιM is the
identity of VM. Lastly we present a recent result of Á. Seress proving that V is equal to the
algebra of the unique Majorana representation of L2(11).
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1 Main result
We let

(
VM, · , ( , )

)
be the Monster algebra, a commutative non-associative algebra of

dimension 196, 884 over R, as described in [2]. As an RM-module, VM = V ′M ⊕ 1M,
where V ′M is the minimal faithful irreducible RM-module of dimension 196, 883 and 1M
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is the trivial RM-module which is the R-span of the identity ιM of the algebra VM. The
automorphism group of

(
VM, · , ( , )

)
is M the Monster simple group ( [2], [7]). By

2A we denote the conjugacy class of involutions in M with the largest centraliser as in
the Atlas [3]. For each 2A involution t of M, the centraliser CM(t) ∼= 2.BM stabilises
a 2-subspace W of VM which has two non-trivial idempotents at and ιM − at. In [2], J.
Conway constructed an M-invariant bijection ψ sending each 2A involution t to the non-
trivial idempotent at of W with eigenvalue 1 and multiplicity 1 . We denote by at := ψ(t)
the image of t. In [8] A. A. Ivanov axiomatises some of the properties of the idempotents
at into the definition of a Majorana axis.

A Majorana axis a of a real commutative non-associative algebra
(
V, · , ( , )

)
, where

· associates with ( , ) in the sense that (u · v, w) = (u, v · w) for all u, v, w ∈ V , is
an idempotent of length 1, whose adjoint operator ada is semi-simple on V with spectrum
{1, 0, 1

22 ,
1
25 }. The eigenspaces of ada are denoted by V (a)

µ , with µ an eigenvalue, and
satisfy the following conditions. The 1-eigenvectors of ada are exactly the scalar multiples
of a. There exists a linear transformation τ(a) of V , called a Majorana involution, negating
the 1

25 -eigenvectors, fixing the other eigenvectors and preserving both the algebra and inner
products. Lastly there exists a linear transformation σ(a) of V (a)

+ = V
(a)
1 ⊕ V (a)

0 ⊕ V (a)
1
22

negating the 1
22 -eigenvectors, fixing the 0- and 1-eigenvectors, and preserving both prod-

ucts on V (a)
+ . From [8], this definition is equivalent to the ’Fusion Rules’. For two eigen-

vectors u ∈ V
(a)
λ and v ∈ V

(a)
µ of a fixed Majorana axis a, the Fusion Rules specify in

which part of the spectrum of ada the product u · v lies.

Sp 1 0 1
22

1
25

1 1 0 1
22

1
25

0 0 0 1
22

1
25

1
22

1
22

1
22 1, 0 1

25

1
25

1
25

1
25

1
25 1, 0, 1

22

Table 1: Fusion rules

Definition 1.1. We denote by 〈〈A〉〉 the subalgebra of VM generated by a setA of Majorana
axes.

The classification of subalgebras 〈〈at, as〉〉 of VM, where {as, at} is a pair of Majorana
axes, was started in [2] and completed in [16]. We call them dihedral subalgebras as the
corresponding pair of 2A-involutions {t, s} generates a dihedral subgroup of M. We say
the dihedral subalgebra has type C if the product of involutions ts belongs to the conjugacy
class C of M.
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Some subalgebras of VM generated by triples of Majorana axes are described by A. A.
Ivanov et al in [11], [12], [13], [10], and [9].

In this paper, we investigate a subalgebra V = 〈〈ax, ay, az〉〉 of VM such that the di-
hedral subalgebra 〈〈ax, ay〉〉 has type 2A and each of the dihedral subalgebras 〈〈ax, az〉〉,
〈〈ay, az〉〉, and 〈〈axy, az〉〉 has type 5A. The vector axy is the Majorana axis ψ(xy) (since
a dihedral subalgebra 〈〈as, at〉〉 of type 2A contains the axis ast).

Keeping in mind the bijection ψ we might ask whether there exists a subgroup of M gen-
erated by a triple of 2A involutions {x, y, z} satisfying the relations:

x2 = y2 = z2 = (xy)2 = (xz)5 = (yz)5 = (xyz)5 = 1.

A group affording the presentation

〈x, y, z | x2, y2, (xy)2, z2, (xz)5, (yz)5, (xyz)5〉

defines the Coxeter group G(5,5,5) and from [4] it is isomorphic to the projective special
linear group L2(11). From classical results on Ln(pk), [5], L2(11) is a simple group of
order 660 = 22 ·3 ·5 ·11 and it has a single conjugacy class of involutions which we denote
by T , and whose size is 55.

Proposition 1.2. There exists a monomorphism ι : L2(11) ↪→M such that ι(T ) ⊆ 2A and
ι is unique up to conjugacy in M.

Proof. In Table 5 of [17] S. Norton gives the list of simple subgroups of M having their
elements of order 5 in the M-conjugacy class 5A. For ι(T ) it is a requirement since if a
product of two 2A involutions has order 5 it belongs to the conjugacy class 5A of M [2]. By
Norton’s list there is only one conjugacy class of groups isomorphic to L2(11) containing
5A elements and their involutions belong to class 2A.

Throughout the paper ι denotes the monomorphism as in Proposition 1.2, G ∼= L2(11)
denotes the image of ι, and T denotes the conjugacy class of involutions in G.

By the conjugacy property of dihedral subalgebras1, the axis atst is contained in 〈〈at, as〉〉.
Hence from the dihedral subalgebras of V , we can restate our aim to be the study of the
subalgebra V of VM generated by the set of 55 Majorana axes {at | t ∈ T}. We determine
the dimension of V and find a spanning set for V . In the next section we prove the following
theorem.

Theorem. Let V be the subalgebra of VM generated by the set of 55 Majorana axes
{at | t ∈ T}, where T is the class of involutions of the unique 2A-generated L2(11)-
subgroup G of M. Then

(1) dim(V ) = 101,

(2) V is linearly spanned by the set {at · as | t, s ∈ T}.
(3) If K = CM(G) then CVM(K) = V ⊕ ιM.

