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Abstract. Differential evolution is a simple algorithm for global optimization. Basically it consists of three 
operations: mutation, crossover and selection. Despite many research papers dealing with the first two, hardly any 
attention has been paid to the third one nor is there a place for this operation in the algorithm basic naming 
scheme. In the paper we show that employing different selection strategies combined with some random 
perturbation of population vectors notably improves performance in high-dimensional problems. 
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1 INTRODUCTION 

Differential Evolution (DE) is a simple yet powerful 
algorithm for global real parameter optimization 
proposed by Storn and Price [1]. Through the last 
decade, the algorithm has gained on popularity among 
research as well as engineering circles due to its 
extreme implementation simplicity and good 
convergence properties. The DE algorithm belongs to a 
broader class of Evolutionary Algorithms (EA), whose 
behavior mimics that of the biological processes of 
genetic inheritance and survival of the fittest. One 
outstanding advantage of EAs over other sorts of 
numerical optimization methods is that the  objective 
function needs to be neither differentiable nor 
continuous, which makes them more flexible for a wide 
variety of problems. 
 A DE starts out with a generation of NP randomly 
generated D-dimensional parameter vectors. New 
parameter vectors are then generated by adding a 
weighted difference of two population vectors to a third 
vector. This operation is called mutation. One then 
mixes the mutated vector parameters with the 
parameters of another vector, called the target vector, to 
obtain the so-called trial vector. The operation of 
parameter mixing is usually called crossover in the EA 
community. Finally, the trial vector is compared to the 
target vector, and if it yields a better solution, it replaces 
the target vector. This last operation is referred to as 
selection.  In each generation, each population vector is 
selected once as the target vector. 
 There exist several variants of the DE algorithm [2], 
of which the most commonly used is DE/rand/1/bin, 
which we explore in this paper. Before using the 
algorithm, one has to decide upon the values of three 
parameters affecting the behavior of a DE. The first is 
the population size NP, the other two are control 

parameters – a scaling factor F, and a crossover rate CR. 
Choosing the values of these parameters is usually a 
problem dependent task, which requires certain user 
expertise. Researchers have attempted to tackle the 
problem using several adapting and self-adapting 
strategies to govern the values of the control parameters 
F and CR [3, 4, 5] and even the population size NP [6, 
7]. Others have proposed and studied different mutation 
and crossover strategies [8, 9, 10]. No explicit research 
work has been done so far on the third of the DE 
operators, the selection, neither is there any intended 
place in the algorithm variant naming scheme (i.e. 
DE/x/y/z) for this operator. In this paper we investigate 
how different selection schemes affect the behavior of 
the DE algorithm, in particular its ability to escape the 
local minima or stagnation. In addition to that we 
applied what would in genetic algorithm be called 
mutation, i.e. we randomly changed the population 
vector parameters with a fixed probability. Since the 
term mutation is already reserved in DE, we named this 
operation a random perturbation. 
 In the next section, we shortly describe the 
functioning of the basic DE algorithm, in Section 3 we 
propose a random vector perturbation and different 
selection schemes that we investigate and, in Section 4, 
we  present some results on test functions. 
 

2 A SHORT OVERVIEW OF DIFFERENTIAL 

EVOLUTION 

Consider the objective (criterion) or fitness function �:ℝ� → ℝ, where one has to find a minimum �� ∈ ℝ� 
so that ∀
�� ∈ ℝ�: �(��) ≤ �(
��). In this case �� is called a 
global minimum. It is rarely possible to find an exact 
global minimum in real problems, so for practical 
reasons one must accept a candidate with a reasonable 
good solution. 
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 In order to search for a global minimum, differential 
evolution utilizes NP D-dimensional parameter vectors 
xi,G, i=1,2,...,NP as a population in generation G. NP 
does not change from generation to generation. The 
initial population is chosen randomly and – if no prior 
information about the fitness function is known – it 
should cover the entire search space uniformly. 
 During the optimization process, the new parameter 
vectors are generated by adding a weighted difference 
of two randomly chosen population vectors to a third 
vector: vi,G+1=xr1,G+F·(xr2,G–xr3,G) with integer, mutually 
different, random indices r1,r2,r3∈{1,2,...,NP}, which 
must all be different from  i  as well, and a real constant  

