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Abstract

Herradon has recently provided an example of a regular dessin d’enfant whose field
of moduli is the non-abelian extension Q( 3

√
2) answering in this way a question due to

Conder, Jones, Streit and Wolfart. In this paper we observe that Herradon’s example be-
longs naturally to an infinite series of such kind of examples; for each prime integer p ≥ 3
we construct a regular dessin d’enfant whose field of moduli is the non-abelian extension
Q( p
√

2); for p = 3 it coincides with Herradon’s example.
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1 Introduction
A dessin d’enfant (or hypermap) of genus g, as defined by Grothendick in his Esquisse
d’un Programme [8], is a bipartite map (vertices come in black and white colors and ver-
tices of the same color are non-adjacent) on a closed orientable surface of genus g. The
degree of the dessin d’enfant is the number of its edges. As a consequence of the classical
uniformization theorem, a dessin d’enfant can also be seen as a pair (S, β), where S is a
closed Riemann surface and β : S → Ĉ is a non-constant meromorphic map whose branch
values are contained in the set {∞, 0, 1}; the degree of the dessin is the same as the degree
of β. A dessin d’enfant (S, β) is called regular if β is a regular branched covering.

The signature of the dessin d’enfant is the tripe (a, b, c), where a (respectively, b and c)
is the least common multiple of the local degrees of β at each preimage of 0 (respectively,
1 and∞). In terms of the bipartite map, a is the least common multiple of the degrees of
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black vertices, b is the least common multiple of the degrees of white vertices and c is the
least common multiple of the degrees of the faces (recall that a face of the dessin d’enfant
must have an even number 2δ of boundary edges, where internal edges are counted twice;
in this case δ is the degree of the face).

Two dessins d’enfant (S1, β1) and (S2, β2) are said to be equivalent (denoted this by the
symbol (S1, β1) ∼ (S2, β2)) if there is an isomorphisms f : S1 → S2 so that β1 = β2 ◦ f .
Clearly, the signature is an invariant under this equivalence relation.

There is a natural bijection between dessins d’enfants (respectively, regular dessins
d’enfants), of signature (a, b, c) and degree d, and conjugacy classes of subgroups (respec-
tively, normal subgroups) of index d of the triangular group

∆(a, b, c) = 〈x, y : ya = xb = (xy)c = 1〉.

By Belyi’s theorem [2], each dessin d’enfant is equivalent to a dessin d’enfant (C, β)
where C is an algebraic curve and β a rational map, both defined over the field Q of alge-
braic numbers. This provides a natural action of the absolute Galois group Gal(Q/Q) on
the set of (equivalence classes of) dessins d’enfants as follows. Start with a dessin d’enfant
(C, β), defined algebraically over Q and let σ ∈ Gal(Q/Q). Assume C is defined by
the polynomials P1, . . . , Pr and that β = Q1/Q2, where all polynomials have coefficients
in Q. Let Pσj and Qσk be the polynomials obtained by applying σ to the coefficients of
Pj and Qk, respectively. If Cσ is the algebraic curve defined by the polynomials Pσj and
βσ = Qσ1/Q

σ
2 , then (Cσ, βσ) still a dessin d’enfant. It is well known that the above action

of the absolute Galois group is faithful [4, 5, 8, 12]. For many years, it was an open and dif-
ficult question if the absolute Galois group also acts faithfuly on the set of regular dessins
d’enfants. Last year, this problem was solved by González-Diez and Jaikin-Zapirain in [6]
and in a slightly weaker form by Bauer, Catanese and Grunewald in [1].

The field of moduli of a dessin d’enfant (C, β) is the fixed field of the subgroup of
Gal(Q/Q) consisting of those σ for which (Cσ, βσ) ∼ (C, β) (i.e., the field of definition
of the equivalence class of the dessin d’enfant). The field of moduli is contained in any
field of definition of the dessin (it is in fact the intersection of all of them by results due
to Koizumi [10]), but there are examples for which the field of moduli is not a field of
definition of it.