1Let t and s be two 2A involutions, then tst is an involution conjugate to s. Hence tst is a 2A involution with
corresponding Majorana axis atst := ψ(tst).
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In the last section we give some evidence towards the uniqueness of the map ψ :

t → at, where t ∈ T , within the class of Majorana representations of L2(11) satisfying
conditions (2A) and (3A) (the terminology is explained in the last section)2. Lastly we state
a recent result of Á. Seress proving that V is equal to the algebra of the unique Majorana
representation of L2(11).

2 Some properties of L2(11)

We present some of the standard properties of G ∼= L2(11) used when calculating inner
product values for V .

The group G is the automorphism group of the (11, 5, 2)-biplane, which we denote B
(see [19]).
B is a 2-symmetric design with 11 points, {p1, . . . , p11}, and 11 lines, {l1, . . . , l11}, such
that each line contains 5 points, each point lies on 5 lines, two lines intersect in exactly 2
points, and two points share exactly 2 lines. We call the incidence relation pi ∈ lj a flag,
which we denote αi,j , and the relation pi /∈ lj an anti-flag, which we denote by wi,j .

From [14], the lines of B can be obtained by finding a difference set l1 of size 5, with
elements from Z11, such that every integer modulo 11 appears exactly twice as a difference
i− j mod 11 for i and j in l1. We have that l1 = {1, 3, 4, 5, 9}, which is the set of non-zero
perfect squares in Z11, and all other lines lk can be defined by lk =

{
1 + k, 3 + k, 4 +

k, 5 + k, 9 + k
}

, where k ∈ Z∗11 and addition is modulo 11.
The incidence matrix N of B is given below with the rows indexed by the points of B, the
columns indexed by the lines, and each flag is represented by a ′1′ and each anti-flag by a
′0′.

1 0 1 1 1 0 0 0 1 0 0
0 1 0 1 1 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 1 1 1 0
0 0 0 1 0 0 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1 1
1 1 0 0 0 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 0 1

We can represent G as a permutation group on 11 letters, so that G ⊂ Sym(11), by letting
G act on the indices of the points or lines such that the incidence structure of B is preserved.

The stabiliser G(αi,j) of a flag αi,j is isomorphic to A4, the stabiliser G(wk,l) of an anti-
flag wk,l is isomorphic to D10, and the stabiliser of a line (or a point) is isomorphic to A5.
We can associate to a flag αi,j a unique subgroup S(αi,j) ∼= C2×C2 and to an anti-flagwk,l
a unique subgroup S(wk,l) ∼= C5 such that NG

(
S(αi,j)

)
= G(αi,j) and NG

(
S(wk,l)

)
=

G(wk,l). It is easy to see that each involution t stabilises 3 flags and to deduce thatCG(t) ∼=
2When the first draft of this article was written, the author has learned that Ákos Seress has written a GAP

program, [6], capable of checking this uniqueness conjecture.
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D12. Similarly for 〈h〉 a subgroup of order 3 we can deduce NG(〈h〉) ∼= D12. There are
only one class of involutions and one class of elements of order 3 in G, so we can let d
be the G-invariant bijection between subgroups of order 2 and 3 sending each involution
t to the unique subgroup of order 3 commuting with t. Furthermore, by [14], G contains
one class of subgroups isomorphic to the Frobenius group of order 55, which we denote
F55. These are the four conjugacy classes of maximal subgroups of G; two non-conjugate
classes of subgroups isomorphic toA5 each of size 11 and each stabilising a point or a line,
one class of subgroups isomorphic to D12, and one class of subgroups isomorphic to the
Frobenius group F55.

3 The algebra V

We start this section by finding an upper bound for dim(V ) based on the work of S. Norton
([15], [16], and [17]). We then calculate the Gram matrix of a particular subset of V which
provides a lower bound for dim(V ).

3.1 S. Norton’s observations

The upper bound on dim(V ) stems from the following inclusion.

Lemma 3.1. V ⊆ CVM

(
CM(G)

)
Proof. By the definition of a Majorana axis, at is fixed by CM(t) ∼= 2.BM . Therefore
CM(G) = CM

(
〈x, y, z〉

)
=

⋂
t=x,y,z

CM(t) fixes V = 〈〈ax, ay, az〉〉 by M-invariance of the

algebra VM.

We denote by K the group CM(G). The dimension of the fixed space of K in VM can
be obtained by calculating the fusion of the character table of K in that of M (since the
character of V ′M is known [3]). It is equal to the inner product of characters 〈χVM ↓K
,1K〉RK , where 1K is the trivial character of K, and χVM ↓K is the character of VM
restricted to K. We thus need to determine the isomorphism type of K and the inclusions
of the conjugacy classes of G and K into those of M.

We call an A5-subgroup H of M an A5 of type (2A, 3A, 5A) if the elements of order
2, 3 and 5 of H are in the M-conjugacy classes 2A, 3A and 5A respectively. Clearly all
A5-subgroups of G are of type (2A, 3A, 5A).

Proposition 3.2. (i) For K as above, K ∼=M12.

(ii) All A5-subgroups H as above are conjugate in M and CM(H) ∼= A12.

(iii) The conjugacy classes of G fuse into those M as follows:

Class in G 1a 2a = T 3a 5a 5b 6a 11a 11b
Class in M 1A 2A 3A 5A 5A 6A 11A 11A

Proof. The result from part (i) can be read from the entry 31 of Table 3 of [15]. Part (ii) is
proved in Lemma 4 of [15]. To prove (iii) we carry on from the proof of Proposition 1.1.
From Table 5 of [17] we deduce the inclusion 3a ⊂ 3A. In the character table of M, given



88 Ars Math. Contemp. 7 (2014) 83–103

in [3], the information on p-powers3 of elements g ∈ 6A gives g2 ∈ 3A and g3 ∈ 2A,
and 6A is the unique conjugacy class of elements of order 6 with those p-powers, hence to
avoid a contradiction we must have 6a ⊂ 6A. Since M has a unique class 11A of elements
of order 11 the classes 11a and 11b are subsets of 11A.

Proposition 3.3. For the algebra CVM(K) we have dim(CVM(K)) = 102.

