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Abstract

A tessellation of the plane is face-homogeneous if for some integer k ≥ 3 there exists
a cyclic sequence σ = [p0, p1, . . . , pk−1] of integers ≥ 3 such that, for every face f of
the tessellation, the valences of the vertices incident with f are given by the terms of σ in
either clockwise or counter-clockwise order. When a given cyclic sequence σ is realizable
in this way, it may determine a unique tessellation (up to isomorphism), in which case σ
is called monomorphic, or it may be the valence sequence of two or more non-isomorphic
tessellations (polymorphic). A tessellation whose faces are uniformly bounded in the hy-
perbolic plane but not uniformly bounded in the Euclidean plane is called a hyperbolic
tessellation. Such tessellations are well-known to have exponential growth. We seek the
face-homogeneous hyperbolic tessellation(s) of slowest growth rate and show that the least
growth rate of such monomorphic tessellations is the “golden mean,” γ = (1 +

√
5)/2,

attained by the sequences [4, 6, 14] and [3, 4, 7, 4]. A polymorphic sequence may yield
non-isomorphic tessellations with different growth rates. However, all such tessellations
found thus far grow at rates greater than γ.
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1 Introduction
It has long been known that there are finitely many homogeneous tessellations of the Eu-
clidean plane; they all have quadratic growth rate. However, in the hyperbolic plane, for
various definitions of “homogeneity,” infinitely many homogeneous tessellations are real-
izable, and their growth rate, if not quadratic, is always exponential. Presently we will
give a rigorous definition of growth rate, but for now one should think of this parameter
intuitively as the asymptotic rate at which additional tiles (or faces) accrue with respect
to some chosen center of a tessellation. In this schema, all Euclidean tessellations have
growth rate equal to 1, and hyperbolic tessellations have growth rate strictly greater than 1.
The first author has shown by construction in [5] that, given any ε > 0, there exists a hy-
perbolic tessellation with growth rate exactly 1 + ε. In general, these latter tessellations
have few if any combinatorial or geometric symmetries. The question then becomes one
of determining the growth rates of hyperbolic tessellations when some sort of homogeneity
is imposed. In particular, subject to a homogeneity constraint, how small can the gap be
between quadratic and exponential growth?

In a seminal work [8], Grünbaum and Shephard defined a graph to be edge-homogene-
ous with edge-symbol 〈p, q; k, `〉 if every edge is incident with vertices of valences p and
q and faces of covalences k and `. They proved that the parameters of an edge-symbol
uniquely determine an edge-homogeneous tessellation up to isomorphism.

The notion of homogeneity was extended by Moran [10]. She defined a tessellation to
be face-homogeneous with valence sequence [p0, . . . , pk−1] if every face is a k-gon incident
with vertices of valences p0, . . . , pk−1 in either clockwise or counter-clockwise consecutive
order. Unfortunately, no uniqueness property analogous to the Grünbaum-Shephard result
holds in general for face-homogeneous tessellations.

Moran’s work on growth rates of face-homogeneous tessellations led the authors (to-
gether with T. Pisanski) to return to edge-homogeneous tessellations and conclusively de-
termine their growth rates. In [6] they determined the growth rate of any edge-homogeneous
tessellation as a function of its edge-symbol and proved that the least growth rate for an
exponentially-growing, edge-homogeneous tessellation is 1

2 (3 +
√

5) ≈ 2.618.
The goal of this article is to obtain an analogous result for face-homogeneous tessella-

tions. Our main result is that if a face-homogeneous tessellation with exponential growth
rate is determined up to isomorphism by its valence sequence, then its growth rate is at
least 1

2 (1 +
√

5), namely the “golden mean.” Moreover, we determine exactly the valence
sequences for which this golden mean is realized. A significant by-product of our inves-
tigation is an abundance of machinery for computing the growth rates of many classes of
face-homogeneous planar tessellations.

Section 2 consists of six subsections. Following some general definitions concerning in-
finite graphs in the plane, we present (Subsection 2.2) a system for labeling sets of vertices
and sets of faces of a tessellation; such a labeling is called a “Bilinski diagram.” Subsec-
tion 2.3 presents the notion of face-homogeneity and associated notation. Polynomial and
exponential growth, defined on the one hand with respect to the standard graph-theoretic
metric, and on the other hand with respect to the notion of angle excess, appear in Sub-
section 2.4. Subsection 2.5 presents a rigorous theoretical treatment of growth rate with
respect to regional distance in a Bilinski diagram. Subsection 2.6 concludes the Prelimi-
naries with a review of the completely resolved case of edge-homogeneous tessellations,
summarizing results from [8] and [6].

In Subsection 3.1 we lay out our method for filling in the formulas obtained in Sub-
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section 2.5 while introducing the notion of a transition matrix. Analogous to a Markov
process, this matrix encodes for given n ≥ 1 how many faces of each possible configu-
ration are “begotten” at regional distance n + 1 from the root of a Bilinski diagram by a
face at regional distance n from the root. The maximum modulus of the eigenvalues of the
transition matrix are key to the growth rate of T .

Subsection 3.2 applies the machinery of Subsection 3.1 to the significant class of va-
lence sequences that are monomorphic, i.e., that are uniquely realizable as a face-homoge-
neous tessellation and whose Bilinski diagrams are in a certain sense well-behaved, called
uniformly concentric. It is shown in Theorem 3.7 that for such valence sequences, the
partial order defined in Subsection 2.3 is preserved by their growth rates. The six classes
of monomorphic sequences of lengths 3, 4, and 5 whose Bilinski diagrams are not uni-
formly concentric are identified in Subsection 3.3, where it is proved that they are in-
deed monomorphic. The exhaustive proof that this list is complete is contained in the
Appendix [7]. Finally, we present in Subsection 3.4 the main result of the paper, that the
least growth rate of a face-homogeneous tessellation with monomorphic valence sequence
is the golden mean 1

2 (1 +
√

5).
Those valence sequences (described as polymorphic) which admit multiple non-isomor-

phic tessellations are alive and well in Subsection 4.1. A general sufficient condition for
polymorphism is given. The difficulties posed by polymorphism are illustrated by an ex-
ample; the polymorphic sequence [4, 4, 6, 8] is considered in some depth in Subsection 4.2.
In particular, we see by this example that two different tessellations having the same (poly-
morphic) valence sequence may well have different growth rates. We conclude the chapter
with some conjectures in Subsection 4.3.

The appendix [7] alluded to above is to be found with this article on the arXiv, at
arXiv:1707.03443. All references therein are to results in the present paper. Due to
the considerable length (and tedium!) of the appendix, it will not appear in Ars Mathemat-
ica Contemporanea with this article.

2 Preliminaries
2.1 Tessellations

For a graph Γ, the symbol V (Γ) denotes the vertex set of Γ. If M is a planar embedding of
Γ, we call M a plane map and denote by F (M) the set of faces of M .

A graph Γ is infinite if its vertex set V (Γ) is infinite; Γ is locally finite if every vertex has
finite valence. A graph is 3-connected if there is no set of fewer than three vertices whose
removal disconnects the graph. It is well known that if the underlying graph Γ of a plane
map M is 3-connected (as is generally the case in this work), then every automorphism of
Γ induces a permutation of F (M) that preserves face-vertex incidence and can be extended
to a homeomorphism of the plane. Thus we tend to abuse language and speak of “the faces
of Γ.” When a plane map is 3-connected, every edge is incident with exactly two distinct
faces. In this case, the number of edges (and hence of vertices) incident with a given face
is its covalence. A map is locally cofinite if the covalence of every face is finite.

An accumulation point of an infinite plane map M is a point x in the plane such that
every open disk of positive radius (in either the Euclidean or hyperbolic metric) containing
x intersects infinitely many map objects, be they faces, edges, or vertices. A map is 1-ended
when the deletion of any finite submap leaves exactly one infinite component.

Definition 2.1. A tessellation is an infinite plane map that is 3-connected, locally finite,
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locally cofinite, 1-ended, and also admits no accumulation point.

In the terminology of Grünbaum and Shepherd’s exhaustive work [9] on tilings of the
plane, a tessellation T is normal if there is an embedding of T in the plane and radii
0 < r < R under a specific metric such that the boundary of each face lies within some
annulus with inner radius r and outer radius R. A Euclidean tessellation is a tessellation
that is normal with respect to the Euclidean metric, and a hyperbolic tessellation is one that
is normal with respect to the hyperbolic metric but not with respect the Euclidean metric.

2.2 Bilinski diagrams

A very useful tool for computing “growth rate” is what we have called a Bilinski diagram,
because these diagrams were first used by Stanko Bilinski in his dissertation [1, 2].

Definition 2.2. Let M be a map that is rooted at some vertex x. Define a sequence of sets
{Un : n ≥ 0} of vertices and a sequence of sets {Fn : n ≥ 0} of faces of M inductively as
follows.

• Let U0 = {x} and let F0 = ∅.
• For n ≥ 1, let Fn denote the set of faces of M not in Fn−1 that are incident with

some vertex in Un−1.

• For n ≥ 1, let Un denote the set of vertices of M not in Un−1 that are incident with
some face in Fn.

The stratification ofM determined by the set-sequences {Un} and {Fn} is called the Bilin-
ski diagram of M rooted at x. In a similar way one can define a Bilinski diagram of M
rooted at a face f . In this case U0 = ∅ and F0 = {f}. Given a Bilinski diagram of T , the
induced submap 〈Fn〉 of T is its nth corona.

A Bilinski diagram is concentric if each subgraph 〈Un〉 induced by Un (n ≥ 1) is a
cycle; otherwise the Bilinski diagram is non-concentric. If a plane map yields a concentric
Bilinski diagram regardless of which vertex or face is designated as its root, then the map
is uniformly concentric; analogously a map which for every designated root yields a non-
concentric Bilinski diagram is uniformly non-concentric.