 
 
 

factor F∈[0,2]. This operation is called mutation, and 
the thus obtained vector the mutated vector. 
 The mutated vector parameters are then mixed with 
another vector, the so-called target vector, in order to 
produce a trial vector ui,G+1=(u1i,G+1,u2i,G+1,...,uDi,G+1)  
where 
 

���,��� = ����,���		if(����
(�) ≤  !)	or		� = ��
�($)%��,� 			if(����
(�) >  !)	and	� ≠ ��
�($) , 
 																																			� = 1,2, … , ..		 (1) 
 

 Here, randb(j) is the jth execution of the uniform 
random generator with output ∈ [0,1], CR is user-
determined constant ∈ [0,1], and rnbr(i) is a random 
index ∈ {1,2,...,D}. The latter insures that the trial 
vector gets at least one parameter from the mutated 
vector. This operation of parameter mixing is usually 
called crossover. 
 Finally, a selection is performed in order to decide 
whether or not the trial vector should become a member 
of generation G+1. The value of the fitness function at 
the trial vector ui,G+1 is compared to its value at the 
target vector xi,G using the greedy criterion. Only if the 
trial vector yields a better fitness value than the target 
vector, the target vector is replaced. Otherwise the trial 
vector is discarded and the target vector retained. 
 

3 MODIFICATIONS TO THE ORIGINAL DE 

ALGORITHM 

We focus our work on the stage of the DE algorithm 
after crossover, i.e. on the stage when the trial vector is 
already fully formed. 

 The idea for our modification came first from a 
simple observation that with a crossover rate CR 
approaching 1 not much of the target vector survives in 
its offspring (trial vector). In that sense one can argue 
that the search direction from the target to the trial 
vector can be as good (or as bad) as any other direction. 
The hypothesis we want to test is that there might exist 
some other (possibly better) candidate for replacement 
than the target vector itself.  
 In what follows, we propose and separately test three 
different rules for selecting the candidate to compete 
with the trial vector. We denote that candidate ci,G and 
select it according to one of the three selection criteria: 
 
 
 
 
  (2) 
 
 
 
 
 
where d(·,·) denotes an Euclidean distance. Note that 
there still exist cases where no appropriate candidate is 
selected in which case the trial vector is discarded. 
 Under criterion Cr1 one replaces, of all the vectors 
that yield a worse fitness value than the trial vector, the 
one that is geometrically closest to the target vector. 
Note that this strategy, the same as the original 
algorithm, always replaces the target vector as long as it 
is worse than the trial vector. Otherwise, it seeks after 
the candidate which is closest possible to the target 
vector to replace it. As in the original algorithm, the 
target vectors with a relatively bad fitness value will be 
replaced more likely, while those with a better fitness 
value will survive. In addition to that, however, some 
near vector is moved to the place where the target vector 
would move were it not worse than the trial vector. This 
speeds up the clustering of the population members 
around the members with generally better fitness values. 
On one hand this can accelerate the convergence 
significantly, on the other hand, however, there is a 
danger of losing a necessary diversity too soon and thus 
not finding a global solution. 
 The approach with the criterion Cr2 is quite different 
in that it searches for the candidate that is geometrically 
closest to the trial vector. In that sense replacements are 
made that favor smaller jumps and encourage searching 
over less promising areas as well. 
 The construction of the criterion Cr3 is not so 
obvious at the first glance. Similarly to the original 
algorithm and Cr1, we first check whether the target 
vector is to be replaced, i.e. if the trial vector yields a 
better fitness value than the target vector. Otherwise we 
replace the first member of the first half of the 
population whose fitness value is worse than that of the 
trial vector. The idea behind that is to have a half of the 
population evolve under the original DE rules while 

