
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 9 (2015) 187–195

Bounds on the domination number of
Kneser graphs

Patric R. J. Östergård ∗
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Abstract

The Kneser graph KGn,k has one vertex for each k-subset of an n-set and edges be-
tween vertices whenever the corresponding subsets are disjoint. A dominating set in a
graph G = (V,E) is a subset S ⊆ V such that each vertex in V \ S is adjacent to at least
one vertex in S. The domination number of KGn,k, denoted by γ(n, k), is the minimum
size of a dominating set in that graph. Combinatorial and computer-aided techniques for
obtaining bounds on γ(n, k) are here considered, and several new bounds are obtained. An
updated table of bounds on γ(n, k) is presented for n ≤ 21 and k ≤ 5.
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1 Introduction
Let G = (V,E) be a simple graph, that is, a graph having neither loops nor multiple edges.
A dominating set inG is a subset S ⊆ V such that each vertex in V \S is adjacent to at least
one vertex in S. The domination number γ(G) of G is the minimum size of a dominating
set in G. The domination number has been extensively studied in the general case [11].
Due to a variety of applications, the case of n-cubes, G ∼= Qn, is of particular interest [3];
most of the early work considered such graphs. In the current work, another specific type
of graphs is considered, namely Kneser graphs.

The Kneser graph KGn,k has one vertex for each k-subset of an n-set and edges be-
tween vertices whenever the corresponding subsets are disjoint. If n < 2k, then KGn,k has
no edges, so we assume that n ≥ 2k. We further denote the domination number of KGn,k

by γ(n, k). See [6, Chap. 7] for an in-depth discussion of Kneser graphs.
General and specific bounds on γ(n, k) have been considered in a sequence of studies,

including [2, 8, 10, 12, 18]. However, several of the best known bounds for small param-
eters were rather weak prior to this study. Indeed, the aim of the current work is to apply
combinatorial and computer-aided techniques to the problem of improving upper and lower
bounds on the domination number of Kneser graphs—and occasionally even find the exact
value when the bounds meet.

A total dominating set in a graph G = (V,E) is a subset S ⊆ V such that each vertex
in V is adjacent to at least one vertex in S. The minimum size of a total dominating set is
called the total domination number, and the total domination number of KGn,k is denoted
by γt(n, k). It is obvious that

γ(n, k) ≤ γt(n, k). (1.1)

Let C(v, k, t) denote the smallest number of k-subsets of a v-set, such that every t-subset
of the v-set occurs in at least one of the k-subsets. Then γt(n, k) = C(n, n − k, k), so by
(1.1),

γ(n, k) ≤ C(n, n− k, k). (1.2)

Exact values of and upper bounds on C(v, k, t) for v ≤ 32, k ≤ 16, and t ≤ 5 can be found
in [7].

The paper is organized as follows. Methods for obtaining upper and lower bounds on
γ(n, k) are considered in Sections 2 and 3, respectively. The results are summarized in
Section 4, where an updated table of bounds on γ(n, k) is presented for n ≤ 21 and k ≤ 5.

2 Upper Bounds and Exact Values
Upper bounds for the domination number are commonly constructive, that is, explicit dom-
inating sets prove the bounds. We here present various general results for upper bounds on
γ(n, k); in some of the theorems, the exact value is in fact obtained. If n < 2k, then
the Kneser graph consists of isolated vertices only. In the first nontrivial case, n = 2k, a
dominating set must contain one vertex from each pair of disjoint k-sets.

Theorem 2.1. For any k,

γ(2k, k) =
1

2

(
2k

k

)
.

It is easy to show that if n is large enough, then the smallest dominating set is obtained
by taking k + 1 disjoint k-sets.
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Theorem 2.2. If n ≥ k2 + k, then γ(n, k) = k + 1.

The exact value of γ(n, k) has also been determined for a range of values of n smaller
than those covered by Theorem 2.2.

Theorem 2.3 ([10]). If k ≥ 3 and 3
4k

2 + k ≤ n < k2 + k, then

γ(n, k) = k + 1 +

⌈
k2 + k − n
bk/2c

⌉
.

With increasing n, γ(n, k) turns out to be nonincreasing.

Theorem 2.4 ([8, Proposition 4.2.4]). If n ≥ 2k + 1, then γ(n+ 1, k) ≤ γ(n, k).

