doi:10.14720/aas.2018.111.3.06 Original research article / izvirni znanstveni članek Fluctuations of aphid populations on grapefruit (Citrus xparadisi Macfad.) Salim LEBBAL1,2 Received February 02, 2018; accepted October 30, 2018. Delo je prispelo 02. februarja 2018, sprejeto 30. oktobra 2018. ABSTRACT Very few studies were carried out to investigate the aphids attacking grapefruit. These pests cause considerable damages on citrus trees and other crops. This paper reports on the fluctuations of aphids on grapefruit in the region of Skikda (Algeria). From January 2012 to December 2013, monthly surveys were performed to measure the abundance of aphids recorded on 16 leaves of grapefruit. Through this study, five aphid species were identified, among them Aphis spiraecola Patch, 1914 was the most numerous. Besides, we noticed that the populations of aphids reached high levels many times within the year. However, the most important densities were recorded in spring and autumn. Key words: Aphis spiraecola; Aphis gossypii; inter-annual variations of populations; intra-annual variations; population dynamics IZVLEČEK FLUKTUACIJE POPULACIJ LISTNIH UŠI NA GRENIVKI (Citrus x paradisi Macfad.) Zelo malo raziskav je bilo narejeno na listnih ušeh, ki napadajo grenivko. Ti škodljivci povzročajo znantne poškodbe na citrasih in drugih kulturah. Pripevek poroča o nihanju pojavljanja listnih uši na grenivki v območju Skikda (Alžirija). Od januarja 2012 do decembra 2013 so bili opravljeni mesečni pregledi za ovrednotenje pogostosti listnih uši, na osnovi ocene pojavljanja na 16 listih grenivke. V raziskavi je bilo najdenih pet vrst listnih uši, med katerimi je bila vrsta Aphis spiraecola Patch, 1914 najštevilčnejša. Opaženo je bilo, da so bile populacije listnih uši številčne večkrat v letu, vendar so bile najpomembnejše gostote zabeležene spomladi in v jeseni. Ključne besede: Aphis spiraecola; Aphis gossypii; medletna spremenljivost populacij; letna variabilnost; populacijska dinamika 1 INTRODUCTION Citrus fruits represent one of the most important fruit productions worldwide, with 109 million tonnes produced annually in the world (Maserti et al., 2011). In the Mediterranean region, the citrus fruits play a very important role in the nutrition, human health, food processing industry and economic incomes (Biche, 2012). The genus Citrus includes several species of economic importance such as grapefruits (Citrus x paradisi Macfad.) (Hanke & Flachowsky, 2010), which constitutes the only major citrus varieties having a level of processed utilization comparable to oranges (Lacirignola & D'Onghia, 2009). It is the largest citrus fruit grown commercially in many countries (Skaria, 2004). The production of grapefruit was estimated at about 8,550100 tonnes in 2015, including 2300 tonnes in Algeria (FAO, 2017). Besides, grapefruit or grapefruit juice is often recommended as a healthy dietary constituent, particularly in some weight reducing diets (Xiao & Hu, 2014). Furthermore, other authors reported many healthy benefits of grapefruit (Xu et al., 2007; Yin et al., 2012). In addition, its zest is exploited in the production of pectin and essential oils (Kimball, 1999). Several pests and diseases may attack grapefruit and reduce its yield. Among these plant enemies, aphids have a big importance. They comprise about 4000 described species, most of which are found only in temperate regions (Dixon, 1987). They cause direct (sap-feeding, deformation of their hosts) and indirect damage (transmission of plant diseases, deposition of honeydew on the leaves) (Cœur d'acier et al., 2010). For 1 Department of Agronomy, Faculty of Natural and Life Sciences, Abbas Laghrour University, Khenchela, Algeria; Corresponding author: salim-leb@hotmail.com 2 Department of Agronomy, Hadj Lakhdar University, Batna, Algeria Acta agriculturae Slovenica, 111 - 3, december 2018 str. 575 - 558 Salim LEBBAL instance, Citrus tristeza virus (CTV) which is considered to be the most destructive virus of citrus crops (Rehman et al., 2016), is present in most of the countries in the Mediterranean region and is transmitted by different aphid species (Lacirignola & D'Onghia, 2009). Thus, knowledge of the biology of aphids is an important basis for successful management of the aphids themselves and of the diseases they transmit (Hales et al., 1997). In Algeria, practically there is no specific studies on the aphids attacking grapefruit, although the importance of this aspect to obtain a good production qualitatively and quantitatively. Thus, our paper reports on the diversity and fluctuations of aphids on grapefruit in Skikda region (northeast Algeria), based on a two years investigation 2 MATERIAL AND METHODS A citrus orchard at the Technical Institute of Fruit Arboriculture in Emjez Djich (6° 47' E and 36° 42' N, 200 m above the sea level), province of Skikda situated in northeast of Algeria, was used for this study. The trees were arranged in 5 m separated rows. From January 2012 to December 2013, monthly surveys measured the abundance of aphids (adults and larvae) on grapefruit trees ('Shambar') grafted on Troyer citrange (C. sinensis L. x Poncirus trifoliata Raf.). Four young leaves from the four cardinal points per tree and four trees of grapefruit were selected randomly on each sampling date. Similarly, Yolda§ et al. (2011) and Mostefaoui et al. (2012) have sampled leaves to study citrus aphids. Identification of collected aphids was carried out using identification keys especially those of Blackman & Eastop (2000) and Stoetzel (1994). ANOVA analysis and Student-Newman-Keuls test were performed, by means of SPSS for Windows 10 software (SPSS Inc.), to compare the mean number of aphids between months and to classify homogeneous groups. 3 RESULTS AND DISCUSSION Through 2012 and 2013, five aphid species were identified in total (Table 1). They are already reported on other citrus species in Algeria (Aroun, 1986; Benoufella-Kitous, 2005; Mohammedi-Boubekka, 2006; Belkahla et al., 2013; Benoufella-Kitous et al., 2014; Aroun, 2015; Labdaoui & Guenaoui, 2015; Lebbal & Laamari, 2016). Citrus aphid species are widespread and four of them, Aphis spiraecola (Patch, 1914), A. gossypii (Glover, 1877), Toxoptera aurantii (Boyer de Fonscolombe, 1841) and T. citricidus (Kirkaldy, 1907), are especially abundant (Lapchin et al., 1994). Despite its presence in other Mediterranean countries, T. citricida, which is the vector the most implicated in the transmission of Tristeza disease (Lebdi Grissa, 2010), was not noted in the orchard of study. The complete elimination of Meyer lemon, the absence of the main vector T. citricidus and of natural transmission by other aphid species, have probably removed the risk of spreading the disease in Algeria (Larbi et al., 2009). Nevertheless, A. spiraecola, A. gossypii, M. persicae, and T. aurantii have some ability to transmit this virus (Bove, 1961; Ghosh et al., 2015). A. gossypii has been reported to cause major epidemics of CTV in the Mediterranean Basin (Yahiaoui, 2010) Table 1: Number of individuals of each aphid species found on grapefruit in the examined orchard during 2012 and 2013 Aphids / Years_2012_2013 Aphis spiraecola (Patch, 1914) 388 1448 Aphis gossypii (Glover, 1877) 0 19 Toxoptera aurantii (Boyer de Fonscolombe, 1841) 3 0 Aphis nerii (Boyer de Fonscolombe, 1841) 0 5 Macrosiphum euphorbiae (Thomas, 1878) 0 1 The morphological characteristics of the identified aphids are described below 576 Acta agriculturae Slovenica, 111 - 3, december 2018 Fluctuations of aphid populations on grapefruit (Citrus x paradisi Macfad.) 3.1 A. spiraecola (green citrus aphid or spiraea aphid) This is a small yellow or greenish-yellow aphid with black siphunculi and cauda (Blackman & Eastop, 2007). Its body length ranges between 1.2 and 2.2 mm (Blackman & Eastop, 2006). 