 

Cr1: 0�,� = %�,� , ∃�:min� 3�4%�,� , %�,�56	∀�: �4��,���5 < �(%�,�) 	 
Cr2 :0�,� = %�,� , ∃�:min� 3�4%�,� , ��,���56	∀�: �4��,���5 < �(%�,�) 	 
Cr3: 0�,� = %�,� , ∃�: 8 � = $, �4��,���5 < �(%�,�)																																																									

	smallest	� ∈ =1,2, … >?
@ A : �4��,���5 < �4%�,�5, otherwise	 	 
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accelerating the other half with further replacements. 
Even these additional replacements are applied 
asymmetrically with the members with a smaller index 
affected more often. That way we wanted to induce as 
little a change to the original method as possible, while 
inducing a relatively strong drag on a limited number of 
population members. 
 Before going into experiments, let us introduce one 
more tiny modification to the algorithm. It is interesting 
to note that although the algorithm itself belongs to a 
class of metaheuristics and stochastic optimization, the 
randomness in the original concept is only used for the 
selection of the vectors from which the mutated vector 
will be formed and for mixing the mutated and target 
vector parameters. The vector parameters themselves 
are changing randomly only indirectly through the 
mutation and crossover, and the obtained values are 
limited to a set of linear combinations of parameters 
already contained in a population. Some authors have 
already introduced some more randomness into DE, 
either directly by randomization of the vector 
parameters [11, 12] or indirectly by randomizing the 
algorithm control parameters F and CR [13, 14]. 
 In our study we decided simply to mutate every 
single parameter of the trial vector with a fixed 
probability just before the selection procedure takes 
place: 

���,��� = D����(�), if(����
(�) ≤ 0.05)���,���, otherwise																							, 
 																					� = 1,2, … , ., (3) 
 
where rand(j) is the call of the random generator that 
returns the uniformly distributed values along the entire 
jth axis of the parameter space. The constant probability 
of 0.05 was obtained empirically by a few preliminary 
test runs of the algorithm, which also indicated that the 
uniform distribution over the whole parameter space 
yielded somewhat superior performance compared to a 
normal distribution around the current parameter value 
often used in literature. We call this operation 
perturbation. 
 

4 RESULTS 

4.1 Overall Performance 

In order to get an overall picture and the first impression 
of the impact of the three proposed selection strategies 
and random vector perturbations, we carried out a 
simple test. For testing purposes, fourteen standard 
benchmark functions from [15] were selected, thirteen 
high-dimensional (D=30) and one low-dimensional 
(D=4) function.  Then we randomly selected the three 
parameters from the intervals NP∈{10,...,100}, 
F∈[0,1], and CR∈[0,1], and initialized a random 
population of the NP parameter vectors lying within the 
boundaries given for the test function in question. Next 
we executed eight optimization runs of the 150,000 

criterion function evaluations (CFEs) with the same 
parameter values and initial vector population, but each 
time applying either the original or one of the three 
proposed selection schemes, once without and once with 
a random perturbation. We repeated this 5,000 times for 
each test function, each time with different control 
parameter values and initial vector population. The 
results are summarized in Table 1. 
 

Table 1: Comparison of Different Modifications of the 
Algorithm with the Original 

Selection 
method 

Without 
Perturbation 

With Perturbation 

50,000 

CFEs 

150,000 

CFEs 

50,000 

CFEs 

150,000 

CFEs 

Original – – 44.1/51.7 43.7/44.1 

Cr1 53.5/43.4 45.1/48.0 69.9/26.9 63.1/29.0 

Cr2 52.8/44.1 45.7/47.4 62.4/34.4 57.3/35.4 

Cr3 61.4/34.6 53.0/37.1 75.2/20.6 68.5/20.5 

  
 