Within the proof of Proposition 3.3 we determine the fusion of the conjugacy classes of K
into those of M. We follow the Atlas’s notation, [3], by writing the conjugacy of elements
of order N in M: NA, NB, . . . (etc) in increasing order of the size of the class. Similarly
for K we use the notation NAK , NBK , · · · (etc). The character tables used are those of
the Atlas [3].

Proof. By part (i) of the previous proposition we have the inclusion of groups H ⊂ G,
where H ∼= A5 is of type (2A, 3A, 5A), which implies K ⊂ CM(H) ∼= A12. In A12,
the elements with cycle decompositions 2218, 2414, and 26 have 8, 4, and no fixed points
respectively in the natural action of A12 on 12 points, and so by Lemma 6 in [15] they
are mapped to the M-conjugacy classes 2A, 2B and 2A respectively. There is a doubly
transitive action of M12 on 12 points with character χ1 + χ11a where χ1 is the trivial
character of M12 and χ11a is the first irreducible character of degree 11 (as in the Atlas,
[3]). This character takes the value 0 for the elements in the class 2AM12

, and the value 4
for the elements in the class 2BM12

, hence 2AM12
⊂ 2A and 2BM12

⊂ 2B.
The structure class constants4 for any pair of 2A involutions in M give the number of

elements in each conjugacy class of M expressible as a product of two 2A involutions. The
constants can be calculated directly from the character table. For M the product of two 2A
involutions lies in either of the M classes : 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A or 6A (see
[2] or [15]). Similarly forK ∼=M12 we obtain that the product of two 2AK involutions lies
in either of the K classes 1AK , 2AK , 2BK , 3BK , 4AK , 4BK , 5AK or 6AK . To avoid
a contradiction on the monomorphism ι we have 5AK ⊂ 5A, and 6AK ⊂ 6A and 3AK is
a subset of either 3A or 3C. The class 6AK has p-powers 3BK , 2AK in K, and the class
6A has p-powers 3A, 2A in M. Hence 3BK ⊂ 3A. From lemma 6 of [15] no elements of
order 3 in CM(H) ∼= A12 belongs to class 3C of M, hence 3AK belongs to either 3A or
3B. If 3AK ⊂ 3A then 6BK ⊂ 6C and if 3BK ⊂ 3B then 6BK is in either 6B or 6E
according to the relevant p-powers in K and M. We determine the fusion in M of 3AK and
6BK at the end of the proof. The classes 4AK , 4BK contain products of 2A involutions
and their squares lie in class 2BK ⊂ 2B hence 4AK , 4BK ⊂ 4A as 4A is the unique
class of elements of order 4 squaring to 2B. The classes 8AK , 8BK have their squares in
classes 4AK , 4BK respectively, and in M the unique conjugacy class of elements of order
8 squaring to 4A is 8B. Hence 8AK , 8BK ⊂ 8A. The class 10AK in M12 has p-powers
5AK ⊂ 5A and 2AK ⊂ 2A and in M the class 10A is the unique class of elements of

3For a finite group L, the p-power line in the character table of L records for each conjugacy classC of L, and
for each prime p dividing the order of the elements of C, to which conjugacy class the pth-power of the elements
of C belongs to.

4For a finite group L, the structure class constants give the number of solutions s1,2,3 to equations in the
group of the type x1.x2 = x3, where each xi belongs to a conjugacy class Ci of L. From the table of complex
characters of L:

s1,2,3 =
|L|

|CL(x1)| · |CL(x2)|
∑

χ∈Irr(L)

χ(x1)χ(x2)χ(x3)

χ(1)



S. Decelle: The L2(11)-subalgebra of the Monster algebra 89

order 10 with such p-powers so that 10AK ⊂ 10A. There is a unique class of elements of
order 11 in M so 11AK , 11BK ⊂ 11A. If 3AK ⊂ 3A then 6BK ⊂ 6C and the completed
fusion of conjugacy classes of K in those of M gives a value of 〈χVM ↓K ,1K〉RK which
is not integral, a contradiction. Hence 3AK ⊂ 3B and 6BK is in 6B or 6E. To determine
which, we look at the fusion of the conjugacy classes of A := CM(H) ∼= A12 in M.
Apart from the conjugacy classes 6GA, 9AA, 9BA and 9CA, the fusion of the classes of
A in M is straightforward using the information on p-powers and the fusion of the classes
of K in M already obtained. From a calculation of S. Shpectorov in [12] we know that
〈χVM ↓A,1A〉RA = 26. This can only happen if 6GA ⊂ 6B and 9AA, 9BA, 9CA ⊂ 9A.
In particular elements of order 6 in A12 cannot be subsets of 6E, hence neither can the
elements of order 6 in K. Hence 6BK ⊂ 6B. We have obtained the fusion of K in M

Class in K 1AK 2AK 2BK 3AK 3BK 4AK 4BK
p-powers A A A A A B B

Class in M 1A 2A 2B 3B 3A 4A 4A

5AK 6AK 6BK 8AK 8BK 10AK 11AK
A BA AB A B AA A
5A 6B 6A 8B 8B 10A 11A

and we can now compute the inner product of real characters of K

〈χVM ↓K ,1K〉RK = 102.

The following useful observation was made by S. Norton (in a more general context).

Lemma 3.4. The identity ιM of VM cannot be contained in V .

Proof. The groups G and K centralise each other in M and G × K is a subgroup of M.
The unique conjugacy class of involutions T of G is in class 2A of M, and we have proved
that the classes 2AK and 2BK are in 2A and 2B respectively.

Claim : there exist elements s ∈ T and t ∈ 2AK such that the element ts of G×K is
in class 2B of M.