3.2 A. gossypii (cotton or melon aphid) The coloration of adults, ranging in size from 0.8 to 1.5 mm, varies from light yellow or greenish to dark green. Their antenna are a little longer than half the (Celini, 2001). Cauda is lighter than siphunculi (Ilharco & Sousa-Silva, 2009). 3.3 A. nerii (oleander aphid) Aptera are bright lemon yellow with dark antenna and legs, and black siphunculi and cauda (Blackman & Eastop, 2006). Antenna with terminal process more than three times length of base of VI (Stoetzel, 1994). 3.4 T. aurantii (black citrus aphid) It is about 2.1 mm in length with striped legs (Fasulo & Halbert, 2015). Body of apterous form is dark-brown, while the apex of antennal segments III, IV and V, the apical half of base of VI and sometimes also the apex of terminal process are dark (Ilharco & Sousa-Silva, 2009). 3.5 M. euphorbiae (potato aphid) It is a medium-sized to large, spindle shaped aphid, usually green but sometimes pink or magenta, the adult apterae often rather shiny in contrast to the immature stages, which have a light dusting of greyish-white wax (Blackman & Eastop, 2007). Siphunculi with a subapical zone of polygonal reticulation whereas the cauda is longer (Blackman & Eastop, 2000). In our case, the most common species was A. spiraecola and with less degree A. gossypii. Tena & Garcia-Mari (2011) considered that these two species are the most harmful to citrus in the Mediterranean region. Its importance on citrus fruits has been mentioned, among others, in Algeria (Lebbal & Laamari, 2016), in Morocco (Elhaddad et al., 2016), in Syria (Abo Kaf, 2005) and in Turkey (Uygun & Satar, 2008). Whereas the weak infestation of A. nerii, M. persicae and M. euphorbiae on grapefruit in the studied orchard may be attributed to the competition from other species, particularly A. spiraecola. On the other hand, ANOVA showed no significant difference of the infestation degree between months in 2012 (P = 0.156) and highly significant difference in 2013 (P = 0.000). The most important densities were recorded in spring and autumn (Figure 1), especially in April 2013 (x = 57.69 aphids / leaf), which coincide with the formation of new flushes and optimal temperatures. The correlation analysis for weather parameters and some citrus aphids indicated a significant negative correlation between minimum temperature and incidence of aphid species (Chavan & Singh, 2005). In addition, the presence and the abundance of citrus-dependent aphids depend on the population size of the different flushes (Saharaoui et al., 2015). Braham & Amor (2018) noticed a positive relationship between the number of new shoots per experimental tree and A. spiraecola infestation. We observed an augmentation in the number of aphid species detected from two in 2012 to four species in 2013(Table 1). We also noticed big changes in the Acta agriculturae Slovenica, 111 - 3, december 2018 577 Salim LEBBAL distribution of aphids between years (Figure 1). For example, aphids did not infest grapefruit trees in five months during 2012, and in eight months during 2013. It seems that changes in climatic parameters between years influenced the infestation level. In the present study, the minimum temperature ranged from 9.48 to 27.37 °C in 2012; and between 11.24 and 25.22 °C in 2013 according to climatic data provided by the meteorological station of Skikda (longitude 6° 54' E; latitude 36° 52' N; altitude 1.30 m). Aphids are particularly sensitive to temperature changes due to certain specific biological features of this group (Hulle et al., 2010). The effect of temperature on the biology of many aphid species has been demonstrated (De Reggi, 1972; Kaakeh & Dutcher, 1993; Wang & Tsai, 2000; Morgan et al., 2001; Brabec et al., 2014; Ranila et al., 2015). Dixon & Hopkins (2010) revealed that for each species, there is a temperature range where the aphid can grow and reproduce. For example, Komazaki (1982) found that the intrinsic rate of natural growth is highest at 22 ° C for A. gossypii and 27 ° C for A. spiraecola. In addition, the generation time of the latter species was 5.8 days at 25 ° C and 12.1 days at 15 ° C, on orange (Satar & Uygun, 2008). 