Theorem 2.5 ([8, Theorem 4.5.1]). If k ≥ 4 and γ(n, k) ≤ min{2k, n−k}, then γ(n, k) =
γt(n, k).

We shall next see how dominating sets in certain Kneser graphs are related to a coloring
problem for hypergraphs that has been extensively studied. We consider the case n =
2k + 1—such Kneser graphs are known as odd graphs—and view a dominating set S of
the graph KG2k+1,k as the set of hyperedges in a hypergraphG′ = (V ′, E′) with |V ′| = n,
|E′| = |S|, and edges of size k (so the hypergraph is k-uniform).

Now consider an arbitrary balanced coloring of the vertices in V ′ with two colors, that
is, k of the vertices are colored with one color and k + 1 with the other [21]. Since the
vertex in the original Kneser graph that is labelled by the subset of the k vertices with the
first color is dominated by some vertex s ∈ S, the hyperedge in E′ corresponding to s is
unicolor. Hence,G′ does not have a balanced coloring with two colors so that no hyperedge
is unicolor, that is, G′ is not 2-colorable in a balanced way.

Hypergraphs that are 2-colorable (without requiring that the colorings be balanced) are
said to have property B [13, Sect. 15.1]. Consequently, a hypergraph with appropriate
parameters that does not have property B gives a dominating set in KG2k+1,k. Actually,
this implication goes in the other direction as well.

The upward shadow of a (k − 1)-subset of an n-set is the collection of all k-subsets of
the n-set that contain the (k − 1)-subset.

Lemma 2.6 ([8, Lemma 4.2.3]). If n ≥ 2k+1, then there exists a dominating set attaining
γ(n, k) that does not contain the upward shadow of any (k − 1)-subset of the n-set.

Theorem 2.7. There exists a dominating set S attaining γ(2k + 1, k) that can be trans-
formed into a k-uniform hypergraphG′ = (V,E) with |V | = 2k+1 and |E| = |S| without
property B.

Proof. Consider the hypergraph G′ = (V ′, E′) obtained from a dominating set attaining
γ(2k+1, k) that does not contain the upward shadow of any (k−1)-set. Such a dominating
set exists by Lemma 2.6.

If the vertices in V ′ are colored in a balanced way, then since the hypergraph was
constructed from a dominating set in KG2k+1,k, there exists a unicolor hyperedge.

Now consider a coloring of the vertices V ′ with k + 2 and k − 1 vertices of the two
colors and denote the vertices in the former color class by U . If no hyperedge in E′ is
a subset of U , then the same holds for each (k + 1)-subset of U , so by the existence of
a balanced coloring we get that (V ′ \ U) ∪ v ∈ E′ for all v ∈ U . But this is then an
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upward shadow and we have a contradiction (so a hyperedge that is a subset of U is indeed
unicolor).

The colorings with classes of size a and n − a where a ≥ k + 3 are handled by
considering an arbitrary subset of the larger class of size k + 2 and using the previous
argument.

By Theorem 2.7 and results by Abbott and Liu [1] we now get that 24 ≤ γ(9, 4) ≤ 26.
Note, however, that in certain studies on uniform hypergraphs without property B a further
assumption is made that the hyperedges must contain all pairs of vertices. Results for that
variant of the problem, which is motivated by a more general question regarding property
B, are not directly applicable here. This includes the results in [16, 21].

For certain parameters, we can say a lot about γ(2k + 1, k). Let 2 ≤ t < k < v. An
S(t, k, v) Steiner system is a collection of k-sets out of a v-set with the property that every
t-subset of the v-set occurs in exactly one of the k-sets. The following result has been
discussed both in the context of hypergraphs without property B [4] and dominating sets
in KG2k+1,k [9]; see also [5, Lemma 11.8.3].

Theorem 2.8. There is a Steiner system S(k − 1, k, 2k + 1) if and only if

γ(2k + 1, k) =
1

k

(
2k + 1

k − 1

)
.

One may further use partial or exhaustive computational methods to determine bounds
on γ(n, k). Since upper bounds can be proven by finding a structure attaining the bound,
nonexhaustive methods can be applied to such cases. For lower bounds, on the other hand,
exhaustive methods are required; we shall consider such methods in the next section.