 The fourteen pairs of the numbers in the table stand 
for the seven different comparisons (each of the 
modifications separately compared to the original) at 
two different times of the algorithm run: after 50,000 
CFEs and after 150,000 CFEs. The numerator 
represents the percentage of cases in which the 
corresponding modification yielded a better fitness 
value (at the precision of 6 significant digits) than the 
original, while the denominator speaks of the percentage 
of cases in which the original method performed better. 
The sum is generally smaller than 100, because in some 
cases both variants gave the same result. The counting 
was carried out over all runs regardless of the control 
parameter setting or the selected test function. In real-
life problems, often the practitioner has little or no  
knowledge about the fitness function and consequently 
about the best control parameter settings. Therefore, it 
seems that averaging over a range of different test 
functions and control parameter settings, selected in the 
Monte-Carlo manner is an appropriate measure of the 
algorithm overall performance. 
 In the table, the pairs of the numbers in the white 
cells represent the state after 50,000 CFEs. We 
conjectured that at that stage of optimization the 
convergence is generally not yet fully reached. 
Consequently those pairs of the numbers hint at the 
convergence speed rather than at the overall ability to 
find a global minimum.   
 The numbers in the shaded cells represent the state 
after 150,000 CFEs, when we assume that the number 
of the cases reaching the final solution is considerably 
larger than of those after 50,000 CFEs. Hence we 
consider these results to reflect the ability of the 
algorithm to find a good final solution. 
 From the table one can infer some quite interesting 
observations. Replacing – instead of target vector – the 
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candidate closest to target (Cr1) or closest to trial vector 
(Cr2) without using perturbation performed just slightly 
better after 50,000 CFEs (1st column, 2nd and 3rd row, 
respectively) and slightly worse after 150,000 CFEs 
(2nd column, 2nd and 3rd row, respectively). That 
implies that the more frequent replacements in both 
cases speed up the convergence as expected but, in 
general, they more often stuck in local minima or reach 
stagnation in the end. That is, however, not the case 
with the selection strategy using Cr3. This strategy 
outperformed the original for almost twice more cases 
after 50,000 CFEs and still remained much better after 
150,000 CFEs (4th row, 1st and 2nd column, 
respectively). It is important to note that with this kind 
of modification the algorithm still performs more 
replacements than the original one, which obviously 
speeds-up the convergence. The main difference here is 
that we perform these additional replacements only on a 
limited number of the population members, the others 
still undergoing the original selection scheme. 
Technically, we can speak of two different schemes 
running in parallel. 
 Comparing the original method with and without 
perturbations gives us no noticeable difference (1st row, 
3rd and 4th column). As reasonably expected, random 
perturbations slow down convergence to some extent 
(1st row, 3rd column), but in the long run no variant 
outperforms the other (1st row, 4th column). It is quite 
interesting to note that while perturbation seems to have 
no observable effect when applied to the original 
algorithm, it improves the other three variants 
noticeably. It seems that in these cases the perturbation 
not only makes up for the loss of the population 
variance – which might have occurred due a to too fast 
convergence induced by more frequent replacements – 
but also improves the overall performance. It seems that 
the changed selection schemes and random 
perturbations support each other. Nevertheless, 
comparing the results of the selection criteria Cr1, Cr2, 
and Cr3 with perturbation after 50,000 and 150,000 
CFEs shows that in all the three cases, in the long run, 
the original method compensates a little for the much 
worse performance during the first part of the run. This 
leaves us, possibly, some room for improvement by 
balancing the factors that affect the convergence speed 
and the rate of change in the population diversity. 

4.2 A Closer Look 

Let us now focus a little closer on the selection criterion 
Cr3 combined with vector perturbation exhibiting the 
best overall improvement in the previous analysis. In 
order to get a more accurate picture, we made the same 
comparisons as before, only this time for each test 
function separately. The results are summarized in 
Table 2. The table shows comparisons of the original 
method with the original method with perturbation, and 
with the selection criterion Cr3 with and without 
perturbation. The numbers in normal writing represent 

the state after 50,000 CFEs, while the ones in boldface 
the state after 150,000 CFEs. 
 