4 CONCLUSION The present study focused on grapefruit, which represents an underutilized fruit tree although its benefits, allows the obtaining of new data about the aphids attacking this citrus tree in Algeria. Five aphid species were identified, of which four species are considered as vectors of CTV causing the quarantine disease Tristeza. Furthermore, population fluctuations of these insects were very variable. Consequently, regular surveys in orchards, especially in the spring and autumn, are necessary to execute control measures to limit the attacks by these pests. 5 REFERENCES Abo Kaf, N. (2005). Quality and quantity diversity of aphids and its parasitoids on citrus in Coastal Regional of Syria. Arab Journal of Plant Protection, 23(2), 61-69. Aroun, M. E. (1986). Les aphides et leurs ennemis naturels en verger d'agrumes de la Mitidja. Annales de l'INA, 59-66. Aroun, M. E. (2015). Le complexe aphides et ennemis naturels en milieux cultivé et forestiers en Algérie. Doctoral dessertation, ENSA El Harrach. Belkahla, H., Larbi, D., Bouafia, L., Moudoud, R., Guettouche, F. & Bouzidi, S. (2013). Serodetection of Citrus Tristeza Closterovirus (CTV) in Algeria. American-Eurasian Journal of Sustainable Agriculture, 7(1), 10-13. Benoufella-Kitous, K. (2005). Les pucerons des agrumes et leurs ennemis naturels à Oued Aïssi (Tizi-Ouzou). Magister dessertation, INA El Harrach. Benoufella-Kitous, K., Doumandji, S. & Hance, T. (2014). Inventaire des aphides et de leurs ennemis naturels dans un verger d'agrumes. In: 10eme Conférence Internationale sur les Ravageurs en Agriculture, 22 - 23 octobre 2014, Montpellier. Biche, M. (2012). Les principaux insectes ravageurs des agrumes en Algérie et leurs ennemis naturels. Algérie, FAO. Blackman, R. L. & Eastop, V. F. (2000). Aphids on the world's crops: An identification and information guide. United Kingdom, John Wiley and Sons. Blackman, R. L. & Eastop, V. F. (2006). Aphids on the world's herbaceous plants and shrubs. United Kingdom, John Wiley & Sons. Blackman, R. L. & Eastop, V. F. (2007). Taxonomic issues. In: H. F. van Emden & R. Harrington (Eds.), Aphids as crop pests (1-29), United Kingdom, CAB International. Bové, J. M. (1961). Compte rendu du deuxième congrès international de virologie des citrus. Fruits, 16(4), 145-160. Brabec, M., Honek, A., Pekar, S. & Martinkova, Z. (2014). Population dynamics of aphids on cereals: Digging in the time-series data to reveal population regulation caused by temperature. Plos One, 9(9), 1-8. doi:10.1371/journal.pone.0106228 Braham, M., & Amor, N. (2018). Effect of pruning severity on the vegetative growth, density and population dynamics of the Spirea aphid, Aphis spiraecola in Citrus orchard. Journal of Entomology and Zoology Studies, 6(1), 311-319. 578 Acta agriculturae Slovenica, 111 - 3, december 2018 Fluctuations of aphid populations on grapefruit (Citrus x paradisi Macfad.) Célini, L. (2001). Le puceron du cotonnier Aphis gossypii (Glover) et son parasite Aphelinus gossypii Timberlake en République centrafricaine. Insectes, 122(3), 7-10. Chavan, V. M., & Singh, S. J. (2005). Population dynamics and management of aphid vectors of citrus tristeza virus in Maharashtra. Agricultural Science Digest, 25(2), 85-89. Cœur D'acier, A., Hidalgo, N.P., & Petrovič-Obradovič, O. (2010). Aphids (Hemiptera, Aphididae). BioRisk, 4(1), 435-474. doi:10.3897/biorisk.4.57 Dartigues, D. (1991). Spatiotemporal distribution of aphids and influence of ants, on orange-trees in Kabylia. Fruits, 46(4), 461-469. De Reggi, L. M. (1972). Développement larvaire du puceron Myzus persicae à une température anormalement élevée. Journal of Insect Physiology, 18(9), 1757-1761. doi:10.1016/0022-1910(72)90107-2 