

Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (2014) 337–340

Unramified Brauer groups and isoclinism

Primož Moravec

Department of Mathematics, University of Ljubljana Jadranska 21, 1000 Ljubljana, Slovenia

Received 4 October 2012, accepted 9 April 2013, published online 1 June 2013

Abstract

We show that the Bogomolov multipliers of isoclinic groups are isomorphic.

Keywords: Unramified Brauer group, Bogomolov multiplier, isoclinism. Math. Subj. Class.: 20F12, 20F35, 13A50

1 Introduction

Let G be a finite group and V a faithful representation of G over an algebraically closed field k of characteristic zero. Suppose that the action of G upon V is generically free. A relaxed version of Noether's problem [11] asks as to whether the fixed field $k(V)^G$ is purely transcendental over k, i.e., whether the quotient space V/G is rational. A question related to the above mentioned is whether V/G is stably rational, that is, whether there exist independent variables x_1, \ldots, x_r such that $k(V)^G(x_1, \ldots, x_r)$ becomes a pure transcendental extension of k. This problem has close connection with Lüroth's problem [12] and the inverse Galois problem [14, 13]. By the so-called no-name lemma, stable rationality of V/Gdoes not depend upon the choice of V, but only on the group G, cf. [4, Theorem 3.3 and Corollary 3.4]. Saltman [13] found examples of groups G of order p^9 such that V/G is not stably rational over k. His main method was application of the unramified cohomology group $H^2_{nr}(k(V)^G, \mathbb{Q}/\mathbb{Z})$ as an obstruction. A version of this invariant had been used before by Artin and Mumford [1] who constructed unirational varieties over k that were not rational. Bogomolov [2] proved that $H^2_{nr}(k(V)^G, \mathbb{Q}/\mathbb{Z})$ is canonically isomorphic to

$$B_0(G) = \bigcap_{\substack{A \le G, \\ A \text{ abelian}}} \ker \operatorname{res}_A^G,$$

where $\operatorname{res}_A^G : \operatorname{H}^2(G, \mathbb{Q}/\mathbb{Z}) \to \operatorname{H}^2(A, \mathbb{Q}/\mathbb{Z})$ is the usual cohomological restriction map. Following Kunyavskiĭ [7], we say that $\operatorname{B}_0(G)$ is the *Bogomolov multiplier* of G.

E-mail address: primoz.moravec@fmf.uni-lj.si (Primož Moravec)

This work is licensed under http://creativecommons.org/licenses/by/3.0/

We recently proved [9] that $B_0(G)$ is naturally isomorphic to $Hom(\tilde{B}_0(G), \mathbb{Q}/\mathbb{Z})$, where $\tilde{B}_0(G)$ is the kernel of the commutator map $G \land G \to [G, G]$, and $G \land G$ is a quotient of the *non-abelian exterior square* of G (see Section 2 for further details). This description of $B_0(G)$ is purely combinatorial, and allows for efficient computations of $B_0(G)$, and a Hopf formula for $B_0(G)$. We also note here that the group $\tilde{B}_0(G)$ can be defined for any (possibly infinite) group G.

Recently, Hoshi, Kang, and Kunyavskiĭ [6] classified all groups of order p^5 with nontrivial Bogomolov multiplier; the question was dealt with independently in [10]. It turns out that the only examples of such groups appear within the same isoclinism family, where isoclinism is the notion defined by P. Hall in his seminal paper [5]. The following question was posed in [6]:

Question 1.1 ([6]). Let G_1 and G_2 be isoclinic *p*-groups. Is it true that the fields $k(V)^{G_1}$ and $k(V)^{G_2}$ are stably isomorphic, or at least, that $B_0(G_1)$ is isomorphic to $B_0(G_2)$?

The purpose of this note is to answer the second part of the above question in the affirmative:

Theorem 1.1. Let G_1 and G_2 be isoclinic groups. Then $\tilde{B}_0(G_1) \cong \tilde{B}_0(G_2)$. In particular, if G_1 and G_2 are finite, then $B_0(G_1)$ is isomorphic to $B_0(G_2)$.