In [15], Wolfart observed that regular dessins d’enfants are definable over its field of
moduli. The only explicit examples for such Galois Belyi actions were however known
only for curves and dessins defined over abelian extensions of Q. A question posed by
Conder, Jones, Streit and Wolfart in [3] was if there were examples of regular dessins
d’enfant with field of moduli being a non-abelian extension of Q. In [9] Herradon answered
the above positively by constructing a regular dessin d’enfant with field of moduli being
Q
(

3
√

2
)
. Herradon starts with the following genus one non-uniform dessin d’enfant of

signature (4, 6, 12)(
C : y2 = x (x− 1)

(
x− 3
√

2
)
, β(x, y) = x3(2− x3)

)
,

whose field of moduli is Q( 3
√

2), and then he observes that its normalizing regular dessin
d’enfant has the same field of moduli (he also constructs another regular dessin d’enfant
with the same property, this being a quotient of the previous one).

In this paper we observe that Herradon’s example belongs to a infinite family with the
same property which we proceed to describe in Section 3.
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2 Preliminaries on triangle groups
If l,m, n ≥ 2 are integers so that l ≤ m ≤ n and l−1 +m−1 +n−1 < 1, then the triangular
group

∆(l,m, n) = 〈x, y : yl = xm = (xy)n = 1〉
can be seen as a discrete group of isometries of the hyperbolic plane H, that is a triangular
Fuchsian group. In this case, H/∆(l,m, n) is an orbifold of genus zero having exactly
three cone points of respective orders l, m and n. The triple (l,m, n) is called the signature
of ∆(l,m, n).

A triangular Fuchsian group ∆ is maximal if it is not a proper subgroup of finite index
of another triangle group [7]. In [13], Singerman proved that ∆(l,m, n) is maximal if and
only if

(l,m, n) /∈ {(l, l, l), (l, l, n), (l,m,m), (2,m, 2m), (3,m, 3m)} .
A Fuchsian group ∆ is called non-arithmetic if the commensurate group

Comm(∆) = {γ ∈ Aut(H) : [∆ : ∆ ∩ γ∆γ−1] <∞, [γ∆γ−1 : ∆ ∩ γ∆γ−1] <∞}

is discrete. This is not the original definition of a non-arithmetic group but it is equivalent
due to a result of Margulis in [11]. The list of all the triples (l,m, n) for which ∆ is
arithmetic has been provided by Takeuchi in [14] (there are 76 such triples):

(2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10), (2, 3, 11), (2, 3, 12), (2, 3, 14), (2, 3, 16),

(2, 3, 18), (2, 3, 24), (2, 3, 30), (2, 4, 5), (2, 4, 6), (2, 4, 7), (2, 4, 8), (2, 4, 10),

(2, 4, 12), (2, 4, 18), (2, 5, 5), (2, 5, 6), (2, 5, 8), (2, 5, 10), (2, 5, 20), (2, 5, 30),

(2, 6, 6), (2, 6, 8), (2, 6, 12), (2, 7, 7), (2, 7, 14), (2, 8, 8), (2, 8, 16), (2, 9, 18),

(2, 10, 10), (2, 12, 12), (2, 12, 24), (2, 15, 30), (2, 18, 18), (3, 3, 4), (3, 3, 5), (3, 3, 6),

(3, 3, 7), (3, 3, 8), (3, 3, 9), (3, 3, 12), (3, 3, 15), (3, 4, 4), (3, 4, 6), (3, 4, 12),

(3, 5, 5), (3, 6, 6), (3, 6, 18), (3, 8, 8), (3, 8, 24), (3, 10, 30), (3, 12, 12), (4, 4, 4),

(4, 4, 5), (4, 4, 6), (4, 4, 9), (4, 5, 5), (4, 6, 6), (4, 8, 8), (4, 16, 16), (5, 5, 5),

(5, 5, 10), (5, 5, 15), (5, 10, 10), (6, 6, 6), (6, 12, 12), (6, 24, .24), (7, 7, 7),

(8, 8, 8), (9, 9, 9), (9, 18, 18), (12, 12, 12), (15, 15, 15).