To answer the question as to which tessellations are uniformly concentric we state a
sufficient condition and a necessary condition. Let Ga,b denote the class of tessellations all
of whose vertices have valence at least a and all of whose faces have covalence at least b.
Let Ga+,b be the subclass of Ga,b of tessellations with no adjacent a-valent vertices.

Proposition 2.3 ([3, Corollary 4.2], [11, Theorem 3.2]). Every tessellation T ∈ G3,6 ∪
G3+,5 ∪ G4,4 is uniformly concentric, and in every Bilinski diagram of T , for all n ≥ 1,
every face in Fn is incident with at most two edges in 〈Un−1〉.

Proposition 2.4 ([3, Theorem 5.1]). If an infinite planar map admits any of the following
configurations, then the map is not uniformly concentric:

1. a 3-valent vertex incident with a 3-covalent face;

2. a 4-valent vertex incident with two nonadjacent 3-covalent faces;

3. a 4-covalent face incident with two nonadjacent 3-valent vertices;

4. an edge incident with two 3-valent vertices and two 4-covalent faces;

5. an edge incident with two 4-valent vertices and two 3-covalent faces.
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2.3 Face-homogeneity and realizability

Let k ≥ 3 be an integer and let an equivalence relation be defined on the set of ordered
k-tuples (p0, p1, . . . , pk−1) of positive integers whereby

• (p0, p1, . . . , pk−1) ≡ (p1, p2, . . . , pk−1, p0), and

• (p0, p1, . . . , pk−1) ≡ (pk−1, pk−2, . . . , p0).

The equivalence class of which (p0, . . . , pk−1) is a member is the cyclic sequence
[p0, . . . , pk−1], and k is its length. There is a natural partial order ≤ on the set of cyclic
sequences:

[p0, . . . , pk−1] ≤ [q0, . . . , q`−1]

if and only if k ≤ ` and there exists a cyclic subsequence qi0 , qi1 , . . . , qik−1
occurring in

either order in [q0, q1, . . . , q`−1] such that pj ≤ qij for each j ∈ {0, . . . , k − 1}. We write
σ1 < σ2 if σ1 ≤ σ2 but σ1 6= σ2, where σ1 and σ2 are cyclic sequences.

Example 2.5. Let σ1 = [4, 6, 8, 10], σ2 = [6, 8, 12, 4], and σ3 = [10, 8, 12, 6, 4]. Then
σ1 < σ2 and σ1 < σ3, but σ2 and σ3 are not comparable.

Definition 2.6. Let σ = [p0, p1, . . . , pk−1] be a cyclic sequence of integers ≥ 3. Then σ
is the valence sequence of a k-covalent face f of a tessellation T if the valences of vertices
incident with f in clockwise or counter-clockwise order are p0, p1, . . . , pk−1. If every face
of T has the same valence sequence σ, then T is face-homogeneous and σ is the valence
sequence of T . Thus, to say briefly that a tessellation T has valence sequence σ implies
that T is face-homogeneous.

Definition 2.7. Let the cyclic sequnce σ be realizable as the valence sequence of a tessel-
lation. If every tessellation having valence sequence σ is uniformly concentric, then we say
that σ is uniformly concentric. Otherwise σ is non-concentric. If every tessellation having
valence sequence σ is non-concentric, then σ is uniformly non-concentric.

Notation. By convention, when distinct letters are used to represent terms in a cyclic se-
quence (e.g. [p, p, q, r, q]), the values corresponding to distinct letters are all presumed to
be distinct; that is, p 6= q 6= r 6= p. Moreover, if some term in the cyclic sequence is given
as an integer (usually 3 or 4), then the terms given by letters are presumed to be greater
than that integer. For example, if σ = [4, p, q], then we understand that p, q > 4 and p 6= q.
When using subscripts in the general form [p0, . . . , pk−1], we do not make this assumption.

Remark 2.8. Not all cyclic sequences are realizable as vertex sequences of face-homoge-
neous tessellations of the plane. For instance, the map with valence sequence [3, 3, 3] (the
tetrahedron) is a tessellation of the sphere but not of the plane. More importantly, there
are many cyclic sequences for which no face-homogeneous map exists at all. For instance,
the valence sequence [4, 5, 6, p] for any p ≥ 3 is not realizable, because in any such map
the valences of the neighbors of a 5-valent vertex in cyclic order would have to alternate
between 4 and 6. However, this does not generalize to all cyclic sequences containing a
subsequence [p, q, r] where q is odd and p 6= r; for instance, [5, 4, 5, 6, 5, 8] is realizable.

Conjecture 2.9. Suppose σ is the valence sequence of a face-homogeneous tessellation
and that σ contains [p, q, r] as a subsequence, with q odd and p 6= r. Then σ must contain
at least three terms equal to q.
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2.4 Polynomial versus exponential growth

Let x be a vertex of a connected graph Γ. For each nonnegative integer n, the ball of radius
n about x is the set of vertices of Γ at distance ≤ n from x, written

Bn(x) = {v ∈ V (Γ) : d(x, v) ≤ n}, (2.1)

where d(−,−) is the standard graph-theoretic metric, that is, d(u, v) is the length of a
shortest path with terminal vertices u and v.

Definition 2.10. An infinite, locally finite, connected graph Γ has exponential growth if
for some vertex x ∈ V (Γ) there exist real numbers α > 1 and C > 0 such that, for all
n > 0, one has |Bn(x)| > Cαn; otherwise Γ has subexponential growth. We say that Γ
has polynomial growth of degree d ∈ N if there exist positive constants C1 and C2 such
that C1n

d ≤ |Bn(x)| ≤ C2n
d for all but finitely many n.

For example, the graph underlying the square lattice in the plane has quadratic growth
(d = 2). If x is any vertex, then |Bn(x)| = 2n2 + 2n + 1 for all n ≥ 1, and one can set
C1 = 2 and C2 = 3.

Continuing the notation of Equation (2.1) and Definition 2.10, we consider the gener-
ating function

βx(z) =

∞∑
n=0

|Bn(x)| zn (2.2)

We denote the radius of convergence of βx(z) by RB and define the ball-growth rate of Γ
about x to be the reciprocal of RB .

If Γ has exponential growth, then we have

βx(z) ≥
∞∑
n=0

Cαnzn =
C

1− αz
, (2.3)

where α > 1 is the supremum of values for which the series of Equation (2.2) converges.
The convergence is absolute if and only if |z| < 1/α < 1. If Γ has polynomial growth of
degree d, then

C1

∞∑
n=0

ndzn ≤
∞∑
n=0

|Bn(x)| zn ≤ C2

∞∑
n=0

ndzn.

By the “ratio test,” the first and third series converge if and only if |z| < 1. These compu-
tations yield the following.

Proposition 2.11. Let RB denote the radius of convergence of the generating function of
Equation (2.2). Then RB < 1 if and only if Γ has exponential growth, and RB = 1 if and
only if Γ has polynomial growth. Moreover, RB is independent of the vertex x about which
|Bn(x)| is determined.

It will be seen in the next subsection (see Theorem 2.16) that the value of RB is inde-
pendent of the choice of the root vertex x.

It is well known (for example, see [9]) that there exist exactly eleven face-homogeneous
Euclidean tessellations, namely the Laves nets. Their valence sequences [p0, . . . , pk−1]
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correspond to integer solutions of the equation

k−1∑
i=0

1

pi
=
k − 2

2
.

A necessary condition for the existence of a face-homogeneous hyperbolic tessellation
with valence sequence [p0, . . . , pk−1] is that the inequality

k−1∑
i=0

1

pi
<
k − 2

2
(2.4)

hold. This condition is not sufficient, because as we have seen, not every such integer
solution of the inequality (2.4) is realizable as a valence sequence.

Definition 2.12. The angle excess of a cyclic sequence σ = [p0, . . . , pk−1] is given by

η(σ) =

(
k−1∑
i=0

pi − 2

pi

)
− 2.

Motivation for this definition comes from Descartes’ notion of angular defect in the
Euclidean plane. When η(σ) > 0, there are too many faces incident at a vertex for the
faces to be regular k-gons in the Euclidean plane.

Proposition 2.13. For a cyclic sequence σ = [p0, . . . , pk−1], inequality (2.4) is equivalent
to

η(σ) > 0 (2.5)

and is a necessary condition for σ to be a valence sequence of a face-homogeneous hyper-
bolic tessellation.

Angle excess provides a quick gauge of the growth behavior of a tessellation with va-
lence sequence σ. If η(σ) < 0, the tessellation is finite. If η(σ) = 0, the tessellation is one
of the Laves nets and has polynomial growth of degree 2. If η(σ) > 0, the tessellation has
exponential growth. Additionally, we have the following comparison result.

Proposition 2.14. Let σ1 and σ2 be cyclic sequences that are comparable in the partial
order. Then σ1 < σ2 if and only if η(σ1) < η(σ2).

Proof. Suppose that σ1 < σ2, where σ1 = [p0, . . . , pk−1] and σ2 = [q0, . . . , q`−1]. By
definition there exist qi0 , . . . , qik−1

with pj ≤ qij for all j = 0, . . . k − 1. So

η(σ1) =

k−1∑
j=0

pj − 2

pj
≤
k−1∑
j=0

qij − 2

qij
≤

`−1∑
i=0

qi − 2

qi
= η(σ2). (2.6)

If k = `, then pj < qij for some j and the first inequality in (2.6) is strict. If k < `, the
second inequality in (2.6) is strict. Since σ1 6= σ2, at least one such strict inequality must
hold.
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2.5 Growth formulas

In Definition 2.10, the standard graph-theoretical metric was used to define polynomial
and exponential growth of a connected graph. However, to measure growth rates of tes-
sellations, it is more convenient to use the notion of “regional distance;” we will count the
number of graph objects in the nth corona of a Bilinski diagram centered at a given vertex,
and our working definition of “growth rate” will be the following.