From Proposition 3.2, part (iii), the element s can be taken from a A5-subgroup X of G of
type (2A, 3A, 5A). From the proof of Proposition 3.2, the elements of 2AK act fixed-point
freely on 12 points, and the centraliser in M of an A5-subgroup of type (2A, 3A, 5A) is
isomorphic to A12. By Table 4, line 7 of [17], there exists a subgroup Y ⊆ A12, Y ∼= A5,
that acts transitively on 12 points. Let t ∈ Y . Then, by Table 3, line 8 of [17], the
involutions in the diagonal subgroups of X × Y are in 2B. In particular ts ∈ 2B and the
claim is proved.
Since ts ∈ 2B, the axes at and as generate a dihedral algebra of type 2B and at · as = 0
(see [2] or [11]). For all z ∈ T there is an element g ∈ G such that z = sg , so by invariance
of the algebra product (at · as)g = 0 = at · az since G normalises K. Now, V is generated
by the 55 Majorana axes az for z ∈ T and the 0-eigenspace of at is closed under the algebra
product, so if the identiy ιM were in V we would get the contradiction at · ιM = 0.
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The identity of a commutative algebra being unique and therefore stable under the auto-
morphism group we have ιM ∈ CVM(K). And since ιM is not in V we obtain the main
result of this subsection.

Proposition 3.5. For the algebra V we have dim(V ) ≤ 101.

3.2 Inner product values for V

In this subsection we calculate all inner products on a well-chosen subset of V and compute
the rank of the corresponding Gram matrix to bound below the dimension of V . We do so
using the information on some subalgebras of V which have already been classified.

3.2.1 Dihedral subalgebras of V

The algebra V contains the dihedral subalgebras of types 2A, 3A, 5A, and 6A (obtained by
calculating the relevant structure class constants in the character table ofG). From [16], for
each type of dihedral algebra, we know the dimension of the algebra, and a basis for which
all algebra and inner products are known. We follow the exposition given in [8] which is
now accepted as standard in the Majorana Theory and where a different scaling to [16] is
used. Table 2 is taken from [8], which notation we explain below.

Each dihedral subalgebra corresponds to a dihedral subgroup D of M generated by two 2A
involutions t and s, whose product we denote by ρ := ts. We denote by a0, a1 and ai the
Majorana axes at, as and atρi in Table 2.
In the subalgebra of type 2A, we have aρ = ψ(ρ) which is also a Majorana axis, and in
the types 3A and 5A the vectors uρ and wρ are introduced to close the algebra product.
They correspond to elements of order 3 or 5 inD respectively. From [2], the 1-dimensional
subspace linearly spanned by the vector uρ orwρ is invariant under the normaliserNM(〈ρ〉)
which is isomorphic to 3.F24 or (D10×F5).2 respectively. Also, in the type 3A the vector
itself is stable underNM(〈ρ〉), so that uρ = uρ−1 , and in the type 5A the vector is stabilised
up to negation wρ = −wρ2 = −wρ3 = wρ4 .

Any element of order 3 or 5 in G can be expressed as a product of two involutions, and any
two involutions correspond to a dihedral subalgebra of V . Hence to study the algebra V
we can consider the span of the vectors corresponding to the cyclic subgroups of order 2, 3
and 5 of G.
We let G(i) be a set of non-trivial representatives of each cyclic subgroup of order i for
i = 2, 3, 5, of size 55, 55 and 66 respectively, where for i = 5 the representatives are
taken from the same conjugacy class of G. We use the notation A := {at | t ∈ G(2)},
U := {uh | h ∈ G(3)}, and W := {wf | f ∈ G(5)}, and we let S := A ∪ U ∪W .

3.2.2 A5 subalgebras of V

The algebra V also contains 22 A5-subalgebras of type (2A, 3A, 5A) as G contains two
conjugacy classes of A5-subgroups of type (2A, 3A, 5A), of size 11 each. The structure
of a subalgebra VH generated by the Majorana axes indexed by the involutions of an A5-
subgroupH of type (2A, 3A, 5A) follows from [12]. We reformulate it so as to present VH
as a subalgebra of VM generated by a triple of Majorana axes.
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Type Basis Products and angles

2A a0, a1, aρ a0 · a1 = 1
23 (a0 + a1 − aρ), a0 · aρ = 1

23 (a0 + aρ − a1)
(a0, a1) = (a0, aρ) = (a1, aρ) =

1
23

a0 · a1 = 1
25 (2a0 + 2a1 + a−1)− 33·5

211 uρ
3A a−1, a0, a1, a0 · uρ = 1

32 (2a0 − a1 − a−1) +
5
25uρ

uρ uρ · uρ = uρ
(a0, a1) =

13
28 , (a0, uρ) = 1

22 , (uρ, uρ) = 23

5

a0 · a1 = 1
27 (3a0 + 3a1 − a2 − a−1 − a−2) + wρ

5A a−2, a−1, a0, a0 · a2 = 1
27 (3a0 + 3a2 − a1 − a−1 − a−2)− wρ

a1, a2, wρ a0 · wρ = 7
212 (a1 + a−1 − a2 − a−2) + 7

25wρ
wρ · wρ = 52·7

219 (a−2 + a−1 + a0 + a1 + a2)

(a0, a1) =
3
27 , (a0, wρ) = 0, (wρ, wρ) = 53·7

219

a0 · a1 = 1
26 (a0 + a1 − a−2 − a−1 − a2 − a3 + aρ3) +

32·5
211 uρ2

6A a−2, a−1, a0, a0 · a2 = 1
25 (2a0 + 2a2 + a−2)− 33·5

211 uρ2
a1, a2, a3 a0 · uρ2 = 1

32 (2a0 − a2 − a−2) +
5
25uρ2

aρ3 , uρ2 a0 · a3 = 1
23 (a0 + a3 − aρ3), aρ3 · uρ2 = 0, (aρ3 , uρ2) = 0

(a0, a1) =
5
28 , (a0, a2) = 13

28 , (a0, a3) = 1
23

Table 2: Dihedral subalgebras
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Proposition 3.6. Let VH = 〈〈ax, ay, az〉〉 be a subalgebra of VM where the dihedral sub-
algebra 〈〈ax, ay〉〉 has type 2A and where the dihedral subalgebras 〈〈ax, az〉〉, 〈〈ay, az〉〉,
and 〈〈axy, az〉〉 have types 5A, 5A and 3A respectively. Then VH has dimension 26 and it
is linearly spanned by the products of all pairs of Majorana axes indexed by the involutions
of H .