In [19], the tabu search metaheuristic is applied to the problem of finding dominating
sets in n-cubes. The algorithm takes the parameters of the instance and the desired size of
the dominating set (which is, for example, one less than the best known upper bound), and
searches for such a dominating set. The algorithm is also applicable to Kneser graphs—in
fact, it is applicable to arbitrary graphs. The reader should consult [19] for details. Struc-
tures obtained in the current work and leading to new upper bounds on γ(n, k) are listed
in the Abstract. Some of the best known structures turn out to have nontrivial symmetries;
these could further be used to narrow down the search space.

We consider symmetries of dominating sets in terms of the labels (subsets) of the ver-
tices. Two dominating sets are said to be equivalent if there is a permutation of the n-set
that maps the vertices of one dominating set onto the vertices of the other. Such a mapping
from a dominating set onto itself is an automorphism, and the set of all automorphisms
of a dominating set forms the automorphism group of the dominating set. Such an auto-
morphism group is isomorphic to a subgroup of the stabilizer subgroup of the dominating
set in Aut(KGn,k). Note that it may happen that the automorphism group is a proper
such subgroup; consider, for example, the mapping of the k-subsets of a 2k-set to their
complements. The nauty software [17] is a useful computational tool in this context.

3 Lower Bounds
Several of the bounds in the previous section can be used also to get lower bounds. We shall
here state two more general results that can be used to get best known lower bounds for
small parameters. The first of these is the well-known volume bound obtained by dividing
the total number of vertices with the number of vertices dominated by a single vertex.
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Theorem 3.1. For any n and k,

γ(n, k) ≥
(
n
k

)
1 +

(
n−k
k

) .
Theorem 3.2 ([8, Lemma 4.5.3]). Assume that n = αk, where α, k ≥ 2. Then

γ(n, k) ≥ α

α− 1
(γ(n+ k, k)− 1).

To simplify the discussion of the techniques to obtain lower bounds on γ(n, k), it is
useful to think of a dominating set as a constant weight code [20]. The codewords of this
code are of length n and have 1s in the coordinates given by the corresponding k-subset
and 0s in the other coordinates. Theory and terminology from coding theory can then be
directly applied.

There are three general approaches to exhaustively search for codes with prescribed
parameters [15, Chap. 7]: via subcodes, codeword by codeword, and coordinate by coor-
dinate. There is no obvious way of constructing the current type of codes via subcodes,
that is, codes obtained by considering the codewords with a 1 (alternatively, 0) in a given
coordinate and deleting that coordinate. Some results can indeed be obtained in a backtrack
search constructing the code word by word as in [24], which can be consulted for general
details.

The origins of the method of constructing codes coordinate by coordinate can be traced
back to the 1960s [14], after which it has been developed further and become an efficient
tool in the study of dominating sets, in particular in n-cubes and related graphs [22, 23].
See also [15, Sect. 7.2.2]. A version that has been applied to the hypergraph coloring
problem discussed in the previous section can be found in [21].

The idea in the coordinate by coordinate approach can be described as a generalization
of the following theorem.

Theorem 3.3. Let D be a dominating set in KGn,k, and let D = D0 ∪ D1 such that Di

consists of the vertices whose label has an i in the first coordinate. Then

1. |D1|+
(
n−k−1
k−1

)
|D0| ≥

(
n−1
k−1

)
,

2.
(
n−k
k

)
|D1|+

(
1 +

(
n−1−k

k

))
|D0| ≥

(
n−1
k

)
.

Proof. Let G = (V,E) be the KGn,k Kneser graph, and let V = V0 ∪ V1 so that the labels
of the vertices in Vi have an i in the first coordinate. Then |V0| =

(
n−1
k

)
and |V1| =

(
n−1
k−1

)
.

The result now follows as each vertex in D0 dominates 1 +
(
n−1−k

k

)
vertices in V0 and(

n−k
k

)
vertices in V1, and each vertex in D1 dominates

(
n−k−1
k−1

)
vertices in V0 and 1 vertex

in V1.

Theorem 3.3 can be generalized to an arbitrary number of specified coordinates. For
example, with two specified coordinates we let D = D00 ∪ D01 ∪ D10 ∪ D11, V =
V00 ∪ V01 ∪ V10 ∪ V11 and get four inequalities. For a small number of coordinates, the
inequalities can be derived by hand, but when the number gets larger, it is convenient to
form these computationally.