All the above asserts the following simple fact.

Lemma 2.1. If p ≥ 3 is a prime integer, then ∆(4, 2p, 4p) is maximal and non-arithmetic.
In particular, Comm(∆(4, 2p, 4p)) = ∆(4, 2p, 4p) and, if there is a finite index subgroup
Γ of ∆(4, 2p, 4p) and there is some γ ∈ Aut(H) so that γΓγ−1 ∈ ∆(4, 2p, 4p), then
γ ∈ ∆(4, 2p, 4p).

Proof. It follows from the above lists that ∆:=∆(4, 2p, 4p) is maximal and non-arithmetic
one. The non-arithmetic property asserts that Comm(∆) is a Fuchsian triangular group
containing ∆; and by the maximal property, it must then follows the equality. Now, let Γ
be a finite index subgroup of ∆ and let γ ∈ Aut(H) so that γΓγ−1 ∈ ∆. As γΓγ−1 is a
finite index subgroup of γ∆γ−1 and also of ∆, and γΓγ−1 < ∆ ∩ γ∆γ−1, it follows that
γ ∈ Comm(∆) = ∆.
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3 Regular dessin d’enfants with field of moduli Q( p
√
2)

Let p ≥ 3 be a prime integer and let us consider the elliptic curve

C0 : y2 = x(x− 1)
(
x− p
√

2
)
.

It is well known that the field of moduli of C0 is Q
(
j
(

p
√

2
))

= Q
(

p
√

2
)
, where j is

the elliptic modular function

j(λ) = (1− λ+ λ2)3/λ2(1− λ)2.

On C0 we consider the Belyi map

β(x, y) = xp(2− xp).

The dessin d’enfant (C0, β) has signature (4, 2p, 4p), which is, by Lemma 2.1, maximal
and non-arithmetic. This dessin d’enfant is non-uniform, in particular, it is non-regular (see
Figure 1).
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Figure 1: The dessin d’enfant (C0, β)

The monodromy of the dessin (C0, β) is

ω0 : ∆ = 〈x, y : y4 = x2p = (xy)4p = 1〉 → S4p,

ω0(x) = (1, 2, . . . , p, 2p+ 1, 2p+ 2, . . . , 3p)(p+ 1, 3p+ 1),

ω0(y)

||

(2, p+ 2)(3, p+ 3) · · · (p, 2p)(2p+ 2, 3p+ 2)(2p+ 3, 3p+ 3) · · · (3p, 4p)
(1, 3p+ 1, 2p+ 1, p+ 1),

and the dessin d’enfant corresponds to the ∆-conjugacy class of the subgroup

F0 = ω−1
0

(
Stabω0(∆)(1)

)
.

Let us set Γ0 = ker(ω0).
Next we list some properties of ω0, the first three of them are immediate from its defi-

nition.
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Lemma 3.1.

1. ω0(x)p = (1, 2p+ 1)(2, 2p+ 2) · · · (p+ 1, 3p+ 1).

2. ω0(y)2 = (1, 2p+ 1)(p+ 1, 3p+ 1).

3. ω0(xy) has order 4p.

4. ω0(∆) is a group of order 22pp2.

5.
p−1∏
j=0

x−j
(
xpy2

)
xj ∈ Γ0.

Proof. Parts (1), (2) and (3) are direct to see from the definition of ω0. Part (4) it is a little
more difficult to see, but as we do not need it in the rest, we leave it to the reader. To check
part (5) we only need to observe the following equalities:

ω0(x)pω0(y)2 = (2, 2p+ 2) · · · (p, 3p),

ω0(x)−1
(
ω0(x)pω0(y)2

)
ω0(x) = (1, 2p+ 1)(3, 2p+ 3) · · · (p, 3p),

ω0(x)−2
(
ω0(x)pω0(y)2

)
ω0(x)2 = (1, 2p+ 1)(2, 2p+ 2)(4, 2p+ 4) · · · (p, 3p),

...