The proof relies on the theory developed in [9]. We note here that we have recently become aware of a paper by Bogomolov and Böhning [3] who fully answer the above question using different techniques. We point out that our approach here is purely combinatorial and does not require cohomological machinery.

2 Proof of Theorem 1.1

We first recall the definition of $G \downarrow G$ from [9]. For $x, y \in G$ we write $xy = xyx^{-1}$ and $[x, y] = xyx^{-1}y^{-1}$. Let G be any group. We form the group $G \downarrow G$, generated by the symbols $g \downarrow h$, where $g, h \in G$, subject to the following relations:

$$gg' \downarrow h = ({}^{g}g' \downarrow {}^{g}h)(g \downarrow h),$$

$$g \downarrow hh' = (g \downarrow h)({}^{h}g \downarrow {}^{h}h'),$$

$$x \downarrow y = 1,$$

for all $g, g', h, h' \in G$, and all $x, y \in G$ with [x, y] = 1. The group $G \land G$ is a quotient of the non-abelian exterior square $G \land G$ of G defined by Miller [8]. There is a surjective homomorphism $\kappa : G \land G \to [G, G]$ defined by $\kappa(x \land y) = [x, y]$ for all $x, y \in G$. Denote $\tilde{B}_0(G) = \ker \kappa$. By [9] we have the following:

Theorem 2.1 ([9]). Let G be a finite group. Then $B_0(G)$ is naturally isomorphic to $Hom(\tilde{B}_0(G), \mathbb{Q}/\mathbb{Z})$, and thus $B_0(G) \cong \tilde{B}_0(G)$.

Let L be a group. A function $\phi : G \times G \to L$ is called a \tilde{B}_0 -pairing if for all $g, g', h, h' \in G$, and for all $x, y \in G$ with [x, y] = 1,

$$\begin{split} \phi(gg',h) &= \phi({}^gg',{}^gh)\phi(g,h),\\ \phi(g,hh') &= \phi(g,h)\phi({}^hg,{}^hh'),\\ \phi(x,y) &= 1. \end{split}$$

Clearly a \tilde{B}_0 -pairing ϕ determines a unique homomorphism of groups $\phi^* : G \land G \to L$ such that $\phi^*(g \land h) = \phi(g, h)$ for all $g, h \in G$.

We now turn to the proof of Theorem 1.1. Let G_1 and G_2 be isoclinic groups, and denote $Z_1 = Z(G_1)$, $Z_2 = Z(G_2)$. By definition [5], there exist isomorphisms $\alpha : G_1/Z_1 \to G_2/Z_2$ and $\beta : [G_1, G_1] \to [G_2, G_2]$ such that whenever $\alpha(a_1Z_1) = a_2Z_2$ and $\alpha(b_1Z_1) = b_2Z_2$, then $\beta([a_1, b_1]) = [a_2, b_2]$ for $a_1, b_1 \in G_1$. Define a map $\phi : G_1 \times G_1 \to G_2 \land G_2$ by $\phi(a_1, b_1) = a_2 \land b_2$, where a_i, b_i are as above. To see that this is well defined, suppose that $\alpha(a_1Z_1) = a_2Z_2 = \overline{a_2}Z_2$ and $\alpha(b_1Z_1) = b_2Z_2 = \overline{b_2}Z_2$. Then we can write $\overline{a_2} = a_2z$ and $\overline{b_2} = b_2w$ for some $w, z \in Z_2$. By the definition of $G_2 \land G_2$ we have that $\overline{a_2} \land \overline{b_2} = a_2z \land b_2w = a_2 \land b_2$, hence ϕ is well defined.