Definition 2.15. Let T be a tessellation labeled as a Bilinski diagram rooted at a vertex x.
Let R be the radius of convergence of the power series

ϕx(z) =

∞∑
i=1

|Fi|zi. (2.7)

When 0 < R <∞, we define the growth rate of T (with respect to x) to be γ(T ) = 1/R.

Although it was shown in [6] (see pages 3–4) that, for any connected planar map with
bounded covalences, the above definition of growth rate is equivalent to the growth rate
with respect to the standard graph-theoretic metric, we need to show that said growth rate
is independent of the root of the Bilinski diagram in question.

Theorem 2.16. The growth rate γ(T ) of a face-homogeneous tessellation T computed by
means of a Bilinski diagram is invariant under the choice of the root of the diagram.

Proof. Choose an arbitrary vertex x of T and consider a Bilinski diagram rooted at x. Re-
call that the sequences {Un(x) : 0 ≤ n ∈ Z} and {Fn(x) : 1 ≤ n ∈ Z} constitute the con-
ventional labeling of T as a Bilinski diagram with root vertex x. As T is face-homogeneous,
all faces are k-covalent for some k ≥ 3. Hence for any n ≥ 1 and any vertex v ∈ Un+1(x)
there exists a vertex u ∈ Un such that d(u, v) ≤

⌊
k
2

⌋
. By induction on n, we obtain

d(x, v) ≤ (n+ 1)
⌊
k
2

⌋
, yielding

n⋃
i=0

Ui(x) ⊆ Bnbk/2c(x) (2.8)

and similarly,

Bn(x) ⊆
n⋃
i=0

Ui(x). (2.9)

In addition to the power series ϕx(z) of Definition 2.15 with radius of convergenceRF , we
require the power series υx(z) =

∑
|Un(x)| zn with radius of convergence RU . Writing

Υx(z) =
υx(z)

1− z
=

∞∑
n=0

(
n∑
i=0

|Ui(x)|

)
zn =

∞∑
n=0

∣∣∣∣∣
n⋃
i=0

Ui(x)

∣∣∣∣∣ zn,
we have that the radius of convergence of Υx(z) equals min {RU , 1} ≤ RB by Equa-
tion (2.8) (where RB is as in Proposition 2.11). But similarly by Equation (2.9) we have
that RB ≤ min {RU , 1}. Hence the radii of convergence of Υx(z) and βx(z) are equal,
for any choice of root vertex x.
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If p is the maximum valence of the vertices in T , each vertex is also incident with at
most p faces, while each face is incident with k vertices, giving

|Un(x)| ≤ k |Fn+1(x)| ≤ pk |Un+1(x)|

for each n ≥ 0, or equivalently,

1

k
|Un(x)| ≤ |Fn+1(x)| ≤ p |Un+1(x)| .

Hence the radii of convergence of υx(z) and ϕx(z) are equal, and more importantly, RF =
RB ; that is, the rate of ball-growth equals the rate of growth when the Bilinski diagram is
labeled from a vertex x.

Finally, it follows from Proposition 2.11 that ball-growth rates computed about distinct
vertices are asymptotically equal in locally finite, connected, infinite graphs. Hence the
radii of convergence of ϕx(z), βx(z), βy(z), and ϕy(z) are equal for all x, y ∈ V . That is
to say, the growth rate of the graph is independent of the choice of root vertex.

Notation. The subscript on the symbol ϕ of Definition 2.15 has now been shown to be
superfluous and will henceforth be suppressed.

Consider the function τ : N0 → N0, (where N0 = {0, 1, 2, . . .}) given by

τ(n) =

n∑
i=1

|Fi|.

The quantity

lim
n→∞

τ(n+ 1)

τ(n)
(2.10)

was the definition of the growth rate of a face-homogeneous tessellation used by Moran [10]
provided that this limit exists, in which case she called the tessellation balanced. Moran’s

limit fails to converge only when there exist subsequences of the sequence
{
τ(n+1)
τ(n)

}∞
n=1

with distinct limits.
The following proposition shows that the parameters of a face-homogeneous tessella-

tion determine an upper bound for the limit in Equation (2.10).

Theorem 2.17. Let T be a face-homogeneous tessellation with valence sequence
[p0, . . . , pk−1], labeled as a Bilinski diagram. Then

lim sup
n→∞

τ(n+ 1)

τ(n)
≤ 1 +

k−1∑
i=0

pi − 2k <∞.

Proof. By hypothesis, each face of the tessellation shares an incident vertex with exactly

k−1∑
i=0

(pi − 2) =

k−1∑
i=0

pi − 2k

other faces. So for n > 0,

|Fn+1| ≤ |Fn|

(
k−1∑
i=0

pi − 2k

)
,
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which in turn gives that for all n > 0,

τ(n+ 1)

τ(n)
≤ 1 +

|Fn|∑n
i=0 |Fi|

(
k−1∑
i=0

pi − 2k

)

≤ 1 +

k−1∑
i=0

pi − 2k <∞,

since T is locally finite.

By the “ratio test” of elementary calculus, the above proof implies that in the case of
a “balanced” tessellation, Moran’s definition of growth rate concurs with Definition 2.15,
and

1

R
= lim sup

n→∞

τ(n+ 1)

τ(n)
= lim
n→∞

τ(n+ 1)

τ(n)
.

The definition of growth rate in terms of the radius of convergence of a power series
also allows us to prove the following result, which is essential in many comparisons of
growth rates of various tessellations.

Lemma 2.18 (Comparison Lemma). Let T1 and T2 be tessellations, and for i = 1, 2 let
|Fi,n| be the number of faces in the nth corona of a Bilinski diagram of Ti. Suppose that
for some N ∈ N, we have |F1,n| ≤ |F2,n| for all n ≥ N . Then γ(T1) ≤ γ(T2).

Proof. Let

φ1(z) =

∞∑
n=0

|F1,n|zn, φ2(z) =

∞∑
n=0

|F2,n|zn,

and for i ∈ {1, 2}, let Ri be the radius of convergence of φi(z) about 0. Then since
|F1,n| ≤ |F2,n| for sufficiently large n, and

lim sup
n→∞

n

√
|Fi,n| =

1

Ri
= γ(Ti),

we have γ(T1) ≤ γ(T2).

2.6 The edge-homogeneous case

We conclude our presentation of preliminary material with a quick review of what is known
about growth rates of edge-homogeneous tessellations, as this case has been completely
resolved and its consequences turn out to be useful here and there in attacking the present
problem. The point of departure here is the following classification theorem of Grünbaum
and Shephard. (Edge-symbols were defined in Section 1.)

Proposition 2.19 ([8, Theorem 1]). Let p, q, k, ` ≥ 3 be integers. There exists an edge-
homogeneous, 3-connected, finite or 1-ended map with edge-symbol 〈p, q; k, `〉 if and only
if exactly one of the following holds:

1. all of p, q, k, ` are even;

2. k = ` is even and at least one of p, q is odd;

3. p = q is even and at least one of k, ` is odd;
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4. p = q, k = `, and all are odd.

Such a tessellation is edge-transitive, and the parameters p, q, k, ` determine the tessel-
lation uniquely up to homeomorphism of the plane. If p = q, then the tessellation is
vertex-transitive. If k = `, then it is face-transitive.

Following up on the Grünbaum-Shephard result, the authors together with T. Pisanski
completely determined the growth rates of all edge-homogeneous tessellations. Their main
result is the following.

Proposition 2.20 ([6, Theorem 4.1]). Let the function

g : {t ∈ N : t ≥ 4} → [1,∞)

be given by

g(t) =
1

2

(
t− 2 +

√
(t− 2)2 − 4

)
. (2.11)

Let T be an edge-homogeneous tessellation with edge-symbol 〈p, q; k, `〉, and let

t =

(
p+ q

2
− 2

)(
k + `

2
− 2

)
. (2.12)

Then exactly one of the following holds:

1. the growth rate of T is γ(T ) = g(t); or

2. the edge-symbol of T or its planar dual is 〈3, p; 4, 4〉 with p ≥ 6, and the growth rate
of T is γ(T ) = g(t− 1).

Observe that each value of t ≥ 4 corresponds to only finitely many edge-homogeneous
tessellations and that pairs of planar duals correspond to the same value of t. As the growth
rates of edge-homogeneous tessellations are determined by an increasing function in one
variable, the following is immediate.

Corollary 2.21. The least growth rate of an edge-homogeneous hyperbolic tessellation is
(3 +

√
5)/2. This value is attained only by the tessellations with edge-symbols 〈3, 3; 7, 7〉,

〈4, 4; 4, 5〉, 〈3, 7; 4, 4〉, and their planar duals.

Remark 2.22. It is evident from Proposition 2.19 that if a tessellation is both edge- and
face-homogeneous, then its edge-symbol and valence sequence have, respectively, either
the forms 〈p, p; k, k〉 and [p, p, . . . , p] or the forms 〈p, q; k, k〉 and [p, q, . . . , p, q], the latter
pair being possible only when k is even.

We mention that, by an argument similar to the proof of Theorem 2.17, one easily
obtains the following upper bound for the growth rate of an edge-homogeneous tessellation.

Proposition 2.23. Let T be an edge-homogeneous tessellation with edge-symbol 〈p, q; k, `〉.
Then for any labeling of T as a Bilinski diagram, one has

lim
n→∞

τ(n+ 1)

τ(n)
≤ 1 + max{pk, qk, p`, q`}.
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3 Accretion and monomorphic valence sequences
3.1 Accretion

Given an arbitrary face-homogeneous tessellation T with valence sequence
σ = [p0, p1, . . . , pk−1], we wish to apply Definition 2.15 to determine its growth rate. Let-
ting T be labeled as a Bilinski diagram, we require a means to evaluate |Fn| for all n ∈ N.
This is done inductively; each face f ∈ Fn “begets” a certain number of facial “offspring”
in Fn+1, and that number is determined by the configuration of f within 〈Fn〉, that is, what
the valences are of the vertices incident with f (in the rotational order of σ) that belong,
respectively, to Un−1 and more importantly to Un.