For explicit formulas for the algebra product in VH or a list of all inner product values, we
refer the reader to [12]. In the rest of the paper we will simply refer to an A5-subgroup H
to mean an A5-subgroup of type (2A, 3A, 5A).

For anA5-subgroupH , we denote byH(2), H(3) andH(5) the sets of non-trivial conjugate
representatives of cyclic subgroups of order 2, 3 and 5 and in the corresponding algebra
VH we denote by AH , UH and WH the sets of vectors {at | t ∈ H(2)}, {uh | h ∈ H(3)},
and {wf | f ∈ H(5)}. Let wH be the sum of all vectors in WH . By [12], the set SH :=
AH ∪UH ∪WH is a spanning set of size 31 for VH , and VH is 26-dimensional with a basis
AH ∪ UH ∪ {wH}. The five independent linear relations on SH , which can be found in
[12] or [16], are called the Norton Relations.

Proposition 3.7. The Norton Relations
In the algebra VH corresponding to an A5-subgroup H of type (2A, 3A, 5A), all vectors
wf ∈WH satisfy:

wf =
1

6
wH +

1

27

 ∑
t∈H(2)

5 (f)

at −
∑

t∈H(2)
3 (f)

at

+
32.5

212

 ∑
h∈H(3),
o([h,f ])=3

uh −
∑

h∈H(3),
o([h,f ])=5

uh


where

H
(2)
5 (f) : =

{
t ∈ H(2) | o(tf) = 5

}
,

H
(2)
3 (f) : =

{
t ∈ H(2) | o(tf) = 3

}
.

We denote by H1 = {H1, . . . , H11} and H2 = {H ′1, . . . , H ′11} the two classes of A5-
subgroups in G. One class corresponds to the rows of N and the other to the columns,
so the intersection between A5’s taken from different classes can be read directly from the
entries of N .

For a given A5-subgroup Hi in G let W i be the sum of all vectors in WHi
. For a vector

wf ∈WHi
we rewrite the Norton relation for wf as

wf =
1

6
W i + λ Ai(f) + µ Ui(f) (3.1)

where the meaning of λ, µ, Ai(f) and Ui(f) is clear from Proposition 3.7.

Corollary 3.8. Let w be the sum of all vectors wf in W ⊆ V . Then S′ := A∪U ∪ {w} is
a spanning set of size 111 for S.
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Proof. Consider an A5-subgroup H1 ∈ H1. From N , any subgroup Hi′ ∈ H2 intersect
H1 in aD10 or anA4. IfH1∩Hi′

∼= D10 there exists a representative f ofH(5)
1 inH1∩Hi′

for which the Norton relations give

wf =


1
6W

1 + λ A1(f) + µ U1(f)

1
6W

i′ + λ Ai′(f) + µ Ui′(f)

and so W i′ is in Sp(A ∪ U ∪ {W 1}), the R-linear span of A ∪ U ∪ {W 1}.
If H1 ∩ Hi′

∼= A4 then the situation can be visualized as the following submatrix of N ,
where each anti-flag has been replaced by the unique element of G(5) stabilising it, and the
rows and columns are indexed with the copy of A5 stabilising the corresponding line or
point of B.

(H1 Hi

H ′i 1 wg
H ′j wf wk

)
From the Norton relations for g ∈ Hi ∩Hi′ , k ∈ Hi ∩Hj′ and f ∈ H1 ∩Hj′ , we also
get W i′ ∈ Sp

(
A ∪ U ∪ {W 1}

)
. FromN , for any subgroup Hi ∈ H1 there are 3 elements

ofH2 intersecting both H1 and Hi in a D10, with say Hl′ being one of them:

(H1 Hi

Hl′ wf wl
)

so the Norton relations for f and l give W i ∈ Sp
(
A ∪ U ∪ {W 1}

)
. Hence there exists

v ∈ Sp(A ∪ U) such that

22W 1 =
∑
Hi∈H1

W i +
∑
Hi′∈H2

W i′ + v,

and from N every element of G(5) is contained in exactly one element of H1 and one of
H2 so that ∑

Hi∈H1
W i +

∑
Hi′∈H2

W i′ = 2 w,

where w is the sum of all vectors wf in W , and hence

W 1 = 1
11w + v′ for some v′ ∈ Sp(A ∪ U).

4 Inner product values
Definition 4.1. For each pair (G(i), G(j)) with i, j ∈ {2, 3, 5} we call the inner product
values on G(i) ×G(j) inner products of type (i, j).

If we let E(i) be the equivalence class of elements of order i in G belonging to the
same cyclic subgroup, then the orbits of G acting by conjugation on E(i) × E(j) form a
subpartition of the distinct inner products values of type (i, j) (these orbits were calculated
using [1]).

We will only explain the inner products values (uk, vl) for which the subgroup 〈k, l〉
is isomorphic to F55 or to the whole of G. They arise as the solutions of equations of
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intersecting subalgebras inside V , or equivalently as particular configurations of subgroups
inside G, which can be read from the incidence matrix N or found using a code written in
[1].

4.1 Inner products of type (2, 2)

From the dihedral subalgebras of V we know all possible inner product values of any two
Majorana axes in V , see [11].

Case o(ts) 〈〈at, as〉〉 〈t, s〉 (at, as)

1 1 1A 1 1

2 2 2A D4
1
23

3 3 3A D6
13
28

4 5 5A D10
3
27

5 6 6A D12
5
28

Table 3: Inner Products of type (2, 2), with t, s ∈ G(2)

4.2 Inner products of type (2, 3)

The value for case 5) of the inner product of type (2, 3) was computed using the following
lemma.

Lemma 4.2. For t ∈ G(2) and h ∈ G(3) such that 〈t, h〉 ∼= L2(11) we have

(at, uh) =
1

2.3.5 .

Proof. We fix an element h ∈ G(3) and we let t ∈ G(2) such that 〈t, h〉 = G. Since
NG
(
〈h〉
) ∼= D12 then 〈h〉 is contained in exactly two distinct dihedral groups of order 6.