Table 2: Comparison of Different Modifications by Separate 
Test Functions 

Test Function 

Modification Compared with the 
Original Algorithm 

Original 

with 

Perturbation 

Cr3 
Cr3 with 

Perturbation 

ƒ1 (Quadratic) 34.72/65.28 
31.60/68.40 

70.83/29.17 
68.75/31.25 

80.21/19.79 
76.39/23.61 

ƒ2 (Schwefel 2.22) 33.45/66.55 
31.71/68.29 

70.73/29.27 
66.90/33.10 

74.22/25.78 
70.03/29.97 

ƒ3 (Schwefel 1.2) 51.04/48.26 
54.51/45.49 

75.35/23.96 
70.49/29.51 

77.08/22.57 
78.47/21.53 

ƒ4 (Schwefel 2.21) 49.48/48.08 
48.43/49.83 

63.07/34.49 
59.58/39.72 

83.97/12.80 
79.79/18.82 

ƒ5 (Generalized 
Rosenbrock) 

49.83/50.17 
52.96/47.04 

58.19/41.81 
56.10/43.90 

77.00/23.00 
73.87/26.13 

ƒ6 (Step) 31.36/24.39 
29.97/9.76 

31.36/27.87 
18.12/26.48 

47.04/6.62 
35.19/3.48 

ƒ7 (Quartic noisy) 46.50/53.50 
49.30/50.70 

70.28/29.72 
67.83/32.17 

77.97/22.03 
77.62/22.38 

ƒ8 (Generalized 
Schwefel 2.26) 

57.14/42.86 
58.54/29.62 

49.83/50.17 
36.59/58.19 

82.58/17.42 
78.75/11.15 

ƒ9 (Generalized 
Rastrigin) 

50.69/48.96 
49.65/43.40 

66.67/33.33 
57.64/39.24 

80.90/19.10 
79.17/15.28 

ƒ10 (Ackley) 48.26/50.69 
48.96/33.33 

60.07/39.24 
43.75/41.67 

81.60/17.36 
68.40/15.63 

ƒ11 (Generalized 
Griewank) 

32.17/61.19 
31.47/36.71 

63.99/29.72 
42.31/29.02 

73.08/20.28 
53.50/17.83 

ƒ12 (Generalized 
penalty function 1) 

43.36/56.29 
36.01/45.80 

68.53/31.12 
52.45/33.22 

81.47/18.53 
65.38/20.63 

ƒ13 (Generalized 
penalty function 2) 

45.10/54.90 
42.66/43.01 

62.59/37.06 
50.35/37.06 

82.17/17.48 
72.03/15.03 

ƒ15 (Kowalik) 44.41/52.45 
45.80/46.50 

48.25/47.55 
50.70/45.10 

52.80/45.80 
49.65/45.80 

 
 
 The first and foremost important observation here is 
that the modification combined with perturbation shows 
a noticeable and consistently better performance in all 
cases except for the Kowalik test function where there is 
no observable difference. Again we see that perturbation 
alone does not really improve performance of the 
original method, two notable exceptions being the 
Schwefel 2.26 and Step functions. 
 The Schwefel function is somehow tricky in that the 
global minimum is placed geometrically remote from 
the next few best local minima. The original method 
exhibits quite a good convergence at the beginning, 
while later on perturbations help find a global minimum 
as without them the original method would be stuck in a 
local minimum (see the 1st column, Schwefel 2.26 
function). Interestingly enough, modification without 
perturbation in that case performs much worse than the 
original method. This probably stems from the fact that 
this method replaces candidates of one half of the 
population excessively, thus additionally forcing the 
population in one of the local minima. The modified 
method with perturbation, however, performs much 
better in this case. 
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 The same goes for the step function. This function 
too, poses some difficulties for the original algorithm 
because it consists of many plateaus and discontinuities. 
All points within a small neighborhood will have the 
same fitness value, making it very difficult for the 
process to move from one plateau to another. 
Perturbations seem to help here significantly.  