A class of identically configured faces (in any corona) is a face type, and is denoted by
fi for some range of i = 1, . . . , r. The benefit of using face types is that we can define an r-
dimensional column vector ~vn, called the nth distribution vector, which lists the frequency
with which each face type occurs in the nth corona. Thus, if ~j is the r-dimensional vector
of 1s, then |Fn| = ~j · ~vn via the standard dot product.

Figure 1 depicts a face f ∈ Fn of some tessellation and the faces in Fn+1 which are
determined by the face type of f . These faces are called the offspring of f , and the figure
is accordingly called the offspring diagram for f . As the vertex labeled pj is incident with

Un Un+1

pj

pk

f

f ′

f ′′

A

B

Figure 1: A face f in Fn of a tessellation T , along with the offspring of f in Fn+1.

both faces f and f ′ ∈ Fn, one-half of those faces in Fn+1 labeled as A in the figure count
as offspring of f , and one-half are counted as offspring of f ′. Similarly, half of the faces
labeled by B count as offspring of f and half as offspring of f ′′. All those faces between
labels A and B in Figure 1 are wholly offspring of f . Those faces which are offspring of
f , or offspring of offspring of f , and so on, are called collectively descendants of f .

Definition 3.1. With respect to the labeling of a Bilinski diagram, each vertex incident
with a face f ∈ Fn lies in Un−1 or Un. The pattern of valences of vertices in Un−1 and in
Un determines the face type of f . The three face types occurring most routinely are called
wedges, bricks, and notched bricks. A face f in Fn is a wedge if it is incident with exactly
one vertex in Un−1. The face f is a brick if it incident with exactly two adjacent vertices in
Un−1 and at least two vertices in Un. Finally, f is a notched brick if it is incident with three
consecutive vertices of Un−1, of which the middle vertex is 3-valent, and f is incident with
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two or more vertices in Un. For a given labeling of a tessellation T as a Bilinski diagram,
the face types of T are indexed f1, . . . , fr for some r ∈ N; we explain the method by which
indices are assigned after the statement of Theorem 3.7.

An algorithm by which one can describe the faces, corona by corona, of a tessellation
labeled as a Bilinski diagram is called an accretion rule. Often some homogeneous system
of recurrence relations determines such an accretion rule. In this case, the nth distribution
vector ~vn defined above has the property that the jth component of ~vn is the number of faces
of type fj in the nth corona. We then encode the system of recurrences into a transition
matrix M such that ~vn+1 = M~vn holds for all n ≥ 1. When M = [mi,j ] is such a matrix,
the entry mi,j is the number of faces of type fj that are offspring of a face of type fi. We
require the following result from [6].

Proposition 3.2 ([6, Theorem 3.1]). Let T be a tessellation labeled as a Bilinski diagram
with accretion rule specified by the transition matrix M and first distribution vector ~v1.
Then the ordinary generating function for the sequence {|Fn|}∞n=1 is

ϕ(z) = |F0|+ z
(
~j · (I − zM)−1~v1

)
, (3.1)

where I is the identity matrix and ~j is the vector of 1s.

By using Definition 2.15, we can prove the following more directly than we did in
Theorem 3.4 of [6].

Theorem 3.3. If M is the transition matrix of a tessellation T and Λ is the maximum
modulus of an eigenvalue of M , then γ(T ) = Λ.

Proof. We can write the generating function ϕ(z) of Proposition 3.2 as a rational function
u(z)/v(z), with v(z) determined entirely by (I − zM)−1. Specifically, using Cramer’s
rule where r denotes the order of M , we have

(I − zM)−1 =
1

det(I − zM)
adj(I − zM)

=
1

(−z)r det(M − 1
z I)

adj(I − zM)

=
1

(−z)rχ( 1
z )

adj(I − zM)

(3.2)

where χ( 1
z ) is the characteristic polynomial (in 1

z ) ofM . Entries of the adjoint adj(I−zM)
are polynomials in z of degree at most r − 1, and so v(z) = (−z)rχ( 1

z ). As χ( 1
z ) is a

polynomial in 1
z of degree exactly r, v(z) has a nonzero constant term and the roots of v

occur precisely at the roots of χ( 1
z ). These are precisely the reciprocals of the eigenvalues

of M . Thus the minimum modulus of a pole of ϕ(z) is 1/Λ. As this is the definition of the
radius of convergence of a power series expanded about 0, we have γ(T ) = Λ.

3.2 Monomorphic, uniformly concentric sequences

As we have already remarked, valence sequences of face-homogeneous tessellations are
unlike edge-symbols of edge-homogeneous tessellations in two significant ways: (i) the
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requirements for realizability of an edge-symbol are simpler and less stringent than the
realizability criteria for a cyclic sequence, and (ii) two or more non-isomorphic face-
homogeneous tessellations may share a common valence sequence. This latter property
motivates the following definition.

Definition 3.4. Let σ be a cyclic sequence. If there exists (up to isomorphism) a unique
face-homogeneous tessellation with valence sequence σ, then we say that σ is monomor-
phic. If there exist at least two (non-isomorphic) tessellations with valence sequence σ,
then σ is polymorphic.

Proposition 3.5 (Moran [10]). All realizable cyclic sequences of length 3 are monomor-
phic.

A second property of interest is whether a given valence sequence is uniformly concen-
tric. These two properties thus yield four classes of valence sequences. Not surprisingly,
the class most amenable to an elegant and simple accretion rule consists of those that are
both monomorphic and uniformly concentric.

One can find in [13] a complete classification of cyclic sequences of length k for
3 ≤ k ≤ 5 in terms of Definition 3.4 which will help us to narrow our investigation.
(It is actually the equivalent dual problem that is treated in [13], and the term “covalence
sequence” is used. In the present work we have opted to follow Moran [10], speaking rather
in terms of “valence sequences.”)

We now turn to considering the relative growth rates of tessellations with monomor-
phic valence sequences. The ideal condition would be to have that the partial order on
cycic sequences is mirrored by the natural order on growth rates: that is, if T1 and T2 are
tessellations with valence sequences σ1 ≤ σ2, then γ(T1) ≤ γ(T2). For monomorphic,
uniformly concentric valence sequences, this is precisely the case, as stated below in The-
orem 3.7. In order to prove the theorem, we now demonstrate the necessary machinery via
the following example, which can be readily generalized.

Example 3.6. Consider T1 and T2 to be face-homogeneous tessellations with monomor-
phic valence sequences σ1 = [4, 5, 4, 5] and σ2 = [4, 6, 6, 4, 5], respectively, both labeled
as face-rooted Bilinski diagrams. Note that σ1 < σ2. We continue the convention that
Fi,n denotes the set of faces of the nth corona of Ti for i = 1, 2. (The reader may follow
Figures 2 through 7.) Starting with T1, we construct by induction a sequence {T ′j : j ∈ N}
of tessellations such that:

1. T ′0 = T1 as a base for the induction,

2. if we denote by F ′j,n the set of faces in the nth corona of T ′j , then for each j ∈ N, the
unions of the first n coronas of T ′j satisfy〈

j⋃
n=1

F ′j,n

〉
∼=

〈
j⋃

n=1

F2,n

〉

as induced subgraphs, and

3. |F1,n| ≤
∣∣F ′j,n∣∣ for all n ∈ N.

To construct T ′1 from T ′0, the valence sequence of the root face of T ′0 must change from σ1
to σ2. To do so, we augment the valence of a 5-valent vertex v ∈ U1 to 6-valent and then
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Figure 2: The first three coronas of T1.

Figure 3: The first three coronas of T ′1. The dark gray region is a subgraph inserted by
augmentation of the valence of a vertex from 5 to 6; the light gray region is a subgraph
inserted while interpolating a 6-valent vertex along an incident edge. These insertions
continue throughout all coronas of T ′1.
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subdivide an edge of 〈U1〉 incident with v by inserting a 6-valent vertex. Augmentation
and interpolation are both performed via the insertion of an infinite “cone” as follows.
We choose a sequence of edges e2, e3, e4, . . ., with ei ∈ 〈Ui〉, such that e2 and v are
incident with a common face in F1, and for each i ≥ 2, ei and ei+1 are incident with a
common face in Fi. On each of these edges we interpolate vertices, and we insert edges
connecting vertices between Ui and Ui+1 ensuring that every face so created has covalence
5. Furthermore, if a created face is incident only with interpolated vertices, then its valence
sequence is σ2. This insertion is well-defined precisely because σ2 is monomorphic, i.e.,
the vertices and edges may be inserted in exactly one way.

The resulting tessellation after the procedure just described is denoted by T ′1. Faces
of T ′1 fall into three classes: first, there are faces which have valence sequence σ1 and in
T ′0 were not incident with any part of the inserted cone; second, there are those faces with
valence sequence σ2 that have been inserted; finally, there are faces which are incident with
newly inserted edges but which have neither valence sequence σ1 nor σ2. A face f in this
third class has covalence equal to the length of σ2, but some vertices incident with f have
valences from σ1. These faces may occur in all coronas outward from the first corona.

4 4 4 4 4 4 4 4 4 45 5 5 56 6 6 6 6 6 6 6 6 6 6 6 6

↑
5 4

4 5 4 6 4 5 4

6

Figure 4: An expanded view of the subgraph inserted when increasing the valence of a
5-valent vertex to 6-valent. Note that the 5-valent vertex in the upper left, marked by the
arrow, is disrupting the valence sequence of the white face with which it is incident; if the
marked vertex were 6-valent, that face would have valence sequence σ2 = [4, 6, 6, 4, 5].

We compare now the tessellations T1, T ′1, and T2. In each case, the 0th corona contains
only the root face. So from our construction,

|F1,0| =
∣∣F ′1,0∣∣ = |F2,0| , and for all n ∈ N0, |F1,n| ≤

∣∣F ′1,n∣∣ ,
as we have inserted faces into every corona outward from the first.