Let Sh be one of the two sets of 3 involutions, Sh := {s, sh, sh2}, such that 〈S, h〉 ∼= D6,
and up to permutation of the set Sh we have

〈t, s〉 ∼= D6,
〈t, sh〉 ∼= D12,
〈t, sh2〉 ∼= D10.

In the 3A-dihedral subalgebra 〈〈as, uh〉〉 we have the equality

uh = − 211

33.5

[
as · ash − 1

25 (2as + 2ash − ash2)
]
,

so taking the inner product with at gives

(at , uh) = − 211

33.5

[
(at , as · ash)− 1

25 (at , 2as + 2ash − ash2)
]
,
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Case o(ht) 〈t, h〉 (at, uh)

1 2 D6
1
22

2 3 A4
1
32

3 5 A5
1

2.32

4 6 C6 0

5 11 L2(11)
1

2.3.5

Table 4: Inner Products of type (2, 3), with t ∈ G(2) and h ∈ G(3)

Case o(tf) = o(tf−1) o([t, f ]) 〈t, f〉 (at, wf )

1 2 5 D10 0

2 3 5 A5 − 72

214

3 5 3 A5
72

214

4 5 5 L2(11) − 1
214

5 6 6 L2(11) − 3
212

6 11 5 L2(11)
19
214

Table 5: Inner Products of type (2, 5), with t ∈ G(2) and f ∈ G(5)

and by associativity of the algebra product with the inner product

(at, as · ash) = (as, at · ash).

Since 〈t, sh〉 ∼= D12, the element ρ = tsh has order 6 so the algebra product at · ash is
contained in the dihedral algebra 〈〈at, ash〉〉 of type 6A, and so

(as, at · ash) = 1
26 (as, at + ash − atρ2 − atρ3 − atρ4 − atρ5 + aρ3) +

32.5
211 (as, uρ2),

where 〈s, ρ2〉 ∼= A4, so the value of (as , uρ3) is known to be 1
9 from [11]. Since all the

required inner products are now known, one can compute (at, uh) =
1

2.3.5 .
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4.3 Inner products of type (2, 5)

The next lemma justifies the values found in cases 4), 5) and 6). We omit its proof which
is similar to the proof of Lemma 4.2.

Lemma 4.3. Let t ∈ G(2) and f ∈ G(5) such that 〈t, f〉 ∼= L2(11). Then exactly one of
the following holds.

(i) There exists s ∈ G(2) commuting with t and inverting f , and

(at, wf ) = − 1
211 + 1

26 p−
1
23 q, where

p = 7(at, asf ) + (at, asf2) and q = (ats, asf ).

(ii) There exists s ∈ G(2) inverting f and generating with t a dihedral group of order 6,
and

(at, wf ) =
32

214 + 1
27 p−

33.5
211 q, where

p = (at, 5asf + asf2 + asf3 + asf4) and q = (ust, asf ).

(iii) There exists s ∈ G(2) inverting f and generating with t a dihedral group of order
12, and

(at, wf ) = − 3
215 + 1

26 p+
1
27 q −

32.5
211 r, where

p = (asf , aρ3 − 2at − atρ2 − atρ3 − atρ4 − atρ5), q = (at, asf2 + asf3 + asf4)
and r = (uρ2 , asf ),

for ρ := ts of order 6 in 〈t, s〉 ∼= D12.

4.4 Inner products of type (3, 3)

In the next lemma part (i) addresses cases 4) and 6) and part (ii) addresses case 5). The
lemma assumes all products of type (2, 3) are known.

Lemma 4.4. Let h, k ∈ G(3) with 〈h, k〉 ∼= L2(11). Then exactly one of the following
holds.

(i) There exists an involution t inverting both h and k, and

(uh, uk) =
24

35.5 (5− 23.32p+ 26q), where

p = (uh, atk2) = (uk, ath2) and
q = (ath, atk2) + (ath, atk) + (ath2 , atk) + (ath2 , atk2).

(ii) There exists an involution t inverting h and generating with k an alternating group
A4, and

(uh, uk) =
25

33.5 (
1

22.3 − p− 2q − r), where

p = (ath, 3utk − 4utk − 4utk2), q = (ath2 , uk) and r = (ath, uk).
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Case {o(hk), o(hk−1)} 〈h, k〉 (uh, uk)

1 {1, 3} C3
23

5

2 {2, 3} A4
23.17
34.5

3 {5, 5} A5
24

34.5

4 {5, 6} L2(11)
23

3.52

5 {5, 11} L2(11)
23.7
33.52

6 {6, 6} L2(11)
25

34.5

Table 6: Inner Products of type (3, 3), with h, k ∈ G(3)

4.5 Inner products of type (3, 5)

Part (i) of the next lemma addresses case 3), and part (ii) addresses cases 5) and 6).

Lemma 4.5. Let h ∈ G(3) and f ∈ G(5) such that 〈h, f〉 ∼= L2(11). Then exactly one of
the following holds.

(i) There exists an involution t inverting f and h, and

(uh, wf ) = − 211

33.5 (p−
1
25 q), where

p = 7
212 (atf + atf4 − atf2 − atf3 , ath) +

7
25 (wf , ath) and

q = (2at + 2ath + ath2 , wf ).

(ii) There exists an involution t inverting f and generating with h a subgroup isomorphic
to A5, and

(uh, wf ) =
7
27 p+

1
27 q −

1
24 r, where

p = (asf + asf4 , uh), q = (asf2 + asf3 , uh) and r = (asf , ush + ush2).

The inner product value for case 4) of the inner product of type (3, 5) can be found using
the Norton relations inside some A5-subalgebras of V , see equation (1). The proof of the
following lemma uses similar arguments to the proof of Corollary 3.8. We use the notation
of (1).