When a code is constructed coordinate by coordinate, one first fixes the number of
codewords and then start from the distributions of 0s and 1s in the first coordinate given by
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Theorem 3.3. In a backtrack exhaustive search, one may for the next couple of coordinates
solve larger and larger systems of equations, but at some point one may start checking all
possible candidates for the next coordinate and see whether the inequalities are fulfilled.
At each level of the search tree, isomorph rejection should be carried out. For the sake of
efficiency, one may also require that the number of 1s in the coordinates is either increasing
or decreasing. Except for minor differences in details, the approach in [21] can be used.

4 Results
Table 1 summarizes the best known bounds on and exact values for γ(n, k), n ≤ 21, k ≤ 5.
Indices are added to the entries, to give explanations of lower and upper bounds. If a bound
can be obtained in several ways, we pick the explanation that in some sense is the nicest.
We omit the index when the bound follows from Theorem 2.2.

Table 1: Bounds on γ(n, k) for n ≤ 21, k ≤ 5

n\k 2 3 4 5
4 a3a

5 c3c

6 3 a10a

7 3 e7e

8 3 c7c a35a

9 3 m7c j26l

10 3 b6b c15k a126a

11 3 b5b i15c e66e

12 3 4 i12h i37–56k

13 3 4 m10h j23–39k

14 3 4 d9h f16–31k

15 3 4 d8h g15–27h

16 3 4 b7b i12–22h

17 3 4 b7b c11–17h

18 3 4 b6b c11–15h

19 3 4 b6b c11–14h

20 3 4 5 c11–12h

21 3 4 5 d11–12h
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Key to Table 1.
Unmarked bounds are from Theorem 2.2.
Bounds:
a Theorem 2.1
b Theorem 2.3
c Theorem 2.4
d Theorem 2.5 and [7]
e Theorem 2.8
f Theorem 3.1
g Theorem 3.2
h Eq. (1.2) and [7]
i Exhaustive search, coordinate by coordinate
j Exhaustive search, word by word
k New constructive result, see Appendix
l Abbott and Liu [1] (Theorem 2.7)
m Gorodezky [8]

Appendix
We here list the structures that lead to new upper bounds on γ(n, k). We first present
structures that can be described as a set of orbits under the action of a permutation group,
and finally list some explicit structures (we do not exclude the possibility that these, or
better, bounds could also be obtained by a structure with some symmetry).

γ(10, 4) ≤ 15:
Generator of group: (1 2 3 4 5)(6 7 8 9 10)
Orbit representatives: 1110010000, 1010000110, 1000001101

γ(13, 5) ≤ 39:
Generator of group: (1 2 3 4 5 6 7 8 9 10 11 12 13)
Orbit representatives: 1101011000000, 1110001001000, 1101000100010

γ(12, 5) ≤ 56:
111000110000, 100000111100, 010001011001, 010000111010, 001010000111,
011100010001, 110101000010, 100011010100, 000011111000, 110100100001,
110011001000, 011101001000, 101011001000, 000001100111, 011000100110,
110000010110, 001001100011, 100110001100, 111110000000, 000110010110,
100001101001, 010011100001, 010100001101, 000010011011, 000111100100,
001110110000, 010101010100, 101010010001, 001110001010, 001000111010,
011011000010, 001100001101, 100101001010, 001001011001, 010110001010,
100001010011, 011010100001, 101000101100, 000100101011, 110000101100,
010010000111, 101101000010, 011001000101, 100100110001, 100010000111,
011000011100, 110010010001, 010011100100, 101000010110, 000100011101,
000101110010, 101100100001, 001011100100, 111000001010, 001101010100,
010110110000



194 Ars Math. Contemp. 9 (2015) 187–195

γ(14, 5) ≤ 31:
10000011001100, 00011110100000, 11100100100000, 00110101000010,
00110110000001, 00001011000110, 00010010100110, 01000011000011,
00000101101100, 01011000010100, 10110000010001, 00100000100111,
10001010011000, 01101010000001, 01100010011000, 01010100011000,
11000000001101, 10010000101010, 01100001010100, 00001001110001,
10001111000000, 01001010110000, 00000001011011, 10000100010110,
11001100000010, 00101000101010, 00001100001101, 10111001000000,
01010001100001, 10000110110000, 00011010001100
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