We construct T ′2 from T ′1 just as we created T ′1 from T ′0 = T1; there is, however, one
additional type of interpolation which may occur. Specifically, a vertex must be interpolated
in an edge incident with two adjacent faces in F ′1,1. In Figure 6, an example of such an edge
is marked with an arrow. This obstacle proves to be minor, as the necessary interpolation
is shown in Figure 7 – rather than interpolating a vertex on an edge incident with vertices
in both U1 and U2, the vertex and its two neighbors are interpolated in U2, replacing a
(5, 4, 5)-path in 〈U2〉 with a (5, 4, 6, 4, 5)-path.
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↑
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 64 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5

4 4 4 4 4 4 45 5 5 5 56 6

6 6 4

Figure 5: An expanded view of the subgraph inserted when interpolating a 6-valent vertex
along an edge incident to the root. Again note the marked 5-valent vertex in the upper left.
(The large shaded region represents a number of faces of valence sequence [4, 6, 6, 4, 5]
which are too dense to draw nicely in the Euclidean plane.)

↑

Figure 6: Beginning the construction of T ′2 from T ′1.
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4 5 4

5 x 5

6

6 6 6 6 6 64 45 5 5

5 4 x 4 5

6

Figure 7: In the diagram to the left, the (4, 6)-edge at the bottom must have a 6-valent
vertex interpolated, along with the attendant subgraph. However, we wish to avoid non-
concentricity; hence the single 4-valent vertex x is expanded to a (4, 6, 4)-path as in the
diagram on the right.

We continue by induction; suppose a tessellation T ′j has been created by this process.
Then in the jth corona, there are finitely many faces which require a finite number of ver-
tices to have their valences increased and a finite number of edges along which we must
interpolate a vertex. This creates T ′j+1 such that

|F1,n| ≤
∣∣F ′j+1,n

∣∣ = |F2,n|

for n < j + 1, as the first j coronas are comprised only of faces with valence sequence σ2.
Furthermore,

|F1,n| ≤
∣∣F ′j+1,n

∣∣
for all n ∈ N. In this manner we can construct an infinite sequence of tessellations, namely
{T ′j : j ∈ N}, with the properties that |F1,n| ≤

∣∣F ′j,n∣∣ for any j, n ∈ N0, and
∣∣F ′j,n∣∣ =

|F2,n| whenever j > n.

In the previous example, we constructed the sequence in the process of transforming
T1 with valence sequence [4, 5, 4, 5] into T2 with valence sequence [4, 6, 6, 4, 5]; however,
the process of creating {T ′j : j ∈ N0} is identical in any case where T1 and T2 are face-
homogeneous and uniformly concentric with monomorphic valence sequences σ1 and σ2,
respectively, where σ1 < σ2. Thus by Lemma 2.18, we obtain the following result.

Theorem 3.7 (Growth Comparison Theorem). Let σ1 and σ2 be monomorphic valence
sequences realized by tessellations T1, T2 ∈ G4,4 ∪ G3+,5 ∪ G3,6, with σ1 < σ2. Then
γ(T1) ≤ γ(T2).

Our convention is to index the face types (f1, . . . , fr for some r) in the following order:
first wedges, then bricks, then notched bricks, and finally, other face types if any. A wedge
in Fn with face type fi is incident with a pi−1-valent vertex in Un−1, for i = 1, . . . , k.
Similarly, the indices of face types of bricks begin with a brick in Fn incident with a
p0-valent vertex and a pk−1-valent vertex in Un−1. A new index fj is not introduced if
there is some fi for i < j with the same configuration of vertices in Un−1 and Un, up
to orientation. For example, the valence sequence [4, 6, 8, 8, 6, 4] yields seven face types
f1, . . . , f7, of which f1, f2, and f3 are wedge types and f4 through f7 are brick types.
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When a monomorphic sequence [p0, . . . , pk−1] is realized by a tessellation in G4,4 ∪
G3+,5 ∪ G3,6, then every face, with respect to any Bilinski diagram, can be only a wedge,
a brick, or a notched brick. The indexing of face types when pi 6= pj for i 6= j allows
a stricter labeling which we can use in several other cases. A face f in Fn is a wedge
of type wi when the vertex incident with f in Un−1 corresponds to valence pi−1 in σ.
If instead f is a brick with incident vertices in Un−1 corresponding to valences pi−1 and
pi−2 (indices here taken modulo k), then f has face type bi. Finally, if f a notched brick
whose incident vertices in Un−1 have valences pi, pi−1 = 3, and pi−2, then f has face
type ni. It is important to note that if pi−1 6= 3, then faces of type ni never occur as
offspring. This stricter labeling is used explicitly only for the few theorems which follow,
by which we determine the number of offspring of each instance of these general face types.
Furthermore, we demonstrate a first application of the accretion rules and half-counting of
faces that were introduced in Section 3.1.

Notation. Let T be a face-homogeneous tessellation with valence sequence σ, labeled as
a Bilinski diagram. We denote by Ω(f) the number of faces in Fn+1 that are counted as
offspring of a single face of face type f in Fn, for any n > 0. For T ∈ G4,4 ∪ G3+,5 ∪ G3,6

we let Ω(wi), Ω(bi), and Ω(ni) denote the number of offspring of a single wedge, brick,
or notched brick of, respectively, of the given type.

Lemma 3.8. For a face-homogeneous tessellation in G4,4∪G3+,5∪G3,6 with monomorphic
valence sequence σ = [p0, . . . , pk−1], one has for i ∈ {1, . . . , k},

Ω(wi) =
pi−2 + pi

2
− 2k + 3 +

∑
j /∈I1

pj , and (3.3)

Ω(bi) =
pi−3 + pi

2
− 2k + 5 +

∑
j /∈I2

pj , (3.4)

where I1 = {i− 2, i− 1, i} and I2 = {i− 3, i− 2, i− 1, i}. Also, when pi−1 = 3,

Ω(ni) =
pi−3 + pi+1

2
− 2k + 7 +

∑
j /∈I3

pj (3.5)

with I3 = {i− 3, i− 2, i− 1, i, i+ 1}.

Proof. The reader is referred to the three offspring diagrams shown in Figure 8.
Letting i ∈ {1, . . . , k}, the first diagram applies when pi−1 ≥ 4. If also pi−2, pi ≥ 4

as in the diagram, then we have

Ω(wi) =
pi−2 − 4

2
+
pi − 4

2
+ k − 2 +

∑
j /∈I1

(pj − 3)

=
pi−2 + pi

2
− 2k + 3 +

∑
j /∈I1

pj .

If instead pi−2 = 3, then the number of wedge offspring of wi is

pi − 4

2
+
∑
j /∈I1

(pj − 3),
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Un−1 Un Un+1 Un−1 Un Un+1 Un−1 Un Un+1

wi bi nipi−1

pi−1

pi−2

pi

pi−1

pi−2

wi+1

wi+2

wi−2

wi−1

bi+2

bi−1

wi+1

wi+2

wi−3

wi−2

bi+2

bi−2

wi+2

wi+3

wi−3

wi−2

bi+3

bi−2

Figure 8: Offspring diagrams for the three general face types (respectively wedges, bricks,
and notched bricks) of a tessellation with monomorphic, uniformly concentric valence se-
quence [p0, . . . , pk−1].

the number of brick offspring is k − 3, and the number of notched brick offspring is 1
2 .

Thus when pi−2 = 3,

Ω(wi) =
1

2
+
pi − 4

2
+ k − 3 +

∑
j /∈I1

(pj − 3)

= −1

2
+
pi − 4

2
+ k − 2 +

∑
j /∈I1

(pj − 3)

=
pi−2 − 4

2
+
pi − 4

2
+ k − 2 +

∑
j /∈I1

(pj − 3)

as before; likewise when pi = 3. Analogous arguments hold for the offspring of bricks and
notched bricks.

The process of establishing an accretion rule and accompanying transition matrices is
considerably simplified for tessellations in G4,4 by virtue of the absence of notched bricks.
By applying the following lemma and Theorem 3.3, one can then compute the growth
rate explicitly of any monomorphic valence sequence realizable in G4,4. Recall that by
Proposition 2.3, all such valence sequences are uniformly concentric.

Lemma 3.9. Let [p0, . . . , pk−1] be the monomorphic valence sequence for a tessellation
T ∈ G4,4. Then T has an accretion rule which admits the block transition matrix

M =

[
A B
C D

]
,

with A = (ai,j), B = (bi,j), C = (ci,j), and D = (di,j) given by

ai,j =


0 j − i = 0
1
2 (pi−1 − 4) j − i ∈ {1, k − 1} (mod k)

pi−1 − 3 otherwise,
(3.6)
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bi,j =


0 j − i ∈ {0, 1} (mod k)
1
2 (pi−1 − 4) j − i ∈ {2, k − 1} (mod k)

pi−1 − 3 otherwise,
(3.7)

ci,j =

{
0 j − i ∈ {0, 1} (mod k)

1 otherwise,
(3.8)

di,j =

{
0 j − i ∈ {0, 1, k − 1} (mod k)

1 otherwise,
(3.9)

for i, j ∈ {1, . . . , k}.

Proof. Since all general face types are wedges or bricks, we need demonstrate only that
the entries ai,j and ci,j correspond to numbers of offspring of the k face types in wedge
configurations and that the entries bi,j and di,j correspond to numbers of offspring of the k
face types in brick configurations.

1
2 (pi − 4) faces of type wi+1

pi+1 − 3 faces of type wi+2

pi−3 − 3 faces of type wi−2

1
2 (pi−2 − 4) faces of type wi−1

pi−1

pi−2

pi

wi

Un−1 Un Un+1

Figure 9: Offspring of a wi face in a tessellation T ∈ G4,4, where i ∈ {1, . . . , k}.

The offspring of wedges of type wi are shown in Figure 9, and the offspring of a brick
of type bi is shown in Figure 10. The ordering of face types is w1,w2, . . .,wk,b1, . . .,bk.