Lemma 4.6. Let f ∈ G(5) and h ∈ G(3). If there exists an element g ∈ G(5) such that
A1 := 〈f, g〉 and A2 := 〈h, g〉 are two non-conjugate A5-subgroups of G, then

(uh, wf ) =
1
6

(
uh ,W

2
)
+ 1

27

(
uh , la

)
+ 32.5

212

(
uh, lu

)
, where

la = A1(g) +A1(f)−A2(g) and lu = U1(g) + U1(f)− U2(g).
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Case o(hf) o(hf−1) 〈h, f〉 (uh, wf )

1 2 5 A5
−5.7
29.32

2 3 5 A5
5.7

29.32

3 3 6 L2(11)
−67

29.32.5

4 5 5 L2(11)
−1

28.32.5

5 6 11 L2(11)
7

26.32.5

6 11 11 L2(11)
−7

27.32.5

Table 7: Inner Products of type (3, 5), with h ∈ G(3) and f ∈ G(5)

4.6 Inner products of type (5, 5)

In the next lemma, part (i) justifies the values of the inner product of type (5, 5) for the
cases 2), 3) and 4), and part (ii) justifies case 6). The proof is similar to that of Corollary
3.8 and the notation is the same as the one used in the previous lemma.

Lemma 4.7. Let f, g ∈ G(5) not contained in a common A5-subgroup, with f and g
belonging to the pairs {Hi, Hi′} and {Hj , Hj′} respectively, of distinct non-conjugate
A5-subgroups of G. Then exactly one of the following holds.

(i) Hi ∩Hj′
∼= D10, or Hj ∩Hi′

∼= D10, with k an element of order 5 in Hi ∩Hj′ , say,
then

(wf , wg) =
1

62
(
W j ,W j

)
+

1

28.3

(
la ,W

j
)
+

3.5

213
(
lu, W

j
)
+

1

214
(
la , Aj(g)

)
+

32.5

219
(
la , Uj(g)

)
+

32.5

219
(
lu , Aj(g)

)
+

34.52

224
(
lu , Uj(g)

)
,

where la = Aj(k)−Ai′(k) +Ai′(f) and lu = Uj(k)− Ui′(k) + Ui′(f).

(iii) Hi ∩Hj′
∼= Hj ∩Hi′

∼= A4, and there exist two elements k 6= l ∈ G(5) such that k
belongs to Hi and Hm′ and l belongs to Hj and Hm′ , so that

(wf , wg) =
1

62
(
W j ,W j

)
+

1

28.3

(
la ,W

j
)
+

3.5

213
(
lu ,W

j
)
+

1

214
(
la , Aj(g)

)
+

32.5

219
(
la , Uj(g)

)
+

32.5

219
(
lu , Aj(g)

)
+

34.52

224
(
lu , Uj(g)

)
,

where la = Aj(l)−Am′(l)−Ai(k) +Am′(k) +Ai(f),
and lu = Uj(l)− Um′(l)− Ui(k) + Um′(k) + Ui(f).
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Case {o(fg), o(fg−1)} o([f, g]) 〈f, g〉 (uh, wf )

1 {1, 5} 1 C5
53.7
219

2 {3, 5} 5 A5
7.29
219

3 {5, 11} 11 F55
−11
219

4 {3, 6} 5 L2(11)
3.151
221

5 {2, 6} 5 L2(11)
157
220

6 {5, 11} 2 L2(11)
59
220

7 {5, 5} 3 L2(11)
−3.41
220

Table 8: Inner Products of type (5, 5), with f, g ∈ G(5)

Corollary 4.8. The inner product values between the vector w, and the vectors at ∈ A,
uh ∈ U , wf ∈W and w itself are as follows

(i) (at, w) =
32

211 ;

(ii) (uh, w) = − 32

27.5 ;

(iii) (wf , w) =
33.5.17
218 ;

(iv) (w,w) = 34.5.11.17
217 .

4.7 Dependence relations in the algebra

We let VS′ be the R-vector space having the subset S′ = A ∪ U ∪ {w} of V as a basis.
We turn VS′ into a G-module by the natural action of G on S′, and we let π be the natural
projection

π : VS′ → V .

Using [1] we find the rank of the Gram matrix of the set S′ and give a description of the
kernel of π.

We recall the bijection d introduced at the beginning of section 2 between subgroups of
order 2 and 3 in G:

d :G(2) → G(3)

〈t〉 → 〈h〉

since ∀t ∈ G(2) ∃! h ∈ G(3) where dt, he = 1. For a fixed involution t ∈ G(2) its
normaliser NG(t) ∼= D12 has the following orbits on G(2) (the action is conjugation):
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O1, O
1
3, O

2
3, O

1
6, O

2
6, O

3
6, O

4
6, O

1
12 and O2

12,

where the subscript indicates the size of the orbit. If we write NG(t) = 〈ρ〉 o 〈s〉 then
ρ3 = t, so O1 = {ρ3}, O1

3 = {s, sρ2, sρ4} and O2
3 = {sρ, sρ3, sρ5} wlog. Further we

can describe the orbits as follows:

O1

3 ∪O2

3 ={s ∈ G(2)|〈s, t〉 ∼= 22}
O1

6 ∪O2

6 ={s ∈ G(2)|〈s, t〉 ∼= D12}
O3

6 ∪O4

6 ={s ∈ G(2)|〈s, t〉 ∼= D6}
O1

12 ∪O2

12 ={s ∈ G(2)|〈s, t〉 ∼= D10}.

For (t1, t2) in O1
3 × O2

6 or O2
3 × O1

6 the subgroup 〈t1, t2〉 in G is isomorphic to either 22

or D10. For (t1, t2) in O1
3 × O1

6 or O2
3 × O2

6 the subgroup 〈t1, t2〉 is isomorphic to either
D6 or D12.

Proposition 4.9. (i) The rank of the Gram matrix for the set S′ is 101.

(ii) The kernel of π is 10-dimensional and consists of 10 linearly independent relations,
between the vectors of A ∪ U , taken from a set of 55 G-invariant relations R(t)
indexed by the involutions of G.

For a fixed involution t in G(2), R(t) defines the following NG(t)-invariant relation:

R(t) :=
∑
r∈T1

ar −
∑
s∈T2

as +
32.5

25

( ∑
h∈d(T1)

uh −
∑

k∈d(T2)

uk

)
= 0,

where T1 and T2 can taken to be O1
3 ∪O1

6 and O2
3 ∪O2

6 respectively (or vice versa).

From the rank of the Gram matrix of the set S′ we obtain the following proposition.