Dixon, A. F. G. & Hopkins, G. W. (2010). Temperature, seasonal development and distribution of insects with particular reference to aphids. In P. Kindlmann, A. F. G. Dixon & J. P. Michaud (Eds.), Aphid biodiversity under environmental change: Patterns and processes (pp. 129-147).Dordrecht, Springer. doi:10.1007/978-90-481-8601-3_8 Dixon, A.F.G., Kindlmann, P., Lepš, J., & Holman, J. (1987). Why there are so few species of aphids, especially in the tropics. The American Naturalist, 129, 580-592. doi:10.1086/284659 Elhaddad, A., ElAmrani, A., Fereres, A., & Moreno, A. (2016). Spatial and temporal spread of Citrus tristeza virus and its aphid vectors in the North western area of Morocco. Insect science, 23(6), 903-912. doi:10.1111/1744-7917.12228 FAO (2017). Citrus fruit: Fresh and processed statistical bulletin 2016. Rome, FAO. Fasulo T. R. & Halbert S. E. (2015). Aphid pests of Florida citrus, (University of Florida paper ENY 811). Retrieved from https://edis.ifas.ufl.edu/pdffiles/CH/CH05500.pdf Ghosh, A., Das, A., Lepcha, R., Majumdar, K. & Baranwal, V. K. (2015). Identification and distribution of aphid vectors spreading Citrus tristeza virus in Darjeeling hills and Dooars of India. Journal of Asia-Pacific Entomology, 18, 601605. doi:10.1016/j.aspen.2015.07.001 Hales, D. F., Tomiuk, J., Wöhrmann, K., & Sunnucks, P. A. U. L. (1997). Evolutionary and genetic aspects of aphid biology: A review. European Journal of Entomology, 94(1), 1-55. Hanke, M.-V. & Flachowsky, H. (2010). Fruit crops. In F. Kempken & C. Jung (Eds.), Genetic Modification of Plants (pp. 307-348). Berlin, Springer. doi:10.1007/978-3-642-02391-0_17 Hullé, M., Cœur D'acier, A., Bankhead-Dronnet, S. & Harrington, R. (2010). Aphids in the face of global changes. Comptes Rendus Biologies, 333, 497-503. doi:10.1016/j.crvi.2010.03.005 Ilharco, F. A., & Sousa-Silva, C. R. (2009). Toxoptera citricidus (Kirkaldy, 1907)(Homoptera, Aphidoidea), the tropical citrus aphid in continental Portugal. Options Méditerranéennes B65, 53 - 58. Kaakeh, W. & Dutcher, J. D. (1993). Survival of yellow pecan aphids and black pecan aphids (Homoptera: Aphididae) at different temperature regimes. Environmental Entomology Journal, 22(4), 810817. doi:10.1093/ee/22.4.810 Kimball, D. A. (1999). Citrus processing : A complete guide. Maryland, Aspen Publishers. doi:10.1007/978-1-4615-4973-4 Komazaki, S. (1982). Effects of constant temperatures on population growth of three aphid species, Toxoptera citricidus (Kirdkaldy), Aphis citricola Van Der Goot and Aphis gossypii Glover (Homoptera: Aphididae) on Citrus. Applied Entomology and Zoology, 17(1), 75-81. doi:10.1303/aez.17.75 Labdaoui, Z. E. & Guenaoui, Y. (2015). The aphids infesting citrus orchards and their natural enemies in the Northwestern Algeria. In Sixth International Scientific Agricultural Symposium" Agrosym2015", Jahorina, Bosnia and Herzegovina, October 15-18, 2015. Book of Proceedings (pp. 787-792). University of East Sarajevo. Lacirignola, C. & D'onghia, A. M. (2009). The Mediterranean citriculture: Productions and perspectives. Options Méditerranéennes, B 65, 1317. Lapchin, L., Guyot, H. & Brun, P. (1994). Spatial and temporal heterogeneity in population dynamics of citrus aphids at a regional scale. Ecological Research, 9, 57-66. doi:10.1007/BF02347242 Larbi, D., Ghezli, C. & Djelouah, K. (2009). Historical review of Citrus tristeza virus (CTV) in Algeria. Options Méditerranéennes,B 65, 107-110. Lebbal, S. & Laamari, M. (2016). Population dynamics of aphids (Aphididae) on orange (Citrus sinensis 'Thomson Navel') and mandarin (Citrus reticulata 'Blanco'). Acta agriculturaeSlovenica, 107(1), 137145. doi: 10.14720/aas.2016.107.1.14 Lebdi Grissa, K. (2010). Etude de base sur les cultures d'agrumes et de tomates en Tunisie. Regional Acta agriculturae Slovenica, 111 - 3, december 2018 579 Salim LEBBAL integrated pest management program in the Near East. Rome, FAO. Maserti, B.E., Del Carratore, R., Delia Croce, C.M., Podda, A., Migheli, Q., Froelicher,Y., Luro,F., Morillon,R., Ollitrault,P., Talon, M. & Rossignol, M. (2011). Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves. Journal of Plant Physiology, 168, 392-402. doi:10.1016/j.jplph.2010.07.026 Mohammedi-Boubekka, N. (2006). Biosystématique des Aphididae et leur place dans l'entomofaune de l'oranger dans la plaine de la Mitidja. Magister dessertation, INA El Harrach. Morgan, D., Walters, K. F. A. & Aegerter, J. N. (2001). Effect of temperature and cultivar on pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) life history. Bulletin of Entomological Research, 91(1), 47-52. Mostefaoui, H., Mahmoude, A., AllalBenfekih, L., Petit, D. & Saladin, G. (2012). Fluctuations des abondances saisonnières des populations d'aphidiens du clémentinier en fonction de l'accumulation de leurs réserves énergétiques. In: 3ème Congrès de Zoologie et d'Ichtyologie, 6 - 10 novembre 2012, Marrakech. Ranila, A., Kanani, M. K., Bhut, J. B. & Borad, P. K. (2015). Population dynamics of Aphis gossypii Glover on coriander in relation to biotic and abiotic factors. International Journal of Plant Protection, 8(2), 372-374. doi: 10.15740/HAS/IJPP/8.2/372-374 Rehman, S., Ahmad, J., Lanzoni, C., Rubies Autonell, C. & Ratti, C. (2016). The phytosanitary status of the National Collection of fruits and nuts of Afghanistan and the private Mother Stock Nurseries: A virus survey. Advances in Horticultural Science, 30(4), 239-248. Saharaoui, L., Hemptienne, J. L. & Magro, A. (2015). Partage des ressources trophiques chez les coccinelles. Bulletin de la Société Zoologique de France, 140(1), 5-23. Satar, S. & Uygun, N. (2008). Life cycle of Aphis spiraecola Patch (Homoptera: Aphididae) in East Mediterranean region of Turkey and its development on some important host plants. IOBC/WPRS Bulletin, 38, 216-224. Skaria, M. (2004). People, arthropods, weather and citrus diseases. In S. A. M. H. Naqvi (Ed.), Diseases of fruits and vegetables (pp. 307-337). The Netherlands, Kluwer Academic Publishers. doi:10.1007/1-4020-2606-4_7 Stoetzel, M. B. (1994). Aphids (Homoptera: Aphididae) of potential importance on Citrus in the United States with illustrated keys to species. Proceeding of the Entomology Society of Washington, 96, 7490. Uygun, N. & Satar, S. (2008). The current situation of citrus pests and their control methods in Turkey. IOBC/WPRS Bulletin, 38, 2-9. Wang, J.-J. & Tsai, J. H. (2000). Effect of temperature on the biology of Aphis spiraecola (Homoptera: Aphididae). Annals of Entomological Society of America, 93(4), 874-883. doi:10.1603/0013-8746(2000)093[0874:E0T0TB]2.0.C0;2 Xiao, Y.-J., Hu, M. & Tomlinson, B. (2014). Effects of grapefruit juice on cortisol metabolism in healthy male Chinese subjects. Food and Chemical Toxicology, 74, 85-90. doi:10.1016/j.fct.2014.09.012 Xu, W., Qu, W., Huang, K., Guo, F., Yang, J., Zhao, H. & Luo, Y. (2007). Antibacterial effect of Grapefruit Seed Extract on food-borne pathogens and its application in the preservation of minimally processed vegetables. Postharvest Biology and Technology, 45, 126-133. doi:10.1016/j.postharvbio.2006.11.019 Yahiaoui, D. (2010). Assessment of genetic diversity of Mediterranean Citrus Tristeza Virus (CTV) isolates and genomic RNA variability associated to their vector transmission. Doctoral dessertation, Universita Degli Studi Di Catania. Yin, X., Gyles, C. L. & Gong, J. (2012). Grapefruit juice and its constituents augment the effect of low pH on inhibition of survival and adherence to intestinal epithelial cells of Salmonella enterica serovar Typhimurium PT193. International Journal of Food Microbiology, 158, 232-238. doi:10.1016/j.ijfoodmicro.2012.07.022 Yolda§, Z., Guncan, A. & Koglut, T. (2011). Seasonal occurrence of aphids and their natural enemies in Satsuma mandarin orchards in Izmir, Turkey. Turkiye Entomoloji Dergisi, 35(1), 59-74. 580 580 Acta agriculturae Slovenica, 111 - 3, december 2018