1
2 (pi − 4) faces of type wi+1

pi+1 − 3 faces of type wi+2

pi−4 − 3 faces of type wi−3

1
2 (pi−3 − 4) faces of type wi−2

pi−1

pi−2
pi−3

pi

bi

Un−1 Un Un+1

Figure 10: Offspring of a bi face in a tessellation T ∈ G4,4, where i ∈ {1, . . . , k}.

Recalling that the (i, j)-entry of a transition matrix M is the number of faces of the ith
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indexed type which are produced in Fn+1 as offspring of a face of the jth indexed type in
Fn, it is straightforward to verify from these two offspring diagrams that the entries of M
are correct.

Remark 3.10. We emphasize the breadth of this class of monomorphic, uniformly con-
centric valence sequences. In addition to the many monomorphic face-homogeneous tes-
sellations in G3,6 ∪G3+,5 ∪G4,4, there are many with covalence 3 (cf. Proposition 3.5). By
Proposition 2.19, all edge-transitive tessellations of constant covalence are included, except
for those of the with valence sequence [3, p, 3, p] (edge-symbol 〈3, p; 4, 4〉), as they are not
uniformly concentric. By Proposition 2.3, a k-covalent tessellation T is uniformly concen-
tric whenever k ≥ 6. If k ≥ 7 and if σ is monomorphic, then σ ≥ [3, 3, 3, 3, 3, 3, 3].
In that case, Theorem 3.7 and Proposition 2.20 tell us that σ has growth rate at least
γ([3, 3, 3, 3, 3, 3, 3]) = 1

2 (3 +
√

5).

3.3 Monomorphic non-concentric sequences

The purpose of this section is to characterize the six forms of monomorphic, non-concentric
valence sequences with positive angle excess. These sequences give rise to face types other
than wedges, bricks, and notched bricks, and so the foregoing methods cannot be applied
to compute their growth rates.

An interesting situation arises when a tessellation is not uniformly concentric but none-
theless, by prudent selection of the root, admits some Bilinski diagram that is concentric.
To illustrate this point, we examine sequences of the form [4, p, q].

Example 3.11. Consider the valence sequence σ = [4, p, q] with 4 < p < q, where
1
p + 1

q <
1
4 , and let T be a face-homogeneous tessellation with valence sequence σ. For

σ to be realizable, clearly p and q must be even. Note as well that the inequality (2.4)
is satisfied. While σ is monomorphic and admits a concentric Bilinski diagram, σ is not
uniformly concentric (cf. the second case of Proposition 2.4).

When a Bilinski diagram of T admits a 4-valent vertex v0 ∈ Un (for some n) adjacent
to the vertices u1, u2 ∈ Un−1 and v1, v2 ∈ Un, then the diagram is not concentric; the
vertices v1 and v2 must also be adjacent, as T is 3-covalent. Hence 〈{v0, v1, v2}〉 is a cycle
within 〈Un〉, causing the Bilinski diagram to be non-concentric. However, it is possible to
avoid this configuration by choosing the root of the Bilinski diagram to be either a p-valent
or a q-valent vertex. When so labeled, only four face types occur, as demonstrated by the
offspring diagrams in Figure 11.

Un−1 Un Un+1 Un−1 Un Un+1

f1
f3

f2

f2

f4

f1

: 4-valent
: p-valent
: q-valent

Figure 11: Offspring diagrams for a concentric tessellation with valence sequence [4, p, q].
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One sees here that if the root is taken to be a p-valent vertex, the first corona consists en-
tirely of faces of type f1, which produce in turn only offspring of types f2 and f3. Similarly,
given a q-valent root, the first corona consists entirely of faces of type f2, which produce in
turn only offspring of types f1 and f4. The non-concentric configuration described above
can never be produced among the descendants of faces of types f1 or f2.

Inspection of Figure 11 gives the first and second columns of the transition matrix M ;
the third and fourth columns, corresponding to f3 and f4, merit further explanation. A face
of type f3 in Fn+1 has a p-valent vertex in Un+1; this vertex is incident with p − 5 faces
of type f1 in Fn+2. So the behavior of a face of type f3 is effectively to collapse one of the
faces in Un+2 of type f1 begotten by the adjacent face of type f2. Faces of type f4 behave
similarly, collapsing a face of type f2 . These considerations give us

M =


0 1

2 (p− 4) −1 0
1
2 (q − 4) 0 0 −1

1 0 0 0
0 1 0 0


as the transition matrix M for this accretion rule for T . As the characteristic equation for
M is of degree 4, it can be solved to determine that the maximum modulus of an eigenvalue
of M is

Λ =
1

4

√
[2(p− 4)(q − 4)− 16] + 2

√
(p− 4)2(q − 4)2 − 16(p− 4)(q − 4).

By Theorem 3.3 and Theorem 2.16, Λ is the growth rate of T . This quantity can be min-
imized by minimizing pq subject to the initial conditions 1

p + 1
q <

1
4 and that p and q be

even. We shall see in Section 3.4 the role played by this example.

Growth rate formulas for each of the other five classes are derived in the Appendix.

Theorem 3.12. Let σ be a valence sequence such that η(σ) > 0. Then σ is both monomor-
phic and non-concentric if and only if σ is of one of the following six forms:

(i) [3, p, p], with p ≥ 14 and even;

(ii) [4, p, q], with p and q both even, 4 < p < q, and 1
p + 1

q <
1
4 ;

(iii) [3, p, 3, p], with p ≥ 7;

(iv) [3, p, 4, p], with p ≥ 5 and even;

(v) [3, 3, p, 3, p], with p ≥ 5; or

(vi) [3, 3, p, 3, q], with p, q ≥ 4 and 1
p + 1

q <
1
2 .

Proof. The parity conditions and the inequalities bounding the parameters in each case are
minimal such that σ be indeed realizable as a tessellation with η(σ) > 0.

As noted in Remark 3.10, all valence sequences of length at least 6 are uniformly con-
centric. Furthermore, by Proposition 3.5, all valence sequences of length 3 are monomor-
phic. Valence sequences [3, p, p], [4, p, q], and [3, p, 3, p] give rise to tessellations exem-
plifying cases 1, 2, and 4 respectively of Proposition 2.4, and hence cannot be uniformly
concentric. As a face-homogeneous tessellation with valence sequence [3, p, 3, p] is also
edge-transitive, the sequence must be monomorphic. The proof that the sequence [3, p, 4, p]
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must be monomorphic and uniformly non-concentric is given in the Appendix, where the
growth rate of a corresponding tessellation is determined.

We now prove that [3, 3, p, 3, p] is monomorphic for all p ≥ 5. As a 3-valent vertex
is incident with a common face with any two of its neighbors, every 3-valent vertex must
be adjacent to at least two p-valent vertices; otherwise some face would be incident with a
(3, 3, 3)-path. Consider a p-valent vertex v1. By face-homogeneity, v1 is adjacent to some
3-valent vertex u1, with u1 adjacent in turn to a 3-valent vertex u2 which is not adjacent
to v0. But then the other vertex adjacent to u1 must be a p-valent vertex v2. This forces
the pattern of valences at regional distance 1 from v1 to be (3, 3, p, . . . , 3, 3, p); as v1 was
arbitrary, this must be the pattern of valences at regional distance 1 from any p-valent
vertex. As every vertex is at regional distance 1 from some p-valent vertex, [3, 3, p, 3, p]
must be monomorphic; the first two coronas of a tessellation with this valence sequence
rooted at a p-valent vertex is depicted in Figure 12. Furthermore, this local configuration
to a p-valent vertex forces the local behaviors to a (3, 3)-edge and a 3-valent vertex shown
in Figure 13. Hence when a 3-valent vertex v0 is taken as the root of the Bilinski diagram
of a tessellation with valence sequence [3, 3, p, 3, p], a pendant vertex occurs in 〈U3〉. This
is shown in Figure 14. So [3, 3, p, 3, p] is monomorphic but not uniformly concentric; the
argument for [3, 3, p, 3, q] is analogous.

We have shown these six forms to be both monomorphic and non-concentric; that these
are the only such valence sequences is proved via the exhaustive examination of cases in
the Appendix.

. . .

. . .

: 3-valent
: p-valent

Figure 12: The first two coronas of a tessellation with valence sequence [3, 3, p, 3, p] rooted
at a p-valent vertex. Each shaded region indicates p − 3 faces in F2 all having the same
face type.

3.4 The main result

The following theorem establishes the so-called “golden mean” as the least rate of expo-
nential growth for face-homogeneous tessellations with monomorphic valence sequences.

Theorem 3.13 (Least Exponential Growth Rate of Monomorphic Valence Sequences). The
least growth rate of a face-homogeneous tessellation with monomorphic valence sequence
σ such that η(σ) > 0 is 1

2 (1 +
√

5) and is attained by exactly the tessellations with valence
sequences [4, 6, 14] and [3, 4, 7, 4].
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(A) (B)

: 3-valent
: p-valent

Figure 13: (A) Local configuration along an edge with edge-symbol 〈3, 3; 5, 5〉 in a face-
homogeneous tessellation with valence sequence [3, 3, p, 3, p]. (B) Local configuration in
the same tessellation when rooted at a 3-valent vertex.

: 3-valent
: p-valentv0

Figure 14: Non-concentricity of [3, 3, p, 3, p] when rooted at a 3-valent vertex v0.

Table 1: Table of the least exponential growth rate within each monomorphic class of
valence sequences. All rates of growth have been truncated at four decimal places rather
than being rounded.