Suppose that $a_1, b_1 \in G_1$ commute, and let $a_2, b_2 \in G_2$ be as above. By definition, $[a_2, b_2] = \beta([a_1, b_1]) = 1$, hence $a_2 \land b_2 = 1$. This, and the relations of $G_2 \land G_2$, ensure that ϕ is a \tilde{B}_0 -pairing. Thus ϕ induces a homomorphism $\gamma : G_1 \land G_1 \to G_2 \land G_2$ such that $\gamma(a_1 \land b_1) = a_2 \land b_2$ for all $a_1, b_1 \in G_1$. By symmetry there exists a homomorphism $\delta : G_2 \land G_2 \to G_1 \land G_1$ defined via α^{-1} . It is straightforward to see that δ is the inverse of γ , hence γ is an isomorphism.

Let $\kappa_1 : G_1 \land G_1 \rightarrow [G_1, G_1]$ and $\kappa_2 : G_2 \land G_2 \rightarrow [G_2, G_2]$ be the commutator maps. Since $\beta \kappa_1(a_1 \land b_1) = \beta([a_1, b_1]) = [a_2, b_2] = \kappa_2 \gamma(a_1 \land b_1)$, we have the following commutative diagram with exact rows:

$$0 \longrightarrow \tilde{B}_{0}(G_{1}) \longrightarrow G_{1} \land G_{1} \xrightarrow{\kappa_{1}} [G_{1}, G_{1}] \longrightarrow 0 .$$

$$\tilde{\gamma} \bigvee \qquad \gamma \bigvee \qquad \beta \bigvee \qquad \beta \bigvee \qquad \beta \bigvee \qquad 0 \longrightarrow \tilde{B}_{0}(G_{2}) \longrightarrow G_{2} \land G_{2} \xrightarrow{\kappa_{2}} [G_{2}, G_{2}] \longrightarrow 0$$

Here $\tilde{\gamma}$ is the restriction of γ to $\tilde{B}_0(G_1)$. Since β and γ are isomorphisms, so is $\tilde{\gamma}$. This concludes the proof.

References

- M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, *Proc. London. Math. Soc.* 25 (1972), 75–95.
- [2] F. A. Bogomolov, The Brauer group of quotient spaces by linear group actions, *Izv. Akad. Nauk SSSR Ser. Mat.* 51 (1987), 485–516.
- [3] F. Bogomolov and C. Böhning, Isoclinism and stable cohomology of wreath products, arXiv:1204.4747v1.
- [4] J.-L. Colliot-Thélène and J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the rationality problem), in: V. Mehta (ed.), *Proceedings of the International Colloquium on Algebraic groups and Homogeneous Spaces* (Mumbai 2004), TIFR, Mumbai, Narosa Publishing House (2007), 113–186.
- [5] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130-141.
- [6] A. Hoshi, M. Kang and B. E. Kunyavskiĭ, Noether problem and unramified Brauer groups, ArXiv:1202.5812v1, 2012.
- [7] B. E. Kunyavskiĭ, *The Bogomolov multiplier of finite simple groups*, Cohomological and geometric approaches to rationality problems, 209–217, Progr. Math., 282, Birkhäuser Boston, Inc., Boston, MA, 2010.

- [8] C. Miller, The second homology of a group, Proc. Amer. Math. Soc. 3 (1952), 588–595.
- [9] P. Moravec, Unramified groups of finite and infinite groups, Amer. J. Math., to appear, arXiv:1203.3190v1.
- [10] P. Moravec, Groups of order p^5 and their unramified Brauer groups, J. Algebra, to appear, arXiv:1203.3289v1.
- [11] E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1916), 221-229.
- [12] I. R. Šafarevič, The Lüroth problem, Proc. Steklov Inst. Math. 183 (1991), 241-246.
- [13] D. J. Saltman, Noether's problem over an algebraically closed field, *Invent. Math.* 77 (1984), 71–84.
- [14] R. G. Swan, Noether's problem in Galois theory, in 'Emmy Noether in Bryn Mawr', Springer-Verlag, Berlin, 1983.