ω0(x)−(p−1)
(
ω0(x)pω0(y)2

)
ω0(x)p−1 = (1, 2p+ 1)(2, 2p+ 2) · · · (p− 1, 3p− 1).

The normal subgroup Γ0 corresponds to a regular dessin d’enfant (C̃0, β̃0) with signa-
ture (4, 2p, 4p). As the previous signature is maximal (by Lemma 2.1), we have that

deck(β̃0) = Aut(C̃0) ∼= ω0(∆).

Also, as a consequence of the Riemann-Hurwitz formula, the genus of C̃0 is

gp = 1 + 3× 22p−3p(p− 1).

The Galois orbit of (C0, β) is given by the p dessins d’enfants (see Figure 2)

(Ck, β); k = 0, 1, . . . , p− 1,

where
Ck : y2 = x(x− 1)

(
x− ρkp

p
√

2
)
, ρp = e2πi/p,

whose monodromy ωk : ∆→ S4p is defined by

ωk(x)

||

(1, 2, . . . , k + 1, 2p+ k + 2, . . . , 3p, 2p+ 1, 2p+ 2, . . . , 2p+ k + 1, k + 2, . . . , p)

(p+ k + 1, 3p+ k + 1),
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and
ωk(y)

||

(2, p+ 2)(3, p+ 3) · · · (p, 2p)(2p+ 2, 3p+ 2)(2p+ 3, 3p+ 3) · · · (3p, 4p)
(1, 3p+ 1, 2p+ 1, p+ 1),

and the dessin d’enfant corresponds to the ∆-conjugacy class of the subgroup

Fk = ω−1
k

(
Stabωk(∆)(1)

)
.
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Figure 2: The dessin d’enfant (Ck, β)

The normal subgroup Γk = ker(ωk) corresponds to a regular dessin d’enfant (C̃k, β̃k)
with signature (4, 2p, 4p). Again, by maximality of the signature,

deck(β̃k) = Aut(C̃k) ∼= ωk(∆) ∼= ω0(∆).

Theorem 3.2. The field of moduli of (C̃0, β̃0) is Q
(

p
√

2
)
.

Proof. As the regular dessin d’enfant (C̃k, β̃k) is the normalization of the dessin d’enfant
(Ck, β), we see that the Galois orbit of (C̃0, β̃0) is given by the following p dessins
d’enfants

(C̃k, β̃k); k = 0, 1, . . . , p− 1.

It follows that the field of moduli of (C̃0, β̃0) is a subfield of Q
(

p
√

2
)
. As Q

(
p
√

2
)

is
an extension of degree p (a prime integer) of Q, in order to see that the field of moduli is
exactly Q( p

√
2) we only need to check that Γ0 and Γ1 are not conjugated in Aut(H). As Γ0

is a finite index subgroup of the maximal and non-arithmetic group ∆(4, 2p, 4p), it follows,
from Lemma 2.1, that we only need to check that Γ0 6= Γ1. This last can be noted by part
(5) of Lemma 3.1 and the fact that

∏p−1
j=0 x

−j (xpy2
)
xj /∈ Γ1; since

p−1∏
j=0

ω1(x)−j
(
ω1(x)pω1(y)2

)
ω1(x)j = (p+ 1, 3p+ 1)(p+ 2, 3p+ 2).

This last can be checked by observing that

ω0(x)p = ω1(x)p(p+ 1, 3p+ 1)(p+ 2, 3p+ 2),
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ω1(y)2 = ω0(y)2,

ω1(x)pω1(y)2 =
(
ω0(x)pω0(y)2

)
(p+ 1, 3p+ 1)(p+ 2, 3p+ 2),

and, for j = 1, . . . , p− 1,

ω1(x)−j
(
ω1(x)pω1(y)2

)
ω1(x)j

||
ω0(x)−j

(
ω0(x)pω0(y)2

)
ω0(x)j(p+ 1, 3p+ 1)(p+ 2, 3p+ 2).
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