4.3 Parameter Impact 

In our experiments so far we didn't pay any attention to 
the actual control-parameter or population-size 
selection. The values were picked up completely  
randomly within the set intervals. In this section we 
want to investigate the effect of different parameter 
settings on the algorithm performance with the proposed 
modifications. We compare the original algorithm to the 
one using the selection scheme Cr3 with perturbation. 
Although the focus here is on a single test function 
(Generalized Schwefel 2.26) we should note that a 
similar behavior was observed also elsewhere.  
 We started by choosing the control parameter settings 
most commonly found in literature, i.e. F = 0.5 and CR 
= 0.9. Our experimenting showed that at these values 
the best fitness (assuming a fixed number of 150,000 
CFEs) is generally obtained at the population size NP = 
40. The results in this section are obtained by changing 
one of the three values while keeping the other two 
fixed. The best fitness values were averaged over 25 
independent runs.  
 Fig. 1 shows that the original method completely 
failed to reach the global minimum (at –12569.5) safe 
for the lowest values of CR. Interesting, however, is that 
the modification enables DE to find the global minimum 
at lower and higher values of CR, but not at the values 
around 0.7. A similar behavior can be observed in Fig. 
2, only that here the improvement is somehow worse 
only at the highest values of F.  
 

 
 

 In Fig. 3, which depicts the inpact of the population 
size, we can see that the major improvement is achieved 
at lower population sizes. The large population size in 
DE usually guarantees the larger probability of finding a 
global minimum, and originally, the proposed 
population size was NP = 10D [16]. Other sizes were 
proposed later but also all considerably greater than the 
fitness function dimensionality D. As seen from Fig. 3, 
at larger population sizes our modification does not 
bring any improvement over the original method 
whatsoever. That is somehow expected since the DE 
should be quite stable at larger NP. The problem 
however is that the stability is of no great practical use 
if after the relatively large number of CFEs the 
algorithm is still very far from the actual solution. We 
see one of the strongest values of our modification in  
having instead of one large population many smaller 
ones running in parallel which could bring together the 
ability to actually find the global minimum and speed 
up of convergence.  

 

 

5 CONCLUSION 

In the paper we studied different replacement schemes 
in the DE algorithm combined with the additional 
random perturbation of vector parameters. By 
experimenting with a suite of standard test functions we 
observed that only one replacement scheme provided 
observably better results than the original algorithm. It 

 
Figure 3: Impact of the population size. 
 

 
Figure 2: Impact of the F control parameter.  

 

Figure 1: Impact of the CR control parameter. The solid 
line represents the results using the original algorithm 
while the dashed line depicts the values obtained using the 
Cr3 selection scheme with perturbation. 
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was somehow surprising to observe that perturbation 
doid not improve behavior of the original replacement 
scheme while it improved all the others.  
 Studying the performance of the replacement scheme 
Cr3 combined with random perturbation showed quite 
considerable improvement in all higher dimensional test 
functions. We also saw that the improvement is greater 
at certain values of the control parameters and 
population sizes, i.e. at lower values of F and NP, and at 
lower as well as higher values of CR. Especially 
outstanding was the improvement in smaller population 
sizes which could be useful in implementing parallel DE 
algorithms using a number of smaller populations. 
 One of the advantages of the approach proposed in 
this paper is the fact that its intervention with the 
original method does not interfere with any other 
operation and can therefore be applied independently 
and combined with many other approaches proposed in 
literature.  
 All in all, the beauty of the original DE algorithm is 
its utmost implementation simplicity. Our research tried 
not to stray away from this simplicity and we showed 
that it is possible to improve the algorithm performance 
by only changing the rule for replacing the population 
members combined with simple random perturbation. 
We believe that further work in this direction is 
worthwhile. 
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