Class σ γ(Tσ) ≈ Class σ γ(Tσ) ≈
[p, p, p] [7, 7, 7] 2.6180 [p, p, q, r, q] [4, 4, 6, 5, 6] 6.6650

[3, p, p] [3, 14, 14] 2.6180 [3, p, q, q, p] [3, 4, 6, 6, 4] 4.9911

[p, p, q] [6, 6, 7] 1.722 [p, q, r, s, t] [4, 6, 10, 12, 8] 14.5753

[4,p,q] [4,6,14] 1.6180 [p, p, p, p, p, p] [4, 4, 4, 4, 4, 4] 5.8284

[p, q, r] [6, 8, 10] 3.4789 [p, p, q, p, p, q] [4, 4, 5, 4, 4, 5] 7.1347

[p, p, p, p] [5, 5, 5, 5] 3.7320 [p, q, p, q, p, q] [4, 5, 4, 5, 4, 5] 7.8729

[p, p, q, q] [4, 4, 6, 6] 3.4081 [p, q, q, p, r, r] [6, 4, 4, 6, 8, 8] 13.1291

[3, p, 3, p] [3, 7, 3, 7] 2.6180 [p, q, p, r, q, r] [4, 5, 4, 6, 5, 6] 9.8115

[p, q, p, q] [4, 5, 4, 5] 2.6180 [p, q, r, p, q, r] [4, 6, 8, 4, 6, 8] 13.5612

[3, p, 4, p] [3, 6, 4, 6] 2.9655 [p, q, p, r, s, r] [4, 5, 4, 6, 7, 6] 10.9033

[3,p,q,p] [3,4,7,4] 1.6180 [p, q, r, p, s, t] [4, 6, 8, 4, 10, 12] 18.1174

[p, q, p, r] [4, 5, 4, 6] 3.1462 [p, q, r, s, t, u] [4, 6, 10, 14, 12, 8] 23.9963

[p, q, r, s] [4, 6, 10, 8] 7.0367 [3, p, p, 3, p, p] [3, 4, 4, 3, 4, 4] 4.3306

[p, p, p, p, p] [4, 4, 4, 4, 4] 3.7320 [3, p, 3, p, 3, p] [3, 4, 3, 4, 3, 4] 3.7320

[3, 3, 3, 3, p] [3, 3, 3, 3, 7] 1.7553 [3, 3, 3, p, q, p] [3, 3, 3, 4, 5, 4] 4.0265

[3, 3, 3, p, p] [3, 3, 3, 6, 6] 3.0217 [3, p, q, 3, q, p] [3, 4, 6, 3, 6, 4] 6.8091

[3, 3, p, 3, p] [3, 3, 5, 3, 5] 2.6180 [3, p, 3, q, 3, r] [3, 4, 3, 5, 3, 6] 5.6723

[3, 3, p, 3, q] [3, 3, 4, 3, 5] 1.9318 [3, p, q, r, q, p] [3, 4, 6, 5, 6, 4] 8.0601
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Proof. With respect to the partial order on valence sequences, if a valence sequence σ has
length at least 7, then [3, 3, 3, 3, 3, 3, 3] ≤ σ. A face-homogeneous tessellation T0 with va-
lence sequence [3, 3, 3, 3, 3, 3, 3] is edge-homogeneous with edge-symbol 〈3, 3; 7, 7〉 and so
has growth rate γ(T0) = 1

2 (3 +
√

5) by Proposition 2.20. But then if [3, 3, 3, 3, 3, 3, 3] < σ
and T is a tessellation with monomorphic valence sequence σ, then γ(T0) ≤ γ(T ), by The-
orem 3.7. We proceed then by exhaustion: there are only finitely many forms of valence
sequences of length at most 6. The Appendix contains an exhaustive classification of real-
izable valence sequences as monomorphic or polymorphic. For each form of monomorphic
valence sequence, the least rate of growth is either determined or bounded below. The min-
imum growth rate of a minimal representative of each form is listed in Table 1. Of these
forms, [4, 6, 14] and [3, 4, 7, 4] have the least rate of growth, shown to be 1

2 (1 +
√

5) in the
Appendix.

Remark 3.14. It is interesting to observe that the two tessellations realizing the minimum
exponential growth rate are closely related. The face-homogeneous tessellation with va-
lence sequence [4, 6, 14] can be realized by the classical tiling of the hyperbolic plane by
triangles with interior angles π2 , π3 , and π

7 . Moreover, a face-homogeneous tessellation with
valence sequence [3, 4, 7, 4] is the subgraph of one with valence sequence [4, 6, 14] obtained
by the deletion of all edges joining 6-valent and 14-valent vertices. Many artistic renderings
of these tilings exist and can be found on web sites regarding the (2, 3, 7)-triangle group,
the Order-7 triangular tiling, or triangular tilings of the hyperbolic plane.

4 Polymorphic valence sequences
4.1 A sufficient condition for polymorphicity

With respect to the ordering of cyclic sequences, the least polymorphic valence sequence
with positive angle excess is [4, 4, 4, 5]; that is to say, every cyclic sequence σ such that
σ < [4, 4, 4, 5] is either not realizable as a tessellation, is realizable only by a finite map
or a Euclidean tessellation, or is monomorphic. While all valence sequence of length 3
are monomorphic, k-covalent polymorphic valence sequences abound for k ≥ 4. The
following theorem gives a simple sufficient condition under which a realizable valence
sequence is polymorphic.

Un Un+1

u0

u1

u2

v1

v2

vr

w
b

b′

Figure 15: A configuration of faces demonstrating polymorphicity.

Proposition 4.1. Let σ = [p0, . . . , pk−1] be the valence sequence of a face-homogeneous
tessellation T ∈ G4,4 ∪ G3+,5. If there exist distinct i, j ∈ {0, . . . , k − 1} such that
pi, pi+1 ≥ 4 and either
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1. pi = pj , pi+1 = pj+1, and pi+2 6= pj+2, or

2. pi = pj , pi+1 = pj−1, and pi+2 6= pj−2,

then σ is polymorphic.

Proof. As the only two forms of valence sequences of length k = 4 that satisfy the hypoth-
esis, namely [p, p, p, q] and [p, p, q, r], are polymorphic (see Appendix), we assume that
k ≥ 5. Also, since condition (2) is identical to (1) save for orientation within the cyclic
sequence, it suffices to assume that there are distinct i, j such that (1) holds. Furthermore,
we may assume i = 0 due to the rotational equivalence of valence sequences.

Since k ≥ 5, there exists for some n a face in Fn incident with three consecutive
vertices u0, u1, u2 ∈ Un with valence ρ(um) = pm for m = 0, 1, 2. Let b be the brick
in Fn+1 incident with the edge u0u1, and let b′ be the brick (or perhaps notched brick
if p2 = 3) in Fn+1 incident with the edge u1u2. Let v1, . . . , vr be the vertices in Un+1

incident with u1 in consecutive order, so that v1 is incident with b and vr is incident with b′.
Thus r = p1 − 2 ≥ 2. If σ contains a subsequence [q, p1, p2] with q 6= p0, then ρ(vr) may
equal either p0 or q, resulting in a choice of face types for b′, and we’re done. Otherwise
we must have ρ(vr) = p0, which forces the vertex vr−2 and subsequent alternate neighbors
of u1 in Un+1 also to be p0-valent.

If p1 is even, then ρ(v1) may equal either p2 or pj+2 in which case the wedge w ∈
Fn+1 incident with vertices v1, u1, v2 may be of either type w2 or type wj+2, and T is
polymorphic. (See Figure 15.)

If p1 is odd, then working backward as in the even case forces ρ(v1) = p0, which
implies that either p0 = p2 or p0 = pj+2, and without loss of generality, we assume the
former. Now we may assign ρ(v2) to be either p0 or pj+2, and the argument proceeds as in
the even case.

The existence of polymorphic valence sequences considerably complicates the compu-
tation of growth rates of face-homogeneous tessellations. The above proof suggests that,
unlike in the monomorphic case, polymorphic valence sequences may admit many different
accretion rules, as we illustrate in the next section.

4.2 Two non-isomorphic tessellations with the same valence sequence

The minimal polymorphic valence sequence under the partial order on cyclic sequences,
namely [4, 4, 4, 5], is unfortunately not amenable to study via our methods. In fact, there
is no well-defined transition matrix between coronas, and this problem is shared by all
valence sequences of the form [4, 4, 4, q] for q > 4. However, [4, 4, 6, 8] provides us with
the opportunity to investigate two distinct (but related) accretion rules.

The valence sequence [4, 4, 6, 8] is representative of form [p, p, q, r] discussed in the
Appendix. As every face is incident with a pair of adjacent 4-valent vertices, every real-
ization of this valence sequence contains a countable infinity of pairwise-disjoint double
rays, each induced exclusively by 4-valent vertices. Figure 16 (A) shows a strip-like patch
bordering a double ray of 4-valent vertices. To obtain Figure 16 (B) from this (or vice
versa), one can fix pointwise the half-plane on one side of the double ray while translating
the half-plane on the other side along one edge of the double ray.

To construct still other such (non-isomorphic) realizations, one can choose to “trans-
late” along any one of these double rays by leaving fixed the half-plane on one side of the
double ray but translating the half-plane on the other side by one edge. Since there exists
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(A) (B)

: 4-valent
: 6-valent
: 8-valent

Figure 16: Two non-isomorphic patches of a tessellation with valence sequence [4, 4, 6, 8],
showing possible neighborhoods of double rays of 4-valent vertices.

a countable infinity of double rays along which one may choose to translate one or the
other or neither of the adjacent half-planes, there exists an uncountable class of pairwise
non-isomorphic tessellations that all have the same valence sequence [4, 4, 6, 8].

While one might expect that all tessellations having the same valence sequence always
have the same growth rate, we show that this is not so.

We begin by observing that every 4-valent vertex in a face-homogeneous tessellation
with valence sequence [4, 4, 6, 8] is adjacent to two other 4-valent vertices and two vertices
with valences 6 or 8; thus any given 4-valent vertex either has exactly one 6-valent and one
8-valent neighbor, has two 6-valent neighbors, or has two 8-valent neighbors. Furthermore,
every 4-valent vertex lies on a double ray (two-way infinite path) of 4-valent vertices; if one
vertex along this path has a 6-valent neighbor and an 8-valent neighbor, then so does every
other vertex along the double ray. This is the behavior demonstrated in Figure 16 (A).