Proposition 4.10. For the algebra V we have dim(V ) ≥ 101.

The above, together with Proposition 3.5, proves that dim(V ) = 101. Hence the set S′

spans V , so that {at · as | t, s ∈ T} also spans V . From Lemma 3.4, the identity ιM of
VM is not in V . The space CVM(K) is 102-dimensional, containing ιM and having V as a
subspace. Hence CVM(K) decomposes as V ⊕ ιM, and we have proved our main theorem.

5 A Majorana representation of L2(11)

The dihedral and A5-subalgebras of V can be characterised under the axioms of Majorana
theory; they are equal to the algebra of the Majorana representations of the dihedral groups
D4 of type 2A, D6 of type 3A, D10 of type 5A, and D12 of type 6A, and of the alternating
group A5 of type (2A, 3A, 5A).
Majorana theory was introduced by A. A. Ivanov in [8] to axiomatise some of the properties
of VM and its Majorana axes. We refer the reader to [8] and [11] for a full description.

Definition 5.1. A Majorana representation of a finite group G is a tuple
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R =
(
G, T, X, ( , ), ·, ϕ, ψ

)
,

where T is a union of conjugacy classes of involutions generating G, and X is a commu-
tative non-associative R-algebra endowed with an inner product ( , ) associating with its
algebra product · in the sense that (u ·v, w) = (u, v ·w) for all u, v, w ∈ X and satisfying
the Norton Inequality

(u · u, v · v) ≥ (u · v, u · v), for all u, v ∈ X .

The image of the homomorphism ϕ : G ↪→ GL(X) is an automorphism of
(
X, · , ( , )

)
,

and the map ψ is an injection sending each involution t of T to a Majorana axis at of X , as
defined in the second paragraph of section 1 (the properties of the spectrum of ada and the
Fusion Rules are assumed to hold ), such that ϕ and ψ commute in the sense that :

ag−1tg = (at)
ϕ(g) for every g ∈ G.

We require that the algebra X be generated by the set of Majorana axes ψ(T ) and that it
must satisfy conditions (2A) and (3A) below.

Conditions (2A) and (3A) ensure that when constructing X in the above definition we get
the right number of 3A vectors uh from the Majorana axes.

(2A) Let t0, t1 ∈ T and ρ := t0t1 such that

(a) if ρ ∈ T and the vectors at0 , at1 generate a dihedral subalgebra of type 2A then
aρ = ψ(ρ),

(b) if ρi ∈ T for ρ of order 4 or 6 and the vectors at0 and at1 generate a subalgebra
of type 4B or 6A, then ψ(ρi) coincides with the axis aρi ;

(3A) Let t0, t1, t2, t3 ∈ T with 〈t0, t1〉 ∼= 〈t2, t3〉 ∼= D6. We let ρ1 := t0t1 and ρ2 := t2t3
both of order 3.

If the following two conditions are satisfied:
(i) ρ1 = ρ2 or ρ−12 , and
(ii) the dihedral subalgebras generated by {at0 , at1} and {at2 , at3} have type 3A,

then the corresponding 3A-axial vectors uρ1 and uρ2 in the above subalgebras are
equal in X .

We call dim(X) the dimension of R, and we say that R is based on an embedding of G
into M if there exists a monomorphism ι : G → M with ι(T ) ⊂ 2A and such that R is
isomorphic to the subalgebra of VM generated by the Majorana axes corresponding to ι(T ).

Definition 5.2. The shape of a Majorana representation R of G specifies the types of
dihedral subalgebras associated with all pairs of involutions on T .

Theorem 5.3. A Majorana representation of G ∼= L2(11) must have shape (2A, 3A, 5A,
6A).
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Proof. Let R be a Majorana representation of G with associated algebra X . The group
L2(11) has a single conjugacy class of involutions, 2a, and a single class 3a of elements
of order 3. From the structure class constants the product of any 2a involutions is in either
of the L2(11) classes 1a, 2a, 3a, 5a, 5b or 6a. Hence X contains dihedral subalgebras
of type 5A and 6A since they are the only dihedral subalgebras associated with dihedral
groups of order 10 and 12. By the inclusion of the dihedral subalgebras 3A ↪→ 6A and
2A ↪→ 6A the classes 3a and 2a are mapped to 3A and 2A under ψ. Hence X also
contains dihedral subalgebras of type 3A and 2A and we have accounted for all possible
dihedral subalgebras in X .

Let R be a Majorana representation of G with associated algebra X . From the above
theorem, R has the same shape as the subalgebra V of VM and the same inner product
values for the sets S′ and S. Moreover the dihedral and A5-subalgebras of X are equal to
their Majorana representations from [11] and [12].

Proposition 5.4. (i) The dihedral subalgebras of type 2A, 3A, 5A and 6A are equal to
the unique Majorana representations of D4, D6, D10, and D12 of shape 2A, 3A, 5A
and 6A respectively.

(ii) TheA5-subalgebra of type (2A, 3A, 5A) is equal to the unique Majorana representa-
tion of shape (2A, 3A, 5A) of a groupA5 of type (2A, 3A, 5A), which has dimension
26.

We would like to show that the shape of R uniquely determines the algebra product in X
so that X = V . In particular it is necessary to find the closure of the algebra generated
by S. This can be inspected computationally. We let S2 :=

{
u · v | u, v ∈ S

}
and

S3 :=
{
(u · v) · w, u · (v · w) | u, v, ∈ S

}
and for any positive integer n the set Sn is

defined in a similar way. Already for the set of vectors S ∪S2 the Majorana axioms yield a
very large number of eigenvectors for each Majorana axis and the first computational step
is to check whether or not the linear span of S∪S2 over R is contained in the closure ofX .
In fact during the reviewing stage of this paper, the author has learned that Á. Seress has
proved in [18] that the system of linear equations in S∪S2, obtained from the eigenvectors
of the axes {at | t ∈ T}, has a unique solution and that dimR(X) = 101. The result was
obtained computationally with an algorithm written with [6].

Theorem 5.5. The L2(11)-subalgebra of the Monster algebra VM is equal to X , the alge-
bra corresponding to the unique Majorana representation of L2(11).
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