If the local configuration specified in Figure 16 (A) is enforced along every double ray
of 4-valent vertices, then the tessellation obtained is unique; let this tessellation be T1. We
can then construct offspring diagrams for T1 as given in Figure 17. It is interesting to note
that T1 is the dual of the Cayley graph of the group with presentation

G1 =
〈
a, b, c | a2 = b2 = c2 = (bc)3 = (caba)4 = 1

〉
.

Encoding the offspring diagrams into a matrix, we obtain the transition matrix M1 of
T1 given below. The four entries underlined in the matrix are the only entries which change
between this example and the next example, T2, that we construct.

M1 =



0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
3 1 0 1 1 1 0 0
2 5 2 0 0 2 2 0
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1
1 0 0 1 1 0 0 0
1 1 0 0 0 1 0 0


The characteristic polynomial of M1 is

f1(z) = (z − 1)(z + 1)
(
z2 + 3z + 1

) (
z4 − 3z3 − 4z2 − 3z + 1

)
,

which in turn gives that the eigenvalue of maximum modulus of M1 is

λ1 =
1

4

3 +
√

33 + 2

√
13

2
+

3
√

33

2

 ≈ 4.13016.
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Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

f1

f7

f8

f3

f4

f2

f5

f8

f3

f4
f3

f6

f5
f4

f2

f4 f7

f6 f1

f3

f5
f7

f3

f6
f8

f3

f4

Un−1 Un Un+1

f7 f5

f4

Un−1 Un Un+1

f8 f6

: 4-valent

: 6-valent

: 8-valent

Figure 17: Offspring diagrams for T1.
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Considering again the double-rays of 4-valent vertices, it is trivial to note that if a vertex
on such a double ray has two 6-valent neighbors in the tessellation, then both vertices
adjacent to it in the double-ray have two 8-valent neighbors. This local behavior is shown
in Figure 16 (B).

If this pattern is extended to all such double rays we obtain the tessellation T2, which
is also the dual of a Cayley graph. The underlying group of this Cayley graph is

G2 =
〈
a, b, c, d | a2 = b2 = c2 = d2 = (ab)2 = (ad)2 = (cd)3 = (bc)4

〉
.

The growth behavior of T2 differs from that of T1 only in the offspring of faces of types f3
and f4, as shown in the offspring diagrams in Figure 18.

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

f1

f7

f8

f3

f4

f2

f5

f8

f3

f4
f3

f6

f5
f4

f1

f4 f7

f6 f2

f3

f5
f7

f3

f6
f8

f3

f4

Un−1 Un Un+1

f7 f5

f4

Un−1 Un Un+1

f8 f6

: 4-valent

: 6-valent

: 8-valent

Figure 18: Offspring diagrams for T2.

The effect of the change of offspring of types f2 and f3 in the transition matrix of T2
lies only in the underlined 2 × 2 submatrix of M1, while the remainder of the matrix M2
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remains identical to M1. Hence we have

M2 =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
3 1 0 1 1 1 0 0
2 5 2 0 0 2 2 0
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1
1 0 0 1 1 0 0 0
1 1 0 0 0 1 0 0


.

The characteristic polynomial of M2 is

f2(z) = (z − 1)2
(
z6 + 2z5 − 15z4 − 40z3 − 15z2 + 2z + 1

)
.

As polynomials of degree 6 are unfortunately not solvable by radicals, we obtain by ap-
proximation that the root of maximum modulus is λ2 ≈ 4.14659.

As these growth rates are nearly the same, there is only a small difference in corona
sizes in the first several coronas. However, the size of the coronas and distribution of face
types differs greatly farther from the root. To demonstrate this, Table 2 gives corona sizes
in Bilinski diagrams of T1 and of T2, both rooted at 4-valent vertices. Note that the sizes
of the coronas of T2 dominate those of T1 only after the 13th corona.

4.3 Some conjectures

Ideally, all tessellations realizing the same polymorphic valence sequence would have the
same growth rate. The example of valence sequence [4, 4, 6, 8] illustrates that this is not so.
We propose the following definitions.

Definition 4.2. Let σ be some polymorphic valence sequence, and define Tσ to be the set
of isomorphism classes of face-homogeneous tessellations with valence sequence σ. Let

λσ = inf{γ(T ) : T ∈ Tσ}, (4.1)

λσ = sup{γ(T ) : T ∈ Tσ}, (4.2)
Lσ = {T : T ∈ Tσ and γ(T ) = λσ}, and (4.3)

Hσ = {T : T ∈ Tσ and γ(T ) = λσ}. (4.4)

We conjecture that the lower and upper bounds λσ and λσ for any given valence se-
quence σ are realized.

Conjecture 4.3. Let σ be a polymorphic valence sequence. Then Lσ and Hσ are nonempty.

Bearing in mind the polymorphic valence sequence [4, 4, 6, 8] analyzed in Section 4.2,
we propose as a conjecture the following sharper version of Theorem 3.7.

Conjecture 4.4. Let σ1 and σ2 be valence sequences such that σ1 < σ2. Then

λσ1
≤ λσ2

. (4.5)

In the spirit of the famous quote of the late George Pólya [12] (“If you can’t solve a
problem, then there is an easier problem you can solve: find it.”), we offer the following
(perhaps) easier conjecture.
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Table 2: Corona sizes in T1 and T2; emphasis on the 14th corona beyond which the coronas
of T2 appear to exceed in size those of T1.

n |F1,n| |F2,n| n |F1,n| |F2,n|
1 4 4 29 1.20050× 1018 1.27748× 1018

2 30 28 30 4.95826× 1018 5.29701× 1018

3 110 108 31 2.04784× 1019 2.19652× 1019

4 494 468 32 8.45791× 1019 9.10786× 1019

5 1938 1900 33 3.49325× 1020 3.77673× 1020

6 8272 7956 34 1.44277× 1021 1.56603× 1021

7 33464 32868 35 5.95887× 1021 6.49377× 1021

8 140046 136380 36 2.46111× 1022 2.69268× 1022

9 573610 565956 37 1.01648× 1023 1.11655× 1023

10 2.38167× 106 2.34358× 106 38 4.19821× 1023 4.62986× 1023

11 9.80378× 106 9.73259× 106 39 1.73393× 1024 1.91983× 1024

12 4.05773× 107 4.02988× 107 40 7.16140× 1024 7.96071× 1024

13 1.67365× 108 1.67318× 108 41 2.95777× 1025 3.30099× 1025

14 6.91836× 108 6.93034× 108 42 1.22161× 1026 1.36878× 1026

15 2.85585× 109 2.87639× 109 43 5.04544× 1026 5.67580× 1026

16 1.17992× 1010 1.19181× 1010 44 2.08385× 1027 2.35352× 1027

17 4.87218× 1010 4.94504× 1010 45 8.60662× 1027 9.75910× 1027

18 2.01257× 1011 2.04947× 1011 46 3.55467× 1028 4.04670× 1028

19 8.31149× 1011 8.50179× 1011 47 1.46814× 1029 1.67800× 1029

20 3.43297× 1012 3.52419× 1012 48 6.06363× 1029 6.95799× 1029

21 1.41782× 1013 1.46172× 1013 49 2.50438× 1030 2.88520× 1030

22 5.85596× 1013 6.05990× 1013 50 1.03435× 1031 1.19637× 1031

23 2.41857× 1014 2.51322× 1014 60 1.49395× 1037 1.79797× 1037

24 9.98918× 1014 1.04199× 1015 70 2.15777× 1043 2.70207× 1043

25 4.12567× 1015 4.32117× 1015 80 3.11654× 1049 4.06079× 1049

26 1.70397× 1016 1.79166× 1016 90 4.50134× 1055 6.10274× 1055

27 7.03766× 1016 7.42979× 1016 100 6.50145× 1061 9.17148× 1061

28 2.90667× 1017 3.08066× 1017 200 2.56861× 10123 5.38996× 10123

Conjecture 4.5. Let σ1 and σ2 be valence sequences with σ1 < σ2. Then

λσ1
≤ λσ2

. (4.6)

If Conjecture 4.4 holds, then one could delete the condition of monomorphicity from
the hypothesis of Theorem 3.7 and therefore from Theorem 3.13 as well. Moreover, the
Appendix could be much abbreviated. For example, one could eliminate the exhaustive
consideration of the many forms of 6-covalent face-homogeneous tessellations listed and
treated there by observing that the least valence sequence σ of length 6 with η(σ) > 0 is
[3, 3, 3, 3, 3, 4]. Thus, if any tessellation with the polymorphic valence sequence [3, 3, 3, 3,
3, 4] has growth rate greater than 1

2 (1 +
√

5), then so does every tessellation with valence
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sequence σ ≥ [3, 3, 3, 3, 3, 4].
Beyond these conjectures, there are some open questions. Consider the partially or-

dered set of valence sequences, and in particular, the poset consisting of the polymorphic
valence sequences.

Question 4.6. As one goes up a chain in the poset, do intervals of the form
[
λσ, λσ

]
become

(asymptotically) longer?

Question 4.7. Do the intervals in the complement of⋃
σ

{[
λσ, λσ

]
: σ is polymorphic

}
become arbitrarily long?

If the answer to Question 4.7 is negative, we pose the following.

Question 4.8. If x is a sufficiently large real number, is there always some polymorphic
valence sequence σ such that λσ ≤ x ≤ λσ?

Or, on the other hand,

Question 4.9. Do there exist polymorphic sequences σ, τ such that[
λσ, λσ

]
∩
[
λτ , λτ

]
6= ∅?
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[8] B. Grünbaum and G. C. Shephard, Edge-transitive planar graphs, J. Graph Theory 11 (1987),
141–155, doi:10.1002/jgt